Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery
NASA Astrophysics Data System (ADS)
Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro
2017-02-01
The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.
Stages of Childhood Soft Tissue Sarcoma
... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
Treatment Options for Childhood Soft Tissue Sarcoma
... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
Treatment Option Overview (Childhood Soft Tissue Sarcoma)
... nearby lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... therapy , and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review
Kawwass, Jennifer F.; Summer, Ross; Kallen, Caleb B.
2015-01-01
Obesity is a risk factor for infertility and adverse reproductive outcomes. Adipose tissue is an important endocrine gland that secretes a host of endocrine factors, called adipokines, which modulate diverse physiologic processes including appetite, metabolism, cardiovascular function, immunity and reproduction. Altered adipokine expression in obese individuals has been implicated in the pathogenesis of a host of health disorders including diabetes and cardiovascular disease. It remains unclear whether adipokines play a significant role in the pathogenesis of adverse reproductive outcomes in obese individuals and, if so, whether the adipokines are acting directly or indirectly on the peripheral reproductive tissues. Many groups have demonstrated that receptors for the adipokines leptin and adiponectin are expressed in peripheral reproductive tissues and that these adipokines are likely, therefore, to exert direct effects on these tissues. Many groups have tested for direct effects of leptin and adiponectin on reproductive tissues including the testis, ovary, uterus, placenta and egg/embryo. The hypothesis that decreased fertility potential or adverse reproductive outcomes may result, at least in part, from defects in adipokine signaling within reproductive tissues has also been tested. Here, we present a critical analysis of published studies with respect to two adipokines, leptin and adiponectin, for which significant data have been generated. Our evaluation reveals significant inconsistencies and methodological limitations regarding the direct effects of these adipokines on peripheral reproductive tissues. We also observe a pervasive failure to account for in vivo data that challenge observations made in vitro. Overall, while leptin and adiponectin may directly modulate peripheral reproductive tissues, existing data suggest that these effects are minor and non-essential to human or mouse reproductive function. Current evidence suggests that direct effects of leptin or adiponectin on peripheral reproductive tissues are unlikely to factor significantly in the adverse reproductive outcomes observed in obese individuals. PMID:25964237
Loubani, Osama M; Green, Robert S
2015-06-01
The aim of this study was to collect and describe all published reports of local tissue injury or extravasation from vasopressor administration via either peripheral intravenous (IV) or central venous catheter. A systematic search of Medline, Embase, and Cochrane databases was performed from inception through January 2014 for reports of adults who received vasopressor intravenously via peripheral IV or central venous catheter for a therapeutic purpose. We included primary studies or case reports of vasopressor administration that resulted in local tissue injury or extravasation of vasopressor solution. Eighty-five articles with 270 patients met all inclusion criteria. A total of 325 separate local tissue injury and extravasation events were identified, with 318 events resulting from peripheral vasopressor administration and 7 events resulting from central administration. There were 204 local tissue injury events from peripheral administration of vasopressors, with an average duration of infusion of 55.9 hours (±68.1), median time of 24 hours, and range of 0.08 to 528 hours. In most of these events (174/204, 85.3%), the infusion site was located distal to the antecubital or popliteal fossae. Published data on tissue injury or extravasation from vasopressor administration via peripheral IVs are derived mainly from case reports. Further study is warranted to clarify the safety of vasopressor administration via peripheral IVs. Copyright © 2015 Elsevier Inc. All rights reserved.
The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.
Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto
2014-07-24
The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Drug Distribution into Peripheral Nerve.
Liu, Houfu; Chen, Yan; Huang, Liang; Sun, Xueying; Fu, Tingting; Wu, Shengqian; Zhu, Xiaoyan; Zhen, Wei; Liu, Jihong; Lu, Gang; Cai, Wei; Yang, Ting; Zhang, Wandong; Yu, Xiaohong; Wan, Zehong; Wang, Jianfei; Summerfield, Scott G; Dong, Kelly; Terstappen, Georg C
2018-05-01
Little is known about the impact of the blood-nerve barrier (BNB) on drug distribution into peripheral nerves. In this study, we examined the peripheral nerve penetration in rats of 11 small-molecule drugs possessing diverse physicochemical and transport properties and ProTx-II, a tarantula venom peptide with molecular mass of 3826 Daltons. Each drug was administered as constant rate intravenous infusion for 6 hours (small molecules) or 24 hours (ProTx-II). Blood and tissues including brain, spinal cord, sciatic nerve, and dorsal root ganglion (DRG) were collected for drug concentration measurements. Unbound fractions of a set of compounds were determined by equilibrium dialysis method in rat blood, brains, spinal cords, sciatic nerves, and DRG. We also investigated the influence of N -[4-[2-(6,7-dimethoxy-3,4-dihydro-1 H -isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10 H -acridine-4-carboxamide (GF120918), a P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) inhibitor, on the peripheral nerve and central nervous system (CNS) tissue penetration of imatinib. We found that: 1) the unbound fraction in brain tissue homogenate highly correlates with that in the spinal cord, sciatic nerve, and DRG for a set of compounds and thus provides a good surrogate for spinal cord and peripheral nerve tissues, 2) small-molecule drugs investigated can penetrate the DRG and sciatic nerve, 3) P-gp and BCRP have a limited impact on the distribution of small-molecule drugs into peripheral nerves, and 4) DRG is permeable to ProTx-II, but its distribution into sciatic nerve and CNS tissues is restricted. These results demonstrate that small-molecule drugs investigated can penetrate peripheral nerve tissues, and P-gp/BCRP may not be a limiting factor at the BNB. Biologics as large as ProTx-II can access the DRG but not sciatic nerve and CNS tissues. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berns, M.W.
These proceedings collect papers on laser biomedicine. Topics include: light distributions on tissue; chemical byproducts of laser/tissue interactions; laser applications in ophthalmology; phododynamic therapy; diode pumped solid state lasers at two and three micrometers; and applications of excimer lasers to peripheral nerve repair.
McNabney, Sean M.
2017-01-01
Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance. PMID:29231905
Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hariri, Lida P.; Adams, David C.; Colby, Thomas V.; Tager, Andrew M.; Suter, Melissa J.
2016-03-01
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a 3 year survival rate of 50%. Diagnostic certainty of IPF is essential to determine the most effective therapy for patients, but often requires surgery to resect lung tissue and look for microscopic honeycombing not seen on chest computed tomography (CT). Unfortunately, surgical lung resection has high risks of associated morbidity and mortality in this patient population. We aim to determine whether bronchoscopic optical coherence tomography (OCT) can serve as a novel, low-risk paradigm for in vivo IPF diagnosis without surgery or tissue removal. OCT provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We have designed bronchoscopic OCT catheters to effectively and safely access the peripheral lung, and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We utilized these OCT catheters to perform bronchoscopic imaging in lung tissue from patients with pulmonary fibrosis to determine if bronchoscopic OCT could successfully visualize features of IPF through the peripheral airways. OCT was able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (< 1 mm diameter) not visible by CT, dense peripheral fibrosis, and spatial disease heterogeneity. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.
Borton, Anna Henry; Benson, Bryan L; Neilson, Lee E; Saunders, Ashley; Alaiti, M Amer; Huang, Alex Y; Jain, Mukesh K; Proweller, Aaron; Ramirez-Bergeron, Diana L
2018-06-01
Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. We used Arnt SMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. Arnt SMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of Arnt SMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. Arnt SMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in Arnt SMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration.
Cunha, Carla; Panseri, Silvia; Antonini, Stefania
2011-02-01
Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achieved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair. Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. Copyright © 2011 Elsevier Inc. All rights reserved.
Mosalli, Rafat; Elbaz, Mohamed; Paes, Bosco
2013-01-01
Arterial cannulation in neonates is usually performed for frequent blood pressure monitoring and blood sampling. The procedure, while easily executed by skilled neonatal staff, can be associated with serious complications such as vasospasm, thrombosis, embolism, hematoma, infection, peripheral nerve damage, ischemia, and tissue necrosis. Several treatment options are available to reverse vascular induced ischemia and tissue damage. Applied interventions depend on the extent of tissue involvement and whether the condition is progressive and deemed life threatening. Standard, noninvasive measures include immediate catheter removal, limb elevation, and warming the contralateral extremity. Topical vasodilators, anticoagulation, thrombolysis, and surgery are considered secondary therapeutic strategies. A comprehensive literature search indicates that topical nitroglycerin has been utilized for the treatment of tissue ischemia in three preterms with umbilical arterial catheters and four with peripheral arterial lines. We report the first successful use of nitroglycerine ointment in a critically ill preterm infant with ischemic hand changes after brachial artery cannulation. PMID:24251058
Kujawska-Danecka, Hanna; Masiak, Anna; Smoleńska, Zaneta; Zdrojewski, Zbigniew
2011-01-01
The peripheral nervous system is usually involved in the majority of systemic connective tissue diseases, particularly in systemic lupus erythematosus, Sjögren's syndrome, vasculitis and systemic sclerosis. The pathogenesis of lesions in the peripheral nervous system associated with the autoimmune process is complex and it appears that two mechanisms, immunological and ischemic, are of greatest importance. Structures of the nervous system may be damaged by several autoantibodies (e.g. antineuronal, anti-nerve growth factor, anti-neurotrophins), by cytotoxic effects ofproinflammatory cytokines and by activated cells of the immune system. Local ischemia and hypoxia of neurons caused by inflammation of vasa nervosum represents the second significant mechanism leading to damage of nerve fibres in the peripheral nervous system. We present 3 cases with involvement of the peripheral nervous system as a dominant feature in the clinical picture of systemic connective tissue diseases. Clinical conditions in which the peripheral nervous system is involved include peripheral sensory and sensorimotor polyneuropathy, mononeuropathies, cranial neuropathies, acute inflammatory demyelinating polyneuropathy (Guillian-Barré syndrome), chronic inflammatory demyelinating polyneuropathy, plexopathy, myasthenia gravis, and dysfunctions of the autonomic nervous system. The diagnosis is based on clinical symptoms reported by the patient and disclosed during neurologic examination. The importance of electrophysiologic tests is advocated. Selection of treatment depends on the patient's clinical condition, as well as on the clinical form and type of disease. Treatment relies principally on glucocorticosteroids, intravenous immunoglobulins, cyclophosphamide, and other immunosuppressive drugs. Plasmapheresis and rituximab are administered in severe cases. Rehabilitation of the patient appears to be an important element of therapy. Cases with neurologic symptoms as the first and often the sole manifestation of systemic connective tissue disease are particularly problematic requiring a multidimensional approach; their process of diagnosis and treatment is usually long.
Mitchell, K.; Yang, H.-Y. T.; Berk, J. D.; Tran, J. H.; Iadarola, M. J.
2009-01-01
During peripheral tissue inflammation, inflammatory processes in the CNS can be initiated by blood-borne pro-inflammatory mediators. The choroid plexus, the site of CSF production, is a highly specialized interface between the vascular system and CNS, and thus, this structure may be an important element in communication between the vascular compartment and the CNS during peripheral tissue inflammation. We investigated the potential participation of the choroid plexus in this process during peripheral tissue inflammation by examining expression of the SCYA2 gene which codes for monocyte chemoattractant protein-1 (MCP-1). MCP-1 protein was previously reported to be induced in a variety of cells during peripheral tissue inflammation. In the basal state, SCYA2 is highly expressed in the choroid plexus as compared to other CNS tissues. During hind paw inflammation, SCYA2 expression was significantly elevated in choroid plexus, whereas it remained unchanged in a variety of brain regions. The SCYA2-expressing cells were strongly associated with the choroid plexus as vascular depletion of blood cells by whole-body saline flush did not significantly alter SCYA2 expression in the choroid plexus. In situ hybridization suggested that the SCYA2-expressing cells were localized to the choroid plexus stroma. To elucidate potential molecular mechanisms of SCYA2 increase, we examined genes in the NF-κβ signaling cascade including TNF-α, IL-1β and IκBα in choroid tissue. Given that we also detected increased levels of MCP-1 protein by ELISA, we sought to identify potential downstream targets of MCP-1 and observed altered expression levels of mRNAs encoding tight junction proteins TJP2 and claudin 5. Finally, we detected a substantial up-regulation of the transcript encoding E-selectin, a molecule which could participate in leukocyte recruitment to the choroid plexus along with MCP-1. Together, these results suggest that profound changes occur in the choroid plexus during peripheral tissue inflammation, likely initiated by blood-borne inflammatory mediators, which may modify events in CNS. PMID:19032979
Peripheral formalin injection induces unique spinal cord microglial phenotypic changes
Fu, Kai-Yuan; Tan, Yong-Hui; Sung, Backil; Mao, Jianren
2014-01-01
Microglia are resident immune cells of brain and activated by peripheral tissue injury. In the present study, we investigated the possible induction of several microglial surface immunomolecules in the spinal cord, including leukocyte common antigen (LCA/CD45), MHC class I antigen, MHC class II antigen, Fc receptor, and CD11c following formalin injection into the rat’s hind paw. CD45 and MHC class I were upregulated in the activated microglia, which was evident on day 3 with the peak expression on day 7 following peripheral formalin injection. There was a very low basal expression of MHC class II, CD11c, and the Fc receptor, which did not change after the formalin injection. These results, for the first time, indicate that peripheral formalin injection can induce phenotypic changes of microglia with distinct upregulation of CD45 and MHC class I antigen. The data suggest that phenotypic changes of the activated microglia may be a unique pattern of central changes following peripheral tissue injury. PMID:19015000
The Human Cutaneous Chemokine System
McCully, Michelle L.; Moser, Bernhard
2011-01-01
Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfill a critical immune surveillance function by contributing to the first line of defense against a series of local threats, including microbes, tumors, and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and compare it when possible with gut-selective homing. We also discuss candidate chemokines that may account for the tissue selectivity in this process and present a model whereby CCR8, and its ligand CCL1, selectively regulate the homeostatic migration of memory lymphocytes to skin tissue. PMID:22566823
Extraneuraxial Hemangioblastoma: Clinicopathologic Features and Review of the Literature.
Bisceglia, Michele; Muscarella, Lucia A; Galliani, Carlos A; Zidar, Nina; Ben-Dor, David; Pasquinelli, Gianandrea; la Torre, Annamaria; Sparaneo, Angelo; Fanburg-Smith, Julie C; Lamovec, Janez; Michal, Michal; Bacchi, Carlos E
2018-05-01
Extraneuraxial hemangioblastoma occurs in nervous paraneuraxial structures, somatic tissues, and visceral organs, as part of von Hippel-Lindau disease (VHLD) or in sporadic cases. The VHL gene plausibly plays a key role in the initiation and tumorigenesis of both central nervous system and extraneuraxial hemangioblastoma, therefore, the underlying molecular and genetic mechanisms of the tumor growth are initially reviewed. The clinical criteria for the diagnosis of VHLD are summarized, with emphasis on the distinction of sporadic hemangioblastoma from the form fruste of VHLD (eg, hemangioblastoma-only VHLD). The world literature on the topic of extraneuraxial hemangioblastomas has been comprehensively reviewed with ∼200 cases reported to date: up to 140 paraneuraxial, mostly of proximal spinal nerve roots, and 65 peripheral, 15 of soft tissue, 6 peripheral nerve, 5 bone, and 39 of internal viscera, including 26 renal and 13 nonrenal. A handful of possible yet uncertain cases from older literature are not included in this review. The clinicopathologic features of extraneuraxial hemangioblastoma are selectively presented by anatomic site of origin, and the differential diagnosis is emphasized in these subsets. Reference is made also to 10 of the authors' personal cases of extraneuraxial hemangioblastomas, which include 4 paraneuraxial and 6 peripheral (2 soft tissue hemangioblastoma and 4 renal).
Scaffolds for peripheral nerve repair and reconstruction.
Yi, Sheng; Xu, Lai; Gu, Xiaosong
2018-06-02
Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.
Neural tissue engineering options for peripheral nerve regeneration.
Gu, Xiaosong; Ding, Fei; Williams, David F
2014-08-01
Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ayala-Caminero, Radamés; Pinzón-Herrera, Luis; Martinez, Carol A. Rivera; Almodovar, Jorge
2018-01-01
Understanding peripheral nerve repair requires the evaluation of 3D structures that serve as platforms for 3D cell culture. Multiple platforms for 3D cell culture have been developed, mimicking peripheral nerve growth and function, in order to study tissue repair or diseases. To recreate an appropriate 3D environment for peripheral nerve cells, key factors are to be considered including: selection of cells, polymeric biomaterials to be used, and fabrication techniques to shape and form the 3D scaffolds for cellular culture. This review focuses on polymeric 3D platforms used for the development of 3D peripheral nerve cell cultures. PMID:29515936
Hua, Susan; Cabot, Peter J
2010-09-01
Peripheral mechanisms of endogenous pain control are significant. In peripheral inflamed tissue, an interaction between immune-cell-derived opioids and opioid receptors localized on sensory nerve terminals results in potent, clinically measurable analgesia. Opioid peptides and the mRNA encoding their precursor proteins are present in immune cells. These cells 'home' preferentially to injured tissue, where they secrete opioids to reduce pain. Investigation of the mechanisms underlying the migration of opioid-containing immune cells to inflamed tissue is an active area of research, with recent data demonstrating the importance of cell adhesion molecules in leukocyte adhesion to both the endothelium in vascular transmigration and to neurons within peripheral inflamed tissue. This review summarizes the physiological mechanisms and clinical significance of this unique endogenous peripheral analgesic pathway and discusses therapeutic implications for the development of novel targeted peripheral analgesics. Copyright 2010 Elsevier Ltd. All rights reserved.
Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-Jye; Salton, Stephen R
2012-11-01
Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.
Overall Adiposity, Adipose Tissue Distribution, and Endometriosis: A Systematic Review.
Backonja, Uba; Buck Louis, Germaine M; Lauver, Diane R
2016-01-01
Endometriosis has been associated with a lean body habitus. However, we do not understand whether endometriosis is also associated with other characteristics of adiposity, including adipose tissue distribution and amount of visceral adipose tissue (VAT; adipose tissue lining inner organs). Having these understandings may provide insights on how endometriosis develops-some of the physiological actions of adipose tissue differ depending on tissue amount and location and are related to proposed mechanisms of endometriosis development. The aim of this study was to review the literature regarding overall adiposity, adipose tissue distribution and/or VAT, and endometriosis. We reviewed and synthesized studies indexed in PubMed and/or Web of Science. We included studies that had one or more measures of overall adiposity, adipose tissue distribution, and/or VAT and women with and without endometriosis for comparison. We summarized the findings and commented on the methods used and potential sources of bias. Of 366 identified publications, 19 (5.2%) were eligible. Two additional publications were identified from reference lists. Current research included measures of overall adiposity (e.g., body figure drawings) or adipose tissue distribution (e.g., waist-to-hip ratio), but not VAT. The weight of evidence indicated that endometriosis was associated with low overall adiposity and with a preponderance of adipose tissue distributed below the waist (peripheral). Endometriosis may be associated with being lean or having peripherally distributed adipose tissue. Well-designed studies with various sampling frameworks and precise measures of adiposity and endometriosis are needed to confirm associations between adiposity measures and endometriosis and delineate potential etiological mechanisms underlying endometriosis.
Overall Adiposity, Adipose Tissue Distribution, and Endometriosis: A Systematic Review
Backonja, Uba; Buck Louis, Germaine M.; Lauver, Diane R.
2015-01-01
Background Endometriosis has been associated with a lean body habitus. However, we do not understand whether endometriosis is also associated with other characteristics of adiposity, including adipose tissue distribution and amount of visceral adipose tissue (VAT; adipose tissue lining inner organs). Having these understandings may provide insights on how endometriosis develops—some of the physiologic actions of adipose tissue differ depending on tissue amount and location, and are related to proposed mechanisms of endometriosis development. Objectives To review the literature regarding overall adiposity, adipose tissue distribution and/or VAT, and endometriosis. Methods We reviewed and synthesized studies indexed in PubMed and/or Web of Science. We included studies that had one or more measures of overall adiposity, adipose tissue distribution, and/or VAT, and women with and without endometriosis for comparison. We summarized the findings and commented on the methods used and potential sources of bias. Results Out of 366 identified publications, 19 (5.2%) were eligible. Two additional publications were identified from reference lists. Current research included measures of overall adiposity (e.g., body figure drawings) or adipose tissue distribution (e.g., waist-to-hip ratio), but not VAT. The weight of evidence indicated that endometriosis was associated with low overall adiposity and with a preponderance of adipose tissue distributed below the waist (peripheral). Discussion Endometriosis may be associated with being lean or having peripherally distributed adipose tissue. Well-designed studies with various sampling frameworks and precise measures of adiposity and endometriosis are needed to confirm associations between adiposity measures and endometriosis, and delineate potential etiologic mechanisms underlying endometriosis. PMID:26938364
Tissue engineered constructs for peripheral nerve surgery
Johnson, P. J.; Wood, M. D.; Moore, A. M.; Mackinnon, S. E.
2013-01-01
Summary Background Tissue engineering has been defined as “an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ”. Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. Methods A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. Results Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. Conclusions The field of tissue engineering should consider its challenge to not only meet the autograft “gold standard” but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft. PMID:24385980
Crosstalk between the heart and peripheral organs in heart failure
Jahng, James Won Suk; Song, Erfei; Sweeney, Gary
2016-01-01
Mediators from peripheral tissues can influence the development and progression of heart failure (HF). For example, in obesity, an altered profile of adipokines secreted from adipose tissue increases the incidence of myocardial infarction (MI). Less appreciated is that heart remodeling releases cardiokines, which can strongly impact various peripheral tissues. Inflammation, and, in particular, activation of the nucleotide-binding oligomerization domain-like receptors with pyrin domain (NLRP3) inflammasome are likely to have a central role in cardiac remodeling and mediating crosstalk with other organs. Activation of the NLRP3 inflammasome in response to cardiac injury induces the production and secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18. In addition to having local effects in the myocardium, these pro-inflammatory cytokines are released into circulation and cause remodeling in the spleen, kidney, skeletal muscle and adipose tissue. The collective effects of various cardiokines on peripheral organs depend on the degree and duration of myocardial injury, with systematic inflammation and peripheral tissue damage observed as HF progresses. In this article, we review mechanisms regulating myocardial inflammation in HF and the role of factors secreted by the heart in communication with peripheral tissues. PMID:26964833
The Circadian Clock in Cancer Development and Therapy
Fu, Loning; Kettner, Nicole M.
2014-01-01
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, as the world industrialized, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function and aging that are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anti-cancer therapies. PMID:23899600
2014-04-01
Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Osteosarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma
Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.
Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I
2013-05-30
Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues.
Wang, Ningshan; Gibbons, Christopher H.; Freeman, Roy
2011-01-01
Confocal imaging uses immunohistochemical binding of specific antibodies to visualize tissues, but technical obstacles limit more widespread use of this technique in the imaging of peripheral nerve tissue. These obstacles include same-species antibody cross-reactivity and weak fluorescent signals of individual and co-localized antigens. The aims of this study were to develop new immunohistochemical techniques for imaging of peripheral nerve fibers. Three-millimeter punch skin biopsies of healthy individuals were fixed, frozen, and cut into 50-µm sections. Tissues were stained with a variety of antibody combinations with two signal amplification systems, streptavidin-biotin-fluorochrome (sABC) and tyramide-horseradish peroxidase-fluorochrome (TSA), used simultaneously to augment immunohistochemical signals. The combination of the TSA and sABC amplification systems provided the first successful co-localization of sympathetic adrenergic and sympathetic cholinergic nerve fibers in cutaneous human sweat glands and vasomotor and pilomotor systems. Primary antibodies from the same species were amplified individually without cross-reactivity or elevated background interference. The confocal fluorescent signal-to-noise ratio increased, and image clarity improved. These modifications to signal amplification systems have the potential for widespread use in the study of human neural tissues. PMID:21411809
Exercise Prevents Mental Illness
NASA Astrophysics Data System (ADS)
Purnomo, K. I.; Doewes, M.; Giri, M. K. W.; Setiawan, K. H.; Wibowo, I. P. A.
2017-03-01
Multiple current studies show that neuroinflammation may contribute to mental illness such as depression, anxiety, and mood disorder. Chronic inflammation in peripheral tissues is indicated by the increase of inflammatory marker like cytokine IL-6, TNF-α, and IL-1β. Pro-inflammatory cytokine in peripheral tissues can reach brain tissues and activate microglia and it causes neuroinflammation. Psychological stress may led peripheral and central inflammation. Activated microglia will produce pro-inflammatory cytokine, ROS, RNS, and tryptophan catabolizes. This neuroinflammation can promote metabolism changes of any neurotransmitter, such as serotonin, dopamine, and glutamate that will influence neurocircuit in the brain including basal ganglia and anterior cingulated cortex. It leads to mental illness. Exercise give contribution to reduce tissue inflammation. When muscle is contracting in an exercise, muscle will produce the secretion of cytokine like IL-6, IL-1ra, and IL-10. It will react as anti-inflammation and influence macrophage, T cell, monosit, protein Toll-Like Receptor (TLR), and then reduce neuroinflammation, characterised by the decrease of pro-inflammatory cytokine and prevent the activation of microglia in the brain. The objective of the present study is to review scientific articles in the literature related to the contribution of exercise to prevent and ease mental illness.
Electrospun nanofibers for neural tissue engineering
NASA Astrophysics Data System (ADS)
Xie, Jingwei; MacEwan, Matthew R.; Schwartz, Andrea G.; Xia, Younan
2010-01-01
Biodegradable nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. We begin with a brief discussion on the electrospinning of nanofibers and methods for controlling the structure, porosity, and alignment of the electrospun nanofibers. The methods include control of the nanoscale morphology and microscale alignment of the nanofibers, as well as the fabrication of macroscale, three-dimensional tubular structures. We then highlight recent studies that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this feature article is to provide valuable insights into methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries.
An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries.
Patel, Nitesh P; Lyon, Kristopher A; Huang, Jason H
2018-05-01
Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.
PHOX2B reliably distinguishes neuroblastoma among small round blue cell tumours.
Hung, Yin P; Lee, John P; Bellizzi, Andrew M; Hornick, Jason L
2017-11-01
Neuroblastoma shows considerable histological overlap with other small round blue cell tumours. PHOX2B, a transcription factor that is essential for autonomic nervous system development, has been reported as an immunohistochemical marker for neuroblastoma. The aim of this study was to validate the specificity and diagnostic utility of PHOX2B for peripheral neuroblastic tumours. We evaluated 240 cases (133 in whole-tissue sections; 107 in tissue microarrays), including 76 peripheral neuroblastic tumours (median age 2 years; including four adults) and 164 other tumours: 44 Wilms tumours; 20 Ewing sarcomas; 10 each of CIC-rearranged round cell sarcomas, poorly differentiated synovial sarcomas, lymphoblastic lymphomas, alveolar rhabdomyosarcomas, embryonal rhabdomyosarcomas, mesenchymal chondrosarcomas, Merkel cell carcinomas, olfactory neuroblastomas, and melanomas; and five each of NUT midline carcinomas and desmoplastic small round cell tumours. Immunohistochemistry for PHOX2B was performed with a rabbit monoclonal antibody. PHOX2B positivity was defined as the presence of nuclear immunoreactivity in ≥5% of cells. PHOX2B was positive in 70 (92%) peripheral neuroblastic tumours, including 68 of 72 (94%) paediatric and two of four (50%) adult cases. Furthermore, PHOX2B was consistently negative in all non-peripheral neuroblastic tumours, with staining being absent in 160 cases and limited in four cases. PHOX2B is a highly sensitive and specific immunohistochemical marker for peripheral neuroblastic tumours, including neuroblastoma. PHOX2B reliably distinguishes neuroblastoma from histological mimics such as Wilms tumour, Ewing sarcoma, and CIC-rearranged round cell sarcoma. PHOX2B negativity in two of four adult neuroblastoma cases raises the possibility that some adult neuroblastomas are of a different lineage than paediatric cases. © 2017 John Wiley & Sons Ltd.
Non-conventional features of peripheral serotonin signalling - the gut and beyond.
Spohn, Stephanie N; Mawe, Gary M
2017-07-01
Serotonin was first discovered in the gut, and its conventional actions as an intercellular signalling molecule in the intrinsic and extrinsic enteric reflexes are well recognized, as are a number of serotonin signalling pharmacotherapeutic targets for treatment of nausea, diarrhoea or constipation. The latest discoveries have greatly broadened our understanding of non-conventional actions of peripheral serotonin within the gastrointestinal tract and in a number of other tissues. For example, it is now clear that bacteria within the lumen of the bowel influence serotonin synthesis and release by enterochromaffin cells. Also, serotonin can act both as a pro-inflammatory and anti-inflammatory signalling molecule in the intestinal mucosa via activation of serotonin receptors (5-HT 7 or 5-HT 4 receptors, respectively). For decades, serotonin receptors have been known to exist in a variety of tissues other than the gut, but studies have now provided strong evidence for physiological roles of serotonin in several important processes, including haematopoiesis, metabolic homeostasis and bone metabolism. Furthermore, evidence for serotonin synthesis in peripheral tissues outside of the gut is emerging. In this Review, we expand the discussion beyond gastrointestinal functions to highlight the roles of peripheral serotonin in colitis, haematopoiesis, energy and bone metabolism, and how serotonin is influenced by the gut microbiota.
Peripheral Serotonin: a New Player in Systemic Energy Homeostasis
Namkung, Jun; Kim, Hail; Park, Sangkyu
2015-01-01
Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041
Li, Xia; Wang, Yibaina; Zhang, Zuoming; Yao, Xiaoping; Ge, Jie; Zhao, Yashuang
2013-11-01
CpG island methylation in the promoter regions of the DNA mismatch repair gene mutator L homologue 1 ( MLH1 ) and DNA repair gene O 6 -methylguanine-DNA methyltransferase ( MGMT ) genes has been shown to occur in the leukocytes of peripheral blood and colorectal tissue. However, it is unclear whether the methylation levels in the blood leukocytes and colorectal tissue are correlated. The present study analyzed and compared the levels of MGMT and MLH1 gene methylation in the leukocytes of peripheral blood and colorectal tissues obtained from patients with colorectal cancer (CRC). The methylation levels of MGMT and MLH1 were examined using methylation-sensitive high-resolution melting (MS-HRM) analysis. A total of 44 patients with CRC were selected based on the MLH1 and MGMT gene methylation levels in the leukocytes of the peripheral blood. Corresponding colorectal tumor and normal tissues were obtained from each patient and the DNA methylation levels were determined. The correlation coefficients were evaluated using Spearman's rank test. Agreement was determined by generalized κ-statistics. Spearman's rank correlation coefficients (r) for the methylation levels of the MGMT and MLH1 genes in the leukocytes of the peripheral blood and normal colorectal tissue were 0.475 and 0.362, respectively (P=0.001 and 0.016, respectively). The agreement of the MGMT and MLH1 gene methylation levels in the leukocytes of the peripheral blood and normal colorectal tissue were graded as fair and poor (κ=0.299 and 0.126, respectively). The methylation levels of MGMT and MLH1 were moderately and weakly correlated between the patient-matched leukocytes and the normal colorectal tissue, respectively. Blood-derived DNA methylation measurements may not always represent the levels of normal colorectal tissue methylation.
Petri, Doris; Schlicker, Eberhard
2016-07-01
The histamine H4 receptor is coupled to Gi/o proteins and expressed on inflammatory cells and lymphoid tissues; it was suggested that this receptor also occurs in the brain or on peripheral neurones. Since many Gi/o protein-coupled receptors, including the H3 receptor, serve as presynaptic inhibitory receptors, we studied whether the sympathetic neurones supplying four peripheral tissues and the cholinergic neurones in the hippocampus from the guinea-pig are equipped with release-modulating H4 and H3 receptors. For this purpose, we preincubated tissue pieces from the aorta, atrium, renal cortex and vas deferens with (3)H-noradrenaline and hippocampal slices with (3)H-choline and determined the electrically evoked tritium overflow. The stimulation-evoked overflow in the five superfused tissues was inhibited by the muscarinic receptor agonist oxotremorine, which served as a positive control, but not affected by the H4 receptor agonist 4-methylhistamine. The H3 receptor agonist R-α-methylhistamine inhibited noradrenaline release in the peripheral tissues without affecting acetylcholine release in the hippocampal slices. Thioperamide shifted the concentration-response curve of histamine in the aorta and the renal cortex to the right, yielding apparent pA2 values of 8.0 and 8.1, respectively, which are close to its affinity at other H3 receptors but higher by one log unit than its pKi at the H4 receptor of the guinea-pig. In conclusion, histamine H4 receptors could not be identified in five experimental models of the guinea-pig that are suited for the detection of presynaptic inhibitory receptors whereas H3 receptors could be shown in the peripheral tissues but not in the hippocampus. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lamers, Susanna L.; Gray, Rebecca R.; Salemi, Marco; Huysentruyt, Leanne C.; McGrath, Michael
2010-01-01
Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that 1) HIV-1 is clearly capable of migrating out of the brain, 2) the meninges are the most likely primary transport tissues, and 3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. PMID:21055482
Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L.; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-jye; Salton, Stephen R.
2012-01-01
Members of the neurotrophin family, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), and other neurotrophic growth factors such as ciliary neurotrophic factor (CNTF) and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue (BAT and WAT), muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis. PMID:22581449
A Comprehensive Repository of Normal and Tumor Human Breast Tissues and Cells
1999-07-01
mother was reported to have had cancer of the uterine cervix at the age of 22. Both maternal grandparents had died of colon cancer in their sixties...1 mutation). The repository also includes breast epithelial and stromal cell strains derived from non cancerous breast tissue as well as peripheral...tissue banks. 14. SUBJECT TERMS Breast Cancer 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE
Lee, Vinson R.; Blew, Rob M.; Farr, Josh N.; Tomas, Rita; Lohman, Timothy G.; Going, Scott B.
2013-01-01
Objective Assess the utility of peripheral quantitative computed tomography (pQCT) for estimating whole body fat in adolescent girls. Research Methods and Procedures Our sample included 458 girls (aged 10.7 ± 1.1y, mean BMI = 18.5 ± 3.3 kg/m2) who had DXA scans for whole body percent fat (DXA %Fat). Soft tissue analysis of pQCT scans provided thigh and calf subcutaneous percent fat and thigh and calf muscle density (muscle fat content surrogates). Anthropometric variables included weight, height and BMI. Indices of maturity included age and maturity offset. The total sample was split into validation (VS; n = 304) and cross-validation (CS; n = 154) samples. Linear regression was used to develop prediction equations for estimating DXA %Fat from anthropometric variables and pQCT-derived soft tissue components in VS and the best prediction equation was applied to CS. Results Thigh and calf SFA %Fat were positively correlated with DXA %Fat (r = 0.84 to 0.85; p <0.001) and thigh and calf muscle densities were inversely related to DXA %Fat (r = −0.30 to −0.44; p < 0.001). The best equation for estimating %Fat included thigh and calf SFA %Fat and thigh and calf muscle density (adj. R2 = 0.90; SEE = 2.7%). Bland-Altman analysis in CS showed accurate estimates of percent fat (adj. R2 = 0.89; SEE = 2.7%) with no bias. Discussion Peripheral QCT derived indices of adiposity can be used to accurately estimate whole body percent fat in adolescent girls. PMID:25147482
Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues
2013-01-01
Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues. PMID:23721503
Pichler, Gerhard; Pocivalnik, Mirjam; Riedl, Regina; Pichler-Stachl, Elisabeth; Morris, Nicholas; Zotter, Heinz; Müller, Wilhelm; Urlesberger, Berndt
2011-08-01
Interpretation of peripheral circulation in ill neonates is crucial but difficult. The aim was to analyse parameters potentially influencing peripheral oxygenation and circulation. In a prospective observational cohort study in 116 cardio-circulatory stable neonates, peripheral muscle near-infrared spectroscopy (NIRS) with venous occlusion was performed. Tissue oxygenation index (TOI), mixed venous oxygenation (SvO(2)), fractional oxygen extraction (FOE), fractional tissue oxygen extraction (FTOE), haemoglobin flow (Hbflow), oxygen delivery (DO(2)), oxygen consumption (VO(2)), and vascular resistance (VR) were assessed. Correlation coefficients between NIRS parameters and demographic parameters (gestational age, birth weight, age, actual weight, diameter of calf, subcutaneous adipose tissue), monitoring parameters (heart rate, arterial oxygen saturation (SaO(2)), mean blood pressure (MAP), core/peripheral temperature, central/peripheral capillary refill time) and laboratory parameters (haemoglobin concentration (Hb-blood), pCO(2)) were calculated. All demographic parameters except for Hbflow and DO(2) correlated with NIRS parameters. Heart rate correlated with TOI, SvO(2), VO(2) and VR. SaO(2) correlated with FOE/FTOE. MAP correlated with Hbflow, DO(2), VO(2) and VR. Core temperature correlated with FTOE. Peripheral temperature correlated with all NIRS parameters except VO(2). Hb-blood correlated with FOE and VR. pCO(2) levels correlated with TOI and SvO(2). The presence of multiple interdependent factors associated with peripheral oxygenation and circulation highlights the difficulty in interpreting NIRS data. Nevertheless, these findings have to be taken into account when analysing peripheral oxygenation and circulation data.
Models and signal processing for an implanted ethanol bio-sensor.
Han, Jae-Joon; Doerschuk, Peter C; Gelfand, Saul B; O'Connor, Sean J
2008-02-01
The understanding of drinking patterns leading to alcoholism has been hindered by an inability to unobtrusively measure ethanol consumption over periods of weeks to months in the community environment. An implantable ethanol sensor is under development using microelectromechanical systems technology. For safety and user acceptability issues, the sensor will be implanted subcutaneously and, therefore, measure peripheral-tissue ethanol concentration. Determining ethanol consumption and kinetics in other compartments from the time course of peripheral-tissue ethanol concentration requires sophisticated signal processing based on detailed descriptions of the relevant physiology. A statistical signal processing system based on detailed models of the physiology and using extended Kalman filtering and dynamic programming tools is described which can estimate the time series of ethanol concentration in blood, liver, and peripheral tissue and the time series of ethanol consumption based on peripheral-tissue ethanol concentration measurements.
NASA Astrophysics Data System (ADS)
Blackbourn, David J.; Mackewicz, Carl E.; Barker, Edward; Hunt, Thomas K.; Herndier, Brian; Haase, Ashley T.; Levy, Jay A.
1996-11-01
Lymphoid tissues from asymptomatic HIV-infected individuals, as compared with symptomatic HIV-infected subjects, show limited histopathological changes and lower levels of HIV expression. In this report we correlate the control of HIV replication in lymph nodes to the non-cytolytic anti-HIV activity of lymphoid tissue CD8+ cells. Five subjects at different stages of HIV-related disease were studied and the ability of their CD8+ cells, isolated from both lymphoid tissue and peripheral blood, to inhibit HIV replication was compared. CD8+ cells from lymphoid tissue and peripheral blood of two HIV-infected long-term survivors suppressed HIV replication at a low CD8+:CD4+ cell ratio of 0.1. The CD8+ cells from the lymphoid tissue of a third asymptomatic subject suppressed HIV replication at a CD8+:CD4+ cell ratio of 0.25; the subject's peripheral blood CD8+ cells showed this antiviral response at a lower ratio of 0.05. The lymphoid tissue CD8+ cells from two AIDS patients were not able to suppress HIV replication, and the peripheral blood CD8+ cells of only one of them suppressed HIV replication. The plasma viremia, cellular HIV load as well as the extent of pathology and virus expression in the lymphoid tissue of the two long-term survivors, were reduced compared with these parameters in the three other subjects. The data suggest that the extent of anti-HIV activity by CD8+ cells from lymphoid tissue relative to peripheral blood correlates best with the clinical state measured by lymphoid tissue pathology and HIV burden in lymphoid tissues and blood. The results and further emphasis to the importance of this cellular immune response in controlling HIV pathogenesis.
Nakayama, Tomohiro; Nishie, Akihiro; Yoshiura, Takashi; Asayama, Yoshiki; Ishigami, Kousei; Kakihara, Daisuke; Obara, Makoto; Honda, Hiroshi
2015-12-01
To show the feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography and to determine the optimal velocity encoding (VENC) value. Sixteen healthy volunteers underwent MRI study using a 1.5-T clinical unit and a 32-channel body array coil. For each volunteer, images were obtained using the following seven respiratory-triggered sequences: (1) balanced magnetic resonance cholangiopancreatography without motion-sensitized driven-equilibrium, and (2)-(7) balanced magnetic resonance cholangiopancreatography with motion-sensitized driven-equilibrium, with VENC=1, 3, 5, 7, 9 and ∞cm/s for the x-, y-, and z-directions, respectively. Quantitative evaluation was obtained by measuring the maximum signal intensity of the common hepatic duct, portal vein, liver tissue including visible peripheral vessels, and liver tissue excluding visible peripheral vessels that were evaluated. We compared the contrast ratios of portal vein/common hepatic duct, liver tissue including visible peripheral vessels/common hepatic duct and liver tissue excluding visible peripheral vessels/common hepatic duct among the five finite sequences (VENC=1, 3, 5, 7, and 9cm/s). Statistical comparisons were performed using the t-test for paired data with the Bonferroni correction. Suppression of blood vessel signals was achieved with motion-sensitized driven-equilibrium sequences. We found the optimal VENC values to be either 3 or 5cm/s with the best suppression of relative vessel signals to bile ducts. At a lower VENC value (1cm/s), the bile duct signal was reduced, presumably due to minimal biliary flow. The feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography was suggested. The optimal VENC value was considered to be either 3 or 5cm/s. The clinical usefulness of this new magnetic resonance cholangiopancreatography sequence needs to be verified by further studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Eckstrand, C D; Sparger, E E; Pitt, K A; Murphy, B G
2017-01-01
Feline immunodeficiency virus (FIV) infection in cats results in life-long viral persistence and progressive immunopathology. We have previously described a cohort of experimentally infected cats demonstrating a progressive decline of peripheral blood CD4+ T-cell over six years in the face of apparent peripheral viral latency. More recently we reported findings from this same cohort that revealed popliteal lymph node tissue as sites for ongoing viral replication suggesting that tissue reservoirs are important in FIV immunopathogenesis during the late asymptomatic phase of infection. Results reported herein characterize important tissue reservoirs of active viral replication during the late asymptomatic phase by examining biopsied specimens of spleen, mesenteric lymph node (MLN), and intestine from FIV-infected and uninfected control cats. Peripheral blood collected coincident with harvest of tissues demonstrated severe CD4+ T-cell depletion, undetectable plasma viral gag RNA and rarely detectable peripheral blood mononuclear cell (PBMC)-associated viral RNA (vRNA) by real-time PCR. However, vRNA was detectable in all three tissue sites from three of four FIV-infected cats despite the absence of detectable vRNA in plasma. A novel in situ hybridization assay identified B cell lymphoid follicular domains as microanatomical foci of ongoing FIV replication. Additionally, we demonstrated that CD4+ leukocyte depletion in tissues, and CD4+ and CD21+ leukocytes as important cellular reservoirs of ongoing replication. These findings revealed that tissue reservoirs support foci of ongoing viral replication, in spite of highly restricted viral replication in blood. Lentiviral eradication strategies will need address tissue viral reservoirs.
Sparger, E. E.; Pitt, K. A.
2017-01-01
Feline immunodeficiency virus (FIV) infection in cats results in life-long viral persistence and progressive immunopathology. We have previously described a cohort of experimentally infected cats demonstrating a progressive decline of peripheral blood CD4+ T-cell over six years in the face of apparent peripheral viral latency. More recently we reported findings from this same cohort that revealed popliteal lymph node tissue as sites for ongoing viral replication suggesting that tissue reservoirs are important in FIV immunopathogenesis during the late asymptomatic phase of infection. Results reported herein characterize important tissue reservoirs of active viral replication during the late asymptomatic phase by examining biopsied specimens of spleen, mesenteric lymph node (MLN), and intestine from FIV-infected and uninfected control cats. Peripheral blood collected coincident with harvest of tissues demonstrated severe CD4+ T-cell depletion, undetectable plasma viral gag RNA and rarely detectable peripheral blood mononuclear cell (PBMC)-associated viral RNA (vRNA) by real-time PCR. However, vRNA was detectable in all three tissue sites from three of four FIV-infected cats despite the absence of detectable vRNA in plasma. A novel in situ hybridization assay identified B cell lymphoid follicular domains as microanatomical foci of ongoing FIV replication. Additionally, we demonstrated that CD4+ leukocyte depletion in tissues, and CD4+ and CD21+ leukocytes as important cellular reservoirs of ongoing replication. These findings revealed that tissue reservoirs support foci of ongoing viral replication, in spite of highly restricted viral replication in blood. Lentiviral eradication strategies will need address tissue viral reservoirs. PMID:28384338
Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S
2011-01-01
Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.
Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).
Shimazu, Takashi; Minokoshi, Yasuhiko
2017-05-01
The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.
Adipokines in human reproduction.
Dupont, Joëlle; Pollet-Villard, Xavier; Reverchon, Maxime; Mellouk, Namya; Levy, Rachel
2015-10-01
Adipose tissue communicates with other central and peripheral organs by the synthesis and release of substances called adipokines. The most studied adipokine is leptin but others have been recently identified including resistin, adiponectin, chemerin, omentin and visfatin. These adipokines have a critical role in the development of obesity-related complications and inflammatory conditions. However, they are also involved in other functions in the organism including reproductive functions. Indeed, many groups have demonstrated that adipokine receptors, such as adiponectin and chemerin, but also adipokines themselves (adiponectin, chemerin, resistin, visfatin and omentin) are expressed in human peripheral reproductive tissues and that these adipokines are likely to exert direct effects on these tissues. After a brief description of these new adipokines, an overview of their actions in different human reproductive organs (hypothalamus, pituitary, ovary, testis, uterus and placenta) will be presented. Finally, comments will be made on the eventual alterations of these adipokines in reproductive disorders, with special attention to polycystic ovary syndrome, a disease characterized by dysfunction of gonadal axis and systemic nerve endocrine metabolic network with a prevalence of up to 10% in women of reproductive age.
The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders
Kundakovic, Marija; Jaric, Ivana
2017-01-01
Prenatal adverse environments, such as maternal stress, toxicological exposures, and viral infections, can disrupt normal brain development and contribute to neurodevelopmental disorders, including schizophrenia, depression, and autism. Increasing evidence shows that these short- and long-term effects of prenatal exposures on brain structure and function are mediated by epigenetic mechanisms. Animal studies demonstrate that prenatal exposure to stress, toxins, viral mimetics, and drugs induces lasting epigenetic changes in the brain, including genes encoding glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf). These epigenetic changes have been linked to changes in brain gene expression, stress reactivity, and behavior, and often times, these effects are shown to be dependent on the gestational window of exposure, sex, and exposure level. Although evidence from human studies is more limited, gestational exposure to environmental risks in humans is associated with epigenetic changes in peripheral tissues, and future studies are required to understand whether we can use peripheral biomarkers to predict neurobehavioral outcomes. An extensive research effort combining well-designed human and animal studies, with comprehensive epigenomic analyses of peripheral and brain tissues over time, will be necessary to improve our understanding of the epigenetic basis of neurodevelopmental disorders. PMID:28335457
Mast Cells Synthesize, Store, and Release Nerve Growth Factor
NASA Astrophysics Data System (ADS)
Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.
1994-04-01
Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.
Pezeshki, A; Muench, G P; Chelikani, P K
2012-09-01
The role of distal gut signals in control of feed intake and metabolism in cattle has received scant attention. Peptide YY (PYY) and glucagon-like peptide-1, which are secreted from enteroendocrine cells of the distal gut in monogastrics have several functions, including regulation of energy balance. However, little is known of the tissue expression of these peptides and their receptors in cattle. The aim of the current study was to characterize the tissue distribution of PYY, neuropeptide Y receptor Y2 (Y2), proglucagon (GCG), and glucagon-like peptide-1 receptor (GLP1R) in various peripheral tissues of cattle. Four male 7-wk-old dairy calves were euthanized and 16 peripheral tissues were collected. Conventional PCR and quantitative real-time PCR were performed to confirm tissue expression and quantify the transcript abundance in various tissues. The results of conventional PCR revealed that mRNA for both PYY and Y2 was detectable in the rumen, abomasum, duodenum, jejunum, ileum, and colon but not in other tissues. Quantitative real-time PCR data demonstrated that PYY mRNA was 2- to 3-fold greater in the pancreas, kidney, and heart relative to the liver. By conventional PCR, GCG mRNA was detected in the abomasum, duodenum, jejunum, ileum, and colon and GLP1R mRNA was expressed in all gut segments, pancreas, spleen, and kidney. Quantitative real-time PCR data demonstrated that, relative to transcript abundance in the liver, GCG mRNA was 4- to 40-fold higher from abomasum to colon, and GLP1R mRNA was 50- to 300-fold higher from the rumen to colon, 14-fold greater in the pancreas, 18-fold higher in the spleen, and 166-fold greater in the kidney. The tissue distribution of PYY, GCG, and their receptors observed in the current study is, in general, consistent with expression patterns in monogastrics. The predominant expression of PYY, Y2, and GCG in the gut, and the presence of GLP1R in multiple peripheral tissues suggest a role for PYY in controlling gut functions and for GLP-1 in regulating multiple physiological functions in cattle. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine
Palmer, Allyson K.; Kirkland, James L.
2016-01-01
Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. PMID:26924669
2013-01-01
Background Aluminum is used in a wide range of applications and is a potential environmental hazard. The known genotoxic effects of aluminum might play a role in the development of breast cancer. However, the data currently available on the subject are not sufficient to establish a causal relationship between aluminum exposure and the augmented risk of developing breast cancer. To achieve maximum sensitivity and specificity in the determination of aluminum levels, we have developed a detection protocol using graphite furnace atomic absorption spectrometry (GFAAS). The objective of the present study was to compare the aluminum levels in the central and peripheral areas of breast carcinomas with those in the adjacent normal breast tissues, and to identify patient and/or tumor characteristics associated with these aluminum levels. Methods A total of 176 patients with breast cancer were included in the study. Samples from the central and peripheral areas of their tumors were obtained, as well as from the surrounding normal breast tissue. Aluminum quantification was performed using GFAAS. Results The average (mean ± SD) aluminum concentrations were as follows: central area, 1.88 ± 3.60 mg/kg; peripheral area, 2.10 ± 5.67 mg/kg; and normal area, 1.68 ± 11.1 mg/kg. Overall and two-by-two comparisons of the aluminum concentrations in these areas indicated no significant differences. We detected a positive relationship between aluminum levels in the peripheral areas of the tumors, age and menopausal status of the patients (P = .02). Conclusions Using a sensitive quantification technique we detected similar aluminum concentrations in the central and peripheral regions of breast tumors, and in normal tissues. In addition, we did not detect significant differences in aluminum concentrations as related to the location of the breast tumor within the breast, or to other relevant tumor features such as stage, size and steroid receptor status. The next logical step is the assessment of whether the aluminum concentration is related to the key genomic abnormalities associated with breast carcinogenesis. PMID:23496847
Rodrigues-Peres, Raquel Mary; Cadore, Solange; Febraio, Stefanny; Heinrich, Juliana Karina; Serra, Katia Piton; Derchain, Sophie F M; Vassallo, Jose; Sarian, Luis Otavio
2013-03-08
Aluminum is used in a wide range of applications and is a potential environmental hazard. The known genotoxic effects of aluminum might play a role in the development of breast cancer. However, the data currently available on the subject are not sufficient to establish a causal relationship between aluminum exposure and the augmented risk of developing breast cancer. To achieve maximum sensitivity and specificity in the determination of aluminum levels, we have developed a detection protocol using graphite furnace atomic absorption spectrometry (GFAAS). The objective of the present study was to compare the aluminum levels in the central and peripheral areas of breast carcinomas with those in the adjacent normal breast tissues, and to identify patient and/or tumor characteristics associated with these aluminum levels. A total of 176 patients with breast cancer were included in the study. Samples from the central and peripheral areas of their tumors were obtained, as well as from the surrounding normal breast tissue. Aluminum quantification was performed using GFAAS. The average (mean ± SD) aluminum concentrations were as follows: central area, 1.88 ± 3.60 mg/kg; peripheral area, 2.10 ± 5.67 mg/kg; and normal area, 1.68 ± 11.1 mg/kg. Overall and two-by-two comparisons of the aluminum concentrations in these areas indicated no significant differences. We detected a positive relationship between aluminum levels in the peripheral areas of the tumors, age and menopausal status of the patients (P = .02). Using a sensitive quantification technique we detected similar aluminum concentrations in the central and peripheral regions of breast tumors, and in normal tissues. In addition, we did not detect significant differences in aluminum concentrations as related to the location of the breast tumor within the breast, or to other relevant tumor features such as stage, size and steroid receptor status. The next logical step is the assessment of whether the aluminum concentration is related to the key genomic abnormalities associated with breast carcinogenesis.
Premature aging-related peripheral neuropathy in a mouse model of progeria.
Goss, James R; Stolz, Donna Beer; Robinson, Andria Rasile; Zhang, Mingdi; Arbujas, Norma; Robbins, Paul D; Glorioso, Joseph C; Niedernhofer, Laura J
2011-08-01
Peripheral neuropathy is a common aging-related degenerative disorder that interferes with daily activities and leads to increased risk of falls and injury in the elderly. The etiology of most aging-related peripheral neuropathy is unknown. Inherited defects in several genome maintenance mechanisms cause tissue-specific accelerated aging, including neurodegeneration. We tested the hypothesis that a murine model of XFE progeroid syndrome, caused by reduced expression of ERCC1-XPF DNA repair endonuclease, develops peripheral neuropathy. Nerve conduction studies revealed normal nerve function in young adult (8 week) Ercc1(-/Δ) mice, but significant abnormalities in 20 week-old animals. Morphologic and ultrastructural analysis of the sciatic nerve from mutant mice revealed significant alterations at 20 but not 8 weeks of age. We conclude that Ercc1(-/Δ) mice have accelerated spontaneous peripheral neurodegeneration that mimics aging-related disease. This provides strong evidence that DNA damage can drive peripheral neuropathy and offers a rapid and novel model to test therapies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Hunter, Stuart; Willcox, Carrie R; Davey, Martin S; Kasatskaya, Sofya A; Jeffery, Hannah C; Chudakov, Dmitriy M; Oo, Ye H; Willcox, Benjamin E
2018-05-18
γδ T-cells comprise a substantial proportion of tissue-associated lymphocytes. However, our current understanding of human γδ T-cells is primarily based on peripheral blood subsets, while the immunobiology of tissue-associated subsets remains largely unclear. To address this, we characterised the TCR diversity, immunophenotype and function of human liver infiltrating γδ T-cells, focussing on the predominant tissue-associated Vδ2 neg γδ subset, which is implicated in liver immunopathology. Intrahepatic Vδ2 neg γδ T-cells were highly clonally focussed, with single expanded clonotypes featuring complex, private TCR rearrangements frequently dominating the compartment. Such T-cells were predominantly CD27 lo/neg effector lymphocytes, whereas naïve CD27 hi , TCR diverse populations present in matched blood were generally absent in the liver. Furthermore, while a CD45RA hi Vδ2 neg γδ effector subset present in both liver and peripheral blood contained overlapping TCR clonotypes, the liver Vδ2 neg γδ T-cell pool also included a phenotypically distinct CD45RA lo effector compartment that was enriched for expression of the tissue tropism marker CD69, the hepatic homing chemokine receptors CXCR3 and CXCR6, and liver-restricted TCR clonotypes, suggestive of intrahepatic tissue residency. Liver infiltrating Vδ2 neg γδ cells were capable of polyfunctional cytokine secretion, and unlike peripheral blood subsets, were responsive to both TCR and innate stimuli. These findings suggest the ability of Vδ2 neg γδ T-cells to undergo clonotypic expansion and differentiation is crucial in permitting access to solid tissues such as the liver, and can result in functionally distinct peripheral and liver-resident memory γδ T-cell subsets. They highlight the inherent functional plasticity within the Vδ2 neg γδ T-cell compartment, and may inform design of cellular therapies involving intrahepatic trafficking of γδ T-cells to suppress liver inflammation or combat liver cancer. γδ T cells are frequently enriched in many solid tissues, however the immunobiology of such tissue-associated subsets in humans has remained unclear. We show that intrahepatic γδ T cells are enriched for clonally expanded effector T cells, whereas naïve γδ T cells are largely excluded; moreover, whereas a distinct proportion of circulating T cell clonotypes was present in both the liver tissue and peripheral blood, a functionally and clonotypically distinct population of liver-resident γδ T cells was also evident. Our findings suggest that factors triggering γδ T cell clonal selection and differentiation, such as infection, can drive enrichment of γδ T cells into liver tissue, allowing the development of functionally distinct tissue-restricted memory populations specialised in local hepatic immunosurveillance. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Dronjak, S; Gavrilovic, L
2006-06-01
Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days) and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4 degrees C, 2 h), were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(3H-methyl)-methionine was used. The O-methylated derivatives were oxidized to 3H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18%) and hippocampal dopamine (about 20%) stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39%) in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20%) as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.
Depsipeptide (Romidepsin) in Treating Patients With Metastatic or Unresectable Soft Tissue Sarcoma
2017-05-18
Adult Alveolar Soft-part Sarcoma; Adult Angiosarcoma; Adult Epithelioid Sarcoma; Adult Extraskeletal Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Fibrous Histiocytoma; Adult Malignant Hemangiopericytoma; Adult Malignant Mesenchymoma; Adult Neurofibrosarcoma; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Gastrointestinal Stromal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Adult Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma
Thermal strategies of king penguins during prolonged fasting in water.
Lewden, Agnès; Enstipp, Manfred R; Bonnet, Batshéva; Bost, Caroline; Georges, Jean-Yves; Handrich, Yves
2017-12-15
Most animals experience periods of unfavourable conditions, challenging their daily energy balance. During breeding, king penguins fast voluntarily for up to 1.5 months in the colony, after which they replenish their energy stores at sea. However, at sea, birds might encounter periods of low foraging profitability, forcing them to draw from previously stored energy (e.g. subcutaneous fat). Accessing peripheral fat stores requires perfusion, increasing heat loss and thermoregulatory costs. Hence, how these birds balance the conflicting demands of nutritional needs and thermoregulation is unclear. We investigated the physiological responses of king penguins to fasting in cold water by: (1) monitoring tissue temperatures, as a proxy of tissue perfusion, at four distinct sites (deep and peripheral); and (2) recording their oxygen consumption rate while birds floated inside a water tank. Despite frequent oscillations, temperatures of all tissues often reached near-normothermic levels, indicating that birds maintained perfusion to peripheral tissues throughout their fasting period in water. The oxygen consumption rate of birds increased with fasting duration in water, while it was also higher when the flank tissue was warmer, indicating greater perfusion. Hence, fasting king penguins in water maintained peripheral perfusion, despite the associated greater heat loss and, therefore, thermoregulatory costs, probably to access subcutaneous fat stores. Hence, the observed normothermia in peripheral tissues of king penguins at sea, upon completion of a foraging bout, is likely explained by their nutritional needs: depositing free fatty acids (FFA) in subcutaneous tissues after profitable foraging or mobilizing FFA to fuel metabolism when foraging success was insufficient. © 2017. Published by The Company of Biologists Ltd.
HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation
Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.
2015-01-01
The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident in brain, where the striatum featured signature accumulation of a set of lipids including sphingomyelin, phosphatidylcholine, cholesterol ester and triglyceride species. Importantly, in the presence of the CAG mutation, metabolite changes were unmasked in peripheral tissues by an interaction with dietary fat, implying that the design of studies to discover metabolic changes in HD mutation carriers should include metabolic perturbations. PMID:26295712
Peripheral and Central Mechanisms of Fatigue in Inflammatory and Non-Inflammatory Rheumatic Diseases
Staud, Roland
2013-01-01
Fatigue is a common symptom in a large number of medical and psychological disorders including many rheumatologic illnesses. A frequent question for health care providers is related to whether reported fatigue is “in the mind” or “in the body” i.e. central or peripheral. If fatigue occurs at rest without any exertion this suggests psychological or central origins. If patients relate their fatigue mostly to physical activities including exercise then their symptoms can be considered peripheral. However, most fatiguing syndromes seem to depend on both peripheral and central mechanisms. Sometimes muscle biopsy with histochemistry may be necessary for the appropriate tissue diagnosis whereas serological tests generally provide little reliable information about the origin of muscle fatigue. Muscle function and peripheral fatigue can be quantified by contractile force and action potential measurements whereas validated questionnaires are frequently used for assessment of mental fatigue. Fatigue is a hallmark of many rheumatologic conditions including fibromyalgia, myalgic encephalitis/chronic fatigue syndrome, rheumatoid arthritis, systemic lupus, Sjogren’s syndrome and ankylosing spondylitis. Whereas many studies have focused on disease activity as a correlate to these patients’ fatigue it has become apparent that other factors including negative affect and pain are some of the most powerful predictors for fatigue. Conversely sleep problems, including insomnia seem to be less important for fatigue. There are several effective treatment strategies available for fatigued patients with rheumatologic disorders including pharmacological and non-pharmacological therapies PMID:22802155
Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna
2018-05-08
Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the biopsy was taken.
Walton, Esther; Hass, Johanna; Liu, Jingyu; Roffman, Joshua L; Bernardoni, Fabio; Roessner, Veit; Kirsch, Matthias; Schackert, Gabriele; Calhoun, Vince; Ehrlich, Stefan
2016-03-01
Given the difficulty of procuring human brain tissue, a key question in molecular psychiatry concerns the extent to which epigenetic signatures measured in more accessible tissues such as blood can serve as a surrogate marker for the brain. Here, we aimed (1) to investigate the blood-brain correspondence of DNA methylation using a within-subject design and (2) to identify changes in DNA methylation of brain-related biological pathways in schizophrenia.We obtained paired blood and temporal lobe biopsy samples simultaneously from 12 epilepsy patients during neurosurgical treatment. Using the Infinium 450K methylation array we calculated similarity of blood and brain DNA methylation for each individual separately. We applied our findings by performing gene set enrichment analyses (GSEA) of peripheral blood DNA methylation data (Infinium 27K) of 111 schizophrenia patients and 122 healthy controls and included only Cytosine-phosphate-Guanine (CpG) sites that were significantly correlated across tissues.Only 7.9% of CpG sites showed a statistically significant, large correlation between blood and brain tissue, a proportion that although small was significantly greater than predicted by chance. GSEA analysis of schizophrenia data revealed altered methylation profiles in pathways related to precursor metabolites and signaling peptides.Our findings indicate that most DNA methylation markers in peripheral blood do not reliably predict brain DNA methylation status. However, a subset of peripheral data may proxy methylation status of brain tissue. Restricting the analysis to these markers can identify meaningful epigenetic differences in schizophrenia and potentially other brain disorders. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Epigenetic Signatures at AQP3 and SOCS3 Engage in Low-Grade Inflammation across Different Tissues
Marzi, Carola; Holdt, Lesca M; Fiorito, Giovanni; Tsai, Pei-Chien; Kretschmer, Anja; Wahl, Simone; Guarrera, Simonetta; Teupser, Daniel; Spector, Tim D.; Iacoviello, Licia; Sacerdote, Carlotta; Strauch, Konstantin; Lee, Serene; Thasler, Wolfgang E.; Peters, Annette; Thorand, Barbara; Wolf, Petra; Prokisch, Holger; Tumino, Rosario; Gieger, Christian; Krogh, Vittorio; Panico, Salvatore; Bell, Jordana T.; Matullo, Giuseppe
2016-01-01
Background Elevated levels of C-reactive protein (CRP, determined by a high-sensitivity assay) indicate low-grade inflammation which is implicated in many age-related disorders. Epigenetic studies on CRP might discover molecular mechanisms underlying CRP regulation. We aimed to identify DNA methylation sites related to CRP concentrations in cells and tissues regulating low-grade inflammation. Results Genome-wide DNA methylation was measured in peripheral blood in 1,741 participants of the KORA F4 study using Illumina HumanMethylation450 BeadChip arrays. Four CpG sites (located at BCL3, AQP3, SOCS3, and cg19821297 intergenic at chromosome 19p13.2, P ≤ 1.01E-07) were significantly hypomethylated at high CRP concentrations independent of various confounders including age, sex, BMI, smoking, and white blood cell composition. Findings were not sex-specific. CRP-related top genes were enriched in JAK/STAT pathways (Benjamini-Hochberg corrected P < 0.05). Results were followed-up in three studies using DNA from peripheral blood (EPICOR, n = 503) and adipose tissue (TwinsUK, n = 368) measured as described above and from liver tissue (LMU liver cohort, n = 286) measured by MALDI-TOF mass spectrometry using EpiTYPER. CpG sites at the AQP3 locus (significant p-values in peripheral blood = 1.72E-03 and liver tissue = 1.51E-03) and the SOCS3 locus (p-values in liver < 2.82E-05) were associated with CRP in the validation panels. Conclusions Epigenetic modifications seem to engage in low-grade inflammation, possibly via JAK/STAT mediated pathways. Results suggest a shared relevance across different tissues at the AQP3 locus and highlight a role of DNA methylation for CRP regulation at the SOCS3 locus. PMID:27824951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shih, T.M.
1993-12-31
The ability of three oximes, HI-6, MMB-4 and ICD-467, to reactivate cholinesterase (ChE) inhibited by the organophosphorus compound soman was compared in blood (plasma and erythrocytes), brain regions (including spinal cord) and peripheral tissues of rats. Animals were intoxicated with soman (100 ttg/kg. SC; equivalent to 0.9 x LDs0 dose) and treated 1 min later with one of these oximes (100 or 200 ttmo1/kg, IM). Toxic sign scores and total tissue ChE activities were determined 30 min later. Soman markedly inhibited ChE activity in blood (93 - 96%), brain regions (ranging from 78% to 95%), and all peripheral tissues (rangingmore » from 48.9% to 99.8%) except liver (11.9%). In blood, treatment with HI-6 or ICD-467 resulted in significant reactivation of soman-inhibited ChE. in contrast, MMB-4 was completely ineffective. HI-6 and ICD-467 were equally effective at the high dose. At the low dose ICD-467 treatment resulted in significantly higher plasma ChE than Hl-6 treatment, whereas HI-6 treatment resulted in higher erythrocyte ChE than ICD-467 treatment. However, none of these three oximesreactivated or protected soman-inhibited ChE in the brain. In all peripheral tissues (except liver) studied, MMB-4 was not effective. 111-6 reactivated soman-inhibited ChE in all tis- sues except lung, heart, and skeletal muscle. ICD-467 was highly effective in reactivating ChE in all tissues and afforded a complete recovery of ChE to control levels in Intercostal muscle and salivary gland. Oxime treatments did not modify the toxic scores produced by soman.« less
Types of neural guides and using nanotechnology for peripheral nerve reconstruction
Biazar, Esmaeil; Khorasani, MT; Montazeri, Naser; Pourshamsian, Khalil; Daliri, Morteza; T, Mostafa Rezaei; B, Mahmoud Jabarvand; Khoshzaban, Ahad; K, Saeed Heidari; Jafarpour, Mostafa; Roviemiab, Ziba
2010-01-01
Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Different methods, such as conventional allograft procedures and use of biologic tubes present problems when used for damaged peripheral nerve reconstruction. Designed scaffolds comprised of natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and nonabsorbable synthetic and natural polymers with unique characteristics can be an appropriate solution to repair damaged nerve tissues. Polymeric nanofibrous scaffolds with properties similar to neural structures can be more effective in the reconstruction process. Better cell adhesion and migration, more guiding of axons, and structural features, such as porosity, provide a clearer role for nanofibers in the restoration of neural tissues. In this paper, basic concepts of peripheral nerve injury, types of artificial and natural guides, and methods to improve the performance of tubes, such as orientation, nanotechnology applications for nerve reconstruction, fibers and nanofibers, electrospinning methods, and their application in peripheral nerve reconstruction are reviewed. PMID:21042546
Mitochondrial DNA deletions in patients with chronic suppurative otitis media.
Tatar, Arzu; Tasdemir, Sener; Sahin, Ibrahim; Bozoglu, Ceyda; Erdem, Haktan Bagis; Yoruk, Ozgur; Tatar, Abdulgani
2016-09-01
The aim of this study was to investigate the 4977 and 7400 bp deletions of mitochondrial DNA in patients with chronic suppurative otitis media and to indicate the possible association of mitochondrial DNA deletions with chronic suppurative otitis media. Thirty-six patients with chronic suppurative otitis media were randomly selected to assess the mitochondrial DNA deletions. Tympanomastoidectomy was applied for the treatment of chronic suppurative otitis media, and the curettage materials including middle ear tissues were collected. The 4977 and 7400 bp deletion regions and two control regions of mitochondrial DNA were assessed by using the four pair primers. DNA was extracted from middle ear tissues and peripheral blood samples of the patients, and then polymerase chain reactions (PCRs) were performed. PCR products were separated in 2 % agarose gel. Seventeen of 36 patients had the heterozygote 4977 bp deletion in the middle ear tissue but not in peripheral blood. There wasn't any patient who had the 7400 bp deletion in mtDNA of their middle ear tissue or peripheral blood tissue. The patients with the 4977 bp deletion had a longer duration of chronic suppurative otitis media and a higher level of hearing loss than the others (p < 0.01). Long time chronic suppurative otitis media and the reactive oxygen species can cause the mitochondrial DNA deletions and this may be a predisposing factor to sensorineural hearing loss in chronic suppurative otitis media. An antioxidant drug as a scavenger agent may be used in long-term chronic suppurative otitis media.
Lin, Tao; Liu, Sheng; Chen, Shihao; Qiu, Shuai; Rao, Zilong; Liu, Jianghui; Zhu, Shuang; Yan, Liwei; Mao, Haiquan; Zhu, Qingtang; Quan, Daping; Liu, Xiaolin
2018-06-01
Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy of decellularized nerve allograft for nerve regeneration, with limited success. Xenogeneic decellularized tissue matrices or hydrogels have been widely used for surgical applications owing to their ease of harvesting and low immunogenicity. Moreover, decellularized tissue matrix hydrogels show good biocompatibility and are highly tunable. In this study, we prepared a porcine decellularized nerve matrix (pDNM-G) and evaluated its potential for promoting nerve regeneration. Our results demonstrate that pDNM-G can support Schwann cell proliferation and peripheral nerve regeneration by means of residual primary extracellular matrix components and nano-fibrous structure features. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Novel Therapeutic Development of NF1-Associated Malignant Peripheral Nerve Sheath Tumor (MPNST)
2016-08-01
peripheral nerve sheath tumor (MPSNT)”, 11/5/2015, SARC-CTOS (Connective Tissue Oncology Society) Symposium, Salt Lake City, Utah b) “PRC2 loss in...of malignant peripheral nerve sheath tumor (MPSNT)”, 11/5/2015, SARC-CTOS (Connective Tissue Oncology Society) Symposium, Salt Lake City, Utah 2...Medical Oncology Service FROM: Roger S Wilson, MD Chairman, Institutional Review Board/Privacy Board-A DATE: 02/11/2016 RE: Protocol # 16-052 Your
Lima, Alexandre; van Genderen, Michel E; van Bommel, Jasper; Klijn, Eva; Jansem, Tim; Bakker, Jan
2014-06-19
Recent clinical studies have shown a relationship between abnormalities in peripheral perfusion and unfavorable outcome in patients with circulatory shock. Nitroglycerin is effective in restoring alterations in microcirculatory blood flow. The aim of this study was to investigate whether nitroglycerin could correct the parameters of abnormal peripheral circulation in resuscitated circulatory shock patients. This interventional study recruited patients who had circulatory shock and who persisted with abnormal peripheral perfusion despite normalization of global hemodynamic parameters. Nitroglycerin started at 2 mg/hour and doubled stepwise (4, 8, and 16 mg/hour) each 15 minutes until an improvement in peripheral perfusion was observed. Peripheral circulation parameters included capillary refill time (CRT), skin-temperature gradient (Tskin-diff), perfusion index (PI), and tissue oxygen saturation (StO2) during a reactive hyperemia test (RincStO2). Measurements were performed before, at the maximum dose, and after cessation of nitroglycerin infusion. Data were analyzed by using linear model for repeated measurements and are presented as mean (standard error). Of the 15 patients included, four patients (27%) responded with an initial nitroglycerin dose of 2 mg/hour. In all patients, nitroglycerin infusion resulted in significant changes in CRT, Tskin-diff, and PI toward normal at the maximum dose of nitroglycerin: from 9.4 (0.6) seconds to 4.8 (0.3) seconds (P < 0.05), from 3.3 °C (0.7 °C) to 0.7 °C (0.6 °C) (P < 0.05), and from [log] -0.5% (0.2%) to 0.7% (0.1%) (P < 0.05), respectively. Similar changes in StO2 and RincStO2 were observed: from 75% (3.4%) to 84% (2.7%) (P < 0.05) and 1.9%/second (0.08%/second) to 2.8%/second (0.05%/second) (P < 0.05), respectively. The magnitude of changes in StO2 was more pronounced for StO2 of less than 75%: 11% versus 4%, respectively (P < 0.05). Dose-dependent infusion of nitroglycerin reverted abnormal peripheral perfusion and poor tissue oxygenation in patients following circulatory shock resuscitation. Individual requirements of nitroglycerin dose to improve peripheral circulation vary between patients. A simple and fast physical examination of peripheral circulation at the bedside can be used to titrate nitroglycerin infusion.
2014-01-01
Introduction Recent clinical studies have shown a relationship between abnormalities in peripheral perfusion and unfavorable outcome in patients with circulatory shock. Nitroglycerin is effective in restoring alterations in microcirculatory blood flow. The aim of this study was to investigate whether nitroglycerin could correct the parameters of abnormal peripheral circulation in resuscitated circulatory shock patients. Methods This interventional study recruited patients who had circulatory shock and who persisted with abnormal peripheral perfusion despite normalization of global hemodynamic parameters. Nitroglycerin started at 2 mg/hour and doubled stepwise (4, 8, and 16 mg/hour) each 15 minutes until an improvement in peripheral perfusion was observed. Peripheral circulation parameters included capillary refill time (CRT), skin-temperature gradient (Tskin-diff), perfusion index (PI), and tissue oxygen saturation (StO2) during a reactive hyperemia test (RincStO2). Measurements were performed before, at the maximum dose, and after cessation of nitroglycerin infusion. Data were analyzed by using linear model for repeated measurements and are presented as mean (standard error). Results Of the 15 patients included, four patients (27%) responded with an initial nitroglycerin dose of 2 mg/hour. In all patients, nitroglycerin infusion resulted in significant changes in CRT, Tskin-diff, and PI toward normal at the maximum dose of nitroglycerin: from 9.4 (0.6) seconds to 4.8 (0.3) seconds (P <0.05), from 3.3°C (0.7°C) to 0.7°C (0.6°C) (P <0.05), and from [log] -0.5% (0.2%) to 0.7% (0.1%) (P <0.05), respectively. Similar changes in StO2 and RincStO2 were observed: from 75% (3.4%) to 84% (2.7%) (P <0.05) and 1.9%/second (0.08%/second) to 2.8%/second (0.05%/second) (P <0.05), respectively. The magnitude of changes in StO2 was more pronounced for StO2 of less than 75%: 11% versus 4%, respectively (P <0.05). Conclusions Dose-dependent infusion of nitroglycerin reverted abnormal peripheral perfusion and poor tissue oxygenation in patients following circulatory shock resuscitation. Individual requirements of nitroglycerin dose to improve peripheral circulation vary between patients. A simple and fast physical examination of peripheral circulation at the bedside can be used to titrate nitroglycerin infusion. PMID:24946777
Tissue engineering and peripheral nerve reconstruction: an overview.
Geuna, Stefano; Gnavi, Sara; Perroteau, Isabelle; Tos, Pierluigi; Battiston, Bruno
2013-01-01
Nerve repair is no more regarded as merely a matter of microsurgical reconstruction. To define this evolving reconstructive/regenerative approach, the term tissue engineering is being increasingly used since it reflects the search for interdisciplinary and integrated treatment strategies. However, the drawback of this new approach is its intrinsic complexity, which is the result of the variety of scientific disciplines involved. This chapter presents a synthetic overview of the state of the art in peripheral nerve tissue engineering with a look forward at the most promising innovations emerging from basic science investigation. This review is intended to set the stage for the collection of papers in the thematic issue of the International Review of Neurobiology that is focused on the various interdisciplinary approaches in peripheral nerve tissue engineering. © 2013 Elsevier Inc. All rights reserved.
Photoacoustic and ultrasound dual-modality imaging for inflammatory arthritis
NASA Astrophysics Data System (ADS)
Xu, Guan; Chamberland, David; Girish, Gandikota; Wang, Xueding
2014-03-01
Arthritis is a leading cause of disability, affecting 46 million of the population in the U.S. Rendering new optical contrast in articular tissues at high spatial and temporal resolution, emerging photoacoustic imaging (PAI) combined with more established ultrasound (US) imaging technologies provides unique opportunities for diagnosis and treatment monitoring of inflammatory arthritis. In addition to capturing peripheral bone and soft tissue images, PAI has the capability to quantify hemodynamic properties including regional blood oxygenation and blood volume, both abnormal in synovial tissues affected by arthritis. Therefore, PAI, especially when performed together with US, should be of considerable help for further understanding the pathophysiology of arthritis as well as assisting in therapeutic decisions, including assessing the efficacy of new pharmacological therapies. In this paper, we will review our recent work on the development of PAI for application to the diagnostic imaging and therapeutic monitoring of inflammatory arthritis. We will present the imaging results from a home-built imaging system and another one based on a commercial US. The performance of PAI in evaluating pharmacological therapy on animal model of arthritis will be shown. Moreover, our resent work on PAI and US dual-modality imaging of human peripheral joints in vivo will also be presented.
Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration
2016-04-01
faster regeneration and functional recovery. Peripheral nerve injury is a common complication of complex tissue trauma and often results in significant...having poor regeneration overall, the areas of regenerating nerve tissue could often be found in sections of the nerve guide where luminal spaces of...conducted in this Aim also provided important insight into the NGC design parameters necessary to allow for maximum nerve tissue ingrowth and regeneration
Binette, Tanya M; Seeberger, Karen L; Lyon, James G; Rajotte, Ray V; Korbutt, Gregory S
2004-07-01
Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes. Peripheral tissues were screened for PERV and porcine DNA using PCR. Tissues with positive DNA were analyzed for PERV mRNA using RT-PCR. No significant difference was observed between non-EC and EC transplants regarding presence of PERV or porcine-specific DNA or mRNA. In reconstituted animals, little PERV or porcine DNA, and no PERV mRNA was detected. No PERV or porcine-specific DNA was observed in animals implanted with a TheraCyte trade mark device. In conclusion, an intact immune system significantly lowered the presence of PERV. Microencapsulation of islets did not alter PERV presence, however, macroencapsulation in the TheraCyte device did. Lower PERV incidence coincided with lower porcine DNA in peripheral tissues, linking the presence of PERV to migration of porcine cells.
Aging and adipose tissue: potential interventions for diabetes and regenerative medicine.
Palmer, Allyson K; Kirkland, James L
2016-12-15
Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Role of ghrelin and leptin in the regulation of carbohydrate metabolism. Part II. Leptin.
Otto-Buczkowska, Ewa; Chobot, Agata
2012-10-26
Leptin is produced by mature adipocytes. Its amount correlates positively with the mass of the adipose tissue. Leptin plays a crucial role in maintaining body weight and glucose homeostasis. It is transported through the blood-brain barrier to the central nervous system, where it activates the autonomic nervous system, causing the feeling of satiety and inhibiting appetite. It also acts through central and peripheral pathways, including the regulation of insulin secretion by pancreatic β cells. Leptin may also directly affect the metabolism and function of peripheral tissues. It has been found to play a role in peripheral insulin resistance by attenuating insulin action, and perhaps also insulin signaling, in various insulin-responsive cell types. Recent data provide convincing evidence that leptin has a beneficial influence on glucose homeostasis. Studies suggest that leptin could be used as an adjunct of insulin therapy in insulin-deficient diabetes, thereby providing an insight into the therapeutic implications of leptin as an anti-diabetic agent. Extensive research will be needed to determine long-term safety and efficacy of such a therapy.
"Ecstasy" toxicity to adolescent rats following an acute low binge dose.
Teixeira-Gomes, Armanda; Costa, Vera Marisa; Feio-Azevedo, Rita; Duarte, José Alberto; Duarte-Araújo, Margarida; Fernandes, Eduarda; Bastos, Maria de Lourdes; Carvalho, Félix; Capela, João Paulo
2016-06-28
3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a worldwide drug of abuse commonly used by adolescents. Most reports focus on MDMA's neurotoxicity and use high doses in adult animals, meanwhile studies in adolescents are scarce. We aimed to assess in rats the acute MDMA toxicity to the brain and peripheral organs using a binge dose scheme that tries to simulate human adolescent abuse. Adolescent rats (postnatal day 40) received three 5 mg/kg doses of MDMA (estimated equivalent to two/three pills in a 50 kg adolescent), intraperitoneally, every 2 h, while controls received saline. After 24 h animal sacrifice took place and collection of brain areas (cerebellum, hippocampus, frontal cortex and striatum) and peripheral organs (liver, heart and kidneys) occurred. Significant hyperthermia was observed after the second and third MDMA doses, with mean increases of 1 °C as it occurs in the human scenario. MDMA promoted ATP levels fall in the frontal cortex. No brain oxidative stress-related changes were observed after MDMA. MDMA-treated rat organs revealed significant histological tissue alterations including vascular congestion, but no signs of apoptosis or necrosis were found, which was corroborated by the lack of changes in plasma biomarkers and tissue caspases. In peripheral organs, MDMA did not affect significantly protein carbonylation, glutathione, or ATP levels, but liver presented a higher vulnerability as MDMA promoted an increase in quinoprotein levels. Adolescent rats exposed to a moderate MDMA dose, presented hyperthermia and acute tissue damage to peripheral organs without signs of brain oxidative stress.
Scheithauer, Bernd W; Amrami, Kimberly K; Folpe, Andrew L; Silva, Ana I; Edgar, Mark A; Woodruff, James M; Levi, Allan D; Spinner, Robert J
2011-04-01
Tumors of peripheral nerve are largely neuroectodermal in nature and derived from 2 elements of nerve, Schwann or perineurial cells. In contrast, mesenchymal tumors affecting peripheral nerve are rare and are derived mainly from epineurial connective tissue. The spectrum of the latter is broad and includes lipoma, vascular neoplasms, hematopoietic tumors, and even meningioma. Of malignant peripheral nerve neoplasms, the vast majority are primary peripheral nerve sheath tumors. Malignancies of mesenchymal type are much less common. To date, only 12 cases of synovial sarcoma of nerve have been described. Whereas in the past, parallels were drawn between synovial sarcoma and malignant glandular schwannoma, an uncommon form of malignant peripheral nerve sheath tumor, molecular genetics have since clarified the distinction. Herein, we report 10 additional examples of molecularly confirmed synovial sarcoma, all arising within minor or major nerves. Affecting 7 female and 3 male patients, 4 tumors occurred in pediatric patients. Clinically and radiologically, most lesions were initially thought to be benign nerve sheath tumors. On reinterpretation of imaging, they were considered indeterminate in nature with some features suspicious for malignancy. Synovial sarcoma of nerve, albeit rare, seems to behave in a manner similar to its more common, soft tissue counterpart. Those affecting nerve have a variable prognosis. Definitive recommendations regarding surgery and adjuvant therapies await additional reports and long-term follow-up. The literature is reviewed and a meta-analysis is performed with respect to clinicopathologic features versus outcome. Copyright © 2011. Published by Elsevier Inc.
Zanussi, S; Simonelli, C; Bortolin, M T; D'Andrea, M; Crepaldi, C; Vaccher, E; Nasti, G; Politi, D; Barzan, L; Tirelli, U; De Paoli, P
1999-01-01
This study presents the immunophenotypic and functional analysis of lymphocyte subsets obtained from peripheral blood and lymphoid tissue from HIV+ individuals treated with highly active anti-retroviral therapy (HAART) alone or in combination with 6 million units international (MUI) s.c. IL-2. Before treatment, the HIV+ patients had reduced CD4 and increased CD8 values in the peripheral blood and lymphoid tissue and impaired cytokine production by peripheral blood mononuclear cells (PBMC). After 24 weeks of treatment, all the HIV+ patients demonstrated increased CD4 values in peripheral blood and lymphoid tissue. The use of IL-2 did not promote an additional CD4 expansion compared with HAART alone; increased ‘naive’ and CD26+ CD4 cells and reduced CD8 cells were found in the peripheral blood and lymphoid tissue of the IL-2-treated, but not of the HAART-treated patients. Both types of treatment induced a significant reduction of the CD8/CD38+ cells. While HAART alone had negligible effects on cytokine production by PBMC, the combined use of HAART + IL-2 was unable to increase the endogenous production of IL-2, but caused an increase of IL-4, IL-13 and interferon-gamma (IFN-γ) and a reduction of monocyte chemoattractant protein-1 (MCP-1) production. These data suggest that, although in this schedule IL-2 has minimal efficacy on CD4 recovery when compared with HAART alone, it produces an increase of ‘naive’ and CD26+CD4 cells and a partial restoration of cytokine production. These data may be used to better define clinical trials aiming to improve the IL-2-dependent immunological reconstitution of HIV-infected subjects. PMID:10361239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catron, T; Rosu, M; Weiss, E
2014-06-01
Purpose: This study assesses the effect of physiological abdominal compression from prone positioning by comparing respiratory-induced tumor movements in supine and prone positions. Methods: 19 lung cancer patients underwent repeated supine and prone free-breathing 4DCT scans. The effect of patient position on motion magnitude was investigated for tumors, lymph nodes (9 cases), and subgroups of central (11 cases), peripheral (8 cases) and small peripheral tumors (5 cases), by evaluating the population average excursions, absolute and relative to a carina-point. Results: Absolute motion analysis: In prone, motion increased by ~20% for tumors and ~25% for lymph nodes. Central tumors moved moremore » compared to peripheral tumors in both supine and prone (~22%, and ~4% respectively). Central tumors movement increased by ~12% in prone. For peripheral tumors the increase in prone position was ~25% (~40% and 29% changes on along RL and AP directions). Motion relative to carina-point analysis: Overall, tumor excursions relative to carina-point increased by ~17% in prone. Lymph node relative magnitudes were lower by ~4%. Likewise, the central tumors moved ~7% less in prone. The subgroup of peripheral tumors exhibited increased amplitudes by ~44%; the small peripheral tumors had even larger relative displacements in prone (~46%). Conclusion: Tumor and lymph node movement in the patient population from this study averaged to be higher in prone than in supine position. Results from carina analysis also suggest that peripheral tissues have more physiologic freedom of motility when placed in the prone position, regardless of size. From these observations we should continue to avoid prone positioning for all types of primary lung tumor, suggesting that patients should receive radiotherapy for primary lung cancer in supine position to minimize target tissue mobility during normal respiratory effort. Further investigation will include more patients with peripheral tumors to validate our observations.« less
Quantitative analysis of circadian single cell oscillations in response to temperature
Kramer, Achim; Herzel, Hanspeter
2018-01-01
Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell’s ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation. PMID:29293562
Cho, Hye Jin; Yune, Sehyo; Seok, Jin Myoung; Cho, Eun Bin; Min, Ju Hong; Seo, Yeon Lim; Lee, Byung Jae; Kim, Byoung Joon; Choi, Dong Chull
2017-01-01
Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare systemic small-vessel vasculitis accompanied by asthma, eosinophilia, and eosinophilic inflammation of various tissues including the peripheral nerves. This study investigated the clinical course and long-term outcomes of peripheral neuropathy in patients with EGPA. Seventy-one patients with physician-diagnosed EGPA were identified at Samsung Medical Center between January 1995 and April 2014. Sixty-one of these patients were followed-up for more than 1 year and received corticosteroid therapy with or without intravenous cyclophosphamide pulse therapy for 6 to 18 months. Medical records of the 61 patients including demographic data, clinical features, laboratory and pathological findings, treatments, and outcomes were reviewed. Peripheral neuropathy as a manifestation of EGPA was present in 46 (75%) of the 61 patients. The mean follow-up duration of the patients with neuropathy was 6.4 years (range 1.2-18.8 years). The scores on the neurological functional disability scale before and after the combination treatment with corticosteroid and cyclophosphamide were 2.43±0.86 and 0.54±0.95 (mean±SD; p<0.001), respectively. The peripheral neuropathy relapsed in one patient. The long-term clinical outcome of peripheral neuropathy in patients with EGPA receiving initial corticosteroid and cyclophosphamide combination therapy was favorable with a very low relapse rate.
Bu, Rui; Yin, Li; Yang, Han; Wang, Qi; Wu, Feng; Zou, Jian Zhong
2013-08-01
The aims of this study were to investigate the feasibility of accelerated tissue ablation using a peripheral scanning mode with high-intensity focused ultrasound (HIFU) and to explore the effect of flow rate on total energy consumption of the target tissues. Using a model of isolated porcine liver perfusion via the portal vein and hepatic artery, we conducted a scanning protocol along the periphery of the target tissues using linear-scanned HIFU to carefully adjust the varying focal depth, generator power, scanning velocity and line-by-line interval over the entire ablation range. Porcine livers were divided into four ablation groups: group 1, n = 12, with dual-vessel perfusion; group 2, n = 11, with portal vein perfusion alone; group 3, n = 10, with hepatic artery perfusion alone; and group 4, n = 11, control group with no-flow perfusion. The samples were cut open consecutively at a thickness of 3 mm, and the actual ablation ranges were calculated along the periphery of the target tissues after triphenyl tetrazolium chloride staining. Total energy consumption was calculated as the sum of the energy requirements at various focal depths in each group. On the basis of the pre-supposed scanning protocol, the peripheral region of the target tissue formed a complete coagulation necrosis barrier in each group with varying dose combinations, and the volume of the peripheral necrotic area did not differ significantly among the four groups (p > 0.05). Furthermore, total energy consumption in each group significantly decreased with the corresponding decrease in flow rate (p < 0.01). This study revealed that the complete peripheral necrosis barrier within the target tissues can defined using linear-scanned HIFU in an isolated porcine liver perfusion model. Additionally, the flow rate in the major hepatic vessels may play an important role in the use of the peripheral ablation mode, and this novel mode of ablation may enhance the therapeutic efficacy and tolerability of the treatment of large tumors using HIFU ablation. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Osteopontin expression in reactive lesions of gingiva
ELANAGAI, Rathinam; VEERAVARMAL, Veeran; NIRMAL, Ramdas Madhavan
2015-01-01
Reactive proliferations of the gingiva comprise lesions such as pyogenic granuloma (PG), inflammatory fibroepithelial hyperplasia (IFH), peripheral ossifying fibroma (POF), and peripheral giant cell lesion. Osteopontin (OPN) has a dual role, it promotes mineralization when it is bound to solid substrate, and on the other hand, it inhibits mineralization when it is seen in association with solution. Objectives The study aimed to evaluate the expression of osteopontin in normal gingival tissue and different types of focal reactive proliferations of gingival tissue, and its role in the development of calcification within it. Material and Methods The presence and distribution of osteopontin was assessed using immunohistochemistry in five cases of normal gingival tissue and 30 cases of focal reactive proliferations of gingiva. Results There was no expression of osteopontin in normal subjects. Few cases of pyogenic granuloma, inflammatory fibroepithelial hyperplasia, and all the cases of peripheral ossifying fibroma showed positivity for osteopontin in the inflammatory cells, stromal cells, extracellular matrix, and in the calcifications. Conclusion The expression of osteopontin in all the cases of peripheral ossifying fibroma speculates that the majority of the cases of peripheral ossifying fibroma originate from the periodontal ligament cells. The treatment modalities for peripheral ossifying fibroma should differ from other focal reactive proliferations of gingiva. PMID:25760265
Assessment of foot perfusion in patients with a diabetic foot ulcer.
Forsythe, Rachael O; Hinchliffe, Robert J
2016-01-01
Assessment of foot perfusion is a vital step in the management of patients with diabetic foot ulceration, in order to understand the risk of amputation and likelihood of wound healing. Underlying peripheral artery disease is a common finding in patients with foot ulceration and is associated with poor outcomes. Assessment of foot perfusion should therefore focus on identifying the presence of peripheral artery disease and to subsequently estimate the effect this may have on wound healing. Assessment of perfusion can be difficult because of the often complex, diffuse and distal nature of peripheral artery disease in patients with diabetes, as well as poor collateralisation and heavy vascular calcification. Conventional methods of assessing tissue perfusion in the peripheral circulation may be unreliable in patients with diabetes, and it may therefore be difficult to determine the extent to which poor perfusion contributes to foot ulceration. Anatomical data obtained on cross-sectional imaging is important but must be combined with measurements of tissue perfusion (such as transcutaneous oxygen tension) in order to understand the global and regional perfusion deficit present in a patient with diabetic foot ulceration. Ankle-brachial pressure index is routinely used to screen for peripheral artery disease, but its use in patients with diabetes is limited in the presence of neuropathy and medial arterial calcification. Toe pressure index may be more useful because of the relative sparing of pedal arteries from medial calcification but may not always be possible in patients with ulceration. Fluorescence angiography is a non-invasive technique that can provide rapid quantitative information about regional tissue perfusion; capillaroscopy, iontophoresis and hyperspectral imaging may also be useful in assessing physiological perfusion but are not widely available. There may be a future role for specialized perfusion imaging of these patients, including magnetic resonance imaging techniques, single-photon emission computed tomography and PET-based molecular imaging; however, these novel techniques require further validation and are unlikely to become standard practice in the near future. Copyright © 2016 John Wiley & Sons, Ltd.
Sano, Hiroko; Nakamura, Akira; Texada, Michael J; Truman, James W; Ishimoto, Hiroshi; Kamikouchi, Azusa; Nibu, Yutaka; Kume, Kazuhiko; Ida, Takanori; Kojima, Masayasu
2015-05-01
The coordination of growth with nutritional status is essential for proper development and physiology. Nutritional information is mostly perceived by peripheral organs before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and the failure of endocrine regulation in humans can cause diseases including obesity and diabetes. In Drosophila melanogaster, the fat body (adipose tissue) has been suggested to play an important role in coupling growth with nutritional status. Here, we show that the peripheral tissue-derived peptide hormone CCHamide-2 (CCHa2) acts as a nutrient-dependent regulator of Drosophila insulin-like peptides (Dilps). A BAC-based transgenic reporter revealed strong expression of CCHa2 receptor (CCHa2-R) in insulin-producing cells (IPCs) in the brain. Calcium imaging of brain explants and IPC-specific CCHa2-R knockdown demonstrated that peripheral-tissue derived CCHa2 directly activates IPCs. Interestingly, genetic disruption of either CCHa2 or CCHa2-R caused almost identical defects in larval growth and developmental timing. Consistent with these phenotypes, the expression of dilp5, and the release of both Dilp2 and Dilp5, were severely reduced. Furthermore, transcription of CCHa2 is altered in response to nutritional levels, particularly of glucose. These findings demonstrate that CCHa2 and CCHa2-R form a direct link between peripheral tissues and the brain, and that this pathway is essential for the coordination of systemic growth with nutritional availability. A mammalian homologue of CCHa2-R, Bombesin receptor subtype-3 (Brs3), is an orphan receptor that is expressed in the islet β-cells; however, the role of Brs3 in insulin regulation remains elusive. Our genetic approach in Drosophila melanogaster provides the first evidence, to our knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production.
NASA Astrophysics Data System (ADS)
Marques, Andrew J.; Jivraj, Jamil; Reyes, Robnier; Ramjist, Joel; Gu, Xijia J.; Yang, Victor X. D.
2017-02-01
Tissue removal using electrocautery is standard practice in neurosurgery since tissue can be cut and cauterized simultaneously. Thermally mediated tissue ablation using lasers can potentially possess the same benefits but with increased precision. However, given the critical nature of the spine, brain, and nerves, the effects of direct photo-thermal interaction on neural tissue needs to be known, yielding not only high precision of tissue removal but also increased control of peripheral heat damage. The proposed use of lasers as a neurosurgical tool requires that a common ground is found between ablation rates and resulting peripheral heat damage. Most surgical laser systems rely on the conversion of light energy into heat resulting in both desirable and undesirable thermal damage to the targeted tissue. Classifying the distribution of thermal energy in neural tissue, and thus characterizing the extent of undesirable thermal damage, can prove to be exceptionally challenging considering its highly inhomogenous composition when compared to other tissues such as muscle and bone. Here we present the characterization of neural tissue ablation rate and heat affected zone of a 1.94 micron thulium doped fiber laser for neural tissue ablation. In-Vivo ablation of porcine cerebral cortex is performed. Ablation volumes are studied in association with laser parameters. Histological samples are taken and examined to characterize the extent of peripheral heat damage.
Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Pozhilenkova, E A; Morgun, A V; Shapran, M V; Kovalenko, A O
2015-01-01
Levels of interleukins-6, 8, 10, TNF-alpha and basic fibroblast growth factor (bFGF) were examined in peripheral blood of 60 patients with diabetes mellitus type II and soft tissues infections. It was revealed the elevated levels of proinflammatory (IL-6, 8), anti-inflammatory (IL-10) cytokines and basic fibroblast growth factor at the time of admission. Application of combined ozone therapy including ozonated autohemotherapy and superficial management of wounds with ozone-oxygen mixture resulted in significant decrease of IL-6, 8, 10 production and high level of bFGF on blood serum. Thus effective local bactericidal impact of ozone in combination with normalization of proinflammatory cytokines levels and preserved high level of bFGF in peripheral blood provide better results of wound healing process in patients with diabetes mellitus type II.
Dinakar, Pradeep; Stillman, Alexandra Marion
2016-08-01
The pathogenesis of pain sensation includes mechanisms that result in acute or chronic pain. Pain itself is described as an unpleasant sensory and emotional experience beginning with a peripheral stimulus that undergoes a physiological process ultimately resulting in the sensation of pain. Biologists recognize pain to be a common sign of potential tissue damage. Hence, pain sensation is protective in function. However, pathologic states of pain exist secondary to disruption of the nociceptive process both peripherally and centrally or secondary to psychological conditions. It is essential to identify these aberrant states of pain and distinguish them from situations of potential tissue damage. Chronic pain is defined as pain that exceeds 3 or 6 months duration. This article is an overview of the essential neuroanatomy and neurophysiology of normal pain nociception, its clinical implications, and the development of persistent and pathological pain conditions following improperly or poorly treated pain. Copyright © 2016. Published by Elsevier Inc.
Jing, Chen; Dongming, Zheng; Hong, Cui; Quan, Na; Sishi, Liu; Caixia, Liu
2018-01-01
To detect the expression of the TRPC3 channel protein in the tissues of women experiencing preterm labor and investigate its interaction with T lymphocytes, providing a theoretical basis for the clinical prevention of threatened preterm labor and the development of drug-targeted therapy. Forty-seven women experiencing preterm labor and 47 women experiencing normal full-term labor were included in this study. All included women underwent delivery via cesarean section; uterine samples were obtained at delivery. The expression of TRPC3 in uterine tissue was detected by immunohistochemistry, real-time quantitative reverse transcription-PCR, and western blot assay. Activation of T lymphocytes in peripheral blood and uterine tissue were detected by flow cytometry. A TRPC3-/- mouse model of inflammation-induced preterm labor was established; expression of TRPC3, Cav3.1, and Cav3.2 were analyzed in mouse uterine tissue. Activation of T lymphocytes in female mouse and human peripheral blood samples was determined using flow cytometry. In women experiencing preterm labor, expression of TRPC3 and the Cav3.1 and Cav3.2 proteins was significantly increased; in addition, the percentage of CD3+, CD4+, and CD8+ T cells in peripheral blood was significantly decreased. TRPC3 knockout significantly delayed the occurrence of preterm labor in mice. The muscle tension of ex vivo uterine strips was lower, Cav3.1 and Cav3.2 protein expression was lower, and the percentage of CD8+ T lymphocytes was significantly increased in wild-type mice subjected to an inflammation-induced preterm labor than in wild-type mice experiencing normal full-term labor. TRPC3 is closely related to the initiation of labor. TRPC3 relies on Cav3.1 and Cav3.2 proteins to inhibit inflammation-induced preterm labor by inhibiting the activation of T cells, in particular CD8+ T lymphocytes. © 2018 The Author(s). Published by S. Karger AG, Basel.
Approaches to Neural Tissue Engineering Using Scaffolds for Drug Delivery
Willerth, Stephanie M.; Sakiyama-Elbert, Shelly E.
2007-01-01
This review seeks to give an overview of the current approaches to drug delivery from scaffolds for neural tissue engineering applications. The challenges presented by attempting to replicate the three types of nervous tissue (brain, spinal cord, and peripheral nerve) are summarized. Potential scaffold materials (both synthetic and natural) and target drugs are discussed with the benefits and drawbacks given. Finally, common methods of drug delivery, including degradable/diffusion-based delivery systems, affinity-based delivery systems, immobilized drug delivery systems, and electrically controlled drug delivery systems, are examined and critiqued. Based on the current body of work, suggestions for future directions of research in the field of neural tissue engineering are presented. PMID:17482308
Liu, Ying Hsiu; Sahashi, Kentaro; Rigo, Frank; Bennett, C. Frank
2015-01-01
Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice. PMID:25583329
Jotova, Iveta; Wu, T. C.; Wang, Chenguang; Desmarais, Cindy; Boyer, Jean D.; Tycko, Benjamin; Robins, Harlan S.; Clark, Rachael A.; Trimble, Cornelia L.
2014-01-01
About 25% of high-grade cervical intraepithelial neoplasias (CIN2/3) caused by human papillomavirus serotype 16 (HPV16) undergo complete spontaneous regression. However, to date, therapeutic vaccination strategies for HPV disease have yielded limited success when measured by their ability to induce robust peripheral blood T cell responses to vaccine antigen. We report marked immunologic changes in the target lesion microenvironment after intramuscular therapeutic vaccination targeting HPV16 E6/E7 antigens, in subjects with CIN2/3 who had modest detectable responses in circulating T lymphocytes. Histologic and molecular changes, including markedly (average threefold) increased intensity of CD8+ T cell infiltrates in both the stromal and epithelial compartments, suggest an effector response to vaccination. Postvaccination cervical tissue immune infiltrates included organized tertiary lymphoid-like structures in the stroma subjacent to residual intraepithelial lesions and, unlike infiltrates in unvaccinated lesions, showed evidence of proliferation induced by recognition of cognate antigen. At a molecular level, these histologic changes in the stroma were characterized by increased expression of genes associated with immune activation (CXCR3) and effector function (Tbet and IFNβ), and were also associated with an immunologic signature in the overlying dysplastic epithelium. High-throughput T cell receptor sequencing of unmanipulated specimens identified clonal expansions in the tissue that were not readily detectable in peripheral blood. Together, these findings indicate that peripheral therapeutic vaccination to HPV antigens can induce a robust tissue-localized effector immune response, and that analyses of immune responses at sites of antigen are likely to be much more informative than analyses of cells that remain in the circulation. PMID:24477000
Peripheral arterial disease and revascularization of the diabetic foot.
Forsythe, R O; Brownrigg, J; Hinchliffe, R J
2015-05-01
Diabetes is a complex disease with many serious potential sequelae, including large vessel arterial disease and microvascular dysfunction. Peripheral arterial disease is a common large vessel complication of diabetes, implicated in the development of tissue loss in up to half of patients with diabetic foot ulceration. In addition to peripheral arterial disease, functional changes in the microcirculation also contribute to the development of a diabetic foot ulcer, along with other factors such as infection, oedema and abnormal biomechanical loading. Peripheral arterial disease typically affects the distal vessels, resulting in multi-level occlusions and diffuse disease, which often necessitates challenging distal revascularisation surgery or angioplasty in order to improve blood flow. However, technically successful revascularisation does not always result in wound healing. The confounding effects of microvascular dysfunction must be recognised--treatment of a patient with a diabetic foot ulcer and peripheral arterial disease should address this complex interplay of pathophysiological changes. In the case of non-revascularisable peripheral arterial disease or poor response to conventional treatment, alternative approaches such as cell-based treatment, hyperbaric oxygen therapy and the use of vasodilators may appear attractive, however more robust evidence is required to justify these novel approaches. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Schmid, Gernot; Cecil, Stefan; Überbacher, Richard
2013-07-01
Based on numerical computations using commercially available finite difference time domain code and a state-of-the art anatomical model of a 5-year old child, the influence of skin conductivity on the induced electric field strength inside the tissue for homogeneous front-to-back magnetic field exposure and homogeneous vertical electric field exposure was computed. Both ungrounded as well as grounded conditions of the body model were considered. For electric field strengths induced inside CNS tissue the impact of skin conductivity was found to be less than 15%. However, the results demonstrated that the use of skin conductivity values as obtainable from the most widely used data base of dielectric tissue properties and recommended by safety standards are not suitable for exposure assessment with respect to peripheral nerve tissue according to the ICNIRP 2010 guidelines in which the use of the induced electric field strengths inside the skin is suggested as a conservative surrogate for peripheral nerve exposure. This is due to the fact that the skin conductivity values derived from these data bases refer to the stratum corneum, the uppermost layer of the skin, which does not contain any nerve or receptor cells to be protected from stimulation effects. Using these skin conductivity values which are approximately a factor 250-500 lower than skin conductivity values used in studies on which the ICNIRP 2010 guidelines are based on, may lead to overestimations of the induced electric field strengths inside the skin by substantially more than a factor of 10. However, reliable conductivity data of deeper skin layers where nerve and preceptor cells are located is very limited. It is therefore recommended to include appropriate background information in the ICNIRP guidelines and the dielectric tissue property databases, and to put some emphasis on a detailed layer-specific characterization of skin conductivity in near future.
Peripheral metabolic actions of leptin.
Muoio, Deborah M; Lynis Dohm, G
2002-12-01
The adipocyte-derived hormone, leptin, regulates food intake and systemic fuel metabolism; ob /ob mice, which lack functional leptin, exhibit an obesity syndrome that is similar to morbid obesity in humans. Leptin receptors are expressed most abundantly in the brain but are also present in several peripheral tissues. The role of leptin in controlling energy homeostasis has thus far focused on brain receptors and neuroendocrine pathways that regulate feeding behaviour and sympathetic nervous system activity. This chapter focuses on mounting evidence that leptin's effects on energy balance are also mediated by direct peripheral actions on key metabolic organs such as skeletal muscle, liver, pancreas and adipose tissue. Strong evidence indicates that peripheral leptin receptors regulate cellular lipid balance, favouring beta-oxidation over triacylglycerol storage. There are data to indicate that peripheral leptin also modulates glucose metabolism and insulin action; however, its precise role in controlling gluco-regulatory pathways remains uncertain and requires further investigation.
Endocannabinoids in Liver Disease
Tam, Joseph; Liu, Jie; Mukhopadhyay, Bani; Cinar, Resat; Godlewski, Grzegorz; Kunos, George
2010-01-01
Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and is present both in brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases, which contributes to the underlying pathologies. In cirrhosis of various etiologies, activation of vascular and cardiac CB1 receptors by macrophage- and platelet-derived endocannabinoids contribute to the vasodilated state and cardiomyopathy, which can be reversed by CB1 blockade. In mouse models of liver fibrosis, activation of CB1 receptors on hepatic stellate cells is fibrogenic, and CB1 blockade slows the progression of fibrosis. Fatty liver induced by high-fat diets or chronic alcohol feeding depend on activation of peripheral, including hepatic CB1 receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB1 blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB1 antagonists. PMID:21254182
Mahan, Mark A; Prasad, Nikhil; Spinner, Robert J
2015-06-01
Lipomatosis of nerves (LN) involves benign fibro-fatty infiltration and is often associated with territorial overgrowth of soft tissue and bone; this distinctive disease pattern can be visualized on plain radiographs. We recently discovered a case (presented by Sir Robert Jones in 1898 to the Pathological Society of London) that indirectly represents a historical landmark in the imaging of peripheral nerves. The clinical findings and image, with obvious soft tissue and bone overgrowth, are pathognomonic for LN, making this one of the earliest radiological observations of a peripheral nerve lesion.
Izumo, Takehiro; Matsumoto, Yuji; Sasada, Shinji; Chavez, Christine; Nakai, Toshiyuki; Tsuchida, Takaaki
2017-03-01
The utility of rapid on-site evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions is unclear. The aim of this study was to evaluate the role of rapid on-site evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions. Consecutive patients who underwent endobronchial ultrasound with a guide sheath for the diagnosis of peripheral pulmonary lesions at our hospital between September 2012 and July 2014 were included in this retrospective study. Cytology slides were air-dried, and modified Giemsa (Diff-Quik) staining was used for rapid on-site evaluation. Additional smears were prepared for Papanicolaou staining and tissue samples were placed in formalin for histologic evaluation. The results of rapid on-site evaluation were compared with the final diagnoses of endobronchial ultrasound with a guide sheath. A total of 718 cases were included in the study population. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of rapid on-site evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions was 88.6%, 65.9%, 81.2%, 77.7% and 80.1%, respectively. There were no procedure-related deaths. Rapid on-site evaluation during endobronchial ultrasound with a guide sheath had high sensitivity for peripheral pulmonary lesions. When carrying out rapid on-site evaluation of transbronchial biopsy samples from peripheral pulmonary lesions, careful interpretation and clinical correlation are necessary. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Coutinho, Eulalia A; Okamoto, Shiki; Ishikawa, Ayako Wendy; Yokota, Shigefumi; Wada, Nobuhiro; Hirabayashi, Takahiro; Saito, Kumiko; Sato, Tatsuya; Takagi, Kazuyo; Wang, Chen-Chi; Kobayashi, Kenta; Ogawa, Yoshihiro; Shioda, Seiji; Yoshimura, Yumiko; Minokoshi, Yasuhiko
2017-09-01
The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine- N -oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues. © 2017 by the American Diabetes Association.
Intensity-Modulated Radiation Therapy in Treating Younger Patients With Lung Metastases
2013-09-23
Adult Rhabdomyosarcoma; Lung Metastases; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Stage IV Adult Soft Tissue Sarcoma; Stage IV Wilms Tumor; Stage V Wilms Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific
Tanespimycin in Treating Young Patients With Recurrent or Refractory Leukemia or Solid Tumors
2013-06-03
Childhood Chronic Myelogenous Leukemia; Childhood Desmoplastic Small Round Cell Tumor; Disseminated Neuroblastoma; Metastatic Childhood Soft Tissue Sarcoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent Osteosarcoma
Kaemmer, D; Bozkurt, A; Otto, J; Junge, K; Klink, C; Weis, J; Sellhaus, B; O'Dey, D M; Pallua, N; Jansen, M; Schumpelick, V; Klinge, U
2010-06-30
Little is known about species differences in the peripheral nerve system and quantitative evaluation of main tissue components has rarely been done. Nevertheless, animal models are used for example in pain research without exact knowledge of degree of fibrosis in pathological states which would determine possible treatment options. It would therefore be of crucial interest to describe the degree of fibrosis and the remaining functional nerve tissue as exact as possible. In the present study we evaluated collagen (stroma) and nerve fiber (parenchyma) composition of peripheral nerves in three species (human, rat, pig) and used digital colour-separation and analysis for collagen type differentiation and quantification of immuno-positive-stained area. We found similar ratios of collagen types I and III in epineurium and similar immuno-positive area for staining of neurofilament and S-100beta. In contrast, we measured significantly different ratios of collagen type I to type III in the endoneurium. This combined analysis of the main tissue components of peripheral nerves could be an easy-to-use tool in evaluating changes during damage caused by scaring, systemic disease or compression syndromes. The calculated collagen type I/III ratio may serve as an objective diagnostic value for the description or as prognostic marker for therapeutic approaches in peripheral nerve pathology. However, in particular studies of collagen accumulation in nerves, species dependant differences have to be considered. Copyright 2010 Elsevier B.V. All rights reserved.
Li, Puxian; Hao, Shuyu; Bi, Zhiyong; Zhang, Junting; Wu, Zhen; Ren, Xiaohui
2015-08-01
The aim of the present study was to investigate the positive rate of Werner syndrome protein (WRN) methylation in meningioma patients, and further assess the association between WRN methylation and the occurrence of meningioma. A total of 56 consecutive meningioma patients and 26 healthy individuals were enrolled in the study. A methylation-specific polymerase chain reaction assay was performed to detect the positive rate of WRN methylation in the peripheral blood and tissue samples collected from the recruited subjects. In addition, western blot analysis was performed to determine the protein expression levels of WRN, Myc and p53 in the peripheral blood and tissue samples. The positive rate of WRN methylation in the peripheral blood of the meningioma group was increased when compared with the control group (P<0.05). In addition, the protein expression levels of WRN were significantly decreased in the peripheral blood and tissue samples collected from the individuals with a positive WRN methylation status (P<0.05), as compared with the samples without WRN methylation. Furthermore, the protein expression levels of Myc and p53 were increased in the peripheral blood and tissue samples that exhibited positive WRN methylation when compared with those without WRN methylation (P<0.05). Therefore, WRN methylation was demonstrated to be associated with the occurrence and development of invasive meningioma, possibly through the regulation of Myc and p53 expression.
NASA Astrophysics Data System (ADS)
Sandrock, Alfred W.; Matthew, William D.
1987-10-01
The effective regeneration of severed neuronal axons in the peripheral nerves of adult mammals may be explained by the presence of molecules in situ that promote the effective elongation of neurites. The absence of such molecules in the central nervous system of these animals may underlie the relative inability of axons to regenerate in this tissue after injury. In an effort to identify neurite growth-promoting molecules in tissues that support effective axonal regeneration, we have developed an in vitro bioassay that is sensitive to substrate-bound factors of peripheral nerve that influence the growth of neurites. In this assay, neonatal rat superior cervical ganglion explants are placed on longitudinal cryostat sections of fresh-frozen sciatic nerve, and the regrowing axons are visualized by catecholamine histofluorescence. Axons are found to regenerate effectively over sciatic nerve tissue sections. When ganglia are similarly explanted onto cryostat sections of adult rat central nervous system tissue, however, axonal regeneration is virtually absent. We have begun to identify the molecules in peripheral nerve that promote effective axonal regeneration by examining the effect of antibodies that interfere with the activity of previously described neurite growth-promoting factors. Axonal elongation over sciatic nerve tissue was found to be sensitive to the inhibitory effects of INO (for inhibitor of neurite outgrowth), a monoclonal antibody that recognizes and inhibits a neurite growth-promoting activity from PC-12 cell-conditioned medium. The INO antigen appears to be a molecular complex of laminin and heparan sulfate proteoglycan. In contrast, a rabbit antiserum that recognizes laminin purified from mouse Engelbreth-Holm-Swarm (EHS) sarcoma, stains the Schwann cell basal lamina of peripheral nerve, and inhibits neurite growth over purified laminin substrata has no detectable effect on the rate of axonal regeneration in our assay.
Mechanisms of Acupuncture-Electroacupuncture on Persistent Pain
Zhang, Ruixin; Lao, Lixing; Ren, Ke; Berman, Brian M.
2014-01-01
In the last decade, preclinical investigations of electroacupuncture mechanisms on persistent tissue-injury (inflammatory), nerve-injury (neuropathic), cancer, and visceral pain have increased. These studies show that electroacupuncture activates the nervous system differently in health than in pain conditions, alleviates both sensory and affective inflammatory pain, and inhibits inflammatory and neuropathic pain more effectively at 2–10 Hz than at 100 Hz. Electroacupuncture blocks pain by activating a variety of bioactive chemicals through peripheral, spinal, and supraspinal mechanisms. These include opioids, which desensitize peripheral nociceptors and reduce pro-inflammatory cytokines peripherally and in the spinal cord, and serotonin and norepinephrine, which decrease spinal n-methyl-d-aspartate receptor subunit GluN1 phosphorylation. Additional studies suggest that electroacupuncture, when combined with low dosages of conventional analgesics, provides effective pain management that can forestall the side effects of often-debilitating pharmaceuticals. PMID:24322588
Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime
2009-01-01
Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899
2016-06-09
Adult Alveolar Soft Part Sarcoma; Adult Angiosarcoma; Adult Desmoplastic Small Round Cell Tumor; Adult Epithelioid Hemangioendothelioma; Adult Epithelioid Sarcoma; Adult Extraskeletal Myxoid Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Mesenchymoma; Adult Malignant Peripheral Nerve Sheath Tumor; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Adult Unclassified Pleomorphic Sarcoma; Chondrosarcoma; Clear Cell Sarcoma of the Kidney; Conjunctival Kaposi Sarcoma; Dermatofibrosarcoma Protuberans; Gastrointestinal Stromal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Ovarian Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Adult Unclassified Pleomorphic Sarcoma of Bone; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Kaposi Sarcoma; Recurrent Osteosarcoma; Recurrent Uterine Corpus Sarcoma; Small Intestine Leiomyosarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Uterine Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Uterine Sarcoma; Unclassified Pleomorphic Sarcoma of Bone
Caimari, Antoni; Oliver, Paula; Keijer, Jaap; Palou, Andreu
2010-04-01
Peripheral blood mononuclear cells (PBMCs) are readily accessible biological material and a potential tissue source to discover novel biomarkers of response to environmental exposures including nutrition. We analyzed whether PBMCs could reflect molecular changes that take place in response to different feeding conditions in key organs/tissues involved in energy homeostasis. We studied energy balance-related genes whose expression was altered in normoweight (control) rats and in diet-induced (cafeteria) obese rats in response to ad libitum feeding, 14-h fasting, and 6-h refeeding after fasting, using whole-genome microarray analysis. In PBMCs, the expression of the genes central to energy metabolism was altered by the feeding conditions. The number of affected genes was 75 in the control rats, but only 23 in the cafeteria obese rats. Most of these genes play a role in metabolic pathways regulated by nutritional changes, such as lipid metabolism (the metabolic pathway mainly reflected in blood cells), carbohydrate metabolism, central energy metabolism, respiratory chain/mitochondrial ATPase system, and food intake regulation. Importantly, our results showed a similar behavior to that of the mesenteric white adipose tissue. In conclusion, metabolic adaptations to acute changes in feeding conditions are reflected in the expression of genes central to energy homeostasis in PBMCs of normoweight rats, while response is impaired in cafeteria obese animals. The lower number of genes affected in obese animals indicates impaired nutritional regulation. PBMCs appear as a suitable potential model to characterize metabolic adaptations to food intake and body weight maintenance in experimental animals. These findings may also inform the development of future peripheral tissue models in the emerging field of clinical nutrigenomics.
Opioid receptors and their ligands in the musculoskeletal system and relevance for pain control.
Spetea, Mariana
2013-01-01
Interest in opioid drugs like morphine, as the oldest and most potent pain-killing agents known, has been maintained through the years. One of the most frequent chronic pain sensations people experience is associated with pathological conditions of the musculoskeletal system. Chronic musculoskeletal pain is a major health problem, and an adequate management requires understanding of both peripheral and central components, with more attention drawn to the former. Intense experimental and clinical research activities resulted in important knowledge on the mechanisms and functions of the endogenous opioid system located in the periphery. This review describes the occurrence and distribution of endogenous opioids and their receptors in the musculoskeletal system, and their role in pain control in musculoskeletal disorders, such as rheumatoid arthritis and osteoarthritis. Using different techniques, including immunohistochemistry, electron microscopy or radioimmunoassay, expression of enkephalins, dynorphin, β-endorphin, and endomorphins was demonstrated in musculoskeletal tissues of animals and humans. Localization of opioid peptides was found in synovial membrane, periosteum, bone and bone marrow, loose connective tissue, the paratenon and musculotendinous junction of the achilles tendon. Animal and human studies have also demonstrated expression of µ, δ and κ opioid receptor proteins in musculoskeletal tissues using radioligand binding assays, autoradiography, electrophysiology, immunohistochemistry and Western blotting. Opioid receptor gene expression was reported based on polymerase chain reaction and in situ hybridization techniques. Combining morphological and quantitative approaches, important evidence that the musculoskeletal apparatus is equipped with a peripheral opioid system is provided. Demonstration of the occurrence of an endogenous opioid system in bone and joint tissues represents an essential step for defining novel pharmacological strategies to attain peripheral control of pain in musculoskeletal disorders.
Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity.
Shi, Yan-Chuan; Lin, Shu; Castillo, Lesley; Aljanova, Aygul; Enriquez, Ronaldo F; Nguyen, Amy D; Baldock, Paul A; Zhang, Lei; Bijker, Martijn S; Macia, Laurence; Yulyaningsih, Ernie; Zhang, Hui; Lau, Jackie; Sainsbury, Amanda; Herzog, Herbert
2011-11-01
Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.
Seffer, Istvan; Nemeth, Zoltan
2017-06-01
Peripheral blood mononuclear cells (PBMCs) are multipotent, and plasma contains growth factors involving tissue regeneration. We hypothesized that transplantation of PBMC-plasma will promote the recovery of paralyzed facial muscles in Bell palsy. This case report describes the effects of PBMC-plasma transplantations in a 27-year-old female patient with right side Bell palsy. On the affected side of the face, the treatment resulted in both morphological and functional recovery including voluntary facial movements. These findings suggest that PBMC-plasma has the capacity of facial muscle regeneration and provides a promising treatment strategy for patients suffering from Bell palsy or other neuromuscular disorders.
2012-10-01
catalyzes the oxidative metabolism of androgens and estrogens in human peripheral tissues18. Other physiological functions included cell adhesion... aldosterone (CNKSR3)21. The Ingenuity Pathway Analysis software (Ingenuity Systems, Inc., Redwood City, CA) grouped 11 of these 12 genes into a
Khanday, M A; Hussain, Fida
2015-02-01
During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Choline as an agonist: determination of its agonistic potency on cholinergic receptors.
Ulus, I H; Millington, W R; Buyukuysal, R L; Kiran, B K
1988-07-15
These experiments examined the potency of choline as a cholinergic agonist at both muscarinic and nicotinic receptors in rat brain and peripheral tissues. Choline stimulated the contraction of isolated smooth muscle preparations of the stomach fundus, urinary bladder and trachea and reduced the frequency of spontaneous contractions of the right atrium at high micromolar and low millimolar concentrations. The potency of choline to elicit a biological response varied markedly among these tissues; EC50 values ranged between 0.41 mM in the fundus to 14.45 mM in the atrium. Choline also displaced [3H]quinuclidinyl benzilate binding in a concentration-dependent manner although, again, its potency varied among different brain regions (Ki = 1.2 to 3.5 mM) and peripheral tissues (Ki = 0.28 to 3.00 mM). Choline exhibited a comparable affinity for nicotinic receptors. It stimulated catecholamine release from the vascularly perfused adrenal gland (EC50 = 1.3 mM) and displaced L-[3H]nicotine binding to membrane preparations of brain and peripheral tissues (Ki = 0.38 to 1.17 mM). However, the concentration of choline required to bind to cholinergic receptors in most tissues was considerably higher than serum levels either in controls (8-13 microM) or following the administration of choline chloride (200 microM). These results clearly demonstrate that choline is a weak cholinergic agonist. Its potency is too low to account for the central nervous system effects produced by choline administration, although the direct activation of cholinergic receptors in several peripheral tissues may explain some of its side effects.
Retrobulbar pigmented peripheral nerve sheath tumor in a dog.
Curto, Elizabeth; Clode, Alison B; Durrant, Jessica; Montgomery, Keith W; Gilger, Brian C
2016-11-01
A 1-year-old male castrated Pug was referred for unilateral exophthalmos unresponsive to oral antibiotic and anti-inflammatory therapy. Clinical findings included exophthalmos of the left eye with lateral strabismus, resistance to retropulsion, and an elevated nictitans. Hematologic and biochemical analyses were within normal limits. Findings following computed tomography (CT) of the head included an expansile retrobulbar soft tissue mass with bony lysis extending into the left nasal cavity and nasopharynx. Ultrasound-guided fine-needle aspirates and biopsy samples obtained via rhinoscopy were nondiagnostic. Palliative exenteration was elected; the patient was euthanized 13 weeks following exenteration due to development of neurologic signs and perceived poor quality of life. The histopathologic diagnosis was a malignant pigmented peripheral nerve sheath tumor. © 2015 American College of Veterinary Ophthalmologists.
Ioseliani, G D; Chilaia, S M
1983-02-01
A basically new design for the reversing balloon pump has been proposed for increasing the efficacy of intra-aortic balloon pumping (IABP). The device not only causes a significant increase in discharge, but also permits control of the central and peripheral circulation within the desired limits owing to back-and-forth movements (like a piston) of the balloon pump. Standard one- and two-chamber balloon pumps were compared. In addition to traditional hemodynamic and biochemical indexes, the efficacy of IABP was assessed based on electrode monitor control of PO2 and pH in the myocardium, peripheral tissues, and circulating blood. Based on 54 experiments on dogs, it was found that IABP with reversing balloon pumps in synchronous pulsation resulted in survival of 69% of the cases; PO2 and pH levels in the myocardium, tissues, and blood in the coronary sinus were close to normal, and coronary blood flow and peripheral circulation were increased. With standard one-chamber balloon pumps, the survival rate did not exceed 33.4%; PO2 and pH in the peripheral tissues reached critical levels.
2018-02-08
Sarcoma, Soft Tissue; Soft Tissue Sarcoma; Undifferentiated Pleomorphic Sarcoma; Leiomyosarcoma; Liposarcoma; Synovial Sarcoma; Myxofibrosarcoma; Angiosarcoma; Fibrosarcoma; Malignant Peripheral Nerve Sheath Tumor; Epithelioid Sarcoma
Bouček, Tomáš; Mlček, Mikuláš; Krupičková, Petra; Huptych, Michal; Belza, Tomáš; Kittnar, Otomar; Linhart, Aleš; Bělohlávek, Jan
2018-05-01
Relationship between regional tissue oxygenation (rSO 2 ) and microcirculatory changes during cardiac arrest (CA) are still unclear. Therefore, we designed an experimental study to correlate rSO 2 , microcirculation and systemic hemodynamic parameters in a porcine model of CA. Ventricular fibrillation was induced in 24 female pigs (50±3kg) and left for three minutes untreated followed by five minutes of mechanical CPR. Regional and peripheral saturations were assessed by near-infrared spectroscopy, sublingual microcirculation by Sidestream Dark Field technology and continuous hemodynamic parameters, including systemic blood pressure (MAP) and carotid blood flow (CF), during baseline, CA and CPR periods. The Wilcoxon Signed-Rank test, the Friedman test and the partial correlation method were used to compare these parameters. Brain and peripheral rSO 2 showed a gradual decrease during CA and only an increase of brain rSO 2 during mechanical CPR (34.5 to 42.5; p=0.0001), reflected by a rapid decrease of microcirculatory and hemodynamic parameters during CA and a slight increase during CPR. Peripheral rSO 2 was not changed significantly during CPR (38 to 38.5; p=0.09). We only found a moderate correlation of cerebral/peripheral rSO 2 to microcirculatory parameters (PVD: r=0.53/0.46; PPV: r=0.6/0.5 and MFI: r=0.64/0.52) and hemodynamic parameters (MAP: r=0.64/0.71 and CF: 0.71/0.67). Our experimental study confirmed that monitoring brain and peripheral rSO 2 is an easy-to-use method, well reflecting the hemodynamics during CA. However, only brain rSO 2 reflects the CPR efforts and might be used as a potential quality indicator for CPR.
IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells.
Hydes, Theresa; Noll, Angela; Salinas-Riester, Gabriela; Abuhilal, Mohammed; Armstrong, Thomas; Hamady, Zaed; Primrose, John; Takhar, Arjun; Walter, Lutz; Khakoo, Salim I
2018-03-01
Murine hepatic NK cells exhibit adaptive features, with liver-specific adhesion molecules CXCR6 and CD49a acting as surface markers. We investigated human liver-resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver-resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver-resident double-positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single-positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL-12 and IL-15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver-resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. IL-12 and IL-15 may be key for generating NK cells with a tissue-homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue-homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.
Coq, Jacques-Olivier; Barr, Ann E; Strata, Fabrizio; Russier, Michael; Kietrys, David M; Merzenich, Michael M; Byl, Nancy N; Barbe, Mary F
2009-01-01
Repetitive motion disorders, such as carpal tunnel syndrome and focal hand dystonia, can be associated with tasks that require prolonged, repetitive behaviors. Previous studies using animal models of repetitive motion have correlated cortical neuroplastic changes or peripheral tissue inflammation with fine motor performance. However, the possibility that both peripheral and central mechanisms coexist with altered motor performance has not been studied. In this study, we investigated the relationship between motor behaviour changes associated with repetitive behaviors and both peripheral tissue inflammation and cortical neuroplasticity. A rat model of reaching and grasping involving moderate repetitive reaching with negligible force (MRNF) was used. Rats performed the MRNF task for 2 hrs/day, 3 days/wk for 8 weeks. Reach performance was monitored by measuring reach rate/success, daily exposure, reach movement reversals/patterns, reach/grasp phase times, grip strength and grooming function. With cumulative task exposure, reach performance, grip strength and agility declined while an inefficient food retrieval pattern increased. In S1 of MRNF rats, a dramatic disorganization of the topographic forepaw representation was observed, including the emergence of large receptive fields located on both the wrist/forearm and forepaw with alterations of neuronal properties. In M1, there was a drastic enlargement of the overall forepaw map area, and of the cortex devoted to digit, arm-digits and elbow-wrist responses. In addition, unusually low current amplitude evoked digit movements. IL-1β and TNF-α increased in forearm flexor muscles and tendons of MRNF animals. The increases in IL-1β and TNF-α negatively correlated with grip strength and amount of current needed to evoke forelimb movements. This study provides strong evidence that both peripheral inflammation and cortical neuroplasticity jointly contribute to the development of chronic repetitive motion disorders. PMID:19686738
Coq, Jacques-Olivier; Barr, Ann E; Strata, Fabrizio; Russier, Michael; Kietrys, David M; Merzenich, Michael M; Byl, Nancy N; Barbe, Mary F
2009-12-01
Repetitive motion disorders, such as carpal tunnel syndrome and focal hand dystonia, can be associated with tasks that require prolonged, repetitive behaviors. Previous studies using animal models of repetitive motion have correlated cortical neuroplastic changes or peripheral tissue inflammation with fine motor performance. However, the possibility that both peripheral and central mechanisms coexist with altered motor performance has not been studied. In this study, we investigated the relationship between motor behavior changes associated with repetitive behaviors and both peripheral tissue inflammation and cortical neuroplasticity. A rat model of reaching and grasping involving moderate repetitive reaching with negligible force (MRNF) was used. Rats performed the MRNF task for 2 h/day, 3 days/week for 8 weeks. Reach performance was monitored by measuring reach rate/success, daily exposure, reach movement reversals/patterns, reach/grasp phase times, grip strength and grooming function. With cumulative task exposure, reach performance, grip strength and agility declined while an inefficient food retrieval pattern increased. In S1 of MRNF rats, a dramatic disorganization of the topographic forepaw representation was observed, including the emergence of large receptive fields located on both the wrist/forearm and forepaw with alterations of neuronal properties. In M1, there was a drastic enlargement of the overall forepaw map area, and of the cortex devoted to digit, arm-digits and elbow-wrist responses. In addition, unusually low current amplitude evoked digit movements. IL-1 beta and TNF-alpha increased in forearm flexor muscles and tendons of MRNF animals. The increases in IL-1 beta and TNF-alpha negatively correlated with grip strength and amount of current needed to evoke forelimb movements. This study provides strong evidence that both peripheral inflammation and cortical neuroplasticity jointly contribute to the development of chronic repetitive motion disorders.
2016-05-16
Adult Angiosarcoma; Adult Desmoplastic Small Round Cell Tumor; Adult Epithelioid Sarcoma; Adult Extraskeletal Myxoid Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Mesenchymoma; Adult Malignant Peripheral Nerve Sheath Tumor; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Adult Undifferentiated High Grade Pleomorphic Sarcoma of Bone; Childhood Angiosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Malignant Peripheral Nerve Sheath Tumor; Childhood Pleomorphic Rhabdomyosarcoma; Childhood Rhabdomyosarcoma With Mixed Embryonal and Alveolar Features; Childhood Synovial Sarcoma; Dermatofibrosarcoma Protuberans; Malignant Adult Hemangiopericytoma; Malignant Childhood Hemangiopericytoma; Metastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Untreated Childhood Rhabdomyosarcoma
Polyglycerol-opioid conjugate produces analgesia devoid of side effects.
González-Rodríguez, Sara; Quadir, Mohiuddin A; Gupta, Shilpi; Walker, Karolina A; Zhang, Xuejiao; Spahn, Viola; Labuz, Dominika; Rodriguez-Gaztelumendi, Antonio; Schmelz, Martin; Joseph, Jan; Parr, Maria K; Machelska, Halina; Haag, Rainer; Stein, Christoph
2017-07-04
Novel painkillers are urgently needed. The activation of opioid receptors in peripheral inflamed tissue can reduce pain without central adverse effects such as sedation, apnoea, or addiction. Here, we use an unprecedented strategy and report the synthesis and analgesic efficacy of the standard opioid morphine covalently attached to hyperbranched polyglycerol (PG-M) by a cleavable linker. With its high-molecular weight and hydrophilicity, this conjugate is designed to selectively release morphine in injured tissue and to prevent blood-brain barrier permeation. In contrast to conventional morphine, intravenous PG-M exclusively activated peripheral opioid receptors to produce analgesia in inflamed rat paws without major side effects such as sedation or constipation. Concentrations of morphine in the brain, blood, paw tissue, and in vitro confirmed the selective release of morphine in the inflamed milieu. Thus, PG-M may serve as prototype of a peripherally restricted opioid formulation designed to forego central and intestinal side effects.
Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hariri, Lida P.; Adams, David C.; Colby, Thomas V.; Tager, Andrew M.; Suter, Melissa J.
2016-03-01
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a significantly worse prognosis than other forms of pulmonary fibrosis (3-year survival rate of 50%). Distinguishing IPF from other fibrotic diseases is essential to patient care because it stratifies prognosis and therapeutic decision-making. However, making the diagnosis often requires invasive, high-risk surgical procedures to look for microscopic features not seen on chest CT, such as characteristic cystic honeycombing in the peripheral lung. Optical coherence tomography (OCT) provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We aim to determine whether bronchoscopic OCT can provide a low-risk, non-surgical method for IPF diagnosis. We have developed bronchoscopic OCT catheters that access the peripheral lung and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We also conducted bronchoscopic OCT in ex vivo lung from pulmonary fibrosis patients, including IPF, to determine if OCT could successfully visualize features of IPF through the peripheral airways. Our results demonstrate that OCT is able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (< 1 mm diameter) not visible by CT, dense peripheral fibrosis, and spatial disease heterogeneity. We also found that OCT has potential to distinguish mimickers of IPF honeycombing, such as traction bronchiectasis and emphysema, from true honeycombing. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.
Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.
2017-01-01
Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739
Hess, David A.; Craft, Timothy P.; Wirthlin, Louisa; Hohm, Sarah; Zhou, Ping; Eades, William C.; Creer, Michael H.; Sands, Mark S.; Nolta, Jan A.
2011-01-01
Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of pre-clinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/MPSVII mice, we characterized the distribution of lineage depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase activity (ALDH) with CD133 co-expression. ALDHhi or ALDHhiCD133+ cells produced robust hematopoietic reconstitution, and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that co-expressed human (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels, and CD45−/HLA− cells with diluted GUSB expression predominant in the liver parenchyma. However, true non-hematopoietic human (HLA+/CD45−) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA−/CD45− cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of non-hematopoietic cells. However, relying solely on continued expression of cell surface markers, as employed in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage. PMID:18055447
Peripheral and central localization of the nesfatin-1 receptor using autoradiography in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prinz, Philip; Goebel-Stengel, Miriam; Teuffel, Pauline
2016-02-12
Nesfatin-1 was recently identified and introduced as food intake-regulatory hormone. Soon thereafter, mounting evidence indicated a much broader role for nesfatin-1 with an involvement in the regulation of food intake, gastrointestinal motility, glucose homeostasis, blood pressure and stress. Despite the growing knowledge on the physiological regulation and functions of nesfatin-1, the receptor mediating these effects remains to be characterized. Therefore, the aim of this study was to investigate the peripheral and central localization of the nesfatin-1 receptor by autoradiography. Male Sprague–Dawley rats were used and peripheral as well as brain tissue was processed for {sup 125}I-nesfatin-1 autoradiography. In peripheral tissues,more » an autoradiographic signal was observed in the gastric mucosa of corpus and antrum, in duodenum, jejunum and ileum, while no signal was detected in the colon. Preabsorption of {sup 125}I-nesfatin-1 with non-labeled nesfatin-1 greatly diminished the autoradiographic signal in the stomach indicating specificity (−32%, p < 0.001). A displacement assay showed an effective concentration by which 50% of {sup 125}I-nesfatin-1 bound to the receptor (EC{sub 50}) in the gastric corpus of 80 pM. Moreover, autoradiography was observed in endocrine tissues including the pituitary, pancreas, adrenal gland, testis and visceral adipose tissue. In addition, also heart, skeletal muscle, lung, liver and kidney showed autoradiographic signals. In the brain, strong {sup 125}I-nesfatin-1 autoradiography was detected in the cortex, paraventricular nucleus of the hypothalamus, area postrema, dorsal motor nucleus of the vagus nerve and cerebellum. Based on the distribution of nesfatin-1 autoradiography, nesfatin-1 is a pleiotropic hormone that is involved in the regulation of several homeostatic functions. - Highlights: • Although our knowledge on nesfatin-1 is increasing, the receptor is still unknown. • {sup 125}I-nesfatin-1 autoradiography was detected in (a.o.) the stomach and pancreas. • Central signals were observed in the hypothalamic paraventricular and dorsal motor nucleus. • Distribution data support the notion of nesfatin-1 being a pleiotropic hormone.« less
A Novel Role of Peripheral Corticotropin-Releasing Hormone (CRH) on Dermal Fibroblasts
Rassouli, Olga; Liapakis, George; Lazaridis, Iakovos; Sakellaris, George; Gkountelias, Kostas; Gravanis, Achille; Margioris, Andrew N.
2011-01-01
Corticotropin-releasing hormone, or factor, (CRH or CRF) exerts important biological effects in multiple peripheral tissues via paracrine/autocrine actions. The aim of our study was to assess the effects of endogenous CRH in the biology of mouse and human skin fibroblasts, the primary cell type involved in wound healing. We show expression of CRH and its receptors in primary fibroblasts, and we demonstrate the functionality of fibroblast CRH receptors by induction of cAMP. Fibroblasts genetically deficient in Crh (Crh−/−) had higher proliferation and migration rates and compromised production of IL-6 and TGF-β1 compared to the wildtype (Crh+/+) cells. Human primary cultures of foreskin fibroblasts exposed to the CRF1 antagonist antalarmin recapitulated the findings in the Crh−/− cells, exhibiting altered proliferative and migratory behavior and suppressed production of IL-6. In conclusion, our findings show an important role of fibroblast-expressed CRH in the proliferation, migration, and cytokine production of these cells, processes associated with the skin response to injury. Our data suggest that the immunomodulatory effects of CRH may include an important, albeit not explored yet, role in epidermal tissue remodeling and regeneration and maintenance of tissue homeostasis. PMID:21765902
2017-09-18
Desmoplastic Small Round Cell Tumor; Ewing Sarcoma of Bone or Soft Tissue; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor
The mammalian circadian clock and its entrainment by stress and exercise.
Tahara, Yu; Aoyama, Shinya; Shibata, Shigenobu
2017-01-01
The mammalian circadian clock regulates day-night fluctuations in various physiological processes. The circadian clock consists of the central clock in the suprachiasmatic nucleus of the hypothalamus and peripheral clocks in peripheral tissues. External environmental cues, including light/dark cycles, food intake, stress, and exercise, provide important information for adjusting clock phases. This review focuses on stress and exercise as potent entrainment signals for both central and peripheral clocks, especially in regard to the timing of stimuli, types of stressors/exercises, and differences in the responses of rodents and humans. We suggest that the common signaling pathways of clock entrainment by stress and exercise involve sympathetic nervous activation and glucocorticoid release. Furthermore, we demonstrate that physiological responses to stress and exercise depend on time of day. Therefore, using exercise to maintain the circadian clock at an appropriate phase and amplitude might be effective for preventing obesity, diabetes, and cardiovascular disease.
Young, Martin E.; Bray, Molly S.
2007-01-01
Circadian clocks are intracellular molecular mechanisms designed to allow the cell, organ, and organism to prepare for an anticipated stimulus prior to its onset. In order for circadian clocks to maintain their selective advantage, they must be entrained to the environment. Light, sound, temperature, physical activity (including sleep/wake transitions), and food intake are among the strongest environmental factors influencing mammalian circadian clocks. Normal circadian rhythmicities in these environmental factors have become severely disrupted in our modern day society, concomitant with increased incidence of type 2 diabetes mellitus, obesity, and cardiovascular disease. Here, we review our current knowledge regarding the roles of peripheral circadian clocks, concentrating on those found within tissues directly involved in metabolic homeostasis and cardiovascular function. We propose that both inter- and intra- organ dyssynchronization, through alteration/impairment of peripheral circadian clocks, accelerates the development of cardiovascular disease risk factors associated with cardiometabolic syndrome. PMID:17387040
Martin, Jeanne M.; Valentine, Beth A.; Cebra, Christopher K.
2010-01-01
Clinical signs, duration of illness, clinicopathologic findings, and ultrasonographic findings were evaluated in 12 llamas and 12 alpacas with malignant round cell tumors (MRCT). All but 1 animal died or was euthanized. Common clinical findings were anorexia, recumbency or weakness, and weight loss or poor growth. Peripheral lymphadenomegaly occurred in only 7 animals and was detected more often at necropsy than during physical examination. Common clinicopathologic abnormalities were hypoalbuminemia, acidosis, azotemia, anemia, hyperglycemia, and neutrophilia. Ultrasonography detected tumors in 4/6 animals. Cytologic evaluation of fluid or tissue aspirates or histopathology of biopsy tissue was diagnostic in 5/6 cases. A clinical course of 2 wk or less prior to death or euthanasia was more common in animals ≤ 2 y of age (9/11) than in older animals (6/13). Regular examination of camelids to include clinical pathology and evaluation of peripheral lymph nodes may result in early detection of MCRT. PMID:21358931
COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice
Vardeh, Daniel; Wang, Dairong; Costigan, Michael; Lazarus, Michael; Saper, Clifford B.; Woolf, Clifford J.; FitzGerald, Garret A.; Samad, Tarek A.
2009-01-01
A cardinal feature of peripheral inflammation is pain. The most common way of managing inflammatory pain is to use nonsteroidal antiinflammatory agents (NSAIDs) that reduce prostanoid production, for example, selective inhibitors of COX2. Prostaglandins produced after induction of COX2 in immune cells in inflamed tissue contribute both to the inflammation itself and to pain hypersensitivity, acting on peripheral terminals of nociceptors. COX2 is also induced after peripheral inflammation in neurons in the CNS, where it aids in developing a central component of inflammatory pain hypersensitivity by increasing neuronal excitation and reducing inhibition. We engineered mice with conditional deletion of Cox2 in neurons and glial cells to determine the relative contribution of peripheral and central COX2 to inflammatory pain hypersensitivity. In these mice, basal nociceptive pain was unchanged, as was the extent of peripheral inflammation, inflammatory thermal pain hypersensitivity, and fever induced by lipopolysaccharide. By contrast, peripheral inflammation–induced COX2 expression in the spinal cord was reduced, and mechanical hypersensitivity after both peripheral soft tissue and periarticular inflammation was abolished. Mechanical pain is a major symptom of most inflammatory conditions, such as postoperative pain and arthritis, and induction of COX2 in neural cells in the CNS seems to contribute to this. PMID:19127021
Alisertib in Treating Patients With Advanced or Metastatic Sarcoma
2017-11-29
Myxofibrosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Leiomyosarcoma; Recurrent Liposarcoma; Recurrent Malignant Peripheral Nerve Sheath Tumor; Recurrent Undifferentiated Pleomorphic Sarcoma; Stage III Soft Tissue Sarcoma AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7
2018-06-20
Adult Fibrosarcoma; Alveolar Soft Part Sarcoma; Angiomatoid Fibrous Histiocytoma; Atypical Fibroxanthoma; Clear Cell Sarcoma of Soft Tissue; Epithelioid Malignant Peripheral Nerve Sheath Tumor; Epithelioid Sarcoma; Extraskeletal Myxoid Chondrosarcoma; Extraskeletal Osteosarcoma; Fibrohistiocytic Neoplasm; Glomus Tumor of the Skin; Inflammatory Myofibroblastic Tumor; Intimal Sarcoma; Leiomyosarcoma; Liposarcoma; Low Grade Fibromyxoid Sarcoma; Low Grade Myofibroblastic Sarcoma; Malignant Cutaneous Granular Cell Tumor; Malignant Peripheral Nerve Sheath Tumor; Malignant Triton Tumor; Mesenchymal Chondrosarcoma; Myxofibrosarcoma; Myxoid Chondrosarcoma; Myxoinflammatory Fibroblastic Sarcoma; Nerve Sheath Neoplasm; PEComa; Pericytic Neoplasm; Plexiform Fibrohistiocytic Tumor; Sclerosing Epithelioid Fibrosarcoma; Stage IB Soft Tissue Sarcoma AJCC v7; Stage IIB Soft Tissue Sarcoma AJCC v7; Stage III Soft Tissue Sarcoma AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Synovial Sarcoma; Undifferentiated (Embryonal) Sarcoma; Undifferentiated High Grade Pleomorphic Sarcoma of Bone
Li, Yanjie; Lu, Yue; Lin, Kevin; Hauser, Lauren A.; Lynch, David R.
2017-01-01
ABSTRACT Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease usually caused by large homozygous expansions of GAA repeat sequences in intron 1 of the frataxin (FXN) gene. FRDA patients homozygous for GAA expansions have low FXN mRNA and protein levels when compared with heterozygous carriers or healthy controls. Frataxin is a mitochondrial protein involved in iron–sulfur cluster synthesis, and many FRDA phenotypes result from deficiencies in cellular metabolism due to lowered expression of FXN. Presently, there is no effective treatment for FRDA, and biomarkers to measure therapeutic trial outcomes and/or to gauge disease progression are lacking. Peripheral tissues, including blood cells, buccal cells and skin fibroblasts, can readily be isolated from FRDA patients and used to define molecular hallmarks of disease pathogenesis. For instance, FXN mRNA and protein levels as well as FXN GAA-repeat tract lengths are routinely determined using all of these cell types. However, because these tissues are not directly involved in disease pathogenesis, their relevance as models of the molecular aspects of the disease is yet to be decided. Herein, we conducted unbiased RNA sequencing to profile the transcriptomes of fibroblast cell lines derived from 18 FRDA patients and 17 unaffected control individuals. Bioinformatic analyses revealed significantly upregulated expression of genes encoding plasma membrane solute carrier proteins in FRDA fibroblasts. Conversely, the expression of genes encoding accessory factors and enzymes involved in cytoplasmic and mitochondrial protein synthesis was consistently decreased in FRDA fibroblasts. Finally, comparison of genes differentially expressed in FRDA fibroblasts to three previously published gene expression signatures defined for FRDA blood cells showed substantial overlap between the independent datasets, including correspondingly deficient expression of antioxidant defense genes. Together, these results indicate that gene expression profiling of cells derived from peripheral tissues can, in fact, consistently reveal novel molecular pathways of the disease. When performed on statistically meaningful sample group sizes, unbiased global profiling analyses utilizing peripheral tissues are critical for the discovery and validation of FRDA disease biomarkers. PMID:29125828
Manevska, Nevena; Stojanoski, Sinisa; Pop Gjorceva, Daniela; Todorovska, Lidija; Miladinova, Daniela; Zafirova, Beti
2017-09-01
Introduction Muscle perfusion is a physiologic process that can undergo quantitative assessment and thus define the range of normal values of perfusion indexes and perfusion reserve. The investigation of the microcirculation has a crucial role in determining the muscle perfusion. Materials and method The study included 30 examinees, 24-74 years of age, without a history of confirmed peripheral artery disease and all had normal findings on Doppler ultrasonography and pedo-brachial index of lower extremity (PBI). 99mTc-MIBI tissue muscle perfusion scintigraphy of lower limbs evaluates tissue perfusion in resting condition "rest study" and after workload "stress study", through quantitative parameters: Inter-extremity index (for both studies), left thigh/right thigh (LT/RT) left calf/right calf (LC/RC) and perfusion reserve (PR) for both thighs and calves. Results In our investigated group we assessed the normal values of quantitative parameters of perfusion indexes. Indexes ranged for LT/RT in rest study 0.91-1.05, in stress study 0.92-1.04. LC/RC in rest 0.93-1.07 and in stress study 0.93-1.09. The examinees older than 50 years had insignificantly lower perfusion reserve of these parameters compared with those younger than 50, LC (p=0.98), and RC (p=0.6). Conclusion This non-invasive scintigraphic method allows in individuals without peripheral artery disease to determine the range of normal values of muscle perfusion at rest and stress condition and to clinically implement them in evaluation of patients with peripheral artery disease for differentiating patients with normal from those with impaired lower limbs circulation.
McLane, Laura M.; Steblyanko, Maria; Anikeeva, Nadia; Ablanedo-Terrazas, Yuria; Demers, Korey; Eller, Michael A.; Streeck, Hendrik; Jansson, Marianne; Sönnerborg, Anders; Canaday, David H.; Naji, Ali; Wherry, E. John; Robb, Merlin L.; Reyes-Teran, Gustavo; Sykulev, Yuri; Betts, Michael R.
2018-01-01
CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of β-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and β-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues. PMID:29652923
Yan, Liwei; Yao, Zhi; Lin, Tao; Zhu, Qingtang; Qi, Jian; Gu, Liqiang; Fang, Jintao; Zhou, Xiang
2017-01-01
Peripheral nerve injury therapy in the clinic remains less than satisfactory. The gold standard of treatment for long peripheral nerve defects is autologous nerve grafts; however, numerous clinical complications are associated with this treatment. As tissue engineering has developed, tissue-engineered nerve grafts (TENGs) have shown potential applications as alternatives to autologous nerve grafts. To verify the important role of the biomimetic pathway of fascicle design in TENGs, we designed an animal model to study the role of the precise matching of fascicles in the effectiveness of nerve function recovery. 24 Sprague-Dawley rats were divided randomly into three groups (eight/group) that corresponded to 100% fascicle matching (100%FM), 50%FM and 0%FM. We selected Sprague–Dawley rat long-gap (15 mm) sciatic nerve defects. In the 6 weeks after surgery, we found that the 100%FM group showed the most effective functional recovery among the three groups. The 100%FM group showed better functional recovery on the basis of the sciatic functional index than the 50%FM and 0%FM groups. According to histological evaluation, the 100%FM group showed more regenerating nerve fibres. Moreover, in terms of the prevention of muscle atrophy, the 100%FM group showed excellent physiological outcomes. The 100%FM as tissue-engineered scaffolds can enhance nerve regeneration and effective functional recovery after the repair of large nerve defects. The results of this study provide a theoretical basis for future TENG designs including biomimetic fascicle pathways for repairing long nerve defects. PMID:28914740
Xia, Jingya; Veselenak, Ronald L.; Gorder, Summer R.; Bourne, Nigel; Milligan, Gregg N.
2014-01-01
Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation. PMID:25485971
Roebuck, Joseph R; Haker, Steven J; Mitsouras, Dimitris; Rybicki, Frank J; Tempany, Clare M; Mulkern, Robert V
2009-05-01
Quantitative, apparent T(2) values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T(2) values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy-proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 x 1.1 x 4 mm(3) was obtained in 10.7 min, resulting in data sets suitable for generating high-quality images with variable T(2)-weighting and for evaluating quantitative T(2) values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T(1)- and T(2)-weighted signal intensities and available histopathology reports, yielded significantly (P<.0001) longer apparent T(2) values in suspected healthy tissue (193+/-49 ms) vs. suspected cancer (100+/-26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T(2)-weighted fast spin echo (FSE) imaging alone, including quantitative T(2) values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time FSE sequences.
Roebuck, Joseph R.; Haker, Steven J.; Mitsouras, Dimitris; Rybicki, Frank J.; Tempany, Clare M.; Mulkern, Robert V.
2009-01-01
Quantitative, apparent T2 values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T2 values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 × 1.1 × 4 mm3 was obtained in 10.7 minutes, resulting in data sets suitable for generating high quality images with variable T2-weighting and for evaluating quantitative T2 values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T1- and T2-weighted signal intensities and available histopathology reports, yielded significantly (p < 0.0001) longer apparent T2 values in suspected healthy tissue (193 ± 49 ms) vs. suspected cancer (100 ± 26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T2-weighted fast spin echo imaging alone, including quantitative T2 values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time fast spin echo (FSE) sequences. PMID:18823731
Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism
Park, Hyeong-Kyu; Ahima, Rexford S.
2014-01-01
Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978
Shurell, Elizabeth; Vergara-Lluri, Maria E.; Li, Yunfeng; Crompton, Joseph G.; Singh, Arun; Bernthal, Nicholas; Wu, Hong; Eilber, Fritz C.; Dry, Sarah M.
2016-01-01
Background Immunotherapy targeting cancer-testis antigen NY-ESO-1 shows promise for tumors with poor response to chemoradiation. Malignant peripheral nerve sheath tumors (MPNSTs) and liposarcomas (LPS) are chemoresistant and have few effective treatment options. Materials Methods Using a comprehensive tissue microarray (TMA) of both benign and malignant tumors in primary, recurrent, and metastatic samples, we examined NY-ESO-1 expression in peripheral nerve sheath tumor (PNST) and adipocytic tumors. The PNST TMA included 42 MPNSTs (spontaneous n = 26, NF1-associated n = 16), 35 neurofibromas (spontaneous n = 22, NF-1 associated n = 13), 11 schwannomas, and 18 normal nerves. The LPS TMA included 48 well-differentiated/dedifferentiated (WD/DD) LPS, 13 myxoid/round cell LPS, 3 pleomorphic LPS, 8 lipomas, 1 myelolipoma, and 3 normal adipocytic tissue samples. Stained in triplicate, NY-ESO-1 intensity and density were scored. Results NY-ESO-1 expression was exclusive to malignant tumors. 100% of myxoid/round cell LPS demonstrated NY-ESO-1 expression, while only 6% of WD/DD LPS showed protein expression, one of which was WD LPS. Of MPNST, 4/26 (15%) spontaneous and 2/16 (12%) NF1-associated MPNSTs demonstrated NY-ESO-1 expression. Strong NY-ESO-1 expression was observed in myxoid/round cell and dedifferentiated LPS, and MPNST in primary, neoadjuvant, and metastatic settings. Conclusions We found higher prevalence of NY-ESO-1 expression in MPNSTs than previously reported, highlighting a subset of MPNST patients who may benefit from immunotherapy. This study expands our understanding of NY-ESO-1 in WD/DD LPS and is the first demonstration of staining in a WD LPS and metastatic/recurrent myxoid/round cell LPS. These results suggest immunotherapy targeting NY-ESO-1 may benefit patients with aggressive tumors resistant to conventional therapy. PMID:27655679
Neoadjuvant chemotherapy in soft tissue sarcomas: latest evidence and clinical implications
Pasquali, Sandro; Gronchi, Alessandro
2017-01-01
Soft tissue sarcomas are a rare and multifaceted group of solid tumours. Neoadjuvant chemotherapy is increasingly used to limit loss of function after wide surgical excision with the ultimate aim of improving patient survival. Recently, advances in the identification of effective treatment strategies and improvements in patient risk stratification have been reached. A randomized trial demonstrated that neoadjuvant epirubicin and ifosfamide improves survival of patients affected by five high-risk soft tissue sarcoma histologies of trunk and extremities, including undifferentiated pleomorphic sarcoma, myxoid liposarcoma, synovial sarcoma, malignant peripheral nerve sheath tumours, and leiomyosarcoma. Selection of patients for these treatments is expected to be improved by the eighth edition of the American Joint Committee on Cancer (AJCC) TNM staging system, as it tailors T-stage categories on primary tumour site and considers a prognostic nomogram for retroperitoneal sarcoma, which also includes soft tissue sarcoma histology and other patient and tumour features not directly included in the TNM staging. Within this framework, this article will present neoadjuvant treatment strategies for high-risk soft tissue sarcoma, emphasizing the most recent advances and discussing the need for further research to improve the effectiveness of neoadjuvant treatments. PMID:28607580
Oscillator networks with tissue-specific circadian clocks in plants.
Inoue, Keisuke; Araki, Takashi; Endo, Motomu
2017-09-08
Many organisms rely on circadian clocks to synchronize their biological processes with the 24-h rotation of the earth. In mammals, the circadian clock consists of a central clock in the suprachiasmatic nucleus and peripheral clocks in other tissues. The central clock is tightly coupled to synchronize rhythmicity and can organize peripheral clocks through neural and hormonal signals. In contrast to mammals, it has long been assumed that the circadian clocks in each plant cell is able to be entrained by external light, and they are only weakly coupled to each other. Recently, however, several reports have demonstrated that plants have unique oscillator networks with tissue-specific circadian clocks. Here, we introduce our current view regarding tissue-specific properties and oscillator networks of plant circadian clocks. Accumulating evidence suggests that plants have multiple oscillators, which show distinct properties and reside in different tissues. A direct tissue-isolation technique and micrografting have clearly demonstrated that plants have hierarchical oscillator networks consisting of multiple tissue-specific clocks. Copyright © 2017. Published by Elsevier Ltd.
Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong
2017-01-01
Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration. PMID:29085283
Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong
2017-01-01
Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration.
2018-06-20
Advanced Malignant Solid Neoplasm; Ann Arbor Stage III Childhood Hodgkin Lymphoma; Ann Arbor Stage III Childhood Non-Hodgkin Lymphoma; Ann Arbor Stage IV Childhood Hodgkin Lymphoma; Ann Arbor Stage IV Childhood Non-Hodgkin Lymphoma; Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; EZH2 Gain of Function; EZH2 Gene Mutation; Histiocytosis; Loss of BRG1 Protein Expression; Loss of INI 1 Protein Expression; Low Grade Glioma; Recurrent Childhood Central Nervous System Neoplasm; Recurrent Childhood Ependymoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma; Recurrent Glioma; Recurrent Hepatoblastoma; Recurrent Hodgkin Lymphoma; Recurrent Langerhans Cell Histiocytosis; Recurrent Malignant Germ Cell Tumor; Recurrent Malignant Glioma; Recurrent Malignant Solid Neoplasm; Recurrent Medulloblastoma; Recurrent Neuroblastoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Osteosarcoma; Recurrent Peripheral Primitive Neuroectodermal Tumor; Recurrent Rhabdoid Tumor; Recurrent Rhabdomyosarcoma; Recurrent Soft Tissue Sarcoma; Refractory Central Nervous System Neoplasm; Refractory Hodgkin Lymphoma; Refractory Langerhans Cell Histiocytosis; Refractory Malignant Germ Cell Tumor; Refractory Malignant Glioma; Refractory Medulloblastoma; Refractory Neuroblastoma; Refractory Non-Hodgkin Lymphoma; Refractory Osteosarcoma; Refractory Peripheral Primitive Neuroectodermal Tumor; Refractory Rhabdoid Tumor; Refractory Soft Tissue Sarcoma; Rhabdoid Tumor; SMARCA4 Gene Inactivation; SMARCB1 Gene Inactivation; Stage III Soft Tissue Sarcoma AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Wilms Tumor
Kung, Theodore A; Langhals, Nicholas B; Martin, David C; Johnson, Philip J; Cederna, Paul S; Urbanchek, Melanie G
2014-06-01
The regenerative peripheral nerve interface is an internal interface for signal transduction with external electronics of prosthetic limbs; it consists of an electrode and a unit of free muscle that is neurotized by a transected residual peripheral nerve. Adding a conductive polymer coating on electrodes improves electrode conductivity. This study examines regenerative peripheral nerve interface tissue viability and signal fidelity in the presence of an implanted electrode coated or uncoated with a conductive polymer. In a rat model, the extensor digitorum longus muscle was moved as a nonvascularized free tissue transfer and neurotized by the divided peroneal nerve. Either a stainless steel pad electrode (n = 8) or a pad electrode coated with poly(3,4-ethylenedioxythiophene) conductive polymer (PEDOT) (n = 8) was implanted on the muscle transfer and secured with an encircling acellular extracellular matrix. The contralateral muscle served as the control. The free muscle transfers were successfully revascularized and over time reinnervated as evidenced by serial insertional needle electromyography. Compound muscle action potentials were successfully transduced through the regenerative peripheral nerve interface. The conductive polymer coating on the implanted electrode resulted in increased recorded signal amplitude that was observed throughout the course of the study. Histologic examination confirmed axonal sprouting, elongation, and synaptogenesis within regenerative peripheral nerve interface regardless of electrode type. The regenerative peripheral nerve interface remains viable over seven months in the presence of an implanted electrode. Electrodes with and without conductive polymer reliably transduced signals from the regenerative peripheral nerve interface. Electrodes with a conductive polymer coating resulted in recording more of the regenerative peripheral nerve interface signal.
Chronic post-traumatic headache: clinical findings and possible mechanisms
Defrin, Ruth
2014-01-01
Chronic post-traumatic headache (CPTHA), the most frequent complaint after traumatic brain injury (TBI), dramatically affects quality of life and function. Despite its high prevalence and persistence, the mechanism of CPTHA is poorly understood. This literature review aimed to analyze the results of studies assessing the characteristics and sensory profile of CPTHA in order to shed light on its possible underlying mechanisms. The search for English language articles published between 1960 and 2013 was conducted in MEDLINE, CINAHL, and PubMed. Studies assessing clinical features of headache after TBI as well as studies conducting quantitative somatosensory testing (QST) in individuals with CPTHA and in individuals suffering from other types of pain were included. Studies on animal models of pain following damage to peripheral tissues and to the peripheral and central nervous system were also included. The clinical features of CPTHA resembled those of primary headache, especially tension-type and migraine headache. Positive and negative signs were prevalent among individuals with CPTHA, in both the head and in other body regions, suggesting the presence of local (cranial) mechanical hypersensitivity, together with generalized thermal hypoesthesia and hypoalgesia. Evidence of dysfunctional pain modulation was also observed. Chronic post-traumatic headache can result from damage to intra- and pericranial tissues that caused chronic sensitization of these tissues. Alternatively, although not mutually exclusive, CPTHA might possibly be a form of central pain due to damage to brain structures involved in pain processing. These, other possibilities, as well as risk factors for CPTHA are discussed at length. PMID:24976746
Haines, Robyn A; Urbiztondo, Rebeccah A; Haynes, Rashade A H; Simpson, Elaine; Niewiesk, Stefan; Lairmore, Michael D
2016-01-01
Rabbits have served as a valuable animal model for the pathogenesis of various human diseases, including those related to agents that gain entry through the gastrointestinal tract such as human T cell leukemia virus type 1. However, limited information is available regarding the spatial distribution and phenotypic characterization of major rabbit leukocyte populations in mucosa-associated lymphoid tissues. Herein, we describe the spatial distribution and phenotypic characterization of leukocytes from gut-associated lymphoid tissues (GALT) from 12-week-old New Zealand White rabbits. Our data indicate that rabbits have similar distribution of leukocyte subsets as humans, both in the GALT inductive and effector sites and in mesenteric lymph nodes, spleen, and peripheral blood. GALT inductive sites, including appendix, cecal tonsil, Peyer's patches, and ileocecal plaque, had variable B cell/T cell ratios (ranging from 4.0 to 0.8) with a predominance of CD4 T cells within the T cell population in all four tissues. Intraepithelial and lamina propria compartments contained mostly T cells, with CD4 T cells predominating in the lamina propria compartment and CD8 T cells predominating in the intraepithelial compartment. Mesenteric lymph node, peripheral blood, and splenic samples contained approximately equal percentages of B cells and T cells, with a high proportion of CD4 T cells compared with CD8 T cells. Collectively, our data indicate that New Zealand White rabbits are comparable with humans throughout their GALT and support future studies that use the rabbit model to study human gut-associated disease or infectious agents that gain entry by the oral route. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Gliogenesis: historical perspectives, 1839-1985.
Webster, Henry deF; Aström, Karl E
2009-01-01
This historical review of gliogenesis begins with Schwann's introduction of the cell doctrine in 1839. Subsequent microscopic studies revealed the cellular structure of many organs and tissues, but the CNS was thought to be different. In 1864, Virchow created the concept that nerve cells are held together by a "Nervenkitte" which he called"glia" (for glue). He and his contemporaries thought that "glia" was an unstructured, connective tissue-like ground substance that separated nerve cells from each other and from blood vessels. Dieters, a pupil of Virchow, discovered that this ground substance contained cells, which he described and illustrated. Improvements in microscopes and discovery of metallic impregnation methods finally showed convincingly that the "glia" was not a binding substance. Instead, it was composed of cells, each separate and distinct from neighboring cells and each with its own characteristic array of processes. Light microscopic studies of developing and mature nervous tissue led to the discovery of different types of glial cells-astroglia, oligodendroglia, microglia, and ependymal cells in the CNS, and Schwann cells in the peripheral nervous system (PNS). Subsequent studies characterized the origins and development of each type of glial cell. A new era began with the introduction of electron microscopy, immunostaining, and in vitro maintenance of both central and peripheral nervous tissue. Other methods and models greatly expanded our understanding of how glia multiply, migrate, and differentiate. In 1985, almost a century and a half of study had produced substantial progress in our understanding of glial cells, including their origins and development. Major advances were associated with the discovery of new methods. These are summarized first. Then the origins and development of astroglia, oligodendroglia, microglia, ependymal cells, and Schwann cells are described and discussed. In general, morphology is emphasized. Findings related to cytodifferentiation, cellular interactions, functions, and regulation of developing glia have also been included.
2018-06-28
Metastatic Ewing Sarcoma; Metastatic Malignant Neoplasm in the Bone; Metastatic Malignant Neoplasm in the Bone Marrow; Metastatic Malignant Neoplasm in the Lung; Metastatic Peripheral Primitive Neuroectodermal Tumor of Bone; Peripheral Primitive Neuroectodermal Tumor of Soft Tissues
Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire
Sims, Jennifer S.; Grinshpun, Boris; Feng, Yaping; Ung, Timothy H.; Neira, Justin A.; Samanamud, Jorge L.; Canoll, Peter; Shen, Yufeng; Sims, Peter A.; Bruce, Jeffrey N.
2016-01-01
Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and β-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a “signature” set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy. PMID:27261081
Buccal swab as a reliable predictor for X inactivation ratio in inaccessible tissues.
de Hoon, Bas; Monkhorst, Kim; Riegman, Peter; Laven, Joop S E; Gribnau, Joost
2015-11-01
As a result of the epigenetic phenomenon of X chromosome inactivation (XCI) every woman is a mosaic of cells with either an inactive paternal X chromosome or an inactive maternal X chromosome. The ratio between inactive paternal and maternal X chromosomes is different for every female individual, and can influence an X-encoded trait or disease. A multitude of X linked conditions is known, and for many of them it is recognised that the phenotype in affected female carriers of the causative mutation is modulated by the XCI ratio. To predict disease severity an XCI ratio is usually determined in peripheral blood samples. However, the correlation between XCI ratios in peripheral blood and disease affected tissues, that are often inaccessible, is poorly understood. Here, we tested several tissues obtained from autopsies of 12 female individuals for patch size and XCI ratio. XCI ratios were analysed using methyl-sensitive PCR-based assays for the AR, PCSK1N and SLITRK4 loci. XCI patch size was analysed by testing the XCI ratio of tissue samples with decreasing size. XCI patch size was analysed for liver, muscle, ovary and brain samples and was found too small to confound testing for XCI ratio in these tissues. XCI ratios were determined in the easily accessible tissues, blood, buccal epithelium and hair follicle, and compared with ratios in several inaccessible tissues. Buccal epithelium is preferable over peripheral blood for predicting XCI ratios of inaccessible tissues. Ovary is the only inaccessible tissue showing a poor correlation to blood and buccal epithelium, but has a good correlation to hair follicle instead. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Recovery of Peripheral Nerve with Massive Loss Defect by Tissue Engineered Guiding Regenerative Gel
Nevo, Zvi
2014-01-01
Objective. Guiding Regeneration Gel (GRG) was developed in response to the clinical need of improving treatment for peripheral nerve injuries and helping patients regenerate massive regional losses in peripheral nerves. The efficacy of GRG based on tissue engineering technology for the treatment of complete peripheral nerve injury with significant loss defect was investigated. Background. Many severe peripheral nerve injuries can only be treated through surgical reconstructive procedures. Such procedures are challenging, since functional recovery is slow and can be unsatisfactory. One of the most promising solutions already in clinical practice is synthetic nerve conduits connecting the ends of damaged nerve supporting nerve regeneration. However, this solution still does not enable recovery of massive nerve loss defect. The proposed technology is a biocompatible and biodegradable gel enhancing axonal growth and nerve regeneration. It is composed of a complex of substances comprising transparent, highly viscous gel resembling the extracellular matrix that is almost impermeable to liquids and gasses, flexible, elastic, malleable, and adaptable to various shapes and formats. Preclinical study on rat model of peripheral nerve injury showed that GRG enhanced nerve regeneration when placed in nerve conduits, enabling recovery of massive nerve loss, previously unbridgeable, and enabled nerve regeneration at least as good as with autologous nerve graft “gold standard” treatment. PMID:25105121
Optimizing MRI for imaging peripheral arthritis.
Hodgson, Richard J; O'Connor, Philip J; Ridgway, John P
2012-11-01
MRI is increasingly used for the assessment of both inflammatory arthritis and osteoarthritis. The wide variety of MRI systems in use ranges from low-field, low-cost extremity units to whole-body high-field 7-T systems, each with different strengths for specific applications. The availability of dedicated radiofrequency phased-array coils allows the rapid acquisition of high-resolution images of one or more peripheral joints. MRI is uniquely flexible in its ability to manipulate image contrast, and individual MR sequences may be combined into protocols to sensitively visualize multiple features of arthritis including synovitis, bone marrow lesions, erosions, cartilage changes, and tendinopathy. Careful choice of the imaging parameters allows images to be generated with optimal quality while minimizing unwanted artifacts. Finally, there are many novel MRI techniques that can quantify disease levels in arthritis in tissues including synovitis and cartilage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Amyloid precursor protein modulates macrophage phenotype and diet-dependent weight gain
Puig, Kendra L.; Brose, Stephen A.; Zhou, Xudong; Sens, Mary A.; Combs, Gerald F.; Jensen, Michael D.; Golovko, Mikhail Y.; Combs, Colin K.
2017-01-01
It is well known that mutations in the gene coding for amyloid precursor protein are responsible for autosomal dominant forms of Alzheimer’s disease. Proteolytic processing of the protein leads to a number of metabolites including the amyloid beta peptide. Although brain amyloid precursor protein expression and amyloid beta production are associated with the pathophysiology of Alzheimer’s disease, it is clear that amyloid precursor protein is expressed in numerous cell types and tissues. Here we demonstrate that amyloid precursor protein is involved in regulating the phenotype of both adipocytes and peripheral macrophages and is required for high fat diet-dependent weight gain in mice. These data suggest that functions of this protein include modulation of the peripheral immune system and lipid metabolism. This biology may have relevance not only to the pathophysiology of Alzheimer’s disease but also diet-associated obesity. PMID:28262782
Ida, Tori; Hashimoto, Shigeo; Suzuki, Nobuaki; Ebe, Yusuke; Yano, Toshio; Sato, Naoko; Koike, Tadashi
2016-01-01
A 52-year-old male was diagnosed as having acute promyelocytic leukemia (APL) in 2006. He received induction chemotherapy including all-trans retinoic acid and initially achieved a complete remission (CR). After several courses of consolidation therapy combining anthracyclines and cytarabine, he maintained CR. In 2009, an APL relapse was diagnosed, and he was treated with arsenic trioxide. Since he achieved a second CR, he underwent autologous peripheral blood stem cell transplantation (auto-PBSCT) with a conditioning regimen consisting of busulfan and melphalan. At four months after auto-PBSCT, he developed a pneumothorax and acute respiratory failure. He died despite intensive therapy. Autopsy findings included various atypical and apoptotic cells in his pulmonary tissue. These changes were confirmed in multiple organs throughout the body, suggesting them to be drug-induced. The findings in this case suggested multiple organ failure due to alkylating agents.
Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis
Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin
2012-01-01
The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960
Low grade malignant peripheral nerve sheath tumour: varied cytological and histological patterns
Yamaguchi, U; Hasegawa, T; Hirose, T; Chuman, H; Kawai, A; Ito, Y; Beppu, Y
2003-01-01
Background: A small number of malignant peripheral nerve sheath tumours (MPNSTs) are low grade, and the nature of these low grade tumours has never been systematically assessed. Aims: To describe the clinicopathological, immunohistochemical, and ultrastructural features of low grade MPNST and to discuss the main differential diagnoses. Methods: Four cases of low grade MPNST were studied, including one coexistent with neurofibromatosis type 1. The tumours were analysed with respect to nuclear atypia, cellularity, nuclear enlargement, hyperchromasia, mitotic rate, and necrosis. Immunohistochemistry was performed by standard techniques, and an ultrastructural study was performed on one tumour. Results: The ages of the patients ranged from 32 to 72 years (mean, 58). Two were male and two were female. Three tumours occurred in the deep tissue, including one in the retroperitoneum, and one was located in the dermal and subcutaneous tissue. The maximum diameters of the tumours ranged from 3.5 to 8.0 cm. Microscopically, all tumours showed moderate hypercellularity, an increased nuclear to cytoplasmic ratio, and hyperchromasia, but exhibited varied growth patterns, including those that were atypical neurofibroma-like, low grade fibromyxoid sarcoma-like, low grade epithelioid, and haemangiopericytoma-like. All tumours showed immunoreactivity for S-100 protein and vimentin. Conclusions: These findings suggest that careful clinical and histological evaluation, along with S-100 protein immunostaining, are essential for the accurate diagnosis of low grade MPNST. PMID:14600126
Transcriptional oscillation of canonical clock genes in mouse peripheral tissues
Yamamoto, Takuro; Nakahata, Yasukazu; Soma, Haruhiko; Akashi, Makoto; Mamine, Takayoshi; Takumi, Toru
2004-01-01
Background The circadian rhythm of about 24 hours is a fundamental physiological function observed in almost all organisms from prokaryotes to humans. Identification of clock genes has allowed us to study the molecular bases for circadian behaviors and temporal physiological processes such as hormonal secretion, and has prompted the idea that molecular clocks reside not only in a central pacemaker, the suprachiasmatic nuclei (SCN) of hypothalamus in mammals, but also in peripheral tissues, even in immortalized cells. Furthermore, previous molecular dissection revealed that the mechanism of circadian oscillation at a molecular level is based on transcriptional regulation of clock and clock-controlled genes. Results We systematically analyzed the mRNA expression of clock and clock-controlled genes in mouse peripheral tissues. Eight genes (mBmal1, mNpas2, mRev-erbα, mDbp, mRev-erbβ, mPer3, mPer1 and mPer2; given in the temporal order of the rhythm peak) showed robust circadian expressions of mRNAs in all tissues except testis, suggesting that these genes are core molecules of the molecular biological clock. The bioinformatics analysis revealed that these genes have one or a combination of 3 transcriptional elements (RORE, DBPE, and E-box), which are conserved among human, mouse, and rat genome sequences, and indicated that these 3 elements may be responsible for the biological timing of expression of canonical clock genes. Conclusions The observation of oscillatory profiles of canonical clock genes is not only useful for physiological and pathological examination of the circadian clock in various organs but also important for systematic understanding of transcriptional regulation on a genome-wide basis. Our finding of the oscillatory expression of canonical clock genes with a temporal order provides us an interesting hypothesis, that cyclic timing of all clock and clock-controlled genes may be dependent on several transcriptional elements including 3 known elements, E-box, RORE, and DBPE. PMID:15473909
Peripheral artery disease - legs
... flow, which can injure nerves and other tissues. Causes PAD is caused by "hardening of the arteries." ... small arteries Coronary artery disease Impotence Open sores (ischemic ulcers on the lower legs) Tissue death (gangrene) ...
Hua, Susan; Cabot, Peter J
2013-01-01
The peripheral immune-derived opioid analgesic pathway has been well established as a novel target in the clinical pain management of a number of painful pathologies, including acute inflammatory pain, neuropathic pain, and rheumatoid arthritis. Our objective was to engineer targeted nanoparticles that mimic immune cells in peripheral pain control to deliver opioids, in particular loperamide HCl, specifically to peripheral opioid receptors to induce analgesic and anti-inflammatory actions for use in painful inflammatory conditions. This peripheral analgesic system is devoid of central opioid mediated side effects (e.g., respiratory depression, sedation, dependence, tolerance). A randomized, double blind, controlled animal trial. Thirty-six adult male Wistar rats (200 - 250 g) were randomly divided into 6 groups: loperamide HCl-encapsulated anti-ICAM-1 immunoliposomes, naloxone methiodide + loperamide HCl-encapsulated anti-ICAM-1 immunoliposomes, loperamide HCl-encapsulated liposomes, empty anti-ICAM-1 immunoliposomes, empty liposomes, and loperamide solution. Animals received an intraplantar injection of 150 μL Complete Freund's Adjuvant (CFA) into the right hindpaw and experiments were performed 5 days post-CFA injection, which corresponded to the peak inflammatory response. All formulations were administered intravenously via tail vein injection. The dose administered was 200 μL, which equated to 0.8 mg of loperamide HCl for the loperamide HCl treatment groups (sub-therapeutic dose). Naloxone methiodide (1 mg/kg) was administered via intraplantar injection, 15 minutes prior to loperamide-encapsulated anti-ICAM-1 immunoliposomes. An investigator blinded to the treatment administered assessed the time course of the antinociceptive and anti-inflammatory effects using a paw pressure analgesiometer and plethysmometer, respectively. Biodistribution studies were performed 5 days post-CFA injection with anti-ICAM-1 immunoliposomes and control liposomes via tail vein injection using liquid scintillation counting (LSC). Administration of liposomes loaded with loperamide HCl, and conjugated with antibody to intercellular adhesion molecule-1 (anti-ICAM-1), exerted analgesic and anti-inflammatory effects exclusively in peripheral painful inflamed tissue. These targeted nanoparticles produced highly significant analgesic and anti-inflammatory effects over the 48 hour time course studied following intravenous administration in rats with Complete Freund's Adjuvant-induced inflammation of the paw. All control groups showed no significant antinociceptive or anti-inflammatory effects. Our biodistribution study demonstrated specific localization of the targeted nanoparticles to peripheral inflammatory tissue and no significant uptake into the brain. In vivo studies were performed in the well-established rodent model of acute inflammatory pain. We are currently studying this approach in chronic pain models known to have clinical activation of the peripheral immune-derived opioid response. The study presents a novel approach of opioid delivery specifically to injured tissues for pain control. The study also highlights a novel anti-inflammatory role for peripheral opioid targeting, which is of clinical relevance. The potential also exists for the modification of these targeted nanoparticles with other therapeutic compounds for use in other painful conditions.
A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.
Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin
2015-10-28
Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jing; Tian, Lingling; He, Liumin; Chen, Nuan; Ramakrishna, Seeram; So, Kwok-Fai; Mo, Xiumei
2018-06-06
Nerve regeneration is a serious clinical challenge following peripheral nerve injury. Lycium barbarum polysaccharide (LBP) is the major component of wolfberry extract, which has been shown to be neuroprotective and promising in nerve recovery in many studies. Electrospun nanofibers, especially core-shell structured nanofibers being capable of serving as both drug delivery system and tissue engineering scaffolds, are well known to be suitable scaffolds for regeneration of peripheral nerve applications. In this study, LBP was incorporated into core-shell structured nanofibrous scaffolds via coaxial electrospinning. Alamar blue assays were performed to investigate the proliferation of both PC12 and Schwann cells cultured on the scaffolds. The neuronal differentiation of PC12 cells was evaluated by NF200 expression with immunostaining and morphology changes observed by SEM. The results indicated that the released LBP dramatically enhanced both proliferation and neuronal differentiation of PC12 cells induced by NGF. Additionally, the promotion of Schwann cells myelination and neurite outgrowth of DRG neurons were also observed on LBP loaded scaffolds by LSCM with immunostaining. In summary, LBP, as a drug with neuroprotection, encapsulated into electrospun nanofibers could be a potential candidate as tissue engineered scaffold for peripheral nerve regeneration.
Physiological and Therapeutic Vascular Remodeling Mediated by Hypoxia-Inducible Factor 1
NASA Astrophysics Data System (ADS)
Sarkar, Kakali; Semenza, Gregg L.
Angiogenesis along with arteriogenesis and vasculogenesis is a fundamental process in ischemic repair in adult animals including humans. Hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating adaptive responses to hypoxia/ischemia by expressing angiogenic cytokines/growth factors and their cognate receptors. Angiogenic growth factors are the homing signal for circulating angiogenic cells (CACs), which are mobilized to peripheral blood from bone marrow, recruited to target tissues, and promote vascularization. Impairment of HIF-1-mediated gene transcription contributes to the impaired vascular responses in peripheral vascular disease that are associated with aging and diabetes. Promoting neovascularization in ischemic tissues is a promising strategy for the treatment of peripheral vascular disease when surgical or catheter-based revascularization is not possible. Intramuscular injection of an adenovirus encoding a constitutively active form of HIF-1α (AdCA5), into the ischemic limb of diabetic mice increases the recovery of limb perfusion and function, rescues the diabetes-associated impairment of CACs, and increases vascularization. Administration of AdCA5 overcomes the effect of aging on recovery of blood flow in middle-aged mice following femoral artery ligation in a mouse model of age-dependent critical limb ischemia. Intramuscular injection of AdCA5 along with intravenous injection of bone-marrow-derived angiogenic cells cultured in the presence of prolyl-4-hydroxylase inhibitor dimethyloxalylglycine, increases blood flow and limb salvage in old mice following femoral artery ligation. HIF-1α gene therapy increases homing of bone-marrow-derived cells, whereas induction of HIF-1 in these cells increases their retention in the ischemic tissue by increasing their adhesion to endothelium leading to synergistic effects of combined therapy on improving blood flow.
Combining Gene and Stem Cell Therapy for Peripheral Nerve Tissue Engineering.
Busuttil, Francesca; Rahim, Ahad A; Phillips, James B
2017-02-15
Despite a substantially increased understanding of neuropathophysiology, insufficient functional recovery after peripheral nerve injury remains a significant clinical challenge. Nerve regeneration following injury is dependent on Schwann cells, the supporting cells in the peripheral nervous system. Following nerve injury, Schwann cells adopt a proregenerative phenotype, which supports and guides regenerating nerves. However, this phenotype may not persist long enough to ensure functional recovery. Tissue-engineered nerve repair devices containing therapeutic cells that maintain the appropriate phenotype may help enhance nerve regeneration. The combination of gene and cell therapy is an emerging experimental strategy that seeks to provide the optimal environment for axonal regeneration and reestablishment of functional circuits. This review aims to summarize current preclinical evidence with potential for future translation from bench to bedside.
RAGE regulates the metabolic and inflammatory response to high-fat feeding in mice.
Song, Fei; Hurtado del Pozo, Carmen; Rosario, Rosa; Zou, Yu Shan; Ananthakrishnan, Radha; Xu, Xiaoyuan; Patel, Payal R; Benoit, Vivian M; Yan, Shi Fang; Li, Huilin; Friedman, Richard A; Kim, Jason K; Ramasamy, Ravichandran; Ferrante, Anthony W; Schmidt, Ann Marie
2014-06-01
In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes. We studied the function of the receptor for advanced glycation end products (RAGE) in the development of phenotypes associated with high-fat feeding in mice. RAGE is highly expressed on immune cells, including macrophages. We found that high-fat feeding induced expression of RAGE ligand HMGB1 and carboxymethyllysine-advanced glycation end product epitopes in liver and adipose tissue. Genetic deficiency of RAGE prevented the effects of HFD on energy expenditure, weight gain, adipose tissue inflammation, and insulin resistance. RAGE deficiency had no effect on genetic forms of obesity caused by impaired melanocortin signaling. Hematopoietic deficiency of RAGE or treatment with soluble RAGE partially protected against peripheral HFD-induced inflammation and weight gain. These findings demonstrate that high-fat feeding induces peripheral inflammation and weight gain in a RAGE-dependent manner, providing a foothold in the pathways that regulate diet-induced obesity and offering the potential for therapeutic intervention. © 2014 by the American Diabetes Association.
Disturbance of microcirculation due to unhealthy lifestyle: Cause of type 2 diabetes.
Matsumoto, Yukihiro; Ohno, Hideki; Noguchi, Izumi; Kikuchi, Yuji; Kurihara, Takeshi
2006-01-01
Recently, type 2 diabetes seems to be increasing annually in all developed countries. The outcome of type 2 diabetes is often tragic due to succession of complications including renal disorders requiring hemodialysis, blindness, and limb amputation. The expenses for the care of diabetic patients are also a large burden on the society. These circumstances strongly indicate the necessity of prevention. For satisfactory prevention, the clarification of the etiology related to lifestyle is important, but it remains insufficient to date. In this paper, we present a hypothesis of the etiology of type 2 diabetes from the viewpoint of microcirculation. As mentioned later, an unhealthy lifestyle first causes disturbance of the microcirculation, and a portion of the blood is considered to bypass the capillaries via arteriovenous shunts. This prevents the delivery of glucose and insulin to cells of peripheral tissues, causing hyperglycemia unrelated to the cell insulin sensitivity or the endocrine state, i.e., apparent reduction of insulin sensitivity. Disturbance of the microcirculation also causes oxidative stress in peripheral tissues by inducing ischemia and hypoxia. This oxidative stress is considered to further exacerbate reduction of insulin sensitivity. This hypothesis is supported by the well-known fact that insulin sensitivity recovers with improvement in lifestyle including moderate exercise.
[Leptin: aspects on energetic balance, physical exercise and athletic amenorhea].
Ribeiro, Sandra Maria Lima; dos Santos, Zirlene Adriana; da Silva, Renata Juliana; Louzada, Eliana; Donato, José; Tirapegui, Julio
2007-02-01
The aim of this manuscript was to review the knowledge about leptin, detailing its relationship with energetic intake and physical activity. Leptin is an adipocyte hormone, recognized mainly for its putative role in control of energy expenditure, food intake, body weight and reproductive function. Leptin has still important peripheral actions, including its role on the ovarian tissue. The intracellular signaling mechanisms are recognized in hypothalamus, but in peripheral tissue are not fully understood. The exercise, when practiced by women, if not appropriately planned according to food intake, can modify the leptin release. When energy imbalances induced by exercise and/or deficient food ingestion occurs, low leptin levels are observed, leading to a reduction in GnRH (gonadotropin-release hormone), in LH (luteinizing hormone) and FSH (follicle-stimulating hormone) in pituitary, and consequently a minor release of ovarian estrogens. This process is named hypothalamic amenorrhea, and has repercussions in the woman's health. In this perspective, it is important to emphasize the need to evaluate the energy expenditure from exercise and to formulate adequate alimentary plans to these individuals.
Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration
Fiorellini, Joseph P.
2017-01-01
Background For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Methods In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusions Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits. PMID:29090249
Owman, C; Blay, P; Nilsson, C; Lolait, S J
1996-11-12
Using PCR with degenerate primers and screening of a human B-cell lymphoblast cDNA library, a full-length cDNA encoding a 375-amino-acid protein was isolated. It contains seven regions of hydrophobic amino acids probably representing membrane-spanning domains of a novel heptahelix receptor, tentatively named CMKRL2. It shows nearly 30% overall identity with the high-affinity IL8 receptor and similar degree of homology with other chemoattractant receptors, including the "fusin" coreceptors for HIV1. Measurements of various transduction pathways following application of a panel of chemokines to transfected cells failed to evoke any reproducible response. Although the natural ligand for CMKRL2 could, thus, not be identified, receptor expression in spleen and lymph nodes as well as in Burkitt's lymphoma (irrespective of EBV status) supports a functional role in activated B-cells. Receptor message was ubiquitously distributed in normal peripheral tissues and CNS, suggesting that CMKRL2 is expressed in widespread cell populations, such as macrophages and neuroglia.
Kunos, George; Tam, Joseph
2011-08-01
In this review, we consider the role of endocannabinoids and cannabinoid-1 (CB(1)) cannabinoid receptors in metabolic regulation and as mediators of the thrifty phenotype that underlies the metabolic syndrome. We survey the actions of endocannabinoids on food intake and body weight, as well as on the metabolic complications of visceral obesity, including fatty liver, insulin resistance and dyslipidemias. Special emphasis is placed on weighing the relative importance of CB(1) receptors located in peripheral tissues versus the central nervous system in mediating the metabolic effects of endocannabinoids. Finally, we review recent observations that indicate that peripherally restricted CB(1) receptor antagonists retain efficacy in reducing weight and improving metabolic abnormalities in mouse models of obesity without causing behavioural effects predictive of neuropsychiatric side effects in humans. British Journal of Pharmacology © 2011 The British Pharmacological Society. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.
Transdermal optogenetic peripheral nerve stimulation
NASA Astrophysics Data System (ADS)
Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.
2017-06-01
Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.
Meltzer, Andrew J; Graham, Ashley; Connolly, Peter H; Karwowski, John K; Bush, Harry L; Frazier, Peter I; Schneider, Darren B
2013-01-01
We apply an innovative and novel analytic approach, based on reliability engineering (RE) principles frequently used to characterize the behavior of manufactured products, to examine outcomes after peripheral endovascular intervention. We hypothesized that this would allow for improved prediction of outcome after peripheral endovascular intervention, specifically with regard to identification of risk factors for early failure. Patients undergoing infrainguinal endovascular intervention for chronic lower-extremity ischemia from 2005 to 2010 were identified in a prospectively maintained database. The primary outcome of failure was defined as patency loss detected by duplex ultrasonography, with or without clinical failure. Analysis included univariate and multivariate Cox regression models, as well as RE-based analysis including product life-cycle models and Weibull failure plots. Early failures were distinguished using the RE principle of "basic rating life," and multivariate models identified independent risk factors for early failure. From 2005 to 2010, 434 primary endovascular peripheral interventions were performed for claudication (51.8%), rest pain (16.8%), or tissue loss (31.3%). Fifty-five percent of patients were aged ≥75 years; 57% were men. Failure was noted after 159 (36.6%) interventions during a mean follow-up of 18 months (range, 0-71 months). Using multivariate (Cox) regression analysis, rest pain and tissue loss were independent predictors of patency loss, with hazard ratios of 2.5 (95% confidence interval, 1.6-4.1; P < 0.001) and 3.2 (95% confidence interval, 2.0-5.2, P < 0.001), respectively. The distribution of failure times for both claudication and critical limb ischemia fit distinct Weibull plots, with different characteristics: interventions for claudication demonstrated an increasing failure rate (β = 1.22, θ = 13.46, mean time to failure = 12.603 months, index of fit = 0.99037, R(2) = 0.98084), whereas interventions for critical limb ischemia demonstrated a decreasing failure rate, suggesting the predominance of early failures (β = 0.7395, θ = 6.8, mean time to failure = 8.2, index of fit = 0.99391, R(2) = 0.98786). By 3.1 months, 10% of interventions failed. This point (90% reliability) was identified as the basic rating life. Using multivariate analysis of failure data, independent predictors of early failure (before 3.1 months) included tissue loss, long lesion length, chronic total occlusions, heart failure, and end-stage renal disease. Application of a RE framework to the assessment of clinical outcomes after peripheral interventions is feasible, and potentially more informative than traditional techniques. Conceptualization of interventions as "products" permits application of product life-cycle models that allow for empiric definition of "early failure" may facilitate comparative effectiveness analysis and enable the development of individualized surveillance programs after endovascular interventions. Copyright © 2013 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.
Buddula, Aravind; Assad, Daniel
2011-01-01
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults and is associated with increased risk of malignancy. T-cell lymphoma associated with CLL has never been reported. The case report presents a unique case of peripheral T-cell lymphoma on the gingiva of a patient with CLL. A 66-year-old man with a history of CLL was referred to the Mayo Clinic, Department of Dental Specialties, for evaluation of swelling in the upper left posterior sextant. An intraoral examination revealed a soft tissue swelling in the area of teeth number 13 and 15, including the present edentulous ridge between number 13 and 15. An incisional biopsy was performed on the palatal aspect of tooth No. 15 and submitted for histologic evaluation. The histopathology revealed proliferation of large atypical cells beneath the epithelium, positive for antigens CD2, CD3, Beta-F1, TIA-1, and Granzyme B consistent for a diagnosis of a peripheral T-cell lymphoma. A team approach including the hematologist, general dentist and periodontist resulted in timely referrals leading to an early diagnosis and early intervention and treatment.
NASA Astrophysics Data System (ADS)
Tanaka, Noriyuki; Nishidate, Izumi; Nakano, Kazuya; Aizu, Yoshihisa; Niizeki, Kyuichi
2016-04-01
We investigated a method to evaluate the arterial inflow and the venous capacitance in the skin tissue of streptozotocin-induced type 1 diabetic rats from RGB digital color images. The arterial inflow and the venous capacitance in the dorsal reversed McFarlane skin flap are calculated based on the responses of change in the total blood concentration to occlusion of blood flow to and from the flap tissues at a pressure of 50 mmHg. The arterial inflow and the venous capacitance in the skin flap tissue were significantly reduced in type 1 diabetic rat group compared with the non-diabetic rat group. The results of the present study indicate the possibility of using the proposed method for evaluating the peripheral vascular dysfunctions in diabetes mellitus.
Sellier, Pierre; Mannioui, Abdelkrim; Bourry, Olivier; Dereuddre-Bosquet, Nathalie; Delache, Benoit; Brochard, Patricia; Calvo, Julien; Prévot, Sophie; Roques, Pierre
2010-05-11
The time of infection is rarely known in human cases; thus, the effects of delaying the initiation of antiretroviral therapy (ART) on the peripheral viral load and the establishment of viral reservoirs are poorly understood. Six groups of macaques, infected intravenously with SIV(mac251), were given placebo or antiretroviral therapy to explore reservoir establishment; macaques were treated for 2 weeks, with treatment starting 4 hours, 7 or 14 days after infection. Viral replication and dissemination were measured in the gut (rectum), in the lung and in blood and lymphoid tissues (peripheral lymph nodes), by quantifying viral RNA, DNA and 2LTR circles. We used immunohistochemistry (CD4 and CD68) to assess the impact of these treatments on the relative amount of virus target cells in tissue. Treatment that was started 4 hours post-infection (pi) decreased viral replication and dissemination in blood and tissue samples, which were assessed on day 14 (RNA/DNA/2LTR circles). The virus remained detectable and lymphoid tissues were activated in LN and the gut in both placebo- and ART-treated animals. Viral RNA in plasma continued to be lower in macaques treated seven days after infection; however, this was not the case for viral DNA in peripheral blood mononuclear cells. There was a small but significant difference in RNA and DNA levels in tissues between placebo- and ART-treated animals on day 21. When started 14 days after infection, treatment resulted in a limited decrease in the plasma viral load. Treatment that was started 4 hours after infection significantly reduced viral replication and dissemination. When started 7 days after infection, it was of slight virological benefit in peripheral blood and in tissues, and treatment was even less effective if started 14 days pi. These data favor starting ART no longer than one week after intravenous SIV(mac251) exposure.
Zhang, C; McFarlane, C; Lokireddy, S; Masuda, S; Ge, X; Gluckman, P D; Sharma, M; Kambadur, R
2012-01-01
Although myostatin-null (Mstn (-/-)) mice fail to accumulate fat in adipose tissue when fed a high-fat diet (HFD), little is known about the molecular mechanism(s) behind this phenomenon. We therefore sought to identify the signalling pathways through which myostatin regulates accumulation and/or utilisation of fat. Wild-type, Mstn (-/-) and wild-type mice treated with soluble activin type IIB receptor (sActRIIB) were fed a control chow diet or an HFD for 12 weeks. Changes in gene expression were measured by microarray and quantitative PCR. Histological changes in white adipose tissue were assessed together with peripheral tissue fatty acid oxidation and changes in circulating hormones following HFD feeding. Our results demonstrate that inactivation of myostatin results in reduced fat accumulation in mice on an HFD. Molecular analysis revealed that metabolic benefits, due to lack of myostatin, are mediated through at least two independent mechanisms. First, lack of myostatin increased fatty acid oxidation in peripheral tissues through induction of enzymes involved in lipolysis and in fatty acid oxidation in mitochondria. Second, inactivation of myostatin also enhanced brown adipose formation in white adipose tissue of Mstn (-/-) mice. Consistent with the above, treatment of HFD-fed wild-type mice with the myostatin antagonist, sActRIIB, reduced the obesity phenotype. We conclude that absence of myostatin results in enhanced peripheral tissue fatty acid oxidation and increased thermogenesis, culminating in increased fat utilisation and reduced adipose tissue mass. Taken together, our data suggest that anti-myostatin therapeutics could be beneficial in alleviating obesity.
Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism.
Park, Hyeong-Kyu; Ahima, Rexford S
2015-01-01
Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of whirling disease on selected hematological parameters in rainbow trout
Densmore, Christine L.; Blazer, V.S.; Waldrop, T.B.; Pooler, P.S.
2001-01-01
Hematological responses to whirling disease in rainbow trout (Oncorhynchus mykiss) were investigated. Two-mo-old fingerling rainbow trout were exposed to cultured triactinomyxon spores of Myxobolus cerebralis at 9,000 spores/fish in December, 1997. Twenty-four wks post-exposure, fish were taken from infected and uninfected groups for peripheral blood and cranial tissue sampling. Histological observations on cranial tissues confirmed M. cerebralis infection in all exposed fish. Differences in hematological parameters between the two groups included significantly lower total leukocyte and small lymphocyte counts for the infected fish. No effects on hematocrit, plasma protein concentration, or other differential leukocyte counts were noted.
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2010 CFR
2010-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
Neuronal deletion of ghrelin receptor almost completely prevents diet-induced obesity
USDA-ARS?s Scientific Manuscript database
Ghrelin signaling has major effects on energy- and glucose-homeostasis, but it is unknown whether ghrelin's functions are centrally and/or peripherally mediated. The ghrelin receptor, Growth Hormone Secretagogue Receptor (GHS-R), is highly expressed in brain and detectable in some peripheral tissues...
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2011 CFR
2011-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2014 CFR
2014-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2013 CFR
2013-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2012 CFR
2012-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
Jin, Cheng S.; Wada, Hironobu; Anayama, Takashi; McVeigh, Patrick Z; Hu, Hsin Pei; Hirohashi, Kentaro; Nakajima, Takahiro; Kato, Tatsuya; Keshavjee, Shaf; Hwang, David; Wilson, Brian C.; Zheng, Gang; Yasufuku, Kazuhiro
2016-01-01
Early detection and efficient treatment modality of early-stage peripheral lung cancer is essential. Current non-surgical treatments for peripheral lung cancer show critical limitations associated with various complications, requiring alternative minimally invasive therapeutics. Porphysome nanoparticle-enabled fluorescence-guided transbronchial photothermal therapy (PTT) of peripheral lung cancer was developed and demonstrated in preclinical animal models. Systemically-administered porphysomes accumulated in lung tumors with significantly enhanced disease-to-normal tissue contrast, as confirmed in three subtypes of orthotopic human lung cancer xenografts (A549, H460 and H520) in mice and in an orthotopic VX2 tumor in rabbits. An in-house prototype fluorescence bronchoscope demonstrated the capability of porphysomes for in vivo imaging of lung tumors in the mucosal/submucosal layers, providing real-time fluorescence guidance for transbronchial PTT. Porphysomes also enhanced the efficacy of transbronchial PTT significantly and resulted in selective and efficient tumor tissue ablation in the rabbit model. A clinically used cylindrical diffuser fiber successfully achieved tumor-specific thermal ablation, showing promising evidence for the clinical translation of this novel platform to impact upon non-surgical treatment of early-stage peripheral lung cancer. PMID:27543602
Zekonis, Gediminas; Zekonis, Jonas
2004-01-01
The aim of the present investigation was to explore the oxidative activity of peripheral blood polymorphonuclear neutrophils of periodontitis patients and of healthy subjects stimulated with non-opsonized E. coli and lipopolysaccharide of E. coli. The leukocytes for this study were obtained from peripheral venous blood of 22 parodontitis patients and 16 healthy subjects. Oxidative activity of peripheral blood polymorphonuclear neutrophils was measured by method of the luminol-dependent chemiluminescence. The luminol-dependent chemiluminescence of stimulated neutrophils of periodontitis patients with non-opsonized E. coli increased less significantly (p<0.001) as compared to analogous chemiluminescence of control subjects (147126+/-8386 cpm and 189247+/-9134 cpm, respectively). However, the luminol-dependent chemiluminescence of stimulated neutrophils of periodontitis patients with lipopolysaccharide was five times higher than that of the subjects with intact periodontal tissues and comprised 13261+/-1251 cpm and 2627+/-638 cpm, respectively. Our study results show a complex dependence of oxidative function of peripheral polymorphonuclear neutrophils of periodontitis patients upon the nature of stimulants. Therefore further attempts should be made to evaluate its significance in the etiopathogenesis of periodontal tissue diseases of inflammatory origin.
DNA methylation age is elevated in breast tissue of healthy women.
Sehl, Mary E; Henry, Jill E; Storniolo, Anna Maria; Ganz, Patricia A; Horvath, Steve
2017-07-01
Limited evidence suggests that female breast tissue ages faster than other parts of the body according to an epigenetic biomarker of aging known as the "epigenetic clock." However, it is unknown whether breast tissue samples from healthy women show a similar accelerated aging effect relative to other tissues, and what could drive this acceleration. The goal of this study is to validate our initial finding of advanced DNA methylation (DNAm) age in breast tissue, by directly comparing it to that of peripheral blood tissue from the same individuals, and to do a preliminary assessment of hormonal factors that could explain the difference. We utilized n = 80 breast and 80 matching blood tissue samples collected from 40 healthy female participants of the Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center who donated these samples at two time points spaced at least a year apart. DNA methylation levels (Illumina 450K platform) were used to estimate the DNAm age. DNAm age was highly correlated with chronological age in both peripheral blood (r = 0.94, p < 0.0001) and breast tissues (r = 0.86, p < 0.0001). A measure of epigenetic age acceleration (age-adjusted DNAm Age) was substantially increased in breast relative to peripheral blood tissue (p = 1.6 × 10 -11 ). The difference between DNAm age of breast and blood decreased with advancing chronologic age (r = -0.53, p = 4.4 × 10 -4 ). Our data clearly demonstrate that female breast tissue has a higher epigenetic age than blood collected from the same subject. We also observe that the degree of elevation in breast diminishes with advancing age. Future larger studies will be needed to examine associations between epigenetic age acceleration and cumulative hormone exposure.
Kondo, Akihiro; Nishizawa, Yuji; Ito, Masaaki; Saito, Norio; Fujii, Satoshi; Akamoto, Shintaro; Fujiwara, Masao; Okano, Keiichi; Suzuki, Yasuyuki
2016-08-01
The aim of the study was to assess the relationship between tissue tension and thermal diffusion to peripheral tissues using an electric scalpel, ultrasonically activated device, or a bipolar sealing system. The mesentery of pigs was excised with each energy device (ED) at three tissue tensions (0, 300, 600 g). The excision time and thermal diffusion area were monitored with thermography, measured for each ED, and then histologically examined. Correlations between tissue tension and thermal diffusion area were examined. The excision time was inversely correlated with tissue tension for all ED (electric scalpel, r = 0.718; ultrasonically activated device, r = 0.949; bipolar sealing system, r = 0.843), and tissue tension was inversely correlated with the thermal diffusion area with the electric scalpel (r = 0.718) and bipolar sealing system (r = 0.869). Histopathologically, limited deep thermal denaturation occurred at a tension of 600 g with all ED. We conclude that thermal damage can be avoided with adequate tissue tension when any ED is used. © 2016 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.
Nagy, J I; Lynn, B D; Senecal, J M M; Stecina, K
2018-05-07
Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
O'Donnell, Sean; Clifford, Marie R; DeLeon, Sara; Papa, Christopher; Zahedi, Nazaneen; Bulova, Susan J
2013-01-01
The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume. © 2013 S. Karger AG, Basel.
Lama, Javier R; Karuna, Shelly T; Grant, Shannon P; Swann, Edith M; Ganoza, Carmela; Segura, Patricia; Montano, Silvia M; Lacherre, Martin; De Rosa, Stephen C; Buchbinder, Susan; Sanchez, Jorge; McElrath, M Juliana; Lemos, Maria P
2016-01-01
Rectal and genital sampling in HIV prevention trials permits assessments at the site of HIV entry. Yet the safety and acceptability of circumcision and sigmoidoscopy (and associated abstinence recommendations) are unknown in uncircumcised men who have sex with men (MSM) at high risk of HIV infection. Twenty-nine HIV-seronegative high-risk Peruvian MSM agreed to elective sigmoidoscopy biopsy collections (weeks 2 and 27) and circumcision (week 4) in a 28-week cohort study designed to mimic an HIV vaccine study mucosal collection protocol. We monitored adherence to abstinence recommendations, procedure-related complications, HIV infections, peripheral immune activation, and retention. Twenty-three (79.3%) underwent a first sigmoidoscopy, 21 (72.4%) were circumcised, and 16 (55.2%) completed a second sigmoidoscopy during the study period. All who underwent procedures completed the associated follow-up safety visits. Those completing the procedures reported they were well tolerated, and complication rates were similar to those reported in the literature. Immune activation was detected during the healing period (1 week post-sigmoidoscopy, 6 weeks post-circumcision), including increases in CCR5+CD4+T cells and α4β7+CD4+T cells. Most participants adhered to post-circumcision abstinence recommendations whereas reduced adherence occurred post-sigmoidoscopy. Rectosigmoid mucosal and genital tissue collections were safe in high-risk MSM. Although the clinical implications of the post-procedure increase in peripheral immune activation markers are unknown, they reinforce the need to provide ongoing risk reduction counseling and support for post-procedure abstinence recommendations. Future HIV vaccine studies should also consider the effects of mucosal and tissue collections on peripheral blood endpoints in trial design and analysis. ClinicalTrials.gov NCT02630082.
Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian
2015-09-01
Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.
Modi, Meera E; Majchrzak, Mark J; Fonseca, Kari R; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L; Kablaoui, Natasha M
2016-08-01
Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non-brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. Copyright © 2016 The Author(s).
Otsuka, Tsuyoshi; Kawai, Misato; Togo, Yuki; Goda, Ryosei; Kawase, Takahiro; Matsuo, Haruka; Iwamoto, Ayaka; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu
2014-02-01
Seasonal affective disorder (SAD) is characterized by depression during specific seasons, generally winter. The pathophysiological mechanisms underlying SAD remain elusive due to a limited number of animal models with high availability and validity. Here we show that laboratory C57BL/6J mice display photoperiodic changes in depression-like behavior and brain serotonin content. C57BL/6J mice maintained under short-day conditions, as compared to those under long-day conditions, demonstrated prolonged immobility times in the forced swimming test with lower brain levels of serotonin and its precursor l-tryptophan. Furthermore, photoperiod altered multiple parameters reflective of peripheral metabolism, including the ratio of plasma l-tryptophan to the sum of other large neutral amino acids that compete for transport across the blood-brain barrier, responses of circulating glucose and insulin to glucose load, sucrose intake under restricted feeding condition, and sensitivity of the brain serotonergic system to peripherally administered glucose. These data suggest that the mechanisms underlying SAD involve the brain-peripheral tissue network, and C57BL/6J mice can serve as a powerful tool for investigating the link between seasons and mood. Copyright © 2013 Elsevier Ltd. All rights reserved.
Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology
Grässel, Susanne; Muschter, Dominique
2017-01-01
The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features. PMID:28452955
Ickrath, Pascal; Kleinsasser, Norbert; Ding, Xin; Ginzkey, Christian; Beyersdorf, Niklas; Hagen, Rudolf; Kerkau, Thomas; Hackenberg, Stephan
2018-08-01
In patients with chronic rhinosinusitis with nasal polyps (CRSwNP), a relative accumulation of cluster of differentiation (CD)8+ T cells over CD4+ T cells occurs in nasal polyps compared with the peripheral blood. Nasal CD8+ T cells and CD4+ T cells predominantly present an effector memory phenotype. Immunological studies have reported that memory T cells recirculate from the tissues to the peripheral blood and a high percentage of these T cells persist within the tissue. The aim of the present study was to characterize CD69+ sphingosine‑1‑phosphate receptor 1 (S1PR1)‑ tissue resident memory T cells (Trm) in the polyps of patients with CRSwNP. Tissue and blood samples were collected from 10 patients undergoing nasal sinus surgery. Expression of specific extra‑ and intracellular molecules were analyzed using multicolor flow cytometry. A significantly higher level of CD8+ T cells than CD4+ T cells was present in nasal polyps, while significantly more CD4+ T cells than CD8+ T cells were detected in the peripheral blood of patients with CRSwNP. The frequency of CD69+ T cells was significantly higher in CD8+ and CD4+ T cells in nasal polyps compared with the peripheral blood. The frequency of CD69+ S1PR1‑ Trm was also significantly higher in CD4+ and CD8+ T cells from nasal polyps compared with the peripheral blood. Within polyps, the frequency of CD69+ S1PR1‑ Trm was again significantly higher in CD8+ compared with CD4+ T cells. In summary, a significantly higher frequency of CD69+ S1PR1‑ T cells was observed in the nasal polyps compared with the peripheral blood in patients with CRSwNP. The results of the present study suggest that local regulation of the immune response occurs within nasal polyps. As such, Trm should be considered a potential stimulus in the pathogenesis of nasal polyps. However, the role of Trm in nasal polyps as a pathogenic trigger of the local inflammatory reaction requires further investigation.
Evaluation of mast cell counts and microvessel density in reactive lesions of the oral cavity.
Kouhsoltani, Maryam; Moradzadeh Khiavi, Monir; Tahamtan, Shabnam
2016-01-01
Background. Reliable immunohistochemical assays to assess the definitive role of mast cells (MCs) and angiogenesis in the pathogenesis of oral reactive lesions are generally not available. The aim of the present study was to evaluate mast cell counts (MCC) and microvessel density (MVD) in oral reactive lesions and determine the correlation between MCC and MVD. Methods. Seventy-five cases of reactive lesions of the oral cavity, including pyogenic granuloma, fibroma, peripheral giant cell granuloma, inflammatory fibrous hyperplasia, peripheral ossifying fibroma (15 for each category) were immunohisto-chemically stained with MC tryptase and CD31. Fifteen cases of normal gingival tissue were considered as the control group. The mean MCC and MVD in superficial and deep connective tissues were assessed and total MCC and MVD was computed for each lesion. Results . Statistically significant differences were observed in MCC and MVD between the study groups (P < 0.001). MC tryptase and CD31 expression increased in the superficial connective tissue of each lesion in comparison to the deep con-nective tissue. A significant negative correlation was not found between MCC and MVD in oral reactive lesions (P < 0.001, r = -0.458). Conclusion. Although MCs were present in the reactive lesions of the oral cavity, a direct correlation between MCC and MVD was not found in these lesions. Therefore, a significant interaction between MCs and endothelial cells and an active role for MCs in the growth of oral reactive lesions was not found in this study.
Tran, Ha T; Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha
2017-01-01
Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM.
2018-05-09
Metastatic Angiosarcoma; Metastatic Epithelioid Sarcoma; Metastatic Fibrosarcoma; Metastatic Leiomyosarcoma; Metastatic Liposarcoma; Metastatic Malignant Peripheral Nerve Sheath Tumor; Metastatic Synovial Sarcoma; Metastatic Undifferentiated Pleomorphic Sarcoma; Myxofibrosarcoma; Pleomorphic Rhabdomyosarcoma; Stage III Soft Tissue Sarcoma; Stage IV Soft Tissue Sarcoma; Undifferentiated (Embryonal) Sarcoma
Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.
2005-01-01
Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral-to-core tissue-temperature gradient with each device indicated that peripheral tissues insulated the core, thus slowing heat transfer. PMID:15114200
Principles of treatment for soft tissue sarcoma.
Dernell, W S; Withrow, S J; Kuntz, C A; Powers, B E
1998-02-01
Soft tissue sarcomas (STS) are mesenchymal tumors arising from connective tissue elements and are grouped together based on a common biologic behavior. The most common histologic types include malignant peripheral nerve sheath tumors (schwannoma and neurofibrosarcoma) "hemangiopericytoma," fibrosarcoma, and malignant fibrous histiocytoma. These tumors are relatively slow growing yet locally invasive with a high rate of recurrence following conservative management. Appropriate preoperative planning and aggressive surgical resection often result in long-term remission or cure. Identification and evaluation of resection margins are paramount in appropriate case management. The addition of radiotherapy after surgical resection can aid in remission for incompletely resected masses. Systemic chemotherapy for STS should be considered for high-grade tumors with a moderate metastatic potential. Potential prognostic factors include grade, resection margins, size, location, histologic type, and previous treatment, with grade and margins being the most important. Tumor types classified as STS that differ slightly in their presentation or treatment, including synovial cell sarcoma, rhabdomyosarcoma, liposarcoma, and vaccine-associated STS in cats, are discussed. Soft tissue sarcomas can be a frustrating disease to treat, but adherence to solid surgical oncology principles can greatly increase the odds of good disease control.
Li, Jian; Hu, Yi-Ming; Wang, Yi; Tang, Xing-Ping; Shi, Wei-Lin; Du, Yong-Jie
2014-12-09
Non-small cell lung cancer (NSCLC) is one of the main causes of cancer death in the world. Early detection of NSCLC can improve its outcome. The aim of this study was to identify the mutations of the KRAS and p53 genes in bronchoalveoar lavage (BAL) fluid for the early detection of peripheral NSCLC. We examined the DNA obtained from the tumor, nearby normal lung tissue, and matched BAL fluid for mutations in the KRAS and p53 genes; the material was obtained from 48 patients with peripheral NSCLC, and was analyzed by PCR-single strand conformation polymorphism and DNA sequencing. BAL fluids from 26 patients with benign lung disease were used as controls. Positive rates of KRAS and p53 mutations were distributed as follows: in NSCLC tissue, 52% and 58%; in BAL fluid of NSCLC patients, 38% and 44%; in normal lung tissue, 6% and 4%; and in BAL fluid of patients with benign lung disease, 8% and 4%. The combined detection of both KRAS and p53 mutations yielded a sensitivity of 66% for the diagnosis of peripheral NSCLC, which is markedly higher than that of cytology plus histology by first bronchoscopy (38%, p=0.008). In each patient with the 2 gene mutations in BAL fluid, mutation type and location were the same as those of the primary tumor. Our study indicates that the detection of the KRAS and p53 mutations in BAL fluids could be a helpful addition to cytology and histology examination for the diagnosis of peripheral NSCLC.
2013-01-01
Background The prostate is divided into three glandular zones, the peripheral zone (PZ), the transition zone (TZ), and the central zone. Most prostate tumors arise in the peripheral zone (70-75%) and in the transition zone (20-25%) while only 10% arise in the central zone. The aim of this study was to investigate if differences in miRNA expression could be a possible explanation for the difference in propensity of tumors in the zones of the prostate. Methods Patients with prostate cancer were included in the study if they had a tumor with Gleason grade 3 in the PZ, the TZ, or both (n=16). Normal prostate tissue was collected from men undergoing cystoprostatectomy (n=20). The expression of 667 unique miRNAs was investigated using TaqMan low density arrays for miRNAs. Student’s t-test was used in order to identify differentially expressed miRNAs, followed by hierarchical clustering and principal component analysis (PCA) to study the separation of the tissues. The ADtree algorithm was used to identify markers for classification of tissues and a cross-validation procedure was used to test the generality of the identified miRNA-based classifiers. Results The t-tests revealed that the major differences in miRNA expression are found between normal and malignant tissues. Hierarchical clustering and PCA based on differentially expressed miRNAs between normal and malignant tissues showed perfect separation between samples, while the corresponding analyses based on differentially expressed miRNAs between the two zones showed several misplaced samples. A classification and cross-validation procedure confirmed these results and several potential miRNA markers were identified. Conclusions The results of this study indicate that the major differences in the transcription program are those arising during tumor development, rather than during normal tissue development. In addition, tumors arising in the TZ have more unique differentially expressed miRNAs compared to the PZ. The results also indicate that separate miRNA expression signatures for diagnosis might be needed for tumors arising in the different zones. MicroRNA signatures that are specific for PZ and TZ tumors could also lead to more accurate prognoses, since tumors arising in the PZ tend to be more aggressive than tumors arising in the TZ. PMID:23890084
You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J
2013-04-01
Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.
Prion pathogenesis and secondary lymphoid organs (SLO)
Mabbott, Neil A.
2012-01-01
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases. PMID:22895090
Fonseca-Camarillo, Gabriela; Furuzawa-Carballeda, Janette; Yamamoto-Furusho, Jesús K
2015-10-01
The aim of the study was to characterize and to quantify peripheral and tissue. IL-35- and IL-37-producing cells in Inflammatory Bowel Disease (IBD) patients. We studied a total of 38 active UC, 31 inactive UC, 17 active CD, and 13 inactive CD and 50 non-inflamed tissues as control group. Gene expression was measured by real time polymerase chain reaction (RT-PCR) and protein expression was evaluated in tissue by immunohistochemistry and in peripheral blood mononuclear cells by flow cytometry. Higher levels of IL-35 was produced by intestinal regulatory B cells and circulating regulatory CD4(+) and CD8(+) T cells in active vs. inactive disease or healthy donors (P<0.05). The IL-37 was conspicuously synthesized by circulating B cells, active natural killer cells and monocytes. These results suggest that down-regulation of inflammation in active IBD patients might be based on the increased expression of IL-35 and IL-37. Copyright © 2015 Elsevier Ltd. All rights reserved.
Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice.
Douris, Nicholas; Stevanovic, Darko M; Fisher, Ffolliott M; Cisu, Theodore I; Chee, Melissa J; Nguyen, Ngoc L; Zarebidaki, Eleen; Adams, Andrew C; Kharitonenkov, Alexei; Flier, Jeffrey S; Bartness, Timothy J; Maratos-Flier, Eleftheria
2015-07-01
Fibroblast growth factor 21 (FGF21) has multiple metabolic actions, including the induction of browning in white adipose tissue. Although FGF21 stimulated browning results from a direct interaction between FGF21 and the adipocyte, browning is typically associated with activation of the sympathetic nervous system through cold exposure. We tested the hypothesis that FGF21 can act via the brain, to increase sympathetic activity and induce browning, independent of cell-autonomous actions. We administered FGF21 into the central nervous system via lateral ventricle infusion into male mice and found that the central treatment increased norepinephrine turnover in target tissues that include the inguinal white adipose tissue and brown adipose tissue. Central FGF21 stimulated browning as assessed by histology, expression of uncoupling protein 1, and the induction of gene expression associated with browning. These effects were markedly attenuated when mice were treated with a β-blocker. Additionally, neither centrally nor peripherally administered FGF21 initiated browning in mice lacking β-adrenoceptors, demonstrating that an intact adrenergic system is necessary for FGF21 action. These data indicate that FGF21 can signal in the brain to activate the sympathetic nervous system and induce adipose tissue thermogenesis.
Isolation, characterization, and differentiation of stem cells for cartilage regeneration.
Beane, Olivia S; Darling, Eric M
2012-10-01
The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embryonic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results.
A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle
Xiao, Shuo; Coppeta, Jonathan R.; Rogers, Hunter B.; Isenberg, Brett C.; Zhu, Jie; Olalekan, Susan A.; McKinnon, Kelly E.; Dokic, Danijela; Rashedi, Alexandra S.; Haisenleder, Daniel J.; Malpani, Saurabh S.; Arnold-Murray, Chanel A.; Chen, Kuanwei; Jiang, Mingyang; Bai, Lu; Nguyen, Catherine T.; Zhang, Jiyang; Laronda, Monica M.; Hope, Thomas J.; Maniar, Kruti P.; Pavone, Mary Ellen; Avram, Michael J.; Sefton, Elizabeth C.; Getsios, Spiro; Burdette, Joanna E.; Kim, J. Julie; Borenstein, Jeffrey T.; Woodruff, Teresa K.
2017-01-01
The endocrine system dynamically controls tissue differentiation and homeostasis, but has not been studied using dynamic tissue culture paradigms. Here we show that a microfluidic system supports murine ovarian follicles to produce the human 28-day menstrual cycle hormone profile, which controls human female reproductive tract and peripheral tissue dynamics in single, dual and multiple unit microfluidic platforms (Solo-MFP, Duet-MFP and Quintet-MPF, respectively). These systems simulate the in vivo female reproductive tract and the endocrine loops between organ modules for the ovary, fallopian tube, uterus, cervix and liver, with a sustained circulating flow between all tissues. The reproductive tract tissues and peripheral organs integrated into a microfluidic platform, termed EVATAR, represents a powerful new in vitro tool that allows organ–organ integration of hormonal signalling as a phenocopy of menstrual cycle and pregnancy-like endocrine loops and has great potential to be used in drug discovery and toxicology studies. PMID:28350383
Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E
2018-02-01
Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.
HISTOPATHOLOGICAL EFFECTS IN MICE OF HETEROLOGOUS ANTILYMPHOCYTE SERUM
Taub, Robert N.; Lance, Eugene M.
1968-01-01
The effects of heterologous rabbit anti-mouse lymphocyte antiserum on the morphology of lymphoid and other tissues was investigated in CBA mice. The lymphoid tissues exhibited characteristic changes specific for ALS treatment, which were an invariable accompaniment to its immunosuppressive effects. These consisted of peripheral lymphopenia occurring at some time during a course of ALS treatment and persistent depletion of small lymphocytes in lymph node paracortical areas and splenic follicular periarteriolar zones. The thymic histology was generally well preserved. It is suggested that the relevant lesions reflect a rapid depletion of the pool of recirculating lymphocytes, possibly by a primary cytotoxic effect exerted on cells peripheral to lymphoid tissue. Other histologic features attendant to the administration of ALS were accounted for as consequences of immunization of ALS recipients to rabbit serum constituents or by the deleterious effects of antibodies directed against tissues other than lymphoid cells. PMID:5688077
Mukherjee, Tanushri; Dutta, Rajat; Pramanik, S
2018-03-01
Angioimmunoblastic T cell lymphoma (AITL) is a peripheral T cell non-Hodgkin lymphoma with an aggressive fatal course and it has varied clinical presentation with an uncommon presentation when they present as soft tissue masses or when there is spill in the peripheral blood or there are composite lymphomas that are rare presentations. Common presentations include lymphadenopathy, fever and systemic symptoms, hemolytic anemias, skin rashes, and rheumatoid arthritis. The classical histopathology is absence of follicles in lymph nodes with presence of high endothelial venules and the tumor cells of small to medium-sized lymphocytes with pale cytoplasm mixed with reactive T cells. On immunohistochemistry, the cells are positive for CD3, CD4, CD10, BCL2, and CXCL13. In this observational study, the clinicopathologic presentation and the immunohistochemical profile of five cases who initially presented with a soft tissue mass which is an extremely rare presentation of this rare type of non-Hodgkin lymphoma that was diagnosed at our center with peripheral blood and bone marrow involvement and the clinicopathologic presentation, immunohistochemical profile, and response to treatment on follow-up are correlated with the literature review. One case had a fulminant and aggressive course and was fatal within 2 months of diagnosis. The rest of the four cases are on regular chemotherapy and follow-up. Our five cases had presented with soft tissue masses, two in the axillary regio,n two in the hand, and one in the scapular region with an extranodal presentation, and there was associated lymphadenopathy which developed subsequently with classic histomorphology and immunohistochemical findings. The age range was 46-54 years and all five cases were males. Three cases were with anemia (hemoglobin range 6.5-8.0 mg/dl) and all five cases were having peripheral blood plasmacytosis. Histopathology was classic with paracortical involvement with polymorphous population of cells with neoplastic lymphocytes of small and large sizes with numerous arborizing blood vessels which correspond to high endothelial venules. Microscopically, three architectural patterns; pattern I was seen in three cases (60%) and then pattern II and III in one case each (20% each). Immunohistochemistry revealed CD4+, CD8-, CXCL13+, CD10+, BCL6+, CD19, CD20, CD1a, Tdt, CD21, and CD23+ in follicular dendritic cells. AITL is a rare and aggressive non-Hodgkin lymphoma with varied clinical presentation with classic histomorphology with various patterns which may cause diagnostic dilemma and immunophenotypic findings, and prompt and early diagnosis is mandatory for institution of therapy.
Cohen, O J; Pantaleo, G; Holodniy, M; Schnittman, S; Niu, M; Graziosi, C; Pavlakis, G N; Lalezari, J; Bartlett, J A; Steigbigel, R T
1995-01-01
Although several immunologic and virologic markers measured in peripheral blood are useful for predicting accelerated progression of human immunodeficiency virus (HIV) disease, their validity for evaluating the response to antiretroviral therapy and their ability to accurately reflect changes in lymphoid organs remain unclear. In the present study, changes in certain virologic markers have been analyzed in peripheral blood and lymphoid tissue during antiretroviral therapy. Sixteen HIV-infected individuals who were receiving antiretroviral therapy with zidovudine for > or = 6 months were randomly assigned either to continue on zidovudine alone or to add didanosine for 8 weeks. Lymph node biopsies were performed at baseline and after 8 weeks. Viral burden (i.e., HIV DNA copies per 10(6) mononuclear cells) and virus replication in mononuclear cells isolated from peripheral blood and lymph node and plasma viremia were determined by semiquantitative polymerase chain reaction assays. Virologic and immunologic markers remained unchanged in peripheral blood and lymph node of patients who continued on zidovudine alone. In contrast, a decrease in virus replication in lymph nodes was observed in four of six patients who added didanosine to their regimen, and this was associated with a decrease in plasma viremia. These results indicate that decreases in plasma viremia detected during antiretroviral therapy reflect downregulation of virus replication in lymphoid tissue. Images Fig. 1 Fig. 2 Fig. 3 PMID:7597072
Ewald, Erin R.; Wand, Gary S.; Seifuddin, Fayaz; Yang, Xiaoju; Tamashiro, Kellie L.; Potash, James B.; Zandi, Peter; Lee, Richard S.
2014-01-01
Summary Background Epigenetic studies that utilize peripheral tissues to identify molecular substrates of neuropsychiatric disorders rely on the assumption that disease-relevant, cellular alterations that occur in the brain are mirrored and detectable in peripheral tissues such as blood. We sought to test this assumption by using a mouse model of Cushing’s disease and asking whether epigenetic changes induced by glucocorticoids can be correlated between these tissue types. Methods Mice were treated with different doses of glucocorticoids in their drinking water for four weeks to assess gene expression and DNA methylation (DNAm) changes in the stress response gene Fkbp5. Results Significant linear relationships were observed between DNAm and four-week mean plasma corticosterone levels for both blood (R2 = 0.68, P = 7.1×10−10) and brain (R2 = 0.33, P = 0.001). Further, degree of methylation change in blood correlated significantly with both methylation (R2 = 0.49, P = 2.7×10−5) and expression (R2 = 0.43, P = 3.5×10−5) changes in hippocampus, with the notable observation that methylation changes occurred at different intronic regions between blood and brain tissues. Conclusion Although our findings are limited to several intronic CpGs in a single gene, our results demonstrate that DNA from blood can be used to assess dynamic, glucocorticoid-induced changes occurring in the brain. However, for such correlation analyses to be effective, tissue-specific locations of these epigenetic changes may need to be considered when investigating brain-relevant changes in peripheral tissues. PMID:24767625
Ewald, Erin R; Wand, Gary S; Seifuddin, Fayaz; Yang, Xiaoju; Tamashiro, Kellie L; Potash, James B; Zandi, Peter; Lee, Richard S
2014-06-01
Epigenetic studies that utilize peripheral tissues to identify molecular substrates of neuropsychiatric disorders rely on the assumption that disease-relevant, cellular alterations that occur in the brain are mirrored and detectable in peripheral tissues such as blood. We sought to test this assumption by using a mouse model of Cushing's disease and asking whether epigenetic changes induced by glucocorticoids can be correlated between these tissue types. Mice were treated with different doses of glucocorticoids in their drinking water for four weeks to assess gene expression and DNA methylation (DNAm) changes in the stress response gene Fkbp5. Significant linear relationships were observed between DNAm and four-week mean plasma corticosterone levels for both blood (R(2)=0.68, P=7.1×10(-10)) and brain (R(2)=0.33, P=0.001). Further, degree of methylation change in blood correlated significantly with both methylation (R(2)=0.49, P=2.7×10(-5)) and expression (R(2)=0.43, P=3.5×10(-5)) changes in hippocampus, with the notable observation that methylation changes occurred at different intronic regions between blood and brain tissues. Although our findings are limited to several intronic CpGs in a single gene, our results demonstrate that DNA from blood can be used to assess dynamic, glucocorticoid-induced changes occurring in the brain. However, for such correlation analyses to be effective, tissue-specific locations of these epigenetic changes may need to be considered when investigating brain-relevant changes in peripheral tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Lei; Yang, Wen; Tao, Kaixiong; Song, Yu; Xie, Hongjian; Wang, Jian; Li, Xiaolin; Shuai, Xiaoming; Gao, Jinbo; Chang, Panpan; Wang, Guobin; Wang, Zheng; Wang, Lin
2017-02-01
Chronic nerve compression (CNC), a common form of peripheral nerve injury, always leads to chronic peripheral nerve pain and dysfunction. Current available treatments for CNC are ineffective as they usually aim to alleviate symptoms at the acute phase with limited capability toward restoring injured nerve function. New approaches for effective recovery of CNC injury are highly desired. Here we report for the first time a tissue-engineered approach for the repair of CNC. A genipin cross-linked chitosan-sericin 3D scaffold for delivering nerve growth factor (NGF) was designed and fabricated. This scaffold combines the advantages of both chitosan and sericin, such as high porosity, adjustable mechanical properties and swelling ratios, the ability of supporting Schwann cells growth, and improving nerve regeneration. The degradation products of the composite scaffold upregulate the mRNA levels of the genes important for facilitating nerve function recovery, including glial-derived neurotrophic factor (GDNF), early growth response 2 (EGR2), and neural cell adhesion molecule (NCAM) in Schwann cells, while down-regulating two inflammatory genes' mRNA levels in macrophages, tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β). Importantly, our tissue-engineered strategy achieves significant nerve functional recovery in a preclinical CNC animal model by decreasing neuralgia, improving nerve conduction velocity (NCV), accelerating microstructure restoration, and attenuating gastrocnemius muscles dystrophy. Together, this work suggests a promising clinical alternative for treating chronic peripheral nerve compression injury.
Cixutumumab and Temsirolimus in Treating Younger Patients With Recurrent or Refractory Sarcoma
2018-03-21
Childhood Alveolar Soft Part Sarcoma; Childhood Angiosarcoma; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Gliosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Peripheral Nerve Sheath Tumor; Childhood Synovial Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Osteosarcoma; Rhabdomyosarcoma
Complication Rates of 3% Hypertonic Saline Infusion Through Peripheral Intravenous Access.
Perez, Claudia Andira; Figueroa, Stephen A
2017-06-01
Hyperosmolar therapy with hypertonic saline (HTS) is a cornerstone in the management of intracranial hypertension and hyponatremia in the neurological intensive care unit. Theoretical safety concerns remain for infiltration, thrombophlebitis, tissue ischemia, and venous thrombosis associated with continuous 3% HTS administered via peripheral intravenous (pIV) catheters. It is common practice at many institutions to allow only central venous catheter infusion of 3% HTS. Hospital policy was changed to allow the administration of 3% HTS via 16- to 20-gauge pIVs to a maximum infusion rate of 50 mL/h in patients without central venous access. We prospectively monitored patients who received peripheral 3% HTS as part of a quality improvement project. We documented gauge, location, maximum infusion rate, and total hours of administration. Patients were assessed for infiltration, erythema, swelling, phlebitis, thrombosis, and line infection. There were 28 subjects across 34 peripheral lines monitored. Overall, subjects received 3% HTS for a duration between 1 and 124 hours with infusion rates of 30 to 50 mL/h. The rate of complications observed was 10.7% among all subjects. Documented complications included infiltration (n = 2), with an incidence of 6%, and thrombophlebitis (n = 1), with an incidence of 3%. There has been a long concern among healthcare providers, including nursing staff, in regard to pIV administration of prolonged 3% HTS infusion therapy. Our study indicates that peripheral administration of 3% HTS carries a low risk of minor, nonlimb, or life-threatening complications. Although central venous infusion may reduce the risk of these minor complications, it may increase the risk of more serious complications such as large vessel thrombosis, bloodstream infection, pneumothorax, and arterial injury. The concern regarding the risks of pIV administration of 3% HTS may be overstated and unfounded.
Zaric, Marija; Becker, Pablo Daniel; Hervouet, Catherine; Kalcheva, Petya; Ibarzo Yus, Barbara; Cocita, Clement; O'Neill, Lauren Alexandra; Kwon, Sung-Yun; Klavinskis, Linda Sylvia
2017-12-28
The generation of tissue resident memory (T RM ) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag. We demonstrate rapid dissolution kinetics of the microneedles in skin. Moreover, a consequence of MA vaccine cargo release was the generation of long-lived antigen-specific CD8 + T cells that accumulate in mucosal tissues, including the female genital and respiratory tract. The memory CD8 + T cell population maintained in the peripheral mucosal tissues was attributable to a MA delivered AdHu5 vaccine instructing CD8 + T cell expression of CXCR3 + , CD103 +, CD49a + , CD69 + , CD127 + homing, retention and survival markers. Furthermore, memory CD8 + T cells generated by MA immunization significantly expanded upon locally administered antigenic challenge and showed a predominant poly-functional profile producing high levels of IFNγ and Granzyme B. These data demonstrate that skin vaccine delivery using microneedle technology induces mobilization of long lived, poly-functional CD8 + T cells to peripheral tissues, phenotypically displaying hallmarks of residency and yields new insights into how to design and deliver effective vaccine candidates with properties to exert local immunosurveillance at the mucosal surfaces. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Nam, Soo Jeong; Yeo, Hyun Yang; Chang, Hee Jin; Kim, Bo Hyun; Hong, Eun Kyung; Park, Joong-Won
2016-10-01
We developed a new method of detecting circulating tumor cells (CTCs) in liver cancer patients by constructing cell blocks from peripheral blood cells, including CTCs, followed by multiple immunohistochemical analysis. Cell blockswere constructed from the nucleated cell pellets of peripheral blood afterremoval of red blood cells. The blood cell blocks were obtained from 29 patients with liver cancer, and from healthy donor blood spikedwith seven cell lines. The cell blocks and corresponding tumor tissues were immunostained with antibodies to seven markers: cytokeratin (CK), epithelial cell adhesion molecule (EpCAM), epithelial membrane antigen (EMA), CK18, α-fetoprotein (AFP), Glypican 3, and HepPar1. The average recovery rate of spiked SW620 cells from blood cell blocks was 91%. CTCs were detected in 14 out of 29 patients (48.3%); 11/23 hepatocellular carcinomas (HCC), 1/2 cholangiocarcinomas (CC), 1/1 combined HCC-CC, and 1/3 metastatic cancers. CTCs from 14 patients were positive for EpCAM (57.1%), EMA (42.9%), AFP (21.4%), CK18 (14.3%), Gypican3 and CK (7.1%, each), and HepPar1 (0%). Patients with HCC expressed EpCAM, EMA, CK18, and AFP in tissue and/or CTCs, whereas CK, HepPar1, and Glypican3 were expressed only in tissue. Only EMA was significantly associated with the expressions in CTC and tissue. CTC detection was associated with higher T stage and portal vein invasion in HCC patients. This cell block method allows cytologic detection and multiple immunohistochemical analysis of CTCs. Our results show that tissue biomarkers of HCC may not be useful for the detection of CTC. EpCAM could be a candidate marker for CTCs in patients with HCC.
Steenhaut, Kevin; Lapage, Koen; Bové, Thierry; De Hert, Stefan; Moerman, Annelies
2017-12-01
An increasing number of NIRS devices are used to provide measurements of peripheral tissue oxygen saturation (S t O 2 ). The aim of the present study is to test the hypothesis that despite technological differences between devices, similar trend values will be obtained during a vascular occlusion test. The devices compared are NIRO-200NX, which measures S t O 2 and oxyhemoglobin by spatially resolved spectroscopy and the Beer-Lambert law, respectively, and INVOS 5100C and Foresight Elite, which both measure S t O 2 with the Beer-Lambert law, enhanced with the spatial resolution technique. Forty consenting adults scheduled for CABG surgery were recruited. The respective sensors of the three NIRS devices were applied over the brachioradial muscle. Before induction of anesthesia, 3 min of ischemia were induced by inflating a blood pressure cuff at the upper arm, whereafter cuff pressure was rapidly released. Tissue oxygenation measurements included baseline, minimum and maximum values, desaturation and resaturation slopes, and rise time. Comparisons between devices were performed with the Kruskal-Wallis test with post hoc Mann-Whitney pairwise comparisons. Agreement was evaluated using Bland-Altman plots. Oxyhemoglobin measured with NIRO responded faster than the other NIRS technologies to changes in peripheral tissue oxygenation (20 vs. 27-40 s, p ≤ 0.01). When comparing INVOS with Foresight, oxygenation changes were prompter (upslope 311 [92-523]%/min vs. 114[65-199]%/min, p ≤ 0.01) and more pronounced (minimum value 36 [21-48] vs. 45 [40-51]%, p ≤ 0.01) with INVOS. Significant differences in tissue oxygen saturation measurements were observed, both within the same device as between different devices using the same measurement technology.
Ai, Jing-Wen; Li, Yang; Cheng, Qi; Cui, Peng; Wu, Hong-Long; Xu, Bin; Zhang, Wen-Hong
2018-06-01
A 45-year-old man who complained of continuous fever and multiple hepatic masses was admitted to our hospital. Repeated MRI manifestations were similar while each radiological report suggested contradictory diagnosis pointing to infections or malignances respectively. Pathologic examination of the liver tissue showed no direct evidence of either infections or tumor. We performed next-generation sequencing on the liver tissue and peripheral blood to further investigate the possible etiology. High throughput sequencing was performed on the liver lesion tissues using BGISEQ-100 platform, and data was mapped to the Microbial Genome Databases after filtering low quality data and human reads. We identified a total of 299 sequencing reads of Mycobacterium tuberculosis (M. tuberculosis) complex sequences from the liver tissue, including 8, 229 of 4,424,435 of the M. tuberculosis nucleotide sequences, and Mycobacterium africanum, Mycobacterium bovis, and Mycobacterium canettii were also detected due to the 99.9% identical rate among these strains. No specific Mycobacterial tuberculosis nucleotide sequence was detected in the sample of peripheral blood. Patient's symptom quickly recovered after anti-tuberculosis treatment and repeated Ziehl-Neelsen staining of the liver tissue finally identified small numbers of positive bacillus. The diagnosis of this patient was difficult to establish before the next-generation sequencing because of contradictive radiological results and negative pathological findings. More sensitive diagnostic methods are urgently needed. This is the first case reporting hepatic tuberculosis confirmed by the next-generation sequencing, and marks the promising potential of the application of the next-generation sequencing in the diagnosis of hepatic lesions with unknown etiology. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Jackson, K; Kelty, E; Tennant, M
2018-01-01
Peripheral dental caries is defined as macroscopic destruction of the calcified dental tissues and can cause considerable dental pathology and pain. It appears to occur at a high prevalence in Western Australian horses. At present, risk factors for the condition are poorly understood, making treatment and prevention difficult. To assess the prevalence of and potential risk factors for peripheral caries in Western Australian horses. Cross-sectional, epidemiological study. A survey of 500 Western Australian horses was administered in two sections. The first section was completed by the owner and referred to the horse's signalment, diet and husbandry conditions. The second section was completed by veterinarians and focused on the horse's oral health. A multivariable logistic regression model was used to assess risk factors associated with peripheral caries. Peripheral caries was present in 58.8% (95% confidence interval [CI] 54.5-63.1%) of surveyed horses. Breed was significantly associated with peripheral caries, with Warmbloods (odds ratio [OR] 0.44, 95% CI 0.24-0.82; P = 0.009) and Western breeds (OR 0.38, 95% CI 0.19-0.78; P = 0.008) being less likely to have peripheral caries than Thoroughbreds. Dietary risk factors included oaten hay (OR 2.90, 95% CI 1.87-4.53; P<0.001). A meadow hay-based diet was protective (OR 0.47, 95% CI 0.27-0.80; P = 0.005). Horses with access to quality pasture all year were less likely to have peripheral caries than horses without access to grazing (OR 0.31, 95% CI 0.15-0.66; P = 0.002), as were horses on groundwater compared with horses on rainwater (OR 3.35, 95% CI 1.65-6.78; P = 0.001), drinking water (OR 2.03, 95% CI 1.14-3.62; P = 0.016) or dam water (OR 3.53, 95% CI 1.08-11.53; P = 0.037). Peripheral caries was positively correlated with periodontal disease (OR 4.53, 95% CI 2.91-7.06; P<0.001) and feed packing (feed present between the teeth without significant periodontal pocketing) (OR 1.94, 95% CI 1.32-2.85; P = 0.001). Not every owner of eligible horses seen during the study period agreed to participate. An epidemiological study is unable to show causality. Western Australian horses have a high prevalence of peripheral caries. Management factors that may help to prevent or reduce peripheral caries include more access to quality pasture, use of groundwater, feeding on meadow hay and avoidance of oaten hay. © 2017 EVJ Ltd.
Omar-Ali, Ahmad; Hohn, Claudia; Allen, Peter J; Rodriguez, Jose; Petrie-Hanson, Lora
2015-07-01
Alligator gar Atractosteus spatula acclimated to brackish water (9 ppt) were exposed to water accommodated fraction oil loadings (surrogate to Macondo Deepwater Horizon, northern Gulf of Mexico) of 0.5 and 4.0 gm oil/L tank water for 48 h. The surrogate oil was approximately 98% alkanes and alkynes and 2% petroleum aromatic hydrocarbons. The 2% petroleum aromatic hydrocarbons were predominately naphthalene. After 48 h, naphthalene levels in fish liver exposed to 0.5 or 4 gm oil/L were 547.79 and 910.68 ppb, while muscle levels were 214.11 and 253.84 ppb. There was a significant decrease in peripheral blood lymphocyte numbers and a significant reduction of granulocytes in the kidney marrow of the same fish. Tissue changes included hepatocellular vacuolization and necrosis, necrotizing pancreatitis, renal eosinophilia, and splenic congestion. After 7 days recovery, liver naphthalene levels decreased to 43.59 and 43.20 ppb, while muscle levels decreased to 9.74, and 16.78 ppb for oil exposures of 0, 0.5 or 4 g/L. In peripheral blood and kidney marrow, blood cell counts returned to normal. The severity of liver and kidney lesions lessened after 7 days recovery in non-oiled water, but splenic congestion remained in all gar. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Emerging Functions of Regulatory T Cells in Tissue Homeostasis
Sharma, Amit; Rudra, Dipayan
2018-01-01
CD4+Foxp3+ regulatory T-cells (Tregs) are a unique subset of helper T-cells, which regulate immune response and establish peripheral tolerance. Tregs not only maintain the tone and tenor of an immune response by dominant tolerance but, in recent years, have also been identified as key players in resolving tissue inflammation and as mediators of tissue healing. Apart from being diverse in their origin (thymic and peripheral) and location (lymphoid and tissue resident), Tregs are also phenotypically heterogeneous as per the orientation of ongoing immune response. In this review, we discuss the recent advances in the field of Treg biology in general, and non-lymphoid and tissue-resident Tregs in particular. We elaborate upon well-known visceral adipose tissue, colon, skin, and tumor-infiltrating Tregs and newly identified tissue Treg populations as in lungs, skeletal muscle, placenta, and other tissues. Our attempt is to differentiate Tregs based on distinctive properties of their location, origin, ligand specificity, chemotaxis, and specific suppressive mechanisms. Despite ever expanding roles in maintaining systemic homeostasis, Tregs are employed by large varieties of tumors to dampen antitumor immunity. Thus, a comprehensive understanding of Treg biology in the context of inflammation can be instrumental in effectively managing tissue transplantation, autoimmunity, and antitumor immune responses. PMID:29887862
Regulation of Energy Stores and Feeding by Neuronal and Peripheral CREB Activity in Drosophila
Iijima, Koichi; Zhao, LiJuan; Shenton, Christopher; Iijima-Ando, Kanae
2009-01-01
The cAMP-responsive transcription factor CREB functions in adipose tissue and liver to regulate glycogen and lipid metabolism in mammals. While Drosophila has a homolog of mammalian CREB, dCREB2, its role in energy metabolism is not fully understood. Using tissue-specific expression of a dominant-negative form of CREB (DN-CREB), we have examined the effect of blocking CREB activity in neurons and in the fat body, the primary energy storage depot with functions of adipose tissue and the liver in flies, on energy balance, stress resistance and feeding behavior. We found that disruption of CREB function in neurons reduced glycogen and lipid stores and increased sensitivity to starvation. Expression of DN-CREB in the fat body also reduced glycogen levels, while it did not affect starvation sensitivity, presumably due to increased lipid levels in these flies. Interestingly, blocking CREB activity in the fat body increased food intake. These flies did not show a significant change in overall body size, suggesting that disruption of CREB activity in the fat body caused an obese-like phenotype. Using a transgenic CRE-luciferase reporter, we further demonstrated that disruption of the adipokinetic hormone receptor, which is functionally related to mammalian glucagon and β-adrenergic signaling, in the fat body reduced CRE-mediated transcription in flies. This study demonstrates that CREB activity in either neuronal or peripheral tissues regulates energy balance in Drosophila, and that the key signaling pathway regulating CREB activity in peripheral tissue is evolutionarily conserved. PMID:20041126
[Peripheral lymphadenopathy in childhood--recommendations for diagnostic evaluation].
Benesch, M; Kerbl, R; Wirnsberger, A; Stünzner, D; Mangge, H; Schenkeli, R; Deutsch, J
2000-01-01
Enlargement of peripheral lymph nodes most commonly caused by a local inflammatory process is frequently seen in childhood. The aim of the present study was to analyze the most common causes of peripheral lymphadenopathy and to develop a simple algorithm for the primary diagnostic evaluation of peripheral lymph node enlargement in this age group. Between April and September 1999 87 unselected children (median age: 5 1/2 years) with peripheral lymphadenopathy were referred to the Department of Pediatrics, University of Graz, for further investigation. EBV infection was diagnosed in 20 (23.0%) children. 19 (21.8%) patients had acute bacterial lymphadenitis. In 21 (24.1%) patients lymph node enlargement was classified as "post/parainfectious (viral)". Four patients each had toxoplasmosis and cat scratch disease. In 11 (12.6%) patients neither physical nor laboratory examinations revealed pathologic results. Among the remaining 8 children sarcoidosis and Hodgkin disease was diagnosed in one patient each. Small, soft, mobile, nontender, cervical, axillary or inguinal lymph nodes do not require further investigations. In case of enlarged, tender lymph nodes with overlying skin erythema and fever diagnostic evaluation should include complete blood count, erythrocyte sedimentation rate and/or c-reactive protein level, supplemented by appropriate antibody testing (EBV, CMV, Toxoplasma gondii, Bartonella henselae). Firm, enlarged, painless lymph nodes which are matted together and fixed to the skin or underlying tissues necessitate a more detailed diagnostic evaluation in order to exclude malignant or granulomatous diseases. Our study demonstrated that primary diagnostic evaluation of childhood peripheral lymphadenopathy is mainly based on clinical grounds. In most cases a small number of additionally performed laboratory tests allow to correctly identify the cause of the peripheral lymph node enlargement.
NASA Astrophysics Data System (ADS)
Flexman, M. L.; Kim, H. K.; Stoll, R.; Khalil, M. A.; Fong, C. J.; Hielscher, A. H.
2012-03-01
We present a low-cost, portable, wireless diffuse optical imaging device. The handheld device is fast, portable, and can be applied to a wide range of both static and dynamic imaging applications including breast cancer, functional brain imaging, and peripheral artery disease. The continuous-wave probe has four near-infrared wavelengths and uses digital detection techniques to perform measurements at 2.3 Hz. Using a multispectral evolution algorithm for chromophore reconstruction, we can measure absolute oxygenated and deoxygenated hemoglobin concentration as well as scattering in tissue. Performance of the device is demonstrated using a series of liquid phantoms comprised of Intralipid®, ink, and dye.
Blood cell lineage in the sea lamprey, Petromyzon marinus (Pisces: Petromyzontidae)
Piavis, George W.; Hiatt, James L.
1971-01-01
Blood cell types of the sea lamprey, Petromyzon marinus, are described and identified and the lineage of mature circulating cells in peripheral blood is traced to blast cells in the hematopoietic fat body. The fat body appears to be the phylogenetic precursor of bone marrow in higher forms, since blood cells originate and begin maturation in this tissue. Experimental animals were injected first with a hematopoietic stimulant and then (at an experimentally determined time) with pertussis vaccine to release proliferated blood cells into peripheral blood. Peripheral blood for smears was collected by cardiac exsanguination; hematopoietic tissue was extirpated for imprints; and leucocyte preparations were made by a special technique. Blood cells of the sea lamprey are apparently products of at least four distinct blast cells, each of which has a 'one end' maturation process. Results of this investigation support the polyphyletic theory of blood cell formation.
Axonal interferon responses and alphaherpesvirus neuroinvasion
NASA Astrophysics Data System (ADS)
Song, Ren
Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFNgamma, IFNbeta induces a non-canonical, local antiviral response in axons. The activation of a local IFNbeta response in axons represents a new paradigm for early cytokine control of neuroinvasion. And the two response modes induced by the two distinct types of IFN erect an efficient and appropriate barrier against PNS infection.
Endler, Margit; Saltvedt, Sissel; Eweida, Mohamed; Åkerud, Helena
2016-12-06
Retained placenta is associated with severe postpartum hemorrhage. Its etiology is unknown and its biochemistry has not been studied. We aimed to assess whether levels of the antioxidative enzyme Glutathione Peroxidase 1 (GPX1) and the transcription factor Nuclear Factor κβ (NFκβ), as markers of oxidative stress and inflammation, were affected in retained placentas compared to spontaneously released placentas from otherwise normal full term pregnancies. In a pilot study we assessed concentrations of GPX1 by ELISA and gene (mRNA) expression of GPX1, NFκβ and its inhibitor Iκβα, by quantitative real-time-PCR in periumbilical and peripheral samples from retained (n = 29) and non-retained (n = 31) placental tissue. Median periumbilical GPX1 concentrations were 13.32 ng/ml in retained placentas and 17.96 ng/ml in non-retained placentas (p = 0.22), peripheral concentrations were 13.27 ng/ml and 19.09 ng/ml (p = 0.08). Retained placental tissue was more likely to have a low GPX1 protein concentration (OR 3.82, p = 0.02 for periumbilical and OR 3.95, p = 0.02 for peripheral samples). Median periumbilical GPX1 gene expressions were 1.13 for retained placentas and 0.88 for non-retained placentas (p = 0.08), peripheral expression was 1.32 and 1.18 (p = 0.46). Gene expressions of NFκβ and Iκβα were not significantly different between retained and non-retained placental tissue. Women with retained placenta were more likely to have a low level of GPX1 protein concentration in placental tissue compared to women without retained placenta and retained placental tissue showed a tendency of lower median concentrations of GPX1 protein expression. This may indicate decreased antioxidative capacity as a component in this disorder but requires a larger sample to corroborate results.
Müller, M; Haag, O; Burgdorff, T; Georgopoulos, A; Weninger, W; Jansen, B; Stanek, G; Pehamberger, H; Agneter, E; Eichler, H G
1996-01-01
The calculation of pharmacokinetic/pharmacodynamic surrogates from concentrations in serum has been shown to yield important information for the evaluation of antibiotic regimens. Calculations based on concentrations in serum, however, may not necessarily be appropriate for peripheral-compartment infections. The aim of the present study was to apply the microdialysis technique for the study of the peripheral-compartment pharmacokinetics of select antibiotics in humans. Microdialysis probes were inserted into the skeletal muscle and adipose tissue of healthy volunteers and into inflamed and noninflamed dermis of patients with cellulitis. Thereafter, volunteers received either cefodizime (2,000 mg as an intravenous bolus; n = 6), cefpirome (2,000 mg as an intravenous bolus; n = 6), fleroxacin (400 mg orally n = 6), or dirithromycin (250 mg orally; n = 4); the patients received phenoxymethylpenicillin (4.5 x 10(6) U orally; n = 3). Complete concentration-versus-time profiles for serum and tissues could be obtained for all compounds. Major pharmacokinetic parameters (elimination half-life, peak concentration in serum, time to peak concentration, area under the concentration-time curve [AUC], and AUC/MIC ratio) were calculated for tissues. For cefodizime and cefpirome, the AUCtissue/AUCserum ratios were 0.12 to 0.35 and 1.20 to 1.79, respectively. The AUCtissue/AUCserum ratios were 0.34 to 0.38 for fleroxacin and 0.42 to 0.49 for dirithromycin. There was no visible difference in the time course of phenoxymethylpenicillin in inflamed and noninflamed dermis. We demonstrated, by means of microdialysis, that the concept of pharmacokinetic/pharmacodynamic surrogate markers for evaluation of antibiotic regimens originally developed for serum pharmacokinetics can be extended to peripheral-tissue pharmacokinetics. This novel information may be useful for the rational development of dosage schedules and may improve predictions regarding therapeutic outcome. PMID:9124826
Yonezawa, Rika; Wada, Tsutomu; Matsumoto, Natsumi; Morita, Mayuko; Sawakawa, Kanae; Ishii, Yoko; Sasahara, Masakiyo; Tsuneki, Hiroshi; Saito, Shigeru; Sasaoka, Toshiyasu
2012-08-15
Age-related loss of ovarian function promotes adiposity and insulin resistance in women. Estrogen (E(2)) directly enhances insulin sensitivity and suppresses lipogenesis in peripheral tissues. Recently, the central actions of E(2) in the regulation of energy homeostasis are becoming clearer; however, the functional relevance and degree of contribution of the central vs. peripheral actions of E(2) are currently unknown. Therefore, we prepared and analyzed four groups of mice. 1) CONTROL: sham-operated mice fed a regular diet, 2) OVX-HF: ovariectomized (OVX) mice fed a 60% high-fat diet (HF), 3) E2-SC: OVX-HF mice subcutaneously treated with E(2), and 4) E2-ICV: OVX-HF mice treated with E(2) intracerebroventricularly. OVX-HF mice showed increased body weight with both visceral and subcutaneous fat volume enlargement, glucose intolerance, and insulin resistance. Both E2-SC and E2-ICV equally ameliorated these abnormalities. Although the size of adipocytes and number of CD11c-positive macrophages in perigonadal fat in OVX-HF were reduced by both E(2) treatments, peripherally administered E(2) decreased the expression of TNFα, lipoprotein lipase, and fatty acid synthase in the white adipose tissue (WAT) of OVX-HF. In contrast, centrally administered E(2) increased hormone-sensitive lipase in WAT, decreased the hepatic expression of gluconeogenic enzymes, and elevated core body temperature and energy expenditure with marked upregulation of uncoupling proteins in the brown adipose tissue. These results suggest that central and peripheral actions of E(2) regulate insulin sensitivity and glucose metabolism via different mechanisms, and their coordinated effects may be important to prevent the development of obesity and insulin resistance in postmenopausal women.
1994-07-01
axolotl limbs are transected the concentration of transferrin in the distal limb tissue declines rapidly and limb regeneration stops. These results...transferrin binding and expression of the transferrin gene in cells of axolotl peripheral nerve indicate that both uptake and synthesis of this factor occur
NASA Astrophysics Data System (ADS)
Xia, Wenfeng; Nikitichev, Daniil I.; Mari, Jean Martial; West, Simeon J.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.
2015-07-01
Precise and efficient guidance of medical devices is of paramount importance for many minimally invasive procedures. These procedures include fetal interventions, tumor biopsies and treatments, central venous catheterisations and peripheral nerve blocks. Ultrasound imaging is commonly used for guidance, but it often provides insufficient contrast with which to identify soft tissue structures such as vessels, tumors, and nerves. In this study, a hybrid interventional imaging system that combines ultrasound imaging and multispectral photoacoustic imaging for guiding minimally invasive procedures was developed and characterized. The system provides both structural information from ultrasound imaging and molecular information from multispectral photoacoustic imaging. It uses a commercial linear-array ultrasound imaging probe as the ultrasound receiver, with a multimode optical fiber embedded in a needle to deliver pulsed excitation light to tissue. Co-registration of ultrasound and photoacoustic images is achieved with the use of the same ultrasound receiver for both modalities. Using tissue ex vivo, the system successfully discriminated deep-located fat tissue from the surrounding muscle tissue. The measured photoacoustic spectrum of the fat tissue had good agreement with the lipid spectrum in literature.
Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity
Krasteva, Vessela TZ; Papazov, Sava P; Daskalov, Ivan K
2003-01-01
Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM) of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium. PMID:14693034
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow...
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2012 CFR
2012-04-01
... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are...
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2013 CFR
2013-04-01
... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are...
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2014 CFR
2014-04-01
... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are...
21 CFR 1271.80 - What are the general requirements for donor testing?
Code of Federal Regulations, 2011 CFR
2011-04-01
... donor specimen for testing at the time of recovery of cells or tissue from the donor; or up to 7 days before or after recovery, except: (1) For donors of peripheral blood stem/progenitor cells, bone marrow... ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.80 What are...
Current progress in use of adipose derived stem cells in peripheral nerve regeneration
Zack-Williams, Shomari DL; Butler, Peter E; Kalaskar, Deepak M
2015-01-01
Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair. PMID:25621105
Katayama, Y; Kawamata, T
2003-01-01
The early massive edema caused by severe cerebral contusion results in progressive intracranial pressure (ICP) elevation and clinical deterioration within 24-72 hours post-trauma. Surgical excision of the necrotic brain tissue represents the only therapy, which can provide satisfactory control of the elevated ICP and clinical deterioration. In order to elucidate the mechanisms underlying the early massive edema, we have carried out a series of detailed clinical studies. Diffusion magnetic resonance (MR) imaging and apparent diffusion co-efficient (ADC) mapping suggest that cells in the central area of contusion undergo shrinkage, disintegration and homogenization, whereas cellular swelling is predominant in the peripheral area during the period of 24-72 hours post-trauma. The ADC values in the central and peripheral areas are maximally dissociated during this period. A large amount of edema fluid accumulates within the necrotic brain tissue of the central area beginning at approximately 24 hours post-trauma. We have found that fluid-blood interface formation within the central area does not represent an uncommon finding in various neuroimaging examinations of cerebral contusions, indicating layering of red blood cells within the necrotic brain tissue accumulating voluminous edema fluid. Intravenous slow infusion of gadolinium-DTPA and delayed MR imaging revealed that the central area of contusion can be enhanced at 24-48 hours post-trauma. implying that water supply from the blood vessels is not completely interrupted. Necrotic brain tissue sampled from the central area of contusion during surgery demonstrates a very high osmolality. It appears that the capacitance for edema fluid accumulation increases in the central area, whereas cellular swelling in the peripheral area elevates the resistance for edema fluid propagation. Combination of these circumstances may facilitate edema fluid accumulation in the central area. We also suggest that the dissociation of ADC values and high osmolality within the necrotic brain tissue may generate an osmotic potential across the central and peripheral areas and contribute to the early massive edema caused by cerebral contusion.
Korsak, A V; Chaikovskii, Yu B
2015-10-01
Immunohistochemical analysis of changes in neuroma after surgical treatment of damaged peripheral nerve with the use of high frequency electrosurgical device for high frequency current welding of soft tissues was carried out. No adverse effects of this technology and the bipolar instrument on degeneration and regeneration of damaged nerve stem were detected.
Mitochondrial dysfunction in obesity.
de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza
2018-01-01
Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.
Classification of neural tumors in laboratory rodents, emphasizing the rat.
Weber, Klaus; Garman, Robert H; Germann, Paul-Georg; Hardisty, Jerry F; Krinke, Georg; Millar, Peter; Pardo, Ingrid D
2011-01-01
Neoplasms of the nervous system, whether spontaneous or induced, are infrequent in laboratory rodents and very rare in other laboratory animal species. The morphology of neural tumors depends on the intrinsic functions and properties of the cell type, the interactions between the neoplasm and surrounding normal tissue, and regressive changes. The incidence of neural neoplasms varies with sex, location, and age of tumor onset. Although the onset of spontaneous tumor development cannot be established in routine oncogenicity studies, calculations using the time of diagnosis (day of death) have revealed significant differences in tumor biology among different rat strains. In the central nervous system, granular cell tumors (a meningioma variant), followed by glial tumors, are the most common neoplasms in rats, whereas glial cell tumors are observed most frequently in mice. Central nervous system tumors usually affect the brain rather than the spinal cord. Other than adrenal gland pheochromocytomas, the most common neoplasms of the peripheral nervous system are schwannomas. Neural tumors may develop in the central nervous system and peripheral nervous system from other cell lineages (including extraneural elements like adipose tissue and lymphocytes), but such lesions are very rare in laboratory animals.
Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage
Thomas, Susan N.; Rutkowski, Joseph M.; Pasquier, Miriella; Kuan, Emma L.; Alitalo, Kari; Randolph, Gwendalyn J.; Swartz, Melody A.
2012-01-01
Lymphatic vessels transport interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs), yet the contribution of peripheral lymphatic drainage to adaptive immunity remains poorly understood. We examined immune responses to dermal vaccination and contact hypersensitivity (CHS) challenge in K14-VEGFR-3-Ig mice, which lack dermal lymphatic capillaries and experience markedly depressed transport of solutes and dendritic cells from the skin to draining LNs. In response to dermal immunization, K14-VEGFR-3-Ig mice produced lower antibody titers. In contrast, although delayed, T cell responses were robust after 21 days, including high levels of antigen-specific CD8+ T cells and production of IFN-γ, IL-4 and IL-10 upon restimulation. T cell-mediated CHS responses were strong in K14-VEGFR-3-Ig mice, but importantly, their ability to induce CHS tolerance in the skin was impaired. Additionally, one-year-old mice displayed multiple signs of autoimmunity. These data suggest that lymphatic drainage plays more important roles in regulating humoral immunity and peripheral tolerance than in effector T cell immunity. PMID:22844119
Photoacoustic and ultrasound dual-modality imaging of human peripheral joints
NASA Astrophysics Data System (ADS)
Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Kaplan, Mariana J.; Fowlkes, J. Brian; Carson, Paul L.; Wang, Xueding
2013-01-01
A photoacoustic (PA) and ultrasound (US) dual modality system, for imaging human peripheral joints, is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system, on normal volunteers, revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Confirmed by the control US images, the system, on the PA mode, can differentiate tendon from surrounding soft tissue based on the endogenous optical contrast. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.
Mabbott, Neil A
2012-01-01
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrP (Sc), an abnormally folded isoform of the cellular prion protein (PrP (C)), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.
Mazzoccoli, G; Sothern, R B; Greco, A; Pazienza, V; Vinciguerra, M; Liu, S; Cai, Y
2011-01-01
Immune parameters show rhythmic changes with a 24-h periodicity driven by an internal circadian timing system that relies on clock genes (CGs). CGs form interlocked transcription-translation feedback loops to generate and maintain 24-h mRNA and protein oscillations. In this study we evaluate and compare the profiles and the dynamics of variation of CG expression in peripheral blood, and two lymphoid tissues of mice. Expression levels of seven recognized key CGs (mBmal1, mClock, mPer1, mPer2, mCry1, mCry2, and Rev-erbalpha) were evaluated by quantitative RT- PCR in spleen, thymus and peripheral blood of C57BL/6 male mice housed on a 12-h light (L)-dark (D) cycle and sacrificed every 4 h for 24 h (3-4 mice/time point). We found a statistically significant time-effect in spleen (S), thymus (T) and blood (B) for the original values of expression level of mBmal1 (S), mClock (T, B), mPer1 (S, B), mPer2 (S), mCry1 (S), mCry2 (B) and mRev-Erbalpha (S, T, B) and for the fractional variation calculated between single time-point expression value of mBmal1 (B), mPer2 (T), mCry2 (B) and mRev-Erbalpha (S). A significant 24-h rhythm was validated for five CGs in blood (mClock, mPer1, mPer2, mCry2, mRev-Erbalpha), for four CGs in the spleen (mBmal1, mPer1, mPer2, mRev-Erbalpha), and for three CGs in the thymus (mClock, mPer2, mRev-Erbalpha). The original values of acrophases for mBmal1, mClock, mPer1, mPer2, mCry1 and mCry2 were very similar for spleen and thymus and advanced by several hours for peripheral blood compared to the lymphoid tissues, whereas the phases of mRev-Erbalpha were coincident for all three tissues. In conclusion, central and peripheral lymphoid tissues in the mouse show different sequences of activation of clock gene expression compared to peripheral blood. These differences may underlie the compartmental pattern of web functioning in the immune system.
Peripheral odontogenic fibroma: A case report and review
Baiju, C. S.; Rohatgi, Sumidha
2011-01-01
Odontogenic tumors mainly occur as intraosseous growths but sometimes may present in a peripheral location on the gingiva where they are referred to as peripheral odontogenic tumors (POTs) which are a rare entity, the most common of them being the peripheral odontogenic fibroma that is an otherwise uncommon, slowly growing, benign odontogenic neoplasm of the periodontal soft tissues. In fact, peripheral odontogenic fibroma is the only POT that is more frequent than its central counterpart. Although considered to be with a potential to recur after excision, the actual recurrence rate is not known due to paucity of literature. This paper presents a case report along with review of the available literature and reinforces the importance of patient follow-up in addition to radiographic and histological examination of seemingly innocuous gingival exophytic lesions. PMID:22028517
Advances and Future Applications of Augmented Peripheral Nerve Regeneration
Jones, Salazar; Eisenberg, Howard M.; Jia, Xiaofeng
2016-01-01
Peripheral nerve injuries remain a significant source of long lasting morbidity, disability, and economic costs. Much research continues to be performed in areas related to improving the surgical outcomes of peripheral nerve repair. In this review, the physiology of peripheral nerve regeneration and the multitude of efforts to improve surgical outcomes are discussed. Improvements in tissue engineering that have allowed for the use of synthetic conduits seeded with neurotrophic factors are highlighted. Selected pre-clinical and available clinical data using cell based methods such as Schwann cell, undifferentiated, and differentiated stem cell transplantation to guide and enhance peripheral nerve regeneration are presented. The limitations that still exist in the utility of neurotrophic factors and cell-based therapies are outlined. Strategies that are most promising for translation into the clinical arena are suggested. PMID:27618010
Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis.
Jordan, Sabine D; Könner, A Christine; Brüning, Jens C
2010-10-01
The central nervous system (CNS) is capable of gathering information on the body's nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus.
Neurological complication after low-voltage electric injury: a case report.
Kim, Ha Min; Ko, Yeong-A; Kim, Joon Sung; Lim, Seong Hoon; Hong, Bo Young
2014-04-01
Electrical shock can result in neurological complications, involving both peripheral and central nervous systems, which may present immediately or later on. However, delayed neurological complications caused by low-voltage electric shock are rarely reported. Here, a case of a man suffering from weakness and aphasia due to the delayed-onset of the peripheral nerve injury and ischemic stroke following an electrical shock is presented. Possible mechanisms underlying the neurological complications include thermal injury to perineural tissue, overactivity of the sympathetic nervous system, vascular injury, and histological or electrophysiological changes. Moreover, vasospasms caused by low-voltage alternating current may predispose individuals to ischemic stroke. Therefore, clinicians should consider the possibility of neurological complications, even if the onset of the symptoms is delayed, and should perform diagnostic tests, such as electrophysiology or imaging, when patients present with weakness following an electric injury.
Misa-Agustiño, Maria J; Jorge-Mora, Teresa; Jorge-Barreiro, Francisco J; Suarez-Quintanilla, Juan; Moreno-Piquero, Eduardo; Ares-Pena, Francisco J
2015-01-01
Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes. We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were individually exposed once or repeatedly (10 times in two weeks) for 30 min to 2.45 GHz radiation in a commercial chamber at different non-thermal specific absorption rates (SARs), which were calculated using the finite difference time domain technique. We used immunohistochemistry methods to study the expression of HSP-90 and morphological changes in thyroid gland tissues. Ninety minutes after radiation with the highest SAR, the central and peripheral follicles presented increased size and the thickness of the peripheral septa had decreased. Twenty-four hours after radiation, only peripheral follicles radiated at 12 W were found to be smaller. Peripheral follicles increased in size with repeated exposure at 3 W power. Morphological changes in the thyroid tissue may indicate a glandular response to acute or repeated stress from radiation in the hypothalamic–pituitary–thyroid axis. Further research is needed to determine if the effect of this physical agent over time may cause disease in the human thyroid gland. PMID:25649190
Bodenlenz, M; Ellmerer, M; Schaupp, L; Jacobsen, L V; Plank, J; Brunner, G A; Wutte, A; Aigner, B; Mautner, S I; Pieber, T R
2015-12-01
To find an explanation for the lower potency of insulin detemir observed in humans compared with unmodified human insulin by investigating insulin detemir and human insulin concentrations directly at the level of peripheral insulin-sensitive tissues in humans in vivo. Euglycaemic-hyperinsulinaemic clamp experiments were performed in healthy volunteers. Human insulin was administered i.v. at 6 pmol/kg/min and insulin detemir at 60 pmol/kg/min, achieving a comparable steady-state pharmacodynamic action. In addition, insulin detemir was doubled to 120 pmol/kg/min. Minimally invasive open-flow microperfusion (OFM) sampling methodology was combined with inulin calibration to quantify human insulin and insulin detemir in the interstitial fluid (ISF) of subcutaneous adipose and skeletal muscle tissue. The human insulin concentration in the ISF was ∼115 pmol/l or ∼30% of the serum concentration, whereas the insulin detemir concentration in the ISF was ∼680 pmol/l or ∼2% of the serum concentration. The molar insulin detemir interstitial concentration was five to six times higher than the human insulin interstitial concentration and metabolic clearance of insulin detemir from serum was substantially reduced compared with human insulin. OFM proved useful for target tissue measurements of human insulin and the analogue insulin detemir. Our tissue data confirm a highly effective retention of insulin detemir in the vascular compartment. The higher insulin detemir relative to human insulin tissue concentrations at comparable pharmacodynamics, however, indicate that the lower potency of insulin detemir in humans is attributable to a reduced effect in peripheral insulin-sensitive tissues and is consistent with the reduced in vitro receptor affinity. © 2015 John Wiley & Sons Ltd.
Deanol affects choline metabolism in peripheral tissues of mice.
Haubrich, D R; Gerber, N H; Pflueger, A B
1981-08-01
Administration of 2-dimethylaminoethanol (deanol) to mice induced an increase in both the concentration and the rate of turnover of free choline in blood. Treatment with deanol also caused an increase in the concentration of choline in kidneys, and markedly inhibited the rates of oxidation and phosphorylation of intravenously administered [3H-methyl]choline. In the liver, deanol inhibited the rate of phosphorylation of [3H-methyl]choline, but did not inhibit its rate of oxidation or cause an increase in the level of free choline. These findings suggest that deanol increases the choline concentration in blood by inhibition of its metabolism in tissues. Deanol may ultimately produce its central cholinergic effects by inhibition of choline metabolism in peripheral tissues, causing free choline choline to accumulate in blood, enter the brain, and stimulate cholinergic receptors.
Heart over mind: metabolic control of white adipose tissue and liver.
Nakamura, Michinari; Sadoshima, Junichi
2014-12-01
Increasing evidence suggests that the heart controls the metabolism of peripheral organs. Olson and colleagues previously demonstrated that miR‐208a controls systemic energy homeostasis through the regulation of MED13 in cardiomyocytes (Grueter et al, 2012). In their follow‐up study in this issue of EMBO Molecular Medicine, white adipose tissue (WAT) and liver are identified as the physiological targets of cardiac MED13 signaling, most likely through cardiac‐derived circulating factors, which boost energy consumption by upregulating metabolic gene expression and increasing mitochondrial numbers (Baskin et al, 2014). In turn, increased energy expenditure in WAT and the liver confers leanness. These findings strengthen the evidence of metabolic crosstalk between the heart and peripheral tissues through cardiokines and also set the stage for the development of novel treatments for metabolic syndrome.
Development of A Novel Murine Model of Combined Radiation and Peripheral Tissue Trauma Injuries
Antonic, Vlado; Jackson, Isabel L.; Ganga, Gurung; Shea-Donohue, Terez; Vujaskovic, Zeljko
2017-01-01
Detonation of a 10-kiloton nuclear bomb in an urban setting would result in >1 million casualties, the majority of which would present with combined injuries. Combined injuries, such as peripheral tissue trauma and radiation exposure, trigger inflammatory events that lead to multiple organ dysfunction (MOD) and death, with gastrointestinal (GI) and pulmonary involvement playing crucial roles. The objective of this study was to develop an animal model of combined injuries, peripheral tissue trauma (TBX animal model) combined with total body irradiation with 5% bone marrow shielding (TBI/BM5) to investigate if peripheral tissue trauma contributes to reduced survival. Male C57BL/6J mice were exposed to TBX10%, irradiation (TBI/BM5), or combined injuries (TBX10% + TBI/BM5). Experiments were conducted to evaluate mortality at day 7 after TBI/BM5. Serial euthanasia was performed at day 1, 3 and 6 or 7 after TBI/BM5 to evaluate the time course of pathophysiologic processes in combined injuries. Functional tests were performed to assess pulmonary function and GI motility. Postmortem samples of lungs and jejunum were collected to assess tissue damage. Results indicated higher lethality and shorter survival in the TBX10% +T BI/BM5 group than in the TBX10% or TBI/BM5 groups (day 1 vs. day 7 and 6, respectively). TBI/BM5 alone had no effects on the lungs but significantly impaired GI function at day 6. As expected, in the animals that received severe trauma (TBX10%), we observed impairment in lung function and delay in GI transit in the first 3 days, effects that decreased at later time points. Trauma combined with radiation (TBX10% + TBI/BM5) significantly augmented impairment of the lung and GI function in comparison to TBX10% and TBI/BM5 groups at 24 h. Histologic evaluation indicated that combined injuries caused greater tissue damage in the intestines in TBX10% + TBI/BM5 group when compared to other groups. We describe here the first combined tissue trauma/radiation injury model that will allow conduction of mechanistic studies to identify new therapeutic targets and serve as a platform for testing novel therapeutic interventions. PMID:28118112
Changes in gravity inhibit lymphocyte locomotion through type I collagen
NASA Technical Reports Server (NTRS)
Pellis, N. R.; Goodwin, T. J.; Risin, D.; McIntyre, B. W.; Pizzini, R. P.; Cooper, D.; Baker, T. L.; Spaulding, G. F.
1997-01-01
Immunity relies on the circulation of lymphocytes through many different tissues including blood vessels, lymphatic channels, and lymphoid organs. The ability of lymphocytes to traverse the interstitium in both nonlymphoid and lymphoid tissues can be determined in vitro by assaying their capacity to locomote through Type I collagen. In an attempt to characterize potential causes of microgravity-induced immunosuppression, we investigated the effects of simulated microgravity on human lymphocyte function in vitro using a specialized rotating-wall vessel culture system developed at the Johnson Space Center. This very low shear culture system randomizes gravitational vectors and provides an in vitro approximation of microgravity. In the randomized gravity of the rotating-wall vessel culture system, peripheral blood lymphocytes did not locomote through Type I collagen, whereas static cultures supported normal movement. Although cells remained viable during the entire culture period, peripheral blood lymphocytes transferred to unit gravity (static culture) after 6 h in the rotating-wall vessel culture system were slow to recover and locomote into collagen matrix. After 72 h in the rotating-wall vessel culture system and an additional 72 h in static culture, peripheral blood lymphocytes did not recover their ability to locomote. Loss of locomotory activity in rotating-wall vessel cultures appears to be related to changes in the activation state of the lymphocytes and the expression of adhesion molecules. Culture in the rotating-wall vessel system blunted the ability of peripheral blood lymphocytes to respond to polyclonal activation with phytohemagglutinin. Locomotory response remained intact when peripheral blood lymphocytes were activated by anti-CD3 antibody and interleukin-2 prior to introduction into the rotating-wall vessel culture system. Thus, in addition to the systemic stress factors that may affect immunity, isolated lymphocytes respond to gravitational changes by ceasing locomotion through model interstitium. These in vitro investigations suggest that microgravity induces non-stress-related changes in cell function that may be critical to immunity. Preliminary analysis of locomotion in true microgravity revealed a substantial inhibition of cellular movement in Type I collagen. Thus, the rotating-wall vessel culture system provides a model for analyzing the microgravity-induced inhibition of lymphocyte locomotion and the investigation of the mechanisms related to lymphocyte movement.
Proffen, Benedikt L; Vavken, Patrick; Haslauer, Carla M; Fleming, Braden C; Harris, Chad E; Machan, Jason T; Murray, Martha M
2015-02-01
Coculture of mesenchymal stem cells (MSCs) from the retropatellar fat pad and peripheral blood has been shown to stimulate anterior cruciate ligament (ACL) fibroblast proliferation and collagen production in vitro. Current techniques of bioenhanced ACL repair in animal studies involve adding a biologic scaffold, in this case an extracellular matrix-based scaffold saturated with autologous whole blood, to a simple suture repair of the ligament. Whether the enrichment of whole blood with MSCs would further improve the in vivo results of bioenhanced ACL repair was investigated. The addition of MSCs derived from adipose tissue or peripheral blood to the blood-extracellular matrix composite, which is used in bioenhanced ACL repair to stimulate healing, would improve the biomechanical properties of a bioenhanced ACL repair after 15 weeks of healing. Controlled laboratory study. Twenty-four adolescent Yucatan mini-pigs underwent ACL transection followed by (1) bioenhanced ACL repair, (2) bioenhanced ACL repair with the addition of autologous adipose-derived MSCs, and (3) bioenhanced ACL repair with the addition of autologous peripheral blood derived MSCs. After 15 weeks of healing, the structural properties of the ACL (yield load, failure load, and linear stiffness) were measured. Cell and vascular density were measured in the repaired ACL via histology, and its tissue structure was qualitatively evaluated using the advanced Ligament Maturity Index. After 15 weeks of healing, there were no significant improvements in the biomechanical or histological properties with the addition of adipose-derived MSCs. The only significant change with the addition of peripheral blood MSCs was an increase in knee anteroposterior laxity when measured at 30° of flexion. These findings suggest that the addition of adipose or peripheral blood MSCs to whole blood before saturation of an extracellular matrix carrier with the blood did not improve the functional results of bioenhanced ACL repair after 15 weeks of healing in the pig model. Whole blood represents a practical biologic additive to ligament repair, and any other additive (including stem cells) should be demonstrated to be superior to this baseline before clinical use is considered. © 2014 The Author(s).
Improved Arthroscopic Visualization of Peripheral Compartment
Suslak, Adam G.; Mather, Richard C.; Kelly, Bryan T.; Nho, Shane J.
2012-01-01
Femoroacetabular impingement is a recognized cause of hip pain and motion restrictions. Advancements in hip arthroscopy have allowed surgeons the ability to treat this condition more effectively. However, the learning curve is steep for osteochondroplasty of the femoral head-neck junction in the peripheral compartment. Therefore we present a reproducible technique that allows improved visualization of the peripheral compartment and treatment of the cam lesion with hip arthroscopy. Our technique uses the anterior portal as a viewing portal, a distal anterolateral accessory portal as a working portal, and the anterolateral portal for soft-tissue retraction. PMID:23766977
Meningoceles, meningomyeloceles, and encephaloceles: a neuro-dermatopathologic study of 132 cases.
Berry, A D; Patterson, J W
1991-06-01
Because there have been few comprehensive histopathologic studies of meningomyeloceles and related malformations, we undertook a systematic study of these lesions. One hundred and thirty two cases were obtained from our surgical pathology files; these included 38 meningoceles, 71 meningomyeloceles, and 23 encephaloceles. Tissue sections were stained with hematoxylin and eosin; special stains included trichrome, alcian blue, Fontana-Masson, Nissl, Holzer, and immunoperoxidase for glial fibrillary acidic protein. Epithelial changes included ulceration, atrophy, or nevoid hyperplasia of the epidermis, and loss of appendages. Mesodermal features included fibrous zones resembling dura, subarachnoid tissue or scar (99% of cases), increased numbers of blood vessels (83%), hypertrophy of arrector pili muscle (42%), lipoma formation (38%), and immature skeletal muscle fibers (5%) that rarely intermingled with neuropil-like matrix. The latter tissue was identified in 71% of cases and included neurons, astrocytes, oligodendroglia, and ependyma. Forty-eight percent of cases included peripheral nerve fibers or roots, and some fibers formed onion bulb or Pacinian corpuscle-like structures. Meningothelial cells were observed in 26% of cases and sometimes formed recognizable whorls. Choroid plexus was noted in 3 cases, one example showing an unusual dystrophic calcification that formed long parallel spicules. Pigmented dendritic cells were observed within zones of fibrous tissue in 10% of cases. These malformations involve complex arrangements of cutaneous, neuroectodermal, and mesodermal elements. Because they may be encountered by dermatopathologists, familiarity with the microscopic features of dysraphic lesions is essential.
Lovy, Jan; Lewis, N.L.; Hershberger, P.K.; Bennett, W.; Meyers, T.R.; Garver, K.A.
2012-01-01
Viral hemorrhagic septicemia virus (VHSV) genotype IVa causes mass mortality in wild Pacific herring, a species of economic value, in the Northeast Pacific Ocean. Young of the year herring are particularly susceptible and can be carriers of the virus. To understand its pathogenesis, tissue and cellular tropisms of VHSV in larval and juvenile Pacific herring were investigated with immunohistochemistry, transmission electron microscopy, and viral tissue titer. In larval herring, early viral tropism for epithelial tissues (6d post-exposure) was indicated by foci of epidermal thickening that contained heavy concentrations of virus. This was followed by a cellular tropism for fibroblasts within the fin bases and the dermis, but expanded to cells of the kidney, liver, pancreas, gastrointestinal tract and meninges in the brain. Among wild juvenile herring that underwent a VHS epizootic in the laboratory, the disease was characterized by acute and chronic phases of death. Fish that died during the acute phase had systemic infections in tissues including the submucosa of the gastrointestinal tract, spleen, kidney, liver, and meninges. The disease then transitioned into a chronic phase that was characterized by the appearance of neurological signs including erratic and corkscrew swimming and darkening of the dorsal skin. During the chronic phase viral persistence occurred in nervous tissues including meninges and brain parenchymal cells and in one case in peripheral nerves, while virus was mostly cleared from the other tissues. The results demonstrate the varying VHSV tropisms dependent on the timing of infection and the importance of neural tissues for the persistence and perpetuation of chronic infections in Pacific herring.
Physiologic Pressure and Flow Changes During Parabolic Flight (Pilot Study)
NASA Technical Reports Server (NTRS)
Pantalos, George; Sharp, M. Keith; Mathias, John R.; Hargens, Alan R.; Watenpaugh, Donald E.; Buckey, Jay C.
1999-01-01
The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.
Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology.
Leliavski, Alexei; Dumbell, Rebecca; Ott, Volker; Oster, Henrik
2015-02-01
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders. © 2014 The Author(s).
Miller, V.; Lin, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Brettschneider, J.; Fridman, G.; Fridman, A.; Autieri, M.
2015-01-01
Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue. PMID:26543345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, V., E-mail: vmiller@coe.drexel.edu; Lin, A.; Brettschneider, J.
Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of themore » tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.« less
An integrated theoretical-experimental approach to accelerate translational tissue engineering.
Coy, Rachel H; Evans, Owen R; Phillips, James B; Shipley, Rebecca J
2018-01-01
Implantable devices utilizing bioengineered tissue are increasingly showing promise as viable clinical solutions. The design of bioengineered constructs is currently directed according to the results of experiments that are used to test a wide range of different combinations and spatial arrangements of biomaterials, cells and chemical factors. There is an outstanding need to accelerate the design process and reduce financial costs, whilst minimizing the required number of animal-based experiments. These aims could be achieved through the incorporation of mathematical modelling as a preliminary design tool. Here we focus on tissue-engineered constructs for peripheral nerve repair, which are designed to aid nerve and blood vessel growth and repair after peripheral nerve injury. We offer insight into the role that mathematical modelling can play within tissue engineering, and motivate the use of modelling as a tool capable of improving and accelerating the design of nerve repair constructs in particular. Specific case studies are presented in order to illustrate the potential of mathematical modelling to direct construct design. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Yeckel, Catherine W; Dziura, James; DiPietro, Loretta
2008-04-01
Excess abdominal adiposity is a primary factor for insulin resistance in older age. Our objectives were to examine the role of abdominal obesity on adipose tissue, hepatic, and peripheral insulin resistance in aging, and to examine impaired free fatty acid metabolism as a mechanism in these relations. This was a cross-sectional study. The study was performed at a General Clinical Research Center. Healthy, inactive older (>60 yr) women (n = 25) who were not on hormone replacement therapy or glucose-lowering medication were included in the study. Women with abdominal circumference values above the median (>97.5 cm) were considered abdominally obese. Whole-body peripheral glucose utilization, adipose tissue lipolysis, and hepatic glucose production were measured using in vivo techniques according to a priori hypotheses. In the simple analysis, glucose utilization at the 40 mU insulin dose (6.3 +/- 2.8 vs. 9.1 +/- 3.4; P < 0.05), the index of the insulin resistance of basal hepatic glucose production (23.6 +/- 13.0 vs. 15.1 +/- 6.0; P < 0.05), and insulin-stimulated suppression of lipolysis (35 vs. 54%; P < 0.05) were significantly different between women with and without abdominal obesity, respectively. Using the glycerol appearance rate to free fatty acid ratio as an index of fatty acid reesterification revealed markedly blunted reesterification in the women with abdominal adiposity under all conditions: basal (0.95 +/- 0.29 vs. 1.35 +/- 0.47; P < 0.02); low- (2.58 +/- 2.76 vs. 6.95 +/- 5.56; P < 0.02); and high-dose (4.46 +/- 3.70 vs. 12.22 +/- 7.13; P < 0.01) hyperinsulinemia. Importantly, fatty acid reesterification was significantly (P < 0.01) associated with abdominal circumference and hepatic and peripheral insulin resistance, regardless of total body fat. These findings support the premise of dysregulated fatty acid reesterification with abdominal obesity as a pathophysiological link to perturbed glucose metabolism across multiple tissues in aging.
Neurologic disorders of mineral metabolism and parathyroid disease.
Agrawal, Lily; Habib, Zeina; Emanuele, Nicholas V
2014-01-01
Disorders of mineral metabolism may cause neurologic manifestations of the central and peripheral nervous systems. This is because plasma calcium stabilizes excitable membranes in the nerve and muscle tissue, magnesium is predominantly intracellular and is required for activation of many intracellular enzymes, and extracellular magnesium affects synaptic transmission. This chapter reviews abnormalities in electrolytes and minerals which can be associated with several neuromuscular symptoms including neuromuscular irritability, mental status changes, cardiac and smooth muscle changes, etc. © 2014 Elsevier B.V. All rights reserved.
Ding, Tao; Yao, Yeumang; Praticò, Domenico
2005-05-01
In recent years oxidative stress has been widely implicated as a pathogenetic mechanism of several diseases, and a variety of indices and assays have been developed to assess this phenomenon in complex biological systems. Most of these biomarkers can be measured virtually in every biological fluid and tissue, providing us with the opportunity to assess their formation at local site of oxidative injury. However, despite their widespread use, it is still not completely clear how their peripheral formation correlates with the levels measured in the central nervous system. For this reason, we utilized two well-characterized animal models of chronic peripheral oxidative stress, low-density lipoprotein receptor (LDLR)-deficient and C57BL/6 mice on a high fat diet. After 8 weeks on the diet, we assessed isoprostane, marker of lipid peroxidation, and carbonyls, marker of protein oxidation, in several organs of these animals. Compared with animals on chow, mice on the high fat diet showed a significant increase in both biomarkers in plasma, heart, aorta and liver but not in brain tissues. This observation was confirmed by the selective accumulation of radioactivity in the peripheral organs but not in the brains of mice injected with tritiated isoprostane. Our findings indicate that in hypercholesterolemia the peripheral formation of oxidative products does not contribute to their levels found in the central nervous system.
Nerve regeneration with aid of nanotechnology and cellular engineering.
Sedaghati, Tina; Yang, Shi Yu; Mosahebi, Afshin; Alavijeh, Mohammad S; Seifalian, Alexander M
2011-01-01
Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.
Nonoxidative free fatty acid disposal is greater in young women than men.
Koutsari, Christina; Basu, Rita; Rizza, Robert A; Nair, K Sreekumaran; Khosla, Sundeep; Jensen, Michael D
2011-02-01
Large increases in systemic free fatty acid (FFA) availability in the absence of a corresponding increase in fatty acid oxidation can create a host of metabolic abnormalities. These adverse responses are thought to be the result of fatty acids being shunted into hepatic very low-density lipoprotein-triglyceride production and/or intracellular lipid storage and signaling pathways because tissues are forced to increase nonoxidative FFA disposal. The objective of the study was to examine whether variations in postabsorptive nonoxidative FFA disposal within the usual range predict insulin resistance and hypertriglyceridemia. We measured: systemic FFA turnover using a continuous iv infusion of [9-10, (3)H]palmitate; substrate oxidation with indirect calorimetry combined with urinary nitrogen excretion; whole-body and peripheral insulin sensitivity with the labeled iv glucose tolerance test minimal model. the study was conducted at the Mayo Clinic General Clinical Research Center. Participants included healthy, postabsorptive, nonobese adults (21 women and 21 men). There were no interventions. Nonoxidative FFA disposal (micromoles per minute), defined as the FFA disappearance rate minus fatty acid oxidation. Women had 64% greater nonoxidative FFA disposal rate than men but a better lipid profile and similar insulin sensitivity. There was no significant correlation between nonoxidative FFA disposal and whole-body sensitivity, peripheral insulin sensitivity, or fasting serum triglyceride concentrations in men or women. Healthy nonobese women have greater rates of nonoxidative FFA disposal than men, but this does not appear to relate to adverse health consequences. Understanding the sex-specific interaction between adipose tissue lipolysis and peripheral FFA removal will help to discover new approaches to treat FFA-induced abnormalities.
Han, Sheng; Deng, Jian; Wang, Zixun; Liu, Huan; Cheng, Wen; Wu, Anhua
2017-10-01
Human leukocyte antigens (HLAs) play an important role in host defense against viral infection and tumorigenesis. Human cytomegalovirus (HCMV) has been linked to glioma development. This study investigated the relationship between HLA distribution, presence of HCMV, and glioma development in a Han Chinese population. The study population included 150 glioma patients and 150 tumor-free brain injury control subjects (control-A) matched according to geography, ethnicity, age, and gender. HLA allele frequency was compared between the two groups using peripheral blood samples by PCR sequence-based typing. These data were also compared with HLA frequencies obtained from a Northern Chinese Han population database (control-B). HCMV DNA was detected in the peripheral blood of glioma patients and control group-A by nested PCR. The expression of HCMV proteins IE1-72 and pp65 in tumor tissues was evaluated by immunohistochemistry. The frequency of HLA-A*02:01 was decreased in glioma patients as compared to control group-A and -B (P < 0.001 and P = 0.001, respectively). The age/sex-adjusted odds ratio for HLA-A*02:01 positivity vs. negativity was 0.392 (95% confidence interval 0.225-0.683). HCMV was more frequently detected in the peripheral blood and tumor tissue of HLA-A*02:01-negative glioma patients. HLA-A*02:01 and HCMV were not associated with overall survival. There is a correlation between decreased HLA-A*0201 allele frequency and glioma susceptibility.
New Insights into Thyroid Hormone Action
Mendoza, Arturo; Hollenberg, Anthony N.
2017-01-01
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) concentrations in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling. PMID:28174093
Mapping pharmaceuticals in rat brain sections using MALDI imaging mass spectrometry.
Hsieh, Yunsheng; Li, Fangbiao; Korfmacher, Walter A
2010-01-01
Matrix-assisted laser desorption/ionization-tandem mass spectrometric method (MALDI-MS/MS) has proven to be a reliable tool for direct measurement of the disposition of small molecules in animal tissue sections. As example, MALDI-MS/MS imaging system was employed for visualizing the spatial distribution of astemizole and its primary metabolite in rat brain tissues. Astemizole is a second-generation antihistamine, a block peripheral H1 receptor, which was introduced to provide comparable therapeutic benefit but was withdrawn in most countries due to toxicity risks. Astemizole was observed to be heterogeneously distributed to most parts of brain tissue slices including cortex, hippocampus, hypothalamic, thalamus, and ventricle regions while its major metabolite, desmethylastemizole, was only found around ventricle sites. We have shown that astemizole alone is likely to be responsible for the central nervous system (CNS) side effects when its exposures became elevated.
Comparative distribution of misonidazole and its amine metabolite in female Swiss Webster mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Born, J.L.; Hadley, W.M.
1985-06-01
The distribution of misonidazole and its terminal reduction product 1-(2-amino-1-imidazolyl)-3-methoxy-2-propanol (misoamine) were compared in female Swiss Webster mice to determine if either misonidazole or misoamine is distributed to peripheral nerves. Female Swiss Webster mice received a 100 mg/kg (5 ..mu..Ci/..mu..mole) i.p. dose of either /sup 3/H-misonidazole or /sup 3/H-miso-amine and the distribution of radioactivity was determined in various tissues including sciatic nerves and other myelinated nerves. Misonidazole produced higher initial tissue concentrations of radioactivity than did miso-amine. The relative tissue concentrations of radioactivity produced by misonidazole or miso-amine were similar, although not identical, 48 hours after administration of the drugs.more » Both sciatic and other myelinated nerves were found to retain radioactivity following the administration of either misonidazole or miso-amine.« less
Effects of drugs on the efficacy of radioiodine (|) therapy in hyperthyroid patients.
Oszukowska, Lidia; Knapska-Kucharska, Małgorzata; Lewiński, Andrzej
2010-03-01
The treatment of hyperthyroidism is targeted at reducing the production of thyroid hormones by inhibiting their synthesis or suppressing their release, as well as by controlling their influence on peripheral tissue (conservative therapy, medical treatment). Radical treatment includes surgical intervention to reduce the volume of thyroid tissue or damage of the mechanisms of thyroid hormone synthesis by radioiodine ((131)|) administration. Radioiodine ((131)|) is a reactor radionuclide, produced as a result of uranium decomposition and emission of β and γ radiation. The therapeutic effects of the isotope are obtained by the emission of β radiation. In the paper, the effects of administered drugs (antithyroid, glucocorticosteroids, lithium carbonate, inorganic iodine, β-blockers) on the final outcome of radioiodine therapy in patients with hyperthyroidism are discussed.
Central insulin action in energy and glucose homeostasis.
Plum, Leona; Belgardt, Bengt F; Brüning, Jens C
2006-07-01
Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.
Scratching the surface: the processing of pain from deep tissues.
Sikandar, Shafaq; Aasvang, Eske Kvanner; Dickenson, Anthony H
2016-04-01
Although most pain research focuses on skin, muscles, joints and viscerae are major sources of pain. We discuss the mechanisms of deep pains arising from somatic and visceral structures and how this can lead to widespread manifestations and chronification. We include how both altered peripheral and central sensory neurotransmission lead to deep pain states and comment on key areas such as top-down modulation where little is known. It is vital that the clinical characterization of deep pain in patients is improved to allow for back translation to preclinical models so that the missing links can be ascertained. The contribution of deeper somatic and visceral tissues to various chronic pain syndromes is common but there is much we need to know.
Nuclear receptors and metabolism: from feast to famine.
Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M
2014-05-01
The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.
Stem cell regenerative potential for plastic and reconstructive surgery.
Boháč, Martin; Csöbönyeiová, Mária; Kupcová, Ida; Zamborský, Radoslav; Fedeleš, Jozef; Koller, Ján
2016-12-01
Stem cells represent heterogeneous population of undifferentiated cells with unique characteristics of long term self renewal and plasticity. Moreover, they are capable of active migration to diseased tissues, secretion of different bioactive molecules, and they have immunosuppressive potential as well. They occur in all tissues through life and are involved in process of embryogenesis and regeneration. During last decades stem cells attracted significant attention in each field of medicine, including plastic and reconstructive surgery. The main goal of the present review article is to present and discuss the potential of stem cells and to provide information about their safe utilization in chronic wounds and fistulae healing, scar management, breast reconstruction, as well as in bone, tendon and peripheral nerve regeneration.
Naive and effector B-cell subtypes are increased in chronic rhinosinusitis with polyps.
Miljkovic, Dijana; Psaltis, Alkis; Wormald, Peter-John; Vreugde, Sarah
2018-01-01
Recent studies demonstrated that B cells and their chemoattractants are elevated in the nasal mucosa of patients with chronic rhinosinusitis (CRS) with nasal polyposis (CRSwNP). However, the presence of naive B cells and of plasmablasts and memory B-cell subsets in the mucosa and periphery of the same patient with CRS is yet to be characterized. Here we sought to quantify naive, plasmablasts, and memory B cells in mucosal tissue and peripheral blood of patients with CRSwNP, patients with CRS without nasal polyps (CRSsNP), and control patients. Polyps, mucosa, and peripheral blood samples were prospectively collected from the patients with CRS and from the non-CRS controls. We used flow cytometry to distinguish among naive, plasmablast, and memory B cells in sinus tissue and peripheral blood. A total of 45 patients were recruited for the study. The patients with CRSwNP had significantly increased mucosal B-cell numbers versus the controls (3.39 ± 4.05% versus 0.39 ± 1.05% of live cells; p < 0.01, Kruskal-Wallis test), which included naive B cells (0.61 ± 0.94 versus 0.11 ± 0.24% of live cells; p < 0.03, Kruskal-Wallis test), plasmablasts (0.06 ± 0.26 versus 0.00 ± 0.00% of live cells; p < 0.055, Kruskal-Wallis test), and memory B cells (0.62 ± 1.26 versus 0.05 ± 0.15% of live cells; p < 0.02, Kruskal-Wallis test). Our study identified increased frequencies of different B-cell subtypes in the mucosa of patients with CRSwNP but not in the peripheral blood. We also found that patients with CRSwNP had significantly increased B-cell subtypes compared with the patients with CRSsNP and the controls. These results implied a potential role for mucosal B cells in the ongoing inflammation in patients with CRSwNP.
Naive and effector B-cell subtypes are increased in chronic rhinosinusitis with polyps
Miljkovic, Dijana; Psaltis, Alkis; Wormald, Peter-John
2018-01-01
Background: Recent studies demonstrated that B cells and their chemoattractants are elevated in the nasal mucosa of patients with chronic rhinosinusitis (CRS) with nasal polyposis (CRSwNP). However, the presence of naive B cells and of plasmablasts and memory B-cell subsets in the mucosa and periphery of the same patient with CRS is yet to be characterized. Objective: Here we sought to quantify naive, plasmablasts, and memory B cells in mucosal tissue and peripheral blood of patients with CRSwNP, patients with CRS without nasal polyps (CRSsNP), and control patients. Methods: Polyps, mucosa, and peripheral blood samples were prospectively collected from the patients with CRS and from the non-CRS controls. We used flow cytometry to distinguish among naive, plasmablast, and memory B cells in sinus tissue and peripheral blood. Results: A total of 45 patients were recruited for the study. The patients with CRSwNP had significantly increased mucosal B-cell numbers versus the controls (3.39 ± 4.05% versus 0.39 ± 1.05% of live cells; p < 0.01, Kruskal-Wallis test), which included naive B cells (0.61 ± 0.94 versus 0.11 ± 0.24% of live cells; p < 0.03, Kruskal-Wallis test), plasmablasts (0.06 ± 0.26 versus 0.00 ± 0.00% of live cells; p < 0.055, Kruskal-Wallis test), and memory B cells (0.62 ± 1.26 versus 0.05 ± 0.15% of live cells; p < 0.02, Kruskal-Wallis test). Conclusion: Our study identified increased frequencies of different B-cell subtypes in the mucosa of patients with CRSwNP but not in the peripheral blood. We also found that patients with CRSwNP had significantly increased B-cell subtypes compared with the patients with CRSsNP and the controls. These results implied a potential role for mucosal B cells in the ongoing inflammation in patients with CRSwNP. PMID:29336281
Label-free photoacoustic microscopy of peripheral nerves
NASA Astrophysics Data System (ADS)
Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.
2014-01-01
Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies.
Efficacy of platelet-rich fibrin matrix on viability of diced cartilage grafts in a rabbit model.
Güler, İsmail; Billur, Deniz; Aydin, Sevim; Kocatürk, Sinan
2015-03-01
The objective of this study was to compare the viability of cartilage grafts embedded in platelet-rich fibrin matrix (PRFM) wrapped with no material (bare diced cartilage grafts), oxidized methylcellulose (Surgicel), or acellular dermal tissue (AlloDerm). Experimental study. In this study, six New Zealand rabbits were used. Cartilage grafts including perichondrium were excised from each ear and diced into 2-mm-by 2-mm pieces. There were four comparison groups: 1) group A, diced cartilage (not wrapped with any material); 2) group B, diced cartilage wrapped with AlloDerm; 3) group C, diced cartilage grafts wrapped with Surgicel; and 4) group D, diced cartilage wrapped with PRFM. Four cartilage grafts were implanted under the skin at the back of each rabbit. All rabbits were sacrificed at the end of 10 weeks. The cartilages were stained with hematoxylin-eosin, Masson's Trichrome, and Orcein. After that, they were evaluated for the viability of chondrocytes, collagen content, fibrillar structure of matrix, and changes in peripheral tissues. When the viability of chondrocytes, the content of fiber in matrix, and changes in peripheral tissues were compared, the cartilage embedded in the PRFM group was statistically significantly higher than in the other groups (P < 0.05). We concluded that PRFM has significant advantages in ensuring the chondrocyte viability of diced cartilage grafts. It is also biocompatible, with relatively lesser inflammation and fibrosis. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
The Tissue-Engineered Vascular Graft—Past, Present, and Future
Pashneh-Tala, Samand; MacNeil, Sheila
2016-01-01
Cardiovascular disease is the leading cause of death worldwide, with this trend predicted to continue for the foreseeable future. Common disorders are associated with the stenosis or occlusion of blood vessels. The preferred treatment for the long-term revascularization of occluded vessels is surgery utilizing vascular grafts, such as coronary artery bypass grafting and peripheral artery bypass grafting. Currently, autologous vessels such as the saphenous vein and internal thoracic artery represent the gold standard grafts for small-diameter vessels (<6 mm), outperforming synthetic alternatives. However, these vessels are of limited availability, require invasive harvest, and are often unsuitable for use. To address this, the development of a tissue-engineered vascular graft (TEVG) has been rigorously pursued. This article reviews the current state of the art of TEVGs. The various approaches being explored to generate TEVGs are described, including scaffold-based methods (using synthetic and natural polymers), the use of decellularized natural matrices, and tissue self-assembly processes, with the results of various in vivo studies, including clinical trials, highlighted. A discussion of the key areas for further investigation, including graft cell source, mechanical properties, hemodynamics, integration, and assessment in animal models, is then presented. PMID:26447530
Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.
Wheeler, Marsha M; Robinson, Gene E
2014-07-17
Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture.
Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup
Wheeler, Marsha M.; Robinson, Gene E.
2014-01-01
Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture. PMID:25034029
Adzemovic, Milena Z; Zeitelhofer, Manuel; Leisser, Marianne; Köck, Ulricke; Kury, Angela; Olsson, Tomas
2016-11-14
Immunohistochemistry (IHC) provides highly specific, reliable and attractive protein visualization. Correct performance and interpretation of an IHC-based multicolor labeling is challenging, especially when utilized for assessing interrelations between target proteins in the tissue with a high fat content such as the central nervous system (CNS). Our protocol represents a refinement of the standard immunolabeling technique particularly adjusted for detection of both structural and soluble proteins in the rat CNS and peripheral lymph nodes (LN) affected by neuroinflammation. Nonetheless, with or without further modifications, our protocol could likely be used for detection of other related protein targets, even in other organs and species than here presented.
[The biological and clinical relevance of estrogen metabolome].
Kovács, Krisztián; Vásárhelyi, Barna; Mészáros, Katalin; Patócs, Attila; Karvaly, Gellért
2017-06-01
Considerable knowledge has been gathered on the physiological role of estrogens. However, fairly little information is available on the role of compounds produced in the breakdown process of estrone and estradiol wich may play a role in various diseases associated with estrogen impact. To date, approximately 15 extragonadal estrogen-related compounds have been identified. These metabolites may exert protective, or, instead, pro-inflammatory and/or pro-oncogenic activity in a tissue-specific manner. Systemic and local estrogen metabolite levels are not necesserily correlated, which may promote the diagnostic significance of the locally produced estrogen metabolites in the future. The aim of the present study is a bibliographic review of the extragonadal metabolome in peripheral tissues, and to highlight the role of the peripheral tissue homeostasis of estrogens as well as the non-hormonal biological activity and clinical significance of the estrogen metabolome. Orv Hetil. 2017; 158(24): 929-937.
Leptin: a potential mediator for protective effects of fat mass on bone tissue.
Thomas, Thierry
2003-02-01
Body weight is among the most powerful predictors of bone status, and adipose tissue plays a substantial role in weight-related protective effects on bone. An understanding of the mechanisms underlying the relation between adipose tissue and bone may open up new perspectives for treatment. Leptin, which is known to regulate appetite and energy expenditures, may also contribute to mediate the effects of fat mass on bone. Although reported data are somewhat conflicting, there is some evidence that leptin may decrease bone formation via a central nervous effect and may stimulate both bone formation and bone resorption via direct peripheral effects on stromal precursor cells. The net result of these central and peripheral effects may depend on serum leptin levels and blood-brain barrier permeability, of which the first increase and the second decrease as obesity develops. Further work is needed to improve our understanding of these effects.
Chronobiology in mammalian health.
Liu, Zhihua; Chu, Guiyan
2013-03-01
Circadian rhythms are daily cycles of physiology and behavior that are driven by an endogenous oscillator with a period of approximately one day. In mammals, the hypothalamic suprachiasmatic nuclei are our principal circadian oscillators which influences peripheral tissue clocks via endocrine, autonomic and behavioral cues, and other brain regions and most peripheral tissues contain circadian clocks as well. The circadian molecular machinery comprises a group of circadian genes, namely Clock, Bmal1, Per1, Per2, Per3, Cry1 and Cry2. These circadian genes drive endogenous oscillations which promote rhythmically expression of downstream genes and thereby physiological and behavioral processes. Disruptions in circadian homeostasis have pronounced impact on physiological functioning, overall health and disease susceptibility. This review introduces the general profile of circadian gene expression and tissue-specific circadian regulation, highlights the connection between the circadian rhythms and physiological processes, and discusses the role of circadian rhythms in human disease.
Zehn, Dietmar; Bevan, Michael J.
2009-01-01
Summary T cells causing autoimmunity must escape tolerance. We observed that CD8+ T cells with high avidity for an antigen expressed in the pancreas, kidney, and thymic medulla were efficiently removed from a polyclonal repertoire by central and peripheral tolerance mechanisms. However, both mechanisms spared low-avidity T cells from elimination. Neither the introduction of activated, self-antigen-specific CD4+ helper T cells nor a global inflammatory stimulus were sufficient to activate the low-avidity CD8+ T cells and did not break tolerance. In contrast, challenge with a recombinant bacterium expressing the self antigen primed the low-avidity T cells, and the animals rapidly developed autoimmune diabetes. We suggest that whereas thymic and peripheral tolerance mechanisms remove cells that can be primed by endogenous amounts of self antigen, they do not guard against tissue destruction by low-avidity effector T cells, which have been primed by higher amounts of self antigen or by crossreactive antigens. PMID:16879996
2017-11-01
Adult Alveolar Soft Part Sarcoma; Adult Angiosarcoma; Adult Desmoplastic Small Round Cell Tumor; Adult Epithelioid Hemangioendothelioma; Adult Epithelioid Sarcoma; Adult Extraskeletal Myxoid Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Mesenchymoma; Adult Malignant Peripheral Nerve Sheath Tumor; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Adult Undifferentiated Pleomorphic Sarcoma; Malignant Adult Hemangiopericytoma; Recurrent Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma
Cano, I; Roca, J; Wagner, P D
2015-01-01
Previous models of O2 transport and utilization in health considered diffusive exchange of O2 in lung and muscle, but, reasonably, neglected functional heterogeneities in these tissues. However, in disease, disregarding such heterogeneities would not be justified. Here, pulmonary ventilation–perfusion and skeletal muscle metabolism–perfusion mismatching were added to a prior model of only diffusive exchange. Previously ignored O2 exchange in non-exercising tissues was also included. We simulated maximal exercise in (a) healthy subjects at sea level and altitude, and (b) COPD patients at sea level, to assess the separate and combined effects of pulmonary and peripheral functional heterogeneities on overall muscle O2 uptake ( and on mitochondrial (). In healthy subjects at maximal exercise, the combined effects of pulmonary and peripheral heterogeneities reduced arterial () at sea level by 32 mmHg, but muscle by only 122 ml min−1 (–3.5%). At the altitude of Mt Everest, lung and tissue heterogeneity together reduced by less than 1 mmHg and by 32 ml min−1 (–2.4%). Skeletal muscle heterogeneity led to a wide range of potential among muscle regions, a range that becomes narrower as increases, and in regions with a low ratio of metabolic capacity to blood flow, can exceed that of mixed muscle venous blood. For patients with severe COPD, peak was insensitive to substantial changes in the mitochondrial characteristics for O2 consumption or the extent of muscle heterogeneity. This integrative computational model of O2 transport and utilization offers the potential for estimating profiles of both in health and in diseases such as COPD if the extent for both lung ventilation–perfusion and tissue metabolism–perfusion heterogeneity is known. PMID:25640017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Christopher E.; Wang, Xihai; Robinson, Robert J.
The genetic and inflammatory response pathways elicited following plutonium exposure in archival lung tissue of an occupationally exposed human and experimentally exposed beagle dogs were investigated. These pathways include: tissue injury, apoptosis and gene expression modifications related to carcinogenesis and inflammation. In order to determine which pathways are involved, multiple lung samples from a plutonium exposed worker (Case 0269), a human control (Case 0385), and plutonium exposed beagle dogs were examined using histological staining and immunohistochemistry. Examinations were performed to identify target tissues at risk of radiation-induced fibrosis, inflammation, and carcinogenesis. Case 0269 showed interstitial fibrosis in peripheral and subpleuralmore » regions of the lung, but no pulmonary tumors. In contrast, the dogs with similar and higher doses showed pulmonary tumors primarily in brochiolo-alveolar, peripheral and subpleural alveolar regions. The TUNEL assay showed slight elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris was present in the inflammatory regions of alveoli and lymph nodes of both the human and the dogs. The expression of apoptosis and a number of chemokine/cytokine genes was slightly but not significantly elevated in protein or gene levels compared to that of the control samples. In the beagles, mucous production was increased in the airway epithelial goblet cells and glands of trachea, and a number of chemokine/cytokine genes showed positive immunoreactivity. This analysis of archival tissue from an accidentally exposed worker and in a large animal model provides valuable information on the effects of long-term retention of plutonium in the respiratory tract and the histological evaluation study may impact mechanistic studies of radiation carcinogenesis.« less
Tsilingaridis, G; Yucel-Lindberg, T; Concha Quezada, H; Modéer, T
2014-12-01
Altered immune response may be a major contributor to periodontal disease in Down syndrome. This study investigated the relationship between peripheral lymphocytes and matrix metalloproteinases (MMPs) in serum in Down syndrome children with gingivitis. Children with Down syndrome (n = 10) and healthy controls (n = 10) were clinically and radiographically examined during dental treatment under general anaesthesia. Peripheral blood and gingival crevicular fluid were collected from each subject and concentrations were determined: serum MMP-2, -3, -8 and -9; serum tissue inhibitors of metalloproteinases (TIMP) -1, -2 and -3; and gingival crevicular fluid. Leukocytes were isolated from peripheral blood and the relative amounts (%) of the various cell phenotypes were analysed using flow cytometry. In addition, peripheral blood cells were treated with Porphyromonas gingivalis lipopolysaccharide and levels of MMPs and TIMPs measured. Concentrations of MMP-3, MMP-8 and TIMP-1 in serum were significantly higher (p < 0.05) in the Down syndrome group compared to the controls. When peripheral blood leukocytes were cultured in the presence or absence of P. gingivalis lipopolysaccharide, MMP-8 levels were significantly (p < 0.05) higher in the Down syndrome group compared to controls. Children with Down syndrome exhibited significant positive correlations between CD8(+) T cells and MMP-8 (r = 0.630; p = 0.050), between CD8(+) T cells and MMP-9 (r = 0.648; p = 0.043), and between CD56(+) NK cells and MMP-3 (r = 0.828; p = 0.003) compared to controls. The positive relationship of serum MMP-3, -8 and -9 with immune cells in children with Down syndrome may facilitate migration of CD8(+) T cells and CD56(+) NK cells into the periodontal tissue, which may contribute to the increased degradation of periodontal tissue in individuals with Down syndrome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kader, M; Bixler, S; Piatak, M; Lifson, J; Mattapallil, J J
2009-10-01
Human immuno deficiency virus and simian immunodeficiency virus infections are characterized by a severe loss of Th-17 cells (IL-17(+)CD4(+) T cells) that has been associated with disease progression and systemic dissemination of bacterial infections. Anti-retroviral therapy (ART) has led to repopulation of CD4(+) T cells in peripheral tissues with little sustainable repopulation in mucosal tissues. Given the central importance of Th-17 cells in mucosal homeostasis, it is not known if the failure of ART to permanently repopulate mucosal tissues is associated with a failure to restore Th-17 cells that are lost during infection. Dynamics of alpha4(+)beta7(hi) CD4(+) T cells in peripheral blood of SIV infected rhesus macaques were evaluated and compared to animals that were treated with ART. The frequency of Th-17 and Tc-17 cells was determined following infection and after therapy. Relative expression of IL-21, IL-23, and TGFbeta was determined using Taqman PCR. Treatment of SIV infected rhesus macaques with anti-retroviral therapy was associated with a substantial repopulation of mucosal homing alpha4(+)beta7(hi)CD4(+) T cells in peripheral blood. This repopulation, however, was not accompanied by a restoration of Th-17 responses. Interestingly, SIV infection was associated with an increase in Tc-17 responses (IL-17(+)CD8(+) T cells) suggesting to a skewing in the ratio of Th-17: Tc-17 cells from a predominantly Th-17 phenotype to a predominantly Tc-17 phenotype. Surprisingly, Tc-17 responses remained high during the course of therapy suggesting that ART failed to correct the imbalance in Th-17 : Tc-17 responses induced following SIV infection. ART was associated with substantial repopulation of alpha4(+)beta7(hi) CD4(+) T cells in peripheral blood with little or no rebound of Th-17 cells. On the other hand, repopulation of alpha4(+)beta7(hi) CD4(+) T cells was accompanied by persistence of high levels of Tc-17 cells in peripheral blood. The dysregulation of Th-17 and Tc-17 responses likely plays a role in disease progression.
Characterization and distribution of GHRH, PACAP, TRH, SST and IGF1 mRNAs in the green iguana.
Ávila-Mendoza, José; Pérez-Rueda, Ernesto; Urban-Sosa, Valeria; Carranza, Martha; Martínez-Moreno, Carlos G; Luna, Maricela; Arámburo, Carlos
2018-01-01
The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH 2 ), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues
Andréoletti, Olivier; Orge, Leonor; Benestad, Sylvie L.; Beringue, Vincent; Litaise, Claire; Simon, Stéphanie; Le Dur, Annick; Laude, Hubert; Simmons, Hugh; Lugan, Séverine; Corbière, Fabien; Costes, Pierrette; Morel, Nathalie; Schelcher, François; Lacroux, Caroline
2011-01-01
Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrPSc negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed. PMID:21347349
The carotid body in Sudden Infant Death Syndrome.
Porzionato, Andrea; Macchi, Veronica; Stecco, Carla; De Caro, Raffaele
2013-01-01
The aim of the present study is to provide a review of cytochemical, clinical and experimental data indicating disruption of perinatal carotid body maturation as one of the possible mechanisms underlying SIDS pathogenesis. SIDS victims have been reported to show alterations in respiratory regulation which may partly be ascribed to peripheral arterial chemoreceptors. Carotid body findings in SIDS victims, although not entirely confirmed by other authors, have included reductions in glomic tissue volume and cytoplamic granules of type I cells, changes in cytological composition (higher percentages of progenitor and type II cells) and increases in dopamine and noradrenaline contents. Prematurity and environmental factors, such as exposure to tobacco smoke, substances of abuse, hyperoxia and continuous or intermittent hypoxia, increase the risk of SIDS and are known to affect carotid body functional and structural maturation adversely, supporting a role for peripheral arterial chemoreceptors in SIDS. Copyright © 2012 Elsevier B.V. All rights reserved.
Modeling and processing of laser Doppler reactive hyperaemia signals
NASA Astrophysics Data System (ADS)
Humeau, Anne; Saumet, Jean-Louis; L'Huiller, Jean-Pierre
2003-07-01
Laser Doppler flowmetry is a non-invasive method used in the medical domain to monitor the microvascular blood cell perfusion through tissue. Most commercial laser Doppler flowmeters use an algorithm calculating the first moment of the power spectral density to give the perfusion value. Many clinical applications measure the perfusion after a vascular provocation such as a vascular occlusion. The response obtained is then called reactive hyperaemia. Target pathologies include diabetes, hypertension and peripheral arterial occlusive diseases. In order to have a deeper knowledge on reactive hyperaemia acquired by the laser Doppler technique, the present work first proposes two models (one analytical and one numerical) of the observed phenomenon. Then, a study on the multiple scattering between photons and red blood cells occurring during reactive hyperaemia is carried out. Finally, a signal processing that improves the diagnosis of peripheral arterial occlusive diseases is presented.
Dott, Daltry; Canlas, Christopher; Sobey, Christopher; Obremskey, William; Thomson, Andrew Brian
Necrotizing fasciitis is an infection of the soft tissue that is characterized by rapidly spreading inflammation and subsequent necrosis. It is a rare complication of peripheral nerve blocks. We report a rare case of necrotizing fasciitis after placement of a peripheral nerve catheter. A 58-year-old woman presented for an elective right second metatarsal resection and received a sciatic nerve catheter for postoperative pain control. On postoperative day 7, clinical examination and imaging supported the diagnosis of necrotizing fasciitis. Multiple reports have been published of necrotizing fasciitis after single-shot peripheral nerve block injections, neuraxial anesthesia, and intramuscular injections. This case highlights the potential for the rare complication of necrotizing fasciitis after peripheral nerve catheter placement.
NLR-Dependent Regulation of Inflammation in Multiple Sclerosis
Gharagozloo, Marjan; Gris, Katsiaryna V.; Mahvelati, Tara; Amrani, Abdelaziz; Lukens, John R.; Gris, Denis
2018-01-01
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS. PMID:29403486
Biochemical factors modulating female genital sexual arousal physiology.
Traish, Abdulmaged M; Botchevar, Ella; Kim, Noel N
2010-09-01
Female genital sexual arousal responses are complex neurophysiological processes consisting of central and peripheral components that occur following sexual stimulation. The peripheral responses in sexual arousal include genital vasocongestion, engorgement and lubrication resulting from a surge of vaginal and clitoral blood flow. These hemodynamic events are mediated by a host of neurotransmitters and vasoactive agents. To discuss the role of various biochemical factors modulating female genital sexual arousal responses. A comprehensive literature review was conducted using the PubMed database and citations were selected, based on topical relevance, and examined for study methodology and major findings. Data from peer-reviewed publications. Adrenergic as well as non-adrenergic non-cholinergic neurotransmitters play an important role in regulating genital physiological responses by mediating vascular and non-vascular smooth muscle contractility. Vasoactive peptides and neuropeptides also modulate genital sexual responses by regulating vascular and non-vascular smooth muscle cells and epithelial function. The endocrine milieu, particularly sex steroid hormones, is critical in the maintenance of tissue structure and function. Reduced levels of estrogens and androgen are associated with dramatic alterations in genital tissue structure, including the nerve network, as well as the response to physiological modulators. Furthermore, estrogen and androgen deficiency is associated with reduced expression of sex steroid receptors and most importantly with attenuated genital blood flow and lubrication in response to pelvic nerve stimulation. This article provides an integrated framework describing the physiological and molecular basis of various pathophysiological conditions associated with female genital sexual arousal dysfunction. © 2010 International Society for Sexual Medicine.
Chartrin, P; Bernadet, M D; Sannier, M; Baéza, E
2013-04-01
The aim of this study was to analyse the effects of species (Muscovy and Pekin ducks) and age at the beginning of the overfeeding period on fatty liver production, carcass composition and lipid and moisture content of the liver and breast muscle. We reared four groups of 40 ducks per species for the study, starting at 2-week intervals in order to have four different ages together at the beginning of the overfeeding period (10, 12, 14 and 16 weeks). At the end of the overfeeding period, all ducks were slaughtered. Our results confirmed the high levels of difference in carcass composition and lipid content in the plasma, liver and breast muscle between Muscovy and Pekin ducks at all ages. Pekin ducks were not able to develop a high degree of hepatic steatosis, but had increased lipid storage in peripheral adipose and muscle tissues than Muscovy ducks. However, the fatty liver weight of Pekin ducks increased with age, with lipid deposition in the liver and peripheral tissues. The ability of Muscovy ducks to produce fatty livers remained unchanged with age in line, with lipid deposition in the liver and peripheral tissues. The sites of lipid deposition thus depend on species and not on the physiological maturity of ducks.
Engineering Bi-Layer Nanofibrous Conduits for Peripheral Nerve Regeneration
Zhu, Yiqian; Wang, Aijun; Patel, Shyam; Kurpinski, Kyle; Diao, Edward; Bao, Xuan; Kwong, George; Young, William L.
2011-01-01
Trauma injuries often cause peripheral nerve damage and disability. A goal in neural tissue engineering is to develop synthetic nerve conduits for peripheral nerve regeneration having therapeutic efficacy comparable to that of autografts. Nanofibrous conduits with aligned nanofibers have been shown to promote nerve regeneration, but current fabrication methods rely on rolling a fibrous sheet into the shape of a conduit, which results in a graft with inconsistent size and a discontinuous joint or seam. In addition, the long-term effects of nanofibrous nerve conduits, in comparison with autografts, are still unknown. Here we developed a novel one-step electrospinning process and, for the first time, fabricated a seamless bi-layer nanofibrous nerve conduit: the luminal layer having longitudinally aligned nanofibers to promote nerve regeneration, and the outer layer having randomly organized nanofibers for mechanical support. Long-term in vivo studies demonstrated that bi-layer aligned nanofibrous nerve conduits were superior to random nanofibrous conduits and had comparable therapeutic effects to autografts for nerve regeneration. In summary, we showed that the engineered nanostructure had a significant impact on neural tissue regeneration in situ. The results from this study will also lead to the scalable fabrication of engineered nanofibrous nerve conduits with designed nanostructure. This technology platform can be combined with drug delivery and cell therapies for tissue engineering. PMID:21501089
Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael
2015-03-01
Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10-40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies.
Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael
2015-01-01
Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10–40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies. PMID:25582709
Modulating the Vascular Response to Limb Ischemia Angiogenic and Cell Therapies
Cooke, John P.; Losordo, Douglas W.
2016-01-01
The age-adjusted prevalence of peripheral arterial disease in the US population has been estimated to approach 12%. The clinical consequences of occlusive peripheral arterial disease include pain on walking (claudication), pain at rest, and loss of tissue integrity in the distal limbs; the latter may ultimately lead to amputation of a portion of the lower extremity. Surgical bypass techniques and percutaneous catheter-based interventions may successfully reperfuse the limbs of certain patients with peripheral arterial disease. In many patients, however, the anatomic extent and distribution of arterial occlusion is too severe to permit relief of pain and healing of ischemic ulcers. No effective medical therapy is available for the treatment of such patients, for many of whom amputation represents the only hope for alleviation of symptoms. The ultimate failure of medical treatment and procedural revascularization in significant numbers of patients has led to attempts to develop alternative therapies for ischemic disease. These strategies include administration of angiogenic cytokines, either as recombinant protein or as gene therapy, and more recently, to investigations of stem/progenitor cell therapy. The purpose of this review is to provide an outline of the preclinical basis for angiogenic and stem cell therapies, review the clinical research that has been done, summarize the lessons learned, identify gaps in knowledge, and suggest a course toward successfully addressing an unmet medical need in a large and growing patient population. PMID:25908729
Peptidomics and Secretomics of the Mammalian Peripheral Sensory-Motor System
NASA Astrophysics Data System (ADS)
Tillmaand, Emily G.; Yang, Ning; Kindt, Callie A. C.; Romanova, Elena V.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.
2015-12-01
The dorsal root ganglion (DRG) and its anatomically and functionally associated spinal nerve and ventral and dorsal roots are important components of the peripheral sensory-motor system in mammals. The cells within these structures use a number of peptides as intercellular signaling molecules. We performed a variety of mass spectrometry (MS)-based characterizations of peptides contained within and secreted from these structures, and from isolated and cultured DRG cells. Liquid chromatography-Fourier transform MS was utilized in DRG and nerve peptidome analysis. In total, 2724 peptides from 296 proteins were identified in tissue extracts. Neuropeptides are among those detected, including calcitonin gene-related peptide I, little SAAS, and known hemoglobin-derived peptides. Solid phase extraction combined with direct matrix-assisted laser desorption/ionization time-of-flight MS was employed to investigate the secretome of these structures. A number of peptides were detected in the releasate from semi-intact preparations of DRGs and associated nerves, including neurofilament- and myelin basic protein-related peptides. A smaller set of analytes was observed in releasates from cultured DRG neurons. The peptide signals observed in the releasates have been mass-matched to those characterized and identified in homogenates of entire DRGs and associated nerves. This data aids our understanding of the chemical composition of the mammalian peripheral sensory-motor system, which is involved in key physiological functions such as nociception, thermoreception, itch sensation, and proprioception.
Peptidomics and Secretomics of the Mammalian Peripheral Sensory-Motor System.
Tillmaand, Emily G; Yang, Ning; Kindt, Callie A C; Romanova, Elena V; Rubakhin, Stanislav S; Sweedler, Jonathan V
2015-12-01
The dorsal root ganglion (DRG) and its anatomically and functionally associated spinal nerve and ventral and dorsal roots are important components of the peripheral sensory-motor system in mammals. The cells within these structures use a number of peptides as intercellular signaling molecules. We performed a variety of mass spectrometry (MS)-based characterizations of peptides contained within and secreted from these structures, and from isolated and cultured DRG cells. Liquid chromatography-Fourier transform MS was utilized in DRG and nerve peptidome analysis. In total, 2724 peptides from 296 proteins were identified in tissue extracts. Neuropeptides are among those detected, including calcitonin gene-related peptide I, little SAAS, and known hemoglobin-derived peptides. Solid phase extraction combined with direct matrix-assisted laser desorption/ionization time-of-flight MS was employed to investigate the secretome of these structures. A number of peptides were detected in the releasate from semi-intact preparations of DRGs and associated nerves, including neurofilament- and myelin basic protein-related peptides. A smaller set of analytes was observed in releasates from cultured DRG neurons. The peptide signals observed in the releasates have been mass-matched to those characterized and identified in homogenates of entire DRGs and associated nerves. This data aids our understanding of the chemical composition of the mammalian peripheral sensory-motor system, which is involved in key physiological functions such as nociception, thermoreception, itch sensation, and proprioception.
Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Iwami, Shiho; Yasuda, Shinnosuke; Tahara, Yu; Shibata, Shigenobu
2016-01-01
Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system. PMID:27271267
Lazovic, Biljana; Zlatkovic Svenda, Mirjana; Durmic, Tijana; Stajic, Zoran; Duric, Vesna; Zugic, Vladimir
2016-11-01
The major oxygen sensors in the human body are peripheral chemoreceptors. also known as interoreceptors- as connected with internal organs, located in the aortic arch and in the body of the common carotid artery. Chemoreceptor function under physiological conditions. Stimulation of peripheral chemoreceptors during enviromental hypoxia causes a reflex-mediated increased ventilation, followed by the increase of the muscle sympatic activity, aiming to maintain tissue oxygen homeostatis, as well as glucosae, homeostatis. Besides that, peripheral chemoreceptors interact with central chemoreceptors. responsible for carbon dioxide changes . and they are able to modulate each other. Chemoreceptor function in pathophysiological conditions. Investigations of respiratory function in many pathological processes, such as hypertension, obstructive sleep apnea, congestive heart failure and many other diseases that are presented with enhanced peripheral chemosensitivity and impaired functional sy mpatholysis ultimately determine the peripheral chemorcceptor role and significance of peripheral chemoreceptors in the process of those pathological conditions development. Considering this, the presumed influence of peripheral chemoreceptors is important in patients having the above mentioned pathology. The importance and the role of peripheral chemoreceptors in the course of the breathing control is still controversial, despite many scientific attempts to solve this problem. The main objective of this review is to give the latest data on the peripheral chemoreceptor role and to highlight the importance of peripheral chemoreceptors for maintaining of oxygen homeostasis in pateints with hypoxia caused by either physiological or pathological conditions.
Kagaya, Y; Ohura, N; Suga, H; Eto, H; Takushima, A; Harii, K
2014-04-01
The "tissue oxygen saturation (StO2) foot-mapping" method was developed using a non-invasive near-infrared tissue oximeter monitor to classify the foot regions as ischemic and non-ischemic areas. The purpose of this study was to evaluate StO2 foot-mapping as a reliable method to detect ischemic areas in the feet of patients with critical limb ischemia (CLI), and to compare the results with assessments from the angiosome model. The foot areas of 20 CLI patients and 20 healthy controls were classified into four regions: (1) 0 ≤ StO2 < 30%, (2) 30 ≤ StO2 < 50%, (3) 50 ≤ StO2 < 70%, and (4) 70 ≤ StO2 ≤ 100% to perform StO2 foot-mapping. Each area occupancy rate was compared between the two groups, and the threshold StO2 value for detecting ischemia was set. Next, the locations of ulcers (in 16 patients) were compared to the predicted ischemic regions by the StO2 foot-mapping and by the angiosome model and angiography. In regions (1) and (2) (StO2 < 50%), the area occupancy rate was significantly higher in the CLI group and almost zero in the control group, so that the threshold StO2 value for detecting ischemia was set at 50%. The locations of ulcers were compatible with StO2 foot-mapping in 87.5% of the cases (14/16), while they were compatible with the assessment from the angiosome model in 68.8% of the cases (11/16). This study suggests that StO2 foot-mapping can successfully and non-invasively detect ischemic areas in the peripheral tissue of the foot, and also more appropriately than the assessment provided by the angiosome model. StO2 foot-mapping can be used to evaluate the real angiosome: the real distribution of the peripheral tissue perfusion in the CLI patient's foot, which is determined by the peripheral microvascular blood flow, rather than the main arterial blood flow. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration.
Chang, Wei; Shah, Munish B; Lee, Paul; Yu, Xiaojun
2018-06-01
Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve. Results from this study can help further optimize tissue engineering strategies for peripheral nerve repair. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yu, Xin-Min; Wu, Yi-Chen; Liu, Xiang; Huang, Xian-Cong; Hou, Xiu-Xiu; Wang, Jiu-Li; Cheng, Xiang-Liu; Mao, Wei-Min; Ling, Zhi-Qiang
2016-01-01
Circulating tumor cells (CTCs) have been implicated in tumor progression and prognosis. Techniques detecting CTCs in the peripheral blood of patients with non-small cell lung carcinoma (NSCLC) may help to identify individuals likely to benefit from early systemic treatment. However, the detection of CTCs with a single marker is challenging, owing to low specificity and sensitivity and due to the heterogeneity and rareness of CTCs. Herein, the probability of cell-free RNA content in the peripheral blood as a potential biomarker for detecting CTCs in cancer patients was investigated. An immunomagnetic enrichment of real-time reverse-transcription PCR (RT-PCR) technology for analysis of CTCs in NSCLC patients was also developed. The mRNA levels of four candidate genes, cytokeratin 7 (CK7), E74-like factor 3 (ELF3), epidermal growth factor receptor (EGFR), and erythropoietin-producing hepatocellular carcinoma receptor B4 (EphB4) that were significantly elevated in tumor tissues and peripheral blood mononuclear cells (PBMCs) were determined. The expression of CK7 and ELF3 in tumor tissues and EGFR in PBMCs was associated with lymph node metastasis (all p < 0.05). The expression of CK7 in PBMCs was correlated with age and EphB4 in PBMCs correlated with histopathological type, respectively (all p < 0.05). The expression of all four genes in tumor tissues and PBMCs was significantly correlated with the clinical stage (all p < 0.01). Survival analysis showed that the patients with enhanced expression of CK7, ELF3, EGFR, and EphB4 mRNA in PBMCs had poorer disease-free survival (DFS) and overall survival (OS) than those without (all p < 0.0001). The present study showed that this alteration of cell-free RNA content in peripheral blood might have clinical ramifications in the diagnosis and treatment of NSCLC patients. PMID:27827952
Wettstein, Reto; Tsai, Amy G; Harder, Yves; Erni, Dominique; Intaglietta, Marcos
2006-11-01
Awake hamsters equipped with the dorsal window chamber preparation were subjected to hemorrhage of 50% of the estimated blood volume. Initial resuscitation (25% of estimated blood volume) with polymerized bovine hemoglobin (PBH) or 10% hydroxyethyl starch (HES) occurred in concert with an equivolumetric bleeding to simulate the early, prehospital setting (exchange transfusion). Resuscitation (25% of estimated blood volume) without bleeding was performed with PBH, HES, or autologous red blood cells (HES-RBCs). Peripheral microcirculation, tissue oxygenation, and systemic hemodynamic and blood gas parameters were assessed. After exchange transfusion, base deficit was -8.6 +/- 3.7 mmol/L (PBH) and -5.1 +/- 5.3 mmol/L (HES) (not significant). Functional capillary density was 17% +/- 6% of baseline (PBH) and 31% +/- 11% (HES) (P < 0.05) and arteriolar diameter 73% +/- 3% of baseline (PBH) and 90% + 5% (HES) (P < 0.01). At the end, hemoglobin levels were 3.7 +/- 0.3 g/dL with HES, 8.2 +/- 0.6 g/dL with PBH, and 10.4 +/- 0.8 g/dL with HES-RBCs (P < 0.01 HES vs. PBH and HES-RBCs, P < 0.05 PBH vs. HES-RBCs). Base excess was restored to baseline with PBH and HES-RBCs, but not with HES (P < 0.05). Functional capillary density was 46% +/- 5% of baseline (PBH), 62% + 20% (HES-RBCs), and 36% +/- 19% (HES) (P < 0.01 HES-RBCs vs. HES). Peripheral oxygen delivery and consumption was highest with HES-RBCs, followed by PBH (P < 0.05 HES-RBCs vs. PBH, P < 0.01 HES-RBCs and PBH vs. HES). In conclusion, the PBH led to a correction of base deficit comparable to blood transfusion. However, oxygenation of the peripheral tissue was inferior with PBH. This was attributed to its negative impact on the peripheral microcirculation caused by arteriolar vasoconstriction.
Acute injury in the peripheral nervous system triggers an alternative macrophage response
2012-01-01
Background The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. Methods To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative) using real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemistry. Results Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFNγ, and IL12p40), and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2). The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. Conclusions We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the neurodegeneration-induced immune responses towards an M2/Th2 response could be an important therapeutic strategy. PMID:22818207
Poliszczuk, Tatiana; Mańkowska, Maja; Poliszczuk, Dmytro; Wiśniewski, Andrzej
2013-01-01
The role of psychomotor abilities and their relationship to the morphofunctional characteristics of athletes is becoming more and more emphasized in studies on the subject, especially for disciplines that require athletes to notice and to respond to signals originating in dynamically changing conditions. At the same time, athletes who perform symmetrically are more effective and less likely to sustain an injury through unilateral strain. Assessment of the degree of symmetry and asymmetry of reaction time to stimuli in the central and peripheral visual fields, and assessment of body composition of upper limbs in young female basketball players. Participants of the study comprised 17 young female basketball players. Their average age was 18.11-0.8 years. On average, they had been training basketball for 6.83-1.75 years. Body tissue composition was measured using the bioelectrical impedance method. The degree of symmetry and asymmetry of reaction time to signals in the central and peripheral visual fields were measured using the Reaction Test (RT-S1) and a modified Peripheral Perception (PP) test within the Vienna Test System. An analysis of body tissue composition of the upper right and upper left limbs found an asymmetry (p<0.01 and p<0.05) in the FAT [%], FAT MASS [kg], and FFM [kg] parameters. The values of these parameters were higher for the non-dominant arm. No statistically significant differences were found in reaction time and motor time for the dominant and non-dominant arm. A correlation was found between motor time and the FFM [kg] (r=-0.62; p<0.05) and PMM [kg] (r=-0.63; p<0.05) parameters. A significant asymmetry was found in the body tissue composition of the upper limbs. Asymmetry of reaction time was found only for signals in the peripheral visual field.
Lewden, Agnès; Enstipp, Manfred R; Picard, Baptiste; van Walsum, Tessa; Handrich, Yves
2017-09-01
Marine endotherms living in cold water face an energetically challenging situation. Unless properly insulated, these animals will lose heat rapidly. The field metabolic rate of king penguins at sea is about twice that on land. However, when at sea, their metabolic rate is higher during extended resting periods at the surface than during foraging, when birds descend to great depth in pursuit of their prey. This is most likely explained by differences in thermal status. During foraging, peripheral vasoconstriction leads to a hypothermic shell, which is rewarmed during extended resting bouts at the surface. Maintaining peripheral perfusion during rest in cold water, however, will greatly increase heat loss and, therefore, thermoregulatory costs. Two hypotheses have been proposed to explain the maintenance of a normothermic shell during surface rest: (1) to help the unloading of N 2 accumulated during diving; and (2) to allow the storage of fat in subcutaneous tissue, following the digestion of food. We tested the latter hypothesis by maintaining king penguins within a shallow seawater tank, while we recorded tissue temperature at four distinct sites. When king penguins were released into the tank during the day, their body temperature immediately declined. However, during the night, periodic rewarming of abdominal and peripheral tissues occurred, mimicking temperature patterns observed in the wild. Body temperatures, particularly in the flank, also depended on body condition and were higher in 'lean' birds (after 10 days of fasting) than in 'fat' birds. While not explicitly tested, our observation that nocturnal rewarming persists in the absence of diving activity during the day does not support the N 2 unloading hypothesis. Rather, differences in temperature changes throughout the day and night, and the effect of body condition/mass supports the hypothesis that tissue perfusion during rest is required for nutritional needs. © 2017. Published by The Company of Biologists Ltd.
Cermakian, Nicolas; Whitmore, David; Foulkes, Nicholas S.; Sassone-Corsi, Paolo
2000-01-01
Most clock genes encode transcription factors that interact to elicit cooperative control of clock function. Using a two-hybrid system approach, we have isolated two different partners of zebrafish (zf) CLOCK, which are similar to the mammalian BMAL1 (brain and muscle arylhydrocarbon receptor nuclear translocator-like protein 1). The two homologs, zfBMAL1 and zfBMAL2, contain conserved basic helix–loop–helix-PAS (Period-Arylhydrocarbon receptor-Singleminded) domains but diverge in the carboxyl termini, thus bearing different transcriptional activation potential. As for zfClock, the expression of both zfBmals oscillates in most tissues in the animal. However, in many tissues, the peak, levels, and kinetics of expression are different between the two genes and for the same gene from tissue to tissue. These results support the existence of independent peripheral oscillators and suggest that zfBMAL1 and zfBMAL2 may exert distinct circadian functions, interacting differentially with zfCLOCK at various times in different tissues. Our findings also indicate that multiple controls may be exerted by the central clock and/or that peripheral oscillators can differentially interpret central clock signals. PMID:10760301
Biomechanics and functional morphology of a climbing monocot
Hesse, Linnea; Wagner, Sarah T.; Neinhuis, Christoph
2016-01-01
Plants with a climbing growth habit possess unique biomechanical properties arising from adaptations to changing loading conditions connected with close attachment to mechanical supports. In monocot climbers, mechanical adaptation is restricted by the absence of a bifacial vascular cambium. Flagellaria indica was used to investigate the mechanical properties and adaptations of a monocot climber that, uniquely, attaches to the surrounding vegetation via leaf tendrils. Biomechanical methods such as three-point bending and torsion tests were used together with anatomical studies on tissue development, modification and distribution. In general, the torsional modulus was lower than the bending modulus; hence, torsional stiffness was less than flexural stiffness. Basal parts of mature stems showed the greatest stiffness while that of more apical stem segments levelled off. Mechanical properties were modulated via tissue maturation processes mainly affecting the peripheral region of the stem. Peripheral vascular bundles showed a reduction in the amount of conducting tissue while the proportion and density of the bundle sheath increased. Furthermore, adjacent bundle sheaths merged resulting in a dense ring of fibrous tissue. Although F. indica lacks secondary cambial growth, the climbing habit is facilitated by a complex interaction of tissue maturation and attachment. PMID:26819259
Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R
2017-05-01
Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4 + T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4 + T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4 + T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4 + T-cell populations are generated in peripheral lymph nodes following immunisation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fusaru, Ana Marina; Stănciulescu, Camelia Elena; Surlin, V; Taisescu, C; Bold, Adriana; Pop, O T; Baniţă, Ileana Monica; Crăiţoiu, Stefania; Pisoschi, Cătălina Gabriela
2012-01-01
White adipose tissue from different locations is characterized by significant differences in the structure of adipocyte "secretoma". Fat accumulation in the central-visceral depots is usually associated with a chronic inflammatory state, which is complicated by the metabolic syndrome. Recently, the adipose tissue was emerged to have an essential role in the innate immunity, adipocytes being considered effector cells due to the presence of the Toll-like receptors (TLRs). In this study, we compared the expression of TNF-α, TLR2 and TLR4 in peripheral-subcutaneous and central-peritoneal adipose depots in three different conditions - lean, obese and obese diabetic - using immunohistochemistry. Our results suggest a correlation between the incidence of the stromal vascular cells and adipocytes TNF-α and TLR4 in the visceral depots in strong correlation with adipose tissue expansion. TLR2 positive cells were seen in the peripheral depots from all groups without any association with fat accumulation. These results focus on the existence of a new pathogenic pathway, the activation of TLR4, for the involvement of visceral adipose tissue in the activation and maintenance of the inflammatory cascade in obesity.
[Peripheral refraction: cause or effect of refraction development?
Tarutta, E P; Iomdina, E N; Kvaratskheliya, N G; Milash, S V; Kruzhkova, G V
to study peripheral refraction and the shape of the eyeball in children with different clinical refraction. Using an original method, peripheral refraction was measured at 10-12 degrees temporally and nasally from the fovea in 56 right eyes with different clinical, or axial, refraction of 20 boys and 36 girls aged 7 to 16 years (11.9±1.17 years on average). The shape of the eyeball was judged of by the ratio of its anterior-posterior axial length (AL) to horizontal diameter (HD). The incidence and value of peripheral myopic defocus in children appeared to decrease with clinical refraction increasing from high hyperopia to high myopia. This was the first time, mixed peripheral refraction was found in children, occurring more frequently in higher myopia. This mixed peripheral defocus, shown to be a transitional stage between relative peripheral myopia and relative hyperopia, indicates non-uniform stretching of posterior pole tissues in the course of refraction development and myopia progression. As ocular refraction increases from high hyperopia to high myopia, the growth of AL outpaces that of HD. Obviously, natural peripheral defocus results from changes in size and shape of the eyeball in the course of refraction development.
Lambova, Sevdalina N
2016-01-01
Micro- and macrovascular pathology is a frequent finding in a number of common rheumatic diseases. Secondary Raynaud's phenomenon (RP) is among the most common symptoms in systemic sclerosis and several other systemic autoimmune diseases including a broad differential diagnosis. It should be also differential from other peripheral vascular syndromes such as embolism, thrombosis, etc., some of which lead to clinical manifestation of the blue toe syndrome. The current review discusses the instrumental methods for vascular assessments. Nailfold capillaroscopy is the only method among the imaging techniques that can be used for morphological assessment of the nutritive capillaries in the nailfold area. Laser-Doppler flowmetry and laser-Doppler imaging are methods for functional assessment of microcirculation, while thermography and plethysmography reflect both blood flow in peripheral arteries and microcirculation. Doppler ultrasound and angiography visualize peripheral arteries. The choice of the appropriate instrumental method is guided by the clinical presentation. The main role of capillaroscopy is to provide differential diagnosis between primary and secondary RP. In rheumatology, capillaroscopic changes in systemic sclerosis have been recently defined as diagnostic. The appearance of abnormal capillaroscopic pattern inherits high positive predictive value for the development of a connective tissue disease that is higher than the predictive value of antinuclear antibodies. In cases of abrupt onset of peripheral ischaemia, clinical signs of critical ischaemia, unilateral or lower limb involvement, Doppler ultrasound and angiography are indicated. The most common causes for such clinical picture that may be referred to rheumatologic consultation are the antiphospholipid syndrome, mimickers of vasculitides such as atherosclerosis with cholesterol emboli, and neoplasms.
Yang, Mu; Rainone, Anthony; Shi, Xiang Qun; Fournier, Sylvie; Zhang, Ji
2014-01-08
Spontaneous autoimmune peripheral neuropathy including Guillain-Barré Syndrome (GBS) represents as one of the serious emergencies in neurology. Although pathological changes have been well documented, molecular and cellular mechanisms of GBS are still under-explored, partially due to short of appropriate animal models. The field lacks of spontaneous and translatable models for mechanistic investigations. As GBS is preceded often by viral or bacterial infection, a condition can enhance co-stimulatory activity; we sought to investigate the critical role of T cell co-stimulation in this autoimmune disease. Our previous study reported that transgene-derived constitutive expression of co-stimulator B7.2 on antigen presenting cells of the nervous tissues drove spontaneous neurological disorders. Depletion of CD4+ T cells in L31 mice accelerated the onset and increased the prevalence of the disease. In the current study, we further demonstrated that L31/CD4-/- mice exhibited both motor and sensory deficits, including weakness and paresis of limbs, numbness to mechanical stimuli and hypersensitivity to thermal stimulation. Pathological changes were characterized by massive infiltration of macrophages and CD8+ T cells, demyelination and axonal damage in peripheral nerves, while changes in spinal cords could be secondary to the PNS damage. In symptomatic L31/CD4-/- mice, the disruption of the blood neural barriers was observed mainly in peripheral nerves. Interestingly, the infiltration of immune cells was initiated in pre-symptomatic L31/CD4-/- mice, prior to the disease onset, in the DRG and spinal roots where the blood nerve barrier is virtually absent. L31/CD4-/- mice mimic most parts of clinical and pathological signatures of GBS in human; thus providing an unconventional opportunity to experimentally explore the critical events that lead to spontaneous, autoimmune demyelinating disease of the peripheral nervous system.
2014-01-01
Background Spontaneous autoimmune peripheral neuropathy including Guillain-Barré Syndrome (GBS) represents as one of the serious emergencies in neurology. Although pathological changes have been well documented, molecular and cellular mechanisms of GBS are still under-explored, partially due to short of appropriate animal models. The field lacks of spontaneous and translatable models for mechanistic investigations. As GBS is preceded often by viral or bacterial infection, a condition can enhance co-stimulatory activity; we sought to investigate the critical role of T cell co-stimulation in this autoimmune disease. Results Our previous study reported that transgene-derived constitutive expression of co-stimulator B7.2 on antigen presenting cells of the nervous tissues drove spontaneous neurological disorders. Depletion of CD4+ T cells in L31 mice accelerated the onset and increased the prevalence of the disease. In the current study, we further demonstrated that L31/CD4-/- mice exhibited both motor and sensory deficits, including weakness and paresis of limbs, numbness to mechanical stimuli and hypersensitivity to thermal stimulation. Pathological changes were characterized by massive infiltration of macrophages and CD8+ T cells, demyelination and axonal damage in peripheral nerves, while changes in spinal cords could be secondary to the PNS damage. In symptomatic L31/CD4-/- mice, the disruption of the blood neural barriers was observed mainly in peripheral nerves. Interestingly, the infiltration of immune cells was initiated in pre-symptomatic L31/CD4-/- mice, prior to the disease onset, in the DRG and spinal roots where the blood nerve barrier is virtually absent. Conclusions L31/CD4-/- mice mimic most parts of clinical and pathological signatures of GBS in human; thus providing an unconventional opportunity to experimentally explore the critical events that lead to spontaneous, autoimmune demyelinating disease of the peripheral nervous system. PMID:24401681
Lethal pallister-killian syndrome: Phenotypic similarity with fryns syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignacio Rodriquez, J.; Garcia, I.; Alvarez, J.
1994-11-01
The Pallister-Killian syndrome is a sporadic multiple congenital anomaly syndrome characterized by {open_quotes}coarse{close_quotes} face, profound mental retardation, and epilepsy. Chromosomes of peripheral lymphocytes are usually normal, but tissue cultures show varying degrees of mosaicism for isochromosome 12p. In babies who die neonatally of severe malformations, including diaphragmatic hernia, and who also have a {open_quotes}coarse{close_quotes} face, acral hypoplasia, and other internal anomalies, Fryns syndrome is more likely to be suspected than Pallister-Killian syndrome, especially if karyotyping is unavailable or if peripheral lumphocytes have a normal chromosome constitution. An initial diagnosis of Fryns syndrome had to be modified in 3 successive newbornmore » infants since chromosome analysis or in situ hybridization with a chromosome 12 probe on kidney tissue demonstrated the mosaic aneuploidy characteristic of Pallister-Killian syndrome. These 3 patients confirm that a similar pattern of malformations can be present in both conditions at birth. It consists of {open_quotes}coarse{close_quotes} face, acral hypoplasia, diaphragmatic hernia, and other defects. Newborn infants who present this phenotype, but lack a conclusively normal chromosome test, may not have Fryns syndrome. A diagnosis of Fryns syndrome should be made carefully to avoid the risk of inappropriate genetic counseling. 31 refs., 10 figs., 1 tab.« less
Jensen, Vivi F H; Mølck, Anne-Marie; Berthelsen, Line O; Alifrangis, Lene; Andersen, Lene; Chapman, Melissa; Lykkesfeldt, Jens; Bøgh, Ingrid B
2017-07-01
New insulin analogues with a longer duration of action and a 'peakless' pharmacokinetic profile have been developed to improve efficacy, safety and convenience for patients with diabetes. During non-clinical development, according to regulatory guidelines, these analogues are tested in healthy euglycaemic rats rendering them persistently hypoglycaemic. Little is known about the effect of persistent (24 hr/day) insulin-induced hypoglycaemia (IIH) in rats, complicating interpretation of results in pre-clinical studies with new longer-acting insulin analogues. In this study, we investigated the effects of persistent IIH and their reversibility in euglycaemic rats. Histopathological changes in insulin-infused animals included partly reversible axonal and reversible myofibre degeneration in peripheral nerve and skeletal muscle tissue, respectively, as well as reversible pancreatic islet atrophy and partly reversible increase in unilocular adipocytes in brown adipose tissue. Additionally, results suggested increased gluconeogenesis. The observed hyperphagia, the pancreatic, peripheral nerve and skeletal muscle changes were considered related to the hypoglycaemia. Cessation of insulin infusion resulted in transient hyperglycaemia, decreased food consumption and body-weight loss before returning to control levels. The implications for the interpretation of non-clinical studies with long-acting insulin analogues are discussed. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz-Villasenor, Andrea; Burns, Anna L.; Facultad de Medicina, Universidad Nacional Autonoma de Mexico
2007-12-01
Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for typemore » 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance.« less
Jiao, Jian; Bae, Eun Ju; Bandyopadhyay, Gautam; Oliver, Jason; Marathe, Chaitra; Chen, Michael; Hsu, Jer-Yuan; Chen, Yu; Tian, Hui; Olefsky, Jerrold M; Saberi, Maziyar
2013-04-01
Gastrointestinal bypass surgeries that result in rerouting and subsequent exclusion of nutrients from the duodenum appear to rapidly alleviate hyperglycemia and hyperinsulinemia independent of weight loss. While the mechanism(s) responsible for normalization of glucose homeostasis remains to be fully elucidated, this rapid normalization coupled with the well-known effects of vagal inputs into glucose homeostasis suggests a neurohormonally mediated mechanism. Our results show that duodenal bypass surgery on obese, insulin-resistant Zucker fa/fa rats restored insulin sensitivity in both liver and peripheral tissues independent of body weight. Restoration of normoglycemia was attributable to an enhancement in key insulin-signaling molecules, including insulin receptor substrate-2, and substrate metabolism through a multifaceted mechanism involving activation of AMP-activated protein kinase and downregulation of key regulatory genes involved in both lipid and glucose metabolism. Importantly, while central nervous system-derived vagal nerves were not essential for restoration of insulin sensitivity, rapid normalization in hepatic gluconeogenic capacity and basal hepatic glucose production required intact vagal innervation. Lastly, duodenal bypass surgery selectively altered the tissue concentration of intestinally derived glucoregulatory hormone peptides in a segment-specific manner. The present data highlight and support the significance of vagal inputs and intestinal hormone peptides toward normalization of glucose and lipid homeostasis after duodenal bypass surgery.
The role of the AMP-activated protein kinase in the regulation of energy homeostasis.
Carling, David
2007-01-01
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that plays a major role in maintaining energy homeostasis. Within individual cells, AMPK is activated by a rise in the AMP:ATP ratio that occurs following a fall in ATP levels. AMPK is also regulated by the adipokines, adiponectin and leptin, hormones that are secreted from adipocytes. Activation of AMPK requires phosphorylation of threonine 172 within the catalytic subunit by either LKB1 or calcium/calmodulin dependent protein kinase kinase beta (CaMKKbeta). AMPK regulates a wide range of metabolic pathways, including fatty acid oxidation, fatty acid synthesis, glycolysis and gluconeogenesis. In peripheral tissues, activation of AMPK leads to responses that are beneficial in counteracting the deleterious effects that arise in the metabolic syndrome. Recent studies have demonstrated that modulation of AMPK activity in the hypothalamus plays a role in feeding. A decrease in hypothalamic AMPK activity is associated with decreased feeding, whereas activation of AMPK leads to increased food intake. Furthermore, signalling pathways in the hypothalamus lead to changes in AMPK activity in peripheral tissues, such as skeletal muscle, via the sympathetic nervous system (SNS). AMPK, therefore, provides a mechanism for monitoring changes in energy metabolism within individual cells and at the level of the whole body.
The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids
Oster, Henrik; Challet, Etienne; Ott, Volker; Arvat, Emanuela; de Kloet, E. Ronald; Dijk, Derk-Jan; Lightman, Stafford; Vgontzas, Alexandros
2017-01-01
Adrenal glucocorticoids are major modulators of multiple functions, including energy metabolism, stress responses, immunity, and cognition. The endogenous secretion of glucocorticoids is normally characterized by a prominent and robust circadian (around 24 hours) oscillation, with a daily peak around the time of the habitual sleep-wake transition and minimal levels in the evening and early part of the night. It has long been recognized that this 24-hour rhythm partly reflects the activity of a master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus. In the past decade, secondary circadian clocks based on the same molecular machinery as the central master pacemaker were found in other brain areas as well as in most peripheral tissues, including the adrenal glands. Evidence is rapidly accumulating to indicate that misalignment between central and peripheral clocks has a host of adverse effects. The robust rhythm in circulating glucocorticoid levels has been recognized as a major internal synchronizer of the circadian system. The present review examines the scientific foundation of these novel advances and their implications for health and disease prevention and treatment. PMID:27749086
Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain
Berta, Temugin; Qadri, Yawar; Tan, Ping-Heng; Ji, Ru-Rong
2018-01-01
Introduction Currently the treatment of chronic pain is inadequate and compromised by debilitating central nervous system side effects. Here we discuss new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. Areas covered The DRGs contain the cell bodies of primary sensory neurons including nociceptive neurons. After painful injuries, primary sensory neurons demonstrate maladaptive molecular changes in DRG cell bodies and in their axons. These changes result in hypersensitivity and hyperexcitability of sensory neurons (peripheral sensitization) and are crucial for the onset and maintenance of chronic pain. We discuss the following new strategies to target DRGs and primary sensory neurons as a means of alleviating chronic pain and minimizing side effects: inhibition of sensory neuron-expressing ion channels such as TRPA1, TRPV1, and Nav1.7, selective blockade of C- and Aβ-afferent fibers, gene therapy, and implantation of bone marrow stem cells. Expert opinion These peripheral pharmacological treatments, as well as gene and cell therapies, aimed at DRG tissues and primary sensory neurons can offer better and safer treatments for inflammatory, neuropathic, cancer, and other chronic pain states. PMID:28480765
Peripheral Exophytic Oral Lesions: A Clinical Decision Tree
Safi, Yaser; Jafari, Soudeh
2017-01-01
Diagnosis of peripheral oral exophytic lesions might be quite challenging. This review article aimed to introduce a decision tree for oral exophytic lesions according to their clinical features. General search engines and specialized databases including PubMed, PubMed Central, Medline Plus, EBSCO, Science Direct, Scopus, Embase, and authenticated textbooks were used to find relevant topics by means of keywords such as “oral soft tissue lesion,” “oral tumor like lesion,” “oral mucosal enlargement,” and “oral exophytic lesion.” Related English-language articles published since 1988 to 2016 in both medical and dental journals were appraised. Upon compilation of data, peripheral oral exophytic lesions were categorized into two major groups according to their surface texture: smooth (mesenchymal or nonsquamous epithelium-originated) and rough (squamous epithelium-originated). Lesions with smooth surface were also categorized into three subgroups according to their general frequency: reactive hyperplastic lesions/inflammatory hyperplasia, salivary gland lesions (nonneoplastic and neoplastic), and mesenchymal lesions (benign and malignant neoplasms). In addition, lesions with rough surface were summarized in six more common lesions. In total, 29 entities were organized in the form of a decision tree in order to help clinicians establish a logical diagnosis by a stepwise progression method. PMID:28757870
Pajak, B.; De Smedt, T.; Moulin, V.; De Trez, C.; Maldonado-Lopez, R.; Vansanten, G.; Briend, E.; Urbain, J.; Leo, O.; Moser, M.
2000-01-01
Aims—To describe a new fixation and embedding method for tissue samples, immunohistowax processing, which preserves both morphology and antigen immunoreactivity, and to use this technique to investigate the role of dendritic cells in the immune response in peripheral tissues. Methods—This technique was used to stain a population of specialised antigen presenting cells (dendritic cells) that have the unique capacity to sensitise naive T cells, and therefore to induce primary immune responses. The numbers of dendritic cells in peripheral organs of mice either untreated or injected with live Escherichia coli were compared. Results—Numbers of dendritic cells were greatly decreased in heart, kidney, and intestine after the inoculation of bacteria. The numbers of dendritic cells in the lung did not seem to be affected by the injection of E coli. However, staining of lung sections revealed that some monocyte like cells acquired morphological and phenotypic features of dendritic cells, and migrated into blood vessels. Conclusions—These observations suggest that the injection of bacteria induces the activation of dendritic cells in peripheral organs, where they play the role of sentinels, and/or their movement into lymphoid organs, where T cell priming is likely to occur. Key Words: dendritic cell • Escherichia coli • immunohistochemistry PMID:10961175
Electrically stimulated signals from a long-term Regenerative Peripheral Nerve Interface.
Langhals, Nicholas B; Woo, Shoshana L; Moon, Jana D; Larson, John V; Leach, Michelle K; Cederna, Paul S; Urbanchek, Melanie G
2014-01-01
Despite modern technological advances, the most widely available prostheses provide little functional recovery beyond basic grasping. Although sophisticated upper extremity prostheses are available, optimal prosthetic interfaces which give patients high-fidelity control of these artificial limbs are limited. We have developed a novel Regenerative Peripheral Nerve Interface (RPNI), which consists of a unit of free muscle that has been neurotized by a transected peripheral nerve. In conjunction with a biocompatible electrode on the muscle surface, the RPNI facilitates signal transduction from a residual peripheral nerve to a neuroprosthetic limb. The purpose of this study was to explore signal quality and reliability in an RPNI following an extended period of implantation. Following a 14-month maturation period, electromyographic signal generation was evaluated via electrical stimulation of the innervating nerve. The long-term RPNI was viable and healthy, as demonstrated by evoked compound muscle action potentials as well as histological tissue analysis. Signals exceeding 4 mV were successfully acquired and amplitudes were consistent across multiple repetitions of applied stimuli. There were no evident signs of muscle denervation, significant scar tissue, or muscle necrosis. This study provides further evidence that after a maturation period exceeding 1 year, reliable and consistent signals can still be acquired from an RPNI.
NASA Astrophysics Data System (ADS)
Wang, Juan; Sun, Binbin; Bhutto, Muhammad Aqeel; Zhu, Tonghe; Yu, Kui; Bao, Jiayu; Morsi, Yosry; El-Hamshary, Hany; El-Newehy, Mohamed; Mo, Xiumei
2017-03-01
Electrospun nanofibers have gained widespreading interest for tissue engineering application. In the present study, ApF/P(LLA-CL) nanofibrous scaffolds were fabricated via electrospinning. The feasibility of the material as tissue engineering nerve scaffold was investigated in vitro. The average diameter increased with decreasing the blend ratio of ApF to P(LLA-CL). Characterization of 13C NMR and FTIR clarified that there is no obvious chemical bond reaction between ApF and P(LLA-CL). The tensile strength and elongation at break increased with the content increase of P(LLA-CL). The surface hydrophilic property of nanofibrous scaffolds enhanced with the increased content of ApF. Cell viability studies with Schwann cells demonstrated that ApF/P(LLA-CL) blended nanofibrous scaffolds significantly promoted cell growth as compare to P(LLA-CL), especially when the weight ratio of ApF to P(LLA-CL) was 25:75. The present work provides a basis for further studies of this novel nanofibrous material (ApF/P(LLA-CL)) in peripheral nerve tissue repair or regeneration.
Aas, Ida Bergva; Austbø, Lars; Falk, Knut; Hordvik, Ivar; Koppang, Erling Olaf
2017-11-01
Central and peripheral immune tolerance is together with defense mechanisms a hallmark of all lymphoid tissues. In fish, such tolerance is especially important in the gills, where the intimate contact between gill tissue and the aqueous environment would otherwise lead to continual immune stimulation by innocuous antigens. In this paper, we focus on the expression of genes associated with immune regulation by the interbranchial lymphoid tissue (ILT) in an attempt to understand its role in maintaining immune homeostasis. Both healthy and virus-challenged fish were investigated, and transcript levels were examined from laser-dissected ILT, gills, head kidney and intestine. Lack of Aire expression in the ILT excluded its involvement in central tolerance and any possibility of its being an analogue to the thymus. On the other hand, the ILT appears to participate in peripheral immune tolerance due to its relatively high expression of forkhead box protein 3 (Foxp3) and other genes associated with regulatory T cells (Tregs) and immune suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Immunology of Prion Protein and Prions.
Mabbott, Neil A
2017-01-01
Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered. © 2017 Elsevier Inc. All rights reserved.
Tissue oxygenation and haemodynamics measurement with spatially resolved NIRS
NASA Astrophysics Data System (ADS)
Zhang, Y.; Scopesi, F.; Serra, G.; Sun, J. W.; Rolfe, P.
2010-08-01
We describe the use of Near Infrared Spectroscopy (NIRS) for the non-invasive investigation of changes in haemodynamics and oxygenation of human peripheral tissues. The goal was to measure spatial variations of tissue NIRS oxygenation variables, namely deoxy-haemoglobin (HHb), oxy-haemoglobin (HbO2), total haemoglobin (HbT), and thereby to evaluate the responses of the peripheral circulation to imposed physiological challenges. We present a skinfat- muscle heterogeneous tissue model with varying fat thickness up to 15mm and a Monte Carlo simulation of photon transport within this model. The mean partial path length and the mean photon visit depth in the muscle layer were derived for different source-detector spacing. We constructed NIRS instrumentation comprising of light-emitting diodes (LED) as light sources at four wavelengths, 735nm, 760nm, 810nm and 850nm and sensitive photodiodes (PD) as the detectors. Source-detector spacing was varied to perform measurements at different depths within forearm tissue. Changes in chromophore concentration in response to venous and arterial occlusion were calculated using the modified Lambert-Beer Law. Studies in fat and thin volunteers indicated greater sensitivity in the thinner subjects for the tissue oxygenation measurement in the muscle layer. These results were consistent with those found using Monte Carlo simulation. Overall, the results of this investigation demonstrate the usefulness of the NIRS instrument for deriving spatial information from biological tissues.
Biologic properties of endothelial progenitor cells and their potential for cell therapy.
Young, Pampee P; Vaughan, Douglas E; Hatzopoulos, Antonis K
2007-01-01
Recent studies indicate that portions of ischemic and tumor neovasculature are derived by neovasculogenesis, whereby bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs) home to sites of regenerative or malignant growth and contribute to blood vessel formation. Recent data from animal models suggest that a variety of cell types, including unfractionated BM mononuclear cells and those obtained by ex vivo expansion of human peripheral blood or enriched progenitors, can function as EPCs to promote tissue vasculogenesis, regeneration, and repair when introduced in vivo. The promising preclinical results have led to several human clinical trials using BM as a potential source of EPCs in cardiac repair as well as ongoing basic research on using EPCs in tissue engineering or as cell therapy to target tumor growth.
Castroneves, Luciana A; Jugo, Rebecca H; Maynard, Michelle A; Lee, Jennifer S; Wassner, Ari J; Dorfman, David; Bronson, Roderick T; Ukomadu, Chinweike; Agoston, Agoston T; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y; Feldman, Henry A; Vella, Kristen R; Peake, Roy W; Hartigan, Christina; Kellogg, Mark D; Desai, Anal; Salvatore, Domenico; Dentice, Monica; Huang, Stephen A
2014-10-01
Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome.
Castroneves, Luciana A.; Jugo, Rebecca H.; Maynard, Michelle A.; Lee, Jennifer S.; Wassner, Ari J.; Dorfman, David; Bronson, Roderick T.; Ukomadu, Chinweike; Agoston, Agoston T.; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y.; Feldman, Henry A.; Vella, Kristen R.; Peake, Roy W.; Hartigan, Christina; Kellogg, Mark D.; Desai, Anal; Salvatore, Domenico; Dentice, Monica
2014-01-01
Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome. PMID:25004090
Novel Opioid Analgesics and Side Effects.
Del Vecchio, Giovanna; Spahn, Viola; Stein, Christoph
2017-08-16
Conventional opioids mediate analgesia as well as severe adverse effects via G-protein coupled opioid receptors (OR) in both inflamed (peripheral injured tissue) and healthy (brain, intestinal wall) environments. To exclude side effects, OR activation can be selectively achieved in damaged tissue by lowering the pK a of an opioid ligand to the acidic pH of inflammation. As a result, protonation of the ligand and consequent OR binding and activation of G-proteins is pH- and injury-specific. A novel compound (NFEPP) demonstrates the feasibility of this approach and displays blockade of pain transmission only at the peripheral site of injury, but with lack of central and gastrointestinal adverse effects. These findings suggest disease-specific receptor activation as a new strategy in drug design.
2018-06-13
Advanced Malignant Solid Neoplasm; RB1 Positive; Recurrent Childhood Ependymoma; Recurrent Ewing Sarcoma; Recurrent Glioma; Recurrent Hepatoblastoma; Recurrent Kidney Wilms Tumor; Recurrent Langerhans Cell Histiocytosis; Recurrent Malignant Germ Cell Tumor; Recurrent Malignant Glioma; Recurrent Medulloblastoma; Recurrent Neuroblastoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Osteosarcoma; Recurrent Peripheral Primitive Neuroectodermal Tumor; Recurrent Rhabdoid Tumor; Recurrent Rhabdomyosarcoma; Recurrent Soft Tissue Sarcoma; Refractory Ependymoma; Refractory Ewing Sarcoma; Refractory Glioma; Refractory Hepatoblastoma; Refractory Langerhans Cell Histiocytosis; Refractory Malignant Germ Cell Tumor; Refractory Malignant Glioma; Refractory Medulloblastoma; Refractory Neuroblastoma; Refractory Non-Hodgkin Lymphoma; Refractory Osteosarcoma; Refractory Peripheral Primitive Neuroectodermal Tumor; Refractory Rhabdoid Tumor; Refractory Rhabdomyosarcoma; Refractory Soft Tissue Sarcoma
NASA Astrophysics Data System (ADS)
Cilwa, Katherine E.; Slaughter, Tiffani; Elster, Eric A.; Forsberg, Jonathan A.; Crane, Nicole J.
2015-03-01
Over 30% of combat injuries involve peripheral nerve injury compared to only 3% in civilian trauma. In fact, nerve dysfunction is the second leading cause of long-term disability in injured service members and is present in 37% of upper limb injuries with disability. Identification and assessment of non-penetrating nerve injury in trauma patients could improve outcome and aid in therapeutic monitoring. We report the use of Raman spectroscopy as a noninvasive, non-destructive method for detection of nerve degeneration in intact nerves due to non-penetrating trauma. Nerve trauma was induced via compression and ischemia/reperfusion injury using a combat relevant swine tourniquet model (>3 hours ischemia). Control animals did not undergo compression/ischemia. Seven days post-operatively, sciatic and femoral nerves were harvested and fixed in formalin. Raman spectra of intact, peripheral nerves were collected using a fiber-optic probe with 3 mm diameter spot size and 785 nm excitation. Data was preprocessed, including fluorescence background subtraction, and Raman spectroscopic metrics were determined using custom peak fitting MATLAB scripts. The abilities of bivariate and multivariate analysis methods to predict tissue state based on Raman spectroscopic metrics are compared. Injured nerves exhibited changes in Raman metrics indicative of 45% decreased myelin content and structural damage (p<<0.01). Axonal and myelin degeneration, cell death and digestion, and inflammation of nerve tissue samples were confirmed via histology. This study demonstrates the non-invasive ability of Raman spectroscopy to detect nerve degeneration associated with non-penetrating injury, relevant to neurapraxic and axonotmetic injuries; future experiments will further explore the clinical utility of Raman spectroscopy to recognize neural injury.
Kanda, Atsuhiro; Takahashi, Toshio; Satake, Honoo; Minakata, Hiroyuki
2005-01-01
GnRH (gonadotropin-releasing hormone) plays a pivotal role in the regulation of reproduction in vertebrates through interaction with a specific receptor. Previously, we isolated a GnRH homo-logue, oct-GnRH, from the common octopus (Octopus vulgaris). In the present study, we have identified a GnRH receptor (oct-GnRHR) specific for oct-GnRH from Octopus brain. Oct-GnRHR includes domains and motifs typical of vertebrate GnRH receptors. The intron-inserted positions are conserved between oct-GnRHR and the chordate GnRHR genes. The oct-GnRHR expressed in Xenopus (South African clawed frog) oocytes was responsive to oct-GnRH, but not to any other HPLC fractions of the Octopus brain extract. These results show that oct-GnRHR is an authentic receptor for oct-GnRH. Southern blotting of reverse-transcription PCR products revealed that the oct-GnRHR mRNA was widely distributed in the central and peripheral nervous systems and in several peripheral tissues. In situ hybridiz-ation showed that oct-GnRHR mRNA was expressed in some regions involved in autonomic functions, feeding, memory and movement. Oct-GnRH was shown to induce steroidogenesis of testosterone, progesterone and 17β-oestradiol in Octopus ovary and testis, where oct-GnRHR was abundantly expressed. These results suggest that oct-GnRH, like its vertebrate counterparts, acts as a multifunctional neurotransmitter, neuromodulator and hormone-like factor, both in Octopus central nervous system and peripheral tissues, and that both structure and functions of the GnRH family are, at least partially, evolutionarily conserved between octopuses and chordates. PMID:16367741
Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks
Wolff, Gretchen; Duncan, Marilyn J.
2013-01-01
Shifting the onset of light, acutely or chronically, can profoundly affect responses to infection, tumor progression, development of metabolic disease, and mortality in mammals. To date, the majority of phase-shifting studies have focused on acute exposure to a shift in the timing of the light cycle, whereas the consequences of chronic phase shifts alone on molecular rhythms in peripheral tissues such as skeletal muscle have not been studied. In this study, we tested the effect of chronic phase advance on the molecular clock mechanism in two phenotypically different skeletal muscles. The phase advance protocol (CPA) involved 6-h phase advances (earlier light onset) every 4 days for 8 wk. Analysis of the molecular clock, via bioluminescence recording, in the soleus and flexor digitorum brevis (FDB) muscles and lung demonstrated that CPA advanced the phase of the rhythm when studied immediately after CPA. However, if the mice were placed into free-running conditions (DD) for 2 wk after CPA, the molecular clock was not phase shifted in the two muscles but was still shifted in the lung. Wheel running behavior remained rhythmic in CPA mice; however, the endogenous period length of the free-running rhythm was significantly shorter than that of control mice. Core body temperature, cage activity, and heart rate remained rhythmic throughout the experiment, although the onset of the rhythms was significantly delayed with CPA. These results provide clues that lifestyles associated with chronic environmental desynchrony, such as shift work, can have disruptive effects on the molecular clock mechanism in peripheral tissues, including both types of skeletal muscle. Whether this can contribute, long term, to increased incidence of insulin resistance/metabolic disease requires further study. PMID:23703115
Kanda, Atsuhiro; Takahashi, Toshio; Satake, Honoo; Minakata, Hiroyuki
2006-04-01
GnRH (gonadotropin-releasing hormone) plays a pivotal role in the regulation of reproduction in vertebrates through interaction with a specific receptor. Previously, we isolated a GnRH homologue, oct-GnRH, from the common octopus (Octopus vulgaris). In the present study, we have identified a GnRH receptor (oct-GnRHR) specific for oct-GnRH from Octopus brain. Oct-GnRHR includes domains and motifs typical of vertebrate GnRH receptors. The intron-inserted positions are conserved between oct-GnRHR and the chordate GnRHR genes. The oct-GnRHR expressed in Xenopus (South African clawed frog) oocytes was responsive to oct-GnRH, but not to any other HPLC fractions of the Octopus brain extract. These results show that oct-GnRHR is an authentic receptor for oct-GnRH. Southern blotting of reverse-transcription PCR products revealed that the oct-GnRHR mRNA was widely distributed in the central and peripheral nervous systems and in several peripheral tissues. In situ hybridization showed that oct-GnRHR mRNA was expressed in some regions involved in autonomic functions, feeding, memory and movement. Oct-GnRH was shown to induce steroidogenesis of testosterone, progesterone and 17beta-oestradiol in Octopus ovary and testis, where oct-GnRHR was abundantly expressed. These results suggest that oct-GnRH, like its vertebrate counterparts, acts as a multifunctional neurotransmitter, neuromodulator and hormone-like factor, both in Octopus central nervous system and peripheral tissues, and that both structure and functions of the GnRH family are, at least partially, evolutionarily conserved between octopuses and chordates.
Recent conclusions regarding the reconstructive microsurgery of peripheral nerves
Doina, Dumitrescu-Ionescu
2008-01-01
The introducing of reconstructive microsurgery has meant not only the addition of microsurgical microscopes and instruments, but a change, a progress towards a new concept, the concept of the microsurgical reconstruction of tissues. The microscope and the instruments themselves are only a means of utilizing this new concept to good effect since the mere use of the microscope and of the instruments according to the old concept of tissue reconstruction cannot be considered to be reconstructive microsurgery. From December 1979 through to December 2005, more than 3.000 patients with peripheral nerve lesions were operated on by the same microsurgeon, the author Doina Ionescu-Dumitrescu. The conclusions are based on the following: • A huge amount of work involved in carrying out microsurgical reconstructions of over 7,500 peripheral nerves in over 3,000 patients, 1,800 of which were nerve transplants for defects of peripheral nerves of the extremities, for posttraumatic brachial plexus paralyses (91), for replantations and/or revascularizations following partial or complete amputations of the extremities (24 out of which 23 successful) or for free transfers of functional composite tissues (53). For a more accurate picture of such an effort one should consider the operation time that these types of reconstruction involve: between 3 and 12 hours for each patient under general anaesthesia and for both the anaesthetist and the microsurgeon. • Experimental microsurgery on rabbit ears • The results of the histopathological examination of 500 postoperative neuromas of peripheral nerves repaired traditionally • The Moberg test • Pre, intra and postoperative monthly observations of the patients until their full recovery according to the criteria set by the International Reconstructive Microsurgery Society (postoperative intervals of 6-12-24 months) • Taking pictures and recording pre, intra and postoperative stages • The patients’ professional, social and familial reintegration • The patients’ state of mind; level of cooperation • Comparing results with those of classic and palliative repairs • Comparing the data resulting from this experience with the information provided by the specialist literature of the world • Completing the internationally defined reconstructive procedures with the personal ones, to produce a new concept The introducing of reconstructive microsurgery has meant not only the addition of microsurgical microscopes and instruments, but a change, a progress towards a new concept, the concept of the microsurgical reconstruction of tissues. The microscope and the instruments themselves are only a means of utilizing this new concept to good effect since the mere use of the microscope and of the instruments according to the old concept of tissue reconstruction cannot be considered to be reconstructive microsurgery. From December 1979 through to December 2005, more than 3.000 patients with peripheral nerve lesions were operated on by the same microsurgeon, the author Doina Ionescu-Dumitrescu. The conclusions are based on the following: • A huge amount of work involved in carrying out microsurgical reconstructions of over 7,500 peripheral nerves in over 3,000 patients, 1,800 of which were nerve transplants for defects of peripheral nerves of the extremities, for posttraumatic brachial plexus paralyses (91), for replantations and/or revascularizations following partial or complete amputations of the extremities (24 out of which 23 successful) or for free transfers of functional composite tissues (53). For a more accurate picture of such an effort one should consider the operation time that these types of reconstruction involve: between 3 and 12 hours for each patient under general anaesthesia and for both the anaesthetist and the microsurgeon. • Experimental microsurgery on rabbit ears • The results of the histopathological examination of 500 postoperative neuromas of peripheral nerves repaired traditionally • The Moberg test • Pre, intra and postoperative monthly observations of the patients until their full recovery according to the criteria set by the International Reconstructive Microsurgery Society (postoperative intervals of 6-12-24 months) • Taking pictures and recording pre, intra and postoperative stages • The patients’ professional, social and familial reintegration • The patients’ state of mind; level of cooperation • Comparing results with those of classic and palliative repairs • Comparing the data resulting from this experience with the information provided by the specialist literature of the world • Completing the internationally defined reconstructive procedures with the personal ones, to produce a new concept PMID:20108464
Poklis, Justin; Poklis, Alphonse; Wolf, Carl; Mainland, Mary; Hair, Laura; Devers, Kelly; Chrostowski, Leszek; Arbefeville, Elise; Merves, Michele; Pearson, Julia
2015-01-01
In the last two years, an epidemic of fatal narcotic overdose cases has occurred in the Tampa area of Florida. Fourteen of these deaths involved fentanyl and/or the new designer drug, acetyl fentanyl. Victim demographics, case histories, toxicology findings and causes and manners of death, as well as, disposition of fentanyl derivatives and their nor-metabolites in postmortem heart blood, peripheral blood, bile, brain, liver, urine and vitreous humor are presented. In the cases involving only acetyl fentanyl (without fentanyl, n=4), the average peripheral blood acetyl fentanyl concentration was 0.467 mg/L (range 0.31 to .60 mg/L) and average acetyl norfentanyl concentration was 0.053 mg/L (range 0.002 to 0.086 mg/L). In the cases involving fentanyl (without acetyl fentanyl, n=7), the average peripheral blood fentanyl concentration was 0.012 mg/L (range 0.004 to 0.027 mg/L) and average norfentanyl blood concentration was 0.001 mg/L (range 0.0002 to 0.003 mg/L). In the cases involving both acetyl fentanyl and fentanyl (n=3), the average peripheral blood acetyl fentanyl concentration was 0.008 mg/L (range 0.006 to 0.012 mg/L), the average peripheral blood acetyl norfentanyl concentration was 0.001 mg/L (range 0.001 to 0.002 mg/L), the average peripheral blood fentanyl concentration was 0.018 mg/L (range 0.015 to 0.021 mg/L) and the average peripheral blood norfentanyl concentration was 0.002 mg/L (range 0.001 mg/L to 0.003 mg/L). Based on the toxicology results, it is evident that when fentanyl and/or acetyl fentanyl were present, they contributed to the cause of death. A novel ultrahigh performance liquid chromatography (UPLC) tandem mass spectrometry (MS/MS) method to identify and quantify acetyl fentanyl, acetyl norfentanyl, fentanyl and norfentanyl in postmortem fluids and tissues is also presented. PMID:26583960
A practical method to rapidly dissolve metallic stents.
Bradshaw, Scott H; Kennedy, Lloyd; Dexter, David F; Veinot, John P
2009-01-01
Metallic stents are commonly used in many clinical applications including peripheral vascular disease intervention, biliary obstruction, endovascular repair of aneurysms, and percutaneous coronary interventions. In the examination of vascular stent placement, it is important to determine if the stent is open or has become obstructed. This is increasingly important in the era of drug-eluting stent usage in coronary arteries. We describe a practical, rapid and cost-effective method to dissolve most metallic stents leaving the vascular and luminal tissues intact. This practical method may replace the laborious and expensive plastic embedding methods currently utilized.
Biggs, Katie; Seidel, Jason S; Wilson, Alex; Martyniuk, Christopher J
2013-09-01
γ-Amino-butyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate central nervous system. GABA receptors and synthesizing enzymes have also been localized to peripheral tissues including the liver, oviduct, uterus and ovary of mammals but the distribution and role of GABA in peripheral tissues of fish has not been fully investigated. The objectives of this study were to (1) determine if mRNA encoding GABA synthesizing enzymes (glutamic acid decarboxylase 65 and 67; gad65 and gad67), GABA transporters, and GABAA receptor subunits are localized to liver and gonad of fathead minnow (Pimephales promelas) (FHM) (2) investigate the effects of GABA on ovarian 17β-estradiol (E2) production, and (3) measure transcript responses in the ovary after in vitro incubation to GABA. Real-time PCR assays were developed for gad65, gad67, vesicular GABA transporter (vgat) and GABA transporter 1 (gat1), and select GABAA receptor subunits (gabra1, gabra5, gabrb1, gabrb2, gabrg1, gabrg2). All transcripts were localized to the brain as expected; however transcripts were also detected in the liver, ovary, and testis of FHMs. In the female liver, gad65 mRNA was significantly higher in expression compared to the male liver. Transcripts for gad67 were the highest in the brain>gonad>liver and in the gonads, gad67 was significantly higher in expression than gad65 mRNA. In the liver and gonad, the relative abundance of the subunits followed a general trend of gabrb1>gabrb2=gabrg1=gabrg2>gabra1=gabra5. To explore the effects of GABA in the ovary, tissue explants from reproductive female FHMs were treated with GABA (10(-10), 10(-8) and 10(-6)M) for 12h. GABA had no significant effect on 17β-estradiol production or on mRNA abundance for genes involved in ovarian steroidogenesis (e.g., 11βhsd, cyp17, cyp19a). There was a significant decrease in estrogen receptor 2a (esr2a) mRNA with 10(-10)M GABA. This study begins to investigate the GABA system in non-neural tissues of teleost fish and addresses the broader topic regarding the peripheral roles of neurotransmitters. Copyright © 2013 Elsevier Inc. All rights reserved.
Hinder, Lucy M; Vivekanandan-Giri, Anuradha; McLean, Lisa L; Pennathur, Subramaniam; Feldman, Eva L
2013-01-01
Diabetic neuropathy (DN) is the most common complication of diabetes and is characterized by distal-to-proximal loss of peripheral nerve axons. The idea of tissue-specific pathological alterations in energy metabolism in diabetic complications-prone tissues is emerging. Altered nerve metabolism in type 1 diabetes models is observed; however, therapeutic strategies based on these models offer limited efficacy to type 2 diabetic patients with DN. Therefore, understanding how peripheral nerves metabolically adapt to the unique type 2 diabetic environment is critical to develop disease-modifying treatments. In the current study, we utilized targeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) to characterize the glycolytic and tricarboxylic acid (TCA) cycle metabolomes in sural nerve, sciatic nerve, and dorsal root ganglia (DRG) from male type 2 diabetic mice (BKS.Cg-m+/+Lepr(db); db/db) and controls (db/+). We report depletion of glycolytic intermediates in diabetic sural nerve and sciatic nerve (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate (sural nerve only), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and lactate), with no significant changes in DRG. Citrate and isocitrate TCA cycle intermediates were decreased in sural nerve, sciatic nerve, and DRG from diabetic mice. Utilizing LC/electrospray ionization/MS/MS and HPLC methods, we also observed increased protein and lipid oxidation (nitrotyrosine; hydroxyoctadecadienoic acids) in db/db tissue, with a proximal-to-distal increase in oxidative stress, with associated decreased aconitase enzyme activity. We propose a preliminary model, whereby the greater change in metabolomic profile, increase in oxidative stress, and decrease in TCA cycle enzyme activity may cause distal peripheral nerves to rely on truncated TCA cycle metabolism in the type 2 diabetes environment.
Decara, Juan; Arrabal, Sergio; Beiroa, Daniel; Rivera, Patricia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco Javier; Ballesteros, Joan; Dieguez, Carlos; Nogueiras, Rubén; Rodríguez de Fonseca, Fernando; Suárez, Juan
2016-11-12
To investigate the role of glucagon-like-peptide-1 receptor (GLP-1R) in peripheral lipid metabolism. Both lean and high-fat diet (HFD)-induced obesity (DIO) rats were used to compare the peripheral effects of the subcutaneous and repeated administration of the GLP-1R agonist liraglutide on the expression of key regulators involved in lipid metabolism, β-oxidation and thermogenesis in liver, abdominal muscle, and epididymal white adipose tissue (eWAT). We observed that liraglutide reduced caloric intake, body weight, and plasma levels of triglycerides and VLDL in a diet-independent manner. However, changes in liver fat content and the expression of lipid metabolism regulators were produced in a diet and tissue-dependent manner. In lean rats, liraglutide increased the gene/protein expression of elements involved in lipogenesis (ChREBP, Acaca/ACC, Fasn/FAS, Scd1/SCD1, PPARα/γ), β-oxidation (CPT1b), and thermogenesis (Cox4i1, Ucp1/UCP1) in eWAT and muscle, which suggest an increase in fatty-acid flux and utilization to activate energy expenditure. Regarding DIO rats, the specific reduction of liver lipid content by liraglutide was associated with a decreased expression of main elements involved in lipogenesis (phospho-ACC), peroxisomal β-oxidation (ACOX1), and lipid flux/storage (Pparγ/PPARγ) in liver, which suggest a recovery of lipid homeostasis. Interestingly, the muscle of DIO rats treated with liraglutide showed a decreased expression of PPARγ and the thermogenic factor UCP1. These results help us to better understand the peripheral mechanisms regulating lipid metabolism that underlay the effectiveness of GLP-1 analogues for the treatment of diabetes and obesity. © 2016 BioFactors, 42(6):600-611, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Peripheral insulin resistance in ILK-depleted mice by reduction of GLUT4 expression.
Hatem-Vaquero, Marco; Griera, Mercedes; García-Jerez, Andrea; Luengo, Alicia; Álvarez, Julia; Rubio, José A; Calleros, Laura; Rodríguez-Puyol, Diego; Rodríguez-Puyol, Manuel; De Frutos, Sergio
2017-08-01
The development of insulin resistance is characterized by the impairment of glucose uptake mediated by glucose transporter 4 (GLUT4). Extracellular matrix changes are induced when the metabolic dysregulation is sustained. The present work was devoted to analyze the possible link between the extracellular-to-intracellular mediator integrin-linked kinase (ILK) and the peripheral tissue modification that leads to glucose homeostasis impairment. Mice with general depletion of ILK in adulthood (cKD-ILK) maintained in a chow diet exhibited increased glycemia and insulinemia concurrently with a reduction of the expression and membrane presence of GLUT4 in the insulin-sensitive peripheral tissues compared with their wild-type littermates (WT). Tolerance tests and insulin sensitivity indexes confirmed the insulin resistance in cKD-ILK, suggesting a similar stage to prediabetes in humans. Under randomly fed conditions, no differences between cKD-ILK and WT were observed in the expression of insulin receptor (IR-B) and its substrate IRS-1 expressions. The IR-B isoform phosphorylated at tyrosines 1150/1151 was increased, but the AKT phosphorylation in serine 473 was reduced in cKD-ILK tissues. Similarly, ILK-blocked myotubes reduced their GLUT4 promoter activity and GLUT4 expression levels. On the other hand, the glucose uptake capacity in response to exogenous insulin was impaired when ILK was blocked in vivo and in vitro , although IR/IRS/AKT phosphorylation states were increased but not different between groups. We conclude that ILK depletion modifies the transcription of GLUT4, which results in reduced peripheral insulin sensitivity and glucose uptake, suggesting ILK as a molecular target and a prognostic biomarker of insulin resistance. © 2017 Society for Endocrinology.
Schmidt, Alexander; Alard, Frank; Handrich, Yves
2006-09-01
To investigate thermoregulatory adjustments at sea, body temperatures (the pectoral muscle and the brood patch) and diving behavior were monitored during a foraging trip of several days at sea in six breeding king penguins Aptenodytes patagonicus. During inactive phases at sea (water temperature: 4-7 degrees C), all tissues measured were maintained at normothermic temperatures. The brood patch temperature was maintained at the same values as those measured when brooding on shore (38 degrees C). This high temperature difference causes a significant loss of heat. We hypothesize that high-energy expenditure associated with elevated peripheral temperature when resting at sea is the thermoregulatory cost that a postabsorptive penguin has to face for the restoration of its subcutaneous body fat. During diving, mean pectoral temperature was 37.6 +/- 1.6 degrees C. While being almost normothermic on average, the temperature of the pectoral muscle was still significantly lower than during inactivity in five out of the six birds and underwent temperature drops of up to 5.5 degrees C. Mean brood patch temperature was 29.6 +/- 2.5 degrees C during diving, and temperature decreases of up to 21.6 degrees C were recorded. Interestingly, we observed episodes of brood patch warming during the descent to depth, suggesting that, in some cases, king penguins may perform active thermolysis using the brood patch. It is hypothesized that functional pectoral temperature may be regulated through peripheral adjustments in blood perfusion. These two paradoxical features, i.e., lower temperature of deep tissues during activity and normothermic peripheral tissues while inactive, may highlight the key to the energetics of this diving endotherm while foraging at sea.
Ribas-Latre, A; Baselga-Escudero, L; Casanova, E; Arola-Arnal, A; Salvadó, M J; Arola, L; Bladé, C
2015-02-01
Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and obese rats. Grape seed proanthocyanidin extracts (GSPEs) were administered for 21 days at 5, 25 or 50 mg GSPE/kg body weight in healthy rats and 25 mg GSPE/kg body weight in rats with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-related genes, although the particular gene affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver and gut but was less effective in normalizing the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to modulate peripheral molecular clocks in both healthy and obese states. Copyright © 2015 Elsevier Inc. All rights reserved.
Peripheral KV7 channels regulate visceral sensory function in mouse and human colon
Hockley, James RF; Reed, David E; Smith, Ewan St. John; Bulmer, David C; Blackshaw, L Ashley
2017-01-01
Background Chronic visceral pain is a defining symptom of many gastrointestinal disorders. The KV7 family (KV7.1–KV7.5) of voltage-gated potassium channels mediates the M current that regulates excitability in peripheral sensory nociceptors and central pain pathways. Here, we use a combination of immunohistochemistry, gut-nerve electrophysiological recordings in both mouse and human tissues, and single-cell qualitative real-time polymerase chain reaction of gut-projecting sensory neurons, to investigate the contribution of peripheral KV7 channels to visceral nociception. Results Immunohistochemical staining of mouse colon revealed labelling of KV7 subtypes (KV7.3 and KV7.5) with CGRP around intrinsic enteric neurons of the myenteric plexuses and within extrinsic sensory fibres along mesenteric blood vessels. Treatment with the KV7 opener retigabine almost completely abolished visceral afferent firing evoked by the algogen bradykinin, in agreement with significant co-expression of mRNA transcripts by single-cell qualitative real-time polymerase chain reaction for KCNQ subtypes and the B2 bradykinin receptor in retrogradely labelled extrinsic sensory neurons from the colon. Retigabine also attenuated responses to mechanical stimulation of the bowel following noxious distension (0–80 mmHg) in a concentration-dependent manner, whereas the KV7 blocker XE991 potentiated such responses. In human bowel tissues, KV7.3 and KV7.5 were expressed in neuronal varicosities co-labelled with synaptophysin and CGRP, and retigabine inhibited bradykinin-induced afferent activation in afferent recordings from human colon. Conclusions We show that KV7 channels contribute to the sensitivity of visceral sensory neurons to noxious chemical and mechanical stimuli in both mouse and human gut tissues. As such, peripherally restricted KV7 openers may represent a viable therapeutic modality for the treatment of gastrointestinal pathologies. PMID:28566000
Paltsev, M A; Zuev, V A; Kozhevnikova, E O; Linkova, N S; Kvetnaia, T V; Polyakova, V O; Kvetnoy, I M
2017-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of elderly and old age people. For intravital diagnosis of the expression of signaling molecules - AD markers, cerebrospinal fluid (CSF) and peripheral tissues are used: lymphocytes and blood platelets, buccal and olfactory epithelium, skin fibroblasts. There are several changes in the production of hyper phosphorylated form of τ-protein, BACE1 and peptide Аβ42 in CSF in case of AD, but CSF taking may have a number of side effects. Less traumatic taking of sampling tissues for the diagnosis of AD is in use of epithelium biopsy and blood portion. An increase in the expression of the hyper phosphorylated form of τ-protein is shown in blood lymphocytes of AD patients. An increase in the content of high molecular weight forms of phosphorylated t-protein and amyloid precursor protein-APP was also revealed in blood platelets of AD patients. Changes in the amount of 2 miRNA families - miR-132 family and miR-134 family were revealed in blood cells 1-5 years before the manifestation of clinical signs of AD. An increase in the concentration of bound calcium, synthesis of peptides Aβ40 and Aβ42, τ protein was observed in AD skin fibroblasts. In the olfactory and buccal epithelium an increase in the expression of hyper phosphorylated form of τ-protein and Aβ peptide was detected in patients with AD. Verification of AD markers in peripheral tissues for biopsy have the important significant for life diagnostics, prevention and and target AD treatment.
Aguilar-Calvo, Patricia; Fast, Christine; Tauscher, Kerstin; Espinosa, Juan-Carlos; Groschup, Martin H; Nadeem, Muhammad; Goldmann, Wilfred; Langeveld, Jan; Bossers, Alex; Andreoletti, Olivier; Torres, Juan-María
2015-08-15
The prion protein-encoding gene (PRNP) is one of the major determinants for scrapie occurrence in sheep and goats. However, its effect on bovine spongiform encephalopathy (BSE) transmission to goats is not clear. Goats harboring wild-type, R/Q211 or Q/K222 PRNP genotypes were orally inoculated with a goat-BSE isolate to assess their relative susceptibility to BSE infection. Goats were killed at different time points during the incubation period and after the onset of clinical signs, and their brains as well as several peripheral tissues were analyzed for the accumulation of pathological prion protein (PrP(Sc)) and prion infectivity by mouse bioassay. R/Q211 goats displayed delayed clinical signs compared with wild-type goats. Deposits of PrP(Sc) were detected only in brain, whereas infectivity was present in peripheral tissues too. In contrast, none of the Q/K222 goats showed any evidence of clinical prion disease. No PrP(Sc) accumulation was observed in their brains or peripheral tissues, but very low infectivity was detected in some tissues very long after inoculation (44-45 months). These results demonstrate that transmission of goat BSE is genotype dependent, and they highlight the pivotal protective effect of the K222 PRNP variant in the oral susceptibility of goats to BSE. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kumamoto, Yasuaki; Minamikawa, Takeo; Kawamura, Akinori; Matsumura, Junichi; Tsuda, Yuichiro; Ukon, Juichiro; Harada, Yoshinori; Tanaka, Hideo; Takamatsu, Tetsuro
2017-02-01
Nerve-sparing surgery is essential to avoid functional deficits of the limbs and organs. Raman scattering, a label-free, minimally invasive, and accurate modality, is one of the best candidate technologies to detect nerves for nerve-sparing surgery. However, Raman scattering imaging is too time-consuming to be employed in surgery. Here we present a rapid and accurate nerve visualization method using a multipoint Raman imaging technique that has enabled simultaneous spectra measurement from different locations (n=32) of a sample. Five sec is sufficient for measuring n=32 spectra with good S/N from a given tissue. Principal component regression discriminant analysis discriminated spectra obtained from peripheral nerves (n=863 from n=161 myelinated nerves) and connective tissue (n=828 from n=121 tendons) with sensitivity and specificity of 88.3% and 94.8%, respectively. To compensate the spatial information of a multipoint-Raman-derived tissue discrimination image that is too sparse to visualize nerve arrangement, we used morphological information obtained from a bright-field image. When merged with the sparse tissue discrimination image, a morphological image of a sample shows what portion of Raman measurement points in arbitrary structure is determined as nerve. Setting a nerve detection criterion on the portion of "nerve" points in the structure as 40% or more, myelinated nerves (n=161) and tendons (n=121) were discriminated with sensitivity and specificity of 97.5%. The presented technique utilizing a sparse multipoint Raman image and a bright-field image has enabled rapid, safe, and accurate detection of peripheral nerves.
Localized delivery of chemotherapy to the cervix for radiosensitization.
Hodge, Lucy S; Downs, Levi S; Chura, Justin C; Thomas, Sajeena G; Callery, Patrick S; Soisson, A Patrick; Kramer, Paul; Wolfe, Stephen S; Tracy, Timothy S
2012-10-01
Chemoradiation is the mainstay of therapy for advanced cervical cancer, with the most effective treatment regimens involving combinations of radiosensitizing agents. However, administration of radiosensitizing chemotherapeutics concurrently with pelvic radiation is not without side effects. The aim of this study was to examine the utility of localized drug delivery as a means of improving drug targeting of radiosensitizing chemotherapeutics to the cervix while limiting systemic toxicities. An initial proof-of-concept study was performed in 14 healthy women following local administration of diazepam utilizing a novel cervical delivery device (CerviPrep™). Uterine vein and peripheral blood samples were collected and diazepam was measured using a GC-MS method. In the follow-up study, gemcitabine was applied to the cervix in 17 women undergoing hysterectomy for various gynecological malignancies. Cervical tissue, uterine vein blood samples, and peripheral plasma were collected, and gemcitabine and its deaminated metabolite 2',2'-difluorodeoxyuridine (dFdU) were measured using HPLC-UV and LC/MS methods. Targeted delivery of diazepam to the cervix was consistent with parent drug detectable in the uterine vein of 13 of 14 women. In the second study, pharmacologically relevant concentrations of gemcitabine (0.01-6.6 nmol/g tissue) were detected in the cervical tissue of 11 of 16 available specimens with dFdU measureable in 15 samples (0.04-8.8 nmol/g tissue). Neither gemcitabine nor its metabolites were detected in the peripheral plasma of any subject. Localized drug delivery to the cervix is possible and may be useful in limiting toxicity associated with intravenous administration of chemotherapeutics for radiosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.
Shin, Jimann; Padmanabhan, Arun; de Groh, Eric D.; Lee, Jeong-Soo; Haidar, Sam; Dahlberg, Suzanne; Guo, Feng; He, Shuning; Wolman, Marc A.; Granato, Michael; Lawson, Nathan D.; Wolfe, Scot A.; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Kanki, John P.; Ligon, Keith L.; Epstein, Jonathan A.; Look, A. Thomas
2012-01-01
SUMMARY Neurofibromatosis type 1 (NF1) is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1) gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML), optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs). In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a+/−; nf1b−/−; p53e7/e7 animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish. PMID:22773753
Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste
2004-12-01
To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.
A sense of time: how molecular clocks organize metabolism.
Kohsaka, Akira; Bass, Joseph
2007-01-01
The discovery of an internal temporal clockwork that coordinates behavior and metabolism according to the rising and setting of the sun was first revealed in flies and plants. However, in the past decade, a molecular transcription-translation feedback loop with similar properties has also been identified in mammals. In mammals, this transcriptional oscillator programs 24-hour cycles in sleep, activity and feeding within the master pacemaker neurons of the suprachiasmatic nucleus of the hypothalamus. More recent studies have shown that the core transcription mechanism is also present in other locations within the brain, in addition to many peripheral tissues. Processes ranging from glucose transport to gluconeogenesis, lipolysis, adipogenesis and mitochondrial oxidative phosphorylation are controlled through overlapping transcription networks that are tied to the clock and are thus time sensitive. Because disruption of tissue timing occurs when food intake, activity and sleep are altered, understanding how these many tissue clocks are synchronized to tick at the same time each day, and determining how each tissue 'senses time' set by these molecular clocks might open new insight into human disease, including disorders of sleep, circadian disruption, diabetes and obesity.
Adipocyte Origins: Weighing the Possibilities
Majka, Susan M.; Barak, Yaacov; Klemm, Dwight J.
2012-01-01
Adipose tissue is the primary energy reservoir in the body and an important endocrine organ that plays roles in energy homeostasis, feeding, insulin sensitivity and inflammation. While it was tacitly assumed that fat in different anatomical locations had a common origin and homogenous function, it is now clear that regional differences exist in adipose tissue characteristics and function. This is exemplified by the link between increased deep abdominal or visceral fat, but not peripheral adipose tissue, and the metabolic disturbances associated with obesity. Regional differences in fat function are due in large part to distinct adipocyte populations that comprise the different fat depots. Evidence accrued primarily in the last decade indicate that the distinct adipocyte populations are generated by a number of processes during and after development. These include the production of adipocytes from different germ cell layers, the formation of distinct preadipocyte populations from mesenchymal progenitors of mesodermal origin, and the production of adipocytes from hematopoietic stem cells from the bone marrow. This review will examine each of these process and their relevance to normal adipose tissue formation and contribution to obesity-related diseases. PMID:21544899
Proffen, Benedikt L.; Vavken, Patrick; Haslauer, Carla M.; Fleming, Braden C.; Harris, Chad E.; Machan, Jason T.; Murray, Martha M.
2015-01-01
Background Co-culture of mesenchymal stem cells (MSCs) from the retropatellar fat pad and peripheral blood has been shown to stimulate anterior cruciate ligament (ACL) fibroblast proliferation and collagen production in vitro. Current techniques of bio-enhanced ACL repair in animal studies involve adding a biologic scaffold, in this case an extracellular matrix based scaffold saturated with autologous whole blood, to a simple suture repair of the ligament. Whether the enrichment of whole blood with MSCs would further improve the in vivo results of bio-enhanced ACL repair was investigated. Hypothesis/Purpose The hypothesis was that the addition of MSCs derived from adipose tissue or peripheral blood to the blood-extracellular matrix composite, which is used in bio-enhanced ACL repair to stimulate healing, would improve the biomechanical properties of a bio-enhanced ACL repair after 15 weeks of healing. Study Design Controlled laboratory study. Methods Twenty-four adolescent Yucatan mini-pigs underwent ACL transection followed by: 1) bio-enhanced ACL repair, 2) bio-enhanced ACL repair with the addition of autologous adipose-derived MSCs and 3) bio-enhanced ACL repair with the addition of autologous peripheral blood derived MSCs. After fifteen weeks of healing, structural properties of the ACL (yield & failure load, linear stiffness) were measured. Cell and vascular density were measured in the repaired ACL via histology, and its tissue structure was qualitatively evaluated using the Advanced Ligament Maturity Index. Results After fifteen weeks of healing, there were no significant improvements in the biomechanical or histological properties with the addition of adipose-derived MSCs. The only significant change with the addition of peripheral blood MSCs was an increase in knee anteroposterior (AP) laxity when measured at 30 degrees of flexion. Conclusions These findings suggest that the addition of adipose or peripheral blood MSCs to whole blood prior to saturation of an extracellular matrix carrier with the blood did not improve the functional results of bio-enhanced ACL repair after 15 weeks of healing in the pig model. Clinical Relevance Whole blood represents a practical biologic additive to ligament repair, and any other additive (including stem cells) should be demonstrated to be superior to this baseline before clinical use is considered. PMID:25549633
Scientific familial lessons in ingestive behavior research: 2016 Alan N. Epstein research award.
Hayes, Matthew R
2017-07-01
While energy balance is under the control of the central nervous system (CNS), a major source of neural regulation for the behavioral, physiological and endocrine processes governing energy balance originates in the periphery. Indeed, the organs of the gastrointestinal (GI) tract, supporting organs of the peritoneal cavity and adipose tissue are the source of numerous neurotransmitter and neuroendocrine signals released from non-neuronal peripheral tissue that signal in a paracrine and endocrine fashion to regulate the physiological and behavioral processes that affect energy balance. Given the ever increasing appreciation that chronic hyperphagia of highly-palatable/rewarding food is a major contributing factor to the obesity epidemic, it is not surprising that the field has increased research efforts focusing on understanding what role peripherally-derived neuroendocrine signals play in modulating food reward and motivated behaviors. Research throughout my career has focused on understanding gut-to-brain communication of relevance to energy balance control. Through very fortuitous opportunities and amazing collaborations, my research program has also expanded widely to include analyses of multiple GI-, pancreatic- and adipose tissue-derived anorectic signals involved in food intake and energy balance control, as well as analyses of higher-order determinants of food reward, nausea, aversion and maladaptive motivated behaviors. I am honored to be the recipient of the 2016 Alan N. Epstein Research Award from the Society for the Study of Ingestive Behavior, and express much appreciation for the amazing collaborations I have had with my mentors, colleagues and trainees. Copyright © 2017 Elsevier Inc. All rights reserved.
Evans, Mark; Cogan, Karl E.
2016-01-01
Abstract Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β‐hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post‐exercise recovery period, and the ability to utilise ketone bodies is higher in exercise‐trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti‐lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. PMID:27861911
Transcriptional activity of TGFβ1 and its receptors genes in thyroid gland.
Kajdaniuk, Dariusz; Marek, Anna; Marek, Bogdan; Mazurek, Urszula; Fila-Daniłow, Anna; Foltyn, Wanda; Morawiec-Szymonik, Elżbieta; Siemińśka, Lucyna; Nowak, Mariusz; Głogowska-Szeląg, Joanna; Niedziołka-Zielonka, Danuta; Seemann, Michał; Kos-Kudła, Beata
2016-01-01
Determination of gene-candidates' profile expression responsible for fibrosis, immunosuppression, angiogenesis, and neoplasia processes in the pathogenesis of thyroid gland disease. Sixty-three patients underwent thyroidectomy: 27 with non-toxic nodular goitre (NG), 22 with toxic nodular goitre (TNG), six with papillary cancer (PTC), and eight with Graves' disease (GD). In thyroid tissues, transcriptional activity of TGFbeta1 and its receptors TGFbetaRI, TGFbetaRII, and TGFbetaRIII genes were assessed using RT-qPCR (Reverse Transcriptase Quantitative Polymerase Chain Reaction). Molecular analysis was performed in tissues derived from GD and from the tumour centre (PTC, NG, TNG) and from peripheral parts of the removed lobe without histopathological lesions (tissue control). Control tissue for analysis performed in GD was an unchanged tissue derived from peripheral parts of the removed lobe of patients surgically treated for a single benign tumour. Strict regulation observed among transcriptional activity of TGFb1 and their receptor TGFbetaRI-III genes in control tissues is disturbed in all pathological tissues - it is completely disturbed in PTC and GD, and partially in NG and TNG. Additionally, higher transcriptional activity of TGFb1 gene in PTC in comparison with benign tissues (NG, GD) and lower expression of mRNA TGFbRII (than in TNG, GD) and mRNA TGFbetaRIII than in all studied benign tissues (NG, TNG, GD) suggests a pathogenetic importance of this cytokine and its receptors in PTC development. In GD tissue, higher transcriptional activity of TGFbetaRII and TGFbetaRIII genes as compared to other pathological tissues was observed, indicating a participation of the receptors in the pathomechanism of autoimmune thyroid disease (AITD). TGFbeta1 blood concentrations do not reflect pathological processes taking place in thyroid gland. (Endokrynol Pol 2016; 67 (4): 375-382).
Cixutumumab in Treating Patients With Relapsed or Refractory Solid Tumors
2015-03-18
Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Childhood Hepatoblastoma; Childhood Synovial Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Adrenocortical Carcinoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Liver Cancer; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive; Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Recurrent Retinoblastoma; Recurrent Wilms Tumor and Other Childhood Kidney Tumors
Hyperbaric Oxygen Therapy Registry
2018-04-30
Air or Gas Embolism; Carbon Monoxide Poisoning; Clostridial Myositis and Myonecrosis (Gas Gangrene); Crush Injury, Compartment Syndrome & Other Acute Traumatic Ischemias; Decompression Sickness; Peripheral Arterial Insufficiency and Central Retinal Artery Occlusion; Severe Anemia; Intracranial Abscess; Necrotizing Soft Tissue Infections; Osteomyelitis (Refractory); Delayed Radiation Injury (Soft Tissue and Bony Necrosis); Compromised Grafts and Flaps; Acute Thermal Burn Injury; Idiopathic Sudden Sensorineural Hearing Loss
Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X
2016-05-01
Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Imaging Stem Cell Therapy for the Treatment of Peripheral Arterial Disease
Ransohoff, Julia D.; Wu, Joseph C.
2013-01-01
Arteriosclerotic cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Therapeutic angiogenesis aims to treat ischemic myocardial and peripheral tissues by delivery of recombinant proteins, genes, or cells to promote neoangiogenesis. Concerns regarding the safety, side effects, and efficacy of protein and gene transfer studies have led to the development of cell-based therapies as alternative approaches to induce vascular regeneration and to improve function of damaged tissue. Cell-based therapies may be improved by the application of imaging technologies that allow investigators to track the location, engraftment, and survival of the administered cell population. The past decade of investigations has produced promising clinical data regarding cell therapy, but design of trials and evaluation of treatments stand to be improved by emerging insight from imaging studies. Here, we provide an overview of pre-clinical and clinical experience using cell-based therapies to promote vascular regeneration in the treatment of peripheral arterial disease. We also review four major imaging modalities and underscore the importance of in vivo analysis of cell fate for a full understanding of functional outcomes. PMID:22239638
Hazell, Gareth; Shabanpoor, Fazel; Saleh, Amer F.; Bowerman, Melissa; Meijboom, Katharina E.; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gait, Michael J.; Wood, Matthew J. A.
2016-01-01
The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA. PMID:27621445
Coffin, S E; Clark, S L; Bos, N A; Brubaker, J O; Offit, P A
1999-09-15
Parenterally administered immunizations have long been used to induce protection from mucosal pathogens such as Bordetella pertussis and influenza virus. We previously found that i.m. inoculation of mice with the intestinal pathogen, rotavirus, induced virus-specific Ab production by intestinal lymphocytes. We have now used adoptive transfer studies to identify the cell types responsible for the generation of virus-specific Ab production by gut-associated lymphoid tissue (GALT) after i.m. immunization. Three days after i.m. immunization with rotavirus, cells obtained from the draining peripheral lymph nodes of donor mice were transferred into naive recipient mice. We found that intestinal lymphocytes produced rotavirus-specific Igs (IgM, IgA, and IgG) 2 wk after transfer of either unfractionated cells, or unfractionated cells rendered incapable of cellular division by mitomycin C treatment. Additional studies demonstrated that rotavirus-specific IgA, but not IgG, was produced by intestinal lymphocytes after transfer of purified B cells. Ig allotype analysis revealed that rotavirus-specific IgA was produced by intestinal B cells of recipient origin, suggesting that migration of Ag-presenting B cells from peripheral lymphoid tissues to GALT may contribute to the generation of mucosal IgA responses after parenteral immunization. Strategies that promote Ag uptake and presentation by B cells may enhance mucosal IgA production following parenteral immunization.
Coverage Root after Removing Peripheral Ossifying Fibroma: 5-Year Follow-Up Case Report
Okajima, Luciana S.; Nunes, Marcelo P.; Montalli, Victor A. M.
2016-01-01
When lesions in soft tissue reach the gingival margin, they can produce aesthetic defects during its permanence and after its removal. Periodontal plastic surgery allows the correction of the gingival contour using different techniques. This paper is a case report of a peripheral ossifying fibroma removal in the interproximal area of teeth 21 and 22 in addition to root coverage of the affected area through two surgical phases: keratinized gingival tissue augmentation surgery with free gingival graft concurrent with removal of the lesion and, in a second stage, root coverage by performing coronally advanced flap technique with a follow-up of five years. The initial results achieved, which were root coverage of 100% after 6 months, promoted an adequate gingival contour and prevented the development of a mucogingival defect or a root exposure with its functional and aesthetic consequences. After five years, the results showed long term success of the techniques, where the margin remained stable with complete root coverage and tissues were stable and harmonic in color. PMID:27891263
Coverage Root after Removing Peripheral Ossifying Fibroma: 5-Year Follow-Up Case Report.
Henriques, Paulo S G; Okajima, Luciana S; Nunes, Marcelo P; Montalli, Victor A M
2016-01-01
When lesions in soft tissue reach the gingival margin, they can produce aesthetic defects during its permanence and after its removal. Periodontal plastic surgery allows the correction of the gingival contour using different techniques. This paper is a case report of a peripheral ossifying fibroma removal in the interproximal area of teeth 21 and 22 in addition to root coverage of the affected area through two surgical phases: keratinized gingival tissue augmentation surgery with free gingival graft concurrent with removal of the lesion and, in a second stage, root coverage by performing coronally advanced flap technique with a follow-up of five years. The initial results achieved, which were root coverage of 100% after 6 months, promoted an adequate gingival contour and prevented the development of a mucogingival defect or a root exposure with its functional and aesthetic consequences. After five years, the results showed long term success of the techniques, where the margin remained stable with complete root coverage and tissues were stable and harmonic in color.
Kwon, Deborah Y.; Motley, William W.; Fischbeck, Kenneth H.; Burnett, Barrington G.
2011-01-01
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by reduced levels of the survival motor neuron (SMN) protein. Here we show that the proteasome inhibitor, bortezomib, increases SMN in cultured cells and in peripheral tissues of SMA model mice. Bortezomib-treated animals had improved motor function, which was associated with reduced spinal cord and muscle pathology and improved neuromuscular junction size, but no change in survival. Combining bortezomib with the histone deacetylase inhibitor trichostatin A (TSA) resulted in a synergistic increase in SMN protein levels in mouse tissue and extended survival of SMA mice more than TSA alone. Our results demonstrate that a combined regimen of drugs that decrease SMN protein degradation and increase SMN gene transcription synergistically increases SMN levels and improves the lifespan of SMA model mice. Moreover, this study indicates that while increasing SMN levels in the central nervous system may help extend survival, peripheral tissues can also be targeted to improve the SMA disease phenotype. PMID:21693563
Debey-Pascher, Svenja; Hofmann, Andrea; Kreusch, Fatima; Schuler, Gerold; Schuler-Thurner, Beatrice; Schultze, Joachim L.; Staratschek-Jox, Andrea
2011-01-01
Microarray-based transcriptome analysis of peripheral blood as surrogate tissue has become an important approach in clinical implementations. However, application of gene expression profiling in routine clinical settings requires careful consideration of the influence of sample handling and RNA isolation methods on gene expression profile outcome. We evaluated the effect of different sample preservation strategies (eg, cryopreservation of peripheral blood mononuclear cells or freezing of PAXgene-stabilized whole blood samples) on gene expression profiles. Expression profiles obtained from cryopreserved peripheral blood mononuclear cells differed substantially from those of their nonfrozen counterpart samples. Furthermore, expression profiles in cryopreserved peripheral blood mononuclear cell samples were found to undergo significant alterations with increasing storage period, whereas long-term freezing of PAXgene RNA stabilized whole blood samples did not significantly affect stability of gene expression profiles. This report describes important technical aspects contributing toward the establishment of robust and reliable guidance for gene expression studies using peripheral blood and provides a promising strategy for reliable implementation in routine handling for diagnostic purposes. PMID:21704280
Krajnak, Kristine; Miller, G R; Waugh, Stacey
2018-01-01
Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.
Delagrange, Philippe; Krause, Diana N.; Sugden, David; Cardinali, Daniel P.; Olcese, James
2010-01-01
The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT1 and MT2, that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer. PMID:20605968
MacDonald, Erin; Volkoff, Hélène
2009-04-01
cDNAs encoding for neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) were cloned in an elasmobranch fish, the winter skate. mRNA tissue distribution was examined for the three peptides as well as the effects of two weeks of fasting on their expression. Skate NPY, CART and CCK sequences display similarities with sequences for teleost fish but in general the degree of identity is relatively low (50%). All three peptides are present in brain and in several peripheral tissues, including gut and gonads. Within the brain, the three peptides are expressed in the hypothalamus, telencephalon, optic tectum and cerebellum. Two weeks of fasting induced an increase in telencephalon NPY and an increase in CCK in the gut but had no effects on hypothalamic NPY, CART and CCK, or on telencephalon CART. Our results provide basis for further investigation into the regulation of feeding in winter skate.
Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI
NASA Astrophysics Data System (ADS)
Niaf, Emilie; Rouvière, Olivier; Mège-Lechevallier, Florence; Bratan, Flavie; Lartizien, Carole
2012-06-01
This study evaluated a computer-assisted diagnosis (CADx) system for determining a likelihood measure of prostate cancer presence in the peripheral zone (PZ) based on multiparametric magnetic resonance (MR) imaging, including T2-weighted, diffusion-weighted and dynamic contrast-enhanced MRI at 1.5 T. Based on a feature set derived from grey-level images, including first-order statistics, Haralick features, gradient features, semi-quantitative and quantitative (pharmacokinetic modelling) dynamic parameters, four kinds of classifiers were trained and compared : nonlinear support vector machine (SVM), linear discriminant analysis, k-nearest neighbours and naïve Bayes classifiers. A set of feature selection methods based on t-test, mutual information and minimum-redundancy-maximum-relevancy criteria were also compared. The aim was to discriminate between the relevant features as well as to create an efficient classifier using these features. The diagnostic performances of these different CADx schemes were evaluated based on a receiver operating characteristic (ROC) curve analysis. The evaluation database consisted of 30 sets of multiparametric MR images acquired from radical prostatectomy patients. Using histologic sections as the gold standard, both cancer and nonmalignant (but suspicious) tissues were annotated in consensus on all MR images by two radiologists, a histopathologist and a researcher. Benign tissue regions of interest (ROIs) were also delineated in the remaining prostate PZ. This resulted in a series of 42 cancer ROIs, 49 benign but suspicious ROIs and 124 nonsuspicious benign ROIs. From the outputs of all evaluated feature selection methods on the test bench, a restrictive set of about 15 highly informative features coming from all MR sequences was discriminated, thus confirming the validity of the multiparametric approach. Quantitative evaluation of the diagnostic performance yielded a maximal area under the ROC curve (AUC) of 0.89 (0.81-0.94) for the discrimination of the malignant versus nonmalignant tissues and 0.82 (0.73-0.90) for the discrimination of the malignant versus suspicious tissues when combining the t-test feature selection approach with a SVM classifier. A preliminary comparison showed that the optimal CADx scheme mimicked, in terms of AUC, the human experts in differentiating malignant from suspicious tissues, thus demonstrating its potential for assisting cancer identification in the PZ.
Ovarian and placental production of progesterone and oestradiol during pregnancy in reindeer.
Flood, P F; Tyler, N J C; Read, E K; Rodway, M J; Chedrese, P J
2005-01-01
We obtained uterine and peripheral venous plasma, and samples of luteal and placental tissues from 2- to 7-year-old, Eurasian mountain reindeer (Rangifer tarandus tarandus) from a free-living, semi-domesticated herd in northern Norway in November 1995, and February and March 1996. In November, ovarian venous blood was also collected from four animals. Plasma samples were assayed for progesterone and oestradiol. The tissue samples were examined by light and electron microscopy, steroid dehydrogenase histochemistry, and northern blot analysis for RNAs for 3beta-hydroxy-steroid dehydrogenase (3beta-HSD) and P450 (side chain cleavage (scc)). Peripheral blood was taken from non-pregnant females in the same herd on the same dates. Peripheral progesterone concentrations in pregnant reindeer (3.4 +/- 0.5 ng/ml, n = 8) clearly exceeded those in non-pregnant animals (0.40 +/- 0.14 ng/ml; P < 0.0004 , n = 10) but oestradiol levels were only marginally higher in pregnant (6.0 +/- 0.7 pg/ml) than in non-pregnant (4.8 +/- 0.5 pg/ml; P = 0.35) reindeer at the stages examined. In pregnant animals, peripheral progesterone and oestradiol concentrations rose slightly between November and March but the differences did not reach significance (progesterone, P = 0.083; oestradiol, P = 0.061). In November, progesterone concentrations in the ovarian vein (79 +/- 15 ng/ml) greatly exceeded (P < 0.03) those in the uterine vein ( 10 +/- 4 ng/ml) which in turn exceeded the levels in the peripheral blood (2.8 +/- 0.4 ng/ml; P < 0.29). Oestradiol concentrations were slightly but significantly (P < 0.05) higher in the ovarian (20 +/- 3 pg/ml) than the uterine vein (13 +/- 1 pg/ml) and, in turn, greater (P < 0.03) than in peripheral blood (4.6 +/- 0.4 pg/ml). All samples of luteal tissue consisted exclusively of normal fully-differentiated cells and stained intensely for 3beta-HSD. Isolated groups of placental cells also stained strongly for 3beta-HSD. RNA for P450 (scc) and 3beta-HSD was abundant in all corpora lutea and lower concentrations of P450 (scc) were present in the placenta. 3beta-HSD RNA in the placenta was below the limit of detection. We conclude that the corpus luteum remains an important source of progesterone throughout pregnancy in reindeer but that the placenta is also steroidogenic.
Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X
2015-12-01
Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Indocyanine green video angiography predicts outcome of extravasation injuries.
Haslik, Werner; Pluschnig, Ursula; Steger, Günther G; Zielinski, Christoph C; Schrögendorfer, K F; Nedomansky, Jakob; Bartsch, Rupert; Mader, Robert M
2014-01-01
Extravasation of cytotoxic drugs is a serious complication of systemic cancer treatment. Still, a reliable method for early assessment of tissue damage and outcome prediction is missing. Here, we demonstrate that the evaluation of blood flow by indocyanine green (ICG) angiography in the extravasation area predicts for the need of surgical intervention. Twenty-nine patients were evaluated by ICG angiography after extravasation of vesicant or highly irritant cytotoxic drugs administered by peripheral i.v. infusion. Tissue perfusion as assessed by this standardized method was correlated with clinical outcome. The perfusion index at the site of extravasation differed significantly between patients with reversible tissue damage and thus healing under conservative management (N = 22) versus those who needed surgical intervention due to the development of necrosis (N = 7; P = 0.0001). Furthermore, in patients benefiting from conservative management, the perfusion index was significantly higher in the central extravasation area denoting hyperemia, when compared with the peripheral area (P = 0.0001). In this patient cohort, ICG angiography as indicator of local perfusion within the extravasation area was of prognostic value for tissue damage. ICG angiography could thus be used for the early identification of patients at risk for irreversible tissue damage after extravasation of cytotoxic drugs.
Tc17 cells in patients with uterine cervical cancer.
Zhang, Yan; Hou, Fei; Liu, Xin; Ma, Daoxin; Zhang, Youzhong; Kong, Beihua; Cui, Baoxia
2014-01-01
The existence of Tc17 cells was recently shown in several types of infectious and autoimmune diseases, but their distribution and functions in uterine cervical cancer (UCC) have not been fully elucidated. The frequency of Tc17 cells in peripheral blood samples obtained from UCC patients, cervical intraepithelial neoplasia (CIN) patients and healthy controls was determined by flow cytometry. Besides, the prevalence of Tc17 cells and their relationships to Th17 cells and Foxp3-expressing T cells as well as microvessels in tissue samples of the patients were assessed by immunohistochemistry staining. Compared to controls, patients with UCC or CIN had a higher proportion of Tc17 cells in both peripheral blood and cervical tissues, but the level of Tc17 cells in UCC tissues was significantly higher than that in CIN tissues. Besides, the increased level of Tc17 in UCC patients was associated with the status of pelvic lymph node metastases and increased microvessel density. Finally, significant correlations of infiltration between Tc17 cells and Th17 cells or Foxp3-expressing T cells were observed in UCC and CIN tissues. This study indicates that Tc17 cell infiltration in cervical cancers is associated with cancer progression accompanied by increased infiltrations of Th17 cells and regulatory T cells as well as promoted tumor vasculogenesis.
Advances in vascular tissue engineering.
Thomas, Anita C; Campbell, Gordon R; Campbell, Julie H
2003-01-01
Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the supply of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. "Tissue-engineered blood vessels" may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. "Artificial arteries" may be also be derived from peritoneal granulation tissue in body "bioreactors" by adapting the body's natural wound healing response to produce a hollow tube.
The role of macrophages and eosinophils in reactive lesions of the oral cavity.
Aghbali, Amir Ala; Akbarzadeh, Ayshin; Kouhsoltani, Maryam
2018-01-01
Many studies have reported that macrophages and eosinophils are involved in the pathogenesis of several diseases. To the best of our knowledge, this is the first study comparing macrophages and eosinophils in oral reactive lesions. In this study, we aimed to determine the contribution of macrophages and eosinophils to the pathogenesis of oral reactive lesions and the relationships between these biomarkers and the diverse histopathologic features. Seventy-five paraffin-embedded tissue samples were assessed in this study. Five categories (15 cases for each group), including peripheral ossifying fibroma, pyogenic granuloma, fibroma, inflammatory fibrous hyperplasia, and peripheral giant-cell granuloma, were considered. Anti-CD68 immunohistochemical and hematoxylin-eosin staining was carried out. We found that macrophages, but not eosinophils, were a significant internal component of oral reactive lesions. Macrophages were observed in high densities in all studied groups and diffusely distributed or clustered throughout these lesions. The number of macrophages was increased in peripheral giant-cell granuloma compared with other groups. Our findings suggest that macrophages are involved in the pathogenesis and the variation of microscopic features of oral reactive lesions. However, further clinical studies should be conducted to identify the biological process behind macrophages and the molecular interactions of these cells, with the ultimate aim of suggesting a new potential therapeutic target for these lesions. We found that eosinophils were not involved in the fibrotic process and the variation of microscopic features in oral reactive lesions. Our results showed that peripheral giant-cell granulomas highly demonstrated histiocytic characteristics.
Charcot–Marie–Tooth disease and intracellular traffic
Bucci, Cecilia; Bakke, Oddmund; Progida, Cinzia
2012-01-01
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot–Marie–Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects. PMID:22465036
A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting.
Syamsunarno, Mas Rizky A A; Iso, Tatsuya; Hanaoka, Hirofumi; Yamaguchi, Aiko; Obokata, Masaru; Koitabashi, Norimichi; Goto, Kosaku; Hishiki, Takako; Nagahata, Yoshiko; Matsui, Hiroki; Sano, Motoaki; Kobayashi, Masaki; Kikuchi, Osamu; Sasaki, Tsutomu; Maeda, Kazuhisa; Murakami, Masami; Kitamura, Tadahiro; Suematsu, Makoto; Tsushima, Yoshito; Endo, Keigo; Hotamisligil, Gökhan S; Kurabayashi, Masahiko
2013-01-01
During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting. Here we showed that deletion of FABP4/5 resulted in a marked perturbation of metabolism in response to prolonged fasting, including hyperketotic hypoglycemia and hepatic steatosis. Blood glucose levels were reduced, whereas the levels of non-esterified FA (NEFA) and ketone bodies were markedly increased during fasting. In addition, the uptake of the (125)I-BMIPP FA analogue in the DKO livers was markedly increased after fasting. Consistent with an increased influx of NEFA into the liver, DKO mice showed marked hepatic steatosis after a 48-hr fast. Although gluconeogenesis was observed shortly after fasting, the substrates for gluconeogenesis were reduced during prolonged fasting, resulting in insufficient gluconeogenesis and enhanced hypoglycemia. These metabolic responses to prolonged fasting in DKO mice were readily reversed by re-feeding. Taken together, these data strongly suggested that a maladaptive response to fasting in DKO mice occurred as a result of an increased influx of NEFA into the liver and pronounced hypoglycemia. Together with our previous study, the metabolic consequence found in the present study is likely to be attributed to an impairment of FA uptake in the heart and skeletal muscle. Thus, our data provided evidence that peripheral uptake of FA via capillary endothelial FABP4/5 is crucial for systemic metabolism and may establish FABP4/5 as potentially novel targets for the modulation of energy homeostasis.
A Critical Role of Fatty Acid Binding Protein 4 and 5 (FABP4/5) in the Systemic Response to Fasting
Syamsunarno, Mas Rizky A. A.; Iso, Tatsuya; Hanaoka, Hirofumi; Yamaguchi, Aiko; Obokata, Masaru; Koitabashi, Norimichi; Goto, Kosaku; Hishiki, Takako; Nagahata, Yoshiko; Matsui, Hiroki; Sano, Motoaki; Kobayashi, Masaki; Kikuchi, Osamu; Sasaki, Tsutomu; Maeda, Kazuhisa; Murakami, Masami; Kitamura, Tadahiro; Suematsu, Makoto; YoshitoTsushima; Endo, Keigo; Hotamisligil, Gökhan S.; Kurabayashi, Masahiko
2013-01-01
During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting. Here we showed that deletion of FABP4/5 resulted in a marked perturbation of metabolism in response to prolonged fasting, including hyperketotic hypoglycemia and hepatic steatosis. Blood glucose levels were reduced, whereas the levels of non-esterified FA (NEFA) and ketone bodies were markedly increased during fasting. In addition, the uptake of the 125I-BMIPP FA analogue in the DKO livers was markedly increased after fasting. Consistent with an increased influx of NEFA into the liver, DKO mice showed marked hepatic steatosis after a 48-hr fast. Although gluconeogenesis was observed shortly after fasting, the substrates for gluconeogenesis were reduced during prolonged fasting, resulting in insufficient gluconeogenesis and enhanced hypoglycemia. These metabolic responses to prolonged fasting in DKO mice were readily reversed by re-feeding. Taken together, these data strongly suggested that a maladaptive response to fasting in DKO mice occurred as a result of an increased influx of NEFA into the liver and pronounced hypoglycemia. Together with our previous study, the metabolic consequence found in the present study is likely to be attributed to an impairment of FA uptake in the heart and skeletal muscle. Thus, our data provided evidence that peripheral uptake of FA via capillary endothelial FABP4/5 is crucial for systemic metabolism and may establish FABP4/5 as potentially novel targets for the modulation of energy homeostasis. PMID:24244493
Korsak, A; Chaikovsky, Yu; Sokurenko, L; Likhodiievskyi, V; Neverovskyi, A
2016-02-01
A new experimental model for tissues connection at peripheral nerve injury site in form of tissues welding was designed. In current study we investigated motoneuron state 1, 3, 6 and 12 weeks after peripheral nerve injury and surgical repair with high-frequency electrosurgical technology. Spinal cord sections was stained by Nissl method and observed with light microscopy. We found that postoperative period in animals from experimental groups characterized by qualitative changes in neurons from spinal motor centers that can be interpreted as compensatory processes as response to alteration. In animals from group with high-frequency electrosurgical technology usage stabilization processes passes more quickly comparatively to animals with epineural sutures. High-frequency electrosurgical technology usage provides less harmful effects on motoneurons than epineural suturing.
Sawaengsri, Hathairat; Bergethon, Peter R; Qiu, Wei Qiao; Scott, Tammy M; Jacques, Paul F; Selhub, Jacob; Paul, Ligi
2016-12-01
The 776C→G polymorphism of the vitamin B-12 transport protein transcobalamin gene (TCN2) (rs1801198; Pro259Arg) is associated with a lower holotranscobalamin concentration in plasma. This effect may reduce the availability of vitamin B-12 to tissues even when vitamin B-12 intake is adequate. Clinical outcomes associated with vitamin B-12 insufficiency could potentially be worsened by high folate intake. We determined the association of the TCN2 776C→G polymorphism and folate intake with peripheral neuropathy in elders with normal plasma concentrations of vitamin B-12. Participants in this cross-sectional study (n = 171) were from a cohort of community-based, home-bound elderly individuals aged ≥60 y who underwent an evaluation by physicians including an assessment for peripheral neuropathy. Participants were administered food-frequency and general health status questionnaires, anthropometric measurements were taken, and a fasting blood sample from each subject was collected. Odds of neuropathy were 3-fold higher for GG genotypes than for CC genotypes (OR: 3.33; 95% CI: 1.15, 9.64). When folate intake was >2 times the Recommended Dietary Allowance (800 μg), GG genotypes had 6.9-fold higher odds of neuropathy than CC genotypes (OR: 6.9; 95% CI: 1.31, 36.36). There was no difference between the genotypes in the odds of peripheral neuropathy when folate intake was ≤800 μg (OR: 1.5; 95% CI: 0.18, 12.33). The TCN2 776C→G polymorphism is associated with increased odds of peripheral neuropathy in the elderly, even with a normal vitamin B-12 status, especially if their folate intake is >2 times the Recommended Dietary Allowance. © 2016 American Society for Nutrition.
Analgesic effect of the neuropeptide cortistatin in murine models of arthritic inflammatory pain.
Morell, Maria; Souza-Moreira, Luciana; Caro, Marta; O'Valle, Francisco; Forte-Lago, Irene; de Lecea, Luis; Gonzalez-Rey, Elena; Delgado, Mario
2013-05-01
To investigate the role of the antiinflammatory neuropeptide cortistatin in chronic pain evoked by joint inflammation. Thermal and mechanical hyperalgesia was evoked in mouse knee joints by intraplantar injection of tumor necrosis factor α and intraarticular infusion of Freund's complete adjuvant, and the analgesic effects of cortistatin, administered centrally, peripherally, and systemically, were assessed. In addition, the effects of cortistatin on the production of nociceptive peptides and the activation of pain signaling were assayed in dorsal root ganglion cultures and in inflammatory pain models. The role of endogenous cortistatin in pain sensitization and perpetuation of chronic inflammatory states was evaluated in cortistatin-deficient mice. Finally, the effect of noxious/inflammatory stimuli in the production of cortistatin by the peripheral nociceptive system was assayed in vitro and in vivo. Expression of cortistatin was observed in peptidergic nociceptors of the peripheral nociceptive system, and endogenous cortistatin was found to participate in the tuning of pain sensitization, especially in pathologic inflammatory conditions. Results showed that cortistatin acted both peripherally and centrally to reduce the tactile allodynia and heat hyperalgesia evoked by arthritis and peripheral tissue inflammation in mice, via mechanisms that were independent of its antiinflammatory action. These mechanisms involved direct action on nociceptive neurons and regulation of central sensitization. The analgesic effects of cortistatin in murine arthritic pain were linked to binding of the neuropeptide to somatostatin and ghrelin receptors, activation of the G protein subunit Gαi , impairment of ERK signaling, and decreased production of calcitonin gene-related peptide in primary nociceptors. These findings indicate that cortistatin is an antiinflammatory factor with potent analgesic effects that may offer a new approach to pain therapy in pathologic inflammatory states, including osteoarthritis and rheumatoid arthritis. Copyright © 2013 by the American College of Rheumatology.
Richey, Joyce M; Woolcott, Orison
2017-09-14
The purpose of the review was to revisit the possibility of the endocannabinoid system being a therapeutic target for the treatment of obesity by focusing on the peripheral roles in regulating appetite and energy metabolism. Previous studies with the global cannabinoid receptor blocker rimonabant, which has both central and peripheral properties, showed that this drug has beneficial effects on cardiometabolic function but severe adverse psychiatric side effects. Consequently, focus has shifted to peripherally restricted cannabinoid 1 (CB1) receptor blockers as possible therapeutic agents that mitigate or eliminate the untoward effects in the central nervous system. Targeting the endocannabinoid system using novel peripheral CB1 receptor blockers with negligible penetrance across the blood-brain barrier may prove to be effective therapy for obesity and its co-morbidities. Perhaps the future of blockers targeting CB1 receptors will be tissue-specific neutral antagonists (e.g., skeletal muscle specific to treat peripheral insulin resistance, adipocyte-specific to treat fat excess, liver-specific to treat fatty liver and hepatic insulin resistance).
Terkawi, Mohamad Alaa; Nishimura, Maki; Furuoka, Hidefumi
2016-01-01
In the current study, we examined the effects of depletion of phagocytes on the progression of Plasmodium yoelii 17XNL infection in mice. Strikingly, the depletion of phagocytic cells, including macrophages, with clodronate in the acute phase of infection significantly reduced peripheral parasitemia but increased mortality. Moribund mice displayed severe pathological damage, including coagulative necrosis in liver and thrombi in the glomeruli, fibrin deposition, and tubular necrosis in kidney. The severity of infection was coincident with the increased sequestration of parasitized erythrocytes, the systematic upregulation of inflammation and coagulation, and the disruption of endothelial integrity in the liver and kidney. Aspirin was administered to the mice to minimize the risk of excessive activation of the coagulation response and fibrin deposition in the renal tissue. Interestingly, treatment with aspirin reduced the parasite burden and pathological lesions in the renal tissue and improved survival of phagocyte-depleted mice. Our data imply that the depletion of phagocytic cells, including macrophages, in the acute phase of infection increases the severity of malarial infection, typified by multiorgan failure and high mortality. PMID:26755155
Plexiform schwannoma: an unusual clitoral mass.
Sammarco, Anne G; Abualnadi, Noor M; Andraska, Elizabeth A; Tracy, Paige V; Berger, Mitchell B; Haefner, Hope K
2017-03-01
Acquired clitoral enlargement is a rare condition resulting from a variety of etiologies, including tumors and excess androgens. Few cases of nonmalignant schwannoma, a benign tumor of the peripheral nerve sheath, have been reported in the literature as causes of clitoral enlargement in patients without known neurofibromatosis. These painless, slow-growing tumors rarely recur once excised. We present the initial investigation of a patient with a large clitoral schwannoma and subsequent treatment with partial vulvectomy. The workup, including advanced pelvic imaging for diagnosis and surgical planning, as well as removal of the clitoral tumor with preservation of functional tissue and restoration of normal vulvar anatomy despite a large excision, is demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.
Noninvasive Methods for Determining Lesion Depth from Vesicant Exposure
2007-01-01
LDPI. Chilcott et al19 used several noninvasive bio- a bolus through a central or peripheral venous line. engineering methods to monitor wound healing...ade- bolus through a central or peripheral venous line. The quate NBF into the tissue, two parallel cuts approxi- first two range finding pigs were...not more than 5.0%), its use creasing the size of the scan area, and/or decreasing is contraindicated in patients with a history of allergy the number
NASA Astrophysics Data System (ADS)
Sharma, Anup Dutt
Peripheral nerve regeneration is a complex biological process responsible for regrowth of neural tissue following a nerve injury. The main objective of this project was to enhance peripheral nerve regeneration using interdisciplinary approaches involving polymeric scaffolds, stem cell therapy, drug delivery and high content screening. Biocompatible and biodegradable polymeric materials such as poly (lactic acid) were used for engineering conduits with micropatterns capable of providing mechanical support and orientation to the regenerating axons and polyanhydrides for fabricating nano/microparticles for localized delivery of neurotrophic growth factors and cytokines at the site of injury. Transdifferentiated bone marrow stromal cells or mesenchymal stem cells (MSCs) were used as cellular replacements for lost native Schwann cells (SCs) at the injured nerve tissue. MSCs that have been transdifferentiated into an SC-like phenotype were tested as a substitute for the myelinating SCs. Also, genetically modified MSCs were engineered to hypersecrete brain- derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) to secrete therapeutic factors which Schwann cell secrete. To further enhance the regeneration, nerve growth factor (NGF) and interleukin-4 (IL4) releasing polyanhydrides nano/microparticles were fabricated and characterized in vitro for their efficacy. Synergistic use of these proposed techniques was used for fabricating a multifunctional nerve regeneration conduit which can be used as an efficient tool for enhancing peripheral nerve regeneration.
Cronin, Matthew John; Wharton, Samuel; Al-Radaideh, Ali; Constantinescu, Cris; Evangelou, Nikos; Bowtell, Richard; Gowland, Penny Anne
2016-06-01
The aim of this study was to compare the use of high-resolution phase and QSM images acquired at ultra-high field in the investigation of multiple sclerosis (MS) lesions with peripheral rings, and to discuss their usefulness for drawing inferences about underlying tissue composition. Thirty-nine Subjects were scanned at 7 T, using 3D T 2*-weighted and T 1-weighted sequences. Phase images were then unwrapped and filtered, and quantitative susceptibility maps were generated using a thresholded k-space division method. Lesions were compared visually and using a 1D profiling algorithm. Lesions displaying peripheral rings in the phase images were identified in 10 of the 39 subjects. Dipolar projections were apparent in the phase images outside of the extent of several of these lesions; however, QSM images showed peripheral rings without such projections. These projections appeared ring-like in a small number of phase images where no ring was observed in QSM. 1D profiles of six well-isolated example lesions showed that QSM contrast corresponds more closely to the magnitude images than phase contrast. Phase images contain dipolar projections, which confounds their use in the investigation of tissue composition in MS lesions. Quantitative susceptibility maps correct these projections, providing insight into the composition of MS lesions showing peripheral rings.
Wang, H; Xu, Lj; Lu, Lq
2016-02-01
Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection. © 2015 John Wiley & Sons Ltd.
... begins in the lining of blood vessels, while liposarcoma arises from fat cells. Some types of soft ... sarcoma Gastrointestinal stromal tumor (GIST) Kaposi's sarcoma Leiomyosarcoma Liposarcoma Malignant peripheral nerve sheath tumor Myxofibrosarcoma Rhabdomyosarcoma Solitary ...
Takeda, Jun; Fang, Xin; Olson, David M
2017-01-10
Parturition at term and preterm is characterized by sterile inflammatory processes occurring in the absence of infection whereby peripheral leukocytes infiltrate gestational tissues in response to chemotactic signals. In response to a homing signal, recruited leukocytes undergo diapedesis and extravasate through capillaries, migrating into stromal tissue. There they interact with resident immune and stromal cells to produce a mixture of matrix metalloproteinases, prostaglandins and cytokines including interleukin-1β (IL-1β) and IL-6 that in turn transform the uterus from pregnancy to parturition. Since migration is an early parturitional event our purpose was to study the migration of maternal peripheral blood leukocytes in response to a standard chemotactic signal during several different conditions of late pregnancy. We used a cross-sectional observational study design. Subjects were (sTL) spontaneous normal labour delivered vaginally at term, (TNL) elective caesarean section at term without labour, (PTL) preterm in labour, (PTNL) preterm not in labour, (TPTL) threatened preterm labour, and (pPROM) preterm with premature rupture of membranes. Leukocytes (100,000) obtained by venipuncture and chemotactic factor isolated from term labour fetal membranes were placed in the upper and lower halves, respectively, of a Boyden chamber separated by a filter with 3μm pores. Migrated leukocytes were assessed by flow cytometry. The number of leukocytes that migrated in 90 min was the primary outcome measure. Increased numbers of leukocytes from peripheral blood of women in labour (TL or PTL) or soon to go into labour (PPROM) migrated towards a chemotactic signal than did leukocytes from women not in labour (TNL, PTNL, or TPTL) (p < 0.0001). All pPROM delivered within 7d; TPTL delivered >30d. Receiver operating characteristic curve parameters indicated the cut-off point for delivery within 7d to be 37,082 leukocytes with sensitivity 78.1%, specificity 88.9%, positive predictive value 91.4%, negative predictive value 72.7%, and area under the curve 0.83. Leukocyte migration to a fetal membrane signal varies in a predictable fashion during various clinical situations of late gestation. This principle has the potential to be improved to become a clinical test to predict delivery.
New actions of melatonin and their relevance to biometeorology
NASA Astrophysics Data System (ADS)
Hardeland, Rüdiger
Melatonin is not only produced by the pineal gland, retina and parietal but also by various other tissues and cells from vertebrates, invertebrates, fungi, plants, multicellular algae and by unicells. In plants, many invertebrates and unicells, its concentration often exceeds that found in vertebrate blood by several orders of magnitude. The action of melatonin is highly pleiotropic. It involves firstly, direct effects, via specific binding sites in various peripheral tissues and cells of vertebrates, including immunomodulation; secondly, systemic influences on the cytoskeleton and nitric oxide formation, mediated by calmodulin; and thirdly, antioxidative protection, perhaps also in the context of photoprotection in plants and unicells. In some dinoflagellates, melatonin conveys temperature signals. On the basis of these comparisons, melatonin appears to mediate and modulate influences from several major environmental factors, such as the photoperiod, radiation intensity and temperature.
Safety of peripheral intravenous administration of vasoactive medication.
Cardenas-Garcia, Jose; Schaub, Karen F; Belchikov, Yuly G; Narasimhan, Mangala; Koenig, Seth J; Mayo, Paul H
2015-09-01
Central venous access is commonly performed to administer vasoactive medication. The administration of vasoactive medication via peripheral intravenous access is a potential method of reducing the need for central venous access. The aim of this study was to evaluate the safety of vasoactive medication administered through peripheral intravenous access. Over a 20-month period starting in September 2012, we monitored the use of vasoactive medication via peripheral intravenous access in an 18-bed medical intensive care unit. Norepinephrine, dopamine, and phenylephrine were all approved for use through peripheral intravenous access. A total of 734 patients (age 72 ± 15 years, male/female 398/336, SAPS II score 75 ± 15) received vasoactive medication via peripheral intravenous access 783 times. Vasoactive medication used was norepinephrine (n = 506), dopamine (n = 101), and phenylephrine (n = 176). The duration of vasoactive medication via peripheral intravenous access was 49 ± 22 hours. Extravasation of the peripheral intravenous access during administration of vasoactive medication occurred in 19 patients (2%) without any tissue injury following treatment, with local phentolamine injection and application of local nitroglycerin paste. There were 95 patients (13%) receiving vasoactive medication through peripheral intravenous access who eventually required central intravenous access. Administration of norepinephrine, dopamine, or phenylephrine by peripheral intravenous access was feasible and safe in this single-center medical intensive care unit. Extravasation from the peripheral intravenous line was uncommon, and phentolamine with nitroglycerin paste were effective in preventing local ischemic injury. Clinicians should not regard the use of vasoactive medication is an automatic indication for central venous access. © 2015 Society of Hospital Medicine.
Asson-Batres, Mary Ann; Smith, W. Bradford; Clark, Gale
2009-01-01
Vitamin A (VA), all-trans-retinol (at-ROL), and its derivative, all-trans-retinoic acid (at-RA), are required for neuron development. The effects of these retinoids are dependent upon the nutritional status of the rat and tissue-specific dynamics of retinoid access and utilization. The purpose of this study was to determine the status of at-ROL and at-RA in the peripheral olfactory organ of postnatal rats fed a normal diet and rats fed a VA-deficient (VAD) diet. Extracted retinoids were analyzed by HPLC. Resolved sample peaks were identified by comparing their elution times and spectra with those of authentic standards. Mean at-RA and at-ROL concentrations of 23 pmol/g olfactory tissue and 0.13 nmol/g, respectively, were recovered from olfactory tissue. The ratio of at-RA:at-ROL in olfactory was ∼2 times that in testis and 200 times that in liver. at-ROL was depleted from the liver and olfactory organ of rats fed a VAD diet from birth to 70 d of age. Surprisingly, at-RA was still present in olfactory tissue from these rats. At 90 d of age, the VAD rats were frankly deficient and at-RA was no longer detectable in olfactory tissue. The comparatively high ratio of at-RA:at-ROL in the peripheral olfactory organ and the persistence of at-RA in at-ROL-depleted tissues strongly suggests that maintenance of local stores of at-RA is functionally relevant in this tissue. PMID:19403718
USDA-ARS?s Scientific Manuscript database
Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...
Wan, Yinan; Almeida, Alexandra D; Rulands, Steffen; Chalour, Naima; Muresan, Leila; Wu, Yunmin; Simons, Benjamin D; He, Jie; Harris, William A
2016-04-01
Clonal analysis is helping us understand the dynamics of cell replacement in homeostatic adult tissues (Simons and Clevers, 2011). Such an analysis, however, has not yet been achieved for continuously growing adult tissues, but is essential if we wish to understand the architecture of adult organs. The retinas of lower vertebrates grow throughout life from retinal stem cells (RSCs) and retinal progenitor cells (RPCs) at the rim of the retina, called the ciliary marginal zone (CMZ). Here, we show that RSCs reside in a niche at the extreme periphery of the CMZ and divide asymmetrically along a radial (peripheral to central) axis, leaving one daughter in the peripheral RSC niche and the other more central where it becomes an RPC. We also show that RPCs of the CMZ have clonal sizes and compositions that are statistically similar to progenitor cells of the embryonic retina and fit the same stochastic model of proliferation. These results link embryonic and postembryonic cell behaviour, and help to explain the constancy of tissue architecture that has been generated over a lifetime. © 2016. Published by The Company of Biologists Ltd.
Silicone Molding and Lifetime Testing of Peripheral Nerve Interfaces for Neuroprostheses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupte, Kimaya; Tolosa, Vanessa
Implantable peripheral nerve cuffs have a large application in neuroprostheses as they can be used to restore sensation to those with upper limb amputations. Modern day prosthetics, while lessening the pain associated with phantom limb syndrome, have limited fine motor control and do not provide sensory feedback to patients. Sensory feedback with prosthetics requires communication between the nervous system and limbs, and is still a challenge to accomplish with amputees. Establishing this communication between the peripheral nerves in the arm and artificial limbs is vital as prosthetics research aims to provide sensory feedback to amputees. Peripheral nerve cuffs restore sensationmore » by electrically stimulating certain parts of the nerve in order to create feeling in the hand. Cuff electrodes have an advantage over standard electrodes as they have high selective stimulation by bringing the electrical interface close to the neural tissue in order to selectively activate targeted regions of a peripheral nerve. In order to further improve the selective stimulation of these nerve cuffs, there is need for finer spatial resolution among electrodes. One method to achieve a higher spatial resolution is to increase the electrode density on the cuff itself. Microfabrication techniques can be used to achieve this higher electrode density. Using L-Edit, a layout editor, microfabricated peripheral nerve cuffs were designed with a higher electrode density than the current model. This increase in electrode density translates to an increase in spatial resolution by at least one order of magnitude. Microfabricated devices also have two separate components that are necessary to understand before implantation: lifetime of the device and assembly to prevent nerve damage. Silicone molding procedures were optimized so that devices do not damage nerves in vivo, and lifetime testing was performed on test microfabricated devices to determine their lifetime in vivo. Future work of this project would include fabricating some of the designed devices and seeing how they compare to the current cuffs in terms of their electrical performance, lifetime, shape, and mechanical properties.« less
Gordon, Yaron; Partovi, Sasan; Müller-Eschner, Matthias; Amarteifio, Erick; Bäuerle, Tobias; Weber, Marc-André; Kauczor, Hans-Ulrich
2014-01-01
Introduction The ability to ascertain information pertaining to peripheral perfusion through the analysis of tissues’ temporal reaction to the inflow of contrast agent (CA) was first recognized in the early 1990’s. Similar to other functional magnetic resonance imaging (MRI) techniques such as arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, dynamic contrast-enhanced MRI (DCE-MRI) was at first restricted to studies of the brain. Over the last two decades the spectrum of ailments, which have been studied with DCE-MRI, has been extensively broadened and has come to include pathologies of the heart notably infarction, stroke and further cerebral afflictions, a wide range of neoplasms with an emphasis on antiangiogenic treatment and early detection, as well as investigations of the peripheral vascular and musculoskeletal systems. Applications to peripheral perfusion DCE-MRI possesses an unparalleled capacity to quantitatively measure not only perfusion but also other diverse microvascular parameters such as vessel permeability and fluid volume fractions. More over the method is capable of not only assessing blood flowing through an organ, but in contrast to other noninvasive methods, the actual tissue perfusion. These unique features have recently found growing application in the study of the peripheral vascular system and most notably in the diagnosis and treatment of peripheral arterial occlusive disease (PAOD). Review outline The first part of this review will elucidate the fundamentals of data acquisition and interpretation of DCE-MRI, two areas that often remain baffling to the clinical and investigating physician because of their complexity. The second part will discuss developments and exciting perspectives of DCE-MRI regarding the assessment of perfusion in the extremities. Emerging clinical applications of DCE-MRI will be reviewed with a special focus on investigation of physiology and pathophysiology of the microvascular and vascular systems of the extremities. PMID:24834412
Recent conclusions regarding the reconstructive microsurgery of peripheral nerves.
Dumitrescu-Ionescu, Doina
2008-01-01
The introducing of reconstructive microsurgery has meant not only the addition of microsurgical microscopes and instruments, but a change, a progress towards a new concept, the concept of the microsurgical reconstruction of tissues. The microscope and the instruments themselves are only a means of utilizing this new concept to good effect since the mere use of the microscope and of the instruments according to the old concept of tissue reconstruction cannot be considered to be reconstructive microsurgery. From December 1979 through to December 2005, more than 3000 patients with peripheral nerve lesions were operated on by the same microsurgeon, the author Doina Ionescu-Dumitrescu. The conclusions are based on the following: A huge amount of work involved in carrying out microsurgical reconstructions of over 7500 peripheral nerves in over 3000 patients, 1800 of which were nerve transplants for defects of peripheral nerves of the extremities, for posttraumatic brachial plexus paralyses (91), for replantations and/or revascularizations following partial or complete amputations of the extremities (24 out of which 23 successful) or for free transfers of functional composite tissues (53). For a more accurate picture of such an effort one should consider the operation time that these types of reconstruction involve: between 3 and 12 hours for each patient under general anaesthesia and for both the anaesthetist and the microsurgeon. Experimental microsurgery on rabbit ears The results of the histopathological examination of 500 postoperative neuromas of peripheral nerves repaired traditionally. The Moberg test. Pre, intra and postoperative monthly observations of the patients until their full recovery according to the criteria set by the International Reconstructive Microsurgery Society (postoperative intervals of 6-12-24 months). Taking pictures and recording pre, intra and postoperative stages. The patients' professional, social and familial reintegration. The patients' state of mind; level of cooperation. Comparing results with those of classic and palliative repairs. Comparing the data resulting from this experience with the information provided by the specialist literature of the world. Completing the internationally defined reconstructive procedures with the personal ones, to produce a new concept.
Nano-biomimetics for nano/micro tissue regeneration.
Singh, Dolly; Singh, Deepti; Zo, Sunmi; Han, Sung Soo
2014-10-01
Nanostructured biomimetics have recently shown great promise in the field of tissue engineering. They can be used as nanoscaffolds and tailored at the molecular level. The scaffold topography closely resembles the native extracellular matrix in terms of framing, porosity and bio-functionality. This review covers the approaches used for biomimetic fabrication, including soft lithography, the plasmonic nanohybrid matrix method and multilayer self-assembly scaffolds for tissue regeneration. It brings together knowledge from different arenas about the synthesis, characterization and functionalization of matrices to accelerate the tissue regeneration process. Every tissue in the body presents different challenges and requires a specific fabrication process designed to identify and mirror the particular organ. For example, microfluidics systems aim to mimic the extracellular matrix of vascular and cartilage tissue, and these systems have different parts with completely different mechanical strength, cellular adhesion and interplay between matrix and cells. A fully functional nanomatrix designed by a self-assembling methodology for use as a vascular tissue engineering scaffold needs to have intrinsic microvessels that facilitate the transportation of metabolites and nutrients. Similarly, in the case of peripheral nerve regeneration, a scaffold needs to have sufficient mechanical strength to protect the regenerating tissue, yet be biodegradable enough to avoid a possible second surgery. To enhance the functionality of scaffolds, increasing focus has been placed on in vitro and in vivo research to achieve optimal scaffold design. Nanobiomimetics unarguably offer the most suitable physicochemical scaffold properties for tissue regeneration.
Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B
2009-11-01
To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (P<0.05) and obesity (P<0.05) were independently associated with increased expression of 11beta-HSD1 mRNA. The subgroups LP and OC had increased 11beta-HSD1 and 11beta-HSD2 mRNA expression compared with LC (P<0.05, P<0.05). There were no effects of PCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (P<0.001) and increased upper body fat distribution (P<0.01) were associated with increased expression of 11beta-HSD1, but neither 11beta-HSD2 nor H6PDH. Polycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.
Shannon, Casey P.; Balshaw, Robert; Ng, Raymond T.; Wilson-McManus, Janet E.; Keown, Paul; McMaster, Robert; McManus, Bruce M.; Landsberg, David; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.
2014-01-01
Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay. PMID:24733377
Peripheral neuropathy following administration of nerve tissue antirabies vaccine.
Arega, D; Zenebe, G
1999-10-01
In 1997, two patients were admitted to Tikur Anbessa Hospital with complaints of ascending paralysis in all extremities following administration of sheep brain tissue anti-rabies vaccine following a rabies exposure. The paralysis had started after 14 daily subcutaneous injections of the Fermi type nerve tissue vaccine. After an eight week stay in the hospital with supportive care and physiotherapy, the patients showed remarkable improvement. They received a booster dose of vaccine while in the hospital, with no deterioration in their neurological status and were discharged.
Determination of oxygen tension in the subcutaneous tissue of cosmonauts during the Salyut-6 mission
NASA Technical Reports Server (NTRS)
Baranski, S.; Bloszczynski, R.; Hermaszewski, M.; Kubiczkowa, J.; Piorko, A.; Saganiak, R.; Sarol, Z.; Skibniewsky, F.; Stendera, J.; Walichnowski, W.
1982-01-01
A polarographic technique was used to measure the oxygen tension in subcutaneous tissue of the forearm of a cosmonaut prior to, after, and on the fourth day of a space mission performed by Salut-6. A drop in the oxygen exchange rate in the peripheral tissues during weightlessness was observed. The mechanisms of this change are studied, taking into consideration the blood distribution in the organism and microcirculation disorders reflected by a decreased blood flow rate in arterial-venous junctions.
Hyaluronan modulates TRPV1 channel opening, reducing peripheral nociceptor activity and pain
Caires, Rebeca; Luis, Enoch; Taberner, Francisco J.; Fernandez-Ballester, Gregorio; Ferrer-Montiel, Antonio; Balazs, Endre A.; Gomis, Ana; Belmonte, Carlos; de la Peña, Elvira
2015-01-01
Hyaluronan (HA) is present in the extracellular matrix of all body tissues, including synovial fluid in joints, in which it behaves as a filter that buffers transmission of mechanical forces to nociceptor nerve endings thereby reducing pain. Using recombinant systems, mouse-cultured dorsal root ganglia (DRG) neurons and in vivo experiments, we found that HA also modulates polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channels. HA diminishes heat, pH and capsaicin (CAP) responses, thus reducing the opening probability of the channel by stabilizing its closed state. Accordingly, in DRG neurons, HA decreases TRPV1-mediated impulse firing and channel sensitization by bradykinin. Moreover, subcutaneous HA injection in mice reduces heat and capsaicin nocifensive responses, whereas the intra-articular injection of HA in rats decreases capsaicin joint nociceptor fibres discharge. Collectively, these results indicate that extracellular HA reduces the excitability of the ubiquitous TRPV1 channel, thereby lowering impulse activity in the peripheral nociceptor endings underlying pain. PMID:26311398
Jiang, Wenli; Wang, Yuexiang; Tang, Jie; Peng, Jiang; Wang, Yu; Guo, Quanyi; Guo, Zhiyuan; Li, Pan; Xiao, Bo; Zhang, Jinxing
2016-01-01
Low intensity pulsed ultrasound (LIPUS) has been widely used in clinic for the treatment of repairing pseudarthrosis, bone fractures and of healing in various soft tissues. Some reports indicated that LIPUS accelerated peripheral nerve regeneration including Schwann cells (SCs) and injured nerves. But little is known about its appropriate intensities on autograft nerves. This study was to investigate which intensity of LIPUS improved the regeneration of gold standard postsurgical nerves in experimental rat model. Sprague-Dawley rats were made into 10 mm right side sciatic nerve reversed autologous nerve transplantation and randomly treated with 250 mW/cm2, 500 mW/cm2 or 750 mW/cm2 LIPUS for 2–12 weeks after operation. Functional and pathological results showed that LIPUS of 250 mW/cm2 significantly induced faster rate of axonal regeneration. This suggested that autograft nerve regeneration was improved. PMID:27102358
Zhu, Junqing; Jia, Ertao; Zhou, Yi; Xu, Juan; Feng, Zhitao; Wang, Hao; Chen, Xiaoguang; Li, Juan
2015-01-01
Abstract Although CD3-CD56+NKp44+ natural killer (NKp44+NK) cells have been linked to autoimmune diseases including inflammatory bowel disease, ankylosing spondylitis, and primary Sjogren syndrome, the expansion and role of those cells in patients with rheumatoid arthritis (RA) remain less defined. Here, we investigate the proportion and pathogenesis of NKp44+NK cells in patients with RA. The results show NKp44+NK cells significantly expanded in RA peripheral blood and synovial fluid, which were correlated positively with RA disease activity. They also highly expressed in RA synovial tissues and secreted a high concentration of interleukin-22 (IL-22) in vitro. Further, NKp44+NK cells culture supernatant promoted the proliferation of fibroblast-like synoviocytes (FLS) which was blocked by IL-22 antagonist and AG490. Treated with recombination human IL-22, the proliferation and phosphorylation-STAT3 on RA-FLS increased in a dose-dependent manner and time-dependent manner; the progress of which could be blocked by AG490. The present study clarifies the expansion of NKp44+NK cells in the peripheral blood and synovial fluid of patients with RA, especially in the synovial tissues of RA for the first time. STAT3 is an essential pathway in mediating the effects of IL-22 secreted by NKp44+NK cells on the proliferation of FLS in patients with RA. PMID:26717357
Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes
Clatworthy, Menna R.; Aronin, Caren E. Petrie; Mathews, Rebeccah J.; Morgan, Nicole; Smith, Kenneth G.C.; Germain, Ronald N.
2014-01-01
Antibodies are critical for defence against a variety of microbes but may also be pathogenic in some autoimmune diseases. Many effector functions of antibody are mediated by Fcγ receptors (FcγRs), which are found on most immune cells, including dendritic cells (DCs). DCs are important antigen presenting cells and play a central role in inducing antigen-specific tolerance or immunity1,2. Following antigen acquisition in peripheral tissues, DCs migrate to draining lymph nodes via lymphatics to present antigen to T cells. In this study we demonstrate that FcγR engagement by IgG immune complexes (IC) stimulates DC migration from peripheral tissues to the paracortex of draining lymph nodes. In vitro, IC-stimulated murine and human DCs showed enhanced directional migration in a CCL19 gradient and increased CCR7 expression. Using intravital two-photon microscopy, we observed that local administration of IC resulted in dermal DC mobilisation. We confirmed that dermal DC migration to lymph nodes was CCR7-dependent and increased in the absence of the inhibitory receptor, FcγRIIb. These observations have relevance to autoimmunity, because autoantibody-containing serum from mice and humans with SLE also increased dermal DC migration to lymph nodes in vivo, suggesting that this process may occur in lupus, potentially driving the inappropriate localisation of autoantigen-bearing DCs. PMID:25384086
Pomytkin, Igor; Costa-Nunes, João P; Kasatkin, Vladimir; Veniaminova, Ekaterina; Demchenko, Anna; Lyundup, Alexey; Lesch, Klaus-Peter; Ponomarev, Eugene D; Strekalova, Tatyana
2018-04-24
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers. © 2018 John Wiley & Sons Ltd.
Monoacylglycerol signalling and ABHD6 in health and disease.
Poursharifi, Pegah; Madiraju, Sri Ramachandra Murthy; Prentki, Marc
2017-09-01
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications. © 2017 John Wiley & Sons Ltd.
Regulation of circadian blood pressure: from mice to astronauts.
Agarwal, Rajiv
2010-01-01
Circadian variation is commonly seen in healthy people; aberration in these biological rhythms is an early sign of disease. Impaired circadian variation of blood pressure (BP) has been shown to be associated with greater target organ damage and with an elevated risk of cardiovascular events independent of the BP load. The purpose of this review is to examine the physiology of circadian BP variation and propose a tripartite model that explains the regulation of circadian BP. The time-keeper in mammals resides centrally in the suprachiasmatic nucleus. Apart from this central clock, molecular clocks exist in most peripheral tissues including vascular tissue and the kidney. These molecular clocks regulate sodium balance, sympathetic function and vascular tone. A physiological model is proposed that integrates our understanding of molecular clocks in mice with the circadian BP variation among humans. The master regulator in this proposed model is the sleep-activity cycle. The equivalents of peripheral clocks are endothelial and adrenergic functions. Thus, in the proposed model, the variation in circadian BP is dependent upon three major factors: physical activity, autonomic function, and sodium sensitivity. The integrated consideration of physical activity, autonomic function, and sodium sensitivity appears to explain the physiology of circadian BP variation and the pathophysiology of disrupted BP rhythms in various conditions and disease states. Our understanding of molecular clocks in mice may help to explain the provenance of blunted circadian BP variation even among astronauts.
Yanagawa, Masato; Uchida, Kazushige; Ando, Yugo; Tomiyama, Takashi; Yamaguchi, Takashi; Ikeura, Tsukasa; Fukui, Toshiro; Nishio, Akiyoshi; Uemura, Yoshiko; Miyara, Takayuki; Okamoto, Hiroyuki; Satoi, Souhei; Okazaki, Kazuichi
2018-03-01
Pathophysiology of type 1 autoimmune pancreatitis (AIP) is still unclear. We previously reported that M2 macrophages might play an important role in type 1 AIP. Recently, it has been reported that basophils regulate differentiation to M2 macrophages. In this study, we investigated basophils from the pancreatic tissue and peripheral blood of individuals with type 1 AIP. By using immunohistochemistry, we investigated basophils in pancreatic tissue from 13 patients with type 1 AIP and examined expression of toll-like receptors (TLRs) by these cells. Additionally, we obtained peripheral blood samples from 27 healthy subjects, 40 patients with type 1 AIP, 8 patients with alcoholic chronic pancreatitis, 10 patients with bronchial asthma, and 10 patients with atopic dermatitis, and analyzed activation of basophils by stimulating them with ligands of TLR1-9. We also compared TLR expression in basophils from the tissue and blood samples. Basophils were detected in pancreatic tissues from 10 of 13 patients with type 1 AIP. Flow cytometric analysis revealed that the ratios of basophils activated by TLR4 stimulation in type 1 AIP (9.875 ± 1.148%) and atopic dermatitis (11.768 ± 1.899%) were significantly higher than those in healthy subjects (5.051 ± 0.730%; P < 0.05). Levels of basophils activated by TLR2 stimulation were higher in seven type 1 AIP cases. Furthermore, stimulation of TLR2 and/or TLR4, which were expressed by basophils in pancreas, activated basophils in peripheral blood. Basophils activated via TLR signaling may play an important role in the pathophysiology of type 1 AIP.
Li, Guicai; Xiao, Qinzhi; Zhang, Luzhong; Zhao, Yahong; Yang, Yumin
2017-09-01
Artificial chitosan scaffolds have been widely investigated for peripheral nerve regeneration. However, the effect was not as good as that of autologous grafts and therefore could not meet the clinical requirement. In the present study, the nerve growth factor (NGF) loaded heparin/chitosan scaffolds were fabricated via electrostatic interaction for further improving nerve regeneration. The physicochemical properties including morphology, wettability and composition were measured. The heparin immobilization, NGF loading and release were quantitatively and qualitatively characterized, respectively. The effect of NGF loaded heparin/chitosan scaffolds on nerve regeneration was evaluated by Schwann cells culture for different periods. The results showed that the heparin immobilization and NGF loading did not cause the change of bulk properties of chitosan scaffolds except for morphology and wettability. The pre-immobilization of heparin in chitosan scaffolds could enhance the stability of subsequently loaded NGF. The NGF loaded heparin/chitosan scaffolds could obviously improve the attachment and proliferation of Schwann cells in vitro. More importantly, the NGF loaded heparin/chitosan scaffolds could effectively promote the morphology development of Schwann cells. The study may provide a useful experimental basis to design and develop artificial implants for peripheral nerve regeneration and other tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.
Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent
2011-11-01
Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.
Motor neuron activation in peripheral nerves using infrared neural stimulation
NASA Astrophysics Data System (ADS)
Peterson, E. J.; Tyler, D. J.
2014-02-01
Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.
Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy
NASA Astrophysics Data System (ADS)
Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent
2011-11-01
Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.
Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation
Peterson, EJ; Tyler, DJ
2014-01-01
Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923
Design of barrier coatings on kink-resistant peripheral nerve conduits
Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim
2016-01-01
Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288
Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.
Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław
2017-04-01
The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.
Recurrent peripheral cemento-ossifying fibroma.
Pereira, Treville; Shetty, Subraj; Shetty, Arvind; Pereira, Svylvy
2015-01-01
Peripheral cement-ossifying fibroma (PCOF) is a rare osteogenic neoplasm that ordinarily presents as an epulis-like growth. It frequently occurs in maxillary anterior region in teenagers and young adults. We report a case of PCOF in a 42-year-old male, which was previously surgically excised and recurred after a period of 2 years. PCOF should be considered in the differential diagnosis of reactive hyperplastic lesions originating from gingiva. Hence, early diagnosis with proper surgical excision and aggressive curettage of the adjacent tissues is essential for prevention of recurrence.
Peripheral cemento-ossifying fibroma: Report of a recurrence case.
Sah, Kunal; Kale, Alka D; Hallikerimath, Seema; Chandra, Sunira
2012-04-01
Peripheral cemento-ossifying fibroma [PCOF] is a reactive gingival overgrowth occurring frequently in the maxillary anterior region in teenagers and young adults. Here, we report a case of POCF in a 13-year-old male, which was previously surgically excised and had recurred after a period of 9 months. PCOF should be considered in differential diagnosis of such reactive hyperplastic lesions originating from the gingiva. Hence, early diagnosis with proper surgical excision and aggressive curettage of the adjacent tissues are essential for prevention of recurrence.
Central nervous system regulation of hepatic lipid and lipoprotein metabolism.
Taher, Jennifer; Farr, Sarah; Adeli, Khosrow
2017-02-01
Hepatic lipid and lipoprotein metabolism is an important determinant of fasting dyslipidemia and the development of fatty liver disease. Although endocrine factors like insulin have known effects on hepatic lipid homeostasis, emerging evidence also supports a regulatory role for the central nervous system (CNS) and neuronal networks. This review summarizes evidence implicating a bidirectional liver-brain axis in maintaining metabolic lipid homeostasis, and discusses clinical implications in insulin-resistant states. The liver utilizes sympathetic and parasympathetic afferent and efferent fibers to communicate with key regulatory centers in the brain including the hypothalamus. Hypothalamic anorexigenic and orexigenic peptides signal to the liver via neuronal networks to modulate lipid content and VLDL production. In addition, peripheral hormones such as insulin, leptin, and glucagon-like-peptide-1 exert control over hepatic lipid by acting directly within the CNS or via peripheral nerves. Central regulation of lipid metabolism in other organs including white and brown adipose tissue may also contribute to hepatic lipid content indirectly via free fatty acid release and changes in lipoprotein clearance. The CNS communicates with the liver in a bidirectional manner to regulate hepatic lipid metabolism and lipoprotein production. Impairments in these pathways may contribute to dyslipidemia and hepatic steatosis in insulin-resistant states.
Peripherally derived FGF21 promotes remyelination in the central nervous system
Kuroda, Mariko; Maedera, Noriko; Koyama, Yoshihisa; Hamaguchi, Machika; Fujimura, Harutoshi; Konishi, Morichika; Itoh, Nobuyuki; Mochizuki, Hideki
2017-01-01
Demyelination in the central nervous system (CNS) leads to severe neurological deficits that can be partially reversed by spontaneous remyelination. Because the CNS is isolated from the peripheral milieu by the blood-brain barrier, remyelination is thought to be controlled by the CNS microenvironment. However, in this work we found that factors derived from peripheral tissue leak into the CNS after injury and promote remyelination in a murine model of toxin-induced demyelination. Mechanistically, leakage of circulating fibroblast growth factor 21 (FGF21), which is predominantly expressed by the pancreas, drives proliferation of oligodendrocyte precursor cells (OPCs) through interactions with β-klotho, an essential coreceptor of FGF21. We further confirmed that human OPCs expressed β-klotho and proliferated in response to FGF21 in vitro. Vascular barrier disruption is a common feature of many CNS disorders; thus, our findings reveal a potentially important role for the peripheral milieu in promoting CNS regeneration. PMID:28825598
NASA Astrophysics Data System (ADS)
Toledo-Aral, Juan J.; Moss, Brenda L.; He, Zhi-Jun; Koszowski, Adam G.; Whisenand, Teri; Levinson, Simon R.; Wolf, John J.; Silos-Santiago, Inmaculada; Halegoua, Simon; Mandel, Gail
1997-02-01
Membrane excitability in different tissues is due, in large part, to the selective expression of distinct genes encoding the voltage-dependent sodium channel. Although the predominant sodium channels in brain, skeletal muscle, and cardiac muscle have been identified, the major sodium channel types responsible for excitability within the peripheral nervous system have remained elusive. We now describe the deduced primary structure of a sodium channel, peripheral nerve type 1 (PN1), which is expressed at high levels throughout the peripheral nervous system and is targeted to nerve terminals of cultured dorsal root ganglion neurons. Studies using cultured PC12 cells indicate that both expression and targeting of PN1 is induced by treatment of the cells with nerve growth factor. The preferential localization suggests that the PN1 sodium channel plays a specific role in nerve excitability.
Underlying chronic inflammation alters the profile and mechanisms of acute neutrophil recruitment.
Ma, Bin; Whiteford, James R; Nourshargh, Sussan; Woodfin, Abigail
2016-11-01
Chronically inflamed tissues show altered characteristics that include persistent populations of inflammatory leukocytes and remodelling of the vascular network. As the majority of studies on leukocyte recruitment have been carried out in normal healthy tissues, the impact of underlying chronic inflammation on ongoing leukocyte recruitment is largely unknown. Here, we investigate the profile and mechanisms of acute inflammatory responses in chronically inflamed and angiogenic tissues, and consider the implications for chronic inflammatory disorders. We have developed a novel model of chronic ischaemia of the mouse cremaster muscle that is characterized by a persistent population of monocyte-derived cells (MDCs), and capillary angiogenesis. These tissues also show elevated acute neutrophil recruitment in response to locally administered inflammatory stimuli. We determined that Gr1 low MDCs, which are widely considered to have anti-inflammatory and reparative functions, amplified acute inflammatory reactions via the generation of additional proinflammatory signals, changing both the profile and magnitude of the tissue response. Similar vascular and inflammatory responses, including activation of MDCs by transient ischaemia-reperfusion, were observed in mouse hindlimbs subjected to chronic ischaemia. This response demonstrates the relevance of the findings to peripheral arterial disease, in which patients experience transient exercise-induced ischaemia known as claudication.These findings demonstrate that chronically inflamed tissues show an altered profile and altered mechanisms of acute inflammatory responses, and identify tissue-resident MDCs as potential therapeutic targets. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Min, Hong-Ki; Kim, Jae-Kyung; Lee, Seon-Yeong; Kim, Eun-Kyung; Lee, Seung Hoon; Lee, Jennifer; Kwok, Seung-Ki; Cho, Mi-La; Park, Sung-Hwan
2016-06-27
Spondyloarthritis (SpA) usually manifests as arthritis of the axial and peripheral joints but can also result in extra-articular manifestations such as inflammatory bowel disease. Proinflammatory cytokine interleukin-17 (IL-17) plays a crucial role in the pathogenesis of SpA. Rebamipide inhibits signal transducer and activator of transcription 3 that controls IL-17 production and Th17 cell differentiation. This study examined the effect of rebamipide on SpA development. SKG ZAP-70(W163C) mice were immunized with curdlan to induce SpA features. The mice were then intraperitoneally injected with rebamipide or vehicle 3 times a week for 14 weeks and their clinical scores were evaluated. Histological scores of the paw and spine and the length of the gut were measured at sacrifice. Immunohistochemical staining of IL-17 and tumor necrosis factor-α (TNF-α) was performed using tissue samples isolated from the axial joints, peripheral joints, and gut. Spleen tissue samples were isolated from both rebamipide- or vehicle-treated mice with SpA at 14 weeks after curdlan injection to determine the effect of rebamipide on Th17 and regulatory T (Treg) cell differentiation. Rebamipide decreased the clinical and histological scores of the peripheral joints. The total length of the gut was preserved in rebamipide-treated mice. IL-17 and TNF-α expression in the spine, peripheral joints, and gut was lower in rebamipide-treated mice than in control mice. Th17 cell differentiation was suppressed whereas Treg cell differentiation was upregulated in the spleen of rebamipide-treated mice. Rebamipide exerted beneficial effects in mice with SpA by preventing peripheral arthritis and intestinal inflammation and by regulating Th17/Treg cell imbalance, suggesting that it can be used as a potential therapeutic agent for treating arthritis to SpA patients.
Asai, Akihiro; Chou, Pauline M; Bu, Heng-Fu; Wang, Xiao; Rao, M Sambasiva; Jiang, Anthony; DiDonato, Christine J; Tan, Xiao-Di
2014-03-01
Liver steatosis in nonalcoholic fatty liver disease is affected by genetics and diet. It is associated with insulin resistance (IR) in hepatic and peripheral tissues. Here, we aimed to characterize the severity of diet-induced steatosis, obesity, and IR in two phylogenetically distant mouse strains, C57BL/6J and DBA/2J. To this end, mice (male, 8 wk old) were fed a high-fat and high-carbohydrate (HFHC) or control diet for 16 wk followed by the application of a combination of classic physiological, biochemical, and pathological studies to determine obesity and hepatic steatosis. Peripheral IR was characterized by measuring blood glucose level, serum insulin level, homeostasis model assessment of IR, glucose intolerance, insulin intolerance, and AKT phosphorylation in adipose tissues, whereas the level of hepatic IR was determined by measuring insulin-triggered hepatic AKT phosphorylation. We discovered that both C57BL/6J and DBA/2J mice developed obesity to a similar degree without the feature of liver inflammation after being fed an HFHC diet for 16 wk. C57BL/6J mice in the HFHC diet group exhibited severe pan-lobular steatosis, a marked increase in hepatic triglyceride levels, and profound peripheral IR. In contrast, DBA/2J mice in the HFHC diet group developed only a mild degree of pericentrilobular hepatic steatosis that was associated with moderate changes in peripheral IR. Interestingly, both C57BL/6J and DBA/2J developed severe hepatic IR after HFHC diet treatment. Collectively, these data suggest that the severity of diet-induced hepatic steatosis is correlated to the level of peripheral IR, not with the severity of obesity and hepatic IR. Peripheral rather than hepatic IR is a dominant factor of pathophysiology in nonalcoholic fatty liver disease.
Hayashi, Tomayoshi; Sano, Hisao; Egashira, Ryoko; Tabata, Kazuhiro; Tanaka, Tomonori; Kashima, Yukio; Nunomura, Sayuri
2013-01-01
Background. Recent agents, that is, pemetrexed and bevacizumab, have shown reproductive negative association between squamous histology. According to these agents' effectiveness, ruling out of the squamous histology is a significant issue for surgical pathologists. Several articles have proposed the distinction of peripheral type from central type of squamous cell carcinoma (SqCC) due to its similarity to adenocarcinoma, although little evidence to support the difference between these two types was published. In this study, we compared the clinicopathologic findings of central and peripheral pulmonary SqCCs. Material and Methods. 15 central and 35 peripheral types of SqCC from 2005 to 2010 were examined. Twelve morphological features were scored based on their intensity in the original H&E slides, and then, tissue microarray holding triplicated cores from 43 cases was immunohistochemically examined for cytokeratin (CK)7, CK14, TTF-1, Napsin A, p63, CK34βE12, CK5/6, and p53. Result. Most of the histological findings did not separate central and peripheral SqCCs; only the presence of emphysema, interstitial fibrosis, and entrapped pneumocytes inside the tumor showed statistic predominance in peripheral SqCC. This is the first immunophenotypic research in the central and peripheral types of SqCC. PMID:24069587
An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun
2014-01-01
Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228
Poropatich, Kate; Fontanarosa, Joel; Swaminathan, Suchitra; Dittmann, Dave; Chen, Siqi; Samant, Sandeep; Zhang, Bin
2017-11-01
The success of programmed cell death 1 (PD-1) inhibition in achieving a clinical response in a subset of head and neck squamous cell carcinoma (HNSCC) patients emphasizes the need to better understand the immunobiology of HNSCC. Immunophenotyping was performed for 30 HCSCC patients [16 human papillomavirus (HPV)-positive; 14 HPV-negative] on matched tissue from the primary tumour site, locally metastatic cervical lymph nodes (LNs), uninvolved local cervical LNs, and peripheral blood. CD4 + and CD8 + T-cell lymphocytes obtained from tissue were analysed for expression levels of the inhibitory receptors PD-1, TIM-3 and CTLA-4. Next-generation sequencing of the T-cell receptor (TCR) β chain was performed on patients (n = 9) to determine receptor repertoire diversity and for clonality analysis. HPV-negative HNSCC patients, particularly those with stage IV disease, had significantly higher proportions of CD8 + T cells expressing CTLA-4 in tumour tissue (P = 0.0013) and in peripheral blood (P = 0.0344) than HPV-positive patients, as well as higher expression levels of TIM-3 + PD-1 + CD8 + T cells (P = 0.0072) than controls. For all patients, PD-1 expression on CD8 + T cells - particularly in HPV-negative HNSCC cases - strongly correlated (r = 0.63, P = 0.013) with tumour size at the primary site. The top CD8 + TCR clones from tumour tissue significantly overlapped with circulating peripheral blood TCR clones (r = 0.946), and HPV-positive patients had frequently expanded TCR clones that were more hydrophobic - and potentially more immunogenic - than those from HPV-negative patients. Collectively, our findings demonstrate, for the first time, that high-stage HPV-negative HNSCC patients with primary tumours at different sites in the head and neck have elevated peripheral CTLA-4 + CD8 + T-cell levels, that tumour-familiar CD8 + T cells are detectable in peripheral blood from HNSCC patients, and that TCRs from HPV-positive HNSCC patients potentially recognize distinctly immunogenic cognate antigens. However, our findings are preliminary, and need to be further confirmed in a larger patient cohort; also, how these factors affect patient response to immunotherapy needs to be determined. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Shapiro, Haim; Singer, Pierre; Ariel, Amiram
2016-08-01
Pain is a complex sensation that may be protective or cause undue suffering and loss of function, depending on the circumstances. Peripheral nociceptor neurons (PNs) innervate most tissues, and express ion channels, nocisensors, which depolarize the cell in response to intense stimuli and numerous substances. Inflamed tissues manifest inflammatory hyperalgesia in which the threshold for pain and the response to painful stimuli are decreased and increased, respectively. Constituents of the inflammatory milieu sensitize PNs, thereby contributing to hyperalgesia. Polyunsaturated fatty acids undergo enzymatic and free radical-mediated oxygenation into an array of bioactive metabolites, oxygenated polyunsaturated fatty acids (oxy-PUFAs), including the classic eicosanoids. Oxy-PUFA production is enhanced during inflammation. Pioneering studies by Vane and colleagues from the early 1970s first implicated classic eicosanoids in the pain associated with inflammation. Here, we review the production and action of oxy-PUFAs that are not classic eicosanoids, but nevertheless are produced in injured/ inflamed tissues and activate or sensitize PNs. In general, oxy-PUFAs that sensitize PNs may do so directly, by activation of nocisensors, ion channels or GPCRs expressed on the surface of PNs, or indirectly, by increasing the production of inflammatory mediators that activate or sensitize PNs. We focus on oxy-PUFAs that act directly on PNs. Specifically, we discuss the role of arachidonic acid-derived 12S-HpETE, HNE, ONE, PGA2, iso-PGA2 and 15d-PGJ2, 5,6-and 8,9-EET, PGE2-G and 8R,15S-diHETE, as well as the linoleic acid-derived 9-and 13-HODE in inducing acute nocifensive behavior and/or inflammatory hyperalgesia in rodents. The nocisensors TRPV1, TRPV4 and TRPA1, and putative Gαs-type GPCRs are the PN targets of these oxy-PUFAs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lebovici, Andrei; Sfrangeu, Silviu A; Feier, Diana; Caraiani, Cosmin; Lucan, Ciprian; Suciu, Mihai; Elec, Florin; Iacob, Gheorghita; Buruian, Mircea
2014-05-10
We tested the feasibility of a simple method for assessment of prostate cancer (PCa) aggressiveness using diffusion-weighted magnetic resonance imaging (MRI) to calculate apparent diffusion coefficient (ADC) ratios between prostate cancer and healthy prostatic tissue. The requirement for institutional review board approval was waived. A set of 20 standardized core transperineal saturation biopsy specimens served as the reference standard for placement of regions of interest on ADC maps in tumorous and normal prostatic tissue of 22 men with PCa (median Gleason score: 7; range, 6-9). A total of 128 positive sectors were included for evaluation. Two diagnostic ratios were computed between tumor ADCs and normal sector ADCs: the ADC peripheral ratio (the ratio between tumor ADC and normal peripheral zone tissue, ADC-PR), and the ADC central ratio (the ratio between tumor ADC and normal central zone tissue, ADC-CR). The performance of the two ratios in detecting high-risk tumor foci (Gleason 8 and 9) was assessed using the area under the receiver operating characteristic curve (AUC). Both ADC ratios presented significantly lower values in high-risk tumors (0.48 ± 0.13 for ADC-CR and 0.40 ± 0.09 for ADC-PR) compared with low-risk tumors (0.66 ± 0.17 for ADC-CR and 0.54 ± 0.09 for ADC-PR) (p < 0.001) and had better diagnostic performance (ADC-CR AUC = 0.77, sensitivity = 82.2%, specificity = 66.7% and ADC-PR AUC = 0.90, sensitivity = 93.7%, specificity = 80%) than stand-alone tumor ADCs (AUC of 0.75, sensitivity = 72.7%, specificity = 70.6%) for identifying high-risk lesions. The ADC ratio as an intrapatient-normalized diagnostic tool may be better in detecting high-grade lesions compared with analysis based on tumor ADCs alone, and may reduce the rate of biopsies.
2014-01-01
Background We tested the feasibility of a simple method for assessment of prostate cancer (PCa) aggressiveness using diffusion-weighted magnetic resonance imaging (MRI) to calculate apparent diffusion coefficient (ADC) ratios between prostate cancer and healthy prostatic tissue. Methods The requirement for institutional review board approval was waived. A set of 20 standardized core transperineal saturation biopsy specimens served as the reference standard for placement of regions of interest on ADC maps in tumorous and normal prostatic tissue of 22 men with PCa (median Gleason score: 7; range, 6–9). A total of 128 positive sectors were included for evaluation. Two diagnostic ratios were computed between tumor ADCs and normal sector ADCs: the ADC peripheral ratio (the ratio between tumor ADC and normal peripheral zone tissue, ADC-PR), and the ADC central ratio (the ratio between tumor ADC and normal central zone tissue, ADC-CR). The performance of the two ratios in detecting high-risk tumor foci (Gleason 8 and 9) was assessed using the area under the receiver operating characteristic curve (AUC). Results Both ADC ratios presented significantly lower values in high-risk tumors (0.48 ± 0.13 for ADC-CR and 0.40 ± 0.09 for ADC-PR) compared with low-risk tumors (0.66 ± 0.17 for ADC-CR and 0.54 ± 0.09 for ADC-PR) (p < 0.001) and had better diagnostic performance (ADC-CR AUC = 0.77, sensitivity = 82.2%, specificity = 66.7% and ADC-PR AUC = 0.90, sensitivity = 93.7%, specificity = 80%) than stand-alone tumor ADCs (AUC of 0.75, sensitivity = 72.7%, specificity = 70.6%) for identifying high-risk lesions. Conclusions The ADC ratio as an intrapatient-normalized diagnostic tool may be better in detecting high-grade lesions compared with analysis based on tumor ADCs alone, and may reduce the rate of biopsies. PMID:24885552
Moon, Sun Wook; Park, Eui Ho; Suh, Hye Rim; Ko, Duk Hwan; Kim, Yang In; Han, Hee Chul
2016-10-01
The systemic administration of opioids can be used for their strong analgesic effect. However, extensive activation of opioid receptors (ORs) beyond the targeted tissue can cause dysphoria, pruritus, and constipation. Therefore, selective activation of peripheral ORs present in the afferent fibers of the targeted tissue can be considered a superior strategy in opioid analgesia to avoid potential adverse effects. The purpose of this study was to clarify the role of peripheral kappa opioid receptors (kORs) in arthritic pain for the possible use of peripheral ORs as a target in anti-nociceptive therapy. We administered U50488 or nor-BNI/DIPPA, a selective agonist or antagonist of kOR, respectively into arthritic rat knee joints induced using 1% carrageenan. After the injection of U50488 or U50488 with nor-BNI or DIPPA into the inflamed knee joint, we evaluated nociceptive behavior as indicated by reduced weight-bearing on the ipsilateral limbs of the rat and recorded the activity of mechanosensitive afferents (MSA). In the inflamed knee joint, the intra-articular application of 1μM, 10nM, or 0.1nM U50488 resulted in a significant reduction in nociceptive behavior. In addition, 1μM and 10nM U50488 decreased MSA activity. However, in a non-inflamed knee joint, 1μM U50488 had no effect on MSA activity. Additionally, intra-articular pretreatment with 20μM nor-BNI or 10μM DIPPA significantly blocked the inhibitory effects of 1μM U50488 on nociceptive behavior and MSA activity in the inflamed knee joint. These results implicate that peripheral kORs can contribute to anti-nociceptive processing in an inflamed knee joint. Copyright © 2016 Elsevier B.V. All rights reserved.
Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats
Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara
2014-01-01
Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607
Migration and Tissue Tropism of Innate Lymphoid Cells
Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo
2016-01-01
Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278
Photoacoustic imaging: a potential new tool for arthritis
NASA Astrophysics Data System (ADS)
Wang, Xueding
2012-12-01
The potential application of photoacoustic imaging (PAI) technology to diagnostic imaging and therapeutic monitoring of inflammatory arthritis has been explored. The feasibility of our bench-top joint imaging systems in delineating soft articular tissue structures in a noninvasive manner was validated first on rat models and then on human peripheral joints. Based on the study on commonly used arthritis rat models, the capability of PAI to differentiate arthritic joints from the normal was also examined. With sufficient imaging depth, PAI can realize tomographic imaging of a human peripheral joint or a small-animal joint as a whole organ noninvasively. By presenting additional optical contrast and tissue functional information such as blood volume and blood oxygen saturation, PAI may provide an opportunity for early diagnosis of inflammatory joint disorders, e.g. rheumatoid arthritis, and for monitoring of therapeutic outcomes with improved sensitivity and accuracy.
Breast-feeding regulates immune system development via transforming growth factor-β in mice pups.
Sakaguchi, Keita; Koyanagi, Akemi; Kamachi, Fumitaka; Harauma, Akiko; Chiba, Asako; Hisata, Ken; Moriguchi, Toru; Shimizu, Toshiaki; Miyake, Sachiko
2018-03-01
Breast milk contains important nutrients and immunoregulatory factors that are essential for newborn infants. Recently, epidemiological studies suggested that breast-feeding prevents a wide range of infectious diseases and lowers the incidence of infant allergic diseases. To examine the effects of breast milk on immunological development in infancy, we established an artificial rearing system for hand-feeding mice and compared mouse pups fed with either breast milk or milk substitute. All mice were killed at 14 days of age and immune cells in the thymus, spleen, and small intestine were examined on flow cytometry. The number of thymocytes was higher whereas that of total immune cells of peripheral lymphoid tissues was lower in mice fed breast milk compared with milk substitute-fed mice. In peripheral lymphoid tissues, the proportion of B cells was higher and that of CD8 + T cells, macrophages, dendritic cells, and granulocytes was significantly lower in breast milk-fed mice. The same alteration in immune cells of the thymus and peripheral lymphoid tissues in milk substitute-fed mice was also observed in pups reared by mother mice treated with anti-transforming growth factor-β (anti-TGF-β) monoclonal antibody. Breast milk regulates the differentiation and expansion of innate and adaptive immune cells partly due to TGF-β. Hence, TGF-β in breast milk may be a new therapeutic target for innate immune system-mediated diseases of infancy. © 2017 Japan Pediatric Society.
Al-Kafaji, Ghada; Al-Naieb, Ziad Tariq; Bakhiet, Moiz
2016-02-01
MicroRNAs have been demonstrated to be stably detectable in peripheral blood, thus representing important sources of non-invasive biomarkers of various diseases, including cancer. Recently, microRNA-18a (miR-18a) has been revealed to be highly expressed in prostate cancer (PC) tissues, acting as an oncogenic miRNA. The present study evaluated miR-18a expression in the peripheral blood of patients with PC, patients with benign prostatic hyperplasia (BPH), and healthy individuals, to assess the feasibility of using peripheral blood miR-18a as a potential non-invasive biomarker for PC. Total RNA was extracted from peripheral whole blood samples from 24 PC patients, 24 BPH patients and 23 healthy control individuals. The expression of miR-18a was assessed by reverse transcription quantitative polymerase chain reaction. The results revealed that miR-18a expression was significantly higher in PC patients than in BPH patients and healthy controls [fold change (mean ± standard deviation), 5.5±1.4 for PC, 1.5±0.5 for BPH and 1.2±0.6 for controls; P<0.005]. Higher miR-18a expression was strongly associated with PC [odds ratio (OR), 4.602; 95% confidence interval (CI), 2.194-9.654; P=0.001], but was not significantly associated with BPH (OR, 1.2; 95% CI, 0.7-2.02; P=0.332). Despite the small number of patients, which limits the statistical power of the study, higher miR-18a expression was observed to be significantly correlated with certain clinicopathological parameters, including Gleason score >7 and pathological tumor stage 3/4 (P<0.005). A receiver operating characteristic (ROC) analysis revealed that miR-18a discriminated PC patients from BPH patients and healthy controls [area under the curve (AUC), 0.805; 95% CI, 0.704-0.906). Furthermore, use of the ROC curve to discriminate PC from BPH patients yielded an AUC of 0.878 (95% CI, 0.783-0.972). In summary, the present results indicate that miR-18a expression is significantly increased in peripheral blood of patients with PC compared with that of BPH patients and healthy individuals, and that higher miR-18a expression is associated with progression of PC. Peripheral blood oncogenic miR-18a may serve as a potential novel non-invasive biomarker for PC that also facilitates discrimination between PC and BPH.
Saltzman, Jonah W.; Battaglino, Ricardo A.; Salles, Loise; Jha, Prateek; Sudhakar, Supreetha; Garshick, Eric; Stott, Helen L.; Zafonte, Ross
2013-01-01
Abstract Autoimmunity is thought to contribute to poor neurological outcomes after spinal cord injury (SCI). There are few mechanism-based therapies, however, designed to reduce tissue damage and neurotoxicity after SCI because the molecular and cellular bases for SCI-induced autoimmunity are not completely understood. Recent groundbreaking studies in rodents indicate that B cells are responsible for SCI-induced autoimmunity. This novel paradigm, if confirmed in humans, could aid in the design of neuroprotective immunotherapies. The aim of this study was to investigate the molecular signaling pathways and mechanisms by which autoimmunity is induced after SCI, with the goal of identifying potential targets in therapies designed to reduce tissue damage and inflammation in the chronic phase of SCI. To that end, we performed an exploratory microarray analysis of peripheral blood mononuclear cells to identify differentially expressed genes in chronic SCI. We identified a gene network associated with lymphoid tissue structure and development that was composed of 29 distinct molecules and five protein complexes, including two cytokines, a proliferation-inducing ligand (APRIL) and B-cell–activating factor (BAFF), and one receptor, B-cell maturation antigen (BMCA) involved in B cell development, proliferation, activation, and survival. Real-time polymerase chain reaction analysis from ribonucleic acid samples confirmed upregulation of these three genes in SCI. To our knowledge, this is the first report that peripheral blood mononuclear cells produce increased levels of BAFF and APRIL in chronic SCI. This finding provides evidence of systemic regulation of SCI-autoimmunity via APRIL and BAFF mediated activation of B cells through BMCA and points toward these molecules as potential targets of therapies designed to reduce neuroinflammation after SCI. PMID:23088438
Aird, T P; Davies, R W; Carson, B P
2018-05-01
The effects of nutrition on exercise metabolism and performance remain an important topic among sports scientists, clinical, and athletic populations. Recently, fasted exercise has garnered interest as a beneficial stimulus which induces superior metabolic adaptations to fed exercise in key peripheral tissues. Conversely, pre-exercise feeding augments exercise performance compared with fasting conditions. Given these seemingly divergent effects on performance and metabolism, an appraisal of the literature is warranted. This review determined the effects of fasting vs pre-exercise feeding on continuous aerobic and anaerobic or intermittent exercise performance, and post-exercise metabolic adaptations. A search was performed using the MEDLINE and PubMed search engines. The literature search identified 46 studies meeting the relevant inclusion criteria. The Delphi list was used to assess study quality. A meta-analysis and meta-regression were performed where appropriate. Findings indicated that pre-exercise feeding enhanced prolonged (P = .012), but not shorter duration aerobic exercise performance (P = .687). Fasted exercise increased post-exercise circulating FFAs (P = .023) compared to fed exercise. It is evidenced that pre-exercise feeding blunted signaling in skeletal muscle and adipose tissue implicated in regulating components of metabolism, including mitochondrial adaptation and substrate utilization. This review's findings support the hypothesis that the fasted and fed conditions can divergently influence exercise metabolism and performance. Pre-exercise feeding bolsters prolonged aerobic performance, while seminal evidence highlights potential beneficial metabolic adaptations that fasted exercise may induce in peripheral tissues. However, further research is required to fully elucidate the acute and chronic physiological adaptations to fasted vs fed exercise. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ogino, Atsushi; Takemura, Genzou; Hashimoto, Ayako; Kanamori, Hiromitsu; Okada, Hideshi; Nakagawa, Munehiro; Tsujimoto, Akiko; Goto, Kazuko; Kawasaki, Masanori; Nagashima, Kenshi; Miyakoda, Goro; Fujiwara, Takako; Yabuuchi, Youichi; Fujiwara, Hisayoshi; Minatoguchi, Shinya
2015-07-01
Although OPC-28326, 4-(N-methyl-2-phenylethylamino)-1-(3,5-dimethyl-4-propionyl-aminobenzoyl) piperidine hydrochloride monohydrate, was developed as a selective peripheral vasodilator with α2-adrenergic antagonist properties, it also reportedly exhibits angiogenic activity in an ischemic leg model. The purpose of this study was to examine the effect of OPC-28326 on the architectural dynamics and function of the infarcted left ventricle during the chronic stage of myocardial infarction. Myocardial infarction was induced in male C3H/He mice, after which the mice were randomly assigned into two groups: a control group receiving a normal diet and an OPC group whose diet contained 0.05% OPC-28326. The survival rate among the mice (n = 18 in each group) 4 wk postinfarction was significantly greater in the OPC than control group (83 vs. 44%; P < 0.05), and left ventricular remodeling and dysfunction were significantly mitigated. Histologically, infarct wall thickness was significantly greater in the OPC group, due in part to an abundance of nonmyocyte components, including blood vessels and myofibroblasts. Five days postinfarction, Ki-67-positive proliferating cells were more abundant in the granulation tissue in the OPC group, and there were fewer apoptotic cells. These effects were accompanied by activation of myocardial Akt and endothelial nitric oxide synthase. Hypoxia within the infarct issue, assessed using pimonidazole staining, was markedly attenuated in the OPC group. In summary, OPC-28326 increased the nonmyocyte population in infarct tissue by increasing proliferation and reducing apoptosis, thereby altering the tissue dynamics such that wall stress was reduced, which might have contributed to a mitigation of postinfarction cardiac remodeling and dysfunction. Copyright © 2015 the American Physiological Society.
Possible Mechanism for Denervation Effect on Wound Healing
1989-05-17
under investigation is the regenerating limb of the axolotl , in which growth is strictly dependent on unknown factors from peripheral nerves. The...hypothesis that nerves contribute transferrin to cells of the regenerating tissues. Before experiments of this nature can be undertaken, axolotl transferrin...other tissues from axolotls . During the first year of this project, transferrin was purified from axolotls and antisera against it were generated in
USDA-ARS?s Scientific Manuscript database
The objective of this survey study was to determine a relationship between the intensity of tissue protein tyrosine nitration measured in samples of mammary gland, liver, pancreas and lung compared to estimated blood endotoxin (LPS) activity. Blood was collected from nine multiparous Holstein cows...
2009-07-01
27] Ross S, Spencer SD, Holcomb I, Tan C, Hongo J, Devaux B, et al. Prostate stem cell antigen as therapy target: tissue expression and in vivo...Holcomb I, Tan C, Hongo J, Devaux B, et al. Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate
Agouni, Abdelali; Owen, Carl; Czopek, Alicja; Mody, Nimesh; Delibegovic, Mirela
2010-10-08
Components of the insulin receptor signaling pathway are probably some of the best studied ones. Even though methods for studying these components are well established, the in vivo effects of different fasting regimens, and the time course of insulin receptor phosphorylation and that of its downstream components in insulin-sensitive peripheral tissues have not been analyzed in detail. When assessing insulin signaling, it may be beneficial to drive insulin levels as low as possible by performing an overnight fast before injecting a supra-physiological dose of insulin. Recent studies have shown however that 5 or 6 h fast in mice is sufficient to assess physiological responses to insulin and/or glucose in glucose tolerance tests, insulin tolerance tests and euglycemic hyperinsulinemic clamp studies. Moreover, mice are nocturnal feeders, with ∼70% of their daily caloric intake occurring during the dark cycle, and their metabolic rate is much higher than humans. Therefore, an overnight fast in mice is closer to starvation than just food withdrawal. Thus our aim was to assess insulin signaling components from the insulin receptor to downstream targets IRS1, Akt/PKB, GSK3, Erk1/2 and ribosomal protein S6 in muscle, liver and adipose tissue in 5 h versus 16 h (overnight) fasted mice, and the time course (0-30 min) of these phosphorylation events. We also assessed whether re-feeding under 5 h and 16 h fasting conditions was a more robust stimulus than insulin alone. Our study determines that a short food withdrawal from mice, for a period of 5 h, results in a similar insulin-stimulated response in phosphorylation events as the long overnight fast, presenting a more physiological experimental set up. We also demonstrate that in vivo, insulin-stimulated phosphorylation of its signaling components is different between different peripheral tissues, and depending on the tissue(s) and protein(s) of interest, an appropriate time course should be chosen. Copyright © 2010 Elsevier Inc. All rights reserved.
Zellmer, Erik R; MacEwan, Matthew R; Moran, Daniel W
2018-04-01
Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
NASA Astrophysics Data System (ADS)
Zellmer, Erik R.; MacEwan, Matthew R.; Moran, Daniel W.
2018-04-01
Objective. Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). Approach. A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Main results. Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Significance. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
Suthar, Mehul S.; Brassil, Margaret M.; Blahnik, Gabriele; McMillan, Aimee; Ramos, Hilario J.; Proll, Sean C.; Belisle, Sarah E.; Katze, Michael G.; Gale, Michael
2013-01-01
The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. PMID:23544010
Uysal, Nazan; Yuksel, Oguz; Kizildag, Servet; Yuce, Zeynep; Gumus, Hikmet; Karakilic, Aslı; Guvendi, Guven; Koc, Basar; Kandis, Sevim; Ates, Mehmet
2018-05-29
We have recently shown that regular voluntary aerobic exercised rats have low levels of anxiety. Irisin is an exercise-induced myokine that is produced by many tissues; and the role it plays in anxiolytic behavior is unknown. In this study we aimed to investigate the correlation between anxiety like behavior and irisin levels following regular voluntary aerobic exercise in male mice. We've have shown that anxiety levels decreased in exercised mice, while irisin levels increased in the brain, brown adipose tissue, white adipose tissue, kidney, and pancreas tissues. No significant difference of irisin levels in the liver, muscle and serum were detected in the exercise group, when compared to controls. In addition, there was a strong positive correlation between brain irisin levels and activity in middle area of open field test and in the open arms of elevated plus maze test; both which are indicators of low anxiety levels. Our results suggest that decrease in anxiolytic behavior due to regular voluntary exercise may be associated with locally produced brain irisin. White adipose tissue irisin levels also correlated very strongly with low anxiety. However, no serum irisin increase was detected, ruling out the possibility of increased peripheral irisin levels affecting the brain via the bloodstream. Further research is necessary to explain the mechanisms of which peripheral and central irisin effects anxiety and the brain region affected. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, L; Chang, S; Guan, J; Shangguan, S; Lu, X; Wang, Z; Wu, L; Zou, J; Zhao, H; Bao, Y; Qiu, Z; Niu, B; Zhang, T
2015-01-01
Epigenetic regulation of long interspersed nucleotide element-1 (LINE-1) retrotransposition events plays crucial roles during early development. Previously we showed that LINE-1 hypomethylation in neuronal tissues is associated with pathogenesis of neural tube defect (NTD). Herein, we further evaluated LINE-1 Homo sapiens (L1Hs) methylation in tissues derived from three germ layers of stillborn NTD fetuses, to define patterns of tissue specific methylation and site-specific hypomethylation at CpG sites within an L1Hs promoter region. Stable, tissue-specific L1Hs methylation patterns throughout three germ layer lineages of the fetus, placenta, and maternal peripheral blood were observed. Samples from maternal peripheral blood exhibited the highest level of L1Hs methylation (64.95%) and that from placenta showed the lowest (26.82%). Between samples from NTDs and controls, decrease in L1Hs methylation was only significant in NTD-affected brain tissue at 7.35%, especially in females (8.98%). L1Hs hypomethylation in NTDs was also associated with a significant increase in expression level of an L1Hs-encoded transcript in females (r = -0.846, p = 0.004). This could be due to genomic DNA instability and alternation in chromatins accessibility resulted from abnormal L1Hs hypomethylation, as showed in this study with HCT-15 cells treated with methylation inhibitor 5-Aza.
Intraocular distribution of melanin in human, monkey, rabbit, minipig and dog eyes.
Durairaj, Chandrasekar; Chastain, James E; Kompella, Uday B
2012-05-01
The purpose of this study was to quantify the melanin pigment content in sclera, choroid-RPE, and retina, three tissues encountered during transscleral drug delivery to the vitreous, in human, rabbit, monkey, minipig, and dog models. Strain differences were assessed in NZW × NZR F1 and Dutch belted rabbits and Yucatan and Gottingen minipigs. The choroid-RPE and retina tissues were divided into central (posterior pole area) and peripheral (away from posterior pole) regions while the sclera was analyzed without such division. Melanin content in the tissues was analyzed using a colorimetric assay. In all species the rank order for pigment content was: choroid-RPE >retina ≥ sclera, except in humans, where scleral melanin levels were higher than retina and central choroid. The melanin content in a given tissue differed between species. Further, while the peripheral tissue pigment levels tended to be generally higher compared to the central regions, these differences were significant in human in the case of choroid-RPE and in human, monkey, and dogs in the case of retina. Strain difference was observed only in the central choroid-RPE region of rabbits (NZW × NZR F1 >Dutch Belted). Species, strain, and regional differences exist in the melanin pigment content in the tissues of the posterior segment of the eye, with Gottingen minipig being closest to humans among the animals assessed. These differences in melanin content might contribute to differences in drug binding, delivery, and toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Taylor, Jude Matthew
2017-12-15
The contribution of resident endoneurial tissue macrophages versus recruited monocyte derived macrophages to demyelination and disease during Experimental Autoimmune Neuritis (EAN) was investigated using passive transfer of peripheral nerve myelin (PNM) specific serum antibodies or adoptive co-transfer of PNM specific T and B cells from EAN donors to leukopenic and normal hosts. Passive transfer of PNM specific serum antibodies or adoptive co-transfer of myelin specific T and B cells into leukopenic recipients resulted in a moderate reduction in nerve conduction block or in the disease severity compared to the normal recipients. This was despite at least a 95% decrease in the number of circulating mononuclear cells during the development of nerve conduction block and disease and a 50% reduction in the number of infiltrating endoneurial macrophages in the nerve lesions of the leukopenic recipients. These observations suggest that during EAN in Lewis rats actively induced by immunization with peripheral nerve myelin, phagocytic macrophages originating from the resident endoneurial population may be sufficient to engage in demyelination initiated by anti-myelin antibodies in this model. Copyright © 2017 Elsevier B.V. All rights reserved.
Peripheral Circadian Clock Rhythmicity Is Retained in the Absence of Adrenergic Signaling
Reilly, Dermot F.; Curtis, Anne M.; Cheng, Yan; Westgate, Elizabeth J.; Rudic, Radu D.; Paschos, Georgios; Morris, Jacqueline; Ouyang, Ming; Thomas, Steven A.; FitzGerald, Garret A.
2009-01-01
Objective The incidence of heart attack and stroke undergo diurnal variation. Molecular clocks have been described in the heart and the vasculature; however it is largely unknown how the suprachiasmatic nucleus (SCN) entrains these peripheral oscillators. Methods and Results Norepinephrine and epinephrine, added to aortic smooth muscle cells (ASMCs) in vitro, altered Per1, E4bp4, and dbp expression and altered the observed oscillations in clock gene expression. However, oscillations of Per1, E4bp4, dbp, and Per2 were preserved ex vivo in the aorta, heart, and liver harvested from dopamine β-hydroxylase knockout mice (Dbh−/−) that cannot synthesize either norepinephrine or epinephrine. Furthermore, clock gene oscillations in heart, liver, and white adipose tissue phase shifted identically in Dbh−/− mice and in Dbh+/− controls in response to daytime restriction of feeding. Oscillation of clock genes was similarly preserved ex vivo in tissues from Dbh+/− and Dbh−/− chronically treated with both propranolol and terazosin, thus excluding compensation by dopamine in Dbh−/− mice. Conclusions Although adrenergic signaling can influence circadian timing in vitro, peripheral circadian rhythmicity is retained despite its ablation in vivo. PMID:17975121
Ahmed, Seemin Seher; Schattgen, Stefan A; Frakes, Ashley E; Sikoglu, Elif M; Su, Qin; Li, Jia; Hampton, Thomas G; Denninger, Andrew R; Kirschner, Daniel A; Kaspar, Brian; Matalon, Reuben; Gao, Guangping
2016-06-01
Aspartoacylase (AspA) gene mutations cause the pediatric lethal neurodegenerative Canavan disease (CD). There is emerging promise of successful gene therapy for CD using recombinant adeno-associated viruses (rAAVs). Here, we report an intracerebroventricularly delivered AspA gene therapy regime using three serotypes of rAAVs at a 20-fold reduced dose than previously described in AspA(-/-) mice, a bona-fide mouse model of CD. Interestingly, central nervous system (CNS)-restricted therapy prolonged survival over systemic therapy in CD mice but failed to sustain motor functions seen in systemically treated mice. Importantly, we reveal through histological and functional examination of untreated CD mice that AspA deficiency in peripheral tissues causes morphological and functional abnormalities in this heretofore CNS-defined disorder. We demonstrate for the first time that AspA deficiency, possibly through excessive N-acetyl aspartic acid accumulation, elicits both a peripheral and CNS immune response in CD mice. Our data establish a role for peripheral tissues in CD pathology and serve to aid the development of more efficacious and sustained gene therapy for this disease.
[The role of magnetic stimulation in diagnosis of the peripheral nervous system].
Dressler, D; Benecke, R; Meyer, B U; Conrad, B
1988-12-01
Magnetic stimulation has recently been introduced as a new method for stimulation of neuronal tissues. Up to now most investigators were emphasized the advantages of this method for the investigation of the central nervous system. With this paper we want to show that magnetic stimulation may also be useful for the examination of the peripheral nervous system. Both, magnetic and electrical stimulation, seem to employ the same stimulation mechanisms in the nervous tissue. The results obtained with both methods should therefore be comparable. By measuring EMG-latencies after electrical and magnetic stimulation (Fig. 1) the exact site of magnetic stimulation can be determined. Magnetic stimulation offers major advantages over electrical stimulation: 1) Magnetic stimulation is a painless method even when high stimulus intensities are used. 2) Magnetic stimulation can reach deep neuronal structures that are not easily accessible using electrical stimulation (Fig. 2, Fig. 3). 3) Using a wide range of stimulus intensities (Fig. 4, Fig. 5) magnetic stimulation provides a much better descrimination of different components of the compound muscle action potential than electrical stimulation. Magnetic stimulation seems to be a promising new method for the electrodiagnostic examination of pain- sensitive patients, especially when deep-lying peripheral nerves have to be investigated.
Alternative RNA splicing of leucocyte tissue transglutaminase in coeliac disease.
Arbildi, P; Sóñora, C; Del Río, N; Marqués, J M; Hernández, A
2018-05-01
Tissue transglutaminase is a ubiquitous and multifunctional protein that contributes to several processes such as apoptosis/survival, efferocytosis, inflammation and tissue repairing under physiological and pathological conditions. Several activities can be associated with well-established functional domains; in addition, four RNA alternative splice variants have been described, characterized by sequence divergences and residues deletion at the C-terminal domains. Tissue transglutaminase is recognized as the central player in the physiopathology of coeliac disease (CD) mainly through calcium-dependent enzymatic activities. It can be hypothesized that differential regulation of tissue transglutaminase splice variants expression in persons with CD contributes to pathology by altering the protein functionality. We characterized the expression pattern of RNA alternative splice variants by RT-PCR in peripheral cells from patients with CD under free gluten diet adhesion; we considered inflammatory parameters and specific antibodies as markers of the stage of disease. We found significant higher expression of both the full length and the shortest C-truncated splice variants in leucocytes from patients with CD in comparison with healthy individuals. As tissue transglutaminase expression and canonical enzymatic activity are linked to inflammation, we studied the RNA expression of inflammatory cytokines in peripheral leucocytes of persons with CD in relation with splice variants expression; interestingly, we found that recently diagnosed patients showed significant correlation between both the full length and the shortest alternative spliced variants with IL-1 expression. Our results points that regulation of alternative splicing of tissue transglutaminase could account for the complex physiopathology of CD. © 2018 The Foundation for the Scandinavian Journal of Immunology.
Neuronal SH2B1 is essential for controlling energy and glucose homeostasis.
Ren, Decheng; Zhou, Yingjiang; Morris, David; Li, Minghua; Li, Zhiqin; Rui, Liangyou
2007-02-01
SH2B1 (previously named SH2-B), a cytoplasmic adaptor protein, binds via its Src homology 2 (SH2) domain to a variety of protein tyrosine kinases, including JAK2 and the insulin receptor. SH2B1-deficient mice are obese and diabetic. Here we demonstrated that multiple isoforms of SH2B1 (alpha, beta, gamma, and/or delta) were expressed in numerous tissues, including the brain, hypothalamus, liver, muscle, adipose tissue, heart, and pancreas. Rat SH2B1beta was specifically expressed in neural tissue in SH2B1-transgenic (SH2B1(Tg)) mice. SH2B1(Tg) mice were crossed with SH2B1-knockout (SH2B1(KO)) mice to generate SH2B1(TgKO) mice expressing SH2B1 only in neural tissue but not in other tissues. Systemic deletion of the SH2B1 gene resulted in metabolic disorders in SH2B1(KO) mice, including hyperlipidemia, leptin resistance, hyperphagia, obesity, hyperglycemia, insulin resistance, and glucose intolerance. Neuron-specific restoration of SH2B1beta not only corrected the metabolic disorders in SH2B1(TgKO) mice, but also improved JAK2-mediated leptin signaling and leptin regulation of orexigenic neuropeptide expression in the hypothalamus. Moreover, neuron-specific overexpression of SH2B1 dose-dependently protected against high-fat diet-induced leptin resistance and obesity. These observations suggest that neuronal SH2B1 regulates energy balance, body weight, peripheral insulin sensitivity, and glucose homeostasis at least in part by enhancing hypothalamic leptin sensitivity.
Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor.
Schlitzer, Andreas; Heiseke, Alexander F; Einwächter, Henrik; Reindl, Wolfgang; Schiemann, Matthias; Manta, Calin-Petru; See, Peter; Niess, Jan-Hendrik; Suter, Tobias; Ginhoux, Florent; Krug, Anne B
2012-06-21
The ontogenic relationship between the common dendritic cell (DC) progenitor (CDP), the committed conventional DC precursor (pre-cDC), and cDC subpopulations in lymphoid and nonlymphoid tissues has been largely unraveled. In contrast, the sequential steps of plasmacytoid DC (pDC) development are less defined, and it is unknown at which developmental stage and location final commitment to the pDC lineage occurs. Here we show that CCR9(-) pDCs from murine BM which enter the circulation and peripheral tissues have a common DC precursor function in vivo in the steady state, in contrast to CCR9(+) pDCs which are terminally differentiated. On adoptive transfer, the fate of CCR9(-) pDC-like precursors is governed by the tissues they enter. In the BM and liver, most transferred CCR9(-) pDC-like precursors differentiate into CCR9(+) pDCs, whereas in peripheral lymphoid organs, lung, and intestine, they additionally give rise to cDCs. CCR9(-) pDC-like precursors which are distinct from pre-cDCs can be generated from the CDP. Thus, CCR9(-) pDC-like cells are novel CDP-derived circulating DC precursors with pDC and cDC potential. Their final differentiation into functionally distinct pDCs and cDCs depends on tissue-specific factors allowing adaptation to local requirements under homeostatic conditions.
Expression of 11beta-hydroxysteroid-dehydrogenase type 2 in human thymus.
Almanzar, Giovanni; Mayerl, Christina; Seitz, Jan-Christoph; Höfner, Kerstin; Brunner, Andrea; Wild, Vanessa; Jahn, Daniel; Geier, Andreas; Fassnacht, Martin; Prelog, Martina
2016-06-01
11beta-hydroxysteroid-dehydrogenase type 2 (11β-HSD2) is a high affinity dehydrogenase which rapidly inactivates physiologically-active glucocorticoids to protect key tissues. 11β-HSD2 expression has been described in peripheral cells of the innate and the adaptive immune system as well as in murine thymus. In absence of knowledge of 11β-HSD2 expression in human thymus, the study aimed to localize 11β-HSD2 in human thymic tissue. Thymic tissue was taken of six healthy, non-immunologically impaired male infants below 12months of age with congenital heart defects who had to undergo correction surgery. 11β-HSD2 protein expression was analyzed by immunohistochemistry and Western blot. Kidney tissue, peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC) were taken as positive controls. Significant expression of 11β-HSD2 protein was found at single cell level in thymus parenchyma, at perivascular sites of capillaries and small vessels penetrating the thymus lobuli and within Hassall's bodies. The present study demonstrates that 11β-HSD2 is expressed in human thymus with predominant perivascular expression and also within Hassall's bodies. To our knowledge, this is the first report confirming 11β-HSD2 expression at the protein level in human thymic tissue underlining a potential role of this enzyme in regulating glucocorticoid function at the thymic level. Copyright © 2016 Elsevier Inc. All rights reserved.
Tc17 Cells in Patients with Uterine Cervical Cancer
Zhang, Yan; Hou, Fei; Liu, Xin; Ma, Daoxin; Zhang, Youzhong; Kong, Beihua; Cui, Baoxia
2014-01-01
Background The existence of Tc17 cells was recently shown in several types of infectious and autoimmune diseases, but their distribution and functions in uterine cervical cancer (UCC) have not been fully elucidated. Methods The frequency of Tc17 cells in peripheral blood samples obtained from UCC patients, cervical intraepithelial neoplasia (CIN) patients and healthy controls was determined by flow cytometry. Besides, the prevalence of Tc17 cells and their relationships to Th17 cells and Foxp3-expressing T cells as well as microvessels in tissue samples of the patients were assessed by immunohistochemistry staining. Results Compared to controls, patients with UCC or CIN had a higher proportion of Tc17 cells in both peripheral blood and cervical tissues, but the level of Tc17 cells in UCC tissues was significantly higher than that in CIN tissues. Besides, the increased level of Tc17 in UCC patients was associated with the status of pelvic lymph node metastases and increased microvessel density. Finally, significant correlations of infiltration between Tc17 cells and Th17 cells or Foxp3-expressing T cells were observed in UCC and CIN tissues. Conclusions This study indicates that Tc17 cell infiltration in cervical cancers is associated with cancer progression accompanied by increased infiltrations of Th17 cells and regulatory T cells as well as promoted tumor vasculogenesis. PMID:24523865
Peripheral neuropathy in HIV: prevalence and risk factors
Evans, Scott R.; Ellis, Ronald J.; Chen, Huichao; Yeh, Tzu-min; Lee, Anthony J.; Schifitto, Giovanni; Wu, Kunling; Bosch, Ronald J.; McArthur, Justin C.; Simpson, David M.; Clifford, David B.
2011-01-01
Objectives To estimate neuropathic sign/symptom rates with initiation of combination antiretroviral therapy (cART) in HIV-infected ART-naive patients, and to investigate risk factors for: peripheral neuropathy and symptomatic peripheral neuropathy (SPN), recovery from peripheral neuropathy/SPN after neurotoxic ART (nART) discontinuation, and the absence of peripheral neuropathy/SPN while on nART. Design AIDS Clinical Trials Group (ACTG) Longitudinal Linked Randomized Trial participants who initiated cART in randomized trials for ART-naive patients were annually screened for symptoms/signs of peripheral neuropathy. ART use and disease characteristics were collected longitudinally. Methods Peripheral neuropathy was defined as at least mild loss of vibration sensation in both great toes or absent/hypoactive ankle reflexes bilaterally. SPN was defined as peripheral neuropathy and bilateral symptoms. Generalized estimating equation logistic regression was used to estimate associations. Results Two thousand, one hundred and forty-one participants were followed from January 2000 to June 2007. Rates of peripheral neuropathy/SPN at 3 years were 32.1/8.6% despite 87.1% with HIV-1RNA 400 copies/ml or less and 70.3% with CD4 greater than 350 cells/µl. Associations with higher odds of peripheral neuropathy included older patient age and current nART use. Associations with higher odds of SPN included older patient age, nART use, and history of diabetes mellitus. Associations with lower odds of recovery after nART discontinuation included older patient age. Associations with higher odds of peripheral neuropathy while on nART included older patient age and current protease inhibitor use. Associations with higher odds of SPN while on nART included older patient age, history of diabetes, taller height, and protease inhibitor use. Conclusion Signs of peripheral neuropathy remain despite virologic/immunologic control but frequently occurs without symptoms. Aging is a risk factor for peripheral neuropathy/SPN. PMID:21330902
Barr, Ann E.; Barbe, Mary F.; Clark, Brian D.
2006-01-01
The purpose of this commentary is to present recent epidemiological findings regarding work-related musculoskeletal disorders (WMSDs) of the hand and wrist, and to summarize experimental evidence of underlying tissue pathophysiology and sensorimotor changes in WMSDs. Sixty-five percent of the 333 800 newly reported cases of occupational illness in 2001 were attributed to repeated trauma. WMSDs of the hand and wrist are associated with the longest absences from work and are, therefore, associated with greater lost productivity and wages than those of other anatomical regions. Selected epidemiological studies of hand/wrist WMSDs published since 1998 are reviewed and summarized. Results from selected animal studies concerning underlying tissue pathophysiology in response to repetitive movement or tissue loading are reviewed and summarized. To the extent possible, corroborating evidence in human studies for various tissue pathomechanisms suggested in animal models is presented. Repetitive, hand-intensive movements, alone or in combination with other physical, nonphysical, and nonoccupational risk factors, contribute to the development of hand/wrist WMSDs. Possible pathophysiological mechanisms of tissue injury include inflammation followed by repair and/or fibrotic scarring, peripheral nerve injury, and central nervous system reorganization. Clinicians should consider all of these pathomechanisms when examining and treating patients with hand/wrist WMSDs. PMID:15552707
Efficient detection of wound-bed and peripheral skin with statistical colour models.
Veredas, Francisco J; Mesa, Héctor; Morente, Laura
2015-04-01
A pressure ulcer is a clinical pathology of localised damage to the skin and underlying tissue caused by pressure, shear or friction. Reliable diagnosis supported by precise wound evaluation is crucial in order to success on treatment decisions. This paper presents a computer-vision approach to wound-area detection based on statistical colour models. Starting with a training set consisting of 113 real wound images, colour histogram models are created for four different tissue types. Back-projections of colour pixels on those histogram models are used, from a Bayesian perspective, to get an estimate of the posterior probability of a pixel to belong to any of those tissue classes. Performance measures obtained from contingency tables based on a gold standard of segmented images supplied by experts have been used for model selection. The resulting fitted model has been validated on a training set consisting of 322 wound images manually segmented and labelled by expert clinicians. The final fitted segmentation model shows robustness and gives high mean performance rates [(AUC: .9426 (SD .0563); accuracy: .8777 (SD .0799); F-score: 0.7389 (SD .1550); Cohen's kappa: .6585 (SD .1787)] when segmenting significant wound areas that include healing tissues.
A Clinicopathological Analysis of Soft Tissue Sarcoma with Telangiectatic Changes.
Kobayashi, Hiroshi; Ae, Keisuke; Tanizawa, Taisuke; Gokita, Tabu; Motoi, Noriko; Matsumoto, Seiichi
2015-01-01
Background. Soft tissue sarcoma with a hemorrhagic component that cannot be easily diagnosed by needle biopsy is defined here as soft tissue sarcoma with telangiectatic changes (STST). Methods. We retrospectively reviewed clinicopathological data of STST from 14 out of 784 patients (prevalence: 1.8%) with soft tissue sarcoma. Results. Tumors were found mostly in the lower leg. Histological diagnoses were undifferentiated pleomorphic sarcoma (n = 5), synovial sarcoma (n = 5), epithelioid sarcoma (n = 2), and malignant peripheral nerve sheath tumor and fibrosarcoma (n = 1). No history of trauma to the tumor site was recorded in any patient. Needle aspiration transiently reduced the tumor volume, but subsequent recovery of tumor size was observed in all cases. Out of 14 patients, 9 presented with a painful mass. MRI characteristics included intratumoral nodules (64.3%). The local recurrence rate was 14.3%, and the 2-year event-free survival rate was poorer (50%) than that of most sarcomas. Conclusions. STST is unique in its clinicopathological presentation. Painful hematomas without a trauma history, intratumoral nodules within a large hemorrhagic component, and subsequent recovery of tumor size after aspiration are indicative of the presence of STST.
A Clinicopathological Analysis of Soft Tissue Sarcoma with Telangiectatic Changes
Kobayashi, Hiroshi; Ae, Keisuke; Tanizawa, Taisuke; Gokita, Tabu; Motoi, Noriko; Matsumoto, Seiichi
2015-01-01
Background. Soft tissue sarcoma with a hemorrhagic component that cannot be easily diagnosed by needle biopsy is defined here as soft tissue sarcoma with telangiectatic changes (STST). Methods. We retrospectively reviewed clinicopathological data of STST from 14 out of 784 patients (prevalence: 1.8%) with soft tissue sarcoma. Results. Tumors were found mostly in the lower leg. Histological diagnoses were undifferentiated pleomorphic sarcoma (n = 5), synovial sarcoma (n = 5), epithelioid sarcoma (n = 2), and malignant peripheral nerve sheath tumor and fibrosarcoma (n = 1). No history of trauma to the tumor site was recorded in any patient. Needle aspiration transiently reduced the tumor volume, but subsequent recovery of tumor size was observed in all cases. Out of 14 patients, 9 presented with a painful mass. MRI characteristics included intratumoral nodules (64.3%). The local recurrence rate was 14.3%, and the 2-year event-free survival rate was poorer (50%) than that of most sarcomas. Conclusions. STST is unique in its clinicopathological presentation. Painful hematomas without a trauma history, intratumoral nodules within a large hemorrhagic component, and subsequent recovery of tumor size after aspiration are indicative of the presence of STST. PMID:26839509
Artificial sensory organs: latest progress.
Nakamura, Tatsuo; Inada, Yuji; Shigeno, Keiji
2018-03-01
This study introduces the latest progress on the study of artificial sensory organs, with a special emphasis on the clinical results of artificial nerves and the concept of in situ tissue engineering. Peripheral nerves have a strong potential for regeneration. An artificial nerve uses this potential to recover a damaged peripheral nerve. The polyglycolic acid collagen tube (PGA-C tube) is a bio-absorbable tube stuffed with collagen of multi-chamber structure that consists of thin collagen films. The clinical application of the PGA-C tube began in 2002 in Japan. The number of PGA-C tubes used is now beyond 300, and satisfactory results have been reported on peripheral nerve repairs. This PGA-C tube is also effective for patients suffering from neuropathic pain.