Science.gov

Sample records for peripheral vascular function

  1. Assessment of vascular autonomic function using peripheral arterial tonometry.

    PubMed

    Hamada, Satomi; Oono, Ai; Ishihara, Yuri; Hasegawa, Yuki; Akaza, Miho; Sumi, Yuki; Inoue, Yoshinori; Izumiyama, Hajime; Hirao, Kenzo; Isobe, Mitsuaki; Sasano, Tetsuo

    2017-03-01

    Peripheral autonomic function is impaired in diabetic polyneuropathy. However, it is difficult to evaluate it due to the lack of non-invasive quantitative assessment. We aimed to establish a novel index to evaluate vascular autonomic function using reactive hyperemia peripheral arterial tonometry (RH-PAT), a widely performed endothelial function test. Sixty-five subjects were enrolled, including healthy subjects, cases with sympathetic nerve blockers, and diabetic patients. RH-PAT was performed with 5-min blood flow occlusion in unilateral arm. We calculated the reduction ratio of the post-occlusion pulse amplitude to the baseline in the non-occluded arm (RPN), with 1-min sliding window. In healthy subjects, RPN gradually increased with time-dependent manner. However, this phenomenon was eliminated in cases with sympathetic nerve blockers. Plasma concentration of norepinephrine was measured before and after the blood flow occlusion, which showed a significant increase. We then compared RPNs with the change in heart rate variability (HRV) parameters. RPN calculated at 5 min after the reperfusion had the highest correlation with the change in sympathetic HRV parameter, and thus, we named sympathetic hypoemia index (SHI). Finally, we studied the relationship between SHI and diabetes. SHI was significantly lower in diabetic patients than matched controls. SHI, a novel index derived from RH-PAT, represented the peripheral sympathetic activity. SHI may be useful for assessing the vascular autonomic activity in diabetic patients.

  2. Serial assessment of local peripheral vascular function after eccentric exercise.

    PubMed

    Stacy, Mitchel R; Bladon, Kallie J; Lawrence, Jennifer L; McGlinchy, Sarah A; Scheuermann, Barry W

    2013-12-01

    Muscle damage is a common response to unaccustomed eccentric exercise; however, the effects of skeletal muscle damage on local vascular function and blood flow are poorly understood. This study examined serial local vascular responses to flow-mediated (endothelial-dependent) and nitroglycerin-mediated (endothelial-independent) dilation in the brachial artery after strenuous eccentric exercise and serially assessed resting blood flow. Ten healthy males performed 50 maximal eccentric unilateral arm contractions to induce muscle damage to the biceps brachii. Changes in maximal isometric strength and vascular responses were assessed 1, 24, 48, and 96 h after exercise. Mean blood velocities and arterial diameters, measured with Doppler ultrasound, were used to calculate blood flow and shear stress (expressed as area under the curve). Eccentric exercise resulted in impaired maximal isometric strength for up to 96 h (p < 0.001). Reductions in flow-mediated dilation (before exercise, 9.4% ± 2.6%; 1 h after exercise, 5.1% ± 2.2%) and nitroglycerin responses (before exercise, 26.3% ± 6.5%; 1 h after exercise, 20.7% ± 4.7%) were observed in the 1 h after exercise and remained lower for 96 h (p < 0.05). The shear stress response was attenuated immediately after exercise and remained impaired for 48 h (p < 0.05). Resting blood pressure and muscle blood flow remained similar throughout the study. Results suggest that muscle damage from eccentric exercise leads to impaired local endothelial and vascular smooth muscle function. Lower shear stress after exercise might contribute to the observed reduction in flow-mediated dilation responses, but the mechanism responsible for the attenuated endothelial-independent vasodilation remains unclear.

  3. Usefulness of peripheral vascular function to predict functional health status in patients with Fontan circulation.

    PubMed

    Goldstein, Bryan H; Golbus, Jessica R; Sandelin, Angela M; Warnke, Nicole; Gooding, Lindsay; King, Karen K; Donohue, Janet E; Gurney, James G; Goldberg, Caren S; Rocchini, Albert P; Charpie, John R

    2011-08-01

    After the Fontan operation, patients are at a substantial risk of the development of impaired functional health status. Few early markers of suboptimal outcomes have been identified. We sought to assess the association between peripheral vascular function and functional health status in Fontan-palliated patients. Asymptomatic Fontan patients (n = 51) and age- and gender-matched healthy controls (n = 22) underwent endothelial pulse amplitude testing using a noninvasive fingertip peripheral arterial tonometry (PAT) device. Raw data were transformed into the PAT ratio, an established marker of vascular function. Cardiopulmonary exercise testing was performed using the Bruce protocol. In the Fontan cohort, 94% of patients were New York Heart Association functional class I and 88% had a B-type natriuretic peptide level of <50 pg/ml. The baseline pulse amplitude, a measure that reflects the arterial tone at rest, was greater in the Fontan patients than in the controls (median 2.74, interquartile range 1.96 to 4.13 vs median 1.86, interquartile range 1.14 to 2.79, p = 0.03). The PAT ratio, a measure of reactive hyperemia, was lower in Fontan patients (median 0.17, interquartile range -0.04 to 0.44, vs median 0.50, interquartile range 0.27 to 0.74, p = 0.002). The key parameters of exercise performance, including peak oxygen consumption (median 28.8 ml/kg/min, interquartile range 25.6 to 33.2 vs median 45.5 ml/kg/min, interquartile range 41.7 to 49.9, p <0.0001) and peak work (median 192 W, interquartile range 150 to 246 vs median 330, interquartile range 209 to 402 W, p <0.0001), were lower in Fontan patients than in the controls. The PAT ratio correlated with the peak oxygen consumption (r = 0.28, p = 0.02) and peak work (r = 0.26, p = 0.03). In conclusion, in an asymptomatic Fontan population, there is evidence of reduced basal peripheral arterial tone and vasodilator response, suggesting dysfunction of the endothelium-derived nitric oxide pathway. Vasodilator function

  4. Carbondioxide-Aided Angiography Decreases Contrast Volume and Preserves Kidney Function in Peripheral Vascular Interventions.

    PubMed

    Stegemann, Emilia; Tegtmeier, Catharina; Bimpong-Buta, Nana Yaw; Sansone, Roberto; Uhlenbruch, Mark; Richter, Andreas; Stegemann, Berthold; Roden, Michael; Westenfeld, Ralf; Kelm, Malte; Heiss, Christian

    2016-10-01

    Chronic kidney disease is a common comorbidity in patients with peripheral artery disease. We investigated the safety and efficacy of carbon dioxide (CO2) as supplemental contrast agent to decrease contrast volume during fluoroscopy-guided peripheral vascular procedures in routine angiological practice. We analyzed 191 consecutive interventions of the lower extremity in claudicants and critical limb ischemia (CLI) that were performed with iodinated contrast media (ICM) alone (n = 154) or with the aided or exclusive use of CO2 (n = 37). The technical success rate, total irradiation, and intervention time were not significantly different between ICM and CO2 No severe procedure-related complications occurred. The contrast volume was lower in CO2 than in ICM. Although kidney function, creatinine, and estimated glomerular filtration rate was lower in CO2 at baseline, the incidence of contrast-induced nephropathy was lower in CO2 compared to ICM. These data support CO2 as an alternative supplemental contrast agent that can be applied safely and efficiently to lower contrast volume during peripheral vascular interventions preventing kidney dysfunction even in patients with disease of the popliteal artery and below the knee and CLI.

  5. Does the DASH diet lower blood pressure by altering peripheral vascular function?

    PubMed

    Hodson, L; Harnden, K E; Roberts, R; Dennis, A L; Frayn, K N

    2010-05-01

    We tested whether lowering of blood pressure (BP) on the dietary approaches to stop hypertension (DASH) diet was associated with changes in peripheral vascular function: endothelial function, assessed by flow-mediated vasodilatation (FMD) of the brachial artery, and subcutaneous adipose tissue blood flow (ATBF). We also assessed effects on heart rate variability (HRV) as a measure of autonomic control of the heart. We allocated 27 men and women to DASH diet and control groups. We measured FMD, ATBF and HRV on fasting and after ingestion of 75 g glucose, before and after 30 days on dietary intervention, aiming for weight maintenance. The control group did not change their diet. The DASH-diet group complied with the diet as shown by significant reductions in systolic (P<0.001) and diastolic (P=0.005) BP, and in plasma C-reactive protein (P<0.01), LDL-cholesterol (P<0.01) and apolipoprotein B (P=0.001), a novel finding. Body weight changed by <1 kg. There were no changes in the control group. We found no changes in FMD, or in ATBF, in the DASH-diet group, although heart rate fell (P<0.05). Glucose and insulin concentrations did not change. In this small-scale study, the DASH diet lowered BP independently of peripheral mechanisms.

  6. Effects of aging, gender, and physical training on peripheral vascular function.

    PubMed

    Martin, W H; Ogawa, T; Kohrt, W M; Malley, M T; Korte, E; Kieffer, P S; Schechtman, K B

    1991-08-01

    Blood pressure and total peripheral resistance increase with age. However, the effect of age on vasodilatory capacity has not been characterized. To delineate the effects of aging, gender, and physical training on peripheral vascular function, we measured blood pressure during submaximal and maximal treadmill exercise and measured blood pressure, calf blood flow, and calf conductance (blood flow/mean blood pressure) at rest and during maximal hyperemia in 58 healthy sedentary subjects (men aged 25 +/- 5 and 65 +/- 3 years and women aged 27 +/- 5 and 65 +/- 4 years) and in 52 endurance exercise-trained subjects (men aged 30 +/- 3 and 65 +/- 4 years and women aged 27 +/- 3 and 65 +/- 3 years). Systolic and mean blood pressures were higher at rest, during maximal calf hyperemia, and during submaximal exercise of the same intensity in the older than in the younger subjects of the same gender and exercise training status (p less than 0.01). The magnitude of the age-related effect on blood pressure during exercise was greater in women than in men (p less than 0.01). Diastolic blood pressure during submaximal exercise was also higher in the older than in the younger subjects (p less than 0.05) but not in women treated with estrogen replacement. In contrast, systolic and mean blood pressures during submaximal work were lower in physically conditioned subjects than in sedentary age- and gender-matched subjects (p less than 0.05) but not in older women. Increased age was associated with reduced maximal calf conductance in women (p less than 0.01) but not in men. However, calf vasodilatory capacity was higher in trained than in untrained subjects (p less than 0.01), regardless of age and gender. There was a significant inverse relation between maximal calf conductance and systolic, diastolic, and mean blood pressures during submaximal exercise (r = -0.31 to -0.53, p less than 0.01) and a direct relation between maximal calf conductance and maximal oxygen uptake (r = 0.66, p

  7. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea

    PubMed Central

    Pan, Zan; Fukuoka, Shima; Karagianni, Natalia; Guaiquil, Victor H.; Rosenblatt, Mark I.

    2013-01-01

    Peripheral nerve injury is a major neurological disorder that can cause severe motor and sensory dysfunction. Neurogenic effects of vascular endothelial growth factor (VEGF) have been found in the central nervous system, and we examined whether VEGF could promote anatomical and functional recovery of peripheral nerves after injury using an avascular corneal nerve injury model. We found that VEGF enhanced neurite elongation in isolated trigeminal ganglion neurons in a dose-dependent manner. This effect was suppressed by neutralizing antibodies for VEGF receptor (VEGFR) 1 and 2 or neuropilin receptor 1 or by VEGFR2 inhibitors (SU 1498 and Ki 8751). In vivo, mice receiving sustained VEGF via implanted pellets showed increased corneal nerve regeneration after superficial injury compared with those receiving vehicle. VEGF injected subconjunctivally at the time of injury accelerated reinnervation, the recovery of mechanosensation, and epithelial wound healing. Endogenous VEGF expression was up-regulated in the corneal epithelium and stroma after wounding. Thus, VEGF can mediate peripheral neuron growth but requires the activation of multiple VEGF receptor types. In addition, VEGF can accelerate the return of sensory and trophic functions of damaged peripheral nerves. Wounding induces the expression of VEFG, which may modulate physiological nerve repair.—Pan, Z., Fukuoka, S., Karagianni, N., Guaiquil, V. H., Rosenblatt, M. I. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea. PMID:23568776

  8. Peripheral vascular dysfunction in migraine: a review

    PubMed Central

    2013-01-01

    Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826

  9. Vascular Function and Intima-media Thickness of a Leg Artery in Peripheral Artery Disease: A Comparison of Buerger Disease and Atherosclerotic Peripheral Artery Disease.

    PubMed

    Iwamoto, Akimichi; Kajikawa, Masato; Maruhashi, Tatsuya; Iwamoto, Yumiko; Oda, Nozomu; Kishimoto, Shinji; Matsui, Shogo; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Noma, Kensuke; Aibara, Yoshiki; Nakashima, Ayumu; Higashi, Yukihito

    2016-11-01

    Both vascular function and structure are independent predictors of cardiovascular events. The purpose of this study was to evaluate vascular function and structure of a leg artery in patients with peripheral artery disease (PAD). We measured flow-mediated vasodilatation (FMD) and nitroglycerine-induced vasodilation (NID) as indices of vascular function and intima-media thickness (IMT) as an index of vascular structure of the popliteal artery in 100 subjects, including 20 patients with Buerger disease and 30 patients with atherosclerotic PAD, 20 age- and sex-matched subjects without Buerger disease (control group) and 30 age- and sex-matched patients without atherosclerotic PAD (control group). IMT was significantly larger in the Buerger group than in the control group (Buerger, 0.63± 0.20 mm; control, 0.50±0.07 mm; P=0.01), whereas there were no significant differences in FMD and NID between the two groups. IMT was significantly larger in the atherosclerotic PAD group than in the control group (atherosclerotic PAD, 0.80±0.22 mm; control, 0.65±0.14 mm; P<0.01), and FMD and NID were significantly smaller in the atherosclerotic PAD group than in the control group (FMD: atherosclerotic PAD, 3.9%±1.1%; control, 5.0%±1.8%; P<0.01; and NID: atherosclerotic PAD, 6.1%±2.0%; control, 8.4%±2.1%; P<0.01). These findings suggest that vascular function is preserved in patients with Buerger disease and that both vascular function and vascular structure are impaired in patients with atherosclerotic PAD.

  10. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review.

    PubMed

    Zhu, Hui; Wang, Hanqing; Liu, Zhiqiang

    2015-01-01

    Weightlessness is an extreme environment that can cause a series of adaptive changes in the human body. Findings from real and simulated weightlessness indicate altered cardiovascular functions, such as reduction in left ventricular (LV) mass, cardiac arrhythmia, reduced vascular tone and so on. These alterations induced by weightlessness are detrimental to the health, safety and working performance of the astronauts, therefore it is important to study the effects of weightlessness on the cardiovascular functions of humans. The cardiovascular functional alterations caused by weightlessness (including long-term spaceflight and simulated weightlessness) are briefly reviewed in terms of the cardiac and peripheral vascular functions. The alterations include: changes of shape and mass of the heart; cardiac function alterations; the cardiac arrhythmia; lower body vascular regulation and upper body vascular regulation. A series of conclusions are reported, some of which are analyzed, and a few potential directions are presented. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  11. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea.

    PubMed

    Pan, Zan; Fukuoka, Shima; Karagianni, Natalia; Guaiquil, Victor H; Rosenblatt, Mark I

    2013-07-01

    Peripheral nerve injury is a major neurological disorder that can cause severe motor and sensory dysfunction. Neurogenic effects of vascular endothelial growth factor (VEGF) have been found in the central nervous system, and we examined whether VEGF could promote anatomical and functional recovery of peripheral nerves after injury using an avascular corneal nerve injury model. We found that VEGF enhanced neurite elongation in isolated trigeminal ganglion neurons in a dose-dependent manner. This effect was suppressed by neutralizing antibodies for VEGF receptor (VEGFR) 1 and 2 or neuropilin receptor 1 or by VEGFR2 inhibitors (SU 1498 and Ki 8751). In vivo, mice receiving sustained VEGF via implanted pellets showed increased corneal nerve regeneration after superficial injury compared with those receiving vehicle. VEGF injected subconjunctivally at the time of injury accelerated reinnervation, the recovery of mechanosensation, and epithelial wound healing. Endogenous VEGF expression was up-regulated in the corneal epithelium and stroma after wounding. Thus, VEGF can mediate peripheral neuron growth but requires the activation of multiple VEGF receptor types. In addition, VEGF can accelerate the return of sensory and trophic functions of damaged peripheral nerves. Wounding induces the expression of VEFG, which may modulate physiological nerve repair.

  12. Digital Subtraction Angiography In Peripheral Vascular Disease

    NASA Astrophysics Data System (ADS)

    Stieghorst, Michael F.; Crummy, Andrew B.; Lieberman, Robert P.; Turnipseed, William D.; Detmer, Donald E.; Berkoff, Herbert A.

    1981-11-01

    Digital subtraction angiography (DSA) has considerable utility in the evaluation of peripheral vascular disease. It is useful in screening selected patients for vascular disease and its relative ease of performance and good patient tolerance make it ideal for serial examinations of post operative patients. When used in conjunction with intra arterial injections, the technique may show "run-off" vessels which were not demonstrated by standard angiography. This paper presents our experience using DSA to image peripheral vascular problems.

  13. Dark chocolate and vascular function in patients with peripheral artery disease: a randomized, controlled cross-over trial.

    PubMed

    Hammer, Alexandra; Koppensteiner, Renate; Steiner, Sabine; Niessner, Alexander; Goliasch, Georg; Gschwandtner, Michael; Hoke, Matthias

    2015-01-01

    Flavonoid-rich dark chocolate has positive effects on vascular function in healthy subjects and in patients at risk of atherosclerosis. The impact of dark chocolate on endothelial and microvascular function in patients with symptomatic peripheral artery disease (PAD) has not been investigated so far. In an investigator blinded, randomized, controlled, cross-over trial we assessed the effect of flavonoid-rich dark chocolate and cocoa-free control chocolate on flow-mediated dilatation (FMD) of the brachial artery and on microvascular function (assessed by Laser Doppler fluxmetry) in 21 patients with symptomatic (Fontaine stage II) PAD. Measurements were done in each patient on 2 single days, with an interval of 7 days, at baseline and at 2 hours after ingestion of 50 g dark chocolate or 50 g white chocolate, respectively. FMD remained unchanged after intake of dark chocolate (baseline and 2 hours after ingestion, %: 5.1 [IQR 4.4 to 7.3] and 5.5 [IQR 3.9 to 10.4]; p = 0.57, and after intake of white chocolate (baseline and 2 hours after ingestion, %: 6.4 [IQR 4.5 to 11.4] and 4.4 [IQR 2.6 to 8.7]; p = 0.14. Similarly, microcirculatory parameters were not significantly altered after intake of any chocolate compared with the respective baseline values. In conclusion, a single consumption of 50 g dark chocolate has no effect on endothelial and microvascular function in patients with symptomatic PAD.

  14. [Diagnostic imaging of peripheral renal vascular disorders].

    PubMed

    Hélénon, O; Correas, J M; Eiss, D; Khairoune, A; Merran, S

    2004-02-01

    Peripheral vascular disorders of the kidney involve the intrarenal branches of the renal vascular tree. It include occlusive (infarction and cortical necrosis) and non-occlusive vascular lesions (acquired arteriovenous fistulas, arteriovenous malformation, false aneurysms and microaneurysms). Initial diagnosis relies on color Doppler US and CT angiography. Angiography plays a therapeutic role. MR imaging provides useful diagnostic information on perfusion disorders especially in patients with renal insufficiency.

  15. Peripheral vascular imaging and intervention

    SciTech Connect

    Kim, D. ); Orron, D.E. )

    1990-01-01

    This reference addresses the entire clinical approach to the vascular system from the diagnosis of pathology to surgery or interventional radiological management. All diagnostic imaging modalities currently available are included with specific information on how to interpret various results. It features discussions of the latest therapeutic techniques, including laser angioplasty, intravascular stents, and transluminal embolization.

  16. Vascular hypertrophy-associated hypertension of profilin1 transgenic mouse model leads to functional remodeling of peripheral arteries.

    PubMed

    Hassona, Mohamed D H; Abouelnaga, Zeinb A; Elnakish, Mohammad T; Awad, Mohamed M; Alhaj, Mazin; Goldschmidt-Clermont, Pascal J; Hassanain, Hamdy

    2010-06-01

    Increased mechanical stress/hypertension in the vessel wall triggers the hypertrophic signaling pathway, resulting in structural remodeling of vasculature. Vascular hypertrophy of resistance vessels leads to reduced compliance and elevation of blood pressure. We showed before that increased expression of profilin1 protein in the medial layer of the aorta induces stress fiber formation, triggering the hypertrophic signaling resulting in vascular hypertrophy and, ultimately, hypertension in older mice. Our hypothesis is that profilin1 induced vascular hypertrophy in resistance vessels, which led to elevation of blood pressure, both of which contributed to the modulation of vascular function. Our results showed significant increases in the expression of alpha(1)- and beta(1)-integrins (280 + or - 6.3 and 325 + or - 7.4%, respectively) and the activation of the Rho/Rho-associated kinase (ROCK) II pathway (260 and 350%, respectively, P < 0.05) in profilin1 mesenteric arteries. The activation of Rho/ROCK led to the inhibition of endothelial nitric oxide synthase expression (39 + or - 5.4%; P < 0.05) and phosphorylation (35 + or - 4.5%; P < 0.05) but also an increase in myosin light chain 20 phosphorylation (372%, P < 0.05). There were also increases in hypertrophic signaling pathways in the mesenteric arteries of profilin1 mice such as phospho-extracellular signal-regulated kinase 1/2 and phospho-c-Jun NH(2)-terminal kinase (312.15 and 232.5%, respectively, P < 0.05). Functional analyses of mesenteric arteries toward the vasoactive drugs were assessed using wire-myograph and showed significant increases in the vascular responses of profilin1 mesenteric arteries toward phenylephrine, but significant decreases in response toward ROCK inhibitor Y-27632, ACh, sodium nitrite, and cytochalasin D. The changes in vascular responses in the mesenteric arteries of profilin1 mice are due to vascular hypertrophy and the elevation of blood pressure in the profilin1 transgenic mice.

  17. A Single Session of Neuromuscular Electrical Stimulation Enhances Vascular Endothelial Function and Peripheral Blood Circulation in Patients With Acute Myocardial Infarction.

    PubMed

    Tanaka, Shinya; Masuda, Takashi; Kamiya, Kentaro; Hamazaki, Nobuaki; Akiyama, Ayako; Kamada, Yumi; Maekawa, Emi; Noda, Chiharu; Yamaoka-Tojo, Minako; Ako, Junya

    2016-12-02

    This study aimed to investigate whether a single session of neuromuscular electrical stimulation (NMES) can enhance vascular endothelial function and peripheral blood circulation in patients with acute myocardial infarction (AMI). Thirty-four male patients with AMI were alternately assigned to 2 groups, and received NMES with muscle contraction (NMES group, n = 17) or without muscle contraction (control group, n = 17) after admission. NMES was performed for quadriceps and gastrocnemius muscles of both legs for 30 minutes. We measured systolic blood pressure as a parameter of cardiovascular responses and the low-frequency component of blood pressure variability as an index of sympathetic activity. Reactive hyperemia peripheral arterial tonometry (RH-PAT) index and transcutaneous oxygen pressure in foot (Foot-tcPO2) were also measured as parameters of vascular endothelial function and peripheral blood circulation, respectively. All patients completed the study without severe adverse events. Systolic blood pressure and the low-frequency component increased significantly during the NMES session in both groups (P < 0.01 and P < 0.05, respectively). However, elevation from systolic blood pressure at rest was < 10 mmHg in both groups. In the NMES group, the RH-PAT index and Foot-tcPO2 increased significantly after NMES (P < 0.05 and P < 0.001, respectively). No significant changes were observed in these parameters throughout the session in the control group. In conclusion, a single session of NMES with muscle contraction enhanced vascular endothelial function, leading to improvement in peripheral blood circulation without inducing excessive cardiovascular and autonomic responses in patients with AMI (UMIN000014196).

  18. Diagnostic ultrasonography for peripheral vascular emergencies.

    PubMed

    Cook, Thomas; Nolting, Laura; Barr, Caleb; Hunt, Patrick

    2014-04-01

    Over the past decade, emergency and critical care physicians have been empowered with the ability to use bedside ultrasonography to assist in the evaluation and management of a variety of emergent conditions. Today a single health care provider at the bedside with Duplex ultrasound technology can evaluate peripheral vascular calamities that once required significant time and a variety of health care personnel for the diagnosis. This article highlights peripheral thromboembolic disease, aneurysm, pseudoaneurysm, and arterial occlusion in the acute care setting. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. DELETION OF PROTEIN TYROSINE PHOSPHATASE 1B IMPROVES PERIPHERAL INSULIN RESISTANCE AND VASCULAR FUNCTION IN OBESE, LEPTIN RESISTANT MICE VIA REDUCED OXIDANT TONE

    PubMed Central

    Ali, M. Irfan; Ketsawatsomkron, Pimonrat; Belin de Chantelemele, Eric J.; Mintz, James D.; Muta, Kenjiro; Salet, Christina; Black, Stephen M.; Tremblay, Michel L.; Fulton, David J.; Marrero, Mario B.; Stepp, David W.

    2009-01-01

    Rationale Obesity is a risk factor for cardiovascular dysfunction, yet the underlying factors driving this impaired function remain poorly understood. Insulin resistance is a common pathology in obese patients and has been shown to impair vascular function. Whether insulin resistance or obesity, itself, is causal remains unclear. Objective The current study tested the hypothesis that insulin resistance is the underlying mediator for impaired nitric oxide mediated dilation in obesity by genetic deletion of the insulin-desensitizing enzyme protein tyrosine phosphatase 1B (PTP1B) in db/db mice. Methods and Results The db/db mouse is morbidly obese, insulin resistant and has tissue-specific elevation in PTP1B expression compared to lean controls. In db/db mice, PTP1B deletion improved glucose clearance, dyslipidemia, and insulin receptor signaling in muscle and fat. Hepatic insulin signaling in db/db mice was not improved by deletion of PTP1B, indicating specific amelioration of peripheral insulin resistance. Additionally, obese mice demonstrate an impaired endothelium dependent and independent vasodilation to acetylcholine and sodium nitroprusside, respectively. This impairment, which correlated with increased superoxide in the db/db mice, was corrected by superoxide scavenging. Increased superoxide production was associated with increased expression of NAD(P)H Oxidase 1 and its molecular regulators, Noxo1 and Noxa1. Conclusion Deletion of PTP1B improved both endothelium dependent and independent nitric oxide mediated dilation and reduced superoxide generation in db/db mice. PTP1B deletion did not affect any vascular function in lean mice. Taken together, these data reveal a role for peripheral insulin resistance as the mediator of vascular dysfunction in obesity. PMID:19797171

  20. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people.

    PubMed

    Shimizu, Ryosuke; Hotta, Kazuki; Yamamoto, Shuhei; Matsumoto, Takuya; Kamiya, Kentaro; Kato, Michitaka; Hamazaki, Nobuaki; Kamekawa, Daisuke; Akiyama, Ayako; Kamada, Yumi; Tanaka, Shinya; Masuda, Takashi

    2016-04-01

    The present study aimed to investigate the effects of low-intensity resistance training with blood flow restriction (BFR resistance training) on vascular endothelial function and peripheral blood circulation. Forty healthy elderly volunteers aged 71 ± 4 years were divided into two training groups. Twenty subjects performed BFR resistance training (BFR group), and the remaining 20 performed ordinary resistance training without BFR. Resistance training was performed at 20 % of each estimated one-repetition maximum for 4 weeks. We measured lactate (Lac), norepinephrine (NE), vascular endothelial growth factor (VEGF) and growth hormone (GH) before and after the initial resistance training. The reactive hyperemia index (RHI), von Willebrand factor (vWF) and transcutaneous oxygen pressure in the foot (Foot-tcPO2) were assessed before and after the 4-week resistance training period. Lac, NE, VEGF and GH increased significantly from 8.2 ± 3.6 mg/dL, 619.5 ± 243.7 pg/mL, 43.3 ± 15.9 pg/mL and 0.9 ± 0.7 ng/mL to 49.2 ± 16.1 mg/dL, 960.2 ± 373.7 pg/mL, 61.6 ± 19.5 pg/mL and 3.1 ± 1.3 ng/mL, respectively, in the BFR group (each P < 0.01). RHI and Foot-tcPO2 increased significantly from 1.8 ± 0.2 and 62.4 ± 5.3 mmHg to 2.1 ± 0.3 and 68.9 ± 5.8 mmHg, respectively, in the BFR group (each P < 0.01). VWF decreased significantly from 175.7 ± 20.3 to 156.3 ± 38.1 % in the BFR group (P < 0.05). BFR resistance training improved vascular endothelial function and peripheral blood circulation in healthy elderly people.

  1. Peripheral vasodilators and the management of peripheral vascular disease and Raynaud's syndrome in general practice.

    PubMed

    Connolly, J P; McGavock, H; Wilson-Davis, K

    1998-05-01

    There is no convincing evidence that peripheral vasodilators produce any significant improvement in exercise tolerance in patients with peripheral vascular disease, and these drugs may do more harm than good. In the treatment of severe Raynaud's syndrome, however, thymoxamine, prazosin or nifedipine is recommended. A descriptive study was carried out, firstly, to determine why these drugs are prescribed in general practice, and secondly, to describe the drug choices in the treatment of both Raynaud's syndrome and peripheral vascular disease in a representative sample of 22 practices in Northern Ireland. Of those patients prescribed peripheral vasodilators 69.6% were diagnosed as peripheral vascular disease, claudication or atherosclerosis. Over three-quarters of peripheral vasodilators prescribed were repeat prescriptions. Of those with Raynaud's syndrome only half were treated appropriately, and certainty of diagnosis did not guarantee appropriate treatment. Peripheral vasodilators accounted for the majority (51.5%) of items prescribed for peripheral vascular disease. A minority of patients with peripheral vascular disease (20.3%) were prescribed aspirin, and a smaller minority (4.4%) had undergone amputation. Peripheral vasodilators were prescribed unnecessarily and inappropriately. Measures to promote evidence-based treatment of both Raynaud's syndrome and peripheral vascular disease in general practice need to be taken. Copyright 1998 John Wiley & Sons, Ltd.

  2. [Vascular endothelial Barrier Function].

    PubMed

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  3. Systemic sclerosis induces pronounced peripheral vascular dysfunction characterized by blunted peripheral vasoreactivity and endothelial dysfunction

    PubMed Central

    Frech, Tracy; Walker, Ashley E.; Barrett-O’Keefe, Zachary; Hopkins, Paul N.; Richardson, Russell S.; Wray, D. Walter; Donato, Anthony J.

    2016-01-01

    Systemic sclerosis (SSc) vasculopathy can result in a digital ulcer (DU) and/or pulmonary arterial hypertension (PAH). We hypothesized that bedside brachial artery flow-mediated dilation (FMD) testing with duplex ultrasound could be used in SSc patients to identify features of patients at risk for DU or PAH. Thirty-eight SSc patients were compared to 52 age-matched healthy controls from the VAMC Utah Vascular Research Laboratory. Peripheral hemodynamics, arterial structure, and endothelial function were assessed by duplex ultrasound. A blood pressure cuff was applied to the forearm and 5-min ischemia was induced. Post-occlusion, brachial artery vascular reactivity (peak hyperemia/area under the curve [AUC]), shear rate, and endothelial function (FMD) were measured. SSc patients had smaller brachial artery diameters (p<0.001) and less reactive hyperemia (p<0.001), peak shear rate (p= 0.03), and brachial artery FMD (p<0.001) compared with healthy controls. Brachial artery FMD was lower (p<0.05) in SSc patients with DU. Tertile analysis suggested the 2 lower FMD tertiles (<5.40 %) had a 40–50 % chance of presenting with DU while the SSc patients with highest FMD tertile (>5.40 %) had less than 15 % chance of DU. All brachial artery FMD measurements were similar between SSc patients with and without PAH (all p>0.05). Compared to healthy controls, SSc patients had significantly smaller brachial artery diameter and blunted peripheral vascular reactivity and endothelial function. SSc patients with DU have even greater impairments in endothelial function compared to those without DU. FMD testing has clinical utility to identify SSc patients at risk for DU. PMID:25511849

  4. Early experience on peripheral vascular application of the vascular plugs

    PubMed Central

    Rohit, Manoj Kumar; Sinha, Alok Kumar; Kamana, Naveen Krishna

    2013-01-01

    Background Transcatheter closure of various congenital and acquired vascular malformations with Amplatzer Vascular plugs I and II has been established. Here we present our experience with device closure. Materials and methods Between October 2006 and August 2012, nine (three males and six females) patients aged between 11 months and 62 years (mean age 19 years) underwent percutaneous device closure with AVP I and II vascular plugs for congenital and acquired arteriovenous malformation and cardiac diverticulum are presented here. Results One case of coronary cameral fistula, four cases of pulmonary arteriovenous fistula, one case of large major aortopulmonary collaterals (in tetralogy of Fallot closed before intracardiac repair), one case of congenital cardiac diverticulum, one case of fistula between external carotid artery and internal jugular vein and one case of iatrogenic carotid jugular fistula were successfully closed with AVP I and II plugs. Overall in nine cases, 16 AVP I and II plugs were deployed to occlude feeding vessels and one cardiac diverticulum. The technical success rate was 100%. No major complications were observed. Conclusion Amplatzer vascular plugs can be used successfully for closure of various congenital and acquired vascular malformations with good result. PMID:24206877

  5. Evaluation and percutaneous management of atherosclerotic peripheral vascular disease

    SciTech Connect

    Widlus, D.M.; Osterman, F.A. Jr. )

    1989-06-02

    Atherosclerotic peripheral vascular disease (PVD) of the lower extremities deprives a person of the ability to exercise to their satisfaction, later of the ability to perform the activities of their daily life, and finally of their legs themselves. Peripheral vascular disease has long been managed by the vascular surgeon utilizing endarterectomy and peripheral arterial bypass. Patient acceptance of nonsurgical, percutaneous procedures such as percutaneous transluminal balloon angioplasty (PTA) is high. Increased utilization of these procedures has led to improved techniques and adjuncts to therapy, as well as more critical review of long-term results. This article will review the evaluation and nonoperative management of PVD, with an emphasis on the newer modalities of management presently being investigated.

  6. Current management of peripheral vascular disease: where is the evidence?

    PubMed

    Saha, Sibu P; Whayne, Thomas F; Mukherjee, Debabrata P

    2011-04-01

    The presence of peripheral vascular disease along with coronary heart disease are the two components of generalized atherosclerosis. The risk of having one when the other is present is extremely high. There are four parts to consider in peripheral vascular disease management and these are prevention, plaque stabilization, percutaneous intervention and surgery. Each part has its place but no one would argue that prevention is best when risk is recognized and treated. Classic risk factors and the available diagnostic methods are discussed. Treatment of risk factors is presented with reduction of the low density lipoproteins as the established gold standard during the current era. Procedures of percutaneous vascular intervention with their procedural indications are presented and their advantages and disadvantages discussed. Surgical indications are presented with special indication due to major claudication, rest pain, or tissue loss. Prognosis is also considered and this prognosis is worse in more proximal peripheral vascular disease. Association with other diseases is an important part of prognosis, with the latter especially made worse by the presence of diabetes mellitus. Surprisingly, the long-term prognosis of peripheral vascular disease is worse than that of coronary heart disease. These patients have a significant increase of cardiovascular risk factors and of comorbidities. It has been shown that these patients are undertreated in spite of their high cardiovascular risk. It is mandatory that they receive the same intensive treatment of risk factors as that given to coronary heart disease patients.

  7. Value of doppler ultrasonography in the study of hemodialysis peripheral vascular access dysfunction.

    PubMed

    Moreno Sánchez, T; Martín Hervás, C; Sola Martínez, E; Moreno Rodríguez, F

    2014-01-01

    The main objectives of this study were to evaluate the sensitivity and specificity of duplex Doppler ultrasonography in the study of hemodialysis peripheral vascular access dysfunction and to analyze the resistance index and flow in the afferent artery. We prospectively studied 178 patients with 178 peripheral vascular accesses that were dysfunctional in at least three consecutive hemodialysis sessions. Patients underwent duplex Doppler ultrasonography and clinical and laboratory follow-up for three months (provided angiography findings were negative). We calculated the sensitivity, specificity, predictive values, and coefficients of probability. We studied the morphology of the afferent artery, the arteriovenous anastomosis, and the efferent vein, and we measured the resistance index and the flow of the afferent artery, the diameter of the anastomosis, and the flow and peak systolic velocity in the efferent vein. The final sample consisted of 159 patients. The sensitivity, specificity, positive and negative predictive values, and positive and negative coefficients of probability were 0,98 (95% CI: 0,88-1.00), 0,74 (95% CI: 0,66-0,81), 0,96, 0,82, 3.7, and 0,03, respectively. The resistance index was less than 0,5 in 78.5% of the peripheral vascular accesses with normal function and greater than 0,5 in 86.1% of the dysfunctional peripheral vascular accesses. We found aneurysms in 19 of the native peripheral vascular accesses and pseudoaneurysms in 7 of the prosthetic grafts. Inverted flow was seen in 57 peripheral vascular accesses. Duplex Doppler ultrasonography is an efficacious method for detecting and characterizing stenosis and thrombosis in peripheral vascular accesses, and it provides information about the morphology and hemodynamics. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  8. Use of sulodexide in patients with peripheral vascular disease.

    PubMed

    Lasierra-Cirujeda, J; Coronel, P; Aza, Mj; Gimeno, M

    2010-01-01

    Sulodexide is a highly purified glycosaminoglycan containing a combination of heparan sulfate with affinity for antithrombin III and dermatan sulfate with affinity for heparin cofactor II. This antithrombotic and antithrombin activity is of great pharmacologic interest and makes sulodexide a suitable drug for the prophylaxis and treatment of arterial and venous peripheral diseases. In arterial pathology, changes in the Winsor Index, improvement in peripheral blood flow, and reduction in pain-free walking distance confirm that treatment with oral sulodexide is effective. Lipid components linked to the genesis of peripheral vascular processes, including triglycerides, total cholesterol, and low-density lipoprotein fractions, as well as plasma and blood viscosity, are reduced by the administration of sulodexide, whereas the high-density lipoprotein fraction increases. Sulodexide inhibits aggregation and adhesion of platelets at the level of the vascular wall, reduces plasma fibrinogen concentrations, reduces plasminogen activator inhibitor-1, and increases tissue plasminogen activator, as well as systemic fibrinolytic and thrombolytic activity, thereby demonstrating efficacy in the treatment of thromboembolic disease. There is no interaction between sulodexide and other drugs used as long-term treatment for peripheral vascular disease. It is well tolerated, and the adverse reactions described after oral administration are related mainly to transient gastrointestinal intolerance, ie, nausea, dyspepsia, and minor bowel symptoms. Sulodexide may become the treatment of choice when dealing with vascular diseases and their complications, as well as for the prevention of venous thromboembolic disease, being particularly indicated in elderly patients, due to its good tolerability and ease of management.

  9. Pediatric peripheral vascular injuries: a review of our experience.

    PubMed

    Shah, Sohail R; Wearden, Peter D; Gaines, Barbara A

    2009-05-01

    This study evaluated peripheral vascular injuries in a pediatric trauma population to identify injury patterns, to identify diagnostic and therapeutic modalities used, and to understand the role of pediatric surgical subspecialists. A retrospective review of children treated for trauma between 2000 and 2006 at a Level I Pediatric Trauma Center was performed. Patients with vascular injury were identified through an institutional trauma registry. There were 42 vascular injuries identified during the study period. The average age was 9.8 years, with 64% occurring in males. The mechanism of injury was almost equally distributed between penetrating (55%) and blunt (45%) trauma. Forty-eight percent of patients had an associated fracture. Seventeen diagnostic angiograms were performed. Ninety-eight percent of patients were taken to the operating room for definitive management of one or more of their trauma injuries. Sixty-seven percent underwent operative management specifically for their vascular injury. Twenty-six percent of patients were diagnosed with vasospasm, and all were conservatively managed. Of the 42 patients, 23% were managed by pediatric surgeons, 43% by extremity specialists (orthopedic or plastic surgeons), and 29% by adult vascular surgeons. Pediatric traumatic vascular injuries are associated with a higher rate of penetrating trauma than other pediatric trauma and have a relatively high rate of operative intervention. Diagnosis and treatment of pediatric vascular injuries can be made difficult by a high rate of vasospasm. Additionally, traumatic vascular injuries in the pediatric population present a unique challenge in the overlap of their management by many different surgical subspecialists.

  10. Compartmental syndromes in peripheral vascular surgery.

    PubMed

    Patman, R D

    1975-01-01

    The need to relieve muscle swelling and secondary vascular impairment of an extremity may occur following a variety of conditions. Regardless of the type of insult, massive swelling of an extremity can result in ischemic necrosis of muscle as a result of tamponade produced by restrictive circulferential fascia. When intracompartmental pressure approaches or exceeds arterial pressure, a portion or the entire extremity may be in jeopardy. Fasciotomy is one of the most important adjunctive procedures available to assure survival of an extremity with altered distal circulation resulting from massive swelling. Its importance has been stressed infrequently in the literature. The indications for its use are outlined in a variety of clinical situations. The proper techniques have few complications and much to offer with regard to limb salvage and reduction of morbidity. Fasciotomy does not preclude correction of the underlying cause for restrictive muscle tamponade when possible, nor can it be expected to reverse well established ischemia. Early and liberal use of fasciotomy is advocated when the outlined indications prevail.

  11. Percutaneous Transluminal Angioplasty in Peripheral Vascular Disease: A Review

    PubMed Central

    Louis, Eugene L. St.; Provan, John L.; Gray, Robin R.; Grosman, Harvey; Ameli, F. Michael; Elliott, David S.

    1982-01-01

    Percutaneous transluminal angioplasty is a relatively new technique employed in the treatment of stenoses or occlusions of peripheral arteries. While the longterm success rates have yet to be determined, short-term results have been excellent. The procedure has greatest value in the dilatation of localized lesions, avoiding surgery and its attendant risks. However, PTA and surgery are complementary, not competing, modes of therapy. PTA complements the traditional therapy of peripheral vascular disease, which remains reconstructive surgery. ImagesFig. 7Fig. 8Fig. 9Fig. 10Fig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:21286052

  12. Development of implantable autologous small-calibre vascular grafts from peripheral blood samples.

    PubMed

    Aper, T; Teebken, O E; Krüger, A; Heisterkamp, A; Hilfiker, A; Haverich, A

    2013-04-01

    At present the generation of a small-calibre (≤5 mm) vascular replacement for artificial bypasses remains a challenge for tissue engineering. The biocompatibility of bioartificial vessel replacements is of decisive significance for function and depends on the materials used. A completely autologous vessel substitute must exhibit high biocompatibility and functionality. For this purpose we developed and optimised a technique for the engineering of an autologous bypass material from a fibrin scaffold and vascular cells isolated from the same sample of peripheral blood in a porcine model. Fibrinogen, late outgrowth endothelial and smooth muscle cells were isolated from peripheral blood samples (n=14, 100 mL each). Fibroblasts were isolated from porcine aortic adventitial tissue (n=4). Tubular seeded fibrin segments were obtained using an injection moulding technique with the simultaneous incorporation of the in vitro expanded cells into the fibrin matrix. The segments were cultivated under dynamic conditions with pulsatile perfusion in a bioreactor. Morphological and functional characterization was done. Artificial vascular segments with a length of 150 mm were reproducibly obtained with a hierarchical arrangement of incorporated cells similar to the structure of the vascular wall. By additional seeding of fibroblasts, suturable segments with biomechanical properties suitable for implantation into the arterial system were obtained. Implantable bioartificial vascular grafts can be generated from blood. After cultivation under dynamic conditions the vascular segments possess a structure similar to that of the vascular wall and exhibit biomechanical properties sufficient for implantation as arterial substitutes. Georg Thieme Verlag KG Stuttgart · New York.

  13. Exploring Vascular Function Biomarkers: Implications for Rehabilitation

    PubMed Central

    Phillips, Shane A.; Andaku, Daniela Kuguimoto; Mendes, Renata Gonçalves; Caruso, Flávia Rossi; Cabiddu, Ramona; Jaenisch, Rodrigo Boemo; Arena, Ross; Borghi-Silva, Audrey

    2017-01-01

    The endothelium plays an important role in maintaining vascular homeostasis and regulating blood vessel function. Endothelial function is considered an independent predictor for risk of future cardiovascular events in cardiovascular and non-cardiovascular patients, as well as a predictor for postoperative complications in cardiovascular surgery patients. Brachial artery flow-mediated dilation by high-resolution ultrasound is widely used to evaluate endothelium-dependent vasodilation, which is mainly mediated by nitric oxide release. Physical exercise exerts beneficial effects on endothelial function and can be used in both primary and secondary prevention of cardiac and peripheral artery diseases, even in the postoperative period of cardiovascular surgery. PMID:28492794

  14. Prevention of cardiac complications in peripheral vascular surgery

    SciTech Connect

    Cutler, B.S.

    1986-04-01

    The prevalence of severe coronary artery disease in peripheral vascular patients exceeds 50 per cent. Complications of coronary artery disease are the most common causes of mortality following peripheral vascular operations. To reduce the incidence of cardiac complications, it is first necessary to identify patients at risk through screening tests. Screening methods in current use include risk factor analysis, exercise testing, routine coronary angiography, and dipyridamole thallium-201 scintigraphy. The risk factor approach has the advantage of being widely applicable since it makes use of historical, physical, and electrocardiographic findings that are already familiar to surgeons and anesthesiologists. It is also inexpensive. However, it may overlook the patient who has no symptoms of coronary artery disease, possibly as a result of the sedentary lifestyle imposed by complications of peripheral vascular disease. The electrocardiographically monitored stress test will identify the asymptomatic patient with occult coronary disease and is helpful in predicting operative risk. However, a meaningful test is dependent on the patient's ability to exercise--an activity that is frequently limited by claudication, amputation, or arthritis. Exercise testing also suffers from a lack of sensitivity and specificity when compared with coronary arteriography. Routine preoperative coronary angiography overcomes the exercise limitation of treadmill testing but is not widely applicable as a screening test for reasons of cost and inherent risk. Dipyridamole thallium-201 scanning, on the other hand, is safe and of relatively low cost and does not require exercise.

  15. NT-proBNP levels, atherosclerosis and vascular function in asymptomatic type 2 diabetic patients with microalbuminuria: peripheral reactive hyperaemia index but not NT-proBNP is an independent predictor of coronary atherosclerosis

    PubMed Central

    2011-01-01

    Intensive multifactorial treatment aimed at cardiovascular (CV) risk factor reduction in type 2 diabetic patients with microalbuminuria can diminish fatal and non-fatal CV. Plasma N-terminal (NT)-proBNP predicts CV mortality in diabetic patients but the utility of P-NT-proBNP in screening for atherosclerosis is unclear. We examined the interrelationship between P-NT-proBNP, presence of atherosclerosis and/or vascular dysfunction in the coronary, carotid and peripheral arteries in asymptomatic type 2 diabetic patients with microalbuminuria that received intensive multifactorial treatment. Methods and Results P-NT-proBNP was measured in 200 asymptomatic type 2 patients without known cardiac disease that received intensive multifactorial treatment for CV risk reduction. Patients were examined for coronary, carotid and peripheral atherosclerosis, as defined by coronary calcium score ≥400, carotid intima-media thickness (CIMT) > 0.90 mm, ankle-brachial index < 0.90, and/or toe-brachial index < 0.64, respectively. Carotid artery compliance was also determined and the reactive hyperaemia index (RHI) measured by peripheral artery tonometry was used as a surrogate for endothelial function. P-NT-proBNP was associated with atherosclerosis in the unadjusted analysis, but not after adjustment for conventional risk factors. P-NT-proBNP was not associated with vascular dysfunction. The prevalence of atherosclerosis in the coronary, carotid and peripheral arteries was 35%, 10% and 21% of all patients, respectively. In total 49% had atherosclerosis in one territory and 15.6% and 1.0% in two and three territories. Low RHI was an independent predictor of coronary atherosclerosis (odds ratio [CI], 2.60 [1.15-5.88] and systolic blood pressure was the only independent determinant of CIMT (0.02 mm increase in CIMT per 10 mmHg increase in systolic blood pressure [p = 0.003]). Conclusions Half of asymptomatic patients with type 2 diabetes mellitus and microalbuminuria had significant

  16. Assessment of risk of peripheral vascular disease and vascular care capacity in Ghana

    PubMed Central

    Gyedu, Adam; Stewart, Barclay T; Nakua, Emmanuel; Quansah, Robert; Donkor, Peter; Mock, Charles; Hardy, Mark A; Yangni-Angate, Koffi Herve

    2015-01-01

    Introduction This study aimed to describe national peripheral vascular disease (PVD) risk and health burden and vascular care capacity in Ghana. The gap between PVD burden and vascular care capacity in a low- and middle-income country (LMIC) is defined and capacity improvement priorities identified. Methods Data to estimate PVD risk factor burden were obtained from: i) World Health Organization’s Study on Global Ageing and Health (SAGE), Ghana; and ii) Institute of Health Metrics and Evaluation Global Burden of Disease database (IHME GBD). In addition, a novel nationwide assessment of vascular care capacity was performed, with 20 vascular care items assessed at 40 hospitals in Ghana. Factors contributing to specific item deficiency were also described. Results From the SAGE database, there were 4,305 respondents aged at least 50 years with data to estimate PVD risk. Out of these 57% were at moderate to high PVD risk with ≥3 risk factors, thus giving 1,654,557 persons when extrapolated nationally. Using IHME GBD data, the estimated disability-adjusted life years incurred from PVD increased 5-fold from 1990 to 2010 (1.3 to 3.2 per 100,000 persons, respectively). Vascular care capacity assessment demonstrated marked deficiencies in items for diagnosis, perioperative and vascular surgical care. Deficiencies were most often due to absence of equipment, lack of training and technology breakage. Conclusion Risk factor reduction and management as well as optimization of current resources are paramount to avoid the large burden of peripheral vascular disease falling on healthcare systems in low- and middle-income countries that are not well equipped to handle vascular surgical care, and for which rapid development of such capacity would be difficult and expensive. PMID:26560502

  17. Peripheral vascular disease: correlation of MR imaging and angiography

    SciTech Connect

    Wesbey, G.E.; Higgins, C.B.; Amparo, E.G.; Hale, J.D.; Kaufman, L.; Pogany, A.C.

    1985-09-01

    The capability of magnetic resonance (MR) imaging for detecting aortic, iliac, and femoral stenoses and occlusions was evaluated. Multisection spin-echo studies at 0.35 tesla were obtained of the infrarenal aorta to the femoral bifurcation in 24 patients, all of whom had undergone intraarterial angiography within 14 days of imaging. Transaxial MR images were compared with the angiograms. Arterial stenoses and occlusions in these vessels detected by MR imaging correlated with angiographic findings in 91% of the instances. Due to the limited spatial resolution, MR images failed to demonstrate some femoral stenoses. MR imaging may be used for evaluation of aortoiliac vascular disease and for follow-up study after surgical revascularization. However, the limited spatial resolution, noncomposite display of the aortoiliofemoral circulation, and lack of evaluation of peripheral runoff provided by current MR imaging techniques militate against its replacing angiography prior to vascular intervention.

  18. Novel Applications of Radionuclide Imaging in Peripheral Vascular Disease

    PubMed Central

    Stacy, Mitchel R.; Sinusas, Albert J.

    2015-01-01

    Peripheral vascular disease (PVD) is a progressive atherosclerotic disease that leads to stenosis or occlusion of blood vessels supplying the lower extremities. Current diagnostic imaging techniques commonly focus on evaluation of anatomy or blood flow at the macrovascular level and do not permit assessment of the underlying pathophysiology associated with disease progression or treatment response. Molecular imaging with radionuclide-based approaches, such as PET and SPECT, can offer novel insight into PVD by providing non-invasive assessment of biological processes such as angiogenesis and atherosclerosis. This review discusses emerging radionuclide-based imaging approaches that have potential clinical applications in the evaluation of PVD progression and treatment. PMID:26590787

  19. Novel Applications of Radionuclide Imaging in Peripheral Vascular Disease.

    PubMed

    Stacy, Mitchel R; Sinusas, Albert J

    2016-02-01

    Peripheral vascular disease (PVD) is a progressive atherosclerotic disease that leads to stenosis or occlusion of blood vessels supplying the lower extremities. Current diagnostic imaging techniques commonly focus on evaluation of anatomy or blood flow at the macrovascular level and do not permit assessment of the underlying pathophysiology associated with disease progression or treatment response. Molecular imaging with radionuclide-based approaches can offer novel insight into PVD by providing noninvasive assessment of biological processes such as angiogenesis and atherosclerosis. This article discusses emerging radionuclide-based imaging approaches that have potential clinical applications in the evaluation of PVD progression and treatment.

  20. Association between Bacterial Infection and Peripheral Vascular Disease: A Review

    PubMed Central

    Budzyński, Jacek; Wiśniewska, Joanna; Ciecierski, Marek; Kędzia, Anna

    2015-01-01

    There are an increasing number of data showing a clinically important association between bacterial infection and peripheral artery disease (PAD). Bacteria suspected of being involved in PAD pathogenesis are: periodontal bacteria, gut microbiota, Helicobacter pylori, and Chlamydia pneumoniae. Infectious agents may be involved in the pathogenesis of atherosclerosis via activation of a systemic or local host immunological response to contamination of extravascular tissues or the vascular wall, respectively. A systemic immunological reaction may damage vascular walls in the course of autoimmunological cross-reactions between anti-pathogen antibodies and host vascular antigens (immunological mimicry), pathogen burden mechanisms (nonspecific activation of inflammatory processes in the vascular wall), and neuroendocrine-immune cross-talk. Besides activating the inflammatory pathway, bacterial infection may trigger PAD progression or exacerbation by enhancement of platelet reactivity, by a stimulatory effect on von Willebrand factor binding, factor VIII, fibrinogen, P-selectin activation, disturbances in plasma lipids, increase in oxidative stress, and resistance to insulin. Local inflammatory host reaction and induction of atherosclerotic plaque progression and/or instability result mainly from atherosclerotic plaque colonization by microorganisms. Despite these premises, the role of bacterial infection in PAD pathogenesis should still be recognized as controversial, and randomized, controlled trials are required to evaluate the outcome of periodontal or gut bacteria modification (through diet, prebiotics, and probiotics) or eradication (using antibiotics) in hard and surrogate cardiovascular endpoints. PMID:26900306

  1. PERIPHERAL VASCULAR REACTIONS IN ANAPHYLAXIS OF THE MOUSE

    PubMed Central

    McMaster, Philip D.; Kruse, Heinz

    1949-01-01

    Pronounced vascular changes occurring in the ears and claws of mice during anaphylactic shock are described. Practically at once after a foreign serum (pig, horse, or rabbit) enters the blood stream of sensitized animals both the arterial and venous vessels undergo marked, local or generalized constriction in the organs mentioned. Usually spasm of the vessel walls occurs simultaneously in the arteries and veins, but it may appear first in the arteries, or occasionally in the veins. When venous spasm precedes arterial spasm, the true capillaries become distended with cells; if the reverse order holds, the ears appear bloodless. There is no active constriction or dilatation of capillaries; the capillary behavior follows passively the changes in the large vessels. Peripheral vascular spasm occurs while the carotid blood pressure is high, but a few minutes later, while this still holds true, the ear vessels begin to relax and the circulation is resumed. Shortly afterwards the blood pressure falls to levels far below normal, but the vessels remain open. If the circulation of one ear is obstructed while anaphylactic shock is produced, no vascular spasm occurs in it. Release of the obstruction during the animal's recovery results in belated constriction of the blood vessels of this ear although by now the vessels in the other ear are dilated and the general systolic blood pressure is very low. The vascular reactions in the ears appear to be uninfluenced by the blood pressure in the large vessels, and they are not a response to nervous stimuli. They are local in origin. The vascular changes are often not clearly perceptible in the gross but are plainly to be seen under a low power of the microscope. They occur in some sensitized mice exhibiting no manifest signs of shock, differing only in degree from the changes taking place when shock is severe or fatal. PMID:18129860

  2. Effects of dietary manipulation on vascular status of patients with peripheral vascular disease.

    PubMed

    Hutchinson, K; Oberle, K; Crockford, P; Grace, M; Whyte, L; Gee, M; Williams, T; Brown, G

    1983-06-24

    In a one-year, double-blind clinical trial, 45 patients with peripheral vascular disease (PVD) were randomly assigned to either the American Heart Association Hyperlipidemia Diet C (n = 20) or a low-fat, high-fiber, complex carbohydrate diet similar to the Pritikin Maintenance Diet (n = 25). Vascular status and blood lipid levels were monitored at 0, 2, 4, 6, and 12 months. Walking distance increased significantly in both groups, with no difference between groups. No vascular parameters changed significantly, suggesting that increased walking distance was due to improved metabolic capacity of the muscle. A trend toward lower blood lipid values was observed, with no significant differences within or between groups. We conclude that while patients with PVD benefit from a program of diet and exercise, there is no apparent advantage to the more difficult complex carbohydrate diet.

  3. Multiparametric assessment of vascular function in peripheral artery disease: dynamic measurement of skeletal muscle perfusion, blood-oxygen-level dependent signal, and venous oxygen saturation.

    PubMed

    Englund, Erin K; Langham, Michael C; Ratcliffe, Sarah J; Fanning, Molly J; Wehrli, Felix W; Mohler, Emile R; Floyd, Thomas F

    2015-04-01

    Endothelial dysfunction present in patients with peripheral artery disease may be better understood by measuring the temporal dynamics of blood flow and oxygen saturation during reactive hyperemia than by conventional static measurements. Perfusion, Intravascular Venous Oxygen saturation, and T2* (PIVOT), a recently developed MRI technique, was used to measure the response to an ischemia-reperfusion paradigm in 96 patients with peripheral artery disease of varying severity and 10 healthy controls. Perfusion, venous oxygen saturation SvO2, and T2* were each quantified in the calf at 2-s temporal resolution, yielding a dynamic time course for each variable. Compared with healthy controls, patients had a blunted and delayed hyperemic response. Moreover, patients with lower ankle-brachial index had (1) a more delayed reactive hyperemia response time, manifesting as an increase in time to peak perfusion in the gastrocnemius, soleus, and peroneus muscles, and in the anterior compartment, (2) an increase in the time to peak T2* measured in the soleus muscle, and (3) a prolongation of the posterior tibial vein SvO2 washout time. Intrasession and intersession repeatability were also assessed. Results indicated that time to peak perfusion and time to peak T2* were the most reliable extracted time course metrics. Perfusion, dynamic SvO2, and T2* response times after induced ischemia are highly correlated with peripheral artery disease severity. Combined imaging of peripheral microvascular blood flow and dynamics of oxygen saturation with Perfusion, intravascular SvO2, and T2* may be a useful tool to investigate the pathophysiology of peripheral artery disease. © 2015 American Heart Association, Inc.

  4. A Vascular Malformation Presenting as a Peripheral Nerve Sheath Tumor

    PubMed Central

    Parmar, Vikas; Haldeman, Clayton; Amaefuna, Steve; Hanna, Amgad S.

    2016-01-01

    We present the case of a venous malformation (VM) masquerading as a schwannoma. VMs are thin-walled vascular dilations of various sizes that typically present as soft, compressible, blue masses that are associated with pain or dysesthesia. VMs are commonly found in the head and neck as well as the distal extremities. Notably, slow-flow VMs are hypointense on T1-weighted imaging, hyperintense on T2-weighted imaging, and enhance markedly with contrast. However, VMs tend to be poorly circumscribed and fraught with venous lakes and phleboliths. Conservative therapy and sclerotherapy are the primary treatment options. In this case report, we present a VM presenting near the neurovascular bundle of the upper extremity axilla. Our case is unique in that the patient presented with symptoms and imaging qualities characteristic for a peripheral nerve schwannoma. PMID:28077959

  5. Vascular functions in humans following cardiovascular adaptations to spaceflight

    NASA Astrophysics Data System (ADS)

    Convertino, Victor A.; Cooke, William H.

    2007-02-01

    Purpose: Diminished vascular function is a primary cardiovascular risk of spaceflight identified in the 2004 NASA Bioastronautics Critical Path Roadmap based on: (1) structural and functional alterations in arterial vessels of animals undergoing hindlimb unloading and; (2) lower peripheral vascular resistance (PVR) in astronauts who became presyncopal after spaceflight. Methods: We conducted a critical review of published data obtained from spaceflight and relevant ground-based microgravity simulations in an effort to interpret the meaning of altered responses in PVR and their relationship to postflight presyncope. Results: Presyncope reported in astronauts on landing day was associated with lower peripheral resistance. However, non-presyncopal astronauts demonstrated significantly elevated vascular resistance in the upright posture after compared with before spaceflight. Results from both space and ground experiments suggest that preflight maximal vasoconstrictor capacity is inherently lower in presyncopal astronauts, but unaltered by spaceflight. Conclusions: Vasoconstrictor reserve is associated with lower blood volume adaptation to microgravity. Rather than reduced vascular function, low inherent maximal vasoconstrictor capacity and reduced vasoconstrictor reserve secondary to decreased circulating vascular volume explain lower peripheral vascular resistance in astronauts who experience presyncopal episodes on landing day.

  6. TRPV channels and vascular function

    PubMed Central

    Baylie, R.L.; Brayden, J.E.

    2010-01-01

    Transient receptor potential channels, of the vanilloid subtype (TRPV), act as sensory mediators, being activated by endogenous ligands, heat, mechanical and osmotic stress. Within the vasculature, TRPV channels are expressed in smooth muscle cells, endothelial cells, as well as in peri-vascular nerves. Their varied distribution and polymodal activation properties make them ideally suited to a role in modulating vascular function, perceiving and responding to local environmental changes. In endothelial cells, TRPV1 is activated by endocannabinoids, TRPV3 by dietary agonists, and TRPV4 by shear stress, epoxyeicosatrienoic acids (EETs), and downstream of Gq-coupled receptor activation. Upon activation, these channels contribute to vasodilation via nitric oxide (NO), prostacyclin (PGI2), and intermediate/small conductance potassium channel (IKCa/SKCa) dependent pathways. In smooth muscle, TRPV4 is activated by endothelial derived EETs, leading to large conductance potassium channel (BKCa) activation and smooth muscle hyperpolarization. Conversely, smooth muscle TRPV2 channels contribute to global calcium entry and may aid constriction. TRPV1 and TRPV4 are expressed in sensory nerves and can cause vasodilation through CGRP and substance P release as well as mediating vascular function via the baroreceptor reflex (TRPV1) or via increasing sympathetic outflow during osmotic stress (TRPV4). Thus, TRPV channels play important roles in the regulation of normal and pathological cellular function in the vasculature. PMID:21062421

  7. Multi-Parametric Assessment of Vascular Function in Peripheral Artery Disease: Dynamic Measurement of Skeletal Muscle Perfusion, BOLD Signal, and Venous Oxygen Saturation

    PubMed Central

    Englund, Erin K.; Langham, Michael C.; Ratcliffe, Sarah J.; Fanning, Molly; Wehrli, Felix W.; Mohler, Emile R.; Floyd, Thomas F.

    2015-01-01

    Background Endothelial dysfunction present in patients with peripheral artery disease (PAD) may be better understood by measuring the temporal dynamics of blood flow and oxygen saturation during reactive hyperemia than by conventional static measurements. Methods and Results Perfusion, Intravascular Venous Oxygen saturation, and T2* (PIVOT), a recently developed MRI technique, was used to measure the response to an ischemia-reperfusion paradigm in ninety-six patients with PAD of varying severity, and ten healthy controls. Perfusion, venous oxygen saturation (SvO2), and T2* were each quantified in the calf at two second temporal resolution, yielding a dynamic time course for each variable. Compared to healthy controls, patients had a blunted and delayed hyperemic response. Moreover, patients with lower ankle-brachial index had: 1) a more delayed reactive hyperemia response time, manifesting as an increase in time to peak perfusion in the gastrocnemius, soleus, and peroneus muscles, and in the anterior compartment; 2) an increase in the time to peak T2* measured in the soleus muscle; and 3) a prolongation of the posterior tibial vein SvO2 washout time. Intra- and inter-session repeatability was also assessed. Results indicated that time to peak perfusion and time to peak T2* were the most reliable extracted time course metrics. Conclusions Perfusion, dynamic SvO2, and T2* response times following induced ischemia are highly correlated with PAD disease severity. Combined imaging of peripheral microvascular blood flow and dynamics of oxygen saturation with PIVOT may be a useful tool to investigate the pathophysiology of PAD. PMID:25873722

  8. Total peripheral vascular resistance in pediatric renal transplant patients.

    PubMed

    Matteucci, Maria Chiara; Giordano, Ugo; Calzolari, Armando; Rizzoni, Gianfranco

    2002-11-01

    Abnormal cardiovascular reactivity at rest and during physical exercise may be a risk factor for left ventricular hypertrophy (LVH) in pediatric renal transplanted (Tx) patients. Data on total peripheral vascular resistance (TPR) are not available. Eleven renal Tx patients treated with cyclosporine (7 females and 4 males; mean age 14.6 +/- 3.3 years; mean time since transplantation 43 +/- 35 months) were evaluated for 24-hour blood pressure (BP), TPR and echocardiographic left ventricular mass (LVM). TPR values of patients were compared with data of a group of 11 healthy controls matched for sex and age. Twenty-four-hour ambulatory blood pressure monitoring showed that all but one patient had normal daytime BP values and six patients showed a reduced or inverse nocturnal dip. LVH was found in 72% of the patients. In comparison with healthy controls, patients showed significantly elevated TPR at rest and during exercise suggesting an increased vascular tone. The degree of LVH in these patients is severe and appears disproportionate to the BP values. The high incidence of LVH can reflect an augmented cardiovascular reactivity associated with a disturbed circadian pattern. The increase in TPR and the reduction of the nocturnal fall of BP also might contribute to the development of LVH in young renal Tx patients.

  9. Human peripheral blood eosinophils express a functional c-kit receptor for stem cell factor that stimulates very late antigen 4 (VLA-4)-mediated cell adhesion to fibronectin and vascular cell adhesion molecule 1 (VCAM-1).

    PubMed

    Yuan, Q; Austen, K F; Friend, D S; Heidtman, M; Boyce, J A

    1997-07-21

    We evaluated mature peripheral blood eosinophils for their expression of the surface tyrosine kinase, c-kit, the receptor for the stromal cell-derived cytokine, stem cell factor (SCF). Cytofluorographic analysis revealed that c-kit was expressed on the purified peripheral blood eosinophils from 8 of 8 donors (4 nonatopic and 4 atopic) (mean channel fluorescence intensity 2.0- 3. 6-fold, average 2.8 +/- 0.6-fold, greater than the negative control). The uniform and selective expression of c-kit by eosinophils was confirmed by immunohistochemical analysis of peripheral blood buffy coats. The functional integrity of c-kit was demonstrated by the capacity of 100 ng/ml (5 nM) of recombinant human (rh) SCF to increase eosinophil adhesion to 3, 10, and 30 microg/ml of immobilized FN40, a 40-kD chymotryptic fragment of plasma fibronectin, in 15 min by 7.7 +/- 1.4-, 5.3 +/- 3.3-, and 5.4 +/- 0. 2-fold, respectively, and their adhesion to 0.1, 0.5, and 1.0 microg/ml vascular cell adhesion molecule-1 (VCAM-1), by 12.7 +/- 9. 2-, 3.8 +/- 2.5-, and 1.7 +/- 0.6-fold, respectively. The SCF-stimulated adhesion occurred without concomitant changes in surface integrin expression, thereby indicating an avidity-based mechanism. rhSCF (100 ng/ml, 5 nM) was comparable to rh eotaxin (200 ng/ml, 24 nM) in stimulating adhesion. Cell adhesion to FN40 was completely inhibited with antibodies against the alpha4 and beta1 integrin subunits, revealing that the SCF/c-kit adhesion effect was mediated by a single integrin heterodimer, very late antigen 4 (VLA-4). Thus, SCF represents a newly recognized stromal ligand for the activation of eosinophils for VLA-4-mediated adhesion, which could contribute to the exit of these cells from the blood, their tissue localization, and their prominence in inflammatory lesions.

  10. Human Peripheral Blood Eosinophils Express a Functional c-kit Receptor for Stem Cell Factor that Stimulates Very Late Antigen 4 (VLA-4)–mediated Cell Adhesion to Fibronectin and Vascular Cell Adhesion Molecule 1 (VCAM-1)

    PubMed Central

    Yuan, Qian; Austen, K. Frank; Friend, Daniel S.; Heidtman, Matthew; Boyce, Joshua A.

    1997-01-01

    We evaluated mature peripheral blood eosinophils for their expression of the surface tyrosine kinase, c-kit, the receptor for the stromal cell–derived cytokine, stem cell factor (SCF). Cytofluorographic analysis revealed that c-kit was expressed on the purified peripheral blood eosinophils from 8 of 8 donors (4 nonatopic and 4 atopic) (mean channel fluorescence intensity 2.0– 3.6-fold, average 2.8 ± 0.6-fold, greater than the negative control). The uniform and selective expression of c-kit by eosinophils was confirmed by immunohistochemical analysis of peripheral blood buffy coats. The functional integrity of c-kit was demonstrated by the capacity of 100 ng/ml (5 nM) of recombinant human (rh) SCF to increase eosinophil adhesion to 3, 10, and 30 μg/ml of immobilized FN40, a 40-kD chymotryptic fragment of plasma fibronectin, in 15 min by 7.7 ± 1.4-, 5.3 ± 3.3-, and 5.4 ± 0.2-fold, respectively, and their adhesion to 0.1, 0.5, and 1.0 μg/ml vascular cell adhesion molecule-1 (VCAM-1), by 12.7 ± 9.2-, 3.8 ± 2.5-, and 1.7 ± 0.6-fold, respectively. The SCF-stimulated adhesion occurred without concomitant changes in surface integrin expression, thereby indicating an avidity-based mechanism. rhSCF (100 ng/ml, 5 nM) was comparable to rh eotaxin (200 ng/ml, 24 nM) in stimulating adhesion. Cell adhesion to FN40 was completely inhibited with antibodies against the α4 and β1 integrin subunits, revealing that the SCF/c-kit adhesion effect was mediated by a single integrin heterodimer, very late antigen 4 (VLA-4). Thus, SCF represents a newly recognized stromal ligand for the activation of eosinophils for VLA-4–mediated adhesion, which could contribute to the exit of these cells from the blood, their tissue localization, and their prominence in inflammatory lesions. PMID:9221761

  11. Diabetes mellitus is a coronary heart disease risk equivalent for peripheral vascular disease.

    PubMed

    Newman, Jonathan D; Rockman, Caron B; Kosiborod, Mikhail; Guo, Yu; Zhong, Hua; Weintraub, Howard S; Schwartzbard, Arthur Z; Adelman, Mark A; Berger, Jeffrey S

    2017-02-01

    Diabetes mellitus (diabetes) is associated with significantly increased risk of peripheral vascular disease. Diabetes is classified as a coronary heart disease (CHD) risk equivalent, but it is unknown whether diabetes is a CHD risk equivalent for peripheral vascular disease. The objective was to evaluate the odds of peripheral arterial disease (PAD) or carotid artery stenosis (CAS) among participants with diabetes, CHD, or both, compared with participants without diabetes or CHD, in a nationwide vascular screening database. We hypothesized that diabetes and CHD would confer similar odds of PAD and CAS.

  12. Vascular Function and Structure in Veteran Athletes after Myocardial Infarction.

    PubMed

    Maessen, Martijn F H; Eijsvogels, Thijs M H; Hijmans-Kersten, Bregina T P; Grotens, Ayla; Schreuder, Tim H A; Hopman, Maria T E; Thijssen, Dick H J

    2017-01-01

    Although athletes demonstrate lower cardiovascular risk and superior vascular function compared with sedentary peers, they are not exempted from cardiac events (i.e., myocardial infarction [MI]). The presence of an MI is associated with increased cardiovascular risk and impaired vascular function. We tested the hypothesis that lifelong exercise training in post-MI athletes, similar as in healthy controls, is associated with a superior peripheral vascular function and structure compared with a sedentary lifestyle in post-MI individuals. We included 18 veteran athletes (ATH) (>20 yr) and 18 sedentary controls (SED). To understand the effect of lifelong exercise training after MI, we included 20 veteran post-MI athletes (ATH + MI) and 19 sedentary post-MI controls (SED + MI). Participants underwent comprehensive assessment using vascular ultrasound (vascular stiffness, intima-media thickness, and endothelium (in)dependent mediated dilatation). Lifetime risk score was calculated for a 30-yr risk prediction of cardiovascular disease mortality of the participants. ATH demonstrated a lower vascular stiffness and smaller femoral intima-media thickness compared with SED. Vascular function and structure did not differ between ATH + MI and SED + MI. ATH (4.0% ± 5.1%) and ATH + MI (6.1% ± 3.7%) had a significantly better lifetime risk score compared with their sedentary peers (SED: 6.9% ± 3.7% and SED + MI: 9.3% ± 4.8%). ATH + MI had no secondary events versus two recurrent MI and six elective percutaneous coronary interventions within SED + MI (P < 0.05). Although veteran post-MI athletes did not have a superior peripheral vascular function and structure compared with their sedentary post-MI peers, benefits of lifelong exercise training in veteran post-MI athletes relate to a better cardiovascular risk profile and lower occurrence of secondary events.

  13. Peripheral vascular disease as remote ischemic preconditioning, for acute stroke.

    PubMed

    Connolly, Mark; Bilgin-Freiert, Arzu; Ellingson, Benjamin; Dusick, Joshua R; Liebeskind, David; Saver, Jeff; Gonzalez, Nestor R

    2013-10-01

    Remote ischemic preconditioning (RIPC) is a powerful endogenous mechanism whereby a brief period of ischemia is capable of protecting remote tissues from subsequent ischemic insult. While this phenomenon has been extensively studied in the heart and brain in animal models, little work has been done to explore the effects of RIPC in human patients with acute cerebral ischemia. This study investigates whether chronic peripheral hypoperfusion, in the form of pre-existing arterial peripheral vascular disease (PVD) that has not been surgically treated, is capable of inducing neuroprotective effects for acute ischemic stroke. Individuals with PVD who had not undergone prior surgical treatment were identified from a registry of stroke patients. A control group within the same database was identified by matching patient's demographics and risk factors. The two groups were compared in terms of outcome by NIH Stroke Scale (NIHSS), modified Rankin scale (mRS), mortality, and volume of infarcted tissue at presentation and at discharge. The matching algorithm identified 26 pairs of PVD-control patients (9 pairs were female and 17 pairs were male). Age range was 20-93 years (mean 73). The PVD group was found to have significantly lower NIHSS scores at admission (NIHSS≤4: PVD 47.1%, control 4.35%, p<0.003), significantly more favorable outcomes at discharge (mRS≤2: PVD 30.8%, control 3.84%, p<0.012), and a significantly lower mortality rate (PVD 26.9%, control 57.7%, p=0.024). Mean acute stroke volume at admission and at discharge were significantly lower for the PVD group (admission: PVD 39.6 mL, control 148.3 mL, p<0.005 and discharge: PVD 111.7 mL, control 275 mL, p<0.001). Chronic limb hypoperfusion induced by PVD can potentially produce a neuroprotective effect in acute ischemic stroke. This effect resembles the neuroprotection induced by RIPC in preclinical models. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Tourniquet use for peripheral vascular injuries in the civilian setting.

    PubMed

    Passos, Edward; Dingley, Brittany; Smith, Andrew; Engels, Paul T; Ball, Chad G; Faidi, Samir; Nathens, Avery; Tien, Homer

    2014-03-01

    Haemorrhage in peripheral vascular injuries may cause life-threatening exsanguination. Tourniquets are used extensively by the military, with increased interest in the civilian setting to prevent deaths. This is a retrospective study of trauma patients at two large Canadian trauma centres with arterial injury after isolated extremity trauma. We hypothesized that tourniquet use may decrease mortality rate and transfusion requirements if applied early. The study group was all adult patients at two Level 1 Trauma Centres in two Canadian cities in Canada, who had arterial injuries from extremity trauma. The study period was from January 2001 to December 2010. We excluded patients with significant associated injuries. The intervention in this study was prehospital tourniquet use. The main outcome was in-hospital mortality. Secondary outcomes were length of stay, compartment syndrome, amputation, and blood product transfusion. 190 patients were included in the study, and only 4 patients had a prehospital tourniquet applied. They arrived directly from the scene of injury, had improvised tourniquets by police or bystanders, and showed a trend to be more hypotensive and acidotic. Four other patients had tourniquets applied in the trauma bay within 1h of injury. There were no differences in age, sex, injury severity or physiologic presentation between patients who had an early tourniquet applied and those who died without a tourniquet. However, six patients died without a tourniquet, and all bled to death. Of the eight patients who had early tourniquets applied, none died. Tourniquets may prevent exsanguination in the civilian setting for patients suffering either blunt or penetrating trauma to the extremity. Future studies will help determine the utility of deploying tourniquets in the civilian setting, given the rarity of exsanguinating haemorrhage from isolated extremity trauma in this setting. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice.

    PubMed

    Baltgalvis, Kristen A; White, Kathy; Li, Wei; Claypool, Mark D; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K; Friera, Annabelle M; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J; Godinez, Guillermo; Shaw, Simon J; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G; Kinsella, Todd M

    2014-04-15

    Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.

  16. VEGF gene therapy for coronary artery disease and peripheral vascular disease

    SciTech Connect

    Rasmussen, Henrik Sandvad; Rasmussen, Camilla Sandvad; Macko, Jennifer

    2002-06-01

    Coronary artery disease (CAD) and peripheral arterial disease (PAD) are significant medical problems worldwide. Although substantial progress has been made in prevention as well as in the treatment, particularly of CAD, there are a large number of patients, who despite maximal medical treatment have substantial symptomatology and who are not candidates for mechanical revascularization. Therapeutic angiogenesis represents a novel, conceptually appealing treatment option. Ad{sub GV}VEGF121.10 (BIOBYPASS) is an adenovector, carrying the transgene encoding for human vascular endothelial growth factor 121 (VEGF{sub 121}). A number of preclinical studies have demonstrated angiogenic activity of BIOBYPASS, not only anatomically but also functionally. Phase I clinical studies have demonstrated that intramyocardial infection of BIOBYPASS in patients with severe CAD as well as intramuscular injections of BIOBYPASS in patients with severe peripheral vascular disease (PVD) was well tolerated; furthermore, these studies provided some intriguing indications of activity, which led to initiation of major randomized Phase II 'proof-of-concept' studies. This paper provides a review of the rationale behind BIOBYPASS as well as a summary of pertinent preclinical and early clinical data.

  17. Aerobic exercise improves measures of vascular health in diabetic peripheral neuropathy.

    PubMed

    Billinger, Sandra A; Sisante, Jason-Flor V; Alqahtani, Abdulfattah S; Pasnoor, Mamatha; Kluding, Patricia M

    2017-01-01

    Aerobic exercise improves vascular endothelial function in people with Type 2 diabetes mellitus (T2DM). There is minimal information available regarding vascular health in people with T2DM and diabetic peripheral neuropathy (DPN). Thus, the primary aim of this secondary analysis was to determine whether a 16-week aerobic exercise intervention could improve vascular health in people with T2DM and DPN. A secondary aim was to explore the relationship between changes in flow-mediated dilation (FMD) and the number of years since diagnosis of DPN. We examined whether a 16-week aerobic exercise intervention would improve vascular health in people with T2DM and DPN. We used Doppler ultrasound to assess brachial artery diameter and peak shear at baseline and post-exercise. Paired t-tests were used to determine whether the outcome measures improved from baseline to post-intervention. Pearson correlation assessed the relationship between DPN (years) and the percent change score (pre- to post-intervention) for FMD. Seventeen individuals were included in the data analysis. After the intervention, peak diameter increased (3.9 (0.5) to 4.0 (0.5) mm; p = 0.07). Time to peak shear occurred at 60.5 (24.6) seconds when compared to baseline at 68.2 (22.7) seconds; p = 0.17. We found that a longer duration (in years) of DPN demonstrated a fair, negative relationship (r = -0.41, p = 0.19) with the percent change in FMD. Aerobic exercise was beneficial for improving measures of vascular health but these were not statistically significant. The magnitude of change may be affected by the duration of DPN.

  18. Apolipoprotein (a) concentrations and susceptibility to coronary artery disease in patients with peripheral vascular disease.

    PubMed Central

    Groves, P; Rees, A; Bishop, A; Morgan, R; Ruttley, M; Lewis, N; Lane, I; Hall, R

    1993-01-01

    OBJECTIVE--To investigate the relation between apolipoprotein(a) concentrations and angiographically defined coronary artery disease in patients with atheromatous peripheral vascular disease. DESIGN--40 consecutive patients were recruited at the time of admission for peripheral vascular surgery. All underwent clinical assessment and coronary arteriography. Apolipoprotein(a) concentrations were measured by an immunoradiometric assay. SETTING--Tertiary referral centre. SUBJECTS--Patients requiring surgical intervention for large vessel peripheral vascular disease. MAIN OUTCOME MEASURES--Presence or absence and severity and distribution of angiographically defined coronary artery disease. Measurement of circulating contractions of apolipoprotein(a) and other lipid indices. RESULTS--Coronary artery disease was absent in 11 patients (group 1), mild to moderate in 12 (group 2), and severe in 17 (group 3). The distribution of peripheral vascular disease and of standard lipid indices was similar in these three groups of patients. There was a significant difference in apolipoprotein(a) concentrations between the three groups, with concentrations progressively increasing with the severity of coronary artery disease (mean (95% confidence interval): group 1, 112 U/1 (52 to 242); group 2, 214 U/1 (129 to 355); group 3, 537 U/1 (271 to 1064) (analysis of variance p < 0.005). The prevalence of coronary artery disease was increased 7.4 fold in patients with apolipoprotein(a) concentrations that were greater than the cohort median (206 U/1) (p < 0.01). CONCLUSIONS--The results show an association between apolipoprotein(a) concentrations and angiographically defined coronary artery disease in patients with large vessel peripheral vascular disease. The findings imply differences in the pathogenesis of coronary and peripheral atheroma and suggest that the measurement of apolipoprotein(a) may prove a useful additional tool in the risk factor assessment of patients undergoing peripheral

  19. Embolization of traumatic and non-traumatic peripheral vascular lesions with Onyx.

    PubMed

    Regine, Renato; Palmieri, Francesco; De Siero, Michele; Rescigno, Antonio; Sica, Vincenzo; Cantarela, Raffaele; Villari, Vincenzo

    2015-03-01

    The aim of our study is to verify the feasibility and the efficacy of Onyx as embolization agent in the treatment of traumatic and non-traumatic peripheral vascular lesions. In the period between September 2006 and March 2012, we treated with Onyx 26 patients (14 males/12 females; age range, 18-85 years old; mean age, 65 years old), 11 of which with traumatic peripheral vascular lesions and 15 with non-traumatic vascular lesions (9 neoplastic hemorrhagic lesions, 3 arteriovenous malformations (AVMs) and 3 aneurysms). Follow-up controls were performed with clinical examination and by multidetector computed tomography (MDCT) imaging 1, 6, and 12 months after the procedure. All peripheral vascular lesions were embolized with Onyx; 3 patients with aneurysms were treated with Onyx associated with endovascular coils. Four elective and 22 emergency embolization procedures were performed. In all patients, we obtained cessation of bleeding and the complete and permanent embolization of all vascular lesions. Onyx is an effective and safe embolization agent for peripheral vascular lesions.

  20. Embolization of traumatic and non-traumatic peripheral vascular lesions with Onyx

    PubMed Central

    Regine, Renato; De Siero, Michele; Rescigno, Antonio; Sica, Vincenzo; Cantarela, Raffaele; Villari, Vincenzo

    2015-01-01

    Purpose The aim of our study is to verify the feasibility and the efficacy of Onyx as embolization agent in the treatment of traumatic and non-traumatic peripheral vascular lesions. Materials and Methods In the period between September 2006 and March 2012, we treated with Onyx 26 patients (14 males/12 females; age range, 18–85 years old; mean age, 65 years old), 11 of which with traumatic peripheral vascular lesions and 15 with non-traumatic vascular lesions (9 neoplastic hemorrhagic lesions, 3 arteriovenous malformations (AVMs) and 3 aneurysms). Follow-up controls were performed with clinical examination and by multidetector computed tomography (MDCT) imaging 1, 6, and 12 months after the procedure. Results All peripheral vascular lesions were embolized with Onyx; 3 patients with aneurysms were treated with Onyx associated with endovascular coils. Four elective and 22 emergency embolization procedures were performed. In all patients, we obtained cessation of bleeding and the complete and permanent embolization of all vascular lesions. Conclusions Onyx is an effective and safe embolization agent for peripheral vascular lesions. PMID:25838923

  1. Vascular smooth muscle function: defining the diabetic vascular phenotype.

    PubMed

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2013-10-01

    In this issue of Diabetologia, a meta-analysis performed by Montero and co-authors (Diabetologia doi 10.1007/s00125-013-2974-1 ) demonstrates a significant impairment of vascular smooth muscle (VSM) function in type 2 diabetic patients. Endothelial function and VSM function between type 2 diabetic and healthy individuals were associated, especially in the microcirculation, confirming the hypothesis that unresponsiveness of VSM cells to NO may amplify the consequences of reduced NO availability. This study suggests a novel interpretation for endothelial dysfunction in diabetic patients, indicating VSM cells as key players. Causative mechanisms of VSM dysfunction, which seems to be a feature of the vascular phenotype of type 2 diabetes mellitus, are largely unexplored in humans. Future studies should also address the crucial issue of the prognostic significance of VSM dysfunction in diabetic patients, and possibly in other conditions characterised by high cardiovascular risk.

  2. Cerebral/Peripheral Vascular Reactivity and Neurocognition in Middle-Age Athletes

    PubMed Central

    Tarumi, Takashi; Gonzales, Mitzi M.; Fallow, Bennett; Nualnim, Nantinee; Lee, Jeongseok; Pyron, Martha; Tanaka, Hirofumi; Haley, Andreana P.

    2015-01-01

    Introduction Midlife vascular disease risk is associated with higher incidence of cognitive impairment in late life. Regular aerobic exercise improves vascular function, which in turn may translate into better cognitive function. The purpose of this study was to determine the associations among cardiorespiratory fitness, cerebral and peripheral vascular reactivity, and cognitive function in the sedentary and endurance-trained middle-aged adults. Methods Thirty-two endurance-trained and 27 healthy sedentary participants aged 43–65 years underwent measurements of maximal oxygen uptake (VO2max), neurocognitive assessment, cerebrovascular reactivity to CO2 (CVR), and brachial artery flow-mediated dilation (FMD). Results There were no group differences in age, sex, education level, fasting blood glucose, and blood pressure. Compared with sedentary subjects, endurance-trained athletes demonstrated better cognitive performance on memory (z-score: −0.36±1.11 vs. 0.30±0.76, P<0.01), attention-executive function (z-score: −0.21±0.53 vs. 0.18±0.72, P=0.02), and total cognitive composite scores (z-score: −0.27±0.63 vs. 0.23±0.57, P<0.01). Furthermore, brachial FMD (4.70±2.50 % vs. 7.13±3.09 %, P<0.01) and CVR (4.19±0.71 %/mmHg vs. 4.69±1.06 %/mmHg, P=0.052) were greater in endurance-trained individuals than in the sedentary subjects. Total cognitive composite scores showed a significant positive association with brachial FMD (r = 0.36, P < 0.01) and CVR (r = 0.30, P = 0.03). Finally, when brachial FMD and CVR were entered as covariates, fitness-related group differences in total cognitive composite score were significantly attenuated (all P>0.05). Conclusion Endurance-trained middle-aged adults demonstrated better cognitive performance which may, at least in part, be mediated by their enhanced vascular function, including cerebral and endothelial-dependent vascular reactivity. PMID:26083772

  3. Exercise testing and training in patients with peripheral vascular disease and lower extremity amputation.

    PubMed

    Priebe, M; Davidoff, G; Lampman, R M

    1991-05-01

    Patients with peripheral vascular disease have a high risk of coronary artery disease. The risk is even greater when the peripheral vascular disease leads to lower extremity amputation. Exercise testing using lower extremity exercise has been the "gold standard" for screening for coronary artery disease, but many patients with peripheral vascular disease and those with amputations have difficulty doing this type of exercise. Arm exercise ergometry has been shown to be a safe and effective alternative for the detection of coronary artery disease in patients who cannot do leg exercise. This test has also been used to determine safe exercise levels and may be able to predict the ultimate level of prosthetic use in amputees. Exercise training with arm ergometry also improves cardiovascular efficiency and upper body strength in poorly conditioned patients. Studies are needed to appreciate fully the role of exercise testing and training in the recovery of these patients after amputation.

  4. Pyridostigmine prevents peripheral vascular endothelial dysfunction in rats with myocardial infarction.

    PubMed

    Qin, Fangfang; Lu, Yi; He, Xi; Zhao, Ming; Bi, Xueyuan; Yu, Xiaojiang; Liu, Jinjun; Zang, Weijin

    2014-03-01

    1. Myocardial infarction (MI) is characterized by the withdrawal of vagal activity and increased sympathetic activity. We have shown previously that pyridostigmine (PYR), an acetylcholinesterase inhibitor, was able to improve vagal activity and ameliorate cardiac dysfunction following MI. However, the effect of PYR on endothelial dysfunction in peripheral arteries after MI remains unclear. 2. In the present study, MI was induced by coronary artery ligation in adult Sprague-Dawley rats. Rats were treated intragastrically with saline or PYR (approximately 31 mg/kg per day) for 2 weeks, at which time haemodynamic and parasympathetic parameters and the vascular reactivity of isolated mesenteric arteries were measured and the ultrastructure of the endothelium evaluated. 3. Compared with the MI group, PYR not only improved cardiac function, vagal nerve activity and endothelial impairment, but also reduced intravascular superoxide anion and malondialdehyde. In addition, in the PYR-treated MI group, nitric oxide (NO) bioavailability was increased and attenuated endothelium-dependent relaxations were improved, whereas restored vasodilator responses were inhibited by N(G)-nitro-L-arginine methyl ester. 4. Based on our results, PYR is able to attenuate the impairment of peripheral endothelial function and maintain endothelial ultrastructural integrity in MI rats by inhibiting reactive oxygen species production, enhancing NO bioavailability and improving vagal activity. © 2014 Wiley Publishing Asia Pty Ltd.

  5. Peripheral Arteries May Be Reliable Indicators of Coronary Vascular Disease.

    PubMed

    Hoehmann, Christopher L; Futterman, Bennett; Beatty, Brian Lee

    2017-07-01

    Atherosclerosis is a stronger predictor for ischemic cardiovascular events than traditional risk factors such as race, age, sex, history, and metabolic profile. Previous research had primarily used ultrasound; however, we performed a study using histopathology to more accurately grade atherosclerosis development using the American Heart Association's grading scale. We cross-sectioned 13 different arteries from 48 cadavers and placed them into three separate groups based on anatomic location: central arteries, peripheral arteries, and carotid arteries. The central artery group included arteries that are non-palpable and commonly lead to ischemic diseases when occluded. The peripheral artery group included arteries that are accessible to palpation. The carotid artery group included branches of the carotid artery. We investigated whether a centrally located atherosclerotic vessel was associated with atherosclerosis of a specific peripheral artery. We hypothesized a correlation between carotid, peripheral and central arteries that may point to specific arteries that are more effective to analyze clinically when assessing cardiovascular risk. We observed a correlation between pathology in the left coronary artery and bifurcation of the carotid artery (r = 0.37 P ≤ 0.016), two arteries known to be implicated in ischemic stroke and ischemic heart disease. Importantly, our study demonstrates that the radial artery, a peripheral vessel, exhibited a positive correlation between both the pathologic left coronary (r = 0.33 P ≤ 0.041) and bifurcation of the carotid arteries (r = 0.34 P ≤ 0.025). Therefore, we propose investigating the radial artery as a clinically accessible location to monitor with ultrasound when assessing a patient's risk for ischemic cardiovascular disease. Anat Rec, 300:1230-1239, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Arterial cutdown reduces complications after brachial access for peripheral vascular intervention.

    PubMed

    Kret, Marcus R; Dalman, Ronald L; Kalish, Jeffrey; Mell, Matthew

    2016-07-01

    Factors influencing risk for brachial access site complications after peripheral vascular intervention are poorly understood. We queried the Society for Vascular Surgery Vascular Quality Initiative to identify unique demographic and technical risks for such complications. The Vascular Quality Initiative peripheral vascular intervention data files from years 2010 to 2014 were analyzed to compare puncture site complication rates and associations encountered with either brachial or femoral arterial access for peripheral vascular intervention. Procedures requiring multiple access sites were excluded. Complications were defined as wound hematoma or access vessel stenosis/occlusion. Univariate and hierarchical logistic regression was used to identify independent factors associated with site complications after brachial access. Of 44,634 eligible peripheral vascular intervention procedures, 732 (1.6%) were performed through brachial access. Brachial access was associated with an increased complication rate compared with femoral access (9.0% vs 3.3%; P < .001), including more hematomas (7.2% vs 3.0%; P < .001) and access site stenosis/occlusion (2.1% vs 0.4%; P < .001). On univariate analysis, factors associated with brachial access complications included age, female gender, and sheath size. Complications occurred less frequently after arterial cutdown (4.1%) compared with either ultrasound-guided (11.8%) or fluoroscopically guided percutaneous access (7.3%; P = .07 across all variables). Neither surgeons' overall peripheral vascular intervention experience nor prior experience with brachial access predicted likelihood of adverse events. By multivariate analysis, male gender (odds ratio [OR], 0.48; 95% confidence interval [CI], 0.28-0.84; P < .01) and arterial cutdown (OR, 0.25; 95% CI, 0.07-0.87; P = .04) were associated with significantly decreased risk for access complications. Larger sheath sizes (>5F) were associated with increased risk of complications (OR

  7. The peripheral vascular effects of diltiazem--dose-response characteristics.

    PubMed Central

    Finch, M B; Johnston, G D

    1985-01-01

    The acute effects of increasing doses of diltiazem on peripheral blood flow were observed in six subjects. Each subject received, in random order, a single oral dose of placebo or diltiazem 60, 120 or 180 mg. Supine heart rate, blood pressure, skin temperature, digital systolic pressure, forearm and digital blood flow were recorded before and at 1, 2, 3, 4 and 6 h post-dosing. Plasma diltiazem concentrations were measured at each time interval and at 12 and 24 h after the 120 mg dose. At doses of 120 and 180 mg, diltiazem significantly increased digital blood flow at 1, 2, 3, 4 and 6 h post-dosing and forearm blood flow at 2 and 3 h following 180 mg and 3 h following 120 mg. No correlation was observed between plasma diltiazem concentration and changes in peripheral blood flow. PMID:4074614

  8. Antioxidant Treatment Alters Peripheral Vascular Dysfunction Induced by Postnatal Glucocorticoid Therapy in Rats

    PubMed Central

    Herrera, Emilio A.; Verkerk, Misha M.; Derks, Jan B.; Giussani, Dino A.

    2010-01-01

    Background Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects. Methodology/Principal Findings Male rat pups received a course of dexamethasone (Dex), or Dex with vitamins C and E (DexCE), on postnatal days 1–6 (P1–6). Controls received vehicle (Ctrl) or vehicle with vitamins (CtrlCE). At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05). Constrictor responses to phenylephrine (PE) and thromboxane were enhanced in Dex relative to Ctrl (84.7±4.8 versus 67.5±5.7 and 132.7±4.9 versus 107.0±4.9% Kmax, respectively; P<0.05); effects that were diminished in DexCE (58.3±7.5 and 121.1±4.3% Kmax, respectively; P<0.05). Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3±11.9 versus 216.9±18.9, AUC; P<0.05); however, this effect was not restored in DexCE (68.3±8.3, AUC). Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4±3.7% Kmax) and the endothelium-dependent dilatation (74.7±8.7 AUC; P<0.05). Conclusions/Significance Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function. PMID:20174656

  9. Blood flow restricted exercise and vascular function.

    PubMed

    Horiuchi, Masahiro; Okita, Koichi

    2012-01-01

    It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR) leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  10. Diabetes mellitus and peripheral vascular disease: diagnosis and management.

    PubMed

    Chin, Jason A; Sumpio, Bauer E

    2014-01-01

    Diabetes mellitus and peripheral artery disease are prevalent diseases throughout the world and often present simultaneously in the same patient, which has direct implications for their diagnosis and management. Refinements of existing and development of new diagnostic and treatment modalities are changing the management of these diseases. This article reviews the significant pathologic basis, history, and physical examination findings with respect to each disease and their presentation together. Advantages and disadvantages of different diagnostic modalities, including noninvasive studies and imaging technologies, are discussed. General medical management principles and indications, techniques, and efficacy of surgical and endovascular interventions are reviewed. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. [Long-term evaluation of spinal cord electric stimulation in peripheral vascular disease].

    PubMed

    Duato Jané, A; Lorente Navarro, C; Azcona Elizalde, J M; Revilla Martín, J M; Marsal Machín, T; Buisán Bardají, J M

    1993-01-01

    We reported an study about the Electric Medullar Stimulation on Peripheral Vascular Pathology, in cases of critical Ischaemia of lower limbs. Short-time and longtime results are exposed. Arteriopathies included into the study were: arteriosclerosis, "mixed arteriopathy and TAO". Examination was made by Doppler-Ultrasonography.

  12. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan

    PubMed Central

    Chen, San-Ni; Hwang, Jiunn-Feng; Wu, Wen-Chuan

    2016-01-01

    This is an observational study of fluorescein angiography (FA) in consecutive patients with rhegmatogenous retinal detachment (RRD) in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL), and refraction status (RF) recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8%) in group 1, 3 eyes (4.1%) in group 2, 40 eyes (54.8%) in group 3 and 17 eyes (23.3%) in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion. PMID:26909812

  13. Determination of cardiac risk by dipyridamole-thallium imaging before peripheral vascular surgery

    SciTech Connect

    Boucher, C.A.; Brewster, D.C.; Darling, R.C.; Okada, R.D.; Strauss, H.W.; Pohost, G.M.

    1985-02-14

    To evaluate the severity of coronary artery disease in patients with severe peripheral vascular disease requiring surgery, preoperative dipyridamole-thallium imaging was performed in 54 stable patients with suspected coronary artery disease. Of the 54 patients, 48 had peripheral vascular surgery as scheduled without coronary angiography, of whom 8 (17 per cent) had postoperative cardiac ischemic events. The occurrence of these eight cardiac events could not have been predicted preoperatively by any clinical factors but did correlate with the presence of thallium redistribution. Eight of 16 patients with thallium redistribution had cardiac events, whereas there were no such events in 32 patients whose thallium scan either was normal or showed only persistent defects (P less than 0.0001). Six other patients also had thallium redistribution but underwent coronary angiography before vascular surgery. All had severe multivessel coronary artery disease, and four underwent coronary bypass surgery followed by uncomplicated peripheral vascular surgery. These data suggest that patients without thallium redistribution are at a low risk for postoperative ischemic events and may proceed to have vascular surgery. Patients with redistribution have a high incidence of postoperative ischemic events and should be considered for preoperative coronary angiography and myocardial revascularization in an effort to avoid postoperative myocardial ischemia and to improve survival. Dipyridamole-thallium imaging is superior to clinical assessment and is safer and less expensive than coronary angiography for the determination of cardiac risk.

  14. Haemoglobin and vascular function in the human retinal vascular bed.

    PubMed

    Ritt, Martin; Harazny, Joanna M; Schmidt, Stephanie; Raff, Ulrike; Ott, Christian; Michelson, Georg; Schmieder, Roland E

    2013-04-01

    Haemoglobin is a potential nitric oxide (NO) scavenger. Haemoglobin is associated with blood viscosity and the red blood cell free layer width of microvessels that impact on shear stress in the microcirculation. We hypothesized that haemoglobin modulates retinal vascular function. In 139 nondiabetic male patients with haemoglobin levels within the normal range, the vasodilatatory response of retinal capillary blood flow (RCF) to flicker light exposure and the vasoconstrictor response of RCF to infusion of NO synthase inhibitor N-monomethyl-L-arginine (L-NMMA) were assessed. The latter, because of the selective nature of L-NMMA, reflects a parameter of basal NO activity of retinal vasculature. Examinations of retinal parameters were performed noninvasively and in vivo using scanning laser Doppler flowmetry. Patients with haemoglobin greater or equal the median revealed reduced increase of RCF to flicker light exposure (2.83 ± 12 vs. 9.52 ± 14 (%), P adjusted = 0.002), and greater decrease of RCF to L-NMMA infusion (-7.35 ± 13 vs. -0.92 ± 14 (%), P adjusted = 0.008), compared with patients with haemoglobin below the median. Haemoglobin was negatively related to the percentage change of RCF to flicker light exposure (r = -0.249, P = 0.004) and to L-NMMA infusion (r = -0.201, P = 0.018). In multiple linear regression analysis haemoglobin was an independent determinant of the percentage change of RCF to flicker light exposure (model 1: ß = -0.278, P = 0.003 and model 2: ß = -0.283, P = 0.002) and to L-NMMA infusion (model 1: ß = -0.256, P = 0.005 and model 2: ß = -0.269, P = 0.004). Haemoglobin emerged as an independent determinant of vascular function in the human retinal vascular bed.

  15. Vascular imaging: the evolving role of the multidisciplinary team meeting in peripheral vascular disease.

    PubMed

    Christie, Andrew; Roditi, Giles

    2014-12-01

    This article reviews the importance of preinterventional cross-sectional imaging in the evaluation of peripheral arterial disease, as well as discussing the pros and cons of each imaging modality. The importance of a multidisciplinary team approach is emphasized.

  16. [Vascular rehabilitation in patients with peripheral arterial disease].

    PubMed

    de Holanda, Ana; Aubourg, Marion; Dubus-Bausière, Valérie; Eveno, Dominique; Abraham, Pierre

    2013-06-01

    Lower limb peripheral arterial disease (PAD) is a frequent debilitating disease associated with a high morbidity and mortality rate. The benefit of rehabilitation in PAD patients has been largely demonstrated, both for patients that undergo amputation, and for patients with claudication. In these latter patients, rehabilitation programs rely on a variety of additional techniques or tools, among which: stretching, specific muscle proprioception, walking and a variety of other physical activities, exercise or situations adapted to community life, lower limb and respiratory physiotherapy, patient's education, support for smoking cessation and healthy nutrition, social support, etc. Whether rehabilitation is performed in specialised integrated structures or performed on a home-based basis, various clinicians are involved. Despite evidence-based proof of efficacy, rehabilitation of PAD patients with claudication is still under-used. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. The relationship between the area of peripherally-derived pressure volume loops and systemic vascular resistance.

    PubMed

    Colquhoun, Douglas; Dunn, Lauren K; McMurry, Timothy; Thiele, Robert H

    2013-12-01

    Arterial and photoplethysmographic (PPG) waveforms have been utilized to non-invasively estimate stroke volume from the pulse contour. The ability of these pulse contour devices to accurately predict stroke volume is degraded when afterload changes significantly. There is a need for a non-invasive device capable of identifying when vascular tone has changed. Shelley et al. previously described a qualitative relationship between peripheral pressure volume (PV) loops (in which pressure waveforms from an intra-arterial catheter are combined with volume waveforms from the PPG waveform) and changes in vascular tone. The purpose of this study was to quantitatively compare changes in the area of peripheral PV loops with changes in systemic vascular resistance (SVR) in a patient population undergoing major surgery. Physiologic data from ten patients undergoing liver transplantation was extracted from a hemodynamic database. A peak detection algorithm was applied to both the arterial and PPG waveforms, which were manually aligned so that the troughs occurred at identical time points. PV loop area (PVA) for each heartbeat was calculated and median PVA was recorded for each minute. PVA for each patient was indexed to the average value for the first 5 min (because PPG amplitude has no standard and is not comparable between patients) and compared to indexed SVR at all points for which SVR was available. SVR and PVA were plotted as a function of time and outliers (3.1 %) removed. The Pearson correlation coefficient describing the relationship between PVAi and SVRi was 0.67 (1,728 min of data, p = 0.0020, sign test over 10 patients) and between MAP and SVR was 0.71. There was no meaningful correlation between ΔSVR and either ΔPVA or ΔMAP (based on minute-to-minute changes). Indexed values of PVA are correlated with indexed values of SVR and may serve as a useful monitor for changes in afterload but in their present form do not offer added value above the measurement of

  18. Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation.

    PubMed

    Frisbee, Jefferson C; Butcher, Joshua T; Frisbee, Stephanie J; Olfert, I Mark; Chantler, Paul D; Tabone, Lawrence E; d'Audiffret, Alexandre C; Shrader, Carl D; Goodwill, Adam G; Stapleton, Phoebe A; Brooks, Steven D; Brock, Robert W; Lombard, Julian H

    2016-02-15

    To determine the impact of progressive elevations in peripheral vascular disease (PVD) risk on microvascular function, we utilized eight rat models spanning "healthy" to "high PVD risk" and used a multiscale approach to interrogate microvascular function and outcomes: healthy: Sprague-Dawley rats (SDR) and lean Zucker rats (LZR); mild risk: SDR on high-salt diet (HSD) and SDR on high-fructose diet (HFD); moderate risk: reduced renal mass-hypertensive rats (RRM) and spontaneously hypertensive rats (SHR); high risk: obese Zucker rats (OZR) and Dahl salt-sensitive rats (DSS). Vascular reactivity and biochemical analyses demonstrated that even mild elevations in PVD risk severely attenuated nitric oxide (NO) bioavailability and caused progressive shifts in arachidonic acid metabolism, increasing thromboxane A2 levels. With the introduction of hypertension, arteriolar myogenic activation and adrenergic constriction were increased. However, while functional hyperemia and fatigue resistance of in situ skeletal muscle were not impacted with mild or moderate PVD risk, blood oxygen handling suggested an increasingly heterogeneous perfusion within resting and contracting skeletal muscle. Analysis of in situ networks demonstrated an increasingly stable and heterogeneous distribution of perfusion at arteriolar bifurcations with elevated PVD risk, a phenomenon that was manifested first in the distal microcirculation and evolved proximally with increasing risk. The increased perfusion distribution heterogeneity and loss of flexibility throughout the microvascular network, the result of the combined effects on NO bioavailability, arachidonic acid metabolism, myogenic activation, and adrenergic constriction, may represent the most accurate predictor of the skeletal muscle microvasculopathy and poor health outcomes associated with chronic elevations in PVD risk.

  19. Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation

    PubMed Central

    Butcher, Joshua T.; Frisbee, Stephanie J.; Olfert, I. Mark; Chantler, Paul D.; Tabone, Lawrence E.; d'Audiffret, Alexandre C.; Shrader, Carl D.; Goodwill, Adam G.; Stapleton, Phoebe A.; Brooks, Steven D.; Brock, Robert W.; Lombard, Julian H.

    2015-01-01

    To determine the impact of progressive elevations in peripheral vascular disease (PVD) risk on microvascular function, we utilized eight rat models spanning “healthy” to “high PVD risk” and used a multiscale approach to interrogate microvascular function and outcomes: healthy: Sprague-Dawley rats (SDR) and lean Zucker rats (LZR); mild risk: SDR on high-salt diet (HSD) and SDR on high-fructose diet (HFD); moderate risk: reduced renal mass-hypertensive rats (RRM) and spontaneously hypertensive rats (SHR); high risk: obese Zucker rats (OZR) and Dahl salt-sensitive rats (DSS). Vascular reactivity and biochemical analyses demonstrated that even mild elevations in PVD risk severely attenuated nitric oxide (NO) bioavailability and caused progressive shifts in arachidonic acid metabolism, increasing thromboxane A2 levels. With the introduction of hypertension, arteriolar myogenic activation and adrenergic constriction were increased. However, while functional hyperemia and fatigue resistance of in situ skeletal muscle were not impacted with mild or moderate PVD risk, blood oxygen handling suggested an increasingly heterogeneous perfusion within resting and contracting skeletal muscle. Analysis of in situ networks demonstrated an increasingly stable and heterogeneous distribution of perfusion at arteriolar bifurcations with elevated PVD risk, a phenomenon that was manifested first in the distal microcirculation and evolved proximally with increasing risk. The increased perfusion distribution heterogeneity and loss of flexibility throughout the microvascular network, the result of the combined effects on NO bioavailability, arachidonic acid metabolism, myogenic activation, and adrenergic constriction, may represent the most accurate predictor of the skeletal muscle microvasculopathy and poor health outcomes associated with chronic elevations in PVD risk. PMID:26702145

  20. Vascular smooth muscle phenotypic diversity and function

    PubMed Central

    2010-01-01

    The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts. PMID:20736412

  1. Circulating Angiogenic Cell Populations, Vascular Function, and Arterial Stiffness

    PubMed Central

    Cheng, Susan; Wang, Na; Larson, Martin G.; Palmisano, Joseph N.; Mitchell, Gary F.; Benjamin, Emelia J.; Vasan, Ramachandran S; Levy, Daniel; McCabe, Elizabeth L.; Vita, Joseph A.; Wang, Thomas J.; Shaw, Stanley Y.; Cohen, Kenneth S.; Hamburg, Naomi M.

    2011-01-01

    Objective Several bone marrow-derived cell populations have been identified that may possess angiogenic activity and contribute to vascular homeostasis in experimental studies. We examined the extent to which lower quantities of these circulating angiogenic cell phenotypes may be related to impaired vascular function and greater arterial stiffness. Methods We studied 1,948 Framingham Heart Study participants (mean age, 66±9 years; 54% women) who were phenotyped for circulating angiogenic cells: CD34+, CD34+/KDR+, and early outgrowth colony forming units (CFU). Participants underwent non-invasive assessments of vascular function including peripheral arterial tone (PAT), arterial tonometry, and brachial reactivity testing. Results In unadjusted analyses, higher CD34+ and CD34+/KDR+ concentrations were modestly associated with lower PAT ratio (β=−0.052±0.011, P<0.001 and β=−0.030±0.011, P=0.008, respectively) and with higher carotid-brachial pulse wave velocity (β=0.144±0.043, P=0.001 and β=0.112±0.043, P=0.009), but not with flow-mediated dilation; higher CD34+ was also associated with lower carotid-femoral pulse wave velocity (β=−0.229±0.094, P=0.015) However, only the association of lower CD34+ concentration with higher PAT ratio persisted in multivariable analyses that adjusted for standard cardiovascular risk factors. In all analyses, CFU was not associated with measures of vascular function or arterial stiffness. Conclusions In our large, community-based sample of men and women, circulating angiogenic cell phenotypes largely were not associated with measures of vascular function or arterial stiffness in analyses adjusting for traditional risk factors. PMID:22093724

  2. [Factors related to the appearance of peripheral vascular complications after taneous cardiovascular interventions].

    PubMed

    Navarro, F; Iníguez, A; Córdoba, M; García, S; Gómez, A; Serrano, C; de la Paz, J; Serrano, J M; Almeida, P

    1997-07-01

    Percutaneous diagnostic and therapeutic cardiac catheterization procedures carries some risks, most of them related to the appearance of peripheral vascular complications. These complications imply additional treatments for the patient including vascular surgery, longer hospital stays and increased costs. Some clinical and procedural variables have been pointed out as independent predictors of appearance of vascular complications. Nevertheless, no information have been reported concerning to the influence of the experience of the cardiologist who performs the procedure or provides the local hemostasia and the rate of vascular complications. To characterise the type and incidence of peripheral vascular complications in patients undergoing a percutaneous cardiac procedure, to identify the predictors and to determine the influence of the professional experience and the complexity of the technique in the complications rate. Within 1-year (1994 to 1995) period, 1,008 consecutive patients undergoing a percutaneous cardiovascular procedure (750 diagnostic and 258 therapeutic) were prospectively included. Seventy percent were male. Mean age was 63 +/- 2 years. A total of 55 vascular complications were demonstrated (5.6%): 36 (3.6%) hematomas, 14 (1.4%) pseudoaneurysms, 2 (0.2%) arteriovenous fistula, 2 (0.2%) episodes of limb ischemia and 1 (0.1%) retroperitoneal hematoma. Only 28 (2.8%) were severe complications. By multivariate analysis, only experience to perform hemostasis (OR: 3.36; 95% CI: 1.37-8.22), previous treatment with aspirin (OR: 2.69; 95% IC: 1.31-5.52), left femoral artery puncture (OR: 2.53; 95% IC: 1-1.02), sheath removal later than 60 minutes (OR: 1.02; 95% IC: 1.01-1.04) and hemostasis which lasted > 30 minutes (OR: 1.01; 95% IC: 1-1.02), were independent predictors of vascular complications. Vascular complications rate after percutaneous cardiovascular procedures was low. Most of them associated to procedural variables and potentially avoidable, with

  3. Vascular Imaging: The Evolving Role of the Multidisciplinary Team Meeting in Peripheral Vascular Disease

    PubMed Central

    Christie, Andrew; Roditi, Giles

    2014-01-01

    This article reviews the importance of preinterventional cross-sectional imaging in the evaluation of peripheral arterial disease, as well as discussing the pros and cons of each imaging modality. The importance of a multidisciplinary team approach is emphasized. PMID:25435657

  4. Improved centerline tree detection of diseased peripheral arteries with a cascading algorithm for vascular segmentation.

    PubMed

    Lidayová, Kristína; Frimmel, Hans; Bengtsson, Ewert; Smedby, Örjan

    2017-04-01

    Vascular segmentation plays an important role in the assessment of peripheral arterial disease. The segmentation is very challenging especially for arteries with severe stenosis or complete occlusion. We present a cascading algorithm for vascular centerline tree detection specializing in detecting centerlines in diseased peripheral arteries. It takes a three-dimensional computed tomography angiography (CTA) volume and returns a vascular centerline tree, which can be used for accelerating and facilitating the vascular segmentation. The algorithm consists of four levels, two of which detect healthy arteries of varying sizes and two that specialize in different types of vascular pathology: severe calcification and occlusion. We perform four main steps at each level: appropriate parameters for each level are selected automatically, a set of centrally located voxels is detected, these voxels are connected together based on the connection criteria, and the resulting centerline tree is corrected from spurious branches. The proposed method was tested on 25 CTA scans of the lower limbs, achieving an average overlap rate of 89% and an average detection rate of 82%. The average execution time using four CPU cores was 70 s, and the technique was successful also in detecting very distal artery branches, e.g., in the foot.

  5. Peripheral arteriovenous fistula as vascular access for long-term chemotherapy.

    PubMed

    Kovalyov, Oleksiy O; Kostyuk, Oleksandr G; Tkachuk, Tetyana V

    To provide long-term vascular access in clinical oncology peripheral forearm veins (up to 95% of patients in Ukraine), central venous access and "complete implanted vascular systems" are used most often. Many oncology patients have contraindications to catheterization of superior vena cava. Besides, exploitation of central veins is associated with potential technical and infectious complications. The aim - to study short-term and long-term results of arteriovenous fistula exploitation as vascular access for continuous anticancer therapy. Peripheral venous bed status in 41 oncology patients taking long-term chemotherapy treatment is analyzed in the article. Doppler sonography, morphologic and immune histochemical analyses were used in the study. Doppler sonography found qualitative and quantitative changes in forearm veins at different time periods after initiation of chemotherapy in the majority of patients. The major morphologic manifestations of venous wall damage were chemical phlebitis, local or extended hardening of venous wall, venous thrombosis and extravasations with necrosis and subsequent paravasal tissue sclerosis. Alternative vascular access created in 12 patients completely met the adequacy criteria (safety, multiple use, longevity, realization of the designed therapy program). The conclusion was made about inapplicability of forearm veins for long-term administration of cytostatic agents. If it is impossible to use central veins, arteriovenous fistula can become an alternative vascular access.

  6. Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome.

    PubMed

    Frisbee, Jefferson C; Goodwill, Adam G; Frisbee, Stephanie J; Butcher, Joshua T; Wu, Fan; Chantler, Paul D

    2016-04-15

    A major challenge facing public health is the increased incidence and prevalence of the metabolic syndrome, a clinical condition characterized by excess adiposity, impaired glycaemic control, dyslipidaemia and moderate hypertension. The greatest concern for this syndrome is the profound increase in risk for development of peripheral vascular disease (PVD) in afflicted persons. However, ongoing studies suggest that reductions in bulk blood flow to skeletal muscle may not be the primary contributor to the premature muscle fatigue that is a hallmark of PVD. Compelling evidence has been provided suggesting that an increasingly spatially heterogeneous and temporally stable distribution of blood flow at successive arteriolar bifurcations in metabolic syndrome creates an environment where a large number of the pre-capillary arterioles have low perfusion, low haematocrit, and are increasingly confined to this state, with limited ability to adapt perfusion in response to a challenged environment. Single pharmacological interventions are unable to significantly restore function owing to a divergence in their spatial effectiveness, although combined therapeutic approaches to correct adrenergic dysfunction, elevated oxidant stress and increased thromboxane A2 improve perfusion-based outcomes. Integrated, multi-target therapeutic interventions designed to restore healthy network function and flexibility may provide for superior outcomes in subjects with metabolic syndrome-associated PVD.

  7. Optical coherence tomography and hyperspectral imaging of vascular recovery in a model of peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Poole, Kristin M.; Sit, Wesley W.; Tucker-Schwartz, Jason M.; Duvall, Craig L.; Skala, Melissa C.

    2013-03-01

    Peripheral arterial disease (PAD) leads to an increased risk of myocardial infarction and stroke, increased mortality, and reduced quality of life. The mouse hind limb ischemia (HLI) model is the most commonly used system for studying the mechanisms of collateral vessel formation and for testing new PAD therapies, but there is a lack of techniques for acquiring physiologically-relevant, quantitative data intravitally in this model. In this work, non-invasive, quantitative optical imaging techniques were applied to the mouse HLI model over a time course. Optical coherence tomography (OCT) imaged changes in blood flow (Doppler OCT) and microvessel morphology (speckle variance OCT) through the skin of haired mice with high resolution. Hyperspectral imaging was also used to quantify blood oxygenation. In ischemic limbs, blood oxygenation in the footpad was substantially reduced after induction of ischemia followed by complete recovery by three weeks, consistent with standard measures. Three dimensional images of the vasculature distal to vessel occlusion acquired with speckle variance OCT revealed changes in OCT flow signal and vessel morphology. Taken together, OCT and hyperspectral imaging enable intravital acquisition of both functional and morphological data which fill critical gaps in understanding structure-function relationships that contribute to recovery in the mouse HLI model. Therefore, these optical imaging methods hold promise as tools for studying the mechanisms of vascular recovery and evaluating novel therapeutic treatments in preclinical studies.

  8. Stem cell function during plant vascular development.

    PubMed

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-23

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation.

  9. Stem cell function during plant vascular development

    PubMed Central

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-01

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537

  10. Sympathetic regulation of vascular function in health and disease

    PubMed Central

    Bruno, Rosa M.; Ghiadoni, Lorenzo; Seravalle, Gino; Dell'Oro, Raffaella; Taddei, Stefano; Grassi, Guido

    2012-01-01

    The sympathetic nervous system (SNS) is known to play a pivotal role in short- and long-term regulation of different functions of the cardiovascular system. In the past decades increasing evidence demonstrated that sympathetic neural control is involved not only in the vasomotor control of small resistance arteries but also in modulation of large artery function. Sympathetic activity and vascular function, both of which are key factors in the development and prognosis of cardiovascular events and disease, are linked at several levels. Evidence from experimental studies indicates that the SNS is critically influenced, at the central and also at the peripheral level, by the most relevant factors regulating vascular function, such as nitric oxide (NO), reactive oxygen species (ROS), endothelin (ET), the renin-angiotensin system. Additionally, there is indirect evidence of a reciprocal relationship between endothelial function and activity of the SNS. A number of cardiovascular risk factors and diseases are characterized both by increased sympathetic outflow and decreased endothelial function. In healthy subjects, muscle sympathetic nerve activity (MSNA) appears to be related to surrogate markers of endothelial function, and an acute increase in sympathetic activity has been associated with a decrease in endothelial function in healthy subjects. However, direct evidence of a cause-effect relationship from human studies is scanty. In humans large artery stiffness has been associated with increased sympathetic discharge, both in healthy subjects and in renal transplant recipients. Peripheral sympathetic discharge is also able to modulate wave reflection. On the other hand, large artery stiffness can interfere with autonomic regulation by impairing carotid baroreflex sensitivity. PMID:22934037

  11. Functional vascularized lung grafts for lung bioengineering

    PubMed Central

    Dorrello, N. Valerio; Guenthart, Brandon A.; O’Neill, John D.; Kim, Jinho; Cunningham, Katherine; Chen, Ya-Wen; Biscotti, Mauer; Swayne, Theresa; Wobma, Holly M.; Huang, Sarah X. L.; Snoeck, Hans-Willem; Bacchetta, Matthew; Vunjak-Novakovic, Gordana

    2017-01-01

    End-stage lung disease is the third leading cause of death worldwide, accounting for 400,000 deaths per year in the United States alone. To reduce the morbidity and mortality associated with lung disease, new therapeutic strategies aimed at promoting lung repair and increasing the number of donor lungs available for transplantation are being explored. Because of the extreme complexity of this organ, previous attempts at bioengineering functional lungs from fully decellularized or synthetic scaffolds lacking functional vasculature have been largely unsuccessful. An intact vascular network is critical not only for maintaining the blood-gas barrier and allowing for proper graft function but also for supporting the regenerative cells. We therefore developed an airway-specific approach to removing the pulmonary epithelium, while maintaining the viability and function of the vascular endothelium, using a rat model. The resulting vascularized lung grafts supported the attachment and growth of human adult pulmonary cells and stem cell–derived lung-specified epithelial cells. We propose that de-epithelialization of the lung with preservation of intact vasculature could facilitate cell therapy of pulmonary epithelium and enable bioengineering of functional lungs for transplantation. PMID:28875163

  12. Myocardial ischemia in a patient with peripheral vascular disease, an arteriovenous fistula, and patent coronary artery bypass grafts.

    PubMed

    Moza, Ankush; Moukarbel, George V; Cooper, Christopher J; Bhat, Pradeep K

    2015-07-01

    Patients with coronary artery disease often have concurrent peripheral vascular disease. The presence of concurrent vascular pathologies can pose unique challenges among patients who have undergone coronary artery bypass grafting utilizing the left internal mammary artery. We describe a patient with peripheral vascular disease and prior history of coronary artery bypass grafting, who presented with recurrent anginal symptoms and an abnormal stress test despite the absence of significant residual unrevascularized coronary artery disease. Additional evaluation led to the identification of an ipsilateral severe subclavian stenosis with a concomitant ipsilateral upper extremity arteriovenous fistula. Patient's symptoms resolved with the treatment of the underlying vascular lesions.

  13. Arm exercise testing with myocardial scintigraphy in asymptomatic patients with peripheral vascular disease

    SciTech Connect

    Goodman, S.; Rubler, S.; Bryk, H.; Sklar, B.; Glasser, L.

    1989-04-01

    Arm exercise with myocardial scintigraphy and oxygen consumption determinations was performed by 33 men with peripheral vascular disease, 40 to 74 years of age (group 2). None had evidence of coronary disease. Nineteen age-matched male control subjects (group 1) were also tested to determine the normal endurance and oxygen consumption during arm exercise in their age group and to compare the results with those obtained during a standard treadmill performance. The maximal heart rate, systolic blood pressure, pressure rate product, and oxygen consumption were all significantly lower for arm than for leg exercise. However, there was good correlation between all these parameters for both types of exertion. The maximal heart rate, work load and oxygen consumption were greater for group 1 subjects than in patients with peripheral vascular disease despite similar activity status. None of the group 1 subjects had abnormal arm exercise ECGs, while six members of group 2 had ST segment changes. Thallium-201 scintigraphy performed in the latter group demonstrated perfusion defects in 25 patients. After nine to 29 months of follow-up, three patients who had abnormal tests developed angina and one of them required coronary bypass surgery. Arm exercise with myocardial scintigraphy may be an effective method of detecting occult ischemia in patients with peripheral vascular disease. Those with good exercise tolerance and no electrocardiographic changes or /sup 201/T1 defects are probably at lower risk for the development of cardiac complications, while those who develop abnormalities at low exercise levels may be candidates for invasive studies.

  14. Peptide regulators of peripheral taste function

    PubMed Central

    Dotson, Cedrick D.; Geraedts, Maartje C.P.; Munger, Steven D.

    2013-01-01

    The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode gustatory stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization. PMID:23348523

  15. Diabetes, Peripheral Neuropathy, and Lower Extremity Function

    PubMed Central

    Chiles, Nancy S.; Phillips, Caroline L.; Volpato, Stefano; Bandinelli, Stefania; Ferrucci, Luigi; Guralnik, Jack M.; Patel, Kushang V.

    2014-01-01

    Objective Diabetes among older adults causes many complications, including decreased lower extremity function and physical disability. Diabetes can cause peripheral nerve dysfunction, which might be one pathway through which diabetes leads to decreased physical function. The study aims were to determine: (1) whether diabetes and impaired fasting glucose are associated with objective measures of physical function in older adults, (2) which peripheral nerve function (PNF) tests are associated with diabetes, and (3) whether PNF mediates the diabetes-physical function relationship. Research Design and Methods This study included 983 participants, age 65 and older from the InCHIANTI Study. Diabetes was diagnosed by clinical guidelines. Physical performance was assessed using the Short Physical Performance Battery (SPPB), scored from 0-12 (higher values, better physical function) and usual walking speed (m/s). PNF was assessed via standard surface electroneurographic study of right peroneal nerve conduction velocity, vibration and touch sensitivity. Clinical cut-points of PNF tests were used to create a neuropathy score from 0-5 (higher values, greater neuropathy). Multiple linear regression models were used to test associations. Results and Conclusion 12.8% (n=126) of participants had diabetes. Adjusting for age, sex, education, and other confounders, diabetic participants had decreased SPPB (β= −0.99; p< 0.01), decreased walking speed (β= −0.1m/s; p< 0.01), decreased nerve conduction velocity (β= −1.7m/s; p< 0.01), and increased neuropathy (β= 0.25; p< 0.01) compared to non-diabetic participants. Adjusting for nerve conduction velocity and neuropathy score decreased the effect of diabetes on SPPB by 20%, suggesting partial mediation through decreased PNF. PMID:24120281

  16. Myocardial and peripheral vascular responses to behavioral challenges and their stability in black and white Americans.

    PubMed

    Saab, P G; Llabre, M M; Hurwitz, B E; Frame, C A; Reineke, L J; Fins, A I; McCalla, J; Cieply, L K; Schneiderman, N

    1992-07-01

    The purpose of this study was to assess the short term stability of myocardial and peripheral vascular responses to behavioral challenges, and to compare the response patterns of Black and White men. Blood pressure and heart rate, as well as stroke volume, cardiac output, total peripheral resistance, and systolic time interval measures derived from the impedance cardiogram were obtained in 12 Black and 12 White men. These measures were taken prior to and during an evaluative speech stressor, a mirror star tracing task, and a forehead cold pressor test presented during two laboratory sessions scheduled two weeks apart. In general, total peripheral resistance and impedance-derived baseline measures showed acceptable reproducibility (G greater than .85). With a few exceptions, adequate reliability was also demonstrated for change (delta) scores. All tasks raised blood pressure responses above resting levels. Blacks demonstrated significantly greater increases in total peripheral resistance responses across tasks. Whites but not Blacks also revealed increases above baseline in cardiac output and contractility as estimated by the Heather Index. These findings are consistent with the view that Blacks show greater vascular responsiveness than Whites across a variety of tasks, but reveal less myocardial responsiveness.

  17. Cocoa, Blood Pressure, and Vascular Function

    PubMed Central

    Ludovici, Valeria; Barthelmes, Jens; Nägele, Matthias P.; Enseleit, Frank; Ferri, Claudio; Flammer, Andreas J.; Ruschitzka, Frank; Sudano, Isabella

    2017-01-01

    Cardiovascular disease (CVD) represents the most common cause of death worldwide. The consumption of natural polyphenol-rich foods, and cocoa in particular, has been related to a reduced risk of CVD, including coronary heart disease and stroke. Intervention studies strongly suggest that cocoa exerts a beneficial impact on cardiovascular health, through the reduction of blood pressure (BP), improvement of vascular function, modulation of lipid and glucose metabolism, and reduction of platelet aggregation. These potentially beneficial effects have been shown in healthy subjects as well as in patients with risk factors (arterial hypertension, diabetes, and smoking) or established CVD (coronary heart disease or heart failure). Several potential mechanisms are supposed to be responsible for the positive effect of cocoa; among them activation of nitric oxide (NO) synthase, increased bioavailability of NO as well as antioxidant, and anti-inflammatory properties. It is the aim of this review to summarize the findings of cocoa and chocolate on BP and vascular function. PMID:28824916

  18. VASCULAR ACTIONS OF ESTROGENS: FUNCTIONAL IMPLICATIONS

    PubMed Central

    Miller, Virginia M.; Duckles, Sue P.

    2009-01-01

    The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, it is the goal of this review to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared to men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. While consensus opinions are emphasized, controversial views are presented in order to stimulate future research. PMID:18579753

  19. Assessment of vascularization and myelination following peripheral nerve repair using angiographic and polarization sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nam, Ahhyun S.; Chico-Calero, Isabel; Easow, Jeena M.; Villiger, Martin; Welt, Jonathan; Winograd, Jonathan M.; Randolph, Mark A.; Redmond, Robert W.; Vakoc, Benjamin J.

    2017-02-01

    A severe traumatic injury to a peripheral nerve often requires surgical graft repair. However, functional recovery after these surgical repairs is often unsatisfactory. To improve interventional procedures, it is important to understand the regeneration of the nerve grafts. The rodent sciatic nerve is commonly used to investigate these parameters. However, the ability to longitudinally assess the reinnervation of injured nerves are limited, and to our knowledge, no methods currently exist to investigate the timing of the revascularization in functional recovery. In this work, we describe the development and use of angiographic and polarization-sensitive (PS) optical coherence tomography (OCT) to visualize the vascularization, demyelination and remyelination of peripheral nerve healing after crush and transection injuries, and across a variety of graft repair methods. A microscope was customized to provide 3.6 cm fields of view along the nerve axis with a capability to track the nerve height to maintain the nerve within the focal plane. Motion artifact rejection was implemented in the angiography algorithm to reduce degradation by bulk respiratory motion in the hindlimb site. Vectorial birefringence imaging methods were developed to significantly enhance the accuracy of myelination measurements and to discriminate birefringent contributions from the myelin and epineurium. These results demonstrate that the OCT platform has the potential to reveal new insights in preclinical studies and may ultimately provide a means for clinical intra-surgical assessment of peripheral nerve function.

  20. Mechanisms of Microgravity Effect on Vascular Function

    NASA Technical Reports Server (NTRS)

    Purdy, Ralph E.

    1995-01-01

    The overall goal of the project is to characterize the effects of simulated microgravity on vascular function. Microgravity is simulated using the hindlimb unweighted (HU) rat, and the following vessels are removed from HU and paired control rats for in vitro analysis: abdominal aorta, carotid and femoral arteries, jugular and femoral veins. These vessels are cut into 3 mm long rings and mounted in tissue baths for the measurement of either isometric contraction, or relaxation of pre- contracted vessels. The isolated mesenteric vascular bed is perfused for the measurement of changes in perfusion pressure as an index of arteriolar constriction or dilation. This report presents, in addition to the statement of the overall goal of the project, a summary list of the specific hypotheses to be tested. These are followed by sections on results, conclusions, significance and plans for the next year.

  1. Hemodynamics analysis of patient-specific carotid bifurcation: a CFD model of downstream peripheral vascular impedance.

    PubMed

    Dong, Jingliang; Wong, Kelvin K L; Tu, Jiyuan

    2013-04-01

    The study of cardiovascular models was presented in this paper based on medical image reconstruction and computational fluid dynamics. Our aim is to provide a reality platform for the purpose of flow analysis and virtual intervention outcome predication for vascular diseases. By connecting two porous mediums with transient permeability at the downstream of the carotid bifurcation branches, a downstream peripheral impedance model was developed, and the effect of the downstream vascular bed impedance can be taken into consideration. After verifying its accuracy with a healthy carotid bifurcation, this model was implemented in a diseased carotid bifurcation analysis. On the basis of time-averaged wall shear stress, oscillatory shear index, and the relative residence time, fractions of abnormal luminal surface were highlighted, and the atherosclerosis was assessed from a hemodynamic point of view. The effect of the atherosclerosis on the transient flow division between the two branches because of the existence of plaque was also analysed. This work demonstrated that the proposed downstream peripheral vascular impedance model can be used for computational modelling when the outlets boundary conditions are not available, and successfully presented the potential of using medical imaging and numerical simulation to provide existing clinical prerequisites for diagnosis and therapeutic treatment. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Endovascular excimer laser atherectomy techniques to treat complex peripheral vascular disease: an orderly process.

    PubMed

    Garnic, J Daniel; Hurwitz, Andrew S

    2005-12-01

    Peripheral vascular disease represents the largest obstructive subsegment within the vascular system. Advances in equipment, techniques, biochemical treatments, and the influx of multiple specialties into this arena indicate a coming tidal wave of change to the standard treatment plan for patients with claudication and especially critical limb ischemia. Initial attempts in the 1980s to utilize the "laser" to treat peripheral vascular disease led to a clinical debacle: wavelengths and methods were not optimized; tissue heating was excessive, resulting in restenosis. Since then the "laser" has fallen from grace for endovascular treatment, although it has an infinite set of potential wavelengths, energy levels, and delivery methods. The xenon chloride, excimer laser, a pulsed 308-nm system, has overcome many of these early catastrophes. The long, ongoing success of this method of photoablating thrombus and plaque represents a true step forward in the endovascular treatment of occlusive disease. Although only a tool, the excimer laser provides a means to utilize electromagnetic energy instead of shearing mechanical force to resolve occlusions. With its active element at the tip, the excimer laser requires much less mechanical translation force to cross total occlusions, find the distal lumen, and thereby cause less plaque destabilization. In addition, removing the firm surface layer of plaque, decapping, and some of the plaque volume, debulking, exposes the softer subsegments of the plaque to balloon angioplasty. Utilizing this method, more complex lesions can be approached safely, with a high likelihood of successful revascularization and a low risk of potentially limb-threatening complication.

  3. Visualizing the Peripheral Primo Vascular System in Mice Skin by Using the Polymer Mercox

    PubMed Central

    Stefanov, Miroslav; Kim, Jungdae

    2015-01-01

    Objectives: As the peripheral part of the primo vascular system (PVS) is difficult to visualize, we used a vascular casting material Mercox injected directly into the skin to take advantage of a simple procedure to visualize PVS structures as primo vessels (PVs) and primo nodes (PNs) in the skin. Methods: Two colors of the polymer Mercox were injected into mouse skin. After a partial maceration of the whole body with potassium hydroperoxide solution, we anatomized it under a stereomicroscope to trace the Mercox that had been injected into the PVS. Results: Injection of Mercox directly into the skin allowed the PVs and the PNs to be visualized. This approach can fill the PVS when the material is ejected out of the PVs or PNs. The shapes, sizes, and topographic positions of the nodes and the vessels are the hallmarks used to identify the PVS in skin when Mercox is used as a tracer. Conclusion: The direct injection of the casting material Mercox into skin, with modified partial maceration procedures, is a promising method for visualizing the PVs and the PNs in the peripheral part of the PVS in skin. The polymer Mercox can penetrate through the primo pores of the primo vascular wall and fill the PVs and the PNs. The data prove that PVs and PNs exist on the hypodermal layer of the skin. PMID:26389004

  4. Wntless is required for peripheral lung differentiation and pulmonary vascular development.

    PubMed

    Cornett, Bridget; Snowball, John; Varisco, Brian M; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-07-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease.

  5. Peripheral vascular complications during TAVR: Management and potential role of chronic steroid use; A case report

    PubMed Central

    Fudim, Marat; Green, Kelly D; Fredi, Joseph L; Robbins, Mark A; Zhao, David

    2014-01-01

    Purpose To report a case of a major vascular complication during TAVR and the endovascular management thereof. Additionally, we discuss a possible correlation with long-term steroid use. Case Report A 79 year old woman with a history of critical aortic stenosis underwent elective transcatheter aortic valve replacement (TAVR). Her procedure was complicated by rupture of her right iliac artery, life threatening retroperitoneal hemorrhage, and thrombus extending into the distal right lower extremity. This case was emergently managed by stent placement, thrombectomy, and tPA via a percutaneous approach. Conclusions Peripheral vascular complications are common during percutaneous TAVR, and chronic steroid use may predispose patients. Endovascular management is often possible and may potentially save valuable time in emergent situations. PMID:23793293

  6. Increase in whole-body peripheral vascular resistance during three hours of air or oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Conkin, J.; Dierlam, J. J.; Stanford, J., Jr.; Riddle, J. R.

    1984-01-01

    Male and female subjects prebreathed air or 100% oxygen through a mask for 3.0 hours while comfortably reclined. Blood pressures, heart rate, and cardiac output were collected before and after the prebreathe. Peripheral vascular resistance (PVR) was calculated from these parameters and increased by 29% during oxygen prebreathing and 15% during air prebreathing. The oxygen contributed substantially to the increase in PVR. Diastolic blood pressure increased by 18% during the oxygen prebreathe while stystolic blood pressure showed no change under either procedure. The increase in PVR during air prebreathing was attributed to procedural stress common to air and oxygen prebreathing.

  7. Management of the patient requiring leg amputation for peripheral vascular disease.

    PubMed Central

    Hunter, G. A.; Waddell, J. P.

    1976-01-01

    Most leg amputations are performed because of the effects of peripheral vascular disease. Only 50% of such amputations were performed below the knee in Ontario in 1972, although the knee joint should be preserved in most patients. Careful preoperative evaluation is essential. Postoperative problems include gas gangrene for which prophylactic measures are recommended; failure of the stump to heal, which necessitates early revision of the stump; and defects in stump contour, which necessitate late revision. An enthusiastic team approach to rehabilitation is necessary to overcome the physical and mental problems that result from amputation of a leg. Images FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 PMID:974951

  8. Management of the patient requiring leg amputation for peripheral vascular disease.

    PubMed

    Hunter, G A; Waddell, J P

    1976-10-09

    Most leg amputations are performed because of the effects of peripheral vascular disease. Only 50% of such amputations were performed below the knee in Ontario in 1972, although the knee joint should be preserved in most patients. Careful preoperative evaluation is essential. Postoperative problems include gas gangrene for which prophylactic measures are recommended; failure of the stump to heal, which necessitates early revision of the stump; and defects in stump contour, which necessitate late revision. An enthusiastic team approach to rehabilitation is necessary to overcome the physical and mental problems that result from amputation of a leg.

  9. Vascular risk factors in the obliterative peripheral arteriopathy of diabetic patients.

    PubMed

    Fekete, T; Mösler, R; Panduru, V

    1985-01-01

    To estimate the role of some vascular risk factors in the obliterative arteriopathy of diabetic patients, 71 subjects have been investigated: diabetics without arteriopathy, diabetics with arteriopathy and non-diabetics with arteriopathy. Age, sex, body weight, smoking habits, blood pressure, sedentary life style, diabetes therapy, plasma glucose, cholesterol, triglycerides, total lipids, HDL-cholesterol, uric acid, and fibrinogen have been assessed, the parameters investigated. The results show that the risk factors studied maintain their role even in the obliterative peripheral arteriopathy of diabetic patients; however, there are differences in the relative importance of some of them.

  10. Catheter Securement Systems for Peripherally Inserted and Nontunneled Central Vascular Access Devices

    PubMed Central

    Krenik, Karen M.; Smith, Graham E.

    2016-01-01

    Sutureless catheter securement systems are intended to eliminate risks associated with sutures. The clinical acceptability of a novel system was investigated compared with the current method of securement for peripherally inserted central catheters (19 facilities using StatLock or sutures) or nontunneled central vascular access devices (3 facilities using StatLock or sutures or HubGuard + Sorbaview Shield). More than 94% of respondents rated the novel system as same, better, or much better than their current product. More than 82% of respondents were willing to replace their current system with the new one. PMID:27379679

  11. Peripheral Vascular Resistance Impairment during Isometric Physical Exercise in Normotensive Offspring of Hypertensive Parents.

    PubMed

    Portela, Natália; Amaral, Josária Ferraz; Mira, Pedro Augusto de Carvalho; Souza, Livia Victorino de; Martinez, Daniel Godoy; Laterza, Mateus Camaroti

    2017-07-10

    A family history of hypertension is associated with vascular and autonomic abnormalities, as well as an impaired neurohemodynamic response to exercise. To test the hypothesis that normotensive individuals with a family history of hypertension present an impaired peripheral vascular resistance response to exercise. The study included 37 normotensive volunteers of both sexes who were sedentary, eutrophic, and nonsmokers, comprising 23 with (FH+; 24 ± 3 years) and 14 without (FH-; 27 ± 5 years) a family history of hypertension. Blood pressure, heart rate (DIXTAL®), forearm blood flow (Hokanson®), and peripheral vascular resistance were simultaneously measured for 3 minutes during rest and, subsequently, for 3 minutes during an isometric exercise at 30% of maximal voluntary contraction (Jamar®). At rest, the FH+ and FH- groups present similar mean blood pressure (83 ± 7 versus 83 ± 5 mmHg, p = 0.96), heart rate (69 ± 8 bpm versus 66 ± 7 bpm, p = 0.18), forearm blood flow (3 ± 1 mL/min/100 mL versus 2.7 ± 1 mL/min/100 mL, p = 0.16), and peripheral vascular resistance (30 ± 9 units versus 34±9 units, p = 0.21), respectively. Both groups showed a significant and similar increase in mean blood pressure (∆ = 15 ± 7 mmHg versus 14 ± 7 mmHg, p = 0.86), heart rate (∆ = 12 ± 8 bpm versus 13 ± 7 bpm, p = 0.86), and forearm blood flow (∆ = 0.8 ± 1.2 mL/min/100 mL versus 1.4 ± 1.1 mL/min/100 mL, p = 0.25), respectively, during exercise. However, individuals in the FH+ group showed no reduction in peripheral vascular resistance during exercise, which was observed in the FH- group (∆ = -0.4 ± 8.6 units versus -7.2 ± 6.3 units, p = 0.03). Normotensive individuals with a family history of hypertension present an impaired peripheral vascular resistance response to exercise. O histórico familiar para hipertensão arterial está relacionado a anormalidades vasculares e autonômicas, bem como disfunções no comportamento neuro-hemodinâmico durante o exerc

  12. Evaluation of oxidative stress markers and vascular risk factors in patients with diabetic peripheral neuropathy.

    PubMed

    El Boghdady, Noha Ahmed; Badr, Gamal Ali

    2012-06-01

    Diabetic peripheral neuropathy (DPN) is one of the most common diabetic chronic complications. The pathogenesis of DPN is complex and involves an intertwined array of mechanisms. The purposes of this study were to evaluate the association of oxidative stress and vascular risk factors with the prevalence of DPN and to determine the role of these biochemical parameters in the prognosis of DPN. One hundred patients with type 2 diabetes mellitus and 40 clinically healthy individuals were evaluated. The patients were divided into two groups. Group 1 included 40 diabetic patients without peripheral neuropathy, and group 2 consisted of 60 patients with DPN. Erythrocytes glutathione (GSH) level, plasma malondialdehyde (MDA), nitrite/nitrate (NOx) and homocysteine (Hcy) levels as well as serum ceruloplasmin (Cp), total antioxidants (TAO), endothelin-1 (ET-1) levels and γ-glutamyl transferase (GGT) activity were estimated. A significant decrease of erythrocyte GSH was observed in groups 1 and 2 relative to the controls. An increase in glycosylated haemoglobin (HbA1c), MDA, NOx, GGT, Cp, TAO, Hcy and ET-1 was noted in patients with DPN. In conclusion, oxidative stress biomarkers and vascular risk factors could be important in the pathogenesis of DPN. The measurement of serum GGT and Hcy in addition to HbA1c and disease duration could facilitate the early detection of neuropathy in diabetic patients.

  13. Absence of Peripheral Pulses and Risk of Major Vascular Outcomes in Patients With Type 2 Diabetes.

    PubMed

    Mohammedi, Kamel; Woodward, Mark; Zoungas, Sophia; Li, Qiang; Harrap, Stephen; Patel, Anushka; Marre, Michel; Chalmers, John

    2016-12-01

    The burden of vascular diseases remains substantial in patients with type 2 diabetes, requiring identification of further risk markers. We tested the absence of dorsalis pedis and posterior tibial pulses as predictors of major macrovascular and microvascular events, death, and cognitive decline in this population. Data were derived from 11,120 patients with type 2 diabetes in the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified-Release Controlled Evaluation (ADVANCE) study. Absent peripheral pulses at baseline were defined as absence of at least one dorsalis pedis or posterior tibial pulse. Absent compared with present peripheral pulses (n = 2,218) were associated with increased 5-year risks for major macrovascular events (hazard ratio 1.47 [95% CI 1.28-1.69], P < 0.0001), myocardial infarction (1.45 [1.13-1.87], P = 0.003), stroke (1.57 [1.23-2.00], P = 0.0003), cardiovascular death (1.61 [1.33-1.95], P < 0.0001), heart failure (1.49 [1.21-1.84], P = 0.0002), all-cause mortality (1.48 [1.29-1.71], P < 0.0001), major microvascular events (1.17 [1.00-1.36], P = 0.04), nephropathy (1.24 [1.00-1.54], P = 0.04), end-stage renal disease or renal death (2.04 [1.12-3.70], P = 0.02), and peripheral neuropathy (1.13 [1.05-1.21], P = 0.0008) after multiple adjustment. Participants with absent dorsalis pedis or posterior tibial pulses had comparable hazard ratios. Risks increased proportionally with the number of absent peripheral pulses, with the highest risks observed in patients with three or four absent pulses. Every additional absent pulse increases the risk of all outcomes. Absent dorsalis pedis and/or posterior tibial pulses are independent predictors of major vascular outcomes in patients with type 2 diabetes. These simple clinical indicators should be used to improve risk stratification and treatment of these patients. © 2016 by the American Diabetes Association.

  14. Adhesion of peripheral blood mononuclear cells to vascular endothelium in patients with systemic sclerosis (scleroderma).

    PubMed

    Rudnicka, L; Majewski, S; Blaszczyk, M; Skiendzielewska, A; Makiela, B; Skopinska, M; Jablonska, S

    1992-07-01

    Perivascular infiltrates in skin, subcutaneous tissue, and internal organs are a characteristic feature of early systemic sclerosis (SSc). We studied the first step of migration of peripheral blood mononuclear cells (PBMC) through the vessel wall to the extravascular space, i.e., adhesion of PBMC to endothelial cells (EC), in patients with various forms of SSc (limited scleroderma, diffuse scleroderma, and the transitional form). Radioisotope-labeled patient PBMC were coincubated with umbilical cord EC in vitro, and the percentage adhesion was measured. Adhesion of PBMC to EC was markedly decreased, while adhesion of isolated active rosette-forming cells (ARFC) was significantly increased, in SSc patients compared with healthy controls. Decreased adhesion of PBMC to EC was found to correlate with a diminished percentage of ARFC in the peripheral blood. Preincubation of PBMC from healthy donors with interleukin-2 (IL-2) enhanced their adhesion to EC, while preincubation of PBMC from SSc patients with this cytokine resulted in a decrease in adhesion in 10 of 14 individuals. IL-1, interferon-gamma, and transforming growth factor beta had no significant effect on adhesion of SSc patient PBMC to EC. Differences in adhesion of PBMC to EC among the SSc subgroups were not significant. Our findings suggest that in SSc, activation of subpopulations of PBMC leads to their enhanced adhesion to vascular endothelium in vivo and to migration of these cells to the extravascular space, resulting in the elimination from the peripheral blood of those PBMC with high ability to adhere to EC.

  15. Process of care partly explains the variation in mortality between hospitals after peripheral vascular surgery.

    PubMed

    Hoeks, S E; Scholte Op Reimer, W J M; Lingsma, H F; van Gestel, Y; van Urk, H; Bax, J J; Simoons, M L; Poldermans, D

    2010-08-01

    The aim of this study is to investigate whether variation in mortality at hospital level reflects differences in quality of care of peripheral vascular surgery patients. Observational study. In 11 hospitals in the Netherlands, 711 consecutive vascular surgery patients were enrolled. Multilevel logistic regression models were used to relate patient characteristics, structure and process of care to mortality at 1 year. The models were constructed by consecutively adding age, sex and Lee index, then remaining risk factors, followed by structural measures for quality of care and finally, selected process of care parameters. Total 1-year mortality was 11%, ranging from 6% to 26% in different hospitals. Large differences in patient characteristics and quality indicators were observed between hospitals (e.g., age>70 years: 28-58%; beta-blocker therapy: 39-87%). Adjusted analyses showed that a large part of variation in mortality was explained by age, sex and the Lee index (Akaike's information criterion (AIC)=59, p<0.001). Another substantial part of the variation was explained by process of care (AIC=5, p=0.001). Differences between hospitals exist in patient characteristics, structure of care, process of care and mortality. Even after adjusting for the patient population at risk, a substantial part of the variation in mortality can be explained by differences in process measures of quality of care. Copyright (c) 2010 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  16. The Discovery of Novel Genomic, Transcriptomic, and Proteomic Biomarkers in Cardiovascular and Peripheral Vascular Disease: The State of the Art

    PubMed Central

    de Franciscis, Stefano; Metzinger, Laurent; Serra, Raffaele

    2016-01-01

    Cardiovascular disease (CD) and peripheral vascular disease (PVD) are leading causes of mortality and morbidity in western countries and also responsible of a huge burden in terms of disability, functional decline, and healthcare costs. Biomarkers are measurable biological elements that reflect particular physiological or pathological states or predisposition towards diseases and they are currently widely studied in medicine and especially in CD. In this context, biomarkers can also be used to assess the severity or the evolution of several diseases, as well as the effectiveness of particular therapies. Genomics, transcriptomics, and proteomics have opened new windows on disease phenomena and may permit in the next future an effective development of novel diagnostic and prognostic medicine in order to better prevent or treat CD. This review will consider the current evidence of novel biomarkers with clear implications in the improvement of risk assessment, prevention strategies, and medical decision making in the field of CD. PMID:27298828

  17. Impact of Indoxyl Sulfate on Progenitor Cell-Related Neovascularization of Peripheral Arterial Disease and Post-Angioplasty Thrombosis of Dialysis Vascular Access

    PubMed Central

    Wu, Chih-Cheng; Hung, Szu-Chun; Kuo, Ko-Lin; Tarng, Der-Cherng

    2017-01-01

    Patients with chronic kidney disease (CKD) have an increased risk of vascular disease, which is associated with considerable health care costs. Vascular disease in CKD differs clinically and pathobiologically from that in patients with normal renal function. Besides the traditional risk factors, retention of uremic toxins contributes to the pathogenesis of vascular disease in patients with CKD. Indoxyl sulfate is a protein-bound uremic toxin and is inefficiently removed by conventional dialysis. Accumulating evidence suggests that indoxyl sulfate is a vascular toxin involved in atherosclerosis, arteriosclerosis, vascular calcification and vascular repair. Clinically, indoxyl sulfate is associated with total and cardiovascular mortality in patients with CKD. Recent studies have indicated that in addition to coronary and cerebral arteries, indoxyl sulfate plays a role in peripheral artery disease (PAD) and dialysis graft thrombosis. Emerging evidence suggests that indoxyl sulfate is implicated via novel mechanisms, including progenitor cell-related neovascularization and tissue factor-related hypercoagulability. These findings raise the possibility that strategies targeting serum indoxyl sulfate may have the potential to improve the outcomes of PAD and dialysis vascular access in patients with CKD. PMID:28067862

  18. Impact of Indoxyl Sulfate on Progenitor Cell-Related Neovascularization of Peripheral Arterial Disease and Post-Angioplasty Thrombosis of Dialysis Vascular Access.

    PubMed

    Wu, Chih-Cheng; Hung, Szu-Chun; Kuo, Ko-Lin; Tarng, Der-Cherng

    2017-01-07

    Patients with chronic kidney disease (CKD) have an increased risk of vascular disease, which is associated with considerable health care costs. Vascular disease in CKD differs clinically and pathobiologically from that in patients with normal renal function. Besides the traditional risk factors, retention of uremic toxins contributes to the pathogenesis of vascular disease in patients with CKD. Indoxyl sulfate is a protein-bound uremic toxin and is inefficiently removed by conventional dialysis. Accumulating evidence suggests that indoxyl sulfate is a vascular toxin involved in atherosclerosis, arteriosclerosis, vascular calcification and vascular repair. Clinically, indoxyl sulfate is associated with total and cardiovascular mortality in patients with CKD. Recent studies have indicated that in addition to coronary and cerebral arteries, indoxyl sulfate plays a role in peripheral artery disease (PAD) and dialysis graft thrombosis. Emerging evidence suggests that indoxyl sulfate is implicated via novel mechanisms, including progenitor cell-related neovascularization and tissue factor-related hypercoagulability. These findings raise the possibility that strategies targeting serum indoxyl sulfate may have the potential to improve the outcomes of PAD and dialysis vascular access in patients with CKD.

  19. Single and double wavelength excitation of laser-induced fluorescence of normal and atherosclerotic peripheral vascular tissue.

    PubMed

    Filippidis, G; Zacharakis, G; Katsamouris, A; Giannoukas, A; Papazoglou, T G

    2000-07-01

    Laser-induced fluorescence spectra were recorded from the exposure of peripheral vascular tissue to both helium-cadmium and argon-ion laser radiation. Spectral analysis was based on simple algebraic expressions constructed using the intensity difference of the various spectral regions. The above methods were developed in order to determine the degree of atherosclerosis according to the laser-induced fluorescence signal. Similar results with single wavelength excitation were observed during in vivo irradiation of peripheral vessels.

  20. Effect of mirthful laughter on vascular function.

    PubMed

    Sugawara, Jun; Tarumi, Takashi; Tanaka, Hirofumi

    2010-09-15

    In contrast to the well-established scientific evidence linking negative emotional states (e.g., depression, anxiety, or anger) to increased risk for cardiovascular disease, much less is known about the association between positive emotional states (e.g., laughter, happiness) and cardiovascular health. We determined the effects of mirthful laughter, elicited by watching comic movies, on endothelial function and central artery compliance. Seventeen apparently healthy adults (23 to 42 years of age) watched 30 minutes of a comedy or a documentary (control) on separate days (crossover design). Heart rate and blood pressure increased significantly while watching the comedy, whereas no such changes were seen while watching the documentary. Ischemia-induced brachial artery flow-mediated vasodilation (by B-mode ultrasound imaging) increased significantly after watching the comedy (17%) and decreased with watching the documentary (-15%). Carotid arterial compliance (by simultaneous application of ultrasound imaging and applanation tonometry) increased (10%) significantly immediately after watching the comedy and returned to baseline 24 hours after the watching, whereas it did not change significantly throughout the documentary condition. Comedy-induced changes in arterial compliance were significantly associated with baseline flow-mediated dilation (r = 0.63). These results suggest that mirthful laughter elicited by comic movies induces beneficial impact on vascular function.

  1. Enhanced limb salvage for peripheral vascular disease with the use of spinal cord stimulation.

    PubMed

    Huber, S J; Vaglienti, R M; Midcap, M E

    1996-01-01

    For patients with peripheral vascular disease that have exhausted all means for surgical repair, spinal cord stimulation is an alternative treatment that could offer them significant pain relief or possibly delay the need for limb amputation. Spinal cord stimulation (SCS) has proven to offer many of these patients a return to a more normal lifestyle by relieving pain to such a degree that their mobility is improved. In addition, increases in blood flow to the affected extremity have helped to improve overall foot salvage. Since SCS is minimally invasive and has few reported complications, it is a viable alternative for patients with multiple health risks, and with proper patient selection and early referral, it can reduce health care costs in many cases.

  2. Detecting lower extremity vascular dynamics in patients with peripheral artery disease using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khalil, Michael A.; Kim, Hyun-Keol K.; Kim, In-Kyong; Dayal, Rajeev; Hielscher, Andreas H.

    2011-02-01

    Peripheral Artery Disease (PAD) affects over 10 million Americans and is associated with significant morbidity and mortality. While in many cases the ankle-brachial index (ABI) can be used for diagnosing the disease, this parameter is not dependable in the diabetic and elderly population. These populations tend to have calcified arteries, which leads to elevated ABI values. Dynamic optical tomography (DDOT) promises to overcome the limitations of the current diagnostic techniques and has the potential to initiate a paradigm shift in the diagnosis of vascular disease. We have performed initial pilot studies involving 5 PAD patients and 3 healthy volunteers. The time traces and tomographic reconstruction obtained from measurements on the feet show significant differences between healthy and affected vasculatures. In addition, we found that DOT is capable of identifying PAD in diabetic patients, who are misdiagnosed by the traditional ABI screening.

  3. Peripheral Sweat Gland Function Improves With Humid Heat Acclimation

    DTIC Science & Technology

    2009-04-01

    Individual variations in structure and function of human eccrine sweat gland . Am. j. Physio!. 245, R203-R208. strydom, N.B .. Wyndham, e.H., Williams, e.G...Naval Health Research Center Peripheral Sweat Gland Function Improves With Humid Heat Acclimation . M. J. Buono S. L. Martha...Biology E!.SFVILR journal homepage: www.elsevier.com/locate/jtherbio Peripheral sweat gland function is improved with humid heat acclimation Michael

  4. Functional preservation of vascular smooth muscle tissue

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Hutchins, P. M.; Kimzey, S. L.

    1973-01-01

    The ionic and cellular feedback relationships operating to effect the vascular decompensatory modifications were examined to reveal procedures for implementing protective measures guarding against vascular collapse when returning from a weightless environment to that of the earth's gravity. The surgical procedures for preparing the rat cremaster, and the fixation methods are described. Abstracts of publications resulting from this research are included.

  5. Incidence of severe coronary stenosis in asymptomatic patients with peripheral arterial disease scheduled for major vascular surgery.

    PubMed

    Hromadka, Milan; Baxa, Jana; Seidlerova, Jitka; Suchy, David; Sedivy, Jakub; Stepankova, Lucie; Rajdl, Daniel; Rokyta, Richard

    2016-08-01

    Peripheral arterial disease (PAD) has the risk equivalent of coronary heart disease. The biochemical parameters associated with functionally significant coronary artery stenosis were investigated in asymptomatic patients with PAD who were scheduled for major vascular intervention. A total of 50 PAD patients asymptomatic for coronary heart disease were examined using coronary computed tomography angiography (CTA). A stress myocardial CT perfusion (CTP) test was performed in patients who exhibited coronary stenosis >40%. In patients with stress-induced perfusion defects, the severity of stenosis was assessed using invasive coronary angiography including fractional flow reserve assessment. The CT findings were correlated with both classical and more recently developed parameters of atherosclerosis. According to the combined CT examination (CTA and stress CT perfusion), 36% of patients exhibited significant coronary stenosis. Stress-induced hypoperfusion was observed in 95.7% of severe stenotic lesions. After adjustment for confounders, the level of high-sensitivity troponin I was associated with severe coronary stenosis (OR 1.260 [95% CI 1.054 to 1.505]). Other biochemical parameters did not correlate with coronary stenosis. The annual mortality rate was 4%. The results of the present study confirm a significant diagnostic contribution of a complex cardiac CT examination in patients scheduled for major vascular surgery. A high prevalence of asymptomatic coronary heart disease was observed in this particular patient group. High-sensitivity measurements of troponin I correlated with the extent of the coronary stenosis.

  6. Serum Superoxide Dismutase Is Associated with Vascular Structure and Function in Hypertensive and Diabetic Patients

    PubMed Central

    Gómez-Marcos, Manuel A.; Blázquez-Medela, Ana M.; Gamella-Pozuelo, Luis; Recio-Rodriguez, José I.; García-Ortiz, Luis; Martínez-Salgado, Carlos

    2016-01-01

    Oxidative stress is associated with cardiac and vascular defects leading to hypertension and atherosclerosis, being superoxide dismutase (SOD) one of the main intracellular antioxidant defence mechanisms. Although several parameters of vascular function and structure have a predictive value for cardiovascular morbidity-mortality in hypertensive patients, there are no studies on the involvement of SOD serum levels with these vascular parameters. Thus, we assessed if SOD serum levels are correlated with parameters of vascular function and structure and with cardiovascular risk in hypertensive and type 2 diabetic patients. We enrolled 255 consecutive hypertensive and diabetic patients and 52 nondiabetic and nonhypertensive controls. SOD levels were measured with an enzyme-linked immunosorbent assay kit. Vascular function and structure were evaluated by pulse wave velocity, augmentation index, ambulatory arterial stiffness index, and carotid intima-media thickness. We detected negative correlations between SOD and pressure wave velocity, peripheral and central augmentation index and ambulatory arterial stiffness index, pulse pressure, and plasma HDL-cholesterol, as well as positive correlations between SOD and plasma uric acid and triglycerides. Our study shows that SOD is a marker of cardiovascular alterations in hypertensive and diabetic patients, since changes in its serum levels are correlated with alterations in vascular structure and function. PMID:26635913

  7. Evaluation of Medicare claims data to ascertain peripheral vascular events in the Women's Health Initiative.

    PubMed

    Mell, Matthew W; Pettinger, Mary; Proulx-Burns, Lori; Heckbert, Susan R; Allison, Matthew A; Criqui, Michael H; Hlatky, Mark A; Burwen, Dale R

    2014-07-01

    Capturing long-term outcomes from large clinical databases by use of claims data is a potential strategy for improving efficiency while reducing study costs. We sought to compare the use of Medicare data with data from the Women's Health Initiative (WHI) to determine peripheral vascular events, as defined by the WHI study design. We studied participants from the WHI with both adjudicated outcomes and links to Medicare enrollment and utilization data through 2007. Outcomes of interest included hospitalizations for treatment of abdominal aortic aneurysm (AAA), lower extremity peripheral artery disease (LE PAD), and carotid artery stenosis (CAS). Events determined by WHI adjudication were compared with events defined by coding algorithms using diagnosis and procedure codes from Medicare data with a pilot data set and then validated with a test data set. We assessed agreement by a κ statistic and evaluated reasons for disagreement. In the pilot set, records from 50,511 participants were analyzed. Agreement between the Centers for Medicare and Medicaid Services and WHI for admissions with a diagnosis but no treatment procedures for vascular conditions was poor (κ, 0.02-0.18). On the basis of WHI outcome data collection, vascular treatment procedures occurred in 29 participants for AAA, 204 for LE PAD events, and 281 for CAS. Medicare hospital claims recorded 41 treatments for AAA, 255 for LE PAD, and 317 for CAS. For participants with a Centers for Medicare and Medicaid Services-captured vascular procedure and a record adjudicated by WHI, κ values for treatment procedures were 0.81 for AAA, 0.77 for PAD, and 0.93 for CAS. For vascular procedures identified by WHI but not by Medicare hospital data (n = 82), 55% were captured by Medicare physician claims. Conversely, for treatments identified by Medicare hospital data but not captured by WHI adjudication (n = 57), 74% had physician claims consistent with the procedure. Fifteen participants with AAA or LE PAD

  8. Lower extremity amputees with peripheral vascular disease: graded exercise testing and results of prosthetic training.

    PubMed

    Cruts, H E; de Vries, J; Zilvold, G; Huisman, K; van Alsté, J A; Boom, H B

    1987-01-01

    Thirty-nine subjects, mean age 72 (range 52 to 89), with a leg amputation because of peripheral vascular disease performed graded exercise testing at the start of their prosthetic training program. Their walking performance at the end of the program was assessed and compared with the test findings. They had a history and rest electrocardiogram (ECG) examination which revealed cardiac problems in 75% of the patients. The exercise test was performed on a specially designed arm ergometer permitting coordinated exercise of arm and trunk muscles. Cardiac condition was judged by the achieved peak heart rate (mean 125 +/- 3.8 beats per minute) and observed ECG abnormalities. In only three patients exercise-induced ECG abnormalities were found at peak workload. The mean peak workload was 52 +/- 1.9W. It was concluded from these results that the average physical and cardiac condition is poor in vascular leg amputees. In 34 patients (87%) the prosthetic training was successful. Fourteen patients needed a walking frame and twenty could walk without a walking frame. The probability of achieving walking without a walking frame was 70% in patients with peak workload above 45W and 30% in those with peak workload lower than 45W.

  9. Relationship between pulmonary hypertension, peripheral vascular calcification, and major cardiovascular events in dialysis patients.

    PubMed

    Kim, Sun Chul; Chang, Hyo Jung; Kim, Myung-Gyu; Jo, Sang-Kyung; Cho, Won-Yong; Kim, Hyoung-Kyu

    2015-03-01

    Pulmonary hypertension (PHT) is a recently recognized complication of chronic kidney disease. In this study, we investigated the association between PHT, peripheral vascular calcifications (VCs), and major cardiovascular events. In this retrospective study, we included 172 end-stage renal disease (ESRD) patients undergoing dialysis [hemodialysis (HD)=84, peritoneal dialysis=88]. PHT was defined as an estimated pulmonary artery systolic pressure>37 mmHg using echocardiography. The Simple Vascular Calcification Score (SVCS) was measured using plain radiographic films of the hands and pelvis. The prevalence of PHT was significantly higher in HD patients (51.2% vs. 22.7%). Dialysis patients with PHT had a significantly higher prevalence of severe VCs (SVCS≥3). In multivariate analysis, the presence of severe VCs [odds ratio (OR), 2.68], mitral valve disease (OR, 7.79), HD (OR, 3.35), and larger left atrial diameter (OR, 11.39) were independent risk factors for PHT. In addition to the presence of anemia, severe VCs, or older age, the presence of PHT was an independent predictor of major cardiovascular events in ESRD patients. The prevalence of PHT was higher in HD patients and was associated with higher rates of major cardiovascular events. Severe VCs are thought to be an independent risk factor for predicting PHT in ESRD patients. Therefore, in dialysis patients with PHT, careful attention should be paid to the presence of VCs and the occurrence of major cardiovascular events.

  10. Impaired vascular endothelial growth factor A and inflammation in patients with peripheral artery disease.

    PubMed

    Gardner, Andrew W; Parker, Donald E; Montgomery, Polly S; Sosnowska, Danuta; Casanegra, Ana I; Esponda, Omar L; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2014-09-01

    We compared apoptosis, cellular oxidative stress, and inflammation of cultured endothelial cells treated with sera from 130 patients with peripheral artery disease (PAD) and a control group of 36 patients with high burden of comorbid conditions and cardiovascular risk factors. Second, we compared circulating inflammatory, antioxidant capacity, and vascular biomarkers between the groups. The groups were not significantly different (P > .05) on apoptosis, hydrogen peroxide, hydroxyl radical antioxidant capacity, and nuclear factor κ-light-chain enhancer of activated B cells. Circulating tumor necrosis factor α (TNF-α; P = .016) and interleukin 8 (IL-8; P = .006) were higher in the PAD group, whereas vascular endothelial growth factor A (VEGF-A; P = .023) was lower. The PAD does not impair the endothelium beyond that which already occurs from comorbid conditions and cardiovascular risk factors in patients with claudication. However, patients with PAD have lower circulating VEGF-A than the control group and higher circulating inflammatory parameters of TNF-α and IL-8.

  11. Initial trial of argon ion laser endarterectomy for peripheral vascular disease

    SciTech Connect

    Eugene, J.; Ott, R.A.; Baribeau, Y.; McColgan, S.J.; Berns, M.W.; Mason, G.R. )

    1990-08-01

    In the initial of open laser endarterectomy, 16 patients underwent 18 reconstructions for claudication (13 patients), rest pain (3 patients), and gangrene (2 patients). The mean (+/- SD) preoperative ankle arm index was 0.53 +/- 0.18. The laser endarterectomies were aorto-bi-iliac (1 patient), iliac (1 patient), superficial femoral (7 patients), profunda femoral (7 patients), and popliteal-posterior tibial (2 patients). All operations included surgical exposure, vascular control, administration of heparin, and an arteriotomy. Atheromas were dissected from arteries with argon ion laser radiation (power, 1.0 W). End points were welded with laser light. Arteries were closed primarily. The laser endarterectomies were 6 to 60 cm long and required 168 J to 2447.5 J. All patients had symptomatic relief, with a postoperative ankle arm index of 0.97 +/- 0.10. There were no arterial perforations from laser radiation. Surgical complications included early thrombosis requiring thrombectomy (3 patients) and hematoma requiring evacuation (1 patient). The laser endarterectomies have an 88% patency at 1 year. Open endarterectomy can be performed with laser radiation. A larger clinical trial is necessary to define the indications for laser endarterectomy in peripheral vascular disease.

  12. Feasibility and Safety of Robotic Peripheral Vascular Interventions: Results of the RAPID Trial.

    PubMed

    Mahmud, Ehtisham; Schmid, Florian; Kalmar, Peter; Deutschmann, Hannes; Hafner, Franz; Rief, Peter; Brodmann, Marianne

    2016-10-10

    The goal of this study was to evaluate the feasibility and safety of a robotic-assisted platform (CorPath 200, Corindus Vascular Robotics, Waltham, Massachusetts) for treating peripheral artery disease. A robotic-assisted platform for percutaneous coronary intervention is available for treating coronary artery disease. In this prospective single-arm trial, patients with symptomatic peripheral artery disease (Rutherford class 2 to 5) affecting the femoropoplital artery were enrolled. Endpoints evaluated were: 1) device technical success, defined as successful cannulation of the target vessel with the robotic system; 2) device safety, defined as absence of device related serious adverse event (hospitalization, prolonged hospitalization, life threatening, or resulted in death); and 3) clinical procedural success, defined as <50% residual stenosis without an unplanned switch to manual assistance or device-related serious adverse event in the periprocedural period. The study enrolled 20 subjects (65.5 ± 9.3 years of age; 70% male) with primarily Rutherford class 2 to 3 (90%) symptoms. A total of 29 lesions (lesion length: 33.1 ± 15.5 mm) were treated with the majority (89.7%) being located in the superficial femoral artery. Device technical success, safety and clinical procedural success were all 100% with provisional stenting required in 34.5% of lesions. Fluoroscopy time (7.1 ± 3.2 min) and contrast use (73.3 ± 9.2 ml) compared favorably with studies in similar patient cohorts. There were no adverse events associated with the use of the robotic system. These data demonstrate the feasibility and safety of using a robotic-assisted platform for performing peripheral arterial revascularization. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Efficacy and safety of negative pressure wound therapy for Szilagyi grade III peripheral vascular graft infection.

    PubMed

    Cheng, Hsu-Tang; Hsu, Yung-Chang; Wu, Chao-I

    2014-12-01

    A best evidence topic in vascular surgery was written according to a structured protocol. The question addressed was whether it is safe and effective to use negative pressure wound therapy (NPWT) for Szilagyi grade III (i.e. the arterial implant proper involved in the infection) peripheral vascular graft infection. Altogether, 69 papers were found using the reported search. From the search results, reference lists of potentially eligible studies and related citations in PubMed, seven papers represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. In the only randomized, controlled trial that compared NPWT (n = 10) and alginate dressing change (n = 10), the NPWT group demonstrated shorter time to full skin epithelialization (median 57 vs 104 days; P = 0.026). In the other six case series, the recruited case number ranged from 12 to 72. The mode of NPWT varied among the included studies, with the majority using a continuous negative pressure of 125 mmHg. One study combined NPWT and sartorius myoplasty, another used sartorius myoplasty in selected cases and others did not. The mean duration of using NPWT ranged from 14.2 to 43 days. The mean duration to achieve complete wound healing ranged from 24 (the study with sartorius myoplasty) to 51 days. The NPWT treatment failure rate ranged from 0 (the study with sartorius myoplasty) to 25%. The major complication of NPWT was bleeding and the incidence rate was reported to be <10%. We conclude that the amount of evidence for recommending NPWT alone as the first-line treatment for Szilagyi grade III peripheral vascular graft infection is small with only one small-sized randomized controlled trial demonstrating that NPWT alone is superior to alginate dressing change in shortening the time to complete wound healing by 2 months. Limited evidence (case series with >1 year of

  14. Real-time Doppler-based arterial vascular impedance and peripheral pressure-flow loops: a pilot study.

    PubMed

    Thiele, Robert H; Bartels, Karsten; Esper, Stephen; Ikeda, Keita; Gan, Tong-Joo

    2014-02-01

    Arterial pressure-flow loops and vascular impedance provide additional data that could be used to assess the hemodynamic effects of therapeutic interventions in anesthetized patients. To evaluate the utility of such an approach, the authors sought to design a device that combines flow waveforms from an esophageal Doppler probe and pressure waveforms from a peripheral artery to produce real-time pressure-flow loops and estimates of arterial vascular impedance. Prospective, cohort study. Single center, university-based teaching hospital. Patients undergoing surgery in whom the attending anesthesiologist had opted to place an esophageal Doppler probe and a peripheral arterial catheter for hemodynamic monitoring. This was a non-interventional study designed to record pressure-flow loops and arterial vascular impedance intraoperatively using a novel, noninvasive device. Pressure-flow loops and arterial vascular impedance were measured noninvasively using radial artery pressure and descending thoracic aorta flow waveforms in real time. Real-time arterial vascular impedance and peripheral pressure-volume loops can be determined using available monitoring devices. Technical feasibility of this technology in patients is a crucial first step to permit meaningful evaluation of the clinical value of this approach for accurate determination of complex hemodynamic indices and, eventually, improvement of outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Vascular function and short-term exposure to fine particulate air pollution.

    PubMed

    Pope, C Arden; Hansen, Jaron C; Kuprov, Roman; Sanders, Matthew D; Anderson, Michael N; Eatough, Delbert J

    2011-08-01

    Exposure to fine particulate air pollution has been implicated as a risk factor for cardiopulmonary disease and mortality. Proposed biological pathways imply that particle-induced pulmonary and systemic inflammation play a role in activating the vascular endothelium and altering vascular function. Potential effects of fine particulate pollution on vascular function are explored using controlled chamber exposure and uncontrolled ambient exposure. Research subjects included four panels with a total of 26 healthy nonsmoking young adults. On two study visits, at least 7 days apart, subjects spent 3 hr in a controlled-exposure chamber exposed to 150-200 microg/m3 of fine particles generated from coal or wood combustion and 3 hr in a clean room, with exposure and nonexposure periods alternated between visits. Baseline, postexposure, and post-clean room reactive hyperemia-peripheral arterial tonometry (RH-PAT) was conducted. A microvascular responsiveness index, defined as the log of the RH-PAT ratio, was calculated. There was no contemporaneous vascular response to the few hours of controlled exposure. Declines in vascular response were associated with elevated ambient exposures for the previous 2 days, especially for female subjects. Cumulative exposure to real-life fine particulate pollution may affect vascular function. More research is needed to determine the roles of age and gender, the effect of pollution sources, the importance of cumulative exposure over a few days versus a few hours, and the lag time between exposure and response.

  16. Mitochondrial Respiration after One Session of Calf Raise Exercise in Patients with Peripheral Vascular Disease and Healthy Older Adults.

    PubMed

    van Schaardenburgh, Michel; Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J R

    2016-01-01

    Mitochondria are essential for energy production in the muscle cell and for this they are dependent upon a sufficient supply of oxygen by the circulation. Exercise training has shown to be a potent stimulus for physiological adaptations and mitochondria play a central role. Whether changes in mitochondrial respiration are seen after exercise in patients with a reduced circulation is unknown. The aim of the study was to evaluate the time course and whether one session of calf raise exercise stimulates mitochondrial respiration in the calf muscle of patients with peripheral vascular disease. One group of patients with peripheral vascular disease (n = 11) and one group of healthy older adults (n = 11) were included. Patients performed one session of continuous calf raises followed by 5 extra repetitions after initiation of pain. Healthy older adults performed 100 continuous calf raises. Gastrocnemius muscle biopsies were collected at baseline and 15 minutes, one hour, three hours and 24 hours after one session of calf raise exercise. A multi substrate (octanoylcarnitine, malate, adp, glutamate, succinate, FCCP, rotenone) approach was used to analyze mitochondrial respiration in permeabilized fibers. Mixed-linear model for repeated measures was used for statistical analyses. Patients with peripheral vascular disease have a lower baseline respiration supported by complex I and they increase respiration supported by complex II at one hour post-exercise. Healthy older adults increase respiration supported by electron transfer flavoprotein and complex I at one hour and 24 hours post-exercise. Our results indicate a shift towards mitochondrial respiration supported by complex II as being a pathophysiological component of peripheral vascular disease. Furthermore exercise stimulates mitochondrial respiration already after one session of calf raise exercise in patients with peripheral vascular disease and healthy older adults. ClinicalTrials.gov NCT01842412.

  17. Mitochondrial Respiration after One Session of Calf Raise Exercise in Patients with Peripheral Vascular Disease and Healthy Older Adults

    PubMed Central

    Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J. R.

    2016-01-01

    Purpose Mitochondria are essential for energy production in the muscle cell and for this they are dependent upon a sufficient supply of oxygen by the circulation. Exercise training has shown to be a potent stimulus for physiological adaptations and mitochondria play a central role. Whether changes in mitochondrial respiration are seen after exercise in patients with a reduced circulation is unknown. The aim of the study was to evaluate the time course and whether one session of calf raise exercise stimulates mitochondrial respiration in the calf muscle of patients with peripheral vascular disease. Methods One group of patients with peripheral vascular disease (n = 11) and one group of healthy older adults (n = 11) were included. Patients performed one session of continuous calf raises followed by 5 extra repetitions after initiation of pain. Healthy older adults performed 100 continuous calf raises. Gastrocnemius muscle biopsies were collected at baseline and 15 minutes, one hour, three hours and 24 hours after one session of calf raise exercise. A multi substrate (octanoylcarnitine, malate, adp, glutamate, succinate, FCCP, rotenone) approach was used to analyze mitochondrial respiration in permeabilized fibers. Mixed-linear model for repeated measures was used for statistical analyses. Results Patients with peripheral vascular disease have a lower baseline respiration supported by complex I and they increase respiration supported by complex II at one hour post-exercise. Healthy older adults increase respiration supported by electron transfer flavoprotein and complex I at one hour and 24 hours post-exercise. Conclusion Our results indicate a shift towards mitochondrial respiration supported by complex II as being a pathophysiological component of peripheral vascular disease. Furthermore exercise stimulates mitochondrial respiration already after one session of calf raise exercise in patients with peripheral vascular disease and healthy older adults. Trial

  18. The use of ultrasound for peripheral IV placement by vascular access team nurses at a tertiary children's hospital.

    PubMed

    Elkhunovich, Marsha; Barreras, Joanna; Bock Pinero, Valerie; Ziv, Nurit; Vaiyani, Aisha; Mailhot, Thomas

    2017-01-18

    Children receiving treatment in the hospital frequently require intravenous (IV) access. Placement of short peripheral catheters can be painful and challenging especially in those children who have difficult access. Many children's hospitals have teams of specialized vascular access nurses experienced in peripheral catheter insertion, and at times use vein visualization devices, including ultrasound (US), to assist in peripheral IV placement. Our objectives were to describe the prevalence and success rate of US-guided peripheral IV placement by vascular access team nurses at a single tertiary children's hospital. We retrospectively reviewed quality assurance data kept by our institution's vascular access team between February, 2014 and March, 2014. Data extracted included: age, gender, number of attempts, if difficult, if ultimately successful and modality used to aid IV placement. Descriptive statistics and chi-square tests were used to analyze and report data. There were 1111 patient-nurse encounters reported for peripheral IV placement over a six-week period, and a total of 1579 attempts. Ultimately 84% of the patients had successful IV placement. Overall, visualization and palpation was the most frequently used technique (50.1%), followed by near-infrared light (40.6%), US (8.0%), and transillumination (1.3%). The success rate of US (60% overall and 59.2% difficult) was not significantly different from other advanced visualization techniques. Vascular access team nurses use US infrequently for peripheral IV placement, including in children with difficult access. Methods to increase its skillful use in difficult access patients and improve successful IV placements should be explored.

  19. Segmental analysis of indocyanine green pharmacokinetics for the reliable diagnosis of functional vascular insufficiency

    NASA Astrophysics Data System (ADS)

    Kang, Yujung; Lee, Jungsul; An, Yuri; Jeon, Jongwook; Choi, Chulhee

    2011-03-01

    Accurate and reliable diagnosis of functional insufficiency of peripheral vasculature is essential since Raynaud phenomenon (RP), most common form of peripheral vascular insufficiency, is commonly associated with systemic vascular disorders. We have previously demonstrated that dynamic imaging of near-infrared fluorophore indocyanine green (ICG) can be a noninvasive and sensitive tool to measure tissue perfusion. In the present study, we demonstrated that combined analysis of multiple parameters, especially onset time and modified Tmax which means the time from onset of ICG fluorescence to Tmax, can be used as a reliable diagnostic tool for RP. To validate the method, we performed the conventional thermographic analysis combined with cold challenge and rewarming along with ICG dynamic imaging and segmental analysis. A case-control analysis demonstrated that segmental pattern of ICG dynamics in both hands was significantly different between normal and RP case, suggesting the possibility of clinical application of this novel method for the convenient and reliable diagnosis of RP.

  20. Structural and functional imaging for vascular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Buhong; Gu, Ying; Wilson, Brian C.

    2017-02-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.

  1. RECOVERY OF VASCULAR FUNCTION AFTER EXPOSURE TO A SINGLE BOUT OF SEGMENTAL VIBRATION

    PubMed Central

    Krajnak, Kristine; Waugh, Stacey; Miller, G. Roger; Johnson, Claud

    2015-01-01

    Work rotation schedules may be used to reduce the negative effects of vibration on vascular function. This study determined how long it takes vascular function to recover after a single exposure to vibration in rats (125 Hz, acceleration 5g). The responsiveness of rat-tail arteries to the vasoconstricting factor UK14304, an α2C-adrenoreceptor agonist, and the vasodilating factor acetylcholine (ACh) were measured ex vivo 1, 2, 7, or 9 d after exposure to a single bout of vibration. Vasoconstriction induced by UK14304 returned to control levels after 1 d of recovery. However, re-dilation induced by ACh did not return to baseline until after 9 d of recovery. Exposure to vibration exerted prolonged effects on peripheral vascular function, and altered vascular responses to a subsequent exposure. To optimize the positive results of work rotation schedules, it is suggested that studies assessing recovery of vascular function after exposure to a single bout of vibration be performed in humans. PMID:25072825

  2. The Use of Smart Phone Thermal Imaging for Assessment of Peripheral Perfusion in Vascular Patients.

    PubMed

    Wallace, Gabriel A; Singh, Niten; Quiroga, Elina; Tran, Nam T

    2017-09-05

    Ankle brachial index (ABI) is a reliable method to evaluate extremity perfusion but can be prohibitive to obtain secondary to patient discomfort or extremity trauma. This study investigates smart phone based forward looking infrared imaging (FLIR) to assess peripheral perfusion using thermal ABI (tABI). ABI's were measured by a certified vascular laboratory. Thermographs of each extremity (hands/feet) were obtained and maximum surface temperature recorded. tABI was calculated by dividing the lower extremity (LE) temperature by the upper extremity (UE). ABI and tABI were compared using Pearson's correlation and Bland-Altman plot. Twenty three patients (45 limbs) had ABI's and thermographs recorded on the same day. Median ABI was 0.89 (range 0.33-1.46, IQR 0.4). Median LE temperature was 83.0°F (range 60.7-96.9°F, IQR 14.1). Median UE temperature was 91.2°F (range 81.9-94.6°F, IQR 3.4). Median tABI was 0.93 (range 0.33-1.4, IQR 0.2). Positive correlation was seen between ABI and tABI with Pearson analysis(r = 0.83, p < .0001) and Bland Altman (bias -0.01, LOA -0.13 - -0.12). Thermal imaging correlates with ABI in the evaluation of extremity perfusion. Smart phone based FLIR can be utilized to determine peripheral perfusion in clinical settings where ABI is difficult to obtain. Copyright © 2017. Published by Elsevier Inc.

  3. Age and sex influence the balance between maximal cardiac output and peripheral vascular reserve.

    PubMed

    Ridout, Samuel J; Parker, Beth A; Smithmyer, Sandra L; Gonzales, Joaquin U; Beck, Kenneth C; Proctor, David N

    2010-03-01

    We evaluated the influence of age and sex on the relationship between central and peripheral vasodilatory capacity. Healthy men (19 younger, 12 older) and women (17 younger, 17 older) performed treadmill and knee extensor exercise to fatigue on separate days while maximal cardiac output (Q, acetylene uptake) and peak femoral blood flow (FBF, Doppler ultrasound) were measured, respectively. Maximal Q was reduced with age similarly in men (Y: 23.6 +/- 2.7 vs. O: 17.4 +/- 3.5 l/min; P < 0.05) and women (Y: 17.7 +/- 1.9 vs. O: 12.3 +/- 1.6 l/min; P < 0.05). Peak FBF was similar between younger (Y) and older (O) men (Y: 2.1 +/- 0.5 vs. O: 2.2 +/- 0.7 l/min) but was lower in older women compared with younger women (Y: 1.9 +/- 0.4 vs. O: 1.4 +/- 0.4 l/min; P < 0.05). Maximal Q was positively correlated with peak FBF in men (Y: r = 0.55, O: r = 0.74; P < 0.05) but not in women (Y: r = 0.34, O: r = 0.10). Normalization of cardiac output to appendicular muscle mass and peak FBF to quadriceps mass reduced the correlation between these variables in younger men (r = 0.30), but the significant association remained in older men (r = 0.68; P < 0.05), with no change in women. These data suggest that 1) aerobic capacity is associated with peripheral vascular reserve in men but not women, and 2) aging is accompanied by a more pronounced sex difference in this relationship.

  4. The inter-arm blood pressure difference and peripheral vascular disease: cross-sectional study.

    PubMed

    Clark, Christopher E; Campbell, John L; Powell, Roy J; Thompson, John F

    2007-10-01

    A blood pressure (BP) difference between the upper limbs is often encountered in primary care. Knowledge of its prevalence and importance in the accurate measurement of BP is poor, representing a source of error. Current hypertension guidelines do not emphasize this. To establish the prevalence of an inter-arm blood pressure difference (IAD) and explore its association with other indicators of peripheral vascular disease (PVD) in a hypertensive primary care population. This was a cross-sectional study. Primary care, one rural general practice, was the setting of the study. The methods were controlled simultaneous measurement of brachial BPs, ankle-brachial pressure index (ABPI) and tiptoe stress testing in 94 subjects. In all, 18 of 94 [19%, 95% confidence interval (CI) 11-27%] subjects had mean systolic inter-arm difference (sIAD) > or =10 mmHg and seven of 94 (7%, 95% CI 2-12%) had mean diastolic inter-arm difference (dIAD) > or =10 mmHg. Nineteen of 91 (20%, 95% CI 12-28%) had a reduced ABPI <0.9. There was negative correlation between systolic (Pearson's correlation coefficient - 0.378; P = 0.01) and diastolic (Pearson's correlation coefficient - 0.225; P = 0.05) magnitudes of IAD with ABPI. On tiptoe testing, 9/90 subjects (10%, 95% CI 4-16%) had a pressure drop > or =20%. An IAD and asymptomatic PVD are common in a primary care hypertensive population. Magnitude of the IAD is inversely correlated with ABPI, supporting the hypotheses that IADs are causally linked to PVD, and that IAD is a useful marker for the presence of PVD. Consequently, detection of an IAD should prompt the clinician to screen subjects for other signs of vascular disease and target them for aggressive cardiovascular risk factor modification.

  5. Wall shear stress and near-wall convective transport: Comparisons with vascular remodelling in a peripheral graft anastomosis

    NASA Astrophysics Data System (ADS)

    Gambaruto, A. M.; Doorly, D. J.; Yamaguchi, T.

    2010-08-01

    Fluid dynamic properties of blood flow are implicated in cardiovascular diseases. The interaction between the blood flow and the wall occurs through the direct transmission of forces, and through the dominating influence of the flow on convective transport processes. Controlled, in vitro testing in simple geometric configurations has provided much data on the cellular-level responses of the vascular walls to flow, but a complete, mechanistic explanation of the pathogenic process is lacking. In the interim, mapping the association between local haemodynamics and the vascular response is important to improve understanding of the disease process and may be of use for prognosis. Moreover, establishing the haemodynamic environment in the regions of disease provides data on flow conditions to guide investigations of cellular-level responses. This work describes techniques to facilitate comparison between the temporal alteration in the geometry of the vascular conduit, as determined by in vivo imaging, with local flow parameters. Procedures to reconstruct virtual models from images by means of a partition-of-unity implicit function formulation, and to align virtual models of follow-up scans to a common coordinate system, are outlined. A simple Taylor series expansion of the Lagrangian dynamics of the near-wall flow is shown to provide both a physical meaning to the directional components of the flow, as well as demonstrating the relation between near-wall convection in the wall normal direction and spatial gradients of the wall shear stress. A series of post-operative follow-up MRI scans of two patient cases with bypass grafts in the peripheral vasculature are presented. These are used to assess how local haemodynamic parameters relate to vascular remodelling at the location of the distal end-to-side anastomosis, i.e. where the graft rejoins the host artery. Results indicate that regions of both low wall shear stress and convective transport towards the wall tend to be

  6. Vascular precursors: origin, regulation and function

    USDA-ARS?s Scientific Manuscript database

    In this miniseries, we discuss the phenotype, origin, and specialized microenvironment (niche) of distinct populations of stem and progenitor cells that exhibit vascular potential. Their usefulness and effectiveness for clinical therapies are also described. We have learned a great deal about post...

  7. The function of vascular endothelial growth factor.

    PubMed

    Nieves, Bonnie J; D'Amore, Patricia A; Bryan, Brad A

    2009-01-01

    Vascular endothelial growth factor (VEGF) is considered the master regulator of angiogenesis during growth and development, as well as in disease states such as cancer, diabetes, and macular degeneration. This review details our current understanding of VEGF signaling and discusses the benefits and unexpected side effects of promising anti-angiogenic therapeutics that are currently being used to inhibit neovacularization in tumors.

  8. Enhanced vascular function after acute fat-rich snacking in healthy males.

    PubMed

    Liu, Yibin; Daleke, David L; Fly, Alyce D

    2012-08-01

    Diets high in fat are associated with vascular dysfunction. Frequent snacking may exacerbate this problem by extending the postprandial state. We hypothesized that repeated fat-rich mixed snacks would impair peripheral endothelial function and increase oxidative stress, a purported causal factor. Second, we hypothesized that feeding a quantity of snack based on the subject's body size would not cause different effects from feeding a fixed or constant size snack. A crossover design was used where 10 healthy males followed 2 repeated-snack regimens (fixed and variable based on body surface area), 1 week apart. Each regimen consisted of 2 snacks, fed 4 hours apart (0 and 4 hours). Markers of vascular function (reactive hyperemia index [RHI]), oxidative stress, and antioxidant capacity were measured before and after each snack. Peripheral vascular function improved from fasting to 2 hours after snack 1 (RHI(2h-0h), P = .010), but the change before and after snack 2, RHI(6h-4h), was negative (P = .026), indicating reduced endothelial function after repeated snacking. The oxidative stress marker changed over time (P = .043), increasing after snack 1 and decreasing before snack 2, with no change after snack 2. The antioxidant marker increased 2 hours after each snack (P = .003). Responses to fixed snacks over time were not different from variable snacks, although power was low; the effect size was large for antioxidant capacity, medium for oxidative stress, and small for RHI. Snacking after fasting resulted in a transiently improved peripheral vascular response that disappeared with a second snack. Antioxidant capacity appeared to help limit oxidative stress from repeated snacking in these healthy male subjects.

  9. The effects of acupuncture, electroneedling and transcutaneous electrical stimulation therapies on peripheral haemodynamic functioning.

    PubMed

    Balogun, J A; Biasci, S; Han, L

    1998-02-01

    For decades, acupuncture and electroneedling treatments have been used, predominately in the Eastern countries, in the management of patients with compromised cardiovascular and digestive functions. Similarly, neuromuscular electrical stimulation is commonly employed in Western countries to modulate pain, augment muscle strength and enhance blood flow in patients with peripheral vascular disease. Many rehabilitation specialists believe that electrical stimulation of acupuncture points with surface electrodes can elicit the same physiological and therapeutic effects as those produced by acupuncture and electroneedling techniques. Electrical stimulation of acupuncture points with surface electrodes is a relatively new and non-invasive treatment with potential clinical application in the management of patients with peripheral vascular disease. Presently, there are controversies in the literature as to the effects of traditional acupuncture, electroneedling and neuromuscular electrical stimulation treatments on peripheral haemodynamic functioning. This paper provides a detailed review of published studies on the above promising therapies. An attempt was made to clarify the pitfalls in the extant literature and delineate the fact from the fiction. Areas for further research were proposed.

  10. Impaired vascular endothelial function in patients with restless legs syndrome: a new aspect of the vascular pathophysiology.

    PubMed

    Koh, Seung Yon; Kim, Min Seung; Lee, Sun Min; Hong, Ji Man; Yoon, Jung Han

    2015-12-15

    Restless legs syndrome (RLS) is a common sleep disorder in which patients feel unpleasant leg sensations and the urge to move their legs during rest, particularly at night. Leg movement improves these symptoms. Although several studies have demonstrated an association between cardiovascular disease and RLS, the mechanisms underlying this relationship remain unclear. Recent studies have shown changes in the peripheral microvasculature, including altered blood flow and capillary tortuosity, and peripheral hypoxia. Vascular endothelial dysfunction can be assessed noninvasively with ultrasound measurements of brachial artery flow-mediated dilatation (FMD). Therefore, this study investigated FMD in RLS patients to determine the involvement of microvascular alterations in this disorder. The study enrolled 25 drug-naïve RLS patients and 25 sex- and age-matched controls and compared the FMD values of the two groups. RLS was diagnosed according to the criteria of the International Restless Legs Syndrome Study Group. FMD was significantly lower in the RLS patients (6.6 ± 1.2%) compared to the controls (8.4 ± 1.8%; p<0.05) and the RLS patients showed a weak, negative correlation between RLS severity and FMD (r=-0.419, p=0.04). Multivariate linear regression analysis revealed that RLS (B=-1.87, 95% confidence interval [CI] -2.72 to -1.02; p<0.001) and age (B=-0.06; 95% CI -0.12 to -0.02; p<0.001) were significantly and inversely correlated with FMD. This study demonstrated that RLS patients have poorer vascular endothelial function than normal healthy subjects and provides further evidence supporting the involvement of peripheral systems in the generation of RLS. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Complex nonlinear autonomic nervous system modulation link cardiac autonomic neuropathy and peripheral vascular disease.

    PubMed

    Khalaf, Kinda; Jelinek, Herbert F; Robinson, Caroline; Cornforth, David J; Tarvainen, Mika P; Al-Aubaidy, Hayder

    2015-01-01

    Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI) and cardiovascular disease (CVD) as been reported. Whether an association between vascular calcification-characterized by high ABPI and a different pathophysiology-is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilizing heart rate variability (HRV). Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-min electrocardiogram. ABPI data were divided into normal (n = 101), low (n = 67) and high (n = 66) and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p < 0.05). A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.

  12. Inorganic nitrite and chronic tissue ischaemia: a novel therapeutic modality for peripheral vascular diseases

    PubMed Central

    Pattillo, Christopher B.; Bir, Shyamal; Rajaram, Venkat; Kevil, Christopher G.

    2011-01-01

    Ischaemic tissue damage represents the ultimate form of tissue pathophysiology due to cardiovascular disease, which is the leading cause of morbidity and mortality across the globe. A significant amount of basic research and clinical investigation has been focused on identifying cellular and molecular pathways to alleviate tissue damage and dysfunction due to ischaemia and subsequent reperfusion. Over many years, the gaseous molecule nitric oxide (NO) has emerged as an important regulator of cardiovascular health as well as protector against tissue ischaemia and reperfusion injury. However, clinical translation of NO therapy for these pathophysiological conditions has not been realized for various reasons. Work from our laboratory and several others suggests that a new form of NO-associated therapy may be possible through the use of nitrite anion (sodium nitrite), a prodrug which can be reduced to NO in ischaemic tissues. In this manner, nitrite anion serves as a highly selective NO donor in ischaemic tissues without substantially altering otherwise normal tissue. This surprising and novel discovery has reinvigorated hopes for effectively restoring NO bioavailability in vulnerable tissues while continuing to reveal the complexity of NO biology and metabolism within the cardiovascular system. However, some concerns may exist regarding the effect of nitrite on carcinogenesis. This review highlights the emergence of nitrite anion as a selective NO prodrug for ischaemic tissue disorders and discusses the potential therapeutic utility of this agent for peripheral vascular disease. PMID:20851809

  13. Assessment by dipyridamole-thallium-201 myocardial scintigraphy of coronary risk before peripheral vascular surgery

    SciTech Connect

    Sachs, R.N.; Tellier, P.; Larmignat, P.; Azorin, J.; Fischbein, L.; Beaudet, B.; Cadilhac, P.; Cupa, M.; De Saint Florent, G.; Vulpillat, M.

    1988-05-01

    From October 1983 to January 1985, 46 patients (38 men and 8 women; average age, 60 years; range, 37 to 83 years) underwent peripheral vascular surgery of either the internal carotid artery or the arteries of the lower limbs. Each patient had a thorough clinical examination, an ECG, and a dipyridamole-thallium-201 myocardial scan before operation. On the basis of results, they were divided into two groups: 20 patients with and 26 patients without chronic ischemic heart disease. Three major cardiac events were noted during or after a period of 1 month after surgery: There were two deaths due to cardiac ischemic events and one patient had postoperative unstable angina pectoris. These three patients were classified in the coronary group (NS). When the patients were classified on the basis of whether or not there was thallium redistribution on serial images after infusion of dipyridamole, 14 with redistribution and 32 without redistribution were noted. The three patients who had major cardiac events were in the former group (p less than 0.04). Our data suggest that patients in whom redistribution occurs have a high incidence of postoperative ischemic events. These patients should be considered for particular preoperative coronary care to avoid major postoperative cardiac events and to increase chances of survival.

  14. Neuronal nitric oxide synthase inhibition and regional sympathetic nerve discharge: implications for peripheral vascular control.

    PubMed

    Copp, Steven W; Hirai, Daniel M; Sims, Gabrielle E; Fels, Richard J; Musch, Timothy I; Poole, David C; Kenney, Michael J

    2013-05-01

    Neuronal nitric oxide (NO) synthase (nNOS) inhibition with systemically administered S-methyl-l-thiocitrulline (SMTC) elevates mean arterial pressure (MAP) and reduces rat hindlimb skeletal muscle and renal blood flow. We tested the hypothesis that those SMTC-induced cardiovascular effects resulted, in part, from increased sympathetic nerve discharge (SND). MAP, HR, and lumbar and renal SND (direct nerve recordings) were measured in 9 baroreceptor (sino-aortic)-denervated rats for 20min each following both saline and SMTC (0.56mg/kg i.v.). SMTC increased MAP (peak ΔMAP: 50±8mmHg, p<0.01) compared to saline. Lumbar and renal SND were not different between saline and SMTC conditions at any time (p>0.05). The ΔSND between saline and SMTC conditions for the lumbar and renal nerves were not different from zero (peak ΔSND, lumbar: 2.0±6.8%; renal: 9.7±9.0%, p>0.05 versus zero for both). These data support that SMTC-induced reductions in skeletal muscle and renal blood flow reported previously reflect peripheral nNOS-derived NO vascular control as opposed to increased sympathetic vasoconstriction. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. β-Blockers and Vascular Hemodynamics in Patients With Peripheral Arterial Disease.

    PubMed

    Schlager, Oliver; Gajdosova Kovacicova, Ludmila; Senn, Oliver; Amann-Vesti, Beatrice; Wilkinson, Ian B; Jacomella, Vincenzo; Husmann, Marc

    2016-12-01

    Aortic augmentation index (AIx) is a marker of central aortic pressure burden and is modulated by antihypertensive drugs. In patients with peripheral arterial disease (PAD) undergoing antihypertensive treatment, aortic pressures parameters, heart rate-adjusted augmentation index (AIx75), and unadjusted AIx were determined. The (aortic) systolic and diastolic blood pressure did not differ between PAD patients who were taking β-blockers (n=61) and those who were not taking β-blockers (n=80). In patients taking β-blockers, augmentation pressure and pulse pressure were higher than in patients who did not take β-blockers (augmentation pressure, P=.02; pulse pressure, P=.005). AIx75 was lower in PAD patients taking β-blockers than in patients not taking β-blockers (P=.04), while the AIx did not differ between PAD patients taking and not taking β-blockers. The present study demonstrates that β-blockers potentially affect markers of vascular hemodynamics in patients with PAD. Because these markers are surrogates of cardiovascular risk, further studies are warranted to clarify the impact of selective β-blocker treatment on clinical outcome in patients with PAD.

  16. Exercise and vascular function: how much is too much?

    PubMed

    Durand, Matthew J; Gutterman, David D

    2014-07-01

    Exercise is a powerful therapy for preventing the onset of and slowing the progression of cardiovascular disease. Increased shear stress during exercise improves vascular homeostasis by both decreasing reactive oxygen species and increasing nitric oxide bioavailability in the endothelium. While these observations are well accepted as they apply to individuals at risk for cardiovascular disease, less is known about how exercise, especially intense exercise, affects vascular function in healthy individuals. This review highlights examples of how vascular function can paradoxically be impaired in otherwise healthy individuals by extreme levels of exercise, with a focus on the causative role that reactive oxygen species play in this impairment.

  17. Mechanical Properties of High Entropy Alloy Al0.1CoCrFeNi for Peripheral Vascular Stent Application.

    PubMed

    Alagarsamy, Karthik; Fortier, Aleksandra; Komarasamy, Mageshwari; Kumar, Nilesh; Mohammad, Atif; Banerjee, Subhash; Han, Hai-Chao; Mishra, Rajiv S

    2016-12-01

    High entropy alloys (HEAs) are new class of metallic materials with five or more principal alloying elements. Due to this distinct concept of alloying, the HEAs exhibit unique properties compared to conventional alloys. The outstanding properties of HEAs include increased strength, superior wear resistance, high temperature stability, increased fatigue properties, good corrosion, and oxidation resistance. Such characteristics of HEAs have generated significant interest among the scientific community. However, their applications are yet to be explored. This paper discusses the mechanical behavior and microstructure of Al0.1CoCrFeNi HEA subjected to thermo-mechanical processing, and its potential application in peripheral vascular stent implants that are prone to high failure rates. Results show that Al0.1CoCrFeNi alloy possesses characteristics that compare well against currently used stent materials and it can potentially find use in peripheral vascular stent implants and extend their life-cycle.

  18. Percutaneous continuous aortic flow augmentation for cardiac recovery in a chronic heart failure patient with peripheral vascular disease.

    PubMed

    Saberin, Amir; Mueller, Bettina; Konstam, Marvin A; Wagner, Daniel R

    2006-01-01

    Peripheral vascular disease is an obstacle to the use of continuous aortic flow augmentation (CAFA). The authors used CAFA in a patient with a 50% stenosis of the left iliac artery. Five hours after initiating therapy, flow rates dropped from 1.47 L/min to 0.2 L/min, possibly due to obstruction around the inflow cannula near the site of the iliac artery stenosis. Flow was stabilized by adequate fluid infusion and successfully restored by slightly withdrawing the tip of the inflow catheter. This finding suggests that peripheral vascular disease is a relative-not an absolute-contraindication for CAFA, but requires close monitoring of flow during CAFA therapy.

  19. Left ventricular long axis disturbances as predictors for thallium perfusion defects in patients with known peripheral vascular disease

    PubMed Central

    Henein, M; Anagnostopoulos, C; Das, S; O'Sullivan, C; Underwood, S; Gibson, D

    1998-01-01

    Objective—To compare resting long axis echocardiography with adenosine thallium-201 emission tomography in detecting myocardial ischaemic abnormalities in patients before peripheral vascular surgery.
Design—A prospective and blinded preoperative examination of resting left ventricular minor and long axes and myocardial perfusion during adenosine vasodilatation using thallium-201 emission tomography.
Setting—A tertiary referral centre for cardiac and vascular disease equipped with invasive, non-invasive, and surgical facilities.
Subjects—65 patients (40 men) with significant peripheral vascular disease, mean (SD) age 63 (10) years, and 21 control subjects of similar age.
Methods—Segments were classified as normal, with fixed or reversible defects according to thallium-201 myocardial perfusion tomography. Systolic long axis abnormalities were either reduced excursion and/or abnormal shortening after A2, and diastolic abnormalities either delayed onset of lengthening > 80 ms and/or reduced peak lengthening rate < 4.5 cm/s. Segmental perfusion defects were compared with the equivalent long axes; anteroseptal for septal, inferoseptal for posterior, and lateral for left side giving a total of 195 segments.
Results—Systolic long axis abnormalities predicted fixed thallium defects (sensitivity 86%, specificity 87%, positive predictive value 0.78, negative predictive value 0.93, p < 0.001), and diastolic abnormalities correlated with reversible perfusion defects (sensitivity 90%, specificity 85%, positive predictive value 0.72, negative predictive value 0.95, p < 0.001). Echocardiography characteristics of the true and false positive segments were not different in the site or the extent of abnormalities.
Conclusion—Systolic long axis abnormalities predict fixed and diastolic reversible thallium perfusion defects in patients with peripheral vascular disease. Ventricular long axis may thus have a value as a screening test before

  20. Utility of Indocyanine Green Angiography in Arterial Selection during Free Flap Harvest in Patients with Severe Peripheral Vascular Disease

    PubMed Central

    Maxwell, Anne K.

    2016-01-01

    Summary: Indocyanine green angiography (SPY) was used to guide arterial selection for an anterolateral thigh free flap in the setting of severe peripheral vascular disease. SPY technology serves as a novel and sensitive intraoperative tool to predict decreased tissue perfusion from vessel sacrifice for flap harvest. Change in SPY time parameters measuring superficial blood flow distal to the donor site while temporarily intraoperatively clamping different possible arterial pedicles can optimize free flap design to avoid iatrogenic critical limb ischemia. PMID:27826489

  1. [Infectious risk related to the formation of multi-species biofilms (Candida - bacteria) on peripheral vascular catheters].

    PubMed

    Seghir, A; Boucherit-Otmani, Z; Sari-Belkharroubi, L; Boucherit, K

    2017-03-01

    The Candida yeasts are the fourth leading cause of death from systemic infections, the risk may increase when the infection also involves bacteria. Yeasts and bacteria can adhere to medical implants, such as peripheral vascular catheters, and form a multicellular structures called "mixed biofilms" more resistant to antimicrobials agents. However, the formation of mixed biofilms on implants leads to long-term persistent infections because they can act as reservoirs of pathogens that have poorly understood interactions.

  2. Carbon monoxide and bile pigments: surprising mediators of vascular function.

    PubMed

    Durante, William

    2002-08-01

    Heme oxygenase (HO) catalyzes the degradation of heme to CO, iron, and biliverdin. Biliverdin is subsequently metabolized to bilirubin by the enzyme biliverdin reductase. Although long considered irrelevant byproducts of heme catabolism, recent studies indicate that CO and the bile pigments biliverdin and bilirubin may play an important physiological role in the circulation. The release of CO by vascular cells may modulate blood flow and blood fluidity by inhibiting vasomotor tone, smooth muscle cell proliferation, and platelet aggregation. CO may also maintain the integrity of the vessel wall by directly blocking vascular cell apoptosis and by inhibiting the release of pro-apoptotic inflammatory cytokines from the vessel wall. These effects of CO are mediated via multiple pathways, including activation of soluble guanylate cyclase, potassium channels, p38 mitogen-activated protein kinase, or inhibition of cytochrome P450. In addition, the release of bile pigments may serve to sustain vascular homeostasis by protecting vascular cells from oxidative stress and by inhibiting the adhesion and infiltration of leukocytes into the vessel wall. Induction of HO-1 gene expression and the subsequent release of CO and bile pigments are observed in numerous vascular disorders and may provide an important adaptive mechanism to preserve homeostasis at sites of vascular injury. Thus, the HO-catalyzed formation of CO and bile pigments by vascular cells may function as a critical endogenous vasoprotective system. Moreover, pharmacological or genetic approaches targeting HO-1 to the vessel wall may represent a novel therapeutic approach in treating vascular disease.

  3. Safety of contemporary percutaneous peripheral arterial interventions in the elderly insights from the BMC2 PVI (Blue Cross Blue Shield of Michigan Cardiovascular Consortium Peripheral Vascular Intervention) registry.

    PubMed

    Plaisance, Benjamin R; Munir, Khan; Share, David A; Mansour, M Ashraf; Fox, James M; Bove, Paul G; Riba, Arthur L; Chetcuti, Stanley J; Gurm, Hitinder S; Grossman, P Michael

    2011-06-01

    This study sought to evaluate the effect of age on procedure type, periprocedural management, and in-hospital outcomes of patients undergoing lower-extremity (LE) peripheral vascular intervention (PVI). Surgical therapy of peripheral arterial disease is associated with significant morbidity and mortality in the elderly. There are limited data related to the influence of advanced age on the outcome of patients undergoing percutaneous LE PVI. Clinical presentation, comorbidities, and in-hospital outcomes of patients undergoing LE PVI in a multicenter, multidisciplinary registry were compared between 3 age groups: < 70 years, between 70 and 80 years, and ≥ 80 years (elderly group). In our cohort, 7,769 patients underwent LE PVI. The elderly patients were more likely to be female and to have a greater burden of comorbidities. Procedural success was lower in the elderly group (74.2% for age ≥ 80 years vs. 78% for age 70 to < 80 years and 81.4% in patients age < 70 years, respectively; p < 0.0001). Unadjusted rates of procedure-related vascular access complications, post-procedure transfusion, contrast-induced nephropathy, amputation, and major adverse cardiac events were higher in elderly patients. After adjustment for baseline covariates, the elderly patients were more likely to experience vascular access complications; however, advanced age was not found to be associated with major adverse cardiac events, transfusion, contrast-induced nephropathy, or amputation. Contemporary PVI can be performed in elderly patients with high procedural and technical success with low rates of periprocedural complications including mortality. These findings may support the notion of using PVI as a preferred revascularization strategy in the treatment of severe peripheral arterial disease in the elderly population. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. The effect of spinal versus general anesthesia on postoperative pain and analgesic requirements in patients undergoing peripheral vascular surgery.

    PubMed

    Nesek-Adam, Visnja; Rasić, Zarko; Schwarz, Dragan; Grizelj-Stojcić, Elvira; Rasić, Domagoj; Krstonijević, Zoran; Markić, Ana; Kovacević, Marko

    2012-12-01

    The optimal anesthetic technique for peripheral vascular surgery remains controversial. The purpose of this study was to evaluate the effect of spinal versus general anesthesia on postoperative pain, analgesic requirements and postoperative comfort in patients undergoing peripheral vascular surgery. A total of 40 patients scheduled for peripheral vascular surgery were randomly assigned to two groups of 20 patients each to receive general anesthesia (GA) or spinal anesthesia (SA). In GA group, anesthesia was induced using thiopental and fentanyl. Vecuronium was used for muscle relaxation. Anaesthesia was maintained with isoflurane and nitrous oxide. In the SA group, hyperbaric 0.5% bupivacaine was injected into the subarachnoid space. Postoperative pain was assessed for 24 hours by a visual analog scale during three assessment periods: 0-4, 4-12 and 12-24 h as well as analgesic requirements. Patients were also asked to assess their postoperative state as satisfactory or unsatisfactory with regard to the pain, side effects and postoperative nausea and vomiting. Visual analogue scale (VAS) pain score was significantly lower in the group SA compared with group GA. This effect was mainly due to the lower pain score during the first study period. The patients received general anesthesia also reported a significantly higher rate of unsatisfactory postoperative comfort than those receiving spinal anesthesia. We conclude that spinal anesthesia is superior to general anesthesia when considering patients' satisfaction, side effects and early postoperative analgesic management.

  5. Psychological distress and risk of peripheral vascular disease, abdominal aortic aneurysm, and heart failure: pooling of sixteen cohort studies.

    PubMed

    Batty, G David; Russ, Tom C; Stamatakis, Emmanuel; Kivimäki, Mika

    2014-10-01

    Examine the little-tested relation of psychological distress with peripheral vascular disease, abdominal aortic aneurysm, and heart failure. Pooling of raw data from 166,631 male and female participants in 16 UK-based cohort studies. Psychological distress was measured using the 12-item General Health Questionnaire. Peripheral vascular disease, abdominal aortic aneurysm, and heart failure events were based on death register linkage. During a mean follow-up 9.5 years there were 17,368 deaths of which 8625 were cardiovascular disease-related. Relative to the asymptomatic group (0 score), the highly distressed group (score 7-12) experienced an elevated risk of peripheral vascular disease (adjusted hazard ratio; 95% confidence interval: 3.39; 1.97, 5.82) and heart failure (1.76; 1.37, 2.26). Psychological distress was weakly related to the risk of death from abdominal aortic aneurysm. As anticipated, distress was associated with cardiovascular disease, coronary heart disease, and all strokes combined. In the present study, we provide new evidence of mental health-related cardiovascular disease presentations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. [Peripheral, central and functional vertigo syndromes].

    PubMed

    Strupp, M; Dieterich, M; Zwergal, A; Brandt, T

    2015-12-01

    Depending on the temporal course, three forms of vertigo syndrome can be differentiated: 1) vertigo attacks, e.g. benign paroxysmal positional vertigo (BPPV), Menière's disease and vestibular migraine, 2) acute spontaneous vertigo lasting for days, e.g. acute unilateral vestibulopathy, brainstem or cerebellar infarction and 3) symptoms lasting for months or years, e.g. bilateral vestibulopathy and functional vertigo. The specific therapy of the various syndromes is based on three principles: 1) physical treatment with liberatory maneuvers for BPPV and balance training for vestibular deficits, 2) pharmacotherapy, e.g. for acute unilateral vestibulopathy (corticosteroids) and Menière's disease (transtympanic administration of gentamicin or steroids and high-dose betahistine therapy); placebo-controlled pharmacotherapy studies are currently being carried out for acute unilateral vestibulopathy, vestibular paroxysmia, prophylaxis of BPPV, vestibular migraine, episodic ataxia type 2 and cerebellar ataxia; 3) psychotherapy for functional dizziness.

  7. Monitoring of peripheral vascular condition using a log-linearized arterial viscoelastic index during endoscopic thoracic sympathectomy.

    PubMed

    Hirano, Hiroki; Horiuchi, Tetsuya; Hirano, Harutoyo; Kurita, Yuichi; Ukawa, Teiji; Nakamura, Ryuji; Saeki, Noboru; Yoshizumi, Masao; Kawamoto, Masashi; Tsuji, Toshio

    2013-01-01

    This paper proposes a novel technique to support the monitoring of peripheral vascular conditions using biological signals such as electrocardiograms, arterial pressure values and pulse oximetry plethysmographic waveforms. In this approach, a second-order log-linearized model (referred to here as a log-linearized peripheral arterial viscoelastic model) is used to describe the non-linear viscoelastic relationship between blood pressure waveforms and photo-plethysmographic waveforms. The proposed index enables estimation of peripheral arterial wall stiffness changes induced by sympathetic nerve activity. The validity of the method is discussed here based on the results of peripheral vascular condition monitoring conducted during endoscopic thoracic sympathectomy (ETS). The results of ETS monitoring showed significant changes in stiffness variations between the periods before and during the procedures observed (p < 0.01) as well as during and after them (p < 0.01), so that it was confirmed that sympathetic nerve activity is drastically decreased in the area around the monitoring site after the thoracic sympathetic nerve trunk on the monitoring side is successfully blocked. In addition, no change was observed in the values of the proposed index during the ETS procedure on the side opposite that of the monitoring site. The experimental results obtained clearly show the proposed method can be used to assess changes in sympathetic nerve activity during ETS.

  8. Inflammatory stimuli acutely modulate peripheral taste function.

    PubMed

    Kumarhia, Devaki; He, Lianying; McCluskey, Lynnette Phillips

    2016-06-01

    Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na(+) transport in taste buds. To test this, we measured acute changes in Na(+) flux in polarized fungiform taste buds loaded with a Na(+) indicator dye. IL-1β elicited an amiloride-sensitive increase in Na(+) transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na(+) flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na(+) transport systems. The speed and partial amiloride sensitivity of these changes in Na(+) flux indicate that IL-1β and TNF-α modulate epithelial Na(+) channel (ENaC) function. A portion of the TNF-mediated decrease in Na(+) flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na(+) transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na(+) were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na(+) flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na(+) taste function, which may limit salt consumption during illness. Copyright © 2016 the American Physiological Society.

  9. Inflammatory stimuli acutely modulate peripheral taste function

    PubMed Central

    Kumarhia, Devaki; He, Lianying

    2016-01-01

    Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na+ transport in taste buds. To test this, we measured acute changes in Na+ flux in polarized fungiform taste buds loaded with a Na+ indicator dye. IL-1β elicited an amiloride-sensitive increase in Na+ transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na+ flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na+ transport systems. The speed and partial amiloride sensitivity of these changes in Na+ flux indicate that IL-1β and TNF-α modulate epithelial Na+ channel (ENaC) function. A portion of the TNF-mediated decrease in Na+ flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na+ transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na+ were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na+ flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na+ taste function, which may limit salt consumption during illness. PMID:27009163

  10. Peripheral Reticular Pigmentary Degeneration and Choroidal Vascular Insufficiency, Studied by Ultra Wide-Field Fluorescein Angiography

    PubMed Central

    Bae, Kunho; Cho, Kyuyeon; Kang, Se Woong; Kim, Sang Jin; Kim, Jong Min

    2017-01-01

    Purpose To explore the pathogenesis of peripheral reticular pigmentary degeneration (PRPD) and its clinical significance. Methods This cross-sectional, observational study (conducted between January 2010 and May 2015) enrolled 441 eyes of 229 subjects, including 35 eyes with PRPD and 406 eyes without PRPD, which was identified by ultra-wide-field fluorescein angiography (UWFA). The distribution and angiographic circulation time of PRPD were assessed by UWFA. The frequencies of systemic and ophthalmologic comorbidities were compared between groups. Univariate and multivariate generalized estimation equation methods were used to determine the risk factors for PRPD. Results The patients with PRPD had a mean age of 75.7 ± 8.5 years (range, 59–93 years), whereas the patients without PRPD had a mean age of 60.1 ± 14.9 years (range, 9–92 years). All eyes with PRPD manifested the lesion in the superior nasal periphery with or without circumferential extension. Among those, only 16 eyes (45.7%) in the PRPD group showed distinctive features in the same location on fundus photographs. There was significant choroidal filling delay in the PRPD group when compared with the control group (1.42±1.22 vs. -0.02±1.05 seconds, P < 0.001). Multivariate regression analysis revealed that older age (P < 0.001), stroke (P = 0.018), ischemic optic neuropathy (P < 0.001), and age-related macular degeneration (P = 0.022) were significantly associated with PRPD. Conclusions UWFA may enhance the diagnostic sensitivity of PRPD. Choroidal vascular insufficiency with compromised systemic circulation in the elderly was related to the manifestation of PRPD. These results help to better understand the pathophysiology of PRPD. Co-existence of systemic and ophthalmic circulatory disorders should be considered in patients with PRPD. PMID:28114409

  11. Preeclampsia is associated with lower production of vascular endothelial growth factor by peripheral blood mononuclear cells.

    PubMed

    Cardenas-Mondragon, María G; Vallejo-Flores, Gabriela; Delgado-Dominguez, Jose; Romero-Arauz, Juan F; Gomez-Delgado, Alejandro; Aguilar-Madrid, Guadalupe; Sanchez-Barriga, Juan J; Marquez-Acosta, Janeth

    2014-10-01

    Recent studies show that vascular endothelial growth factor (VEGF) downregulation is implicated in preeclampsia (PE) pathophysiology. This study assessed the relationship between PE and VEGF levels produced by peripheral blood mononuclear cells (PBMCs) and their serum levels. A cross-sectional design was performed in 36 patients who had hypertensive disorders during pregnancy. We also used a longitudinal design with 12 pregnant women with risk factors for PE development and/or abnormal uterine arteries by Doppler study. VEGF and soluble fms-like tyrosine kinase-1 (sFlt-1) levels were measured for all patients in both designs. sFlt-1 serum was higher in preeclamptic patients (n = 26), whereas VEGF produced by stimulated PBMCs was lower than in healthy pregnant women and VEGF levels produced by stimulated PBMCs were even lower (p <0.003) in severe PE (n = 16). The receiver-operating characteristic curve analysis allowed establishing a cut-off value to identify patients with PE. VEGF production by PBMCs was 339.87 pg/mL. In addition, a robust linear regression model was performed to adjust the variance in VEGF levels. The patients' age decreased VEGF levels and was adjusted by weeks of gestation (WG) in our model. In the longitudinal study, 7/12 patients developed PE. VEGF produced by PBMCs cells was significantly lower in PE at 24-26 WG. VEGF production by PBMCs is inhibited during PE, creating a downregulation of the microenvironment; this deficiency may contribute to the pathogenesis of disease. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.

  12. [The meaning of caring from the viewpoint of patients with wounds due to peripheral vascular disease].

    PubMed

    Perini, Corina; Stauffer, Yvonne; Grunder, Margrit; Gandon, Marianne; Dätwyler, Barbara; Hantikainen, Virpi

    2006-12-01

    This qualitative study describes the meaning of Caring from the viewpoint of the patient with chronic wounds due to peripheral vascular disease (PVD). Because the meaning of Caring can not be understood independent from the life context of the persons involved, the following questions have been formulated: 1) What influence does living with chronic wounds have on the everyday life of the patient? 2) What is the meaning of Caring for patients with chronic wounds? To answer these questions, qualitative research methods according to Mayring were chosen. A convenience sample of twelve patients, seven women and five men, with ages ranging from 69 to 86 years (median 77 years), were interviewed from April to November 2002. Data were analyzed according to Mayring (2000) through content analysis. The results show that the everyday life of the patient is strongly influenced by the effects of having chronic wounds. Patients view their lives with chronic wounds, the effects on their day to day life and the support from health professionals and family caregivers as a whole. Patients differentiate between Caring from Health professionals and Caring from family caregivers. Caring from health professionals is described primarily in the context of treatments and support situations. Caring from family caregivers is experienced as a part of the everyday life. Patients assume that healthcare professionals have the needed expertise, knowledge and skills. They hope, however, to be valued and respected and describe these characteristics as "kind and nice". When patients experience these attitudes from the nurses they feel they are taken seriously and are cared for. This is a requirement to enable or empower patients to understand and implement their treatment regimen. Caring must always be an element of nursing care and determines the standard of the quality of the patient-nurse relationship.

  13. Hindlimb unweighting affects rat vascular capacitance function

    NASA Technical Reports Server (NTRS)

    Dunbar, S. L.; Tamhidi, L.; Berkowitz, D. E.; Shoukas, A. A.

    2001-01-01

    Microgravity is associated with an impaired stroke volume and, therefore, cardiac output response to orthostatic stress. We hypothesized that a decreased venous filling pressure due to increased venous compliance may be an important contributing factor in this response. We used a constant flow, constant right atrial pressure cardiopulmonary bypass procedure to measure total systemic vascular compliance (C(T)), arterial compliance (C(A)), and venous compliance (C(V)) in seven control and seven 21-day hindlimb unweighted (HLU) rats. These compliance values were calculated under baseline conditions and during an infusion of 0.2 microg*kg(-1)*min(-1) norepinephrine (NE). The change in reservoir volume, which reflects changes in unstressed vascular volume (DeltaV(0)) that occurred upon infusion of NE, was also measured. C(T) and C(V) were larger in HLU rats both at baseline and during the NE infusion (P < 0.05). Infusion of NE decreased C(T) and C(V) by 20% in both HLU and control rats (P < 0.01). C(A) was also significantly decreased in both groups of rats by NE (P < 0.01), but values of C(A) were similar between HLU and control rats both at baseline and during the NE infusion. Additionally, the NE-induced DeltaV(0) was attenuated by 53% in HLU rats compared with control rats (P < 0.05). The larger C(V) and attenuated DeltaV(0) in HLU rats could contribute to a decreased filling pressure during orthostasis and thus may partially underlie the mechanism leading to the exaggerated fall in stroke volume and cardiac output seen in astronauts during an orthostatic stress after exposure to microgravity.

  14. Hindlimb unweighting affects rat vascular capacitance function

    NASA Technical Reports Server (NTRS)

    Dunbar, S. L.; Tamhidi, L.; Berkowitz, D. E.; Shoukas, A. A.

    2001-01-01

    Microgravity is associated with an impaired stroke volume and, therefore, cardiac output response to orthostatic stress. We hypothesized that a decreased venous filling pressure due to increased venous compliance may be an important contributing factor in this response. We used a constant flow, constant right atrial pressure cardiopulmonary bypass procedure to measure total systemic vascular compliance (C(T)), arterial compliance (C(A)), and venous compliance (C(V)) in seven control and seven 21-day hindlimb unweighted (HLU) rats. These compliance values were calculated under baseline conditions and during an infusion of 0.2 microg*kg(-1)*min(-1) norepinephrine (NE). The change in reservoir volume, which reflects changes in unstressed vascular volume (DeltaV(0)) that occurred upon infusion of NE, was also measured. C(T) and C(V) were larger in HLU rats both at baseline and during the NE infusion (P < 0.05). Infusion of NE decreased C(T) and C(V) by 20% in both HLU and control rats (P < 0.01). C(A) was also significantly decreased in both groups of rats by NE (P < 0.01), but values of C(A) were similar between HLU and control rats both at baseline and during the NE infusion. Additionally, the NE-induced DeltaV(0) was attenuated by 53% in HLU rats compared with control rats (P < 0.05). The larger C(V) and attenuated DeltaV(0) in HLU rats could contribute to a decreased filling pressure during orthostasis and thus may partially underlie the mechanism leading to the exaggerated fall in stroke volume and cardiac output seen in astronauts during an orthostatic stress after exposure to microgravity.

  15. Vascular function in health, hypertension, and diabetes: effect of physical activity on skeletal muscle microcirculation.

    PubMed

    Nyberg, M; Gliemann, L; Hellsten, Y

    2015-12-01

    Regulation of skeletal muscle blood flow is a complex process, which involves an integration of multiple mechanisms and a number of vasoactive compounds. Overall, muscle blood flow is regulated through a balance between vasoconstrictor and vasodilator signals. In a healthy cardiovascular system, the increase in muscle blood flow required for oxygen supply during exercise is achieved through a substantial increase in vasodilators locally formed in the active muscle tissue that overcome the vasoconstrictor signals. Most of the vasodilator signals are mediated via endothelial cells, which lead to the formation of vasodilators such as nitric oxide (NO) and prostacyclin. In essential hypertension and type II diabetes, the endothelial function and regulation of vascular tone is impaired with consequent increases in peripheral vascular resistance and inadequate regulation of oxygen supply to the skeletal muscle, which can affect muscle function. Central aspects in the vascular impairments are alterations in the formation of prostacyclin, the bioavailability of NO and an increased formation of vasoconstrictors and reactive oxygen species (ROS). Regular physical activity effectively improves vascular function by enhancing vasodilator formation and reducing the levels of vasoconstrictors and ROS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Blood pressure (BP) is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM) and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN). In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i), which forms a complex with calmodulin, activates myosin light chain (MLC) kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC). PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK), a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs) in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in concert with

  17. Protein Kinase C Inhibitors as Modulators of Vascular Function and their Application in Vascular Disease.

    PubMed

    Khalil, Raouf A

    2013-01-01

    Blood pressure (BP) is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM) and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN). In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca(2+) concentration ([Ca(2+)]i), which forms a complex with calmodulin, activates myosin light chain (MLC) kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC). PKC is a family of Ca(2+)-dependent and Ca(2+)-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK), a pathway that ultimately increases the myofilament force sensitivity to [Ca(2+)]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinase (MMPs) in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  18. RELATION OF BRACHIAL AND DIGITAL MEASURES OF VASCULAR FUNCTION IN THE COMMUNITY: THE FRAMINGHAM HEART STUDY

    PubMed Central

    Hamburg, Naomi M.; Palmisano, Joseph; Larson, Martin G.; Sullivan, Lisa M.; Lehman, Birgitta T.; Vasan, Ramachandran S.; Levy, Daniel; Mitchell, Gary F.; Vita, Joseph A.; Benjamin, Emelia J.

    2011-01-01

    Impaired vascular function contributes to the development of clinical cardiovascular disease. The relation between vasodilator function assessed non-invasively in the brachial and digital arteries remains incompletely defined. In the Framingham Offspring, Third Generation and Omni cohorts, we measured flow-mediated dilation (FMD) (n=7031, age 48±13 years, 19-88 years, 54% women) and peripheral arterial tonometry (PAT) ratio (n=4352, 55±16 years, 19-90 years, 51% women). Abnormal vascular function for each measure was defined by the sex-specific 5th percentile in a reference group free of conventional cardiovascular risk factors. The prevalence of abnormal FMD but not abnormal PAT ratio was higher with advancing age. In multivariable models, higher body mass index (BMI) was associated with a higher prevalence of both abnormal FMD and PAT ratio. Additional correlates of abnormal FMD included increasing age and higher systolic blood pressure. In contrast, correlates of abnormal PAT ratio included lower systolic blood pressure, increasing total/HDL cholesterol ratio, diabetes, smoking, and lipid-lowering medication. Whereas women had higher FMD and PAT ratio compared with men, using sex-specific reference values women had a higher prevalence of abnormal brachial and digital vascular function. In participants who had concurrent testing (n=1843), PAT ratio was not significantly associated with FMD in multivariable models. In this large, community-based cohort, brachial and digital measures of vascular function had differing relations with cardiovascular risk factors and were nearly uncorrelated with each other. These results suggest that FMD and PAT provide distinct information regarding vascular function in conduit versus smaller digital vessels. PMID:21263120

  19. Systemic vascular function is associated with muscular power in adults

    USDA-ARS?s Scientific Manuscript database

    Age-associated loss of muscular strength and muscular power are critical determinants of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measu...

  20. Gap Junctions in the Control of Vascular Function

    PubMed Central

    Duling, Brian R.

    2009-01-01

    Abstract Direct intercellular communication via gap junctions is critical in the control and coordination of vascular function. In the cardiovascular system, gap junctions are made up of one or more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45. The expression of more than one gap-junction protein in the vasculature is not redundant. Rather, vascular connexins work in concert, first during the development of the cardiovascular system, and then in integrating smooth muscle and endothelial cell function, and in coordinating cell function along the length of the vessel wall. In addition, connexin-based channels have emerged as an important signaling pathway in the astrocyte-mediated neurovascular coupling. Direct electrical communication between endothelial cells and vascular smooth muscle cells via gap junctions is thought to play a relevant role in the control of vasomotor tone, providing the signaling pathway known as endothelium-derived hyperpolarizing factor (EDHF). Consistent with the importance of gap junctions in the regulation of vasomotor tone and arterial blood pressure, the expression of connexins is altered in diseases associated with vascular complications. In this review, we discuss the participation of connexin-based channels in the control of vascular function in physiologic and pathologic conditions, with a special emphasis on hypertension and diabetes. Antioxid. Redox Signal. 11, 251–266. PMID:18831678

  1. Modulation of vascular cell function by bim expression.

    PubMed

    Morrison, Margaret E; Palenski, Tammy L; Jamali, Nasim; Sheibani, Nader; Sorenson, Christine M

    2013-01-01

    Apoptosis of vascular cells, including pericytes and endothelial cells, contributes to disease pathogenesis in which vascular rarefaction plays a central role. Bim is a proapoptotic protein that modulates not only apoptosis but also cellular functions such as migration and extracellular matrix (ECM) protein expression. Endothelial cells and pericytes each make a unique contribution to vascular formation and function although the details require further delineation. Here we set out to determine the cell autonomous impact of Bim expression on retinal endothelial cell and pericyte function using cells prepared from Bim deficient (Bim(-/-)) mice. Bim(-/-) endothelial cells displayed an increased production of ECM proteins, proliferation, migration, adhesion, and VEGF expression but, a decreased eNOS expression and nitric oxide production. In contrast, pericyte proliferation decreased in the absence of Bim while migration, adhesion, and VEGF expression were increased. In addition, we demonstrated that the coculturing of either wild-type or Bim(-/-) endothelial cells with Bim(-/-) pericytes diminished their capillary morphogenesis. Thus, our data further emphasizes the importance of vascular cell autonomous regulatory mechanisms in modulation of vascular function.

  2. The vascular lesions in vascular and mixed dementia: the weight of functional neuroanatomy.

    PubMed

    Zekry, Dina; Duyckaerts, Charles; Belmin, Joël; Geoffre, Caroline; Herrmann, François; Moulias, Robert; Hauw, Jean-Jacques

    2003-01-01

    Vascular dementia appears rarer than previously thought, but the contribution of vascular lesions to cognitive impairment in Alzheimer's disease (AD) affected patients (mixed dementias) is now recognized as frequent. The role of strategic areas of the brain involved in the cognitive decline induced by vascular lesions and their relative contributions to the severity of the dementing process remain poorly understood. We determined the relationship between the severity of clinical dementia and the volume of different brain areas affected by infarcts in a prospective clinicopathological study in elderly patients. A volumetric study of the functional zones of Mesulam's human brain map affected by vascular lesions was made and correlations between quantified neuropathological data and the severity of dementia were performed in cases with large vascular lesions only, pure AD, and both lesions. The severity of cognitive impairment was significantly correlated with the total volume of infarcts but in a multi-variate model the volume destroyed in the limbic and heteromodal association areas, including the frontal cortex and in the white matter explained 50% of the variability in MMSE and GDS. The total volume of ischemic lesions explained only 0.1-5% of the variability in MMSE and GDS. Age only explained an extra of 0.1-1.6%. This study confirms that infarcts located in strategic areas have a role in the mechanism of cognitive impairment and brings a key for their quantification. It may be useful for developing neuropathological criteria in multi-infarct and mixed dementias.

  3. Single passive leg movement-induced hyperemia: a simple vascular function assessment without a chronotropic response.

    PubMed

    Venturelli, Massimo; Layec, Gwenael; Trinity, Joel; Hart, Corey R; Broxterman, Ryan M; Richardson, Russell S

    2017-01-01

    Passive leg movement (PLM)-induced hyperemia is a novel approach to assess vascular function, with a potential clinical role. However, in some instances, the varying chronotropic response induced by PLM has been proposed to be a potentially confounding factor. Therefore, we simplified and modified the PLM model to require just a single PLM (sPLM), an approach that may evoke a peripheral hemodynamic response, allowing a vascular function assessment, but at the same time minimizing central responses. To both characterize and assess the utility of sPLM, in 12 healthy subjects, we measured heart rate (HR), stroke volume, cardiac output (CO), mean arterial pressure (MAP), leg blood flow (LBF), and calculated leg vascular conductance (LVC) during both standard PLM, consisting of passive knee flexion and extension performed at 1 Hz for 60 s, and sPLM, consisting of only a single passive knee flexion and extension over 1 s. During PLM, MAP transiently decreased (5 ± 1 mmHg), whereas both HR and CO increased from baseline (6.0 ± 1.1 beats/min, and 0.8 ± 0.01 l/min, respectively). Following sPLM, MAP fell similarly (5 ± 2 mmHg; P = 0.8), but neither HR nor CO responses were identifiable. The peak LBF and LVC response was similar for PLM (993 ± 189 ml/min; 11.9 ± 1.5 ml·min(-1)·mmHg(-1), respectively) and sPLM (878 ± 119 ml/min; 10.9 ± 1.6 ml·min(-1)·mmHg(-1), respectively). Thus sPLM represents a variant of the PLM approach to assess vascular function that is more easily performed and evokes a peripheral stimulus that induces a significant hyperemia, but does not generate a potentially confounding, chronotropic response, which may make sPLM more useful clinically.

  4. Hybrid Therapy in Patients with Complex Peripheral Multifocal Steno-obstructive Vascular Disease: Two-Year Results

    SciTech Connect

    Cotroneo, Antonio Raffaele; Iezzi, Roberto Marano, Giuseppe; Fonio, Paolo; Nessi, Franco; Gandini, Giovanni

    2007-06-15

    Purpose. To report the 2-year results after hybrid (combined surgical-endovascular) therapy in patients with complex peripheral multifocal steno-obstructive vascular disease. Methods. From September 2001 through April 2003, 47 combined surgical-endovascular procedures were performed in a single session in 44 patients with peripheral occlusive artery disease. Although the common femoral artery is usually treated with open surgery, endoluminal procedures were performed upward in 23 patients (group A), distally in 18 patients (group B), and both upward and downward of the area treated with open surgery in 3 patients (group C). Patients underwent clinical assessment and color duplex ultrasonography examination at 1, 3, 6, 12, 18, and 24 months after the procedure. Results. The technical success rate was 100%. Two patients died, at 2 and 19 months after treatment, respectively, both from myocardial infarction. Primary and primary-assisted patency rates were 86.2% and 90.8% at 6 months and 79.1% and 86.1% at 24 months, respectively. Thirty-three patients remained free of symptoms, without any secondary interventions, which corresponded to a primary patency rate of 78.6% (33 of 42). Conclusion. Combined therapy simplifies and allows the one-step treatment of patients with complex peripheral multifocal steno-obstructive vascular disease that has indications for revascularization, and it provides excellent long-term patency rates.

  5. Hybrid therapy in patients with complex peripheral multifocal steno-obstructive vascular disease: two-year results.

    PubMed

    Cotroneo, Antonio Raffaele; Iezzi, Roberto; Marano, Giuseppe; Fonio, Paolo; Nessi, Franco; Gandini, Giovanni

    2007-01-01

    To report the 2-year results after hybrid (combined surgical-endovascular) therapy in patients with complex peripheral multifocal steno-obstructive vascular disease. From September 2001 through April 2003, 47 combined surgical-endovascular procedures were performed in a single session in 44 patients with peripheral occlusive artery disease. Although the common femoral artery is usually treated with open surgery, endoluminal procedures were performed upward in 23 patients (group A), distally in 18 patients (group B), and both upward and downward of the area treated with open surgery in 3 patients (group C). Patients underwent clinical assessment and color duplex ultrasonography examination at 1, 3, 6, 12, 18, and 24 months after the procedure. The technical success rate was 100%. Two patients died, at 2 and 19 months after treatment, respectively, both from myocardial infarction. Primary and primary-assisted patency rates were 86.2% and 90.8% at 6 months and 79.1% and 86.1% at 24 months, respectively. Thirty-three patients remained free of symptoms, without any secondary interventions, which corresponded to a primary patency rate of 78.6% (33 of 42). Combined therapy simplifies and allows the one-step treatment of patients with complex peripheral multifocal steno-obstructive vascular disease that has indications for revascularization, and it provides excellent long-term patency rates.

  6. Functional integration of acute myeloid leukemia into the vascular niche.

    PubMed

    Cogle, Christopher R; Goldman, Devorah C; Madlambayan, Gerard J; Leon, Ronald P; Masri, Azzah Al; Clark, Hilary A; Asbaghi, Steven A; Tyner, Jeffrey W; Dunlap, Jennifer; Fan, Guang; Kovacsovics, Tibor; Liu, Qiuying; Meacham, Amy; Hamlin, Kimberly L; Hromas, Robert A; Scott, Edward W; Fleming, William H

    2014-10-01

    Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the upregulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost fourfold reduction in proliferative activity compared with non-vascular-associated AML. Primary AML cells can be induced to downregulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. These novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for AML.

  7. Functional Integration of Acute Myeloid Leukemia into the Vascular Niche

    PubMed Central

    Leon, Ronald P.; Masri, Azzah Al; Clark, Hilary A.; Asbaghi, Steven A.; Tyner, Jeffrey W.; Dunlap, Jennifer; Fan, Guang; Kovacsovics, Tibor; Liu, Qiuying; Meacham, Amy; Hamlin, Kimberly L.; Hromas, Robert A.; Scott, Edward W.; Fleming, William H.

    2014-01-01

    Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here, we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the up-regulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost 4-fold reduction in proliferative activity compared to non-vascular associated AML. Primary AML cells can be induced to down regulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally-defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. Taken together, these novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for acute myeloid leukemia. PMID:24637335

  8. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.

    PubMed

    Ringvold, H C; Khalil, R A

    2017-01-01

    Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca(2+)-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca(2+)-dependent α, β, and γ, novel Ca(2+)-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease. © 2017 Elsevier Inc. All rights reserved.

  9. The impact of repetitive long-duration water immersion on vascular function

    PubMed Central

    Simmons, Erin E.; Bergeron, Elizabeth R.

    2017-01-01

    While physiological responses to water immersion (WI) are well-studied, the vascular responses after WI are less understood. Fifteen male subjects performed six-hour resting thermoneutral water immersions (WI) at 1.35 atmospheres absolute for four consecutive days, with follow-up on the fifth day. Measurements included peripheral endothelial function and augmentation index (PAT, peripheral arterial tonometry), beat-to-beat blood pressure (BP, photoplethysmography), heart rate (HR), and plasma volume (PV) calculated from changes in hemoglobin and hematocrit. The reactive hyperemia index (RHI), a marker of peripheral endothelial function, increased with repeated immersions (p = 0.008). By WI2 and WI3, RHI increased 12% and 16%, respectively, compared to WI1 values, but no significant differences were detected between WI4 and WI1 for either measure. Absolute augmentation index (AI) increased by an average of 33% (p<0.001) and AI normalized for HR (AI@75) by 11% (p = 0.12) following each WI. PV decreased significantly by 13.2% following WI and remained 6.8% lower at follow-up compared to pre-WI. Systolic blood pressure significantly decreased by an average of 2.5% following each WI (p = 0.012). Compared to pre-WI HR, average post-WI HR decreased 4.3% lower (p<0.001), but increased overall by 8.2% over the course of repeated WI (p<0.001). Total peripheral resistance increased by an average of 13.1% following WI (p = 0.003). Thus, peripheral endothelial function increases after two days of WI, and PAT-derived measures of arterial stiffness increase transiently post-WI. Additionally, BP and PAT-derived endothelial function diverge from their usual associations with arterial stiffness (i.e. augmentation index) in the context of WI. PMID:28750006

  10. Dcc Mediates Functional Assembly of Peripheral Auditory Circuits

    PubMed Central

    Kim, Young J.; Wang, Sheng-zhi; Tymanskyj, Stephen; Ma, Le; Tao, Huizhong W.; Zhang, Li I.

    2016-01-01

    Proper structural organization of spiral ganglion (SG) innervation is crucial for normal hearing function. However, molecular mechanisms underlying the developmental formation of this precise organization remain not well understood. Here, we report in the developing mouse cochlea that deleted in colorectal cancer (Dcc) contributes to the proper organization of spiral ganglion neurons (SGNs) within the Rosenthal’s canal and of SGN projections toward both the peripheral and central auditory targets. In Dcc mutant embryos, mispositioning of SGNs occurred along the peripheral auditory pathway with misrouted afferent fibers and reduced synaptic contacts with hair cells. The central auditory pathway simultaneously exhibited similar defective phenotypes as in the periphery with abnormal exit of SGNs from the Rosenthal’s canal towards central nuclei. Furthermore, the axons of SGNs ascending into the cochlear nucleus had disrupted bifurcation patterns. Thus, Dcc is necessary for establishing the proper spatial organization of SGNs and their fibers in both peripheral and central auditory pathways, through controlling axon targeting and cell migration. Our results suggest that Dcc plays an important role in the developmental formation of peripheral and central auditory circuits, and its mutation may contribute to sensorineural hearing loss. PMID:27040640

  11. [Criteria for referral between levels of care of patients with peripheral vascular disease. SEMFYC-SEACV consensus document].

    PubMed

    Díaz Sánchez, Santiago; Piquer Farrés, Nuria; Fuentes Camps, Eva; Bellmunt Montoya, Sergi; Sánchez Nevárez, Ignacio; Fernández Quesada, Fidel

    2012-09-01

    Coordination between care levels is essential to increase the efficiency of the Health System; vascular disease has an important role in this respects, as it includes frequent, serious and vulnerable conditions. Consensus documents are an essential tool to obtain these aims. This document is not expected to replace the Clinical Guidelines, but tries to establish the basis of the shared management of the patient with vascular disease (peripheral arterial disease, diabetic foot, and chronic venous insufficiency) in three ways: to determine the profile of the patient who should receive priority follow-up at every level; to establish the skills that every professional must have, and to set and to prioritise the referral criteria in both directions. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  12. Engineering of human hepatic tissue with functional vascular networks.

    PubMed

    Takebe, Takanori; Koike, Naoto; Sekine, Keisuke; Fujiwara, Ryoji; Amiya, Takeru; Zheng, Yun-Wen; Taniguchi, Hideki

    2014-01-01

    Although absolute organ shortage highlights the needs of alternative organ sources for regenerative medicine, the generation of a three-dimensional (3D) and complex vital organ, such as well-vascularized liver, remains a challenge. To this end, tissue engineering holds great promise; however, this approach is significantly limited by the failure of early vascularization in vivo after implantation. Here, we established a stable 3D in vitro pre-vascularization platform to generate human hepatic tissue after implantation in vivo. Human fetal liver cells (hFLCs) were mixed with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (hMSCs) and were implanted into a collagen/fibronectin matrix composite that was used as a 3-D carrier. After a couple of days, the fluorescent HUVECs developed premature vascular networks in vitro, which were stabilized by hMSCs. The establishment of functional vessels inside the pre-vascularized constructs was proven using dextran infusion studies after implantation under a transparency cranial window. Furthermore, dynamic morphological changes during embryonic liver cell maturation were intravitaly quantified with high-resolution confocal microscope analysis. The engineered human hepatic tissue demonstrated multiple liver-specific features, both structural and functional. Our new techniques discussed here can be implemented in future clinical uses and industrial uses, such as drug testing.

  13. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.

  14. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function.

    PubMed

    Serini, Guido; Valdembri, Donatella; Zanivan, Sara; Morterra, Giulia; Burkhardt, Constanze; Caccavari, Francesca; Zammataro, Luca; Primo, Luca; Tamagnone, Luca; Logan, Malcolm; Tessier-Lavigne, Marc; Taniguchi, Masahiko; Püschel, Andreas W; Bussolino, Federico

    2003-07-24

    The motility and morphogenesis of endothelial cells is controlled by spatio-temporally regulated activation of integrin adhesion receptors, and integrin activation is stimulated by major determinants of vascular remodelling. In order for endothelial cells to be responsive to changes in activator gradients, the adhesiveness of these cells to the extracellular matrix must be dynamic, and negative regulators of integrins could be required. Here we show that during vascular development and experimental angiogenesis, endothelial cells generate autocrine chemorepulsive signals of class 3 semaphorins (SEMA3 proteins) that localize at nascent adhesive sites in spreading endothelial cells. Disrupting endogenous SEMA3 function in endothelial cells stimulates integrin-mediated adhesion and migration to extracellular matrices, whereas exogenous SEMA3 proteins antagonize integrin activation. Misexpression of dominant negative SEMA3 receptors in chick embryo endothelial cells locks integrins in an active conformation, and severely impairs vascular remodelling. Sema3a null mice show vascular defects as well. Thus during angiogenesis endothelial SEMA3 proteins endow the vascular system with the plasticity required for its reshaping by controlling integrin function.

  15. Expression and functions of proteases in vascular tissues.

    PubMed

    Petzold, H Earl; Zhao, Mingzhe; Beers, Eric P

    2012-05-01

    With the emergence of new models for wood formation and the increasing emphasis on improving the efficiency of cellulosic biofuel production, research on vascular tissue biology has intensified in recent years. Some of the most active areas of research focus on manipulating activity of enzymes in the cellulose, hemicellulose, pectin and lignin pathways. In addition, great strides have been made in the characterization of transcriptional networks controlling genes that affect differentiation, secondary cell wall synthesis and programmed cell death in xylem. Less attention has been devoted to the characterization of proteases that may be important regulators of post-translational events that affect vascular cell differentiation and function and cell wall composition. Several genes for proteases and components of the ubiquitin/26S proteasome pathway are upregulated in xylem and phloem and in cell culture systems for studying the differentiation of xylem tracheary elements (TEs). Although small molecule protease inhibitors have been used to explore the roles of proteases during the differentiation of cultured TEs, only a small number of vascular tissue-associated protease genes have been directly tested to determine whether they play roles in vascular tissue biology. In this report, we review roles for proteases in vascular cell differentiation and function as determined through the use of protease inhibitors and genetic analyses and conclude by identifying opportunities for future research in this area. Copyright © Physiologia Plantarum 2011.

  16. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  17. Silent myocardial ischemia and infarction in diabetics with peripheral vascular disease: Assessment by dipyridamole thallium-201 scintigraphy

    SciTech Connect

    Nesto, R.W.; Watson, F.S.; Kowalchuk, G.J.; Zarich, S.W.; Hill, T.; Lewis, S.M.; Lane, S.E. )

    1990-11-01

    We investigated the incidence of silent myocardial ischemia and infarction as assessed by dipyridamole thallium scintigraphy in 30 diabetic patients with peripheral vascular disease and without clinical suspicion of coronary artery disease. Seventeen patients (57%) had thallium abnormalities, with reversible thallium defects compatible with ischemia in 14 patients (47%) and evidence of prior, clinically silent myocardial infarction in 11 patients (37%). Thallium abnormalities were most frequent in patients with concomitant hypertension and cigarette smoking (p = 0.001). These results suggest that unsuspected coronary artery disease is common in this particular group of patients with diabetes mellitus.

  18. Comparative effectiveness of peripheral vascular intervention versus surgical bypass for critical limb ischemia in the Vascular Study Group of Greater New York.

    PubMed

    Meltzer, Andrew J; Sedrakyan, Art; Isaacs, Abby; Connolly, Peter H; Schneider, Darren B

    2016-11-01

    In this study, the effectiveness of peripheral vascular intervention (PVI) was compared with surgical bypass grafting (BPG) for critical limb ischemia (CLI) in the Vascular Study Group of Greater New York (VSGGNY). Patients undergoing BPG or PVI for CLI at VSGGNY centers (2011-2013) were included. The Society for Vascular Surgery objective performance goals for CLI were used to directly compare the safety and effectiveness of PVI and BPG. Propensity score matching was used for risk-adjusted comparisons of PVI with BPG. A total of 414 patients (268 PVI, 146 BPG) were treated for tissue loss (69%) or rest pain (31%). Patients undergoing PVI were more likely to have tissue loss (74.6% vs 57.5%; P < .001) and comorbidities such as diabetes (69.3% vs 57.5%; P = .02), heart failure (22% vs 13.7%; P = .04), and severe renal disease (13.1% vs 4.1%; P = .004). No significant differences were found between the groups across a panel of safety objective performance goals. In unadjusted analyses at 1 year, BPG was associated with higher rates of freedom from reintervention, amputation, or restenosis (90.4% vs 81.7%; P = .02) and freedom from reintervention or amputation (92.5% vs 85.8%, P = .045). After propensity score matching, PVI was associated with improved freedom from major adverse limb events and postoperative death at 1 year (95.6% vs 88.5%; P < .05). By unadjusted comparison, early reintervention and restenosis are more prevalent with PVI. However, risk-adjusted comparison underscores the safety and effectiveness of PVI in the treatment of CLI. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. Vascular function in diabetic individuals in association with particulate matter

    EPA Science Inventory

    Rationale: Exposure to ambient air pollution has been shown to be associated with cardiovascular effects, especially in people with chronic diseases such as diabetes. The purpose of this study was to analyze the short-term effects of air pollution on vascular function in two pane...

  20. Green tea (Camellia sinensis) catechins and vascular function.

    PubMed

    Moore, Rosalind J; Jackson, Kim G; Minihane, Anne M

    2009-12-01

    The health benefits of green tea (Camellia sinensis) catechins are becoming increasingly recognised. Amongst the proposed benefits are the maintenance of endothelial function and vascular homeostasis and an associated reduction in atherogenesis and CVD risk. The mounting evidence for the influential effect of green tea catechins on vascular function from epidemiological, human intervention and animal studies is subject to review together with exploration of the potential mechanistic pathways involved. Epigallocatechin-3-gallate, one of the most abundant and widely studied catechin found in green tea, will be prominent in the present review. Since there is a substantial inconsistency in the published data with regards to the impact of green tea catechins on vascular function, evaluation and interpretation of the inter- and intra-study variability is included. In conclusion, a positive effect of green tea catechins on vascular function is becoming apparent. Further studies in animal and cell models using physiological concentrations of catechins and their metabolites are warranted in order to gain some insight into the physiology and molecular basis of the observed beneficial effects.

  1. Vascular function in diabetic individuals in association with particulate matter

    EPA Science Inventory

    Rationale: Exposure to ambient air pollution has been shown to be associated with cardiovascular effects, especially in people with chronic diseases such as diabetes. The purpose of this study was to analyze the short-term effects of air pollution on vascular function in two pane...

  2. Potential benefits of exercise on blood pressure and vascular function.

    PubMed

    Pal, Sebely; Radavelli-Bagatini, Simone; Ho, Suleen

    2013-01-01

    Physical activity seems to enhance cardiovascular fitness during the course of the lifecycle, improve blood pressure, and is associated with decreased prevalence of hypertension and coronary heart disease. It may also delay or prevent age-related increases in arterial stiffness. It is unclear if specific exercise types (aerobic, resistance, or combination) have a better effect on blood pressure and vascular function. This review was written based on previous original articles, systematic reviews, and meta-analyses indexed on PubMed from years 1975 to 2012 to identify studies on different types of exercise and the associations or effects on blood pressure and vascular function. In summary, aerobic exercise (30 to 40 minutes of training at 60% to 85% of predicted maximal heart rate, most days of the week) appears to significantly improve blood pressure and reduce augmentation index. Resistance training (three to four sets of eight to 12 repetitions at 10 repetition maximum, 3 days a week) appears to significantly improve blood pressure, whereas combination exercise training (15 minutes of aerobic and 15 minutes of resistance, 5 days a week) is beneficial to vascular function, but at a lower scale. Aerobic exercise seems to better benefit blood pressure and vascular function. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  3. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering.

    PubMed

    Gnavi, S; di Blasio, L; Tonda-Turo, C; Mancardi, A; Primo, L; Ciardelli, G; Gambarotta, G; Geuna, S; Perroteau, I

    2017-02-01

    Hydrogels are promising materials in regenerative medicine applications, due to their hydrophilicity, biocompatibility and capacity to release drugs and growth factors in a controlled manner. In this study, biocompatible and biodegradable hydrogels based on blends of natural polymers were used in in vitro and ex vivo experiments as a tool for VEGF-controlled release to accelerate the nerve regeneration process. Among different candidates, the angiogenic factor VEGF was selected, since angiogenesis has been long recognized as an important and necessary step during tissue repair. Recent studies have pointed out that VEGF has a beneficial effect on motor neuron survival and Schwann cell vitality and proliferation. Moreover, VEGF administration can sustain and enhance the growth of regenerating peripheral nerve fibres. The hydrogel preparation process was optimized to allow functional incorporation of VEGF, while preventing its degradation and denaturation. VEGF release was quantified through ELISA assay, whereas released VEGF bioactivity was validated in human umbilical vein endothelial cells (HUVECs) and in a Schwann cell line (RT4-D6P2T) by assessing VEGFR-2 and downstream effectors Akt and Erk1/2 phosphorylation. Moreover, dorsal root ganglia explants cultured on VEGF-releasing hydrogels displayed increased neurite outgrowth, providing confirmation that released VEGF maintained its effect, as also confirmed in a tubulogenesis assay. In conclusion, a gelatin-based hydrogel system for bioactive VEGF delivery was developed and characterized for its applicability in neural tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Exposure to Concentrated Ambient Particles Does Not Affect Vascular Function in Patients with Coronary Heart Disease

    PubMed Central

    Mills, Nicholas L.; Robinson, Simon D.; Fokkens, Paul H. B.; Leseman, Daan L. A. C.; Miller, Mark R.; Anderson, David; Freney, Evelyn J.; Heal, Mathew R.; Donovan, Robert J.; Blomberg, Anders; Sandström, Thomas; MacNee, William; Boon, Nicholas A.; Donaldson, Ken; Newby, David E.; Cassee, Flemming R.

    2008-01-01

    Background Exposure to fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. We previously demonstrated that exposure to dilute diesel exhaust causes vascular dysfunction in humans. Objectives We conducted a study to determine whether exposure to ambient particulate matter causes vascular dysfunction. Methods Twelve male patients with stable coronary heart disease and 12 age-matched volunteers were exposed to concentrated ambient fine and ultrafine particles (CAPs) or filtered air for 2 hr using a randomized, double-blind cross-over study design. We measured peripheral vascular vasomotor and fibrinolytic function, and inflammatory variables—including circulating leukocytes, serum C-reactive protein, and exhaled breath 8-isoprostane and nitrotyrosine—6–8 hr after both exposures. Results Particulate concentrations (mean ± SE) in the exposure chamber (190 ± 37 μg/m3) were higher than ambient levels (31 ± 8 μg/m3) and levels in filtered air (0.5 ± 0.4 μg/m3; p < 0.001). Chemical analysis of CAPs identified low levels of elemental carbon. Exhaled breath 8-isoprostane concentrations increased after exposure to CAPs (16.9 ± 8.5 vs. 4.9 ± 1.2 pg/mL, p < 0.05), but markers of systemic inflammation were largely unchanged. Although there was a dose-dependent increase in blood flow and plasma tissue plasminogen activator release (p < 0.001 for all), CAPs exposure had no effect on vascular function in either group. Conclusions Despite achieving marked increases in particulate matter, exposure to CAPs—low in combustion-derived particles—did not affect vasomotor or fibrinolytic function in either middle-aged healthy volunteers or patients with coronary heart disease. These findings contrast with previous exposures to dilute diesel exhaust and highlight the importance of particle composition in determining the vascular effects of particulate matter in humans. PMID:18560524

  5. Quantitative optical imaging of vascular response in vivo in a model of peripheral arterial disease

    PubMed Central

    Poole, Kristin M.; Tucker-Schwartz, Jason M.; Sit, Wesley W.; Walsh, Alex J.; Duvall, Craig L.

    2013-01-01

    The mouse hind limb ischemia (HLI) model is well established for studying collateral vessel formation and testing therapies for peripheral arterial disease, but there is a lack of quantitative techniques for intravitally analyzing blood vessel structure and function. To address this need, non-invasive, quantitative optical imaging techniques were developed to assess the time-course of recovery in the mouse HLI model. Hyperspectral imaging and optical coherence tomography (OCT) were used to non-invasively image hemoglobin oxygen saturation and microvessel morphology plus blood flow, respectively, in the anesthetized mouse after induction of HLI. Hyperspectral imaging detected significant increases in hemoglobin saturation in the ischemic paw as early as 3 days after femoral artery ligation (P < 0.01), and significant increases in distal blood flow were first detected with OCT 14 days postsurgery (P < 0.01). Intravital OCT images of the adductor muscle vasculature revealed corkscrew collateral vessels characteristic of the arteriogenic response to HLI. The hyperspectral imaging and OCT data significantly correlated with each other and with laser Doppler perfusion imaging (LDPI) and tissue oxygenation sensor data (P < 0.01). However, OCT measurements acquired depth-resolved information and revealed more sustained flow deficits following surgery that may be masked by more superficial measurements (LDPI, hyperspectral imaging). Therefore, intravital OCT may provide a robust biomarker for the late stages of ischemic limb recovery. This work validates non-invasive acquisition of both functional and morphological data with hyperspectral imaging and OCT. Together, these techniques provide cardiovascular researchers an unprecedented and comprehensive view of the temporal dynamics of HLI recovery in living mice. PMID:23955718

  6. Functional imaging of tumor vascular network in small animal models

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Madar-Balakirski, Noa; Kuznetsov, Yuri; Meglinski, Igor; Harmelin, Alon

    2011-07-01

    In current report we present synchronized in vivo imaging of tumor vascular network and tumor microenvironment obtained by combined use of Dynamic Light Scattering Imaging, Spectrally Enhanced Microscopy, and Fluorescence Intravital Microscopy. Dynamic Light Scattering Imaging is used for functional imaging of the vascular network and blood microcirculation. Spectrally Enhanced Microscopy provides information regarding blood vessel topography. Fluorescence Intravital Microscopy is used for imaging of tumor microvasculature and tumor microenvironment. These well known modalities have been comprehensively validated in the past and are widely used in various bio-medical applications. As shown here, their combined application has great potential for studies of vascular biology. This multi-modal non-invasive diagnostic technique expands our current capacity to investigate blood microcirculation and tumor angiogenesis in vivo, thereby contributing to the development of cancer research and treatment.

  7. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  8. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  9. The plant vascular system: evolution, development and functions.

    PubMed

    Lucas, William J; Groover, Andrew; Lichtenberger, Raffael; Furuta, Kaori; Yadav, Shri-Ram; Helariutta, Ykä; He, Xin-Qiang; Fukuda, Hiroo; Kang, Julie; Brady, Siobhan M; Patrick, John W; Sperry, John; Yoshida, Akiko; López-Millán, Ana-Flor; Grusak, Michael A; Kachroo, Pradeep

    2013-04-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.

  10. Optimization of Peripheral Vascular Sizing with Conductance Guidewire: Theory and Experiment.

    PubMed

    Choi, Hyo Won; Berwick, Zachary C; Sulkin, Matthew S; Owens, Christopher D; Kassab, Ghassan S

    2017-01-01

    Although the clinical range of interventions for coronary arteries is about 2 to 5 mm, the range of diameters of peripheral vasculature is significantly larger (about 10 mm for human iliac artery). When the vessel diameter is increased, the spacing between excitation electrodes on a conductance sizing device must also increase to accommodate the greater range of vessel diameters. The increase in the excitation electrodes distance, however, causes higher parallel conductance or current losses outside of artery lumen. We have previously shown that the conductance catheter/guidewire excitation electrode distances affects the measurement accuracy for the peripheral artery lumen sizing. Here, we propose a simple solution that varies the detection electrode distances to compensate for parallel conductance losses. Computational models were constructed to simulate the conductance guidewire with various electrodes spacing combinations over a range of peripheral artery lumen diameters and surrounding tissue electrical conductivities. The results demonstrate that the measurement accuracy may be significantly improved by increased detection spacing. Specifically, an optimally configured detection/excitation spacing (i.e., 5-5-5 or an equidistant electrode interval with a detection-to-excitation spacing ratio of 0.3) was shown to accurately predict the lumen diameter (i.e., -10% < error < 10%) over a broad range of peripheral artery dimensions (4 mm < diameter < 10 mm). The computational results were substantiated with both ex-vivo and in-vivo measurements of peripheral arteries. The present results support the accuracy of the conductance technique for measurement of peripheral reference vessel diameter.

  11. BP and Vascular Function Following Space Flight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Roullet, Jean-Baptiste; Phanouvong, Thongchanh; Watanabe, Mitsuaki; Otsuka, Keiichi; McCarron, David A.

    1997-01-01

    Blood pressure and mesenteric resistance artery function were assessed in 9-week-old spontaneously hypertensive rats following an 18 day shuttle flight on STS-80. Blood pressure was measured twice, first in conscious animals using a tail-cuff method and then while the animals were anesthetized with 2% halothane in O2. Isolated mesenteric resistance artery responses to cumulative additions of norepinephrine, acetylcholine, sodium nitroprusside, and calcium were measured within 17 hours of landing using wire myography. Blood pressure was slightly reduced in conscious animals following flight (p=0.056) but was significantly elevated (p less than.001) above vivarium control group values in anesthetized animals. Maximal contraction of mesenteric arteries to norepinephrine was attenuated in the flight animals (p less than.001)aswasrelaxationtoacetylcholine(p less than .001)andcalcium(p less than .05). There was no difference between flight and control animals in the vessel response to sodium nitroprusside (p greater than .05). The results suggest that there may have been an increase in synthesis and release of nitric oxide in the flight animals.

  12. Spinal cord stimulation in the treatment of peripheral vascular disease: results of a single-center study of 258 patients.

    PubMed

    Horsch, Svante; Schulte, Stefan; Hess, Stefan

    2004-01-01

    This report is of a retrospective study of data from 258 patients who received spinal cord stimulation (SCS) for the treatment of peripheral vascular disease as a result of arteriosclerosis. The patients' clinical outcomes were monitored over a period of 18 months. In patients with a low baseline transcutaneous oxygen pressure (TcPO(2)) value of <10 mm Hg, limb survival at 18 months of follow-up (estimated by use of Kaplan-Meier survival analysis) was 77.8%, and this was even higher, at 89.5%, in patients with a medium baseline TcPO(2) value of 10-30 mm Hg. This successful treatment was accompanied by a sustained increase in TcPO(2) values to approximately 30 mm Hg in both of these groups. In looking at diabetic and nondiabetic patients, there is no difference in limb survival as a result of the treatment. It is concluded that SCS is an effective therapy in improving limb survival in patients with peripheral vascular disease. In addition, TcPO(2) values at baseline may be a useful predictor of treatment outcome.

  13. Mortality After Nontraumatic Major Amputation Among Patients With Diabetes and Peripheral Vascular Disease: A Systematic Review.

    PubMed

    Thorud, Jakob C; Plemmons, Britton; Buckley, Clifford J; Shibuya, Naohiro; Jupiter, Daniel C

    2016-01-01

    High mortality rates have been reported after major amputations of a lower limb secondary to diabetes and peripheral vascular disease. However, the mortality rates have varied across studies. A systematic review of the 5-year mortality after nontraumatic major amputations of the lower extremity was conducted. A data search was performed of Medline using OVID, CINHAL, and Cochrane, 365 abstracts were screened, and 79 full text articles were assessed for eligibility. After review, 31 studies met the inclusion and exclusion criteria. Overall, the 5-year mortality rate was very high among patients with any amputation (major and minor combined), ranging from 53% to 100%, and in patients with major amputations, ranging from 52% to 80%. Mortality after below-the-knee amputation ranged from 40% to 82% and after above-the-knee amputation from 40% to 90%. The risk factors for increased mortality included age, renal disease, proximal amputation, and peripheral vascular disease. Although our previous systematic review of the 5-year mortality after ulceration had much lower rates of death, additional studies are warranted to determine whether amputation hastens death or is a marker for underlying disease severity. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Effects of two "lipid-lowering" diets on plasma lipid levels of patients with peripheral vascular disease.

    PubMed

    Brown, G D; Whyte, L; Gee, M I; Crockford, P M; Grace, M; Oberle, K; Williams, H T; Hutchison, K J

    1984-05-01

    Fifty subjects with peripheral vascular disease were randomly assigned to either the American Heart Association Hyperlipidemia Diet C (AHA, N = 23) or a higher fiber, low fat diet based on the Pritikin maintenance diet (HFD, N = 27) and studied for a 12-month period. Diet counseling was provided, and the subjects were encouraged to exercise regularly, to decrease their consumption of salt, alcohol, and caffeine, and to restrict cigarettes as much as possible. Dietary intake data showed that energy distribution was approximately 49% and 64% carbohydrate, 20% and 22% protein, and 31% and 14% fat for the AHA and HFD groups, respectively. Cholesterol and dietary fiber intakes averaged 201 mg and 23 gm per day, respectively, for the AHA group and 108 mg and 43 gm per day, respectively, for the HFD group. Generally, both groups showed tendencies toward decreased serum triglycerides, cholesterol, and LDL cholesterol and increased HDL cholesterol. The HFD group achieved a significant decrease in serum cholesterol (at month 12) (p less than .01). The only significant between-group difference was in serum cholesterol at 4 months (p less than .01), with the lower value in the HFD group. There was a consistent negative correlation between dietary fiber and serum cholesterol levels (p less than .01). Average weight loss was 4.1 kg for the AHA group and 6 kg for the HFD group. We concluded that both dietary regimens, combined with exercise, can be of benefit to patients with peripheral vascular disease.

  15. Peripheral Endothelial Function After Arterial Switch Operation for D-looped Transposition of the Great Arteries.

    PubMed

    Sun, Heather Y; Stauffer, Katie Jo; Nourse, Susan E; Vu, Chau; Selamet Tierney, Elif Seda

    2017-03-27

    Coronary artery re-implantation during arterial switch operation in patients with D-looped transposition of the great arteries (D-TGA) can alter coronary arterial flow and increase shear stress, leading to local endothelial dysfunction, although prior studies have conflicting results. Endothelial pulse amplitude testing can predict coronary endothelial dysfunction by peripheral arterial testing. This study tested if, compared to healthy controls, patients with D-TGA after arterial switch operation had peripheral endothelial dysfunction. Patient inclusion criteria were (1) D-TGA after neonatal arterial switch operation; (2) age 9-29 years; (3) absence of known cardiovascular risk factors such as hypertension, diabetes, hypercholesterolemia, vascular disease, recurrent vasovagal syncope, and coronary artery disease; and (4) ability to comply with overnight fasting. Exclusion criteria included (1) body mass index ≥85th percentile, (2) use of medications affecting vascular tone, or (3) acute illness. We assessed endothelial function by endothelial pulse amplitude testing and compared the results to our previously published data in healthy controls (n = 57). We tested 20 D-TGA patients (16.4 ± 4.8 years old) who have undergone arterial switch operation at a median age of 5 days (0-61 days). Endothelial pulse amplitude testing indices were similar between patients with D-TGA and controls (1.78 ± 0.61 vs. 1.73 ± 0.54, p = 0.73).In our study population of children and young adults, there was no evidence of peripheral endothelial dysfunction in patients with D-TGA who have undergone arterial switch operation. Our results support the theory that coronary arterial wall thickening and abnormal vasodilation reported in these patients is a localized phenomenon and not reflective of overall atherosclerotic burden.

  16. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease.

    PubMed

    Fetterman, Jessica L; Holbrook, Monica; Westbrook, David G; Brown, Jamelle A; Feeley, Kyle P; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Weisbrod, Robert M; Widlansky, Michael E; Gokce, Noyan; Ballinger, Scott W; Hamburg, Naomi M

    2016-03-31

    Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (β = 0.14 ± 0.13, P = 0.04 and β = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.

  17. Bioelectric impact of pathological angiogenesis on vascular function

    PubMed Central

    Puro, Donald G.; Kohmoto, Ryohsuke; Fujita, Yasushi; Gardner, Thomas W.; Padovani-Claudio, Dolly A.

    2016-01-01

    Pathological angiogenesis, as seen in many inflammatory, immune, malignant, and ischemic disorders, remains an immense health burden despite new molecular therapies. It is likely that further therapeutic progress requires a better understanding of neovascular pathophysiology. Surprisingly, even though transmembrane voltage is well known to regulate vascular function, no previous bioelectric analysis of pathological angiogenesis has been reported. Using the perforated-patch technique to measure vascular voltages in human retinal neovascular specimens and rodent models of retinal neovascularization, we discovered that pathological neovessels generate extraordinarily high voltage. Electrophysiological experiments demonstrated that voltage from aberrantly located preretinal neovascular complexes is transmitted into the intraretinal vascular network. With extensive neovascularization, this voltage input is substantial and boosts the membrane potential of intraretinal blood vessels to a suprahyperpolarized level. Coincident with this suprahyperpolarization, the vasomotor response to hypoxia is fundamentally altered. Instead of the compensatory dilation observed in the normal retina, arterioles constrict in response to an oxygen deficiency. This anomalous vasoconstriction, which would potentiate hypoxia, raises the possibility that the bioelectric impact of neovascularization on vascular function is a previously unappreciated pathophysiological mechanism to sustain hypoxia-driven angiogenesis. PMID:27551068

  18. The COP9 signalosome and vascular function: intriguing possibilities?

    PubMed Central

    Martin, Douglas S; Wang, Xuejun

    2015-01-01

    Disorders of vascular function contribute importantly to cardiovascular disease which represents a substantial cause of morbidity and mortality worldwide. An emerging paradigm in the study of cardiovascular diseases is that protein ubiquitination and turnover represent key pathological mechanisms. Our understanding of these processes in the vasculature is growing but remains incomplete. Since protein ubiquitination and turnover can represent a terminal event in the life of a given protein, entry into these pathways must be highly regulated. However, at present understanding of these regulatory mechanisms, particularly in the vasculature, is fragmentary. The COP9 (constitutive photomorphogenic mutant 9) signalosome (CSN) is a heteromeric protein complex implicated in the control of protein degradation. The CSN participates critically in the control of Cullin Ring Ligases (CRLs), at least in part via the detachment of a small protein, Nedd8 (deneddylation). CRLs are one of the largest groups of ubiquitin ligases, which represent the most selective control point for protein ubiquitination. Thus, the CSN by virtue of its ability to control the CRLs ubiquitin ligase activity is ideally positioned to effect selective modulation of protein turnover. This review surveys currently available data regarding the potential role of the CSN in control of vascular function. Data potentially linking the CSN to control of regulatory proteins involved in vascular smooth muscle proliferation and to vascular smooth muscle contraction are presented with the intent of providing potentially intriguing possibilities for future investigation. PMID:26064791

  19. Insulin transcriptionally regulates argininosuccinate synthase to maintain vascular endothelial function.

    PubMed

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Meininger, Cynthia J; Eichler, Duane C

    2012-04-27

    Diminished vascular endothelial cell nitric oxide (NO) production is a major factor in the complex pathogenesis of diabetes mellitus. In this report, we demonstrate that insulin not only maintains endothelial NO production through regulation of endothelial nitric oxide synthase (eNOS), but also via the regulation of argininosuccinate synthase (AS), which is the rate-limiting step of the citrulline-NO cycle. Using serum starved, cultured vascular endothelial cells, we show that insulin up-regulates AS and eNOS transcription to support NO production. Moreover, we show that insulin enhances NO production in response to physiological cues such as bradykinin. To translate these results to an in vivo model, we show that AS transcription is diminished in coronary endothelial cells isolated from rats with streptozotocin (STZ)-induced diabetes. Importantly, we demonstrate restoration of AS and eNOS transcription by insulin treatment in STZ-diabetic rats, and show that this restoration was accompanied by improved endothelial function as measured by endothelium-dependent vasorelaxation. Overall, this report demonstrates, both in cell culture and whole animal studies, that insulin maintains vascular function, in part, through the maintenance of AS transcription, thus ensuring an adequate supply of arginine to maintain vascular endothelial response to physiological cues. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  1. Enzymatic regulation of functional vascular networks using gelatin hydrogels.

    PubMed

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-06-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights

  2. Niacin promotes revascularization and recovery of limb function in diet-induced obese mice with peripheral ischemia.

    PubMed

    Pang, Dominic K T; Nong, Zengxuan; Sutherland, Brian G; Sawyez, Cynthia G; Robson, Debra L; Toma, Jelena; Pickering, J Geoffrey; Borradaile, Nica M

    2016-06-01

    Niacin can reduce vascular disease risk in individuals with metabolic syndrome, but in light of recent large randomized controlled trials outcomes, its biological actions and clinical utility remain controversial. Niacin can improve endothelial function, vascular inflammation, and vascular regeneration, independent of correcting dyslipidemia, in various lean rodent models of vascular injury. Here, we tested whether niacin could directly improve endothelial cell angiogenic function during combined exposure to excess fatty acids and hypoxia, and whether intervention with niacin during continued feeding of western diet could improve revascularization and functional recovery in obese, hyperlipidemic mice with peripheral ischemia. Treatment with niacin (10 μmol/L) increased human microvascular endothelial cell angiogenic function during exposure to high fatty acids and hypoxia (2% oxygen), as determined by tube formation on Matrigel. To assess revascularization in vivo, we used western diet-induced obese mice with unilateral hind limb femoral artery ligation and excision. Treatment for 14 days postinjury with once daily i.p. injections of a low dose of niacin (50 mg/kg) improved recovery of hind limb use, in association with enhanced revascularization and decreased inflammation of the tibialis anterior muscle. These effects were concomitant with decreased plasma triglycerides, but not increased plasma apoAI. Thus, niacin improves endothelial tube formation under lipotoxic and hypoxic conditions, and moreover, promotes revascularization and functional hind limb recovery following ischemic injury in diet-induced obese mice with hyperlipidemia. These data may have implications for niacin therapy in the treatment of peripheral ischemic vascular disease associated with metabolic syndrome.

  3. Vascular dilatory functions of ovo-lactovegetarians compared with omnivores.

    PubMed

    Lin, C L; Fang, T C; Gueng, M K

    2001-09-01

    Vegetarians have lower blood pressure and lower cardiovascular mortality. Vegetarian diets may have lower cardiovascular risks through positive influence on endothelium-dependent relaxation and related functions. The objectives of this study were to assess the differences of vascular dilatory functions between middle-aged vegetarians and sex and age-matched omnivores before they develop any clinical manifestations of atherosclerosis. Twenty healthy vegetarians over the age of 50 and 20 healthy omnivores over the age of 50 were recruited for this study. Subjects with known risk factors for atherosclerosis such as hypertension, diabetes, obesity, hypercholesteremia, cigarette smoking, family history of vascular diseases, or taking any regular medication were excluded. Medical history, body weight, height, and duration of vegetarian diet were recorded. Baseline CBC, urinalysis and biochemical data such as fasting blood glucose, thyroid function, blood urea nitrogen, creatinine, serum electrolytes (sodium, potassium, chloride, calcium and magnesium), lipid profiles [total cholesterol, triglycerides, high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol] were obtained after a 14 h fast. Blood pressures and heart rate were recorded in supine position. Vascular dilatory functions, both flow-mediated (endothelium-dependent) and nitroglycerin-induced (endothelium-independent), were evaluated by using a non-invasive ultrasonographic method. The results show that there were no significant differences in the baseline characteristic between the vegetarians and the omnivores. There were also no significant differences in serum glucose, lipid profiles and thyroid function between these two groups. However, vasodilatation responses (both flow-mediated and nitroglycerin-induced) were significantly better in the vegetarian group and the degree of vasodilatation appeared to be correlated with years on vegetarian diets. Our findings suggest that

  4. Optimization of Peripheral Vascular Sizing with Conductance Guidewire: Theory and Experiment

    PubMed Central

    Choi, Hyo Won; Berwick, Zachary C.; Sulkin, Matthew S.; Owens, Christopher D.; Kassab, Ghassan S.

    2017-01-01

    Although the clinical range of interventions for coronary arteries is about 2 to 5 mm, the range of diameters of peripheral vasculature is significantly larger (about 10 mm for human iliac artery). When the vessel diameter is increased, the spacing between excitation electrodes on a conductance sizing device must also increase to accommodate the greater range of vessel diameters. The increase in the excitation electrodes distance, however, causes higher parallel conductance or current losses outside of artery lumen. We have previously shown that the conductance catheter/guidewire excitation electrode distances affects the measurement accuracy for the peripheral artery lumen sizing. Here, we propose a simple solution that varies the detection electrode distances to compensate for parallel conductance losses. Computational models were constructed to simulate the conductance guidewire with various electrodes spacing combinations over a range of peripheral artery lumen diameters and surrounding tissue electrical conductivities. The results demonstrate that the measurement accuracy may be significantly improved by increased detection spacing. Specifically, an optimally configured detection/excitation spacing (i.e., 5-5-5 or an equidistant electrode interval with a detection-to-excitation spacing ratio of 0.3) was shown to accurately predict the lumen diameter (i.e., -10% < error < 10%) over a broad range of peripheral artery dimensions (4 mm < diameter < 10 mm). The computational results were substantiated with both ex-vivo and in-vivo measurements of peripheral arteries. The present results support the accuracy of the conductance technique for measurement of peripheral reference vessel diameter. PMID:28045933

  5. Arterial structure and function in vascular ageing: are you as old as your arteries?

    PubMed

    Thijssen, Dick H J; Carter, Sophie E; Green, Daniel J

    2016-04-15

    Advancing age may be the most potent independent predictor of future cardiovascular events, a relationship that is not fully explained by time-related changes in traditional cardiovascular risk factors. Since some arteries exhibit differential susceptibility to atherosclerosis, generalisations regarding the impact of ageing in humans may be overly simplistic, whereas in vivo assessment of arterial function and health provide direct insight. Coronary and peripheral (conduit, resistance and skin) arteries demonstrate a gradual, age-related impairment in vascular function that is likely to be related to a reduction in endothelium-derived nitric oxide bioavailability and/or increased production of vasoconstrictors (e.g. endothelin-1). Increased exposure and impaired ability for defence mechanisms to resist oxidative stress and inflammation, but also cellular senescence processes, may contribute to age-related changes in vascular function and health. Arteries also undergo structural changes as they age. Gradual thickening of the arterial wall, changes in wall content (i.e. less elastin, advanced glycation end-products) and increase in conduit artery diameter are observed with older age and occur similarly in central and peripheral arteries. These changes in structure have important interactive effects on artery function, with increases in small and large arterial stiffness representing a characteristic change with older age. Importantly, direct measures of arterial function and structure predict future cardiovascular events, independent of age or other cardiovascular risk factors. Taken together, and given the differential susceptibility of arteries to atherosclerosis in humans, direct measurement of arterial function and health may help to distinguish between biological and chronological age-related change in arterial health in humans.

  6. Neutrophil responses to injury or inflammation impair peripheral gustatory function

    PubMed Central

    Steen, Pamela Wall; Shi, Liqiao; He, Lianying; McCluskey, Lynnette Phillips

    2010-01-01

    The adult peripheral taste system is capable of extensive functional plasticity after injury. Sectioning the chorda tympani (CT), a primary sensory afferent nerve, elicits transient changes in the uninjured, contralateral population of taste receptor cells. Remarkably, the deficits are specific to the sodium transduction pathway. Normal function is quickly restored in the intact nerve, in parallel with an influx of macrophages to both the denervated and uninjured sides of the tongue. However, changing the dietary environment by restricting sodium blocks the macrophage response and prolongs functional alterations. Since the functional deficits occur before macrophages are present in the peripheral taste system, we hypothesized that neutrophils play a role in modulating neural responses in the intact CT. First, the dynamics of the neutrophil response to nerve injury were analyzed in control-fed and sodium-deficient rats. Nerve sectioning briefly increased the number of neutrophils on both the denervated and uninjured sides of the tongue. The low-sodium diet amplified and extended the bilateral neutrophil response to injury, in parallel with the persistent changes in sodium taste function. To test the impact of neutrophils on taste function, we depleted these cells prior to nerve sectioning and recorded neural responses from the intact CT. This treatment restored normal sodium responses in the uninjured nerve. Moreover, recruiting neutrophils to the tongue induced deficits in sodium taste function in both CT nerves. Neutrophils play a critical role in ongoing inflammatory responses in the oral cavity, and may induce changes in taste perception. We also suggest that balanced neutrophil and macrophage responses enable normal neural responses after neural injury. PMID:20219636

  7. Vascular stem/progenitor cells: functions and signaling pathways.

    PubMed

    Lu, Weisi; Li, Xuri

    2017-09-27

    Vascular stem/progenitor cells (VSCs) are an important source of all types of vascular cells needed to build, maintain, repair, and remodel blood vessels. VSCs, therefore, play critical roles in the development, normal physiology, and pathophysiology of numerous diseases. There are four major types of VSCs, including endothelial progenitor cells (EPCs), smooth muscle progenitor cells (SMPCs), pericytes, and mesenchymal stem cells (MSCs). VSCs can be found in bone marrow, circulating blood, vessel walls, and other extravascular tissues. During the past two decades, considerable progress has been achieved in the understanding of the derivation, surface markers, and differentiation of VSCs. Yet, the mechanisms regulating their functions and maintenance under normal and pathological conditions, such as in eye diseases, remain to be further elucidated. Owing to the essential roles of blood vessels in human tissues and organs, understanding the functional properties and the underlying molecular basis of VSCs is of critical importance for both basic and translational research.

  8. Nitrites derived from Foneiculum vulgare (fennel) seeds promotes vascular functions.

    PubMed

    Swaminathan, Akila; Sridhara, Sree Rama Chaitanya; Sinha, Swaraj; Nagarajan, Shunmugam; Balaguru, Uma Maheswari; Siamwala, Jamila H; Rajendran, Saranya; Saran, Uttara; Chatterjee, Suvro

    2012-12-01

    Recent evidence has demonstrated that nitrites play an important role in the cardiovascular system. Fennel (Foneiculum vulgare) seeds are often used as mouth fresheners after a meal in both the Indian sub-continent and around the world. The present study aims to quantify the nitrite and nitrates in fennel seeds as well as elucidating the effect of fennel derived-nitrites on vascular functions. Results from our study show that fennel seeds contain significantly higher amount of nitrites when compared to other commonly used post-meal seeds. Furthermore our study confirmed the functional effects of fennel derived-nitrites using in vitro and ex vivo models that describe the promotion of angiogenesis, cell migration, and vasorelaxation. We also showed that chewing fennel seeds enhanced nitrite content of saliva. Thus our study indicates the potential role of fennel derived-nitrites on the vascular system.

  9. Vascular compression of the airway: establishing a functional diagnostic algorithm.

    PubMed

    Rogers, Derek J; Cunnane, Mary Beth; Hartnick, Christopher J

    2013-06-01

    Pediatric imaging carries the risk of radiation exposure. Children frequently undergo computed tomography with angiography (CTA) for findings on bronchoscopy with limited knowledge regarding the necessity of such imaging. To report our experience with all pediatric patients at our institution over an 8-year period with airway symptoms warranting bronchoscopy followed by CTA for potential vascular anomaly. Goals were to report the percentage of positive findings seen on CTA leading to surgery; discuss relative radiation exposure risk and sedation risk for additional radiologic studies; and propose a functional diagnostic algorithm. Retrospective chart review of 42 children aged 2 months to 11 years with tracheomalacia who underwent CTA between 2004 and 2012 in our tertiary aerodigestive center. Bronchoscopy and CTA. Presence of vascular anomaly and need for thoracic surgery. Of these 42 children, 21 (50%) had a vascular anomaly identified on CTA. Of these 21, 17 (81%) had innominate artery compression; 1 (5%) had double aortic arch; 1 (5%) had right aortic arch; 3 (14%) had bronchial compression by pulmonary artery; and 1 (5%) had dextrocardia with duplicated vena cava. Six (29%) of these 21 had clinical symptoms and CTA findings requiring thoracic surgery. The most common symptoms in children requiring thoracic surgery were cough, cyanosis, and stridor. Deciding when to obtain imaging for bronchoscopic findings suggestive of vascular compression remains challenging. A diagnostic algorithm is proposed as a means to provide the best clinical care while weighing risks of additional radiation exposure vs sedation and exposure to general anesthesia.

  10. Role of Endothelin in Uteroplacental Circulation and Fetal Vascular Function

    PubMed Central

    Paradis, Alexandra; Zhang, Lubo

    2014-01-01

    Endothelins are 21-amino acid peptides involved in vascular homeostasis. Three types of peptide have been identified, with endothelin-1 (ET-1) being the most potent vasoconstrictor currently known. Two endothelin receptor sub-types are found in various tissues, including the brain, heart, blood vessel, lung, and placenta. The ETA-receptor is associated with vasoconstriction in vascular smooth muscle. Conversely, the ETB-receptor can elicit a vasoconstrictor effect in vascular smooth muscle and a vasodilator effect via its action in endothelial cells. Both receptors play a key role in maintaining circulatory homeostasis and vascular function. Changes in ET-1 expression are found in various disease states, and overexpression of ET-1 is observed in hypertension and preeclampsia in pregnancy. Placental localization of ET-1 implies a key role in regulating the uteroplacental circulation. Additionally, ET-1 is important in the fetal circulation and is involved in the pulmonary circulation and closure of the ductus arteriosus after birth, as well as fetal growth constriction in utero. ET receptor antagonists and nitric oxide donors may provide therapeutic potential in treating conditions associated with overexpression of ET and hypertension. PMID:24063378

  11. Role of endothelin in uteroplacental circulation and fetal vascular function.

    PubMed

    Paradis, Alexandra; Zhang, Lubo

    2013-09-01

    Endothelins are 21-amino acid peptides involved in vascular homeostasis. Three types of peptide have been identified, with endothelin-1 (ET-1) being the most potent vasoconstrictor currently known. Two endothelin receptor subtypes are found in various tissues, including the brain, heart, blood vessel, lung, and placenta. The ETA-receptor is associated with vasoconstriction in vascular smooth muscle. Conversely, the ETB-receptor can elicit a vasoconstrictor effect in vascular smooth muscle and a vasodilator effect via its action in endothelial cells. Both receptors play a key role in maintaining circulatory homeostasis and vascular function. Changes in ET-1 expression are found in various disease states, and overexpression of ET-1 is observed in hypertension and preeclampsia in pregnancy. Placental localization of ET-1 implies a key role in regulating the uteroplacental circulation. Additionally, ET-1 is important in the fetal circulation and is involved in the pulmonary circulation and closure of the ductus arteriosus after birth, as well as fetal growth constriction in utero. ET receptor antagonists and nitric oxide donors may provide therapeutic potential in treating conditions associated with overexpression of ET and hypertension.

  12. The extraction of vascular axis based on signed distance function

    NASA Astrophysics Data System (ADS)

    Hong, Qingqi; Chen, Liyan; Wang, Beizhan; Wu, Qingqiang

    2014-01-01

    This paper presents a simple and fast algorithm to extract the skeleton of vascular structures from segmented vessel datasets. Our algorithm is based on a step by step approach to move a small volume of interest along the vessel tree. With the introduction of Signed Distance Function (SDF), the moving sphere along the vessel tree can easily and automatically detect bifurcations and predict the location of next axis point. Some experiments have been carried out to demonstrate the strengths of our proposed method.

  13. Lowered LDL-C Levels Reduce Later Local Vascular Events after Surgical or Endovascular Treatment of Peripheral Artery Disease

    PubMed Central

    Ishii, Kouji; Takahashi, Junichiro; Kanaoka, Tsuyoshi; Wakamatsu, Yutaka; Gohda, Toshihiro; Matsui, Yoshiro

    2012-01-01

    Purpose: To examine the relationship between incidence of later, local vascular events (restenosis and occlusion) and clinical factors including lipid levels after surgical or endovascular treatment of peripheral artery disease (PAD). Methods: Consecutive 418 PAD lesions (in 308 patients under the age of 70) treated with surgical (n = 188) or endovascular (n = 230) repair for iliac (n = 228) and infrainguinal (n = 190) lesions were retrospectively analyzed. Clinical features and lipid levels were compared between patients who developed vascular events (n = 51; VE group) and those who did not (n = 257; NoVE group). Results: Among assessed factors, post-therapeutic low-density lipoprotein cholesterol (LDL-C) levels (mg/dL) were significantly higher in the VE group (120.4 ± 31.2) than in the NoVE group (108.2 ± 25.1) (P = 0.01). Infrainguinal lesions were more common in the VE than in the NoVE group (P <0.001). Cox hazard analysis indicated that infrainguinal lesions relative to iliac lesions significantly increased the risk of vascular events (hazard ratio (HR) 3.35; 95% CI 1.63–6.90; P = 0.001) and post-therapeutic LDL-C levels <130 (mg/dL) decreased the risk (HR 0.34; 95%CI 0.17–0.67; P = 0.002). Conclusion: Lowered post-therapeutic LDL-C levels can decrease the risk of later, local vascular events after PAD treatment. These results may support the rationale for aggressive lipid-modifying therapy for PAD. PMID:23555508

  14. Diabetes, peripheral neuropathy, and lower-extremity function.

    PubMed

    Chiles, Nancy S; Phillips, Caroline L; Volpato, Stefano; Bandinelli, Stefania; Ferrucci, Luigi; Guralnik, Jack M; Patel, Kushang V

    2014-01-01

    Diabetes among older adults causes many complications, including decreased lower-extremity function and physical disability. Diabetes can cause peripheral nerve dysfunction, which might be one pathway through which diabetes leads to decreased physical function. The study aims were to determine the following: (1) whether diabetes and impaired fasting glucose are associated with objective measures of physical function in older adults, (2) which peripheral nerve function (PNF) tests are associated with diabetes, and (3) whether PNF mediates the diabetes-physical function relationship. This study included 983 participants, age 65 years and older from the InCHIANTI study. Diabetes was diagnosed by clinical guidelines. Physical performance was assessed using the Short Physical Performance Battery (SPPB), scored from 0 to 12 (higher values, better physical function) and usual walking speed (m/s). PNF was assessed via standard surface electroneurographic study of right peroneal nerve conduction velocity, vibration and touch sensitivity. Clinical cutpoints of PNF tests were used to create a neuropathy score from 0 to 5 (higher values, greater neuropathy). Multiple linear regression models were used to test associations. One hundred twenty-six (12.8%) participants had diabetes. Adjusting for age, sex, education, and other confounders, diabetic participants had decreased SPPB (β=-0.99; p<0.01), decreased walking speed (β=-0.1m/s; p<0.01), decreased nerve conduction velocity (β=-1.7m/s; p<0.01), and increased neuropathy (β=0.25; p<0.01) compared to non-diabetic participants. Adjusting for nerve conduction velocity and neuropathy score decreased the effect of diabetes on SPPB by 20%, suggesting partial mediation through decreased PNF. © 2014.

  15. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery

    PubMed Central

    Daly, W.; Yao, L.; Zeugolis, D.; Windebank, A.; Pandit, A.

    2012-01-01

    Microsurgical techniques for the treatment of large peripheral nerve injuries (such as the gold standard autograft) and its main clinically approved alternative—hollow nerve guidance conduits (NGCs)—have a number of limitations that need to be addressed. NGCs, in particular, are limited to treating a relatively short nerve gap (4 cm in length) and are often associated with poor functional recovery. Recent advances in biomaterials and tissue engineering approaches are seeking to overcome the limitations associated with these treatment methods. This review critically discusses the advances in biomaterial-based NGCs, their limitations and where future improvements may be required. Recent developments include the incorporation of topographical guidance features and/or intraluminal structures, which attempt to guide Schwann cell (SC) migration and axonal regrowth towards their distal targets. The use of such strategies requires consideration of the size and distribution of these topographical features, as well as a suitable surface for cell–material interactions. Likewise, cellular and molecular-based therapies are being considered for the creation of a more conductive nerve microenvironment. For example, hurdles associated with the short half-lives and low stability of molecular therapies are being surmounted through the use of controlled delivery systems. Similarly, cells (SCs, stem cells and genetically modified cells) are being delivered with biomaterial matrices in attempts to control their dispersion and to facilitate their incorporation within the host regeneration process. Despite recent advances in peripheral nerve repair, there are a number of key factors that need to be considered in order for these new technologies to reach the clinic. PMID:22090283

  16. Gender Differences in Bed Rest: Preliminary Analysis of Vascular Function

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Stenger, Michael B.; Martin, David S.; Freeman-Perez, Sondra A.; Phillips, Tiffany; Ribeiro, L. Christine

    2008-01-01

    Orthostatic intolerance is a recognized consequence of spaceflight. Numerous studies have shown that women are more susceptible to orthostatic intolerance following spaceflight as well as bed rest, the most commonly used ground-based analog for spaceflight. One of the possible mechanisms proposed to account for this is a difference in vascular responsiveness between genders. We hypothesized that women and men would have differing vascular responses to 90 days of 6-degree head down tilt bed rest. Additionally, we hypothesized that vessels in the upper and lower body would respond differently, as has been shown in the animal literature. Thirteen subjects were placed in bedrest for 90 days (8 men, 5 women) at the Flight Analogs Unit, UTMB. Direct arterial and venous measurements were made with ultrasound to evaluate changes in vascular structure and function. Arterial function was assessed, in the arm and leg, during a reactive hyperemia protocol and during sublingual nitroglycerin administration to gauge the contributions of endothelial dependent and independent dilator function respectively. Venous function was assessed in dorsal hand and foot veins during the administration of pharmaceuticals to assess constrictor and dilator function. Both gender and day effects are seen in arterial dilator function to reactive hyperemia, but none are seen with nitroglycerin. There are also differences in the wall thickness in the arm vs the leg during bed rest, which return toward pre-bed rest levels by day 90. More subjects are required, especially females as there is not sufficient power to properly analyze venous function. Day 90 data are most underpowered.

  17. Ultrasound or near-infrared vascular imaging to guide peripheral intravenous catheterization in children: a pragmatic randomized controlled trial.

    PubMed

    Curtis, Sarah J; Craig, William R; Logue, Erin; Vandermeer, Ben; Hanson, Amanda; Klassen, Terry

    2015-05-19

    Peripheral intravenous catheterization in children is challenging, and success rates vary greatly. We conducted a pragmatic randomized controlled trial to determine whether the use of ultrasound or near-infrared vascular imaging to guide catheterization would be more effective than the standard approach in achieving successful catheter placement on the first attempt. We enrolled a convenience sample of 418 children in a pediatric emergency department who required peripheral intravenous catheterization between June 2010 to August 2012. We stratified them by age (≤ 3 yr and > 3 yr) and randomly assigned them to undergo the procedure with the standard approach, or with the help of either ultrasound or near-infrared vascular imaging. The primary outcome was the proportion of patients who had successful placement of a catheter on the first attempt. The rate of successful first attempts did not differ significantly between either of the 2 intervention groups and the standard approach group (differences in proportions -3.9%, 95% confidence interval [CI] -14.2% to 6.5%, for ultrasound imaging; -8.7%, 95% CI -19.4% to 1.9%, for near-infrared imaging). Among children 3 years and younger, the difference in success rates relative to standard care was also not significant for ultrasound imaging (-9.6%, 95% CI -29.8% to 10.6%), but it was significantly worse for near-infrared imaging (-20.1%, 95% CI -40.1% to -0.2%). Among children older than 3 years, the differences in success rates relative to standard care were smaller but not significant (-2.3%, 95% CI -13.6% to 9.0%, for ultrasound imaging; -4.1%, 95% CI -15.7% to 7.5%, for near-infrared imaging). None of the pairwise comparisons were statistically significant in any of the outcomes. Neither technology improved first-attempt success rates of peripheral intravenous catheterization in children, even in the younger group. These findings do not support investment in these technologies for routine peripheral intravenous

  18. Abnormal vascular function in PR-interval prolongation.

    PubMed

    Chan, Yap-Hang; Siu, Chung-Wah; Yiu, Kai-Hang; Li, Sheung-Wai; Lau, Kui-Kai; Lam, Tai-Hing; Lau, Chu-Pak; Tse, Hung-Fat

    2011-10-01

    Underlying mechanisms of PR-interval prolongation leading to increased risk of adverse cardiovascular outcomes, including atrial fibrillation, are unclear. This study aims to investigate the relation between PR interval and changes in vascular function. We hypothesize that there exists an intermediate pathological stage between electrocardiographic PR prolongation and adverse cardiovascular outcomes, which could be reflected by changes in surrogate measurements of vascular function. We recruited 88 healthy subjects (mean age 57.5 ± 9.8 y, 46% male) from a community-based health screening program who had no history of cardiovascular disease or diabetes mellitus. PR interval was determined from a resting 12-lead electrocardiogram. Vascular function was noninvasively assessed by flow-mediated dilation (FMD) using high-resolution ultrasound and brachial-ankle pulse wave velocity (PWV) using a vascular profiling system. Only 3 subjects had a PR-interval length longer than the conventional cutoff of 200 ms. The PR-interval length was associated inversely with FMD (Pearson r = -0.30, P = 0.004) and positively with PWV (r = 0.40, P < 0.001). Adjusting for potential confounders, increased PR-interval length by each 25 ms was independently associated with reduced FMD by -1 unit (absolute %, B = -0.04 [95% confidence interval: -0.080 to -0.002, P = 0.040)] and increased PWV by +103 cm/second (B = +4.1 [95% confidence interval: 0.6-7.6, P = 0.023]). This study shows that PR-interval length, even in the conventionally normal range, is independently associated with endothelial dysfunction and increased arterial stiffness in healthy subjects free of atherosclerotic disease. This suggests the presence of a systemic, intermediate pathologic stage of the vasculature in PR prolongation before clinically manifest cardiovascular events, and could represent a mediating mechanism. © 2011 Wiley Periodicals, Inc.

  19. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Meng, Danqing; Hou, Xianglin; Zhu, Jianhong; Dai, Jianwu; Xu, Ruxiang

    2014-10-15

    The search for effective strategies for peripheral nerve regeneration has attracted much attention in recent years. In this study, ordered collagen fibers were used as intraluminal fibers after nerve injury in rats. Vascular endothelial growth factor (VEGF) plays an important role in nerve regeneration, but its very fast initial burst of activity within a short time has largely limited its clinical use. For the stable binding of VEGF to ordered collagen fibers, we fused a collagen-binding domain (CBD) to VEGF through recombinant DNA technology. Then, we filled the ordered collagen fibers-CBD-VEGF targeting delivery system in a collagen tube to construct natural neural scaffolds, which were then used to bridge transected nerve stumps in a rat sciatic nerve transection model. After transplantation, the natural neural scaffolds showed minimal foreign body reactions and good integration into the host tissue. Oriented collagen fibers in the collagen tube could guide regenerating axons in an oriented manner to the distal, degenerating nerve segment, maximizing the chance of target reinnervation. Functional and histological analyses indicated that the recovery of nerve function in the natural neural scaffolds-treated group was superior to the other grafted groups. The guiding of oriented axonal regeneration and effective delivery systems surmounting the otherwise rapid and short-lived diffusion of growth factors in body fluids are two important strategies in promoting peripheral nerve regeneration. The natural neural scaffolds described take advantage of these two aspects and may produce synergistic effects. These properties qualified the artificial nerve conduits as a putative candidate system for the fabrication of peripheral nerve reconstruction devices.

  20. Marrow-isolated adult multilineage inducible cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease.

    PubMed

    Grau-Monge, Cristina; Delcroix, Gaëtan J-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F; Armour, Maxime R; Montero, Ramon B; Schiller, Paul C; Andreopoulos, Fotios M; D'Ippolito, Gianluca

    2017-02-17

    Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of two layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration.

  1. Percutaneous Treatment of Peripheral Vascular Malformations in Children: Long-Term Clinical Outcome

    SciTech Connect

    Linden, Edwin van der; Otoide-Vree, Marleen; Pattynama, Peter M. T.

    2012-04-15

    Purpose: This study was designed to assess the rate of complications and clinical failure at 3 and 12 months after percutaneous treatment of vascular malformations in children. Furthermore, we describe patient satisfaction of treatment results during 5 years of follow-up. Methods: In a retrospective cohort study, we evaluated 26 patients younger than aged 19 years who were treated for symptomatic vascular malformations. Data on treatment outcomes and patient satisfactions were obtained with a precoded structured questionnaire. Patient files and imaging data were retrieved to obtain information regarding the vascular malformations and treatment. Clinical success was defined as disappearance or partial improvement of the complaints. Patient satisfaction was declared whenever patients answered in the questionnaire that they were satisfied with the treatment results. Results: Of 26 eligible patients, we included 23 (88%). The mean follow-up was 36 (range, 15-127) months. Posttreatment, 87% (20/23; 95% confidence interval (CI), 66-97%) of patients reported clinical success at 3 months. At 1, 2, 3, 4, and 5 years of follow-up this percentage was 74%, 59%, 59%, 59%, and 59%, respectively. Eleven (48%, 95% CI 27-69%) patients had experienced complications and 22% (95% CI 7-44%) had major complications, of which 5 had required additional treatment. In all, 83% (19/23) of the patients reported satisfaction with the treatment. Conclusions: Percutaneous treatment of vascular malformations improved clinical symptoms in 87% of the patients at 3 months and were sustainable for half of all patients during a 5-year follow-up period. However, major complications were seen in 22%.

  2. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    SciTech Connect

    Miller, V. Lin, A.; Brettschneider, J.; Fridman, G.; Fridman, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Autieri, M.

    2015-12-15

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  3. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Miller, V.; Lin, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Brettschneider, J.; Fridman, G.; Fridman, A.; Autieri, M.

    2015-12-01

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  4. Inducible nitric oxide synthase activity contributes to the regulation of peripheral vascular tone in patients with cirrhosis and ascites

    PubMed Central

    Ferguson, J W; Dover, A R; Chia, S; Cruden, N L M; Hayes, P C; Newby, D E

    2006-01-01

    Background Overexpression of inducible nitric oxide synthase (iNOS) and increased nitric oxide generation may be associated with the hyperdynamic circulation of patients with cirrhosis. We have, for the first time, used the highly selective iNOS inhibitor, 1400W, to determine whether iNOS activity contributes to the regulation of vascular tone in patients with cirrhosis and ascites. Methods Bilateral forearm blood flow was measured using strain gauge plethysmography in eight patients with cirrhosis and ascites, and eight matched healthy volunteers during intrabrachial infusion of 1400W (0.1–1 μmol/min), NG‐monomethyl‐L‐arginine (L‐NMMA, a non‐selective NOS inhibitor; 2–8 μmol), and norepinephrine (a control vasoconstrictor; 60–480 pmol/min). Results In patients with cirrhosis, 1400W, L‐NMMA, and norepinephrine caused dose dependent reductions in forearm blood flow: peak reductions of 11 (5)%, 37 (4)%, and 48 (5)%, respectively (p<0.05 for all). In contrast, 1400W had no effect on blood flow (+4 (8)%; NS) in healthy controls despite similar reductions in blood flow with L‐NMMA and norepinephrine (39 (5)% and 49 (5)%, respectively; p<0.05 for both). Conclusions We have, for the first time, demonstrated that 1400W causes peripheral vasoconstriction in patients with cirrhosis but not healthy matched controls. This suggests that iNOS contributes to the regulation of peripheral vascular tone in patients with cirrhosis and ascites, and may contribute towards the hyperdynamic circulation associated with this condition. PMID:16299035

  5. The effects of vasoactive agents on flow through saphenous vein grafts during lower-extremity peripheral vascular surgery.

    PubMed

    Maslow, Andrew D; Bert, Arthur; Slaiby, Jeffrey; Carney, William; Marcaccio, Edward

    2007-06-01

    The purpose of this study was to assess the effects of hemodynamic alterations on vein graft flow during peripheral vascular surgery. It was hypothesized that vasopressors can be administered without compromising flow through the vein grafts. Tertiary care center, university medical center. Randomized placebo-controlled double-blinded study. The effects of phenylephrine, epinephrine, milrinone, intravenous fluid, and placebo on newly constructed peripheral vein grafts were assessed in 60 patients (12 patients in each of 5 groups). Systemic and central hemodynamics were measured by using intra-arterial and pulmonary artery catheters. Vein graft flow was measured by using a transultrasonic flow probe (Transultrasonic Inc, Ithaca, NY). Phenylephrine increased systemic mean blood pressure (mBP) (68.2-94.0 mmHg, p < 0.01), systemic vascular resistance (SVR) (1,091-1,696 dynes x sec x cm(-5), p < 0.001), and vein graft flow (39.5-58.9 mL/min, p < 0.01), whereas cardiac output remained unchanged. Epinephrine resulted in increased cardiac output (4.4-6.9 L/min, p < 0.01) and mBP (72.7-89.1 mmHg, p < 0.01), whereas vein graft flow was reduced in 6 of 12 patients. Intravenous fluid administration resulted in a relatively smaller increase in graft flow (37.6-46.0 mL/min, p < 0.05), an increase in cardiac output, and an insignificant decrease in SVR. Other treatments had either little or no effect on vein graft flow. The study hypothesis was partly supported. Although both phenylephrine and epinephrine increased blood pressure, only the former increased vein graft flow in all patients. In conjunction with increases in graft flow after fluid administration, these data suggest that factors affecting vein graft flow are not just simply related to systemic hemodynamics.

  6. Dacron vs. PTFE as bypass materials in peripheral vascular surgery--systematic review and meta-analysis.

    PubMed

    Roll, Stephanie; Müller-Nordhorn, Jacqueline; Keil, Thomas; Scholz, Hans; Eidt, Daniela; Greiner, Wolfgang; Willich, Stefan N

    2008-12-19

    In peripheral vascular bypass surgery different synthetic materials are available for bypass grafting. It is unclear which of the two commonly used materials, polytetrafluoroethylene (PTFE) or polyester (Dacron(R)) grafts, is to be preferred. Thus, the aim of this meta-analysis and systematic review was to compare the effectiveness of these two prosthetic bypass materials (Dacron and PTFE). We performed a systematic literature search in MEDLINE, Cochrane-Library - CENTRAL, EMBASE and other databases for relevant publications in English and German published between 1999 and 2008. Only randomized controlled trials were considered for inclusion. We assessed the methodological quality by means of standardized checklists. Primary patency was used as the main endpoint. Random-effect meta-analysis as well as pooling data in life table format was performed to combine study results. Nine randomized controlled trials (RCT) were included. Two trials showed statistically significant differences in primary patency, one favouring Dacron and one favouring PTFE grafts, while 7 trials did not show statistically significant differences between the two materials. Meta-analysis on the comparison of PTFE vs. Dacron grafts yielded no differences with regard to primary patency rates (hazard ratio 1.04 (95% confidence interval [0.85;1.28]), no significant heterogeneity (p = 0.32, I2 = 14%)). Similarly, there were no significant differences with regard to secondary patency rates. Systematic evaluation and meta-analysis of randomized controlled trials comparing Dacron and PTFE as bypass materials for peripheral vascular surgery showed no evidence of an advantage of one synthetic material over the other.

  7. Clinical trials in peripheral vascular disease: pipeline and trial designs: an evaluation of the ClinicalTrials.gov database.

    PubMed

    Subherwal, Sumeet; Patel, Manesh R; Chiswell, Karen; Tidemann-Miller, Beth A; Jones, W Schuyler; Conte, Michael S; White, Christopher J; Bhatt, Deepak L; Laird, John R; Hiatt, William R; Tasneem, Asba; Califf, Robert M

    2014-11-11

    Tremendous advances have occurred in therapies for peripheral vascular disease (PVD); until recently, however, it has not been possible to examine the entire clinical trial portfolio of studies for the treatment of PVD (both arterial and venous disease). We examined interventional trials registered in ClinicalTrials.gov from October 2007 through September 2010 (n=40,970) and identified 676 (1.7%) PVD trials (n=493 arterial only, n=170 venous only, n=13 both arterial and venous). Most arterial studies investigated lower-extremity peripheral artery disease and acute stroke (35% and 24%, respectively), whereas most venous studies examined deep vein thrombosis/pulmonary embolus prevention (42%) or venous ulceration (25%). A placebo-controlled trial design was used in 27% of the PVD trials, and 4% of the PVD trials excluded patients >65 years of age. Enrollment in at least 1 US site decreased from 51% of trials in 2007 to 41% in 2010. Compared with noncardiology disciplines, PVD trials were more likely to be double-blinded, to investigate the use of devices and procedures, and to have industry sponsorship and assumed funding source, and they were less likely to investigate drug and behavioral therapies. Geographic access to PVD clinical trials within the United States is limited to primarily large metropolitan areas. PVD studies represent a small group of trials registered in ClinicalTrials.gov, despite the high prevalence of vascular disease in the general population. This low number, compounded by the decreasing number of PVD trials in the United States, is concerning and may limit the ability to inform current clinical practice of patients with PVD. © 2014 American Heart Association, Inc.

  8. Clinical Trials in Peripheral Vascular Disease: Pipeline and Trial Designs: An Evaluation of the ClinicalTrials.gov Database

    PubMed Central

    Subherwal, Sumeet; Patel, Manesh R.; Chiswell, Karen; Tidemann-Miller, Beth A.; Jones, W. Schuyler; Conte, Michael S.; White, Christopher J.; Bhatt, Deepak L.; Laird, John R.; Hiatt, William R.; Tasneem, Asba; Califf, Robert M.

    2014-01-01

    Background Tremendous advances have occurred in therapies for peripheral vascular disease (PVD); however, until recently it has not been possible to examine the entire clinical trial portfolio of studies for treatment of PVD (both arterial and venous disease). Methods and Results We examined interventional trials registered in ClinicalTrials.gov from October 2007 through September 2010 (n=40,970) and identified 676 (1.7%) PVD trials (n=493 arterial only, n=170 venous only, n=13 both arterial and venous). Most arterial studies investigated lower extremity peripheral artery disease and acute stroke (35% and 24%, respectively), while most venous studies examined deep vein thrombosis/pulmonary embolus prevention (42%) or venous ulceration (25%). A placebo-controlled trial design was used in 27% of the PVD trials, and 4% of the PVD trials excluded patients aged >65 years. Enrollment in at least 1 US site decreased from 51% in 2007 to 41% of trials in 2010. Compared with non-cardiology disciplines, PVD trials were more likely to be double-blinded, investigate use of devices and procedures, and have industry sponsorship and assumed funding source, and less likely to investigate drug and behavioral therapies. Geographic access to PVD clinical trials within the United States is limited to primarily large metropolitan areas. Conclusions PVD studies represent a small group of trials registered in ClinicalTrials.gov, despite the high prevalence of vascular disease in the general population. This low number, compounded by the decreasing number of PVD trials in the United States, is concerning and may limit the ability to inform current clinical practice of patients with PVD. PMID:25239436

  9. Cognitive predictors of functional decline in vascular dementia

    PubMed Central

    Jefferson, Angela L.; Cahn-Weiner, Deborah; Boyle, Patricia; Paul, Robert H.; Moser, David J.; Gordon, Norman; Cohen, Ronald A.

    2009-01-01

    SUMMARY Background This study examined changes in cognitive-functional relationships in vascular dementia (VaD) over the course of one year. Methods Twenty-four patients with probable VaD were administered the Dementia Rating Scale (DRS). Caregivers completed an informant-based measure of instrumental (IADL) and basic activities of daily living (BADL). Follow-up assessment was conducted one-year post-baseline. Results Logistic regression revealed that changes in the DRS Initiation/Perseveration and DRS Memory subscales were significantly associated with declines in IADLs and BADLs, respectively. Conclusions Among patients with VaD, longitudinal changes in IADLs and BADLs are most strongly associated with changes in executive functioning and memory abilities, respectively. Findings suggest that different cognitive functions subserve complex instrumental and rote, habituated basic functional activities, and neuropsychological screening measures are useful in the prediction of such functional changes. PMID:16906630

  10. Vascular function and cardiovascular risk factors in women with severe flushing.

    PubMed

    Sassarini, J; Fox, H; Ferrell, W; Sattar, N; Lumsden, M A

    2011-01-01

    Seventy per cent of postmenopausal women suffer from hot flushes causing significant morbidity in 25%. Oestrogen replacement provides symptom relief, but its use has declined following safety issues and there is, as yet, no good alternative. Pathophysiology is poorly understood, but one proposed mechanism is altered peripheral vascular reactivity. It has recently been suggested that the presence of flushing may be a marker of underlying cardiovascular risk. To measure (i) peripheral vascular reactivity in subcutaneous vessels (ii) routine and novel cardiovascular risk factors in postmenopausal women who flush, and compare results to a matched group of women who do not flush. Thirty-two postmenopausal women with at least 20 flushes/week and 14 nonflushing postmenopausal women were recruited. Cutaneous microvascular perfusion was measured using laser Doppler imaging, and endothelial function was assessed by iontophoresis (administration of vasoactive agents through the skin by an electric current) of acetylcholine [Ach] (endothelial-dependent) and sodium nitroprusside [SNP] (endothelial independent). Blood samples for risk factors were taken following vascular assessment. Both study groups were well matched demographically. The response of the subcutaneous vessels was greater in women who flushed than those who did not, following administration of both the endothelium-dependent and independent vasodilators, (ACh, P ≤ 0·001, SNP, P = 0·001, 2-way anova). By contrast, levels of High Density Lipoprotein (HDL)-cholesterol and ApoA1 were significantly lower in the flushing women compared with the control women (P = 0·02 and 0·002, respectively), and levels of inter-cellular adhesion molecule-1 (ICAM-1) were higher (P = 0·03), findings robust to adjustment for confounders, suggesting an adverse cardiovascular risk profile. These results confirm a better vascular response in women but paradoxically, such women appear to have worse (not better) cardiovascular disease

  11. Respiratory and peripheral muscle function in cystic fibrosis.

    PubMed

    Lands, L C; Heigenhauser, G J; Jones, N L

    1993-04-01

    Respiratory muscle strength (RMS) and endurance are often preserved in cystic fibrosis (CF) despite malnutrition, chronic airflow limitation, and hyperinflation. Inspiratory muscle function may be relatively preserved due to a selective "training stimulus" from chronic lung disease. Respiratory and peripheral muscle function were evaluated in 14 stable CF patients and 16 healthy control subjects. RMS was measured using static maximal pressures performed at FRC. Respiratory fatigue (RF) was assessed using 18 repeated static efforts (10 s on/5 s off) over 4.5 min. Peripheral function was evaluated by leg strength (LS) and leg fatigue (LF) measured during sprint efforts on an isokinetic cycle ergometer. Despite a lower weight (mean +/- SD, 94 +/- 9.6% ideal wt for CF patients versus 107 +/- 14.6% for controls) and elevated residual volume (RV)/TLC ratio (38 +/- 13.0 versus 22 +/- 5.3), the CF group maintained RMS (inspiratory 96 +/- 23.2 versus 114 +/- 33.2; expiratory 105 +/- 28.3 versus 123 +/- 40.9 cm H2O) but had decreased LS (590 +/- 201.7 versus 813 +/- 167.1 W). There were no differences between the groups with respect to RF or LF. For the control group, inspiratory and expiratory RMS correlated with LS (p < 0.01) and lean body mass (p < 0.01). For the CF group, while expiratory RMS (p < 0.05) and LS (p < 0.01) correlated with lean body mass and each other (p < 0.01), inspiratory RMS was independent of lean body mass and LS (p > 0.1). Female CF patients appeared to have a better preservation of inspiratory RMS than males with CF.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Diverse Functions of Retinoic Acid in Brain Vascular Development

    PubMed Central

    Bonney, Stephanie; Harrison-Uy, Susan; Mishra, Swati; MacPherson, Amber M.; Choe, Youngshik; Li, Dan; Jaminet, Shou-Ching; Fruttiger, Marcus; Pleasure, Samuel J.

    2016-01-01

    As neural structures grow in size and increase metabolic demand, the CNS vasculature undergoes extensive growth, remodeling, and maturation. Signals from neural tissue act on endothelial cells to stimulate blood vessel ingression, vessel patterning, and acquisition of mature brain vascular traits, most notably the blood–brain barrier. Using mouse genetic and in vitro approaches, we identified retinoic acid (RA) as an important regulator of brain vascular development via non-cell-autonomous and cell-autonomous regulation of endothelial WNT signaling. Our analysis of globally RA-deficient embryos (Rdh10 mutants) points to an important, non-cell-autonomous function for RA in the development of the vasculature in the neocortex. We demonstrate that Rdh10 mutants have severe defects in cerebrovascular development and that this phenotype correlates with near absence of endothelial WNT signaling, specifically in the cerebrovasculature, and substantially elevated expression of WNT inhibitors in the neocortex. We show that RA can suppress the expression of WNT inhibitors in neocortical progenitors. Analysis of vasculature in non-neocortical brain regions suggested that RA may have a separate, cell-autonomous function in brain endothelial cells to inhibit WNT signaling. Using both gain and loss of RA signaling approaches, we show that RA signaling in brain endothelial cells can inhibit WNT-β-catenin transcriptional activity and that this is required to moderate the expression of WNT target Sox17. From this, a model emerges in which RA acts upstream of the WNT pathway via non-cell-autonomous and cell-autonomous mechanisms to ensure the formation of an adequate and stable brain vascular plexus. SIGNIFICANCE STATEMENT Work presented here provides novel insight into important yet little understood aspects of brain vascular development, implicating for the first time a factor upstream of endothelial WNT signaling. We show that RA is permissive for cerebrovascular growth via

  13. Sustained release nitrite therapy results in myocardial protection in a porcine model of metabolic syndrome with peripheral vascular disease

    PubMed Central

    Bradley, Jessica M.; Islam, Kazi N.; Polhemus, David J.; Donnarumma, Erminia; Brewster, Luke P.; Tao, Ya-Xiong; Goodchild, Traci T.

    2015-01-01

    Metabolic syndrome (MetS) reduces endothelial nitric oxide (NO) bioavailability and exacerbates vascular dysfunction in patients with preexisting vascular diseases. Nitrite, a storage form of NO, can mediate vascular function during pathological conditions when endogenous NO is reduced. The aims of the present study were to characterize the effects of severe MetS and obesity on dyslipidemia, myocardial oxidative stress, and endothelial NO synthase (eNOS) regulation in the obese Ossabaw swine (OS) model and to examine the effects of a novel, sustained-release formulation of sodium nitrite (SR-nitrite) on coronary vascular reactivity and myocardial redox status in obese OS subjected to critical limb ischemia (CLI). After 6 mo of an atherogenic diet, obese OS displayed a MetS phenotype. Obese OS had decreased eNOS functionality and NO bioavailability. In addition, obese OS exhibited increased oxidative stress and a significant reduction in antioxidant enzymes. The efficacy of SR-nitrite therapy was examined in obese OS subjected to CLI. After 3 wk of treatment, SR-nitrite (80 mg·kg−1·day−1 bid po) increased myocardial nitrite levels and eNOS function. Treatment with SR-nitrite reduced myocardial oxidative stress while increasing myocardial antioxidant capacity. Ex vivo assessment of vascular reactivity of left anterior descending coronary artery segments demonstrated marked improvement in vasoreactivity to sodium nitroprusside but not to substance P and bradykinin in SR-nitrite-treated animals compared with placebo-treated animals. In conclusion, in a clinically relevant, large-animal model of MetS and CLI, treatment with SR-nitrite enhanced myocardial NO bioavailability, attenuated oxidative stress, and improved ex vivo coronary artery vasorelaxation. PMID:25957218

  14. UKPDS 59: hyperglycemia and other potentially modifiable risk factors for peripheral vascular disease in type 2 diabetes.

    PubMed

    Adler, Amanda I; Stevens, Richard J; Neil, Andrew; Stratton, Irene M; Boulton, Andrew J M; Holman, Rury R

    2002-05-01

    To determine the role of hyperglycemia in prospective analyses of peripheral vascular disease (PVD) in type 2 diabetes, taking into account other potential risk factors. Potential risk factors for the development of PVD were examined in 3,834 of 5,102 individuals enrolled in the U.K. Prospective Diabetes Study (UKPDS) without PVD at diagnosis of diabetes, followed for 6 years, and for whom relevant data were available. PVD was defined as two of the following: ankle-arm blood pressure index < 0.8, absence of both dorsalis pedis and posterior tibial pulses to palpation in one or both legs, and intermittent claudication. Logistic regression was used to estimate the association between potential risk factors measured 3-4 months after diagnosis of diabetes and incident PVD. The prevalence of PVD at 3-year intervals to 18 years was determined. Hyperglycemia, assessed as HbA(1c), was associated with an increased risk for incident PVD, independent of other risk factors including age, increased systolic blood pressure, reduced HDL cholesterol, smoking, prior cardiovascular disease, peripheral sensory neuropathy, and retinopathy. Each 1% increase in HbA(1c) was associated with a 28% increased risk of PVD (95% CI 12-46), and each 10-mmHg increase in systolic blood pressure with a 25% increase in risk (95% CI 10-43). Hyperglycemia, as well as smoking, dyslipidemia, and blood pressure are potentially modifiable risk factors for the development of PVD.

  15. Rating scale for the assessment of competence in ultrasound-guided peripheral vascular access - a Delphi Consensus Study.

    PubMed

    Primdahl, Stine C; Todsen, Tobias; Clemmesen, Louise; Knudsen, Lars; Weile, Jesper

    2016-09-21

    Peripheral vascular access is vital for treatment and diagnostics of hospitalized patients. Ultrasound-guided vascular access (UGVA) is superior to the landmark technique. To ensure competence-based education, an assessment tool of UGVA competence is needed. We aimed to develop a global rating scale (RS) for assessment of UGVA competence based on opinions on the content from ultrasound experts in a modified Delphi consensus study. We included experts from anesthesiology, emergency medicine and radiology across university hospitals in Denmark. Nine elements were drafted based on existing literature and recommendations from international societies. In a multi-round survey, the experts rated the elements on a five-point Likert scale according to importance, and suggested missing elements. The final Delphi round occurred when >80% of the experts rated all elements ≥4 on the Likert scale. Sixteen experts consented to participate in the study, one withdrew consent prior to the first Delphi round, and 14 completed all three Delphi rounds. In the first Delphi round the experts excluded one element from the scale and changed the content of two elements. In the second Delphi round, the experts excluded one element from the scale. In the third Delphi round, consensus was obtained on the eight elements: preparation of utensils, ergonomics, preparation of the ultrasound device, identification of blood vessels, anatomy, hygiene, coordination of the needle, and completion of the procedure. We developed an RS for assessment of UGVA competence based on opinions of ultrasound experts through a modified Delphi consensus study.

  16. Improvement of limb circulation in peripheral vascular disease using epidural spinal cord stimulation: a prospective study.

    PubMed

    Kumar, K; Toth, C; Nath, R K; Verma, A K; Burgess, J J

    1997-04-01

    Spinal cord stimulation was used in 46 patients for pain associated with lower extremity ischemic vascular disease that was considered to be nonreconstructable. Thirty-nine patients who had a follow-up examination between 2 and 36 months after the procedure form the basis of this report. Thirty (77%) of 39 cases were considered successful. Clinical endpoints indicating failure included amputation, vascular reconstruction, poor pain relief, or hardware malfunction. The transcutaneous partial pressure of oxygen (TcPO2) increased in both target and control feet. In patients with good outcome with a preimplantation TcPO2 of less than 30 mm Hg, TcPO2 increased significantly (p < 0.05). Pulse volume recording improved significantly (p < 0.05) at the thigh, metatarsal, and great toe levels in successfully treated patients. Peak blood flow velocity also showed a significant increase in patients with good outcome (p < 0.05). Patients with a TcPO2 of less than 10 mm Hg following stimulation tended to undergo amputation within the first 3 months. Improvement in pain control, combined with an increase in TcPO2 values that was greater than 10 mm Hg, were significant early predictors of long-term success. An initial increase in peak blood flow velocities (measured in Doppler studies) of greater than 10 mm also signified a good long-term outcome. Spinal cord stimulation appears to be a useful therapeutic modality for controlling pain and improving perfusion in a select group of patients with end-stage ischemic vascular disease considered nonreconstructable. The best results were seen in patients with severe claudication and rest pain without trophic changes in the foot. The mechanism of this beneficial effect is not yet completely understood.

  17. Cisplatin and bleomycin-induced acute peripheral-vascular stenosis in patient with testicular cancer

    PubMed Central

    Ozkan, Tayyar Alp; Aydin, Ufuk; Ay, Derih; Cebeci, I. Oguz Ozden

    2016-01-01

    After cisplatin and bleomycin-containing chemotherapy (CTx) for testicular cancer, part of the patients may develop acute or long-term cardiovascular toxicity. In the present case, we reported that a 58-year-old male patient presenting with testicular tumors who developed acute peripheral arterial disease during combination CTx with bleomycin, etoposide, and cisplatin. Superficial femoral artery occlusion not responded to structure thrombolytic and anticoagulators treatment. Left lower extremity was amputated below knee. In patients with high risk of cardiovascular disease, prophylactic anticoagulation may be recommended. The risk of causing factors of thromboembolism in patients with testicular cancer under cisplatin and bleomycin-containing CTx should be evaluated. PMID:28057998

  18. Macrophages form functional vascular mimicry channels in vivo

    PubMed Central

    Barnett, Faith H.; Rosenfeld, Mauricio; Wood, Malcolm; Kiosses, William B.; Usui, Yoshihiko; Marchetti, Valentina; Aguilar, Edith; Friedlander, Martin

    2016-01-01

    Macrophages, key cells of the innate immune system, are known to support angiogenesis but are not believed to directly form vessel walls. Here we show that macrophages structurally form primitive, NON-ENDOTHELIAL “vessels” or vascular mimicry (VM) channels in both tumor and angiogenesis in vivo models. These channels are functionally connected to the systemic vasculature as they are perfused by intravenously injected dye. Since both models share hypoxic micro-environments, we hypothesized that hypoxia may be an important mediator of VM formation. Indeed, conditional genetic depletion of myeloid-specific HIF-1α results in decreased VM network formation, dye perfusion and tumor size. Although the macrophage VM network shares some features with an endothelial vasculature, it is ultrastructurally different. Cancer stem cells have been shown to form vascular mimicry channels. Our data demonstrates that tumor-associated macrophages also form them. The identification of this novel type of vascular mimicry may help in the development of targeted cancer therapeutics. PMID:27834402

  19. Effects of successive air and nitrox dives on human vascular function.

    PubMed

    Marinovic, Jasna; Ljubkovic, Marko; Breskovic, Toni; Gunjaca, Grgo; Obad, Ante; Modun, Darko; Bilopavlovic, Nada; Tsikas, Dimitrios; Dujic, Zeljko

    2012-06-01

    SCUBA diving is regularly associated with asymptomatic changes in cardiac, pulmonary and vascular function. The aim of this study was to evaluate the changes in vascular/endothelial function following SCUBA diving and to assess the potential difference between two breathing gases: air and nitrox 36 (36% oxygen and 64% nitrogen). Ten divers performed two 3-day diving series (no-decompression dive to 18 m with 47 min bottom time with air and nitrox, respectively), with 2 weeks pause in between. Arterial/endothelial function was assessed using SphygmoCor and flow-mediated dilation measurements, and concentration of nitrite before and after diving was determined in venous blood. Production of nitrogen bubbles post-dive was assessed by ultrasonic determination of venous gas bubble grade. Significantly higher bubbling was found after all air dives as compared to nitrox dives. Pulse wave velocity increased slightly (~6%), significantly after both air and nitrox diving, indicating an increase in arterial stiffness. However, augmentation index became significantly more negative after diving indicating smaller wave reflection. There was a trend for post-dive reduction of FMD after air dives; however, only nitrox diving significantly reduced FMD. No significant differences in blood nitrite before and after the dives were found. We found that nitrox diving affects systemic/vascular function more profoundly than air diving by reducing FMD response, most likely due to higher oxygen load. Both air and nitrox dives increased arterial stiffness, but decreased wave reflection suggesting a decrease in peripheral resistance due to exercise during diving. These effects of nitrox and air diving were not followed by changes in plasma nitrite.

  20. Biosynthesis and Functional Significance of Peripheral Node Addressin in Cancer-Associated TLO

    PubMed Central

    Weinstein, Aliyah M.; Storkus, Walter J.

    2016-01-01

    Peripheral node addressin (PNAd) marks high endothelial venules (HEV), which are crucial for the recruitment of lymphocytes into lymphoid organs in non-mucosal tissue sites. PNAd is a sulfated and fucosylated glycoprotein recognized by the prototypic monoclonal antibody, MECA-79. PNAd is the ligand for L-selectin, which is expressed on the surface of naive and central memory T cells, where it mediates leukocyte rolling on vascular endothelial surfaces. Although PNAd was first identified in the HEV of peripheral lymph nodes, recent work suggests a critical role for PNAd in the context of chronic inflammatory diseases, where it can be used as a marker for the formation of tertiary lymphoid organs (TLOs). TLO form in tissues impacted by sustained inflammation, such as the tumor microenvironment where they function as local sites of adaptive immune cell priming. This allows for specific B- and T-cell responses to be initiated or reactivated in inflamed tissues without dependency on secondary lymphoid organs. Recent studies of cancer in mice and humans have identified PNAd as a biomarker of improved disease prognosis. Blockade of PNAd or its ligand, L-selectin, can abrogate protective antitumor immunity in murine models. This review examines pathways regulating PNAd biosynthesis by the endothelial cells integral to HEV and the formation and maintenance of lymphoid structures throughout the body, particularly in the setting of cancer. PMID:27555845

  1. Determinants of vascular function in patients with chronic gout.

    PubMed

    Brook, Robert D; Yalavarthi, Srilakshmi; Myles, James D; Khalatbari, Shokoufeh; Hench, Rita; Lustig, Susan; Marder, Wendy; Neidert, Adam; Kaplan, Mariana J

    2011-03-01

    Epidemiologic studies have proposed a relationship between hyperuricemia and cardiovascular (CV) risk. However, it is unclear whether uric acid (UA) is an independent risk factor for CV disease (CVD) after controlling for other predisposing conditions. Gout patients might have persistent systemic inflammation, which, in addition to hyperuricemia, may potentiate CVD. This study examined vascular function and markers of CV damage in gout patients when compared with healthy controls. Brachial artery flow-mediated dilatation, arterial compliance, and microvascular function were measured. Circulating apoptotic endothelial cells and endothelial progenitor cells were quantified by FACS and circulating biomarkers of CVD by enzyme-linked immunosorbent assay. Gout patients displayed significant increases in body mass index, C-reactive protein, UA, and triglycerides and decreases in high-density lipoprotein. There were no significant differences in other CV traditional risk factors, adhesion molecules, or chemokines. Gout patients did not differ from controls in vascular function. In univariate and multivariate analysis, UA was not associated with the quantified CV risk parameters. Despite an increase in several CV risk factors, inflammation, and UA, gout patients display normal endothelial function and no increases in biomarkers of CVD. These results do not support the notion that gout is an independent risk factor for premature CVD.

  2. Determinants of vascular function in patients with chronic gout

    PubMed Central

    Brook, Robert D.; Yalavarthi, Srilakshmi; Myles, James D.; Khalatbari, Shokoufeh; Hench, Rita; Lustig, Susan; Marder, Wendy; Neidert, Adam; Kaplan, Mariana J.

    2010-01-01

    Epidemiologic studies have proposed a relation between hyperuricemia and cardiovascular (CV) risk. However, it is unclear if uric acid (UA) is an independent risk factor for CV disease (CVD) after controlling for other predisposing conditions. Gout patients might have persistent systemic inflammation which in addition to hyperuricemia may potentiate CVD. This study examined vascular function and markers of CV damage in gout patients when compared to healthy controls. Brachial artery flow mediated dilatation (FMD) was measured with ultrasound; arterial compliance with Sphygmocor and microvascular function with the Endopat-2000 device. Circulating apoptotic endothelial cells and endothelial progenitor cells were quantified by FACS and circulating biomarkers of CVD by ELISA. Gout patients displayed significant increases in body mass index, CRP, UA and triglycerides and decreases in HDL. There were no significant differences in other CV traditional risk factors, adhesion molecules or chemokines. Gout patients did not differ from controls in vascular function. In univariate and multivariate analysis, UA was not associated with the quantified CV risk parameters. Despite an increase in several CV risk factors, inflammation and UA, gout patients display normal endothelial function and no increases in biomarkers of CVD. These results do not support the notion that gout is an independent risk factor for premature CVD. PMID:21366849

  3. Melatonin membrane receptors in peripheral tissues: Distribution and functions

    PubMed Central

    Slominski, Radomir M.; Reiter, Russel J.; Schlabritz-Loutsevitch, Natalia; Ostrom, Rennolds S.; Slominski, Andrzej T.

    2012-01-01

    Many of melatonin’s actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes. PMID:22245784

  4. Marvels, Mysteries, and Misconceptions of Vascular Compensation to Peripheral Artery Occlusion

    PubMed Central

    ZIEGLER, MATTHEW A.; DISTASI, MATTHEW R.; BILLS, RANDALL G.; MILLER, STEVEN J.; ALLOOSH, MOUHAMAD; MURPHY, MICHAEL P.; AKINGBA, A. GEORGE; STUREK, MICHAEL; DALSING, MICHAEL C.; UNTHANK, JOSEPH L.

    2010-01-01

    Peripheral arterial disease is a major health problem and there is a significant need to develop therapies to prevent its progression to claudication and critical limb ischemia. Promising results in rodent models of arterial occlusion have generally failed to predict clinical success and led to questions of their relevance. While sub-optimal models may have contributed to the lack of progress, we suggest that advancement has also been hindered by misconceptions of the human capacity for compensation and the specific vessels which are of primary importance. We present and summarize new and existing data from humans, Ossabaw miniature pigs, and rodents which provide compelling evidence that natural compensation to occlusion of a major artery (i) may completely restore perfusion, (ii) occurs in specific pre-existing small arteries, rather than the distal vasculature, via mechanisms involving flow-mediated dilation and remodeling (iii) is impaired by cardiovascular risk factors which suppress the flow-mediated mechanisms and (iv) can be restored by reversal of endothelial dysfunction. We propose that restoration of the capacity for flow-mediated dilation and remodeling in small arteries represents a largely unexplored potential therapeutic opportunity to enhance compensation for major arterial occlusion and prevent the progression to critical limb ischemia in the peripheral circulation. PMID:20141596

  5. Exercise training improves peripheral chemoreflex function in heart failure rabbits.

    PubMed

    Li, Yu-Long; Ding, Yanfeng; Agnew, Chad; Schultz, Harold D

    2008-09-01

    An enhancement of peripheral chemoreflex sensitivity contributes to sympathetic hyperactivity in chronic heart failure (CHF) rabbits. The enhanced chemoreflex function in CHF involves augmented carotid body (CB) chemoreceptor activity via upregulation of the angiotensin II (ANG II) type 1 (AT(1))-receptor pathway and downregulation of the neuronal nitric oxide synthase (nNOS)-nitric oxide (NO) pathway in the CB. Here we investigated whether exercise training (EXT) normalizes the enhanced peripheral chemoreflex function in CHF rabbits and possible mechanisms mediating this effect. EXT partially, but not fully, normalized the exaggerated baseline renal sympathetic nerve activity (RSNA) and the response of RSNA to hypoxia in CHF rabbits. EXT also decreased the baseline CB nerve single-fiber discharge (4.9 +/- 0.4 vs. 7.7 +/- 0.4 imp/s at Po(2) = 103 +/- 2.3 Torr) and the response to hypoxia (20.6 +/- 1.1 vs. 36.3 +/- 1.3 imp/s at Po(2) = 41 +/- 2.2 Torr) from CB chemoreceptors in CHF rabbits, which could be reversed by treatment of the CB with ANG II or a nNOS inhibitor. Our results also showed that NO concentration and protein expression of nNOS were increased in the CBs from EXT + CHF rabbits, compared with that in CHF rabbits. On the other hand, elevated ANG II concentration and AT(1)-receptor overexpression of the CBs in CHF state were blunted by EXT. These results indicate that EXT normalizes the CB chemoreflex in CHF by preventing an increase in afferent CB chemoreceptor activity. EXT reverses the alterations in the nNOS-NO and ANG II-AT(1)-receptor pathways in the CB responsible for chemoreceptor sensitization in CHF.

  6. [Peri- and postoperative use of low molecular weight heparin in peripheral vascular surgery].

    PubMed

    Samama, C M; Mouren, S; Bridel, M P; Combe, S; Koskas, F; Kieffer, E; Viars, P

    1990-01-01

    A pilot study has been conducted in ten consecutive patients undergoing femoro-popliteal reconstruction or distal vascular surgery under epidural anaesthesia. Immediately before arterial cross-clamping, enoxaparin (E) (75 anti-Xa IU.kg-1) was injected intravenously (i.v.). During surgery, washing of the saphenous or polytetrafluoroethylene (PTFE) graft has been performed using enoxaparin. Enoxaparin (75 anti-Xa IU.kg-1) was administered subcutaneously (S.C.) 8 hours after the i.v. injection, and then every 12 hours during 10 days. The patency of the vascular reconstruction and the side-effects of E administration were evaluated clinically before and during surgery, then by a daily clinical examination. Echo-Doppler and/or arteriography were also performed preoperatively and on the 10th postoperative day. Haematocrit, platelet count, activated partial thromboplastin time, prothrombin time, thrombin time, fibrinogen and anti-Xa activity were assessed. None of the patients developed venous or arterial thrombosis and all the by-pass grafts remained patient. Only one minor surgical bleeding occurred on the first post operative day, despite anti-Xa levels in the expected range. One patient developed minor haematomas at the injection site. No bleeding was observed. Further randomized studies comparing LMWH and UH are required in order to substantiate these preliminary clinical and biological findings.

  7. Association between Preoperative Vascular Function and Postoperative Arteriovenous Fistula Development.

    PubMed

    Allon, Michael; Greene, Tom; Dember, Laura M; Vita, Joseph A; Cheung, Alfred K; Hamburg, Naomi M; Imrey, Peter B; Kaufman, James S; Robbin, Michelle L; Shiu, Yan-Ting; Terry, Christi M; Umphrey, Heidi R; Feldman, Harold I

    2016-12-01

    Arteriovenous fistula (AVF) maturation failure is the primary cause of dialysis vascular access dysfunction. To evaluate whether preoperative vascular functional properties predict postoperative AVF measurements, patients enrolled in the Hemodialysis Fistula Maturation Study underwent up to five preoperative vascular function tests (VFTs): flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NMD), carotid-femoral pulse wave velocity, carotid-radial pulse wave velocity, and venous occlusion plethysmography. We used mixed effects multiple regression analyses to relate each preoperative VFT to ultrasound measurements of AVF blood flow rate and venous diameter at 1 day, 2 weeks, and 6 weeks after AVF placement. After controlling for AVF location, preoperative ultrasound measurements, and demographic factors (age, sex, race, and dialysis status), greater NMD associated with greater 6-week AVF blood flow rate and AVF diameter (per absolute 10% difference in NMD: change in blood flow rate =14.0%; 95% confidence interval [95% CI], 3.7% to 25.3%; P<0.01; change in diameter =0.45 mm; 95% CI, 0.25 to 0.65 mm; P<0.001). Greater FMD also associated with greater increases in 6-week AVF blood flow rate and AVF diameter (per absolute 10% difference in FMD: change in blood flow rate =11.6%; 95% CI, 0.6% to 23.9%; P=0.04; change in diameter =0.31 mm; 95% CI, 0.05 to 0.57 mm; P=0.02). None of the remaining VFT parameters exhibited consistent statistically significant relationships with both postoperative AVF blood flow rate and diameter. In conclusion, preoperative NMD and FMD positively associated with changes in 6-week AVF blood flow rate and diameter, suggesting that native functional arterial properties affect AVF development. Copyright © 2016 by the American Society of Nephrology.

  8. Maternal Copper Deficiency Perpetuates Altered Vascular Function in Sprague-Dawley Rat Offspring

    USDA-ARS?s Scientific Manuscript database

    Little is known about the consequences of maternal Cu (Cu) deficiency on the vascular function of offspring or on perpetuation of vascular effects to a second generation. We examined vascular functional responses in mesenteric arteries from Cu-deficient Sprague-Dawley rat dams and from offspring dir...

  9. Glycomimetic functionalized collagen hydrogels for peripheral nerve repair

    NASA Astrophysics Data System (ADS)

    Masand, Shirley Narain

    Despite the innate regenerative potential of the peripheral nervous system, functional recovery is often limited. The goal of this dissertation was to develop a clinically relevant biomaterial strategy to (1) encourage the regrowth of axons and (2) direct them down their appropriate motor tracts. To this end, we use peptide mimics of two glycans, polysialic acid (PSA) and an epitope first discovered on human natural killer cells (HNK-1), to functionalize type I collagen hydrogels. Previous studies have shown that these molecules, in their glycan and glycomimetic form, are associated with acceleration of neurite outgrowth, glial cell proliferation, and motoneuron targeting. In vitro, we demonstrated the retained functionality of the peptide glycomimetics after conjugation to a type I collagen backbone. While HNK-functionalized collagen increased motor neurite outgrowth, PSA-functionalized collagen encouraged motor and sensory neurite outgrowth and Schwann cell extension and proliferation. When we introduce these glycomimetic-functionalized collagen hydrogels into a critical gap femoral nerve model, we show that both PSA and HNK-functionalized hydrogels yielded a significant increase in functional recovery when compared to saline, native and scramble-coupled hydrogels. However, there was an interesting divergence in the morphological results: PSA-functionalized hydrogels increased axon count and HNK-functionalized hydrogels increased motoneuron targeting and myelination. We believed that these differences may be attributed to distinct mechanisms by which the glycomimetics impart their benefit. Interestingly, however, we found no synergistic gain in recovery with the use of our composite hydrogels which we speculated may be due to an inadequate dose of the individual glycomimetic. To address this possibility, we show that increasing the amount of functionalized peptide functionalized in our composite hydrogels led to increases in axon count and area of regeneration

  10. Vitreous cryopreservation maintains the function of vascular grafts.

    PubMed

    Song, Y C; Khirabadi, B S; Lightfoot, F; Brockbank, K G; Taylor, M J

    2000-03-01

    Avoidance of ice formation during cooling can be achieved by vitrification, which is defined as solidification in an amorphous glassy state that obviates ice nucleation and growth. We show that a vitrification approach to storing vascular tissue results in markedly improved tissue function compared with a standard method involving freezing. The maximum contractions achieved in vitrified vessels were >80% of fresh matched controls with similar drug sensitivities, whereas frozen vessels exhibited maximal contractions below 30% of controls and concomitant decreases in drug sensitivity. In vivo studies of vitrified vessel segments in an autologous transplant model showed no adverse effects of vitreous cryopreservation compared with fresh tissue grafts.

  11. Melamine Impairs Renal and Vascular Function in Rats

    PubMed Central

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-01-01

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products. PMID:27324576

  12. Melamine Impairs Renal and Vascular Function in Rats.

    PubMed

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-06-21

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products.

  13. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy.

    PubMed

    Zheng, Huaien; Xiao, Wen Hua; Bennett, Gary J

    2011-12-01

    Cancer chemotherapeutics like paclitaxel and oxaliplatin produce a dose-limiting chronic sensory peripheral neuropathy that is often accompanied by neuropathic pain. The cause of the neuropathy and pain is unknown. In animal models, paclitaxel-evoked and oxaliplatin-evoked painful peripheral neuropathies are accompanied by an increase in the incidence of swollen and vacuolated mitochondria in peripheral nerve axons. It has been proposed that mitochondrial swelling and vacuolation are indicative of a functional impairment and that this results in a chronic axonal energy deficiency that is the cause of the neuropathy's symptoms. However, the significance of mitochondrial swelling and vacuolation is ambiguous and a test of the hypothesis requires a direct assessment of the effects of chemotherapy on mitochondrial function. The results of such an assessment are reported here. Mitochondrial respiration and ATP production were measured in rat sciatic nerve samples taken 1-2 days after and 3-4 weeks after induction of painful peripheral neuropathy with paclitaxel and oxaliplatin. Significant deficits in Complex I-mediated and Complex II-mediated respiration and significant deficits in ATP production were found for both drugs at both time points. In addition, prophylactic treatment with acetyl-l-carnitine, which inhibited the development of paclitaxel-evoked and oxaliplatin-evoked neuropathy, prevented the deficits in mitochondrial function. These results implicate mitotoxicity as a possible cause of chemotherapy-evoked chronic sensory peripheral neuropathy.

  14. Vascular function and brain-derived neurotrophic factor: The functional capacity factor.

    PubMed

    Alomari, Mahmoud A; Khabour, Omar F; Maikano, Abubakar; Alawneh, Khaldoon

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is essential for neurocognitive function. This study aims at establishing a plausible link between level of serum BDNF, functional capacity (FC), and vascular function in 181 young (age 25.5±9.1 years old), apparently healthy adults. Fasting blood samples were drawn from participants' antecubital veins into plain glass tubes while they were in a sitting position to evaluate serum BDNF using enzyme-linked immunosorbent assay (ELISA). Mercury-in-silastic strain-gauge plethysmography was used to determine arterial function indices, blood flow and vascular resistance at rest and following 5 minutes of arterial ischemia. The 6-minute walk distance (6MWD) test was used to determine FC, according to the American Thoracic Society Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories guidelines. It was conducted in an enclosed corridor on a flat surface with a circular track 33 meters long. The walking course was demarcated with bright colored cones. The 6MWD correlated with BDNF (r=0.3, p=0.000), as well as with forearm blood inflow (r=0.5, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed that BDNF and blood inflow were greater (p<0.05) while vascular resistance was less (p<0.05) in participants who achieved a longer 6MWD. Similarly, BDNF correlated with forearm blood inflow (r=0.4, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed improved vascular function (p<0.05) in the participants with greater BDNF. In conclusion, these findings might suggest that improved vascular function in individuals with greater FC is mediated, at least partially, by an enhanced serum BDNF level.

  15. Resveratrol Improves Vascular Function and Mitochondrial Number but Not Glucose Metabolism in Older Adults.

    PubMed

    Pollack, Rena M; Barzilai, Nir; Anghel, Valentin; Kulkarni, Ameya S; Golden, Aaron; O'Broin, Pilib; Sinclair, David A; Bonkowski, Michael S; Coleville, Alexander J; Powell, Danielle; Kim, Sharon; Moaddel, Ruin; Stein, Daniel; Zhang, Kehao; Hawkins, Meredith; Crandall, Jill P

    2017-03-16

    Resveratrol, a plant-derived polyphenol, has been reported to improve glucose metabolism and vascular function and to extend life span in animal models, but studies in humans have been inconclusive. In a randomized, double-blind crossover study, we treated older glucose-intolerant adults (n = 30) with resveratrol (2-3 g/daily) or placebo, each for 6 weeks. A standard mixed-meal test was used to assess insulin sensitivity (Matsuda index) and secretion (C-peptide deconvolution) and vascular function by reactive hyperemia peripheral arterial tonometry. Skeletal muscle samples were obtained for gene expression using RNA-Seq analysis and to assess mitochondrial morphology. There were no changes in glucose tolerance, insulin sensitivity, weight, blood pressure, or lipid profile following resveratrol treatment. Fasting reactive hyperemia index improved with resveratrol (2.02 ± 0.2 vs 1.76 ± 0.02, p = .002). RNA-Seq analysis yielded 140 differentially expressed transcripts (corrected p-value ≤ .05), predominantly associated with mitochondrial genes and noncoding RNA. Ingenuity Pathway Analysis confirmed that mitochondrial dysfunction (p = 2.77 × 10-12) and oxidative phosphorylation (p = 1.41 × 10-11) were the most significantly perturbed pathways. Mitochondrial number, but not size, was increased. Resveratrol treatment of older adults with impaired glucose regulation may have beneficial effects on vascular function, but not glucose metabolism or insulin sensitivity. Changes in gene expression suggest effects similar to those observed with caloric restriction, which has been shown to increase life and health span in animal models, although its significance for humans is uncertain. Future human studies should address the appropriate dose range and low bioavailability of resveratrol.

  16. Thoracic sympathectomy for peripheral vascular disease can lead to severe bronchospasm and excessive bronchial secretions

    PubMed Central

    Goyal, Vikas Deep; Gupta, Bharti; Kumar, Sanjeev; Pal, Sanjay

    2015-01-01

    A 57-year-old male patient suffering from Buerger's disease presented with pre-gangrenous changes in right foot and ischemic symptoms in right hand. Computed tomographic angiography revealed diffuse distal disease not suitable for vascular bypass and angioplasty. Right lumbar sympathectomy was done using a retroperitoneal approach followed 1 year later by right thoracic sympathectomy using a transaxillary approach. Postoperatively, the patient had severe bronchospasm and excessive secretions in the respiratory tract resistant to theophylline and sympathomimetic group of drugs and without any clinical, laboratory and radiological evidence of infection. The patient was started on anticholinergics in anticipation that sympathectomy might have lead to unopposed cholinergic activity and the symptoms improved rapidly. The patient recovered well and was discharged on 10th post-operative day. PMID:25624604

  17. The development of depressive symptoms during medical internship stress predicts worsening vascular function.

    PubMed

    Fiedorowicz, Jess G; Ellingrod, Vicki L; Kaplan, Mariana J; Sen, Srijan

    2015-09-01

    We sought to prospectively determine whether the onset of internship stress and any subsequent depression alters physiological markers of early vascular disease We explored potential mechanisms linking stress and depression to vascular disease in a prospective cohort of 37 participants exposed to medical internship stress, an established precipitant of depressive symptomatology. Change in depressive symptom score from baseline over one year of internship stress was inversely correlated with change in the reactive hyperemia index (RHI), a measure of peripheral endothelial function (r=0.41, p=0.01). The change in depressive symptoms in the first six months of internship was similarly related to change in RHI over one year (r=0.38, p=0.02). While the development of depressive symptoms did not significantly impact changes in endothelial progenitor cells (EPCs), EPCs did significantly decrease with the year of internship stress (11.9 to 3.4cells/ml blood; p=0.01). Endothelial function may be a critical link between stress, depression, and cardiovascular disease and a feasible surrogate outcome for prospective studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The Development of Depressive Symptoms During Medical Internship Stress Predicts Worsening Vascular Function

    PubMed Central

    Fiedorowicz, Jess G.; Ellingrod, Vicki L.; Kaplan, Mariana J.; Sen, Srijan

    2015-01-01

    Objective We sought to prospectively determine whether the onset of internship stress and any subsequent depression alters physiological markers of early vascular disease Methods We explored potential mechanisms linking stress and depression to vascular disease in a prospective cohort of 37 participants exposed to medical internship stress, an established precipitant of depressive symptomatology. Results Change in depressive symptom score from baseline over one year of internship stress was inversely correlated with change in the reactive hyperemia index (RHI), a measure of peripheral endothelial function (r=0.41, p=0.01). The change in depressive symptoms in the first six months of internship was similarly related to change in RHI over one year (r=0.38, p=0.02). While the development of depressive symptoms did not significantly impact changes in endothelial progenitor cells (EPCs), EPCs did significantly decrease with the year of internship stress (11.9 to 3.4 cells/ml blood; p=0.01). Conclusion Endothelial function may be a critical link between stress, depression, and cardiovascular disease and a feasible surrogate outcome for prospective studies. PMID:26115588

  19. Effects of Pueraria mirifica on vascular function of ovariectomized rabbits.

    PubMed

    Wattanapitayakul, Suvara K; Chularojmontri, Linda; Srichirat, Supatra

    2005-06-01

    Estrogen stimulates endothelial nitric oxide (NO) production and attenuates endothelial dysfunction in ischemia/repurfusion and menopause. Recent studies have shown that phytoestrogens from dietary sources improve endothelial function and reduce cardiovascular risks. The Thai medicinal plant Pueraria mirifica (PM) contains many potent phytoestrogens including miroestrol and deoxymiroestrol but no study on vascular function has been established. Ground powder of PM was orally given to ovariectomized White New Zealand rabbits (OVX + PM group) (n = 4) weighing 3.2-4.0 kg at the dose of 100 mg/kg for 90 days. Saline-treated ovariectomized rabbits were assigned as a control group (OVX group) (n = 5). At the end of treatment thoracic aorta was isolated for functional evaluation. Maximal relaxant response to acetylcholine (ACh) was significantly increased (24%) with 3.5-fold decrease in EC50 while no change in relaxant response to sodium nitroprusside was observed Minimal and maximal responses to 17beta-estradiol (E2) were increased in the OVX + PM group and L-NAME (100 mM) attenuated Emax of E2. PM significantly decreased maximal contractile responses to norepinephrine (NE), but no change in EC50 was observed. In addition to vascular study, the authors found no significant alteration in serum cholesterol, LDL, triglyceride, HDL, ALT AST alkaline phosphatase, and lipid peroxidation in OVX + PM rabbits. These data demonstrate that PM (100 mg/kg/d) improved endothelial function through NO-dependent pathway and increased response to E2 while sensitivity to NE was reduced. In addition, it had no impact on lipid profile, liver enzymes, and ALP activities. PM is a potential source of phytoestrogens for postmenopausal women to improve cardiovascular function or reduce cardiovascular risks.

  20. Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults

    ERIC Educational Resources Information Center

    Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katayoon; Haley, Andreana P.

    2010-01-01

    The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery…

  1. Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults

    ERIC Educational Resources Information Center

    Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katayoon; Haley, Andreana P.

    2010-01-01

    The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery…

  2. Association between smoking status and the parameters of vascular structure and function in adults: results from the EVIDENT study.

    PubMed

    Recio-Rodriguez, Jose I; Gomez-Marcos, Manuel A; Patino Alonso, Maria C; Martin-Cantera, Carlos; Ibañez-Jalon, Elisa; Melguizo-Bejar, Amor; Garcia-Ortiz, Luis

    2013-12-01

    The present study analyses the relation between smoking status and the parameters used to assess vascular structure and function. This cross-sectional, multi-centre study involved a random sample of 1553 participants from the EVIDENT study. The smoking status, peripheral augmentation index and ankle-brachial index were measured in all participants. In a small subset of the main population (265 participants), the carotid intima-media thickness and pulse wave velocity were also measured. After controlling for the effect of age, sex and other risk factors, present smokers have higher values of carotid intima-media thickness (p = 0.011). Along the same lines, current smokers have higher values of pulse wave velocity and lower mean values of ankle-brachial index but without statistical significance in both cases. Among the parameters of vascular structure and function analysed, only the IMT shows association with the smoking status, after adjusting for confounders.

  3. L-propionylcarnitine effect on postexercise and postischemic hyperemia in patients affected by peripheral vascular disease.

    PubMed

    Corsi, C; Pollastri, M; Marrapodi, E; Leanza, D; Giordano, S; D'Iddio, S

    1995-08-01

    The hemodynamic effect of L-propionylcarnitine (LPC) administered intravenously was evaluated in a double-blind, randomized, three-period crossover study in 12 men (aged sixty to seventy-five years) with Leriche-Fontaine stage II peripheral arterial disease of lower limbs. At baseline, maximum working capacity of each patient was determined by a standardized ergometric test. This test was repeated at 80% of each patient's maximum working capacity before and after intravenous administration of LPC. Each patient received three single doses of 300 mg, 600 mg, and 1200 mg of LPC with a two-day rest period between them. Hemodynamic variables measured by strain-gauge plethysmography were: peak blood flow, peak flow time, and halftime and total time of hyperemia both after exercise and after induction of ischemia (with an occlusion cuff). LPC administration significantly shortened the halftime as well as the total time of hyperemia after exercise and after ischemia. With the two highest doses, LPC shortened the peak flow time after exercise. The peak blood flow after exercise and after ischemia increased, but this increase did not reach statistical significance. The results obtained indicate that LPC improves circulatory reserve of the ischemic limb and has no effect on heart rate and arterial blood pressure. No adverse events were reported. The effect of LPC on the hyperemic response to stress, mainly on halftime of hyperemia, is possibly due to a drug-induced increase of adenosine triphosphate utilization by the ischemic tissues.

  4. Results of a Peripheral Cutting Balloon Prospective Multicenter European Registry in Hemodialysis Vascular Access

    SciTech Connect

    Peregrin, Jan H. Rocek, Miloslav

    2007-04-15

    Purpose. To report initial experience with the Peripheral Cutting Balloon (PCB) in treatment of failing hemodialysis shunts. Methods. A total of 190 patients (95 men, 95 women; average age 64.4 {+-} 11.9 years, range 32-87 years) who were treated with the PCB for pressure-resistant stenosis, restenosis or failed percutaneous transluminal angioplasty (PTA) in the venous limb of an arteriovenous shunt were followed in seven European centers using a simple registry. The group consisted of 109 de novo lesions (57%) and 79 restenotic lesions (43%). Results. Technical success was achieved in 88.9% of cases. Primary patency was as follows (the results for whole group and simultaneous results for de novo lesions and restenoses are presented): 1 month (140 patients followed): 94%, 98%, and 93%; 3 months (116 patients followed): 93%, 98%, and 92%; 6 months (40 patients followed): 85%, 92%, and 79%; 12 months (27 patients followed): 74%, 87%, and 48%. No complication occurred. Patients experienced an equal or lower level of pain during the procedure compared with conventional PTA. Conclusion. The PCB proved to be successful in dilating pressure-resistant stenoses. We cannot conclude whether PCB angioplasty can lower the restenosis rate in hemodialysis access lesions, but the long-term patency for de novo lesions is high. A further randomized study is advisable.

  5. Adverse cardiovascular, cerebrovascular, and peripheral vascular effects of marijuana inhalation: what cardiologists need to know.

    PubMed

    Thomas, Grace; Kloner, Robert A; Rezkalla, Shereif

    2014-01-01

    Marijuana is the most widely used illicit drug, with approximately 200 million users worldwide. Once illegal throughout the United States, cannabis is now legal for medicinal purposes in several states and for recreational use in 3 states. The current wave of decriminalization may lead to more widespread use, and it is important that cardiologists be made aware of the potential for marijuana-associated adverse cardiovascular effects that may begin to occur in the population at a greater frequency. In this report, the investigators focus on the known cardiovascular, cerebrovascular, and peripheral effects of marijuana inhalation. Temporal associations between marijuana use and serious adverse events, including myocardial infarction, sudden cardiac death, cardiomyopathy, stroke, transient ischemic attack, and cannabis arteritis have been described. In conclusion, the potential for increased use of marijuana in the changing legal landscape suggests the need for the community to intensify research regarding the safety of marijuana use and for cardiologists to maintain an awareness of the potential for adverse effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The Effect of Clinical Care Location on Clinical Outcomes After Peripheral Vascular Intervention in Medicare Beneficiaries.

    PubMed

    Turley, Ryan S; Mi, Xiaojuan; Qualls, Laura G; Vemulapalli, Sreekanth; Peterson, Eric D; Patel, Manesh R; Curtis, Lesley H; Jones, W Schuyler

    2017-06-12

    Modifications in reimbursement rates by Medicare in 2008 have led to peripheral vascular interventions (PVI) being performed more commonly in outpatient and office-based clinics. The objective of this study was to determine the effects of this shift in clinical care setting on clinical outcomes after PVI. Modifications in reimbursement have led to peripheral vascular intervention (PVI) being more commonly performed in outpatient hospital settings and office-based clinics. Using a 100% national sample of Medicare beneficiaries from 2010 to 2012, we examined 30-day and 1-year rates of all-cause mortality, major lower extremity amputation, repeat revascularization, and all-cause hospitalization by clinical care location of index PVI. A total of 218,858 Medicare beneficiaries underwent an index PVI between 2010 and 2012. Index PVIs performed in inpatient settings were associated with higher 1-year rates of all-cause mortality (23.6% vs. 10.4% and 11.7%; p < 0.001), major lower extremity amputation (10.1% vs. 3.7% and 3.5%; p < 0.001), and all-cause repeat hospitalization (63.3% vs. 48.5% and 48.0%; p < 0.001), but lower rates of repeat revascularization (25.1% vs. 26.9% vs. 38.6%; p < 0.001) when compared with outpatient hospital settings and office-based clinics, respectively. After adjustment for potential confounders, patients treated in office-based clinics remained more likely than patients in inpatient hospital settings to require repeat revascularization within 1 year across all specialties. There was also a statistically significant interaction effect between location of index revascularization and geographic region on the occurrence of all-cause hospitalization, repeat revascularization, and lower extremity amputation. Index PVI performed in office-based settings was associated with a higher hazard of repeat revascularization when compared with other settings. Differences in clinical outcomes across treatment settings and geographic regions suggest that

  7. Trends in settings for peripheral vascular intervention and the effect of changes in the outpatient prospective payment system.

    PubMed

    Jones, W Schuyler; Mi, Xiaojuan; Qualls, Laura G; Vemulapalli, Sreekanth; Peterson, Eric D; Patel, Manesh R; Curtis, Lesley H

    2015-03-10

    Peripheral vascular intervention (PVI) is an effective treatment option for patients with peripheral artery disease (PAD). In 2008, Medicare modified reimbursement rates to encourage more efficient outpatient use of PVI in the United States. The purpose of this study was to evaluate trends in the use and clinical settings of PVI and the effect of changes in reimbursement. Using a 5% national sample of Medicare fee-for-service beneficiaries from 2006 to 2011, we examined age- and sex-adjusted rates of PVI by year, type of procedure, clinical setting, and physician specialty. A total of 39,339 Medicare beneficiaries underwent revascularization for PAD between 2006 and 2011. The annual rate of PVI increased slightly from 401.4 to 419.6 per 100,000 Medicare beneficiaries (p = 0.17), but the clinical setting shifted. The rate of PVI declined in inpatient settings from 209.7 to 151.6 (p < 0.001), whereas the rate expanded in outpatient hospitals (184.7 to 228.5; p = 0.01) and office-based clinics (6.0 to 37.8; p = 0.008). The use of atherectomy increased 2-fold in outpatient hospital settings and 50-fold in office-based clinics during the study period. Mean costs of inpatient procedures were similar across all types of PVI, whereas mean costs of atherectomy procedures in outpatient and office-based clinics exceeded those of stenting and angioplasty procedures. From 2006 to 2011, overall rates of PVI increased minimally. However, after changes in reimbursement, PVI and atherectomy in outpatient facilities and office-based clinics increased dramatically, neutralizing cost savings to Medicare and highlighting the possible unintended consequences of coverage decisions. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Intraoperative electrophysiological evaluations of macular function during peripheral scleral indentation

    PubMed Central

    Akiyama, Goichi; Matsumoto, Celso Soiti; Shinoda, Kei; Terauchi, Gaku; Matsumoto, Harue; Watanabe, Emiko; Iwata, Takeshi; Mizota, Atsushi; Miyake, Yozo

    2016-01-01

    Scleral indentation is widely used to examine the peripheral fundus, however it can increase the intraocular pressure (IOP) to high levels which can then affect retinal function. We evaluated the effects of scleral indentation on the macular function electrophysiologically. Intraoperative focal macular electroretinograms (iFMERGs) were recorded with and without controlling the IOP in 7 eyes. Without IOP control, the IOP increased from 21.7 ± 4.9 to 92.7 ± 20.2 mmHg significantly (P = 0.020) and the amplitudes of the b-wave (from 6.29 ± 1.160 to 3.71 ± 1.98 uV, P = 0.007), on-photopic negative response (from 2.29 ± 0.99 to 0.72 ± 0.47 uV, on-PhNR, P = 0.005), and d-wave (from 2.57 ± 0.41 to 1.64 ± 0.69 uV, P = 0.007) decreased significantly soon after beginning the indentation. All values returned to the baseline levels after releasing the indentation. In the eyes with IOP controlled, the IOP and the amplitude of all components did not change significantly during and after the indentation except the on-PhNR amplitude which was significantly reduced during the indentation. The changes in the iFMERGs and macular function caused by scleral indentation were transient and reversible. The changes can be minimized by controlling the IOP. PMID:27762313

  9. Regulation of Vascular and Renal Function by Metabolite Receptors*

    PubMed Central

    Peti-Peterdi, János; Kishore, Bellamkonda K.; Pluznick, Jennifer L.

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis—from salt and water balance to metabolism—by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families—(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and (c) short-chain fatty acid receptors—we emphasize the unique and important roles that these receptors play in renal and vascular physiology and pathophysiology. PMID:26667077

  10. Short-Term Exposure to Air Pollution and Digital Vascular Function

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.; Benjamin, Emelia J.; Mittleman, Murray A.; Hamburg, Naomi M.

    2014-01-01

    We investigated associations between ambient air pollution and microvessel function measured by peripheral arterial tonometry between 2003 and 2008 in the Framingham Heart Study Offspring and Third Generation Cohorts. We measured particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), black carbon, sulfates, particle number, nitrogen oxides, and ozone by using fixed monitors, and we determined moving averages for 1–7 days preceding vascular testing. We examined associations between these exposures and hyperemic response to ischemia and baseline pulse amplitude, a measure of arterial tone (n = 2,369). Higher short-term exposure to air pollutants, including PM2.5, black carbon, and particle number was associated with higher baseline pulse amplitude. For example, higher 3-day average PM2.5 exposure was associated with 6.3% higher baseline pulse amplitude (95% confidence interval: 2.0, 10.9). However, there were no consistent associations between the air pollution exposures assessed and hyperemic response. Our findings in a community-based sample exposed to relatively low pollution levels suggest that short-term exposure to ambient particulate pollution is not associated with vasodilator response, but that particulate air pollution is associated with baseline pulse amplitude, suggesting potentially adverse alterations in baseline vascular tone or compliance. PMID:25100647

  11. Routine use of ultrasound guidance in femoral arterial access for peripheral vascular intervention decreases groin hematoma rates.

    PubMed

    Kalish, Jeffrey; Eslami, Mohammad; Gillespie, David; Schermerhorn, Marc; Rybin, Denis; Doros, Gheorghe; Farber, Alik

    2015-05-01

    Use of fluoroscopy and bone landmarks to guide percutaneous common femoral artery (CFA) access has decreased access site complications compared with palpation alone. However, only limited case series have examined the benefits of ultrasound to guide CFA access during peripheral vascular intervention (PVI). We evaluated the effect of routine vs selective use of ultrasound guidance (UG) on groin hematoma rates after PVI. The Vascular Study Group of New England database (2010-2014) was queried to identify the complication of postprocedural groin hematoma after 7359 PVIs performed through CFA access. Hematoma (including pseudoaneurysms) was defined as minor (requiring compression or observation), moderate (requiring transfusion or thrombin injection), and major (requiring operation). Both procedure-level and interventionalist-level analyses were performed. Multivariable Poisson regression models were used to compare hematoma rates of interventionalists based on routine (≥80% of PVIs) and selective (<80%) utilization of UG in the adjusted overall sample and in multiple subgroups. The overall postprocedural groin hematoma rate after PVI was 4.5%, and the rate of combined moderate and major hematoma was 0.8%. Among 114 interventionalists with ≥10 PVI procedures, routine and selective UG was used by 31 (27%) and 83 (73%) interventionalists, respectively. Routine UG was protective against hematoma (rate ratio [RR], 0.62; 95% confidence interval [CI], 0.46-0.84; P < .01). Subgroup analysis revealed that routine UG was also protective against hematoma under the following circumstances: age >80 years (RR, 0.47; 95% CI, 0.27-0.85; P = .01), body mass index ≥30 (RR, 0.51; 95% CI, 0.29-0.90; P = .02), and sheath size >6F (RR, 0.43; 95% CI, 0.23-0.79; P < .01). Routine UG may potentially protect against the complication of hematoma for both modifiable and nonmodifiable patient and procedural characteristics. Encouraging routine UG is a feasible quality improvement

  12. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties

    PubMed Central

    Steucke, Kerianne E.; Tracy, Paige V.; Hald, Eric S.; Hall, Jennifer L.; Alford, Patrick W.

    2015-01-01

    Vascular smooth muscle cells’ primary function is to maintain vascular homeostasis through active contraction and relaxation. In diseases such as hypertension and atherosclerosis, this function is inhibited concurrent to changes in the mechanical environment surrounding vascular smooth muscle cells. It is well established that cell function and extracellular mechanics are interconnected; variations in substrate modulus affect cell migration, proliferation, and differentiation. To date, it is unknown how the evolving extracellular mechanical environment of vascular smooth muscle cells affects their contractile function. Here, we have built upon previous vascular muscular thin film technology to develop a variable-modulus vascular muscular thin film that measures vascular tissue functional contractility on substrates with a range of pathological and physiological moduli. Using this modified vascular muscular thin film, we found that vascular smooth muscle cells generated greater stress on substrates with higher moduli compared to substrates with lower moduli. We then measured protein markers typically thought to indicate a contractile phenotype in vascular smooth muscle cells and found that phenotype is unaffected by substrate modulus. These data suggest that mechanical properties of vascular smooth muscle cells’ extracellular environment directly influence their functional behavior and do so without inducing phenotype switching. PMID:26283412

  13. Sensorimotor Peripheral Nerve Function and Physical Activity in Older Men

    PubMed Central

    Lange-Maia, Brittney S.; Cauley, Jane A.; Newman, Anne B.; Boudreau, Robert M.; Jakicic, John M.; Glynn, Nancy W.; Zivkovic, Sasa; Dam, Tien; Caserotti, Paolo; Cawthon, Peggy M.; Orwoll, Eric S.; Strotmeyer, Elsa S.

    2017-01-01

    We determined whether sensorimotor peripheral nerve (PN) function was associated with physical activity (PA) in older men. The Osteoporotic Fractures in Men Study Pittsburgh, PA, site (n=328, age 78.8±4.7 years), conducted PN testing, including: peroneal motor and sural sensory nerve conduction (latencies, amplitudes: CMAP and SNAP for motor and sensory amplitude, respectively), 1.4g/10g monofilament (dorsum of the great toe), and neuropathy symptoms. ANOVA and multivariate linear regression modeled PN associations with PA (Physical Activity Scale for the Elderly (PASE) and SenseWear Armband). After multivariable adjustment, better motor latency was associated with higher PASE scores (160.5±4.8 vs 135.6±6.7, p<0.01). Those without vs. with neuropathy symptoms had higher PASE scores (157.6±5.3 vs 132.9±7.1, p<0.01). Better vs. worse SNAP was associated with slightly more daily vigorous activity (9.5±0.8 vs. 7.3±0.7, p=0.05). Other PN measures were not associated with PA. Certain PN measures were associated with lower PA, suggesting a potential pathway for disability. PMID:26964668

  14. Reference values of respiratory and peripheral muscle function in rats.

    PubMed

    Barreiro, E; Marín-Corral, J; Sanchez, F; Mielgo, V; Alvarez, F J; Gáldiz, J B; Gea, J

    2010-12-01

    Skeletal muscle dysfunction is a common systemic manifestation in several prevalent diseases. Predictive values are useful tools for the diagnosis and prognosis of diseases. In experimental animals, no reference values of muscle function evaluation have been so far reported. The objective was to obtain predictive values of maximal inspiratory pressure (MIP) and grip strength measurements in healthy rats. In 70 healthy rats, MIP and grip strength were measured in vivo weekly for five consecutive weeks using non-invasive methodologies. Three ranges of rat body weights (250-299, 300-349 and 350-399 g) and lengths (37.0-41.0, 41.1-42.0 and 42.1-44.0 cm) were established. MIP and grip strength measurements falling within the ranges of weight 350-399 and 300-349 g and length 42.1-44.0 cm were significantly greater than values falling within 250-299 g and 37.0-41.0 cm ranges respectively. Specific weight- and length-percentile distributions for MIP and grip strength measurements were calculated. As significant direct correlations were observed between rat weights and lengths and either MIP or grip strength measurements, regression equations relating all these variables were also determined. Skeletal muscle dysfunction is frequently associated with highly prevalent conditions. The significant predictive equations described for both MIP and grip strength measurements will enable scientists to better estimate the respiratory and peripheral muscle dysfunctions of laboratory animals, especially when conducting follow-up and/or intervention investigations.

  15. Evaluation of Bioenergetic Function in Cerebral Vascular Endothelial Cells.

    PubMed

    Rellick, Stephanie L; Hu, Heng; Simpkins, James W; Ren, Xuefang

    2016-11-19

    The integrity of the blood-brain-barrier (BBB) is critical to prevent brain injury. Cerebral vascular endothelial (CVE) cells are one of the cell types that comprise the BBB; these cells have a very high-energy demand, which requires optimal mitochondrial function. In the case of disease or injury, the mitochondrial function in these cells can be altered, resulting in disease or the opening of the BBB. In this manuscript, we introduce a method to measure mitochondrial function in CVE cells by using whole, intact cells and a bioanalyzer. A mito-stress assay is used to challenge the cells that have been perturbed, either physically or chemically, and evaluate their bioenergetic function. Additionally, this method also provides a useful way to screen new therapeutics that have direct effects on mitochondrial function. We have optimized the cell density necessary to yield oxygen consumption rates that allow for the calculation of a variety of mitochondrial parameters, including ATP production, maximal respiration, and spare capacity. We also show the sensitivity of the assay by demonstrating that the introduction of the microRNA, miR-34a, leads to a pronounced and detectable decrease in mitochondrial activity. While the data shown in this paper is optimized for the bEnd.3 cell line, we have also optimized the protocol for primary CVE cells, further suggesting the utility in preclinical and clinical models.

  16. Changes in peripheral vascular and cardiac sympathetic activity before and after coronary artery bypass surgery: interrelationships with hemodynamic alterations.

    PubMed

    Kim, Y D; Jones, M; Hanowell, S T; Koch, J P; Lees, D E; Weise, V; Kopin, I J

    1981-12-01

    The plasma catecholamine levels obtained simultaneously from radial artery (A), pulmonary artery (MV), brachial vein (PV), and coronary sinus (CS) were measured concurrent with hemodynamic determinations during coronary artery bypass graft (CABG) operations. Arterial catecholamine levels decreased after induction of anesthesia and increased after sternotomy; changes in veno-arterial norepinephrine (NE) differences ([PV-A]ne, [MV-A]ne, and [CS-A]ne) were of the same magnitude and direction, suggesting that NE release from various organs was of the same extent. After operation, arterial NE increased further, but the veno-arterial NE differences were in striking contrast; [PV-A]ne became markedly positive, whereas [CS-A]ne became markedly negative, indicating that NE release from extremity peripheral vasculature increased markedly while cardiac NE release decreased. These differential changes in regional sympathetic activity appear to be related to postoperative hypertension (HT) and low cardiac output (CO). There were close relationships of changes in [MV-A]ne to mean arterial pressure (r = 0.78, p less than 0.001) and systemic vascular resistance (r = 0.62, p less than 0.010, suggesting that the sympathetic nervous system plays an important role in CABG perioperative hemodynamic alterations.

  17. Radionuclide angiography and blood pool imaging to assess skin ulcer healing prognosis in patients with peripheral vascular disease

    SciTech Connect

    Alazraki, N.; Lawrence, P.F.; Syverud, J.B.

    1984-01-01

    Several non-invasive diagnostic techniques including segmental limb blood pressures, skin fluoresence, and photo plethysmography, have been evaluated as predictors of skin ulcer healing in patients with peripheral vascular disease, but none are widely used. Using 20mCi of Tc-99m phosphate compounds, four phase bone scans were obtained, including (1) radionuclide angiogram (2) blood pool image (3) 2 hour and 4-6 hour static images and (4) 24 hour static delayed images. The first two phases were used to assess vacularity to the region of distal extremity ulceration; the last two phases evaluated presence or absence of osteomyelitis. Studies were performed in 30 patients with non-healing ulcers of the lower extremities. Perfusion to the regions of ulceration on images was graded as normal, increased, or reduced with respect to the opposite (presumed normal) limb or some other normal reference area. Hypervascular response was interpreted as good prognosis for healing unless osteomyelitis was present. Clinicians followed patients for 14 days to assess limb healing with optimum care. If there was no improvement, angiography and/or surgery (reconstructive surgery, sympathectomy, or amputation) was done. Results showed: sensitivity for predicting ulcer healing was 94%, specificity 89%. Patients who failed to heal their ulcers showed reduced perfusion, no hypervascular response, or osteomyelitis. Microcirculatory adequacy for ulcer healing appear predictable by this technique.

  18. Malignant Triton Tumor (Malignant Peripheral Nerve Sheath Tumor With Rhabdomyoblastic Differentiation) Occurring in a Vascularized Free Flap Reconstruction Graft.

    PubMed

    Ram, Roopa; Gardner, Jerad; Alapati, Sindhura; Jambhekar, Kedar; Pandey, Tarun; Montgomery, Corey; Nicholas, Richard

    2017-08-01

    Malignant peripheral nerve sheath tumor (MPNST) is a rare form of sarcoma arising from Schwann cells or pluripotent cells of the neural crest. Malignant triton tumor (MTT) is a subtype of MPNST with a component of malignant rhabdomyoblasts in addition to malignant Schwann cells. MPNST and MTT are both aggressive malignancies that most commonly arise from large deep neurofibromas in patients with neurofibromatosis type 1 (NF-1). However, sporadic non-NF-1 cases of MTT have also been reported in the literature. We present a case of a 50-year-old African American male with no stigmata of NF-1 who developed a large mass in a free flap on the right calf. The free flap had been placed by plastic surgery 15 years previously following open right tibial and fibular fractures associated with a large soft tissue defect. Biopsy of the enlarging mass, followed by wide surgical excision, confirmed the pathology to be MTT. Although the development of a high-grade soft tissue sarcoma has been previously reported as a late complication of radiation therapy following free flap reconstructions, we believe this is the first reported case of sarcomatous transformation arising in a vascularized, free muscle transfer.

  19. Vascular origin of vildagliptin-induced skin effects in Cynomolgus monkeys: pathomechanistic role of peripheral sympathetic system and neuropeptide Y.

    PubMed

    Hoffmann, Peter; Bentley, Phil; Sahota, Pritam; Schoenfeld, Heidi; Martin, Lori; Longo, Linda; Spaet, Robert; Moulin, Pierre; Pantano, Serafino; Dubost, Valerie; Lapadula, Dan; Burkey, Bryan; Kaushik, Virendar; Zhou, Wei; Hayes, Michael; Flavahan, Nick; Chibout, Salah-Dine; Busch, Steve

    2014-06-01

    The purpose of this article is to characterize skin lesions in cynomolgus monkeys following vildagliptin (dipeptidyl peptidase-4 inhibitor) treatment. Oral vildagliptin administration caused dose-dependent and reversible blister formation, peeling and flaking skin, erosions, ulcerations, scabs, and sores involving the extremities at ≥5 mg/kg/day and necrosis of the tail and the pinnae at ≥80 mg/kg/day after 3 weeks of treatment. At the affected sites, the media and the endothelium of dermal arterioles showed hypertrophy/hyperplasia. Skin lesion formation was prevented by elevating ambient temperature. Vildagliptin treatment also produced an increase in blood pressure and heart rate likely via increased sympathetic tone. Following treatment with vildagliptin at 80 mg/kg/day, the recovery time after lowering the temperature in the feet of monkeys and inducing cold stress was prolonged. Ex vivo investigations showed that small digital arteries from skin biopsies of vildagliptin-treated monkeys exhibited an increase in neuropeptide Y-induced vasoconstriction. This finding correlated with a specific increase in NPY and in NPY1 receptors observed in the skin of vildagliptin-treated monkeys. Present data provide evidence that skin effects in monkeys are of vascular origin and that the effects on the NPY system in combination with increased peripheral sympathetic tone play an important pathomechanistic role in the pathogenesis of cutaneous toxicity. © 2014 by The Author(s).

  20. Molecular Imaging of Angiogenic Therapy in Peripheral Vascular Disease with αvβ3-Integrin-Targeted Nanoparticles

    PubMed Central

    Winter, Patrick M.; Caruthers, Shelton D.; Allen, John S.; Cai, Kejia; Williams, Todd A.; Lanza, Gregory M.; Wickline, Samuel A.

    2010-01-01

    Noninvasive molecular imaging of angiogenesis could play a critical role in the clinical management of peripheral vascular disease (PVD) patients. The αvβ3-integrin, a well-established biomarker of neovascular proliferation, is an ideal target for molecular imaging of angiogenesis. This study investigates whether MR molecular imaging with αvβ3-integrin-targeted perfluorocarbon nanoparticles can detect the neovascular response to angiogenic therapy. Hypercholesterolemic rabbits underwent femoral artery ligation followed by no treatment or angiogenic therapy with dietary L-arginine. MR molecular imaging performed 10 days after vessel ligation revealed increased signal enhancement in L-arginine treated animals compared to controls. Furthermore, specifically targeted nanoparticles produced two times higher MRI signal enhancement compared to non-targeted particles, demonstrating improved identification of angiogenic vasculature with biomarker targeting. X-ray angiography performed 40 days post-ligation revealed that L-arginine treatment increased the development of collateral vessels. Histological staining of muscle capillaries revealed a denser pattern of microvasculature in L-arginine treated animals, confirming the MR and X-ray imaging results. The clinical application of noninvasive molecular imaging of angiogenesis could lead to earlier and more accurate detection of therapeutic response in PVD patients, enabling individualized optimization for a variety of treatment strategies. PMID:20665780

  1. Functional monitoring of peripheral nerves from electrical impedance measurements.

    PubMed

    Fouchard, Alexandre; Coizet, Véronique; Sinniger, Valérie; Clarençon, Didier; Pernet-Gallay, Karin; Bonnet, Stéphane; David, Olivier

    2016-11-01

    Medical electrical stimulators adapted to peripheral nerves use multicontact cuff electrodes (MCC) to provide selective neural interfaces. However, neuroprostheses are currently limited by their inability to locate the regions of interest to focus. Intended until now either for stimulation or recording, MCC can also be used as a means of transduction to characterize the nerve by impedancemetry. In this study, we investigate the feasibility of using electrical impedance (EI) measurements as an in vivo functional nerve monitoring technique. The monitoring paradigm includes the synchronized recording of both the evoked endogenous activity as compound action potentials (CAP) and the superimposed sine signal from the EI probe. Measurements were conducted on the sciatic nerve of rodents, chosen for its branchings towards the peroneal and tibial nerves, with both mono- and multi-contact per section electrodes. During stimulation phases, recordings showed CAP with consistent fiber conduction velocities. During coupled phases of both stimulation and sine perturbation, impedance variations were extracted using the mono-contact electrode type for certain frequencies, e.g. 2.941kHz, and were temporally coherent with the previous recorded CAP. Using a MCC, localized evoked CAP were also recorded but the signal to noise ratio (SNR) was too low to distinguish the expected associated impedance variation and deduce an image of impedance spatial changes within the nerve. The conducted in vivo measurements allowed to distinguish both evoked CAP and associated impedance variations with a strong temporal correlation. This indicates the feasibility of functional EI monitoring, aiming at detecting the impedance variations in relation to neural activity. Further work is needed to improve the in vivo system, namely in terms of SNR, and to integrate new multicontact devices in order to move towards EI tomography with the detection of spatially-localized impedance variations. Eventually

  2. Blood flow controls bone vascular function and osteogenesis

    PubMed Central

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Schiller, Maria; Zeuschner, Dagmar; Bixel, M. Gabriele; Milia, Carlo; Gamrekelashvili, Jaba; Limbourg, Anne; Medvinsky, Alexander; Santoro, Massimo M.; Limbourg, Florian P.; Adams, Ralf H.

    2016-01-01

    While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system. PMID:27922003

  3. Stress hormones and vascular function in firefighters during concurrent challenges.

    PubMed

    Webb, Heather E; Garten, Ryan S; McMinn, David R; Beckman, Jamie L; Kamimori, Gary H; Acevedo, Edmund O

    2011-04-01

    The purpose of this study was to examine the effects of concurrent physical and mental challenge on stress hormones and indicators of vascular function in firefighters. Twelve professional firefighters exercised at 60% VO(2max) while participating in a computerized Fire Strategies and Tactics Drill (FSTD-fire strategies condition [FSC]), and again at the same intensity without the mental challenge (EAC). No differences in the amount of work performed between conditions existed, although the FSC resulted in greater perceptions of overall workload. Epinephrine and norepinephrine demonstrated significant interaction effects with elevated levels during the FSC. Cortisol responses were significantly elevated across time and for the FSC. Positive correlations were found between cortisol and interleukin-6, endothelin-1, and thromboxane-B(2), and a negative correlation between interleukin-6 and thromboxane-B(2). These results suggest that concurrent challenges results in exacerbated responses of stress hormones and suggests mechanisms that could contribute to the prevalence of cardiovascular events among firefighters.

  4. Peripheral Endothelial Function and Cardiovascular Events in High‐Risk Patients

    PubMed Central

    Matsuzawa, Yasushi; Sugiyama, Seigo; Sumida, Hitoshi; Sugamura, Koichi; Nozaki, Toshimitsu; Ohba, Keisuke; Matsubara, Junichi; Kurokawa, Hirofumi; Fujisue, Koichiro; Konishi, Masaaki; Akiyama, Eiichi; Suzuki, Hiroyuki; Nagayoshi, Yasuhiro; Yamamuro, Megumi; Sakamoto, Kenji; Iwashita, Satomi; Jinnouchi, Hideaki; Taguri, Masataka; Morita, Satoshi; Matsui, Kunihiko; Kimura, Kazuo; Umemura, Satoshi; Ogawa, Hisao

    2013-01-01

    Background Endothelial dysfunction is a key component of vascular vulnerability. Reactive hyperemia index (RHI), as assessed by the peripheral arterial tonometry, can noninvasively evaluate endothelial function. This study was designed to determine the additional prognostic value of endothelial function to the Synergy Between PCI With Taxus and Cardiac Surgery Score (SYNTAXsc) and the Framingham Risk Score (FRS) in predicting cardiovascular events in high‐risk patients. Methods and Results We undertook a two‐center prospective study in 528 stable patients at high‐risk for cardiovascular events from the years 2006–2011. The RHI was measured before coronary angiography and coronary complexity was assessed by SYNTAXsc. After optimal therapies including coronary revascularization, there was follow‐up with patients until August 2012. Cardiovascular events consist of cardiovascular death, myocardial infarction, unstable angina, ischemic stroke, coronary revascularization, heart failure‐induced hospitalization, aortic disease, and peripheral arterial disease. During 1468 person‐years of follow‐up, 105 patients developed cardiovascular events. Multivariate Cox proportional hazards analysis identified B‐type natriuretic peptide (BNP), SYNTAXsc, and RHI as independent cardiovascular event predictors (hazard ratio [95% confidence interval]: natural logarithm of BNP per 0.1: 1.019 [1.002 to 1.037]; P=0.023, SYNTAXsc per tertile: 2.426 [1.825 to 3.225]; P<0.0001, RHI per 0.1: 0.761 [0.673 to 0.859]; P<0.0001). When RHI was added to the FRS, BNP, and SYNTAXsc, net reclassification index was significantly improved (27.5%; P<0.0001), with a significant increase in the C‐statistic (from 0.728 [0.679 to 0.778] to 0.766 [0.726 to 0.806]; P=0.031). Conclusions Advanced endothelial dysfunction significantly correlated with near future cardiovascular events in high‐risk patients. This physiological vascular measurement improved risk discrimination when added to the

  5. Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy.

    PubMed

    Moimas, S; Novati, F; Ronchi, G; Zacchigna, S; Fregnan, F; Zentilin, L; Papa, G; Giacca, M; Geuna, S; Perroteau, I; Arnež, Z M; Raimondo, S

    2013-10-01

    Functional recovery after peripheral nerve injury depends on both improvement of nerve regeneration and prevention of denervation-related skeletal muscle atrophy. To reach these goals, in this study we overexpressed vascular endothelial growth factor (VEGF) by means of local gene transfer with adeno-associated virus (AAV). Local gene transfer in the regenerating peripheral nerve was obtained by reconstructing a 1-cm-long rat median nerve defect using a vein segment filled with skeletal muscle fibers that have been previously injected with either AAV2-VEGF or AAV2-LacZ, and the morphofunctional outcome of nerve regeneration was assessed 3 months after surgery. Surprisingly, results showed that overexpression of VEGF in the muscle-vein-combined guide led to a worse nerve regeneration in comparison with AAV-LacZ controls. Local gene transfer in the denervated muscle was obtained by direct injection of either AAV2-VEGF or AAV2-LacZ in the flexor digitorum sublimis muscle after median nerve transection and results showed a significantly lower progression of muscle atrophy in AAV2-VEGF-treated muscles in comparison with muscles treated with AAV2-LacZ. Altogether, our results suggest that local delivery of VEGF by AAV2-VEGF-injected transplanted muscle fibers do not represent a rational approach to promote axonal regeneration along a venous nerve guide. By contrast, AAV2-VEGF direct local injection in denervated skeletal muscle significantly attenuates denervation-related atrophy, thus representing a promising strategy for improving the outcome of post-traumatic neuromuscular recovery after nerve injury and repair.

  6. Systemically delivered adipose stromal vascular fraction cells disseminate to peripheral artery walls and reduce vasomotor tone through a CD11b+ cell-dependent mechanism.

    PubMed

    Morris, Marvin E; Beare, Jason E; Reed, Robert M; Dale, Jacob R; LeBlanc, Amanda J; Kaufman, Christina L; Zheng, Huaiyu; Ng, Chin K; Williams, Stuart K; Hoying, James B

    2015-04-01

    Vasoactivity, an important aspect of tissue healing, is often compromised in disease and tissue injury. Dysfunction in the smaller vasoactive arteries is most impactful, given the role of these vessels in controlling downstream tissue perfusion. The adipose stromal vascular fraction (SVF) is a mix of homeostatic cells shown to promote tissue healing. Our objective was to test the hypothesis that autologous SVF cells therapeutically modulate peripheral artery vasoactivity in syngeneic mouse models of small artery function. Analysis of vasoactivity of saphenous arteries isolated from normal mice 1 week after intravenous injection of freshly isolated SVF cells revealed that pressure-dependent artery vasomotor tone was decreased by the SVF cell isolate, but not one depleted of CD11b(+) cells. Scavenging hydrogen peroxide in the vessel wall abrogated the artery relaxation promoted by the SVF cell isolate. Consistent with a CD11b(+) cell being the relevant cell type, SVF-derived F4/80-positive macrophages were present within the adventitia of the artery wall coincident with vasorelaxation. In a model of artery inflammation mimicking a common disease condition inducing vasoactive dysfunction, the SVF cells potentiated relaxation of saphenous arteries without structurally remodeling the artery via a CD11b(+) cell-dependent manner. Our findings demonstrate that freshly isolated, adipose SVF cells promote vasomotor relaxation in vasoactive arteries via a hydrogen peroxide-dependent mechanism that required CD11b(+) cells (most likely macrophages). Given the significant impact of small artery dysfunction in disease, we predict that the intravenous delivery of this therapeutic cell preparation would significantly improve tissue perfusion, particularly in diseases with diffuse vascular involvement. ©AlphaMed Press.

  7. Systemically Delivered Adipose Stromal Vascular Fraction Cells Disseminate to Peripheral Artery Walls and Reduce Vasomotor Tone Through a CD11b+ Cell-Dependent Mechanism

    PubMed Central

    Morris, Marvin E.; Beare, Jason E.; Reed, Robert M.; Dale, Jacob R.; LeBlanc, Amanda J.; Kaufman, Christina L.; Zheng, Huaiyu; Ng, Chin K.; Williams, Stuart K.

    2015-01-01

    Vasoactivity, an important aspect of tissue healing, is often compromised in disease and tissue injury. Dysfunction in the smaller vasoactive arteries is most impactful, given the role of these vessels in controlling downstream tissue perfusion. The adipose stromal vascular fraction (SVF) is a mix of homeostatic cells shown to promote tissue healing. Our objective was to test the hypothesis that autologous SVF cells therapeutically modulate peripheral artery vasoactivity in syngeneic mouse models of small artery function. Analysis of vasoactivity of saphenous arteries isolated from normal mice 1 week after intravenous injection of freshly isolated SVF cells revealed that pressure-dependent artery vasomotor tone was decreased by the SVF cell isolate, but not one depleted of CD11b+ cells. Scavenging hydrogen peroxide in the vessel wall abrogated the artery relaxation promoted by the SVF cell isolate. Consistent with a CD11b+ cell being the relevant cell type, SVF-derived F4/80-positive macrophages were present within the adventitia of the artery wall coincident with vasorelaxation. In a model of artery inflammation mimicking a common disease condition inducing vasoactive dysfunction, the SVF cells potentiated relaxation of saphenous arteries without structurally remodeling the artery via a CD11b+ cell-dependent manner. Our findings demonstrate that freshly isolated, adipose SVF cells promote vasomotor relaxation in vasoactive arteries via a hydrogen peroxide-dependent mechanism that required CD11b+ cells (most likely macrophages). Given the significant impact of small artery dysfunction in disease, we predict that the intravenous delivery of this therapeutic cell preparation would significantly improve tissue perfusion, particularly in diseases with diffuse vascular involvement. PMID:25722428

  8. MR imaging of iliofemoral peripheral vascular calcifications using proton density-weighted, in-phase three-dimensional stack-of-stars gradient echo.

    PubMed

    Ferreira Botelho, Marcos P; Koktzoglou, Ioannis; Collins, Jeremy D; Giri, Shivraman; Carr, James C; Gupta, NavYash; Edelman, Robert R

    2017-06-01

    The presence of vascular calcifications helps to determine percutaneous access for interventional vascular procedures and has prognostic value for future cardiovascular events. Unlike CT, standard MRI techniques are insensitive to vascular calcifications. In this prospective study, we tested a proton density-weighted, in-phase (PDIP) three-dimensional (3D) stack-of-stars gradient-echo pulse sequence with approximately 1 mm(3) isotropic spatial resolution at 1.5 Tesla (T) and 3T to detect iliofemoral peripheral vascular calcifications and correlated MR-determined lesion volumes with CT angiography (CTA). The study was approved by the Institutional Review Board. The prototype PDIP stack-of-stars pulse sequence was applied in 12 patients with iliofemoral peripheral vascular calcifications who had undergone CTA. Vascular calcifications were well visualized in all subjects, excluding segments near prostheses or stents. The location, size, and shape of the calcifications were similar to CTA. Quantitative analysis showed excellent correlation (r(2)  = 0.84; P < 0.0001) between MR- and CT-based measures of calcification volume. In one subject in whom three pulse sequences were compared, PDIP stack-of-stars outperformed cartesian 3D gradient-echo and point-wise encoding time reduction with radial acquisition (PETRA). In this pilot study, a PDIP 3D stack-of-stars gradient-echo pulse sequence with high spatial resolution provided excellent image quality and accurately depicted the location and volume of iliofemoral vascular calcifications. Magn Reson Med 77:2146-2152, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Functional changes in vascular amputee patients: evaluation by Barthel Index, PULSES profile and ESCROW scale.

    PubMed

    O'Toole, D M; Goldberg, R T; Ryan, B

    1985-08-01

    This study evaluated the changes made by 60 peripheral vascular amputees from one month prior to admission to six months after attending a rehabilitation hospital. The Barthel index, PULSES profile, and ESCROW profile were used to measure functional status, social support, and rehabilitation progress. Statistical analysis consisted of t-tests to determine significant differences between the means of scores at varying intervals, and analysis of variance was added to determine interactions between amputation level, age, and sex as related to functional change. Amputees showed significant gains in Barthel scores from admission to discharge; this was attributed to rehabilitation intervention. They showed a significant decrease by the PULSES profile over the study period, indicating a decrease in independence from their premorbid function. Changes in ESCROW scores showed patients to have a greater need for social supports as they moved from admission to discharge. Age was a significant factor in mobility at discharge as measured by the Barthel index. As measured by the PULSES profile, men did better than women at six months follow-up. Unexpected results were that neither amputation level nor the presence or absence of diabetes mellitus had a significant impact on functional status as measured. The lack of significant differences by amputation level may be due to factors of age and sex, as well as to more depression in the below-knee group.

  10. Relationships between retinal arteriole anatomy and aortic geometry and function and peripheral resistance in hypertensives.

    PubMed

    Rosenbaum, David; Kachenoura, Nadjia; Koch, Edouard; Paques, Michel; Cluzel, Philippe; Redheuil, Alban; Girerd, Xavier

    2016-07-01

    Microvascular remodeling and large artery stiffness are key determinants of cardiovascular hemodynamics and can now be studied with new non-invasive methods. Our objective was to study the relationships between retinal arteriole anatomy and aortic geometry and function and peripheral resistance (total peripheral resistance (TPR)) in hypertensives. In 80 subjects (age 52±13 years; 53% males; including 23 normotensives and 57 hypertensives, among which 29 were uncontrolled hypertensives), we used: (1) the new non-invasive RTX1 adaptive optics (AO) camera (Imagine Eyes, Orsay, France) to measure the wall-to-lumen ratio (WLR) on retinal microvasculature; (2) cardiovascular magnetic resonance (CMR) imaging to assess aortic stiffness, geometry and cardiac output; and (3) the validated SphymoCor Xcel device to measure central blood pressure (BP) and carotido-femoral pulse wave velocity (Cf-PWV). TPR was calculated as the central mean BP/cardiac output ratio. WLR and TPR were significantly higher and aortic distensibility was significantly lower in hypertensives. Aortic dilation and arch elongation were found in uncontrolled hypertensives. In the univariate analysis, WLR was positively correlated with central BP (P<0.001), TPR (P<0.001) and Cf-PWV (P<0.05), and it was negatively correlated with aortic distensibility (P=0.003); however, it was not correlated with age or cardiovascular risk factors. The multivariate analysis indicated that WLR was associated with TPR (P=0.002) independent of age, BMI, gender, antihypertensive treatments, aortic diameter and central SBP. As expected, age was the major correlate of ascending aorta distensibility and Cf-PWV. New non-invasive vascular imaging methods are complementary for the detection of the deleterious effects of aging or high BP on large and small arteries. AO examination could represent a useful tool for the study and follow-up of microvasculature anatomical changes.

  11. Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis

    PubMed Central

    2016-01-01

    Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients. PMID:26955238

  12. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome.

    PubMed

    Hoffman, Jared D; Parikh, Ishita; Green, Stefan J; Chlipala, George; Mohney, Robert P; Keaton, Mignon; Bauer, Bjoern; Hartz, Anika M S; Lin, Ai-Ling

    2017-01-01

    Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer's disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5-6 months of age) and compared those to old mice (18-20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the

  13. Fondaparinux for intra and perioperative anticoagulation in patients with heparin-induced thrombocytopenia candidates for peripheral vascular surgery: Report of 4 cases.

    PubMed

    Illuminati, Giulio; Calio', Francesco G; Pizzardi, Giulia; Amatucci, Chiara; Masci, Federica; Palumbo, Piergaspare

    2016-01-01

    Intra and perioperative anticoagulation in patients with heparin induced thrombocytopenia (HIT), candidates for peripheral vascular surgery remains a challenge, as the best alternative to heparin has not yet been established. We evaluated the off-label use of fondaparinux in four patients with HIT, undergoing peripheral vascular surgery procedures. Four patients of whom 3 men of a mean age of 66 years, with proven heparin induced thrombocytopenia (HIT) underwent two axillo-femoral bypasses, one femoro-popliteal bypass and one resection of a splenic artery aneurysm under fondaparinux. No intra or perioperative bleeding or thrombosis of new onset was observed. In the absence of a valid alternative to heparin for intra and perioperative anticoagulation in HIT, several other anticoagulants can be used in an off-label setting. However, no general consensus exist on which should be the one of choice. In this small series fondaparinux appeared to be both safe and effective. These preliminary results seem to justify the off-label use of fondaparinux for intra and perioperative anticoagulation in patients with HIT, candidates for peripheral vascular surgery interventions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Enhanced functions of vascular cells on nanostructured Ti for improved stent applications.

    PubMed

    Choudhary, Saba; Haberstroh, Karen M; Webster, Thomas J

    2007-07-01

    Vascular tissue possesses numerous nanostructured surface features, but most metallic vascular stents proposed to restore blood flow are smooth at the nanoscale. Thus, the objective of the present study was to determine in vitro vascular cell functions on nanostructured titanium (Ti) compared to conventional commercially pure (c.p.) Ti. Results of this study showed for the first time greater competitive adhesion of endothelial versus vascular smooth muscle cells on nanostructured Ti compared to conventional Ti after 4 hours. Moreover, when cultured separately, increased endothelial and vascular smooth muscle cell density was observed on nanostructured Ti compared to conventional c.p. Ti after 1, 3, and 5 days; endothelial cells formed confluent monolayers before vascular smooth muscle cells on nanostructured Ti. Results also showed greater total amounts of collagen and elastin synthesis by vascular cells when cultured on nanostructured Ti. Since a major mode of failure of conventional vascular stents is the overgrowth of smooth muscle cells compared to endothelial cells, these results suggest that while the functions of both types of vascular cells were promoted on nanostructured c.p. Ti, endothelial cell functions (of particular importance, cell density or confluence) were enhanced over that of vascular smooth muscle cells. Thus, the present in vitro study showed that vascular stents composed of nanometer c.p. Ti particles may invoke advantageous cellular responses for improved stent applications.

  15. Rice bran enzymatic extract restores endothelial function and vascular contractility in obese rats by reducing vascular inflammation and oxidative stress.

    PubMed

    Justo, Maria Luisa; Candiracci, Manila; Dantas, Ana Paula; de Sotomayor, Maria Alvarez; Parrado, Juan; Vila, Elisabet; Herrera, Maria Dolores; Rodriguez-Rodriguez, Rosalia

    2013-08-01

    Rice bran enzymatic extract (RBEE) used in this study has shown beneficial activities against dyslipidemia, hyperinsulinemia and hypertension. Our aim was to investigate the effects of a diet supplemented with RBEE in vascular impairment developed in obese Zucker rats and to evaluate the main mechanisms mediating this action. Obese Zucker rats were fed a 1% and 5% RBEE-supplemented diet (O1% and O5%). Obese and their lean littermates fed a standard diet were used as controls (OC and LC, respectively). Vascular function was evaluated in aortic rings in organ baths. The role of nitric oxide (NO) was investigated by using NO synthase (NOS) inhibitors. Aortic expression of endothelial NOS (eNOS), inducible NOS (iNOS), tumor necrosis factor (TNF)-α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and superoxide production in arterial wall were determined. Endothelial dysfunction and vascular hyperreactivity to phenylephrine in obese rats were ameliorated by RBEE treatment, particularly with 1% RBEE. Up-regulation of eNOS protein expression in RBEE-treated aortas should contribute to this activity. RBEE attenuated vascular inflammation by reducing aortic iNOS and TNF-α expression. Aortas from RBEE-treated groups showed a significant decrease of superoxide production and down-regulation of NADPH oxidase subunits. RBEE treatment restored endothelial function and vascular contractility in obese Zucker rats through a reduction of vascular inflammation and oxidative stress. These results show the nutraceutical potential of RBEE to prevent obesity-related vascular complications. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Peripheral endothelial function and arterial stiffness in women with migraine with aura: a case-control study.

    PubMed

    Liman, T G; Neeb, L; Rosinski, J; Wellwood, I; Reuter, U; Doehner, W; Heuschmann, P U; Endres, M

    2012-04-01

    Vascular dysfunction may be involved in migraine pathophysiology and contribute to the increased risk of ischemic stroke in migraine, particularly in women with migraine with aura (MA). However, data on endothelial function in MA are controversial. Here, we investigated whether systemic endothelial function and arterial stiffness are altered in women with MA, using a novel peripheral arterial tonometry device for the first time. Twenty-nine female MA patients without comorbidities and 30 healthy women were included, and carotid intima-media thickness was assessed by a standardized procedure. Endothelial function was assessed using peripheral arterial tonometry. Reactive hyperaemic response of digital pulse amplitude was measured following 5 minutes of forearm occlusion of the brachial artery. Arterial stiffness was assessed by fingertip tonometry derived and heart-rate-adjusted augmentation index. No differences were found in peripheral arterial tonometry ratio (2.3 ± 0.6 vs 2.2 ± 0.8; p = 0.58) and left carotid intima-media thickness (in µm: 484 ± 119 vs 508 ± 60; p = 0.37). Women with MA had higher heart-rate-averaged augmentation index [median (interquartile range, IQR) of 5 (IQR 0.5 to 18) vs -5 (IQR -16.8 to 8.3), p = 0.005] and heart-rate-adjusted augmentation index [1 (IQR -6 to 12.5) vs -8 (IQR -20.3 to 2.5), p = 0.008] than healthy controls. Peripheral endothelial function is not impaired in women with MA, but they have greater arterial stiffness. This may contribute to the increased stroke risk in women with MA.

  17. Oral magnesium supplementation improves vascular function in elderly diabetic patients.

    PubMed

    Barbagallo, Mario; Dominguez, Ligia J; Galioto, Antonio; Pineo, Antonella; Belvedere, Mario

    2010-09-01

    Magnesium (Mg) ions directly influence vascular tone and responsiveness and are cofactors for acetylcholine-induced endothelium-dependent relaxation. Alterations in extracellular Mg are able to modify the formation and release of nitric oxide (NO), altering arterial smooth muscle tone. Previous in vivo studies in humans have shown that parenteral or oral Mg supplementation increase endothelial-dependent vasodilation. The aim of the present study was to evaluate the effects of Mg oral supplementation on endothelial function in elderly diabetic and hypertensive subjects. Sixty elderly (≥ 65 years) diabetic patients were recruited (mean age: 71.1 ± 6.1 years; M/F: 35/25). Endothelial function, evaluated by non-invasive flow-mediated dilatation of the brachial artery, as well as anthropometric and laboratory data, including ionized Mg (Mg-ion), were measured in all patients before and after one-month. Thirty patients underwent oral Mg supplementation with 4.5 g/day of Mg pidolate (368 mg/day of Mg ion), while the rest were used as a control group. The usual management of diabetes and hypertension was not changed during the month of study participation for all the patients. In the group of patients that underwent Mg supplementation, Mg-ion concentration significantly increased from 0.42 ± 0.05 mmol/L to 0.49 ± 0.06 mmol/L; p < 0.05. Mg intervention resulted in a significant improvement of the post-ischemic endothelial-dependent flow-mediated dilation (from 3.3 ± 3.6% to 8.4 ± 3.9%; p < 0.05). No significant differences were found, either in ion-Mg or endothelial function, in the control group. In conclusion, the present study suggests that oral Mg improves endothelial function in diabetic elderly subjects.

  18. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss

    PubMed Central

    Sabbah, Norman; Sanda, Nicolae; Authié, Colas N.; Mohand-Saïd, Saddek; Sahel, José-Alain; Habas, Christophe; Amedi, Amir; Safran, Avinoam B.

    2017-01-01

    Behavioral alterations emerging after central or peripheral vision loss suggest that cerebral reorganization occurs for both the afferented and deafferented early visual cortex (EVC). We explored the functional reorganization of the central and peripheral EVC following visual field defects specifically affecting central or peripheral vision. Compared to normally sighted, afferented central and peripheral EVC enhance their functional connectivity with areas involved in visual processing, whereas deafferented central and peripheral EVC increase their functional connectivity with more remote regions. The connectivity pattern of afferented EVC suggests adaptive changes that might enhance the visual processing capacity whereas the connectivity pattern of deafferented EVC may reflect the involvement of these regions in high-order mechanisms. Characterizing and understanding the plastic changes induced by these visual defects is essential for any attempt to develop efficient rehabilitation strategies. PMID:28233790

  19. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss.

    PubMed

    Sabbah, Norman; Sanda, Nicolae; Authié, Colas N; Mohand-Saïd, Saddek; Sahel, José-Alain; Habas, Christophe; Amedi, Amir; Safran, Avinoam B

    2017-02-24

    Behavioral alterations emerging after central or peripheral vision loss suggest that cerebral reorganization occurs for both the afferented and deafferented early visual cortex (EVC). We explored the functional reorganization of the central and peripheral EVC following visual field defects specifically affecting central or peripheral vision. Compared to normally sighted, afferented central and peripheral EVC enhance their functional connectivity with areas involved in visual processing, whereas deafferented central and peripheral EVC increase their functional connectivity with more remote regions. The connectivity pattern of afferented EVC suggests adaptive changes that might enhance the visual processing capacity whereas the connectivity pattern of deafferented EVC may reflect the involvement of these regions in high-order mechanisms. Characterizing and understanding the plastic changes induced by these visual defects is essential for any attempt to develop efficient rehabilitation strategies.

  20. Additional supervised exercise therapy after a percutaneous vascular intervention for peripheral arterial disease: a randomized clinical trial.

    PubMed

    Kruidenier, Lotte M; Nicolaï, Saskia P; Rouwet, Ellen V; Peters, Ron J; Prins, Martin H; Teijink, Joep A W

    2011-07-01

    To determine whether a percutaneous vascular intervention (PVI) combined with supplemental supervised exercise therapy (SET) is more effective than a PVI alone in improving walking ability in patients with symptomatic peripheral arterial disease (PAD). In this prospective randomized trial, patients with PAD treated with a PVI were eligible. Exclusion criteria were major amputation or tissue loss, comorbidity preventing physical activity, insufficient knowledge of the Dutch language, no insurance for SET, and prior participation in a SET program. All patients received a PVI and subsequently were randomly assigned to either the PVI alone group (n = 35) or the PVI + SET group (n = 35). The primary outcome parameter was the absolute claudication distance (ACD). This trial was registered at Clinical trials.gov, NCT00497445. The study included 70 patients, most of whom were treated for an aortoiliac lesion. The mean difference in ACD at 6 months of follow-up was 271.3 m (95% confidence interval [CI] 64.0-478.6, P = .011) in favor of additional SET. In the PVI alone group, 1 (3.7%) patient finished the complete treadmill test compared with 11 (32.4%) patients in the PVI + SET group (P = .005). Physical health-related quality-of-life score was 44.1 ± 7.8 in the PVI alone group compared with 41.9 ± 9.5 in the PVI + SET group, which was a nonsignificant difference (P = .34). SET following a PVI is more effective in increasing walking distance compared with a PVI alone. These data indicate that SET is a useful adjunct to a PVI for the treatment of PAD. Copyright © 2011 SIR. Published by Elsevier Inc. All rights reserved.

  1. Blunted temporal activity of microvascular perfusion heterogeneity in metabolic syndrome: a new attractor for peripheral vascular disease?

    PubMed

    Butcher, Joshua T; Goodwill, Adam G; Stanley, Shyla C; Frisbee, Jefferson C

    2013-02-15

    A key clinical outcome for peripheral vascular disease (PVD) in patients is a progressive decay in skeletal muscle performance and its ability to resist fatigue with elevated metabolic demand. We have demonstrated that PVD in obese Zucker rats (OZR) is partially due to increased perfusion distribution heterogeneity at successive microvascular bifurcations within skeletal muscle. As this increased heterogeneity (γ) is longitudinally present in the network, its cumulative impact is a more heterogeneous distribution of perfusion between terminal arterioles than normal, causing greater regional tissue ischemia. To minimize this negative outcome, a likely compensatory mechanism against an increased γ should be an increased temporal switching at arteriolar bifurcations to minimize downstream perfusion deficits. Using in situ cremaster muscle, we determined that temporal activity (the cumulative sum of absolute differences between successive values of γ, taken every 20 s) was lower in OZR than in control animals, and this difference was present in both proximal (1A-2A) and distal (3A-4A) arteriolar bifurcations. Although adrenoreceptor blockade (phentolamine) improved temporal activity in 1A-2A arteriolar bifurcations in OZR, this was without impact in the distal microcirculation, where only interventions against oxidant stress (Tempol) and thromboxane A(2) activity (SQ-29548) were effective. Analysis of the attractor for γ indicated that it was not only elevated in OZR but also exhibited severe reductions in range, suggesting that the ability of the microcirculation to respond to any challenge is highly restricted and may represent the major contributor to the manifestation of poor muscle performance at this age in OZR.

  2. Fragmentation of Care Threatens Patient Safety in Peripheral Vascular Catheter Management in Acute Care– A Qualitative Study

    PubMed Central

    Castro-Sánchez, Enrique; Charani, Esmita; Drumright, Lydia N.; Sevdalis, Nick; Shah, Nisha; Holmes, Alison H.

    2014-01-01

    Background The use of peripheral vascular catheters (PVCs) is an extremely common and necessary clinical intervention, but inappropriate PVC care poses a major patient safety risk in terms of infection. Quality improvement initiatives have been proposed to reduce the likelihood of adverse events, but a lack of understanding about factors that influence behaviours of healthcare professionals limits the efficacy of such interventions. We undertook qualitative interviews with clinical staff from a large group of hospitals in order to understand influences on PVC care behaviors and subsequent patient safety. Methods Ten doctors, ten clinical pharmacists, 18 nurses and one midwife at a National Health Service hospital group in London (United Kingdom) were interviewed between December 2010 and July 2011 using qualitative methods. Responses were analysed using a thematic framework. Results Four key themes emerged: 1) Fragmentation of management and care, demonstrated with a lack of general overview and insufficient knowledge about expected standards of care or responsibility of different professionals; 2) feelings of resentment and frustration as a result of tensions in the workplace, due to the ambiguity about professional responsibilities; 3) disregard for existing hospital policy due to perceptions of flaws in the evidence used to support it; and 4) low-risk perception for the impact of PVC use on patient safety. Conclusion Fragmentation of practice resulted in ill-defined responsibilities and interdisciplinary resentment, which coupled with a generally low perception of risk of catheter use, appeared to result in lack of maintaining policy PVC standards which could reduced patient safety. Resolution of these issues through clearly defining handover practice, teaching interdisciplinary duties and increasing awareness of PVC risks could result in preventing thousands of BSIs and other PVC-related infections annually. PMID:24454958

  3. Cigarette exposure induces changes in maternal vascular function in a pregnant mouse model.

    PubMed

    Gandley, Robin E; Jeyabalan, Arun; Desai, Ketaki; McGonigal, Stacy; Rohland, Jennifer; DeLoia, Julie A

    2010-05-01

    Smoking is associated with multiple adverse pregnancy outcomes, including fetal growth restriction. The objective of this study was to determine whether cigarette smoke exposure during pregnancy in a mouse model affects the functional properties of maternal uterine, mesenteric, and renal arteries as a possible mechanism for growth restriction. C57Bl/CJ mice were exposed to whole body sidestream smoke for 4 h/day. Smoke particle exposure was increased from day 4 of gestation until late pregnancy (day 16-19), with mean total suspended particle levels of 63 mg/m(3), representative of moderate-to-heavy smoking in humans. Uterine, mesenteric, and renal arteries from late-pregnant and virgin mice were isolated and studied in a pressure-arteriograph system (n = 23). Plasma cotinine was measured by ELISA. Fetal weights were significantly reduced in smoke-exposed compared with control fetuses (0.88 +/- 0.1 vs. 1.0 +/- 0.08 g, P < 0.02), while litter sizes were not different. Endothelium-mediated relaxation responses to methacholine were significantly impaired in both the uterine and mesenteric vasculature of pregnant mice exposed to cigarette smoke during gestation. This difference was not apparent in isolated renal arteries from pregnant mice exposed to cigarette smoke; however, relaxation was significantly reduced in renal arteries from smoke-exposed virgin mice. In conclusion, we found that passive cigarette smoke exposure is associated with impaired vascular relaxation of uterine and mesenteric arteries in pregnant mice. Functional maternal vascular perturbations during pregnancy, specifically impaired peripheral and uterine vasodilation, may contribute to a mechanism by which smoking results in fetal growth restriction.

  4. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    PubMed Central

    2012-01-01

    Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of

  5. Review of gestational diabetes mellitus effects on vascular structure and function.

    PubMed

    Jensen, Louise A; Chik, Constance L; Ryan, Edmond A

    2016-05-01

    Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.

  6. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy.

    PubMed

    Areti, Aparna; Komirishetty, Prashanth; Kumar, Ashutosh

    2017-03-09

    Oxaliplatin use as chemotherapeutic agent is frequently limited by cumulative neurotoxicity which may compromise quality of life. Reports relate this neurotoxic effect to oxidative stress and mitochondrial dysfunction in peripheral nerves and dorsal root ganglion (DRG). Carvedilol is an antihypertensive drug, has also been appreciated for its antioxidant and mitoprotective properties. Carvedilol co-treatment did not reduce the anti-tumor effects of oxaliplatin in human colon cancer cells (HT-29), but exhibited free radical scavenging activity against oxaliplatin-induced oxidative stress in neuronal cells (Neuro-2a). Hence, the present study was designed to investigate the effect of carvedilol in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in Sprague-Dawley rats. Oxaliplatin reduced the sensory nerve conduction velocity and produced the thermal and mechanical nociception. Carvedilol significantly (P<0.001) attenuated these functional and sensorimotor deficits. It also counteracted oxidative/nitrosative stress by reducing the levels of nitrotyrosine and improving the mitochondrial superoxide dismutase expression in both sciatic nerve and DRG tissues. It improved the mitochondrial function and prevented the oxaliplatin-induced alteration in mitochondrial membrane potential in sciatic nerve thus prevented loss of intra epidermal nerve fiber density in the foot pads. Together the results prompt the use of carvedilol along with chemotherapy with oxaliplatin to prevent the peripheral neuropathy.

  7. Regulation of Vascular and Renal Function by Metabolite Receptors.

    PubMed

    Peti-Peterdi, János; Kishore, Bellamkonda K; Pluznick, Jennifer L

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and

  8. Impact of American-style football participation on vascular function.

    PubMed

    Kim, Jonathan H; Sher, Salman; Wang, Francis; Berkstresser, Brant; Shoop, James L; Galante, Angelo; Al Mheid, Ibhar; Ghasemzadeh, Nima; Hutter, Adolph M; Williams, B Robinson; Sperling, Laurence S; Weiner, Rory B; Quyyumi, Arshed A; Baggish, Aaron L

    2015-01-15

    Although hypertension is common in American-style football (ASF) players, the presence of concomitant vascular dysfunction has not been previously characterized. We sought to examine the impact of ASF participation on arterial stiffness and to compare metrics of arterial function between collegiate ASF participants and nonathletic collegiate controls. Newly matriculated collegiate athletes were studied longitudinally during a single season of ASF participation and were then compared with healthy undergraduate controls. Arterial stiffness was characterized using applanation tonometry (SphygmoCor). ASF participants (n = 32, 18.4 ± 0.5 years) were evenly comprised of Caucasians (n = 14, 44%) and African-Americans (n = 18, 56%). A single season of ASF participation led to an increase in central aortic pulse pressure (27 ± 4 vs 34 ± 8 mm Hg, p <0.001). Relative to controls (n = 47), pulse wave velocity was increased in ASF participants (5.6 ± 0.7 vs 6.2 ± 0.9 m/s, p = 0.002). After adjusting for height, weight, body mass index, systolic blood pressure, and diastolic blood pressure, ASF participation was independently predictive of increased pulse wave velocity (β = 0.33, p = 0.04). In conclusion, ASF participation leads to changes in central hemodynamics and increased arterial stiffness. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Impact of American-Style Football Participation on Vascular Function

    PubMed Central

    Kim, Jonathan H.; Sher, Salman; Wang, Francis; Berkstresser, Brant; Shoop, James L.; Galante, Angelo; Mheid, Ibhar Al; Ghasemzadeh, Nima; Hutter, Adolph M.; Williams, B. Robinson; Sperling, Laurence S.; Weiner, Rory B.; Quyyumi, Arshed A.; Baggish, Aaron L.

    2014-01-01

    Although hypertension is common among American-style football players, the presence of concomitant vascular dysfunction has not previously been characterized. We sought to examine the impact of American-style football participation on arterial stiffness and to compare metrics of arterial function between collegiate American-style football participants and non-athletic collegiate controls. Newly matriculated collegiate athletes were studied longitudinally during a single season of American-style football participation and were then compared to healthy undergraduate controls. Arterial stiffness was characterized by use of applanation tonometry (SphygmoCor®). American-style football participants (N = 32, 18.4 ± 0.5 years old) were evenly comprised of Caucasians (N = 14, 44%) and African-Americans (N = 18, 56%). A single season of American-style football participation led to an increase in central aortic pulse pressure (27 ± 4 vs. 34 ± 8 mm Hg, P <0.001). Relative to controls (N = 47), pulse wave velocity was increased among ASF participants (5.6 ± 0.7 vs. 6.2 ± 0.9 m/s, P = 0.002). After adjusting for height, weight, body-mass index, systolic blood pressure, and diastolic blood pressure, American-style football participation was independently predictive of increased pulse wave velocity (β = 0.33, P = 0.04). In conclusion, American-style football participation leads to changes in central hemodynamics and increased arterial stiffness. PMID:25465938

  10. Functional CB1 cannabinoid receptors in human vascular endothelial cells.

    PubMed Central

    Liu, J; Gao, B; Mirshahi, F; Sanyal, A J; Khanolkar, A D; Makriyannis, A; Kunos, G

    2000-01-01

    Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation. PMID:10698714

  11. Direct Effects of Phosphate on Vascular Cell Function

    PubMed Central

    Lau, Wei Ling; Pai, Ashwini; Moe, Sharon M.; Giachelli, Cecilia M.

    2011-01-01

    Elevated serum phosphate has clinically been associated with vascular stiffness and cardiovascular mortality. Mechanistic studies over the past decade looking at phosphate’s local effects on the vessel wall have lent insight into various pathways that culminate in vascular calcification.Smooth muscle cell phenotype change and apoptosis play prominent roles. The sodium-phosphate cotransporter PiT-1 is required for the osteochondrogenic differentiation of smooth muscle cellsin vitro. Less is known about phosphate-driven valve interstitial cell calcification and elastin degradation.In this paper, we review the current knowledge about phosphate-induced changes in the vascular wall. PMID:21406295

  12. A systematic review of vascular and endothelial function: effects of fruit, vegetable and potassium intake.

    PubMed

    Blanch, N; Clifton, P M; Keogh, J B

    2015-03-01

    To review the relationships between: 1) Potassium and endothelial function; 2) Fruits and vegetables and endothelial function; 3) Potassium and other measures of vascular function; 4) Fruits and vegetables and other measures of vascular function. An electronic search for intervention trials investigating the effect of potassium, fruits and vegetables on vascular function was performed in MEDLINE, EMBASE and the Cochrane Library. Potassium appears to improve endothelial function with a dose of >40 mmol/d, however the mechanisms for this effect remain unclear. Potassium may improve measures of vascular function however this effect may be dependent on the effect of potassium on blood pressure. The effect of fruit and vegetables on endothelial function independent of confounding variables is less clear. Increased fruit and vegetable intake may improve vascular function only in high risk populations. Increasing dietary potassium appears to improve vascular function but the effect of increasing fruit and vegetable intake per se on vascular function is less clear. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Peripheral Vascular Disease

    MedlinePlus

    ... below your stomach, the surgeon will take an artificial vessel or one of your own veins (called a graft) and connect it to the blocked vessel at points above and below the blockage. This allows blood to flow around, or "bypass," the blockage. Aortic ...

  14. Efficacy and Safety of a Novel Vascular Closure Device (Glubran 2 Seal) After Diagnostic and Interventional Angiography in Patients with Peripheral Arterial Occlusive Disease

    SciTech Connect

    Del Corso, Andrea; Bargellini, Irene Cicorelli, Antonio; Perrone, Orsola; Leo, Michele; Lunardi, Alessandro; Alberti, Aldo; Tomei, Francesca; Cioni, Roberto; Ferrari, Mauro; Bartolozzi, Carlo

    2013-04-15

    To prospectively evaluate safety and efficacy of a novel vascular closure device (Glubran 2 Seal) after peripheral angiography in patients with peripheral arterial occlusive disease (PAOD). From December 2010 to June 2011, all consecutive patients with PAOD undergoing peripheral angiography were prospectively enrolled onto the study after percutaneous antegrade or retrograde puncture of the common femoral artery. After angiography, the Glubran 2 Seal device was used to achieve hemostasis. The following data were registered: technical success and manual compression duration, patients' discomfort (scale 0-5), operators' technical difficulty (scale 0-5), and vascular complications. The site of hemostasis was evaluated by clinical inspection and color-coded Duplex ultrasound performed 1 day and 1 month after the procedure. One hundred seventy-eight patients were enrolled (112 male, mean age 70.8 years) with a total of 206 puncture sites, including 104 (50.5 %) antegrade accesses. The device was successful in 198(96.1 %) of 206 procedures, with 8 cases of manual compression lasting longer than 5 min (maximum 20 min). No major vascular complications were observed, resulting in 100 % procedural success. Minor complications occurred in seven procedures (3.4 %), including two cases of pseudoaneurysms, successfully treated by ultrasound-guided glue injection. The mean {+-} standard deviation score for patients' discomfort was 0.9 {+-} 0.7, whereas the mean score for operators' difficulty was 1.2 {+-} 0.9. In patients with PAOD, the Glubran 2 Seal represents a simple, painless, and efficient vascular closure device, able to achieve hemostasis both in antegrade and retrograde accesses.

  15. Adenosine promotes vascular barrier function in hyperoxic lung injury

    PubMed Central

    Davies, Jonathan; Karmouty‐Quintana, Harry; Le, Thuy T.; Chen, Ning‐Yuan; Weng, Tingting; Luo, Fayong; Molina, Jose; Moorthy, Bhagavatula; Blackburn, Michael R.

    2014-01-01

    Abstract Hyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response in the lung with cellular infiltration and pulmonary edema. Adenosine is a signaling molecule that is generated extracellularly by CD73 in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to be elevated and plays a protective role in acute injury situations. In particular, ADORA2B activation is protective in acute lung injury. However, little is known about the role of adenosine signaling in hyperoxic lung injury. We hypothesized that hyperoxia‐induced lung injury leads to CD73‐mediated increases in extracellular adenosine, which is protective through ADORA2B signaling pathways. To test this hypothesis, we exposed C57BL6, CD73−/−, and Adora2B−/− mice to 95% oxygen or room air and examined markers of pulmonary inflammation, edema, and monitored lung histology. Hyperoxic exposure caused pulmonary inflammation and edema in association with elevations in lung adenosine levels. Loss of CD73‐mediated extracellular adenosine production exacerbated pulmonary edema without affecting inflammatory cell counts. Furthermore, loss of the ADORA2B had similar results with worsening of pulmonary edema following hyperoxia exposure without affecting inflammatory cell infiltration. This loss of barrier function correlated with a decrease in occludin in pulmonary vasculature in CD73−/− and Adora2B−/− mice following hyperoxia exposure. These results demonstrate that exposure to a hyperoxic environment causes lung injury associated with an increase in adenosine concentration, and elevated adenosine levels protect vascular barrier function in hyperoxic lung injury through the ADORA2B‐dependent regulation of occludin. PMID:25263205

  16. Modulation of vascular endothelial cell function by palm oil antioxidants.

    PubMed

    Abeywardena, M Y; Head, R J; Gapor, A

    1997-03-01

    Several cardiovascular risk factors including, hypercholesterolaemia and hypertension, lead to diseased blood vessels due to endothelial cell dysfunction. Recent studies also indicate that such alterations in blood vessel function may involve free radical related mechanism(s). Therefore, in the present study, two different preparations of palm oils with variable antioxidant profiles, as well as a purified antioxidant fraction extracted from unprocessed palm oil (tocotrienol-rich-factor; TRF), were tested for their ability to influence blood vessel dysfunction in the spontaneously hypertensive rat (SHR). Adult SHRs were fed a synthetic diet supplemented (5% w/w) with either physically refined palm oil (PO), golden palm cooking oil (Nutrolein; GPO) or olive oil (OO; control diet). Antioxidant rich diet (TRF diet) was prepared by supplementing the OO diet with 0.2% (w/w) TRF. After 12 weeks of pre-feeding, segments of thoracic aorta were used to evaluate vascular function. Compared to the normotensive Wistar-Kyoto (WKY) control rats, aortic rings from the SHR showed impaired endothelium dependent relaxation to acetylcholine (ACh) which was restored by dietary TRF (p<0.05, ANOVA and Tukey's test). In addition, the paradoxical increase in tension in control hypertensive vessels observed at higher doses of ACh was prevented by TRF and also by the PO and GPO diets. Although the development of thromboxane-like constrictor response, after the inhibition of nitric oxide in hypertensive vessels, was unaffected by test diets, both TRF and GPO feeding prevented the amplification of this unwanted constriction by a threshold dose (7.2x10-10 M) of noradrenaline. Results suggest a modulatory role for minor constituents of edible oils and are in agreement with the recently reported benefits of natural antioxidants against cardiovascular diseases.

  17. Effects of acute administration of caffeine on vascular function.

    PubMed

    Umemura, Takashi; Ueda, Keiko; Nishioka, Kenji; Hidaka, Takayuki; Takemoto, Hiroaki; Nakamura, Shuji; Jitsuiki, Daisuke; Soga, Junko; Goto, Chikara; Chayama, Kazuaki; Yoshizumi, Masao; Higashi, Yukihito

    2006-12-01

    Caffeine is the most widely used pharmacologic substance in the world. It is found in common nonessential grocery items (e.g., coffee, tea, cocoa, and chocolate). The effects of caffeine on cardiovascular diseases, including hypertension, remain controversial, and there is little information on its direct effect on vascular function. The purpose of this study was to determine the effect of caffeine on endothelial function in humans. This study was a double-blind, randomized placebo and active drug study. Forearm blood flow (FBF) responses to acetylcholine (ACh), an endothelium-dependent vasodilator, and to sodium nitroprusside, an endothelium-independent vasodilator, were evaluated in healthy young men before and after the oral administration of caffeine 300 mg (n = 10) or placebo (n = 10). FBF was measured by using a strain-gauge plethysmograph. Caffeine significantly increased systolic and diastolic blood pressures by 6.0 +/- 6.0 and 2.6 +/- 3.1 mm Hg (p <0.05), respectively, but did not alter heart rate or baseline FBF. Caffeine augmented the FBF responses to ACh from 21.2 +/- 7.1 to 26.6 +/- 8.1 ml/min/100 ml tissue (p <0.05), whereas sodium nitroprusside-stimulated vasodilation was not altered by caffeine administration. The intra-arterial infusion of N(G)-monomethyl-L-arginine, a nitric oxide synthase inhibitor, abolished the caffeine-induced augmentation of FBF response to ACh. In the placebo group, the ACh- and sodium nitroprusside-stimulated vasodilation was similar before and after the follow-up period. In conclusion, these findings suggest that the acute administration of caffeine augments endothelium-dependent vasodilation in healthy young men through an increase in nitric oxide production.

  18. Relationship between objectively measured physical activity and vascular structure and function in adults.

    PubMed

    Gomez-Marcos, Manuel A; Recio-Rodríguez, José I; Patino-Alonso, Maria C; Agudo-Conde, Cristina; Lasaosa-Medina, Lourdes; Rodriguez-Sanchez, Emiliano; Maderuelo-Fernandez, José A; García-Ortiz, Luis

    2014-06-01

    To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR) with vascular structure and function based on carotid intima-media thickness, pulse wave velocity, central and peripheral augmentation index and the ambulatory arterial stiffness index in adults. This study analyzed 263 subjects who were included in the EVIDENT study (mean age 55.85 ± 12.21 years; 59.30% female). Physical activity was assessed during 7 days using the Actigraph GT3X accelerometer (counts/minute) and 7-day PAR (metabolic equivalents (METs)/hour/week). Carotid ultrasound was used to measure carotid intima media thickness (IMT). The SphygmoCor System was used to measure pulse wave velocity (PWV), and central and peripheral augmentation index (CAIx and PAIx). The B-pro device was used to measure ambulatory arterial stiffness index (AASI). Median counts/minute was 244.37 and mean METs/hour/week was 11.49. Physical activity showed an inverse correlation with PAIx (r = -0.179; p < 0.01) and vigorous activity day time with IMT (r = -0.174), CAIx (r = -0.217) and PAIx (r = -0.324) (p < 0.01, all). Sedentary activity day time was correlated positively with CAIx (r = 0.103; p < 0.05). In multiple regression analysis, after adjusting for confounding factors, the inverse association of CAIx with counts/minute and the time spent in moderate and vigorous activity were maintained as well as the positive association with sedentary activity day time (p < 0.05). Physical activity, assessed by counts/minute, and the amount of time spent in moderate, vigorous/very vigorous physical activity, showed an inverse association with CAIx. Likewise, the time spent in sedentary activity was positively associated with the CAIx. Clinical Trials.gov Identifier: NCT01083082. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Association between dairy intake, lipids and vascular structure and function in diabetes.

    PubMed

    Petersen, Kristina S; Keogh, Jennifer B; Lister, Natalie; Weir, Jacquelyn M; Meikle, Peter J; Clifton, Peter M

    2017-05-15

    To determine lipid species that change in response to a change in dairy consumption. In addition, to investigate whether dairy associated lipid species are correlated with changes in measures of vascular structure and function. A 12-mo randomised controlled trial was conducted to determine the effect of increased consumption of fruit, vegetables and dairy, compared to usual diet, on measures of vascular structure and function in adults with type 1 and type 2 diabetes (n = 108). This paper comprises post-hoc analyses investigating the relationship between dairy intake, serum lipid species and vascular health. Central and peripheral blood pressure, carotid femoral pulse wave velocity, augmentation index, serum lipid species and dietary intake were measured at baseline and 3-mo. Common carotid artery intima media thickness was measured at baseline and 12-mo. Serum lipid species [lysophosphatidylcholine (LPC) 14:0, LPC 15:0, LPC 16:1, phosphatidylcholine (PC) 29:0 PC 30:0, PC 31:0 and cholesterol ester (CE) 14:0] were associated with the change in full fat dairy consumption (rho 0.19-0.25; P < 0.05). The 3-mo change in some lipids was positively associated with the 3-mo change in central systolic [LPC 14:0 (rho 0.30; P = 0.007), PC 30:0 (rho 0.28; P = 0.010)] and diastolic blood pressure [LPC 14:0 (rho 0.32; P = 0.004), LPC 15:0 (rho 0.23; P = 0.04), LPC 16:1 (rho 0.23; P = 0.035), PC 29:0 (rho 0.28; P = 0.01), PC 30:0 (rho 0.36; P = 0.001), PC 31:0 (rho 0.30; P = 0.007)] and 12-mo change in common carotid artery intimal medial thickness [CE 14:0 (rho 0.22; P = 0.02)]. Pulse wave velocity and augmentation index were unrelated to dairy and lipid species. An increase in dairy associated lipids appears to be associated with an increase in blood pressure and common carotid intimal medial thickness.

  20. Childhood Obesity Associates Haemodynamic and Vascular Changes That Result in Increased Central Aortic Pressure with Augmented Incident and Reflected Wave Components, without Changes in Peripheral Amplification

    PubMed Central

    Castro, Juan M.; García-Espinosa, Victoria; Curcio, Santiago; Arana, Maite; Chiesa, Pedro; Giachetto, Gustavo; Zócalo, Yanina; Bia, Daniel

    2016-01-01

    The aims were to determine if childhood obesity is associated with increased central aortic blood pressure (BP) and to characterize haemodynamic and vascular changes associated with BP changes in obese children and adolescents by means of analyzing changes in cardiac output (stroke volume, SV), arterial stiffness (aortic pulse wave velocity, PWV), peripheral vascular resistances (PVR), and net and relative contributions of reflected waves to the aortic pulse wave amplitude. We included 117 subjects (mean/range age: 10 (5–15) years, 49 females), who were obese (OB) or had normal weight (NW). Peripheral and central aortic BP, PWV, and pulse wave-derived parameters (augmentation index, amplitude of forward and backward components) were measured with tonometry (SphygmoCor) and oscillometry (Mobil-O-Graph). With independence of the presence of dyslipidemia, hypertension, or sedentarism, the aortic systolic and pulse BP were higher in OB than in NW subjects. The increase in central BP could not be explained by the elevation in the relative contribution of reflections to the aortic pressure wave and higher PVR or by an augmented peripheral reflection coefficient. Instead, the rise in central BP could be explained by an increase in the amplitude of both incident and reflect wave components associated to augmented SV and/or PWV. PMID:26881081

  1. [Management of peripheral vascular disease based on current guidelines. Peripheral artery occlusive disease of the iliac and femoral arteries and carotid artery stenosis].

    PubMed

    Grebe, M T; Sternitzky, R

    2013-12-01

    The article summarizes the recommendations of current European and American guidelines concerning the diagnosis and treatment of peripheral arterial occlusive disease and carotid artery stenosis. In comparison to older recommendations, current guidelines concerning endovascular treatment and concomitant medical therapy have been changed in recent years. With the exception of very complex and long lesions, endovascular methods are seen as the therapy of choice for revascularization of the iliac and femoral arteries. For cardiovascular risk reduction, patients with symptomatic peripheral arterial disease and stenosis of the carotid arteries should receive antiplatelet as well as statin therapy and should not be treated different from patients with coronary artery disease.

  2. The relationship between nailfold capillaroscopic assessment and telangiectasia score with severity of peripheral vascular involvement in systemic sclerosis.

    PubMed

    Yalcinkaya, Yasemin; Pehlivan, Ozlem; Omma, Ahmet; Alpay, Nilufer; Erer, Burak; Kamali, Sevil; Ocal, Lale; Inanc, Murat

    2015-01-01

    To determine the association of nailfold video-capillaroscopy (NVC) findings and telangiectasia score with digital ulcer (DU) history and severity of peripheral vascular involvement (PVI) in systemic sclerosis (SSc). Fifty-nine SSc patients fulfilling Leroy & Medsger criteria were evaluated including telangiectasia score, disease activity and severity scores. NVC was performed according to qualitative (early, active and late patterns) and semi-quantitative assessments. When DU+ and DU- groups were compared; the mean score of capillary number (CN) was 2.0±0.5 vs. 1.4±0.7 (p<0.001), irregularly enlarged capillaries (IEC) was 1.8±0.6 vs. 1.4±0.7 (p<0.05), microangiopathy evolution score (MES) was 2.5±1.5 vs. 1.8±1.0 (p<0.05) and 'early' pattern was significantly less frequent in DU+ patients (1 vs. 9, p=0.016). The frequency of severe-PVI (Medsger severity score of 2-4) was 22% in females (12/54) and 80% in males (4/5). When severe and non-severe groups were compared; the mean score of CN was 2.1±0.4 vs. 1.5±0.7 (p<0.001), MES was 2.8±1.6 vs. 1.8±1.1 (p<0.05) and 'early' pattern was significantly less frequent in patients with severe PVI (0 vs. 9, p=0.049). The mean values of telangiectasia score were similar between groups. DU history and severe PVI in SSc were associated with capillary loss and microangiopathy. 'Early' NVC pattern was very rare in patients with DU history and was not found in severe PVI. Severe PVI in males was more frequent than females. Telangiectasia scores were not found to be related to PVI. NVC may be a helpful method in the assessment of SSc patients for PVI prognosis, warranting prospective studies.

  3. Functional vascular diseases: Raynaud's syndrome, acrocyanosis and erythromelalgia.

    PubMed

    Heidrich, H

    2010-02-01

    Raynauds syndrome, acrocyanosis and erythromelalgia are functional vascular diseases that differ with respect to prevalence, clinical picture, therapy, prognosis, and impairment of quality of life. Raynauds syndrome occurs in 5 to 20 % of the population in Europe, is observed four times more often in women than in men and appears first at the age of 40 (3 to 80), on the average. Raynauds attacks are characterized by a paroxysmal white-blue-red or just white and blue discoloration of the fingers and toes; the attacks are induced by cold or stress, usually, cease after no more than some minutes (average 23 min.), but can also persist for hours. A distinction must be made between primary (aetiology unknown), secondary (aetiology known) and suspected secondary Raynauds syndromes (causal underlying disease suspected). There are several different therapy options, but not all of them have been substantiated by evidence. Acrocyanosis is rarer than Raynauds syndrome, and contrary to the latter, is characterized by nonparoxysmal, in most cases persistent, painless bluish-red symmetrical discolorations of the hands, feet and knees. It is more frequent in women than in men and becomes manifest before the 25th year of age, on the average (15th to 70th year of age). A distinction is made between primary acrocyanosis without detectable underlying disease and secondary acrocyanosis with a specific underlying disease. No effective therapy for primary acrocyanosis is known, but secondary forms can sometimes be treated. Patients with primary and secondary erythromelalgia, a very rare condition, sustain paroxysmal burning pain with marked reddening of the legs, feet and less often the hands. The attacks are triggered by warmth. Women are affected more often than men. The age of first manifestation is 40 to 55 years, but the first attacks may just as well occur during childhood. There are different therapeutic approaches with occasional success, but no general recommendations.

  4. Impact of shear rate modulation on vascular function in humans

    PubMed Central

    Tinken, Toni M.; Thijssen, Dick H.J.; Hopkins, Nicola; Black, Mark A.; Dawson, Ellen A.; Minson, Christopher T.; Newcomer, Sean C.; Laughlin, M. Harold; Cable, N. Timothy; Green, Daniel J.

    2010-01-01

    Shear stress is an important stimulus to arterial adaptation in response to exercise and training in humans. We recently observed significant reverse arterial flow and shear during exercise and different antegrade/retrograde patterns of shear and flow in response to different types of exercise. The purpose of this study was to simultaneously examine flow mediated dilation (FMD), a largely nitric oxide mediated vasodilator response, in both brachial arteries of healthy young men before and after 30-minute interventions consisting of bilateral forearm heating, recumbent leg cycling and bilateral handgrip exercise. During each intervention, a cuff inflated to 60mmHg was placed on one arm to unilaterally manipulate the shear rate stimulus. In the non-cuffed arm, antegrade flow and shear increased similarly in response to each intervention (ANOVA; P<0.001, no interaction between interventions; P=0.71). Baseline FMD (4.6, 6.9 and 6.7%) increased similarly in response to heating, handgrip and cycling (8.1, 10.4 and 8.9%, ANOVA; P<0.001, no interaction; 0.89). In contrast, cuffed arm antegrade shear rate was lower than in the non-cuffed arm for all conditions (P<0.05) and the increase in FMD was abolished in this arm (4.7, 6.7 and 6.1%) (2-way ANOVA: all conditions interacted P<0.05). These results suggest that differences in the magnitude of antegrade shear rate transduce differences in endothelial vasodilator function in humans, a finding which may have relevance for the impact of different exercise interventions on vascular adaptation in humans. PMID:19546374

  5. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  6. A non-invasive technique for the evaluation of peripheral circulatory functions in female subjects with Raynaud’s phenomenon

    PubMed Central

    MIRBOD, Seyed Mohammad; SUGIURA, Haruo

    2017-01-01

    Japanese women now account for 43 percent of the labor force. A number of them are involved in construction, agricultural and forestry jobs. The aim of this study was to establish a non-invasive technique for the evaluation of peripheral circulatory functions in women with Raynaud’s phenomenon (RP) and introduce a specific method for the assessment of vascular disturbances in females exposed to hand-transmitted vibration. The subjects of this study were 10 women with primary RP, 7 women with progressive systemic sclerosis (PSS) secondary to RP, and 17 females who were included as the control group. The evaluation of peripheral circulatory functions in all subjects was based on the values of finger blood flow (FBF) and finger skin temperature (FST) measured before, during and following a 5-min recovery period after the hand was immersed in cold water (5°C, 1 min). The measured values of FBF and FST of the primary RP group before and after the immersion test were significantly (p<0.01) lower compared to those of the control group. The technique applied in this study could be used as a non-invasive and tolerable technique to determine the digital circulatory functions in female subjects with RP. PMID:28321017

  7. Scaling laws of vascular trees: of form and function.

    PubMed

    Kassab, Ghassan S

    2006-02-01

    The branching pattern and vascular geometry of biological tree structure are complex. Here we show that the design of all vascular trees for which there exist morphometric data in the literature (e.g., coronary, pulmonary; vessels of various skeletal muscles, mesentery, omentum, and conjunctiva) obeys a set of scaling laws that are based on the hypothesis that the cost of construction of the tree structure and operation of fluid conduction is minimized. The laws consist of scaling relationships between 1) length and vascular volume of the tree, 2) lumen diameter and blood flow rate in each branch, and 3) diameter and length of vessel branches. The exponent of the diameter-flow rate relation is not necessarily equal to 3.0 as required by Murray's law but depends on the ratio of metabolic to viscous power dissipation of the tree of interest. The major significance of the present analysis is to show that the design of various vascular trees of different organs and species can be deduced on the basis of the minimum energy hypothesis and conservation of energy under steady-state conditions. The present study reveals the similarity of nature's scaling laws that dictate the design of various vascular trees and the underlying physical and physiological principles.

  8. [Function of Aire in central and peripheral immune tolerance].

    PubMed

    Hanafusa, Takaaki

    2014-01-01

    Negative selection induces central tolerance in which self-reactive T cells are deleted by medullary thymic epithelial cells (mTECs) to prevent autoimmunity. The transcriptional factor, autoimmune regulator (Aire), controls the expression of tissue-specific antigens (TSAs) by mTECs for negative selection. The mechanisms by which Aire targets loci which encode TSAs are unknown in detail; recently, however, the ATF7ip-MBD1 complex was identified as an Aire-interacting transcriptional protein complex required for its targeting the loci. Lineage tracing of Aire(+) mTECs identified that mTECs have a post-Aire stage during the development, where they lost maturation markers but maintained intermediate TSA expression, and Aire is required for the terminal differentiation of mTEC's. Extrathymic Aire-expressing cells (eTACs) are identified in murine and human secondary lymphoid organs. eTACs express major histocompatibility complex class II(hi), CD80(lo), CD86(lo), epithelial cell adhesion molecule(hi), CD45(lo) bone marrow-derived peripheral antigen-presenting cell population, which is distinct from mTECs and dendritic cells. They can induce activation-induced cell death of self-reactive CD8(+) T cells and unresponsiveness of self-reactive CD4(+) T cells through a mechanism that does not require regulatory T cells, suggesting that peripheral Aire plays a complementary role for central tolerance.

  9. [Bone metabolism and cardiovascular function update. Role of vitamin D in the bone and vascular intercommunication].

    PubMed

    Okano, Toshio

    2014-07-01

    Vascular calcification, hypertension and cardiac hypertrophy have been often complicated in osteoporotic patients with low bone mass. Since there are many similarities among the processes of bone formation and vascular calcification, vitamin D insufficiency has been thought to be deeply involved in the pathogenesis of these diseases. Indeed, in animal studies, vitamin D receptor gene knockout mice have been shown to display severe vascular calcification, high blood pressure, and left ventricular hypertrophy. On the other hand, in clinical studies, active vitamin D restores vascular calcification and improves heart function in dialysis patients. Whether 1,25 (OH) ₂D₃ acts directly on vascular smooth muscle cells and cardiomyocytes or acts indirectly on them via regulating calcium metabolism remains unclear. The elucidation of the role of vitamin D in the bone and vascular intercommunication and its application toward drug development could be an important step forward in the realization of health and longevity society.

  10. Influences of maternal nutritional status on vascular function in the offspring.

    PubMed

    Poston, Lucilla

    2007-08-01

    Fetal growth restriction leading to low birthweight is associated with increased risk of ischaemic heart disease and hypertension in later life. Increasingly, it is recognised that cardiovascular risk may also be initiated in early life when the fetus and neonate are exposed to maternal nutritional excess. This review summarises the studies in man and animals that have investigated the potential role of vascular disorders in the aetiology of atherosclerosis and hypertension arising from early life nutritional deprivation or excess. Malfunction of the arterial endothelial cell layer in the offspring has been frequently described in association with both maternal under and overnutritional states and may play a permissive role in the origin of these disorders. Also prevalent is evidence for increased stiffness of the large arteries which may contribute to systolic hypertension. Further investigation is required into the intriguing suggestion that early life nutritional imbalance may adversely influence vascular angiogenesis leading to rarefaction and increased peripheral vascular resistance.

  11. The relationship between perceived role and appropriate use of peripherally inserted central catheters: A survey of vascular access nurses in the United States.

    PubMed

    Krein, Sarah L; Kuhn, Latoya; Ratz, David; Winter, Suzanne; Vaughn, Valerie M; Chopra, Vineet

    2017-06-01

    The presence and proliferation of vascular access nursing in hospital settings has been identified as a potential contributor to growing demand, and possible overuse, of peripherally inserted central catheters (PICCs). We examined vascular access nurses' perceived role related to use of PICCs and the association with appropriateness of PICC use in hospitals. A web-based survey was administered to members of two vascular access professional organizations. Of 2762 potentially eligible respondents who accessed the link, 1698 (61%) completed the survey. This sample was further restricted to vascular access nurses who worked in a U.S. hospital (n=1147). Respondents were categorized based on perceived role: 1) an operator who inserts PICCs; 2) a consultant whose views are not valued by the care team (unvalued consultant); 3) a consultant whose views are valued by the care team (valued consultant). Facility and respondent characteristics, reported practices, leadership support and relationships with other providers were compared across groups using chi-squared tests and analysis of variance. Multivariable logistic regression was used to assess the association between perceived role and reported percentage of PICCs placed for inappropriate reasons. Among the 1147 respondents, 210 (18%) viewed themselves as operators, 683 (59%) as valued consultants, 236 (21%) as unvalued consultants, and 18 (2%) could not be categorized. A significantly higher percentage (93%) of valued consultants reported that vascular access nurses placed the majority of PICCs at their facility, compared to operators (83%) or unvalued consultants (76%) (p<0.001). After adjustment, compared with operators, valued consultants were significantly more likely to report that <10% of PICCs at their facility were inserted for inappropriate reasons (OR 1.7, p=0.002); the finding was reversed for unvalued consultants (OR 0.69, p=0.06). Vascular access nurses and their perceived role as part of the healthcare team

  12. Peripheral delta opioid receptors require priming for functional competence in vivo

    PubMed Central

    Rowan, Matthew P.; Ruparel, Nikita B.; Patwardhan, Amol M.; Berg, Kelly A.; Clarke, William P.; Hargreaves, Kenneth M.

    2009-01-01

    Although centrally acting opioid analgesics produce profound antinociception under basal conditions, the antinociceptive properties of peripherally restricted opioid analgesics are generally only detectable after inflammation or injection of inflammatory mediators. Despite considerable research, the cellular mechanisms regulating the functional competence of peripheral opioid receptor systems for inhibition of nociception remain unclear. Recent work has demonstrated that brief pre-treatment (priming) with bradykinin, arachidonic acid, protease-activated receptor-2 agonists, or direct activators of protein kinase C (PKC) are capable of inducing the functional competence of the opioid receptor system in cultures of primary sensory neurons in vitro. Here we report that the peripheral delta opioid receptor system also requires PKC-dependent priming to inhibit prostaglandin E2 (PGE2)-induced thermal allodynia in the rat. Peripheral hindpaw injection of [D-Pen2,5]-enkephalin (DPDPE), a selective delta opioid receptor agonist, did not alter PGE2-induced thermal allodynia. However, following priming (15 min) with bradykinin or arachidonic acid, DPDPE produced a significant reduction in allodynia that was antagonist reversible, peripherally restricted, and exhibited a typical dose-response relationship. Furthermore, the bradykinin priming effect was blocked by the PKC inhibitors, bisindolylmaleimide I and chelerythrine. Collectively, these data support prior in vitro findings that, although present on primary sensory neurons, peripheral opioid receptor systems are functionally inactive under basal conditions and require activation of a PKC- and arachidonic acid-dependent signaling pathway to develop functional competence in vivo. PMID:19063879

  13. In vivo characterization of regenerative peripheral nerve interface function

    NASA Astrophysics Data System (ADS)

    Ursu, Daniel C.; Urbanchek, Melanie G.; Nedic, Andrej; Cederna, Paul S.; Gillespie, R. Brent

    2016-04-01

    Objective. Regenerative peripheral nerve interfaces (RPNIs) are neurotized free autologous muscle grafts equipped with electrodes to record myoelectric signals for prosthesis control. Viability of rat RPNI constructs have been demonstrated using evoked responses. In vivo RPNI characterization is the next critical step for assessment as a control modality for prosthetic devices. Approach. Two RPNIs were created in each of two rats by grafting portions of free muscle to the ends of divided peripheral nerves (peroneal in the left and tibial in the right hind limb) and placing bipolar electrodes on the graft surface. After four months, we examined in vivo electromyographic signal activity and compared these signals to muscular electromyographic signals recorded from autologous muscles in two rats serving as controls. An additional group of two rats in which the autologous muscles were denervated served to quantify cross-talk in the electrode recordings. Recordings were made while rats walked on a treadmill and a motion capture system tracked the hind limbs. Amplitude and periodicity of signals relative to gait were quantified, correlation between electromyographic and motion recording were assessed, and a decoder was trained to predict joint motion. Main Results. Raw RPNI signals were active during walking, with amplitudes of 1 mVPP, and quiet during standing, with amplitudes less than 0.1 mVPP. RPNI signals were periodic and entrained with gait. A decoder predicted bilateral ankle motion with greater than 80% reliability. Control group signal activity agreed with literature. Denervated group signals remained quiescent throughout all evaluations. Significance. In vivo myoelectric RPNI activity encodes neural activation patterns associated with gait. Signal contamination from muscles adjacent to the RPNI is minimal, as demonstrated by the low amplitude signals obtained from the Denervated group. The periodicity and entrainment to gait of RPNI recordings suggests the

  14. The plant vascular system: Evolution, development and functions

    Treesearch

    William J. Lucas; Andrew Groover; Raffael Lichtenberger; Kaori Furuta; Shri-Ram Yadav; Yka Helariutta; Xin-Qiang He; Hiroo Fukuda; Julie Kang; Siobhan M. Brady; John W. Patrick; John Sperry; Akiko Yoshida; Ana-Flor Lopez-Millan; Michael A. Grusak; Pradeep Kachroo

    2013-01-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made...

  15. The plant vascular system: Evolution, development and functions

    USDA-ARS?s Scientific Manuscript database

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of ...

  16. Imaging of vascular dynamics within the foot using dynamic diffuse optical tomography to diagnose peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Khalil, M. A.; Kim, H. K.; Hoi, J. W.; Kim, I.; Dayal, R.; Shrikande, G.; Hielscher, A. H.

    2013-03-01

    Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. The current diagnostic method for PAD is the ankle-brachial index (ABI). The ABI is a ratio of the patient's systolic blood pressure in the foot to that of the brachial artery in the arm, a ratio below 0.9 is indicative of affected vasculature. However, this method is ineffective in patients with calcified arteries (diabetic and end-stage renal failure patients), which falsely elevates the ABI recording resulting in a false negative reading. In this paper we present our results in a pilot study to deduce optical tomography's ability to detect poor blood perfusion in the foot. We performed an IRB approved 30 patient study, where we imaged the feet of the enrolled patients during a five stage dynamic imaging sequence. The patients were split up into three groups: 10 healthy subjects, 10 PAD patients and 10 PAD patients with diabetes and they were imaged while applying a pressure cuff to their thigh. Differences in the magnitude of blood pooling in the foot and rate at which the blood pools in the foot are all indicative of arterial disease.

  17. Dual-mode Imaging of Cutaneous Tissue Oxygenation and Vascular Function

    PubMed Central

    Xu, Ronald X.; Huang, Kun; Qin, Ruogu; Huang, Jiwei; Xu, Jeff S.; Ding, Liya; Gnyawali, Urmila S.; Gordillo, Gayle M.; Gnyawali, Surya C.; Sen, Chandan K.

    2010-01-01

    Accurate assessment of cutaneous tissue oxygenation and vascular function is important for appropriate detection, staging, and treatment of many health disorders such as chronic wounds. We report the development of a dual-mode imaging system for non-invasive and non-contact imaging of cutaneous tissue oxygenation and vascular function. The imaging system integrated an infrared camera, a CCD camera, a liquid crystal tunable filter and a high intensity fiber light source. A Labview interface was programmed for equipment control, synchronization, image acquisition, processing, and visualization. Multispectral images captured by the CCD camera were used to reconstruct the tissue oxygenation map. Dynamic thermographic images captured by the infrared camera were used to reconstruct the vascular function map. Cutaneous tissue oxygenation and vascular function images were co-registered through fiduciary markers. The performance characteristics of the dual-mode image system were tested in humans. PMID:21178967

  18. An Evaluation of the Ability of the Peripheral Vasodilator Buflomedil to Improve Vascular Patency after Acute Frostbite

    DTIC Science & Technology

    1988-06-21

    groups three and seven. It therefore appears that, in this acute model for frostbite, buflomedil does not improve vascular patency. a --a - mm mm-wm...rewarmed. In the firstpart of his study, animls In groups one, two and three received intravenous injections of either saline or buflomedil (supplied by...the vascular network, especially vessels on the plantar surface and from the toes, that is characteristic of the injury, as represented in this model

  19. Tie1 controls angiopoietin function in vascular remodeling and inflammation

    PubMed Central

    Korhonen, Emilia A.; Lampinen, Anita; Giri, Hemant; Kim, Minah; Allen, Breanna; D’Amico, Gabriela; Sipilä, Tuomas J.; Lohela, Marja; Vaheri, Antti; Ylä-Herttuala, Seppo; Koh, Gou Young; McDonald, Donald M.

    2016-01-01

    The angiopoietin/Tie (ANG/Tie) receptor system controls developmental and tumor angiogenesis, inflammatory vascular remodeling, and vessel leakage. ANG1 is a Tie2 agonist that promotes vascular stabilization in inflammation and sepsis, whereas ANG2 is a context-dependent Tie2 agonist or antagonist. A limited understanding of ANG signaling mechanisms and the orphan receptor Tie1 has hindered development of ANG/Tie-targeted therapeutics. Here, we determined that both ANG1 and ANG2 binding to Tie2 increases Tie1-Tie2 interactions in a β1 integrin–dependent manner and that Tie1 regulates ANG-induced Tie2 trafficking in endothelial cells. Endothelial Tie1 was essential for the agonist activity of ANG1 and autocrine ANG2. Deletion of endothelial Tie1 in mice reduced Tie2 phosphorylation and downstream Akt activation, increased FOXO1 nuclear localization and transcriptional activation, and prevented ANG1- and ANG2-induced capillary-to-venous remodeling. However, in acute endotoxemia, the Tie1 ectodomain that is responsible for interaction with Tie2 was rapidly cleaved, ANG1 agonist activity was decreased, and autocrine ANG2 agonist activity was lost, which led to suppression of Tie2 signaling. Tie1 cleavage also occurred in patients with hantavirus infection. These results support a model in which Tie1 directly interacts with Tie2 to promote ANG-induced vascular responses under noninflammatory conditions, whereas in inflammation, Tie1 cleavage contributes to loss of ANG2 agonist activity and vascular stability. PMID:27548530

  20. Uteroplacental circulation and fetal vascular function and development.

    PubMed

    Thornburg, Kent L; Louey, Samantha

    2013-09-01

    Although blood flow in the placental vasculature is governed by the same physiological forces of shear, pressure and resistance as in other organs, it is also uniquely specialized on the maternal and fetal sides. At the materno-fetal interface, the independent uteroplacental and umbilicoplacental circulations must coordinate sufficiently to supply the fetus with the nutrients and substrates it needs to grow and develop. Uterine arterial flow must increase dramatically to accommodate the growing fetus. Recent evidence delineates the hormonal and endothelial mechanisms by which maternal vessels dilate and remodel during pregnancy. The umbilical circulation is established de novo during embryonic development but blood does not flow through the placenta until late in the first trimester. The umbilical circulation operates in the interest of maintaining fetal oxygenation over the course of pregnancy, and is affected differently by mechanical and chemical regulators of vascular tone compared to other organs. The processes that match placental vascular growth and fetal tissue growth are not understood, but studies of compromised pregnancies provide clues. The subtle changes that cause the failure of the normally regulated vascular processes during pregnancy have not been thoroughly identified. Likewise, practical and effective therapeutic strategies to reverse detrimental placental perfusion patterns have yet to be investigated.

  1. Antenatal Hypoxia and Pulmonary Vascular Function and Remodeling

    PubMed Central

    Papamatheakis, Demosthenes G.; Blood, Arlin B.; Kim, Joon H.; Wilson, Sean M.

    2015-01-01

    This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression. PMID:24063380

  2. Current opinions on the control and role of vascular smooth muscle cell adhesion, calcium sensitization, and the cytoskeleton in vascular structure and function.

    PubMed

    Martinez-Lemus, Luis A

    2014-04-01

    Vascular smooth muscle contraction and relaxation play a preponderant role on the active (acute) and structural (long-term) control of vascular diameter. This editorial overview summarizes and highlights the opinions expressed in seven reviews contained in this special topic issue of Microcirculation. The reviews address diverse aspects of the mechanisms that influence cell adhesion, calcium homeostasis, and cytoskeletal remodeling, and how these mechanisms affect vascular structure and function at different levels of the circulation. © 2014 John Wiley & Sons Ltd.

  3. The Primo Vascular Structures Alongside Nervous System: Its Discovery and Functional Limitation

    PubMed Central

    Park, Eun-sung; Kim, Hee Young; Youn, Dong-ho

    2013-01-01

    The primo vascular structures comprising primo nodes and vessels (originally called Bonghan corpuscles and ducts, resp.) have recently been suggested to be the anatomical correlate of acupuncture, a therapeutic technique used in oriental medicine. Although the primo vascular structures have been observed in many parts of animals, including the nervous system, using anatomical methodologies, its physiological functions are still unclear. This paper summarizes the reports on the primo vascular structures, particularly in the nervous system and its surroundings, as well as the electrophysiological properties of cells in the primo nodes. In addition, recent reports examining the potential roles of the primo vascular structures in acupuncture are discussed. This review raises some fundamental questions and, at the same time, highlights the potential physiological roles of the primo vascular structures in acupuncture. PMID:23606882

  4. The primo vascular structures alongside nervous system: its discovery and functional limitation.

    PubMed

    Park, Eun-Sung; Kim, Hee Young; Youn, Dong-Ho

    2013-01-01

    The primo vascular structures comprising primo nodes and vessels (originally called Bonghan corpuscles and ducts, resp.) have recently been suggested to be the anatomical correlate of acupuncture, a therapeutic technique used in oriental medicine. Although the primo vascular structures have been observed in many parts of animals, including the nervous system, using anatomical methodologies, its physiological functions are still unclear. This paper summarizes the reports on the primo vascular structures, particularly in the nervous system and its surroundings, as well as the electrophysiological properties of cells in the primo nodes. In addition, recent reports examining the potential roles of the primo vascular structures in acupuncture are discussed. This review raises some fundamental questions and, at the same time, highlights the potential physiological roles of the primo vascular structures in acupuncture.

  5. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers.

    PubMed

    Del Bó, Cristian; Riso, Patrizia; Campolo, Jonica; Møller, Peter; Loft, Steffen; Klimis-Zacas, Dorothy; Brambilla, Ada; Rizzolo, Anna; Porrini, Marisa

    2013-03-01

    It has been suggested that anthocyanin-rich foods may exert antioxidant effects and improve vascular function as demonstrated mainly in vitro and in the animal model. Blueberries are rich sources of anthocyanins and we hypothesized that their intake could improve cell protection against oxidative stress and affect endothelial function in humans. The aim of the study was to investigate the effect of one portion (300 g) of blueberries on selected markers of oxidative stress and antioxidant protection (endogenous and oxidatively induced DNA damage) and of vascular function (changes in peripheral arterial tone and plasma nitric oxide levels) in male subjects. In a randomized cross-over design, separated by a wash out period ten young volunteers received one portion of blueberries ground by blender or one portion of a control jelly. Before and after consumption (at 1, 2, and 24 hours), blood samples were collected and used to evaluate anthocyanin absorption (through mass spectrometry), endogenous and H(2)O(2)-induced DNA damage in blood mononuclear cells (through the comet assay), and plasma nitric oxide concentrations (through a fluorometric assay). Peripheral arterial function was assessed by means of Endo-PAT 2000. Blueberries significantly reduced (P < .01) H(2)O(2)-induced DNA damage (-18%) 1 hour after blueberry consumption compared to control. No significant differences were observed for endogenous DNA damage, peripheral arterial function and nitric oxide levels after blueberry intake. In conclusion, one portion of blueberries seems sufficient to improve cell antioxidant defense against DNA damage, but further studies are necessary to understand their role on vascular function.

  6. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding

    PubMed Central

    Qiu, Juhui; Zheng, Yiming; Hu, Jianjun; Liao, Donghua; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Wang, Guixue

    2014-01-01

    Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering. PMID:24152813

  7. Peripheral blood lymphocyte phenotype and function in multiple sclerosis.

    PubMed Central

    Hughes, P J; Compston, D A

    1988-01-01

    T suppressor cell function and phenotype are abnormal in patients with multiple sclerosis, especially during the chronic progressive phase but the sub-populations defined by mitogen stimulation and serological methods may not be identical. In this study, involving 45 patients with multiple sclerosis and 33 controls, there was no correlation between T suppressor function and CD8 cell phenotype in patients with multiple sclerosis or in controls. These phenotypic and functional studies cannot therefore be used interchangeably in the assessment of patients with multiple sclerosis since they provide different information about lymphocyte subpopulations. PMID:2976082

  8. Grape seed proanthocyanidin extract alleviates ouabain-induced vascular remodeling through regulation of endothelial function.

    PubMed

    Liu, Xiangju; Qiu, Jie; Zhao, Shaohua; You, Beian; Ji, Xiang; Wang, Yan; Cui, Xiaopei; Wang, Qian; Gao, Haiqing

    2012-11-01

    Recent studies indicate that chronic ouabain treatment leads to hypertension and hypertensive vascular remodeling. Grape seed proanthocyanidin extract (GSPE) has been reported to be effective in treating arteriosclerosis, while little is known about its effect on systolic blood pressure and vascular remodeling. In this study, the effects of GSPE on systolic blood pressure and vascular remodeling were analyzed by treating ouabain-induced hypertensive rats with GSPE (250 mg/kg·d). The expression of nitric oxide (NO) and endothelin-1 (ET-1) in thoracic aorta was examined by ELISA; the mRNA and protein levels of TGF-β1 were detected using real-time PCR and western blotting, respectively. The results showed that the systolic blood pressure was significantly decreased following treatment with GSPE, with blocked vascular remodeling. The ET-1 content was reduced while NO production was increased in the GSPE group, which showed improved vascular endothelial function. Moreover, GSPE also reduced TGF-β1 expression in the thoracic aorta, which is a determinant in vascular remodeling. In conclusion, GSPE antagonized ouabain-induced hypertension and vascular remodeling and is recommended as a potential anti-hypertensive agent for patients with hypertensive vascular diseases.

  9. Intensive cardiovascular risk reduction induces sustainable changes in expression of genes and pathways important to vascular function.

    PubMed

    Ellsworth, Darrell L; Croft, Daniel T; Weyandt, Jamie; Sturtz, Lori A; Blackburn, Heather L; Burke, Amy; Haberkorn, Mary Jane; McDyer, Fionnuala A; Jellema, Gera L; van Laar, Ryan; Mamula, Kimberly A; Chen, Yaqin; Vernalis, Marina N

    2014-04-01

    Healthy lifestyle changes are thought to mediate cardiovascular disease risk through pathways affecting endothelial function and progression of atherosclerosis; however, the extent, persistence, and clinical significance of molecular change during lifestyle modification are not well known. We examined the effect of a rigorous cardiovascular disease risk reduction program on peripheral blood gene expression profiles in 63 participants and 63 matched controls to characterize molecular responses and identify regulatory pathways important to cardiovascular health. Dramatic changes in dietary fat intake (-61%; P<0.001 versus controls) and physical fitness (+34%; P<0.001) led to significant improvements in cardiovascular disease risk factors. Analysis of variance with false discovery rate correction for multiple testing (P<0.05) identified 26 genes after 12 weeks and 143 genes after 52 weeks that were differentially expressed from baseline in participants. Controls showed little change in cardiovascular disease risk factors or gene expression. Quantitative reverse transcription polymerase chain reaction validated differential expression for selected transcripts. Lifestyle modification effectively reduced expression of proinflammatory genes associated with neutrophil activation and molecular pathways important to vascular function, including cytokine production, carbohydrate metabolism, and steroid hormones. Prescription medications did not significantly affect changes in gene expression. Successful and sustained modulation of gene expression through lifestyle changes may have beneficial effects on the vascular system not apparent from traditional risk factors. Healthy lifestyles may restore homeostasis to the leukocyte transcriptome by downregulating lactoferrin and other genes important in the pathogenesis of atherosclerosis. Clinical Trial Registration- URL: www.clinicaltrials.gov. Unique identifier: NCT01805492.

  10. The impact of the catechol-O-methyltransferase genotype on vascular function and blood pressure after acute green tea ingestion.

    PubMed

    Miller, Rosalind J; Jackson, Kim G; Dadd, Tony; Mayes, Andrew E; Brown, A Louise; Lovegrove, Julie A; Minihane, Anne M

    2012-06-01

    Evidence for the benefits of green tea catechins on vascular function is inconsistent, with genotype potentially contributing to the heterogeneity in response. Here, the impact of the catechol-O-methyltransferase (COMT) genotype on vascular function and blood pressure (BP) after green tea extract ingestion are reported. Fifty subjects (n = 25 of the proposed low-activity [AA] and of the high-activity [GG] COMT rs4680 genotype), completed a randomized, double-blind, crossover study. Peripheral arterial tonometry, digital volume pulse (DVP), and BP were assessed at baseline and 90 min after 1.06 g of green tea extract or placebo. A 5.5 h and subsequent 18.5 h urine collection was performed to assess green tea catechin excretion. A genotype × treatment interaction was observed for DVP reflection index (p = 0.014), with green tea extract in the AA COMT group attenuating the increase observed with placebo. A tendency for a greater increase in diastolic BP was evident at 90 min after the green tea extract compared to placebo (p = 0.07). A genotypic effect was observed for urinary methylated epigallocatechin during the first 5.5 h, with the GG COMT group demonstrating a greater concentration (p = 0.049). Differences in small vessel tone according to COMT genotype were evident after acute green tea extract. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Association between smoking status and the parameters of vascular structure and function in adults: results from the EVIDENT study

    PubMed Central

    2013-01-01

    Background The present study analyses the relation between smoking status and the parameters used to assess vascular structure and function. Methods This cross-sectional, multi-centre study involved a random sample of 1553 participants from the EVIDENT study. Measurements: The smoking status, peripheral augmentation index and ankle-brachial index were measured in all participants. In a small subset of the main population (265 participants), the carotid intima-media thickness and pulse wave velocity were also measured. Results After controlling for the effect of age, sex and other risk factors, present smokers have higher values of carotid intima-media thickness (p = 0.011). Along the same lines, current smokers have higher values of pulse wave velocity and lower mean values of ankle-brachial index but without statistical significance in both cases. Conclusions Among the parameters of vascular structure and function analysed, only the IMT shows association with the smoking status, after adjusting for confounders. PMID:24289208

  12. Studies of the effect of natural and synthetic polypeptide type ergot compounds on a peripheral vascular bed

    PubMed Central

    Aellig, W. H.; Berde, B.

    1969-01-01

    1. Six ergot alkaloids were tested for their effect on vascular resistance and for α-adrenergic blocking activity on the innervated perfused hind limb of the dog. The results were compared with those obtained earlier for three compounds of the ergotamine group. 2. Ergostine, dihydroergostine, 1-methylergostine and dihydroergocristine resembled ergotamine, dihydroergotamine and 1-methylergotamine in eliciting vasoconstriction at low vascular resistance and vasodilatation at high vascular resistance. The changeover occurred at the following “inversion points”: ergostine and dihydroergostine as with ergotamine and dihydroergotamine at about 4 R.U.; 1-methylergostine as with 1-methylergotamine at about 2·3 R.U.; dihydroergocristine at about 1·9 R.U. [1 R.U. = 1 resistance unit = 1 mm Hg/ml. per min.] 3. 1-methyldihydroergocristine consistently elicited vasodilatation (for initial vascular resistances down to 1·3 R.U.) and 5′-methylergoalanine always caused vasoconstriction (for initial values up to 5·8 R.U.). 4. Ergostine and 5′-methylergoalanine had the most powerful vasoconstrictor effect, which was of the same order of magnitude as that of ergotamine. Dihydroergostine, like dihydroergotamine, was considerably less active. Both 1-methylergostine and 1-methylergotamine elicited only weak vasoconstriction. Moreover, when the initial vascular resistance exceeded the critical inversion value, they elicited only weak vasodilatation. Dihydroergocristine and 1-methyldihydroergocristine had the least effect on vascular resistance. 5. The increase in vascular resistance by noradrenaline was inhibited in a dose-dependent manner by all the ergot alkaloids investigated. Ergostine, 5′-methylergoalanine and ergotamine had the greatest α-adrenergic blocking activity and 1-methylergostine, 1-methyldihydroergocristine and 1-methylergotamine the weakest. The activity of dihydroergostine, dihydroergocristine and dihydroergotamine fell between these two extremes. 6. No

  13. Creating perfused functional vascular channels using 3D bio-printing technology.

    PubMed

    Lee, Vivian K; Kim, Diana Y; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition.

  14. Gender-dependent negative correlation of peripheral E2 estradiol levels with ventricular diastolic functions.

    PubMed

    Tan, Bo; Zhao, Lili; FaweiHE, Fawei

    2016-08-01

    The aim of this study to investigate the correlation of the peripheral concentrations of one representative estrogen, E2 estradiol, with various indicators reflecting different aspects of cardiac structures and functions. A total of 84 typical patients with hypertrophic cardiomyopathy (HCM) and 77 healthy subjects were enrolled. Venous blood samples were taken to test E2 estradiol contents. Echocardiographic imaging was performed to record various indices of cardiac structures and functions. Concentrations of peripheral E2 estradiol were decreased in female HCM patients, compared to female normal controls; after medical treatment, peripheral E2 estradiol levels were elevated, nearly to normal levels. Peripheral E2 estradiol concentrations were negatively correlated with LAV (r2=0.5078, P<0.001), LAVI (r2=0.4257, P<0.001), E/A ratio (r2=0.4328, P=0.006) and E/Ea ratio (r2=0.4393, P<0.001) in female controls and patients. Concentrations of peripheral E2 estradiol were negatively correlated with ventricular diastolic functions and this correlation was gender-dependent. Our study could provide clues to explore the molecular mechanisms of HCM, and clinic evidence for the diagnosis and prognostic management of HCM patients, as well as medical intervening for HCM.

  15. Vascular function and handgrip strength in rheumatoid arthritis patients.

    PubMed

    Alomari, Mahmoud A; Keewan, Esraa F; Shammaa, Rania A; Alawneh, Khaldoon; Khatib, Said Y; Welsch, Michael A

    2012-01-01

    To examine the relationship of handgrip strength with forearm blood flow (BF) and vascular resistance (VR) in rheumatoid arthritis (RA) patients. Forearm BF at rest (RBF) and after upper arm occlusion (RHBF), and handgrip strength were examined in 78 individuals (RA = 42 and controls (CT) = 36). Subsequently, VR at rest (RVR) and after occlusion (RHVR) were calculated. The patients' RBF (P = 0.02) and RHBF (P = 0.0001) were less, whereas RVR (P = 0.002) and RHVR (P = 0.0001) were greater as compared to the CTs. Similarly, handgrip strength was lower in the RAs (P = 0.0001). Finally, handgrip strength was directly associated with RBF (r = 0.43; P = 0.0001), and RHBF (r = 0.5; P = 0.0001), and inversely related to RVR (r = -0.3; P = 0.009) and RHVR (r = -0.3; P = 0.007). The present study uniquely identifies an association between regional measures of forearm blood flow and handgrip strength in patients and healthy control. In addition, this study confirms the presence of vascular and muscle dysfunction in patients with rheumatoid arthritis, as evidenced by lower forearm blood flow indices, at rest and following occlusion, and lower handgrip strength as compared to healthy individuals.

  16. Vascular Function and Handgrip Strength in Rheumatoid Arthritis Patients

    PubMed Central

    Alomari, Mahmoud A.; Keewan, Esraa F.; Shammaa, Rania A.; Alawneh, Khaldoon; Khatib, Said Y.; Welsch, Michael A.

    2012-01-01

    Objective. To examine the relationship of handgrip strength with forearm blood flow (BF) and vascular resistance (VR) in rheumatoid arthritis (RA) patients. Methods. Forearm BF at rest (RBF) and after upper arm occlusion (RHBF), and handgrip strength were examined in 78 individuals (RA = 42 and controls (CT) = 36). Subsequently, VR at rest (RVR) and after occlusion (RHVR) were calculated. Results. The patients' RBF (P = 0.02) and RHBF (P = 0.0001) were less, whereas RVR (P = 0.002) and RHVR (P = 0.0001) were greater as compared to the CTs. Similarly, handgrip strength was lower in the RAs (P = 0.0001). Finally, handgrip strength was directly associated with RBF (r = 0.43; P = 0.0001), and RHBF (r = 0.5; P = 0.0001), and inversely related to RVR (r = −0.3; P = 0.009) and RHVR (r = −0.3; P = 0.007). Conclusion. The present study uniquely identifies an association between regional measures of forearm blood flow and handgrip strength in patients and healthy control. In addition, this study confirms the presence of vascular and muscle dysfunction in patients with rheumatoid arthritis, as evidenced by lower forearm blood flow indices, at rest and following occlusion, and lower handgrip strength as compared to healthy individuals. PMID:22606051

  17. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function.

    PubMed

    Terao, Junji

    2017-09-01

    Nowadays dietary flavonoids attract much attention in the prevention of chronic diseases. Epidemiological and intervention studies strongly suggest that flavonoid intake has beneficial effects on vascular health. It is unlikely that flavonoids act as direct antioxidants, although oxidative stress profoundly contributes to vascular impairment leading to cardiovascular diseases. Instead, flavonoids may exert their function by tuning the cellular redox state to an adaptive response or tolerable stress. However, the optimum intake of flavonoids from supplements or diet has not been clarified yet, because a number of exogenous and endogenous factors modulating their bioavailability affect their vascular function. This review will focus on the current knowledge of the bioavailability and vascular function of quercetin as a representative of antioxidative flavonoids. Current intervention studies imply that intake of quercetin-rich onion improves vascular health. Onion may be superior to quercetin supplement from the viewpoint of quercetin bioavailability, probably because the food matrix enhances the intestinal absorption of quercetin. α-Glucosylation increases its bioavailability by elevating the accessibility to the absorptive cells. Prenylation may enhance bioaccumulation at the target site by increasing the cellular uptake. However, these chemical modifications do not guarantee health benefits to the vascular system. Dietary quercetin is exclusively present as their conjugated form in the blood stream. Quercetin may exert its vascular function as an aglycone within macrophage cells after inflammation-induced deconjugation and as conjugated metabolites by targeting endothelial cells. The relationship between the bioavailability and bio-efficacy should be clarified, to evaluate the vascular function of a wide variety of dietary flavonoids. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. [Changes in respiratory and peripheral muscle function in asthmatic children: effects of inhaled corticoids].

    PubMed

    Díaz Ledo, J; Busquets Monge, R M; García-Algar, O; Ramírez Sarmiento, A; Orozco Levi, M

    2010-01-01

    Asthma is the most common chronic disease in children and adolescents. The intermittent mechanical overloads during crises can lead to functional changes in the respiratory muscles, which experience adaptation phenomena. This article attempts to evaluate the respiratory and peripheral muscle state in asthmatic children who receive inhaled corticoids, and to find out if there is an association between muscle function and respiratory function. The study involved 12 children over 7-years old with asthma and treated with inhaled corticoids for at least 2 years at intermediate doses (budesonide >or=400 microg, or fluticasone >or=200 microg) and 7 healthy control children paired by age. The following were determined: forced spirometry, static lung volumes, airway resistance, maximum inspiratory and expiratory pressures, peripheral musculo-skeletal function, and body composition using bioimpedance measurements. The anthropometric, nutritional variables and peripheral muscle function were similar in both groups. The asthmatic children showed signs of air trapping, lung hyperinflation, and higher maximum inspiratory pressure values. No evidence was found that continuous high doses of inhaled steroids lead to a deterioration in respiratory or peripheral muscle function in asthmatic children. On the other hand, signs were found of respiratory muscle adaptation to the long-term overload of persistent asthma. The so-called "training effect" seems to be limited only to the inspiratory muscles. Copyright (c) 2009 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  19. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2015-12-01

    Award Number: W81XWH-12-1-0377 TITLE: The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation PRINCIPAL...Sep 2015 4. TITLE AND SUBTITLE The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in 5a. CONTRACT NUMBER PR110178 Bone...adapt to mechanical loading (exercise). Degeneration in peripheral nerve function with age may be one of these mechanisms, as neuropeptides affect

  20. Engineering Robust and Functional Vascular Networks in Vivo with Human Adult and Cord Blood-Derived Progenitor Cells

    DTIC Science & Technology

    2008-12-01

    endothelial progenitor cells (EPCs) have the required proliferative and vasculogenic activity to create vascular networks in vivo. To test this...networks in vivo. To test this, EPCs isolated from human umbilical cord blood or from adult peripheral blood as described(Melero-Martin et al. 2007...hypothesized that abEPCs combined with bmMPCs at an optimized ratio would yield high density vascular networks. Therefore, we tested abEPCs + bmMPCs in

  1. Vascular quality of care pilot study: how admission to a vascular surgery service affects evidence-based pharmacologic risk factor modification in patients with lower extremity peripheral arterial disease

    PubMed Central

    Steenhof, Naomi; Le Piane, Francesca; Leblanc, Kori; Eisenberg, Naomi R; Kwan, Yvonne; Malmberg, Christine; Papadopoulos, Alexandra; Roche-Nagle, Graham

    2014-01-01

    Background Peripheral arterial disease (PAD) guidelines recommend aggressive risk factor modification to improve cardiovascular outcomes. Recommended pharmacologic therapies include antiplatelets, angiotensin converting enzyme (ACE) inhibitors, and HMG-CoA-reductase inhibitors (statins). Purpose We studied the degree to which patient admission to a vascular surgery service increased the use of these therapies. Patients and methods The authors conducted a retrospective chart review of 150 patients with PAD admitted to the vascular surgery service at a large Canadian tertiary care hospital. The use of recommended pharmacologic therapies at the time of admission and discharge were compared. A multidisciplinary clinical team established criteria by which patients were deemed ineligible to receive any of the recommended therapies. Angiotensin receptor blockers (ARBs) were considered an alternative to ACE inhibitors. Results Prior to hospital admission, 64% of patients were on antiplatelet therapy, 67% were on an ACE inhibitor or ARB, and 71% were on a statin. At the time of discharge, 91% of patients were on an antiplatelet (or not, with an acceptable reason), 77% were on an ACE inhibitor or an ARB (or not, with an acceptable reason), and 85% were on a statin (or not, with an acceptable reason). While new prescriptions were largely responsible for improved guideline adherence with antiplatelets and statins, most of the apparent improvement in ACE inhibitor and ARB use was the result of identifying an acceptable reason for not having them prescribed. Conclusion This hypothesis generating pilot study supports the findings of others that there is suboptimal prescription of pharmacologic risk reduction therapies in the PAD population. Admission to a vascular service increases these rates. Nevertheless, some patients are still not receiving evidence-based treatment at discharge even after consideration of acceptable reasons. Strategies are needed to improve PAD guideline

  2. Modular Small Diameter Vascular Grafts with Bioactive Functionalities

    PubMed Central

    Neufurth, Meik; Wang, Xiaohong; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Link, Thorben; Diehl-Seifert, Bärbel; Müller, Werner E. G.

    2015-01-01

    We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca2+. In this universal scaffold of the bTEBV biomaterial, polycations such as poly(l-Lys), poly(d-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca2+-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(l-Lys), poly(d-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable

  3. The Function and Structure of Peripheral Nerves Following Cutaneous Burns.

    DTIC Science & Technology

    1983-06-15

    significantly with percutaneous measurements of nerve conduction velocity, which was found normally to average 36.9 meters/second + 3.4 (S.D... nerve in animals who apparently had-a conduction block, as indicated by percutaneous measurement, actually functioned in vitro when the nerve was...immediately excised and placed in an Harvard chamber, where it could be directly stimulated and sensory as well as motor nerve excitability assessed. In

  4. Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies.

    PubMed

    Safka Brozkova, Dana; Deconinck, Tine; Griffin, Laurie Beth; Ferbert, Andreas; Haberlova, Jana; Mazanec, Radim; Lassuthova, Petra; Roth, Christian; Pilunthanakul, Thanita; Rautenstrauss, Bernd; Janecke, Andreas R; Zavadakova, Petra; Chrast, Roman; Rivolta, Carlo; Zuchner, Stephan; Antonellis, Anthony; Beg, Asim A; De Jonghe, Peter; Senderek, Jan; Seeman, Pavel; Baets, Jonathan

    2015-08-01

    Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encompasses axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study demonstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA synthetase-related human disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Increased Expression of Tissue Factor and Receptor for Advanced Glycation End Products in Peripheral Blood Mononuclear Cells of Patients With Type 2 Diabetes Mellitus with Vascular Complications

    PubMed Central

    Buchs, A. E.; Kornberg, A.; Zahavi, M.; Aharoni, D.; Zarfati, C.; Rapoport, M. J.

    2004-01-01

    The aim of the study was to determine the correlation between the expression of tissue factor (TF) and the receptor for advanced glycation end products (RAGEs) and vascular complications in patients with longstanding uncontrolled type 2 diabetes (T2D). TF and RAGE mRNAs as well as TF antigen and activity were investigated in 21 T2D patients with and without vascular complications. mRNA expression was assessed by reverse transcriptase–polymerase chain reaction (RT-PCR) in nonstimulated and advanced glycation end product (AGE) albumin–stimulated peripheral blood mononuclear cells (PBMCs). TF antigen expression was determined by enzyme-linked immunosorbent assay (ELISA) and TF activity by a modified prothrombin time assay. Basal RAGE mRNA expression was 0.2 ± 0.06 in patients with complications and 0.05 ± 0.06 patients without complications (P = .004). Stimulation did not cause any further increase in either group. TF mRNA was 0.58 ± 0.29 in patients with complications and 0.21 ± 0.18 in patients without complications (P = .003). Stimulation resulted in a nonsignificant increase in both groups. Basal TF activity (U/106 PBMCs) was 18.4 ± 13.2 in patients with complications and 6.96 ± 5.2 in patients without complications (P = .003). It increased 3-fold in both groups after stimulation (P = .001). TF antigen (pg/106 PBMCs) was 33.7 ± 28.6 in patients with complications, 10.4 ± 7.8 in patients without complications (P = .02). Stimulation tripled TF antigen in both groups of patients (P = .001). The RAGE/TF axis is up-regulated inT2Dpatients with vascular complications as compared to patients without complications. This suggests a role for this axis in the pathogenesis of vascular complications in T2D. PMID:15203887

  6. Implications of autophagy for vascular smooth muscle cell function and plasticity.

    PubMed

    Salabei, Joshua K; Hill, Bradford G

    2013-12-01

    Vascular smooth muscle cells (VSMCs) are fundamental in regulating blood pressure and distributing oxygen and nutrients to peripheral tissues. They also possess remarkable plasticity, with the capacity to switch to synthetic, macrophage-like, or osteochondrogenic phenotypes when cued by external stimuli. In arterial diseases such as atherosclerosis and restenosis, this plasticity seems to be critical and, depending on the disease context, can be deleterious or beneficial. Therefore, understanding the mechanisms regulating VSMC phenotype and survival is essential for developing new therapies for vascular disease as well as understanding how secondary complications due to surgical interventions develop. In this regard, the cellular process of autophagy is increasingly being recognized as a major player in vascular biology and a critical determinant of VSMC phenotype and survival. Although autophagy was identified in lesional VSMCs in the 1960s, our understanding of the implications of autophagy in arterial diseases and the stimuli promoting its activation in VSMCs is only now being elucidated. In this review, we highlight the evidence for autophagy occurring in VSMCs in vivo, elaborate on the stimuli and processes regulating autophagy, and discuss the current understanding of the role of autophagy in vascular disease. Copyright © 2013. Published by Elsevier Inc.

  7. Role of COX-2-derived PGE2 on vascular stiffness and function in hypertension.

    PubMed

    Avendaño, M S; Martínez-Revelles, S; Aguado, A; Simões, M R; González-Amor, M; Palacios, R; Guillem-Llobat, P; Vassallo, D V; Vila, L; García-Puig, J; Beltrán, L M; Alonso, M J; Cachofeiro, M V; Salaices, M; Briones, A M

    2016-05-01

    Prostanoids derived from COX-2 and EP receptors are involved in vascular remodelling in different cardiovascular pathologies. This study evaluates the contribution of COX-2 and EP1 receptors to vascular remodelling and function in hypertension. Spontaneously hypertensive rats (SHR) and angiotensin II (AngII)-infused (1.44 mg · kg(-1) · day(-1), 2 weeks) mice were treated with the COX-2 inhibitor celecoxib (25 mg · kg(-1) · day(-1) i.p) or with the EP1 receptor antagonist SC19220 (10 mg · kg(-1) · day(-1) i.p.). COX-2(-/-) mice with or without AngII infusion were also used. Celecoxib and SC19220 treatment did not modify the altered lumen diameter and wall : lumen ratio in mesenteric resistance arteries from SHR-infused and/or AngII-infused animals. However, both treatments and COX-2 deficiency decreased the augmented vascular stiffness in vessels from hypertensive animals. This was accompanied by diminished vascular collagen deposition, normalization of altered elastin structure and decreased connective tissue growth factor and plasminogen activator inhibitor-1 gene expression. COX-2 deficiency and SC19220 treatment diminished the increased vasoconstrictor responses and endothelial dysfunction induced by AngII infusion. Hypertensive animals showed increased mPGES-1 expression and PGE2 production in vascular tissue, normalized by celecoxib. Celecoxib treatment also decreased AngII-induced macrophage infiltration and TNF-α expression. Macrophage conditioned media (MCM) increased COX-2 and collagen type I expression in vascular smooth muscle cells; the latter was reduced by celecoxib treatment. COX-2 and EP1 receptors participate in the increased extracellular matrix deposition and vascular stiffness, the impaired vascular function and inflammation in hypertension. Targeting PGE2 receptors might have benefits in hypertension-associated vascular damage. © 2016 The British Pharmacological Society.

  8. Role of COX‐2‐derived PGE2 on vascular stiffness and function in hypertension

    PubMed Central

    Avendaño, M S; Martínez‐Revelles, S; Aguado, A; Simões, M R; González‐Amor, M; Palacios, R; Guillem‐Llobat, P; Vassallo, D V; Vila, L; García‐Puig, J; Beltrán, L M; Alonso, M J; Cachofeiro, M V

    2016-01-01

    Background and Purpose Prostanoids derived from COX‐2 and EP receptors are involved in vascular remodelling in different cardiovascular pathologies. This study evaluates the contribution of COX‐2 and EP1 receptors to vascular remodelling and function in hypertension. Experimental Approach Spontaneously hypertensive rats (SHR) and angiotensin II (AngII)‐infused (1.44 mg·kg−1·day−1, 2 weeks) mice were treated with the COX‐2 inhibitor celecoxib (25 mg·kg−1·day−1 i.p) or with the EP1 receptor antagonist SC19220 (10 mg·kg−1·day−1 i.p.). COX‐2−/− mice with or without AngII infusion were also used. Key Results Celecoxib and SC19220 treatment did not modify the altered lumen diameter and wall : lumen ratio in mesenteric resistance arteries from SHR‐infused and/or AngII‐infused animals. However, both treatments and COX‐2 deficiency decreased the augmented vascular stiffness in vessels from hypertensive animals. This was accompanied by diminished vascular collagen deposition, normalization of altered elastin structure and decreased connective tissue growth factor and plasminogen activator inhibitor‐1 gene expression. COX‐2 deficiency and SC19220 treatment diminished the increased vasoconstrictor responses and endothelial dysfunction induced by AngII infusion. Hypertensive animals showed increased mPGES‐1 expression and PGE2 production in vascular tissue, normalized by celecoxib. Celecoxib treatment also decreased AngII‐induced macrophage infiltration and TNF‐α expression. Macrophage conditioned media (MCM) increased COX‐2 and collagen type I expression in vascular smooth muscle cells; the latter was reduced by celecoxib treatment. Conclusions and Implications COX‐2 and EP1 receptors participate in the increased extracellular matrix deposition and vascular stiffness, the impaired vascular function and inflammation in hypertension. Targeting PGE2 receptors might have benefits in hypertension‐associated vascular damage

  9. Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults

    PubMed Central

    Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katyoon; Haley, Andreana P.

    2010-01-01

    The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery endothelial-dependent flow-mediated dilation (FMD) was assessed using B-mode ultrasound. The relationship between FMD and task-related brain activation in a priori regions of interest was modeled using hierarchical linear regression. Brachial FMD, was significantly related to reduced working memory-related activation in the right superior parietal lobule (β=0.338, p=0.027), independent of age, sex, systolic blood pressure, and full scale IQ (F(5,36)=2.66, p=0.038). These data provide preliminary support for the association between a preclinical marker of endothelial dysfunction and cerebral hemodynamic alterations in healthy middle-aged adults. Considering the modifiable nature of endothelial function, additional investigations on the prognostic significance of FMD on future cognitive impairment are warranted. PMID:20493622

  10. Pulmonary vascular function in insulin resistance and diabetes.

    PubMed

    Moral-Sanz, Javier; Moreno, Laura; Cogolludo, Angel; Perez-Vizcaino, Francisco

    2014-05-01

    Insulin resistance and diabetes are current clinical concerns due to their increasing prevalence in western societies and in developing countries. Cardiovascular alterations, affecting both macro- and microcirculation, are among the major causes of illness and premature death within patients with insulin resistance or diabetes. However, the detrimental effects of insulin resistance and diabetes in the lungs are less clinically apparent, or at least masked by the progression of these metabolic diseases on other target organs. Epidemiological and experimental data suggest a link between pulmonary arterial hypertension and diabetes. Thereby, hemodynamic derangements in uncontrolled diabetes or insulin resistance are predisposing factors leading to early pulmonary alterations that in association with a second hit might accelerate the onset of pulmonary vascular disease and pulmonary hypertension. The present article reviewed the current knowledge about the effects of insulin resistance and diabetes in a territory which has received little attention until recently: the pulmonary circulation.

  11. Exogenous surfactant restores lung function but not peripheral immunosuppression in ventilated surfactant-deficient rats.

    PubMed

    Vreugdenhil, Harriet A; Lachmann, Burkhard; Haitsma, Jack J; Zijlstra, Jitske; Heijnen, Cobi J; Jansen, Nicolaas J; van Vught, Adrianus J

    2006-01-01

    The authors have previously shown that mechanical ventilation can result in increased pulmonary inflammation and suppressed peripheral leukocyte function. In the present study the effect of surfactant therapy on pulmonary inflammation and peripheral immune function in ventilated surfactant-deficient rats was assessed. Surfactant deficiency was induced by repeated lung lavage, treated rats with surfactant or left them untreated, and ventilated the rats during 2 hours. Nonventilated rats served as healthy control group. Expression of macrophage inflammatory protein (MIP)-2 was measured in bronchoalveolar lavage (BAL), interleukin (IL)-1beta, and heat shock protein 70 (HSP70) were measured in total lung homogenates. Outside the lung phytohemagglutinin (PHA)-induced lymphocyte proliferation, interferon (IFN)-gamma and IL-10 production, and natural killer activity were measured in splenocytes. After 2 hours of mechanical ventilation, expression of MIP-2, IL-1beta, and HSP70 increased significantly in the lungs of surfactant-deficient rats. Outside the lung, mitogen-induced proliferation and production of IFN-gamma and IL-10 reduced significantly. Only natural killer cell activity remained unaffected. Surfactant treatment significantly improved lung function, but could not prevent increased pulmonary expression of MIP-2, IL-1beta, and HSP70 and decreased peripheral mitogen-induced lymphocyte proliferation and IFN-gamma and IL-10 production in vitro. In conclusion, 2 hours of mechanical ventilation resulted in increased lung inflammation and partial peripheral leukocyte suppression in surfactant-deficient rats. Surfactant therapy ameliorated lung function but could not prevent or restore peripheral immunosuppression. The authors postulate that peripheral immunosuppression may occur in ventilated surfactant deficient patients, which may enhance susceptibility for infections.

  12. Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential

    PubMed Central

    Du, Xiaona; Gamper, Nikita

    2013-01-01

    Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design. PMID:24396338

  13. Cross-sectional relations of digital vascular function to cardiovascular risk factors in The Framingham Heart Study

    PubMed Central

    Hamburg, Naomi M.; Keyes, Michelle J.; Larson, Martin G.; Vasan, Ramachandran S.; Schnabel, Renate; Pryde, Moira M.; Mitchell, Gary F.; Sheffy, Jacob; Vita, Joseph A.; Benjamin, Emelia J.

    2009-01-01

    Background Digital pulse amplitude augmentation in response to hyperemia is a novel measure of peripheral vasodilator function that partially depends on endothelium-derived nitric oxide. Baseline digital pulse amplitude reflects local peripheral arterial tone. The relation of digital pulse amplitude and digital hyperemic response to cardiovascular risk factors in the community is unknown. Methods and Results Using a fingertip peripheral arterial tonometry (PAT) device, we measured digital pulse amplitude in Framingham Third Generation Cohort participants (n=1957, mean age 40±9 years, 49% women) at baseline and in 30 second intervals for 4-minutes during reactive hyperemia induced by 5-minute forearm cuff occlusion. To evaluate the vascular response in relation to baseline, adjusting for systemic effects and skewed data, we expressed the hyperemic response (termed PAT ratio) as the natural logarithm of the post-deflation to baseline pulse amplitude ratio in the hyperemic finger divided by the same ratio in the contralateral finger that served as control. The relation of PAT ratio to cardiovascular risk factors was strongest in the 90-120 second post-deflation interval (overall model R2=0.159). In stepwise multivariable linear regression models, male sex, body mass index, total/HDL cholesterol, diabetes, smoking and lipid-lowering treatment were inversely related to PAT ratio; whereas increasing age was positively related to PAT ratio (all P<0.01). Conclusions Reactive hyperemia produced a time-dependent increase in fingertip pulse amplitude. Digital vasodilator function is related to multiple traditional and metabolic cardiovascular risk factors. Our findings support further investigations to define the clinical utility and predictive value of digital pulse amplitude. PMID:18458169

  14. Peripheral Chemoreceptors: Function and Plasticity of the Carotid Body

    PubMed Central

    Kumar, Prem; Prabhakar, Nanduri R.

    2014-01-01

    The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article. PMID:23728973

  15. Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury

    PubMed Central

    Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-01-01

    Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury. PMID:27229176

  16. Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury.

    PubMed

    Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-05-27

    Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury.

  17. [Peripheral muscle strength in stable COPD patients: correlation with respiratory function variables and quality of life].

    PubMed

    Toral Marín, J; Ortega, F; Cejudo, P; Elías, T; Sánchez, H; Montemayor, T

    1999-03-01

    The aim of this study was to assess peripheral muscle strength in patients with chronic obstructive pulmonary disease (COPD) using a simple test and to look for correlation with function variables, physiological strength variables and quality of life parameters. Twenty-three COPD patients with moderate to severe air-flow limitation (FEV1 = 39 +/- 12%) in stable phase but displaying inability to carry out daily tasks were enrolled. Peripheral muscle strength was assessed in all patients by measuring the maximum load in a single repetition of five simple upper and lower extremity exercises performed at a multi-gymnastics station. Results were compared to respiratory function variables (FVC, FEV1, FEV1/FVC and gasometry), to results of an exercise test on a cycle ergometer with monitoring of respiratory gases (VEmax, VO2max and Wmax), to endurance (minutes) to dyspnea (Mahler's scale) and to quality of life (Chronic Respiratory Disease Questionnaire-CRDQ). No relation between functional parameters and endurance in minutes was found. Minute ventilation (VE) proved to be significantly related to oxygen intake (VO) and maximum work in the stress test. Dyspnea on Mahler's scale was unrelated, but fatigue variables and emotional function variables on the CRDQ were related. We conclude that peripheral muscle strength is unrelated to level of flow limitation or exercise tolerance in COPD patients. Peripheral muscle strength is related, however, to maximum work load and some aspects of quality of life.

  18. Adiponectin in Fresh Frozen Plasma Contributes to Restoration of Vascular Barrier Function After Hemorrhagic Shock.

    PubMed

    Deng, Xiyun; Cao, Yanna; Huby, Maria P; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A; Doursout, Marie-Francoise; Holcomb, John B; Wade, Charles E; Ko, Tien C

    2016-01-01

    Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared with normal individuals, plasma adiponectin levels decreased to 49% in HS patients before resuscitation (P < 0.05) and increased to 64% post-resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared with baseline (P < 0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS.

  19. Adiponectin in Fresh Frozen Plasma Contributes to Restoration of Vascular Barrier Function after Hemorrhagic Shock

    PubMed Central

    Huby, Maria P.; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A.; Doursout, Marie-Francoise; Holcomb, John B.; Wade, Charles E.; Ko, Tien C.

    2015-01-01

    Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared to normal individuals, plasma adiponectin levels decreased to 49% in HS patients prior to resuscitation (p<0.05) and increased to 64% post resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared to baseline (p<0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS. PMID:26263440

  20. Racial differences in functional decline in peripheral artery disease and associations with socioeconomic status and education.

    PubMed

    McDermott, Mary M; Polonsky, Tamar S; Kibbe, Melina R; Tian, Lu; Zhao, Lihui; Pearce, William H; Gao, Ying; Guralnik, Jack M

    2017-09-01

    The objective of this study was to determine whether blacks with lower extremity peripheral artery disease (PAD) have faster functional decline than whites with PAD. Participants with ankle-brachial index <0.90 were identified from Chicago medical centers and observed longitudinally. Mobility impairment and the 6-minute walk were assessed at baseline and every 6 to 12 months. Mobility loss was defined as becoming unable to walk up and down a flight of stairs or to walk ¼ mile without assistance. Of 1162 PAD participants, 305 (26%) were black. Median follow-up was 46.0 months. Among 711 PAD participants who walked 6 minutes continuously at baseline, black participants were more likely to become unable to walk 6 minutes continuously during follow-up (64/171 [37.4%] vs 156/540 [28.9%]; log-rank, P = .006). Black race was associated with becoming unable to walk 6 minutes continuously, adjusting for age, sex, ankle-brachial index, comorbidities, and other confounders (hazard ratio, 1.45; 95% confidence interval, 1.05-1.99; P = .022). This association was attenuated after adjustment for income and education (P = .229). Among 844 participants without baseline mobility impairment, black participants had a higher rate of mobility loss (64/209 [30.6%] vs 164/635 [25.8%]; log-rank, P = .009). Black race was associated with increased mobility loss, adjusting for potential confounders (hazard ratio, 1.42; 95% confidence interval, 1.04-1.94; P = .028). This association was attenuated after additional adjustment for income and education (P = .392) and physical activity (P = .113). There were no racial differences in average annual declines in 6-minute walk, usual-paced 4-meter walking velocity, or fast-paced 4-meter walking velocity. Black PAD patients have higher rates of mobility loss and becoming unable to walk for 6 minutes continuously. These differences appear related to racial differences in socioeconomic status and physical activity. Copyright © 2017

  1. Transient Inhibition of Transforming Growth Factor-β1 in Human Diabetic CD34+ Cells Enhances Vascular Reparative Functions

    PubMed Central

    Bhatwadekar, Ashay D.; Guerin, E.P.; Jarajapu, Yagna P.R.; Caballero, Sergio; Sheridan, Carl; Kent, David; Kennedy, Laurence; Lansang, M. Cecilia; Ruscetti, Frank W.; Pepine, Carl J.; Higgins, Paul J.; Bartelmez, Stephen H.; Grant, Maria B.

    2010-01-01

    OBJECTIVE Peripheral blood CD34+ cells from diabetic patients demonstrate reduced vascular reparative function due to decreased proliferation and diminished migratory prowess, largely resulting from decreased nitric oxide (NO) bioavailability. The level of TGF-β, a key factor that modulates stem cell quiescence, is increased in the serum of type 2 diabetic patients. We asked whether transient TGF-β1 inhibition in CD34+ cells would improve their reparative ability. RESEARCH DESIGN AND METHODS To inhibit TGF-β1 protein expression, CD34+ cells were treated ex vivo with antisense phosphorodiamidate morpholino oligomers (TGF-β1-PMOs) and analyzed for cell surface CXCR4 expression, cell survival in the absence of added growth factors, SDF-1-induced migration, NO release, and in vivo retinal vascular reparative ability. RESULTS TGF-β1-PMO treatment of diabetic CD34+ cells resulted in increased expression of CXCR4, enhanced survival in the absence of growth factors, and increased migration and NO release as compared with cells treated with control PMO. Using a retinal ischemia reperfusion injury model in mice, we observed that recruitment of diabetic CD34+ cells to injured acellular retinal capillaries was greater after TGF-β1-PMO treatment compared with control PMO–treated cells. CONCLUSIONS Transient inhibition of TGF-β1 may represent a promising therapeutic strategy for restoring the reparative capacity of dysfunctional diabetic CD34+ cells. PMID:20460428

  2. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    PubMed

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Local generation of angiotensin II as a mechanism of regulation of peripheral vascular tone in the rat.

    PubMed Central

    Oliver, J A; Sciacca, R R

    1984-01-01

    Renin is present in vascular smooth muscle cells and has been shown to coexist with angiotensins I (AI) and II (AII) in many cell types. Accordingly, we postulated that the renin-angiotensin system controls vascular tone, not by the action of circulating renal renin but rather, by the local generation of angiotensin by vascular renin. Isolated rat hindquarters were perfused in vitro with Krebs-Henseleit buffer containing 7% albumin, and flow-adjusted to obtain a perfusion pressure of approximately 90 mmHg. Infusion of 4.8 nmol X min-1 for 5 min of AII or AI markedly increased perfusion pressure. An identical dose of the synthetic tetradecaptide of renin substrate (TDCP-RS) increased pressure similarly to AI. The pressure increase evoked by TDCP-RS was markedly decreased by captopril and by two different peptides that inhibit renin. Renin activity in the perfusate, incubated with semipurified rat renin substrate, was 21 +/- 3 pg AI X ml-1 X h-1 (mean +/- SEM) at 15 min of perfusion and 47 +/- 4 pg AI X ml-1 X h-1 at 45 min (n = 9; P less than 0.01). When TDCP-RS was infused at 4.8 nmol X min-1 for 5 min in the presence of captopril, AI in the perfusate increased linearly at a rate of 16.5 pmol X min-1 for 10 min (n = 5). The results indicate that TDCP-RS constricted the vasculature by its conversion to AII and suggest that AII was generated from a two-step hydrolysis of TDCP-RS by renin and converting enzyme. The data thus suggest that the renin-angiotensin system controls vascular tone by the local generation of AII by renin and converting enzyme in the vasculature. PMID:6384268

  4. A systematic review of the incidence and prevalence of cardiac, cerebrovascular, and peripheral vascular disease in multiple sclerosis

    PubMed Central

    Reider, Nadia; Cohen, Jeffrey; Stuve, Olaf; Trojano, Maria; Cutter, Gary; Reingold, Stephen; Sorensen, Per Soelberg

    2015-01-01

    Background: Findings regarding the prevalence of vascular comorbidities in multiple sclerosis (MS) are conflicting. Objective: The objective of this review is to estimate the incidence and prevalence of vascular comorbidities and predisposing comorbidities in persons with MS and to assess the quality of the included studies. Methods: The PubMed, EMBASE, SCOPUS and Web of Knowledge databases, conference proceedings, and reference lists of retrieved articles were searched. One reviewer abstracted data using a standardized data collection form, while the second reviewer verified the abstraction. Included studies were assessed qualitatively. Quantitatively, we assessed studies using the I2 statistic, and conducted meta-analyses for population-based studies only. Results: The prevalence of hypertension and hyperlipidemia exceeded 10% in the MS population and increased with age. While the prevalence of ischemic heart disease, congestive heart failure, and stroke were less than 5% overall, the prevalence of these conditions exceeded expectations when compared to the general population. Cardiac valvular disease, however, affected the MS population less often than expected. Problems with study quality were common. Conclusion: Despite the relatively high prevalence of some vascular comorbidities in the MS population, important gaps exist in our understanding of their epidemiology. Most of our knowledge is based on studies conducted in a small number of regions. PMID:25533300

  5. The short- and long-term effects of Seprafilm on peripheral nerves: a histological and functional study.

    PubMed

    Magill, Christina Kenney; Tuffaha, Sami H; Yee, Andrew; Luciano, Janina P; Hunter, Daniel A; Mackinnon, Susan E; Borschel, Gregory H

    2009-07-01

    Extraneural scar reduction is an important goal in peripheral nerve microsurgery. The use of biosynthetic materials, such as Seprafilm , reduces postoperative adhesions in abdominopelvic gynecologic and orthopedic surgery. The study evaluates the safety of Seprafilm in proximity to nerve tissue in a noninjury (phase 1) and injury (phase 2) model. Phase 1 groups were: (1) sciatic nerve exposure and neurolysis (n = 15), (2) Seprafilm placement superficial to the nerve (n = 15), and (3) circumferentially wrapping Seprafilm around the nerve (n = 15). Outcome measures at 45 and 90 days included wound inspection, histomorphometry, and stereological analysis of vascularity. Phase II groups were: (1) sciatic nerve cut and repair alone (n = 15) or (2) nerve wrapped with Seprafilm (n = 15). Nerves were evaluated at 18, 32, and 42 days postoperatively, and animals underwent biweekly functional walking tracks. In phase I, no significant differences were detected between groups. In phase II, fewer perineural scar bands were seen with Seprafilm . Histomorphometric differences favoring Seprafilm at 18 days and favoring control at 42 days were noted ( P < 0.05), though no differences in functional outcomes were detected. Qualitatively less perineural scar tissue was seen when using Seprafilm . No functional or histological deleterious effects were noted from placing Seprafilm on intact nerves or cut and repaired nerves.

  6. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  7. Endovascular balloon-assisted embolization of high-flow peripheral vascular lesions using dual-lumen coaxial balloon microcatheter and Onyx: initial experience.

    PubMed

    Jagadeesan, Bharathi D; Mortazavi, Shabnam; Hunter, David W; Duran-Castro, Olga L; Snyder, Gregory B; Siedel, Glen F; Golzarian, Jafar

    2014-04-01

    Balloon-assisted embolization performed by delivering Onyx ethylene vinyl alcohol copolymer through a dual-lumen coaxial balloon microcatheter is a new technique for the management of peripheral vascular lesions. This technique does not require an initial reflux of Onyx to form around the tip of the microcatheter before antegrade flow of Onyx can commence. In a series of four patients who were treated with the use of this technique, the absence of significant reflux of Onyx was noted, as were excellent navigability and easy retrieval of the balloon microcatheter. However, in one patient, there was inadvertent adverse embolization of a digital artery, which was not caused by reflux of Onyx but could still be related to balloon inflation.

  8. Relations of Metabolically Healthy and Unhealthy Obesity to Digital Vascular Function in Three Community-Based Cohorts: A Meta-Analysis.

    PubMed

    Brant, Luisa C C; Wang, Na; Ojeda, Francisco M; LaValley, Michael; Barreto, Sandhi M; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S; Palmisano, Joseph N; Münzel, Thomas; Blankenberg, Stefan; Wild, Philipp S; Zeller, Tanja; Ribeiro, Antonio L P; Schnabel, Renate B; Hamburg, Naomi M

    2017-03-08

    Microvascular dysfunction is a marker of early vascular disease that predicts cardiovascular events. Whether metabolically healthy obese individuals have impaired microvascular function remains unclear. The aim of this study was to evaluate the relation of obesity phenotypes stratified by metabolic status to microvascular function. We meta-analyzed aggregate data from 3 large cohorts (Brazilian Longitudinal Study of Adult Health, the Framingham Heart Study, and the Gutenberg Heart Study; n=16 830 participants, age range 19-90, 51.3% men). Regression slopes between cardiovascular risk factors and microvascular function, measured by peripheral arterial tonometry (PAT), were calculated. Individuals were classified as normal-weight, overweight, or obese by body mass index (BMI) and stratified by healthy or unhealthy metabolic status based on metabolic syndrome using the ATP-III criteria. Male sex, BMI, and metabolic risk factors were associated with higher baseline pulse amplitude and lower PAT ratio. There was stepwise impairment of vascular measures from normal weight to obesity in both metabolic status strata. Metabolically healthy obese individuals had more impaired vascular function than metabolically healthy normal-weight individuals (baseline pulse amplitude 6.12±0.02 versus 5.61±0.01; PAT ratio 0.58±0.01 versus 0.76±0.01, all P<0.0001). Metabolically unhealthy obese individuals had more impaired vascular function than metabolically healthy obese individuals (baseline pulse amplitude 6.28±0.01 versus 6.12±0.02; PAT ratio 0.49±0.01 versus 0.58±0.01, all P<0.0001). Metabolically healthy obese individuals have impaired microvascular function, though the degree of impairment is less marked than in metabolically unhealthy obese individuals. Our findings suggest that obesity is detrimental to vascular health irrespective of metabolic status. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease

    USDA-ARS?s Scientific Manuscript database

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...

  10. Percutaneous transluminal rotational atherectomy in the treatment of peripheral vascular disease using a transluminal endatherectomy catheter (TEC): Initial results and angiographic follow-up

    SciTech Connect

    Rilinger, Norbert; Goerich, Johannes; Scharrer-Pamler, Reinhard; Vogel, Jochen; Tomczak, Reinhard; Merkle, Elmar; Sokiranski, Roman; Brambs, Hans-Juergen

    1997-07-15

    Purpose. To evaluate the clinical results of percutaneous transluminal rotational atherectomy in the treatment of peripheral vascular disease. Methods. Rotational atherectomy was performed in 39 patients aged 39-87 years (mean 66.6 years). A total of 71 lesions (43 stenoses and 28 occlusions) were treated in 40 limbs. Additional balloon angioplasty was required in 54% of lesions. Fifteen patients (37.5%) presented in Fontaine stage II, 10 patients (25%) in Fontaine stage III and 15 patients (37.5%) in Fontaine stage IV. Rotational atherectomy at 750 rpm was carried out over a 0.014-inch guidewire with continuous aspiration into a vacuum, bottle. Follow-up angiography and color flow Doppler examinations were performed in 22 patients (23 limbs) after a mean period of 6 months (range 2-14 months). Results. There was one primary technical failure. In 36 of 40 lesions there was a good angiographic result with residual stenoses in less than 30%. In 70 lesions treated by rotational atherectomy, however, 54% showed residual stenoses of 30%-50% and these cases required additional balloon angioplasty. The mean ankle-brachial index improved significantly (p<0.001), from 0.49 before the procedure to 1.01 after the procedure. A single distal embolus, related to primary recanalization, occurred and there were two large inguinal hematomas. Cumulative clinical patency after 6 months was 83.8% and cumulative angiographic patency after 6 months was 79.1%. Conclusion. Percutaneous rotational atherectomy is a promising approach for the treatment of chronic peripheral vascular disease. Further prospective, randomized studies are necessary to compare percutaneous transluminal angioplasty with this new technical approach.

  11. Genetic Pathways of Vascular Calcification

    PubMed Central

    Bowman, Marion A. Hofmann; McNally, Elizabeth M.

    2012-01-01

    Vascular calcification is an independent risk factor for cardiovascular disease. Arterial calcification of the aorta, coronary, carotid and peripheral arteries becomes more prevalent with age. Genomewide association studies have identified regions of the genome linked to vascular calcification, and these same regions are linked to myocardial infarction risk. The 9p21 region linked to vascular disease and inflammation also associates with vascular calcification. In addition to these common variants, rare genetic defects can serve as primary triggers of accelerated and premature calcification. Infancy-associated calcific disorders are caused by loss of function mutations in ENPP1 an enzyme that produces extracellular pyrophosphate. Adult onset vascular calcification is linked to mutations NTE5, another enzyme that regulates extracellular phosphate metabolism. Common conditions that secondarily enhance vascular calcification include atherosclerosis, metabolic dysfunction, diabetes, and impaired renal clearance. Oxidative stress and vascular inflammation, along with biophysical properties, converge with these predisposing factors to promote soft tissue mineralization. Vascular calcification is accompanied by an osteogenic profile, and this osteogenic conversion is seen within the vascular smooth muscle itself as well as the matrix. Herein we will review the genetic causes of medial calcification in the smooth muscle layer, focusing on recent discoveries of gene mutations that regulate extracellular matrix phosphate production and the role of S100 proteins as promoters of vascular calcification. PMID:23040839

  12. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  13. [Research progress in reanimation of peripheral facial paralysis by use of functional electrical stimulation].

    PubMed

    Deng, Simin; Shen, Guofang

    2010-08-01

    With the development of electronics and information technology, the application of functional electrical stimulation in the medical field has been expanding. However, the use of functional electrical stimulation to treat patients with peripheral facial paralysis is still in its infancy. The main problems include: (1) Finding in the signals which could fire the stimulator; (2) Exploring the parameters for the stimulator; (3) The effects on the muscle attributed to the electrical stimulation. A review on these problems is presented.

  14. Motor and memory function in rat models of cyanide toxicity and vascular occlusion induced ischemic injury.

    PubMed

    Ogundele, Olalekan Michael; Adeniyi, Philip Adeyemi; Ajonijebu, Duyilemi Chris; Abdulbasit, Amin; Cobham, Ansa Emmanuel; Ishola, Azeez Olakunle; Balogun, Gbolahan Wasiu

    2014-09-01

    Although oxidative stress is characteristic of global vascular occlusion and cyanide toxicity, the pattern of cerebral metabolism reconditioning and rate of progression or reversal of neural tissue damage differ for both forms of ischemia. Thus, it is important to compare cognitive and motor functions in both models of ischemia involving cyanide treatment (CN) and vascular occlusion (VO). Adult Wistar rats (N=30) were divided into three groups; VO (n=12), CN (n=12) and Control-CO (n=6). The CN was treated with 30mg/Kg of potassium cyanide (KCN); VO was subjected to global vascular occlusion-both for duration of 10 days. The control (CO) was fed on normal rat chow and water for the same duration. At day 10, the test and control groups (CN, VO and CO) were subjected to motor function tests (Table edge tests and Open Field Test) and memory function tests (Y-Maze and Novel object recognition) while the withdrawal groups CN-I and VO-I were subjected to the same set of tests at day 20 (the withdrawal phase). The results show that both cyanide toxicity and vascular occlusion caused a decline in motor and memory function when compared with the control. Also, the cyanide treatment produced a more rapid decline in these behavioral parameters when compared with the vascular occlusion during the treatment phase. After the withdrawal phase, cyanide treatment (CN-I) showed either an improvement or restoration of motor and memory function when compared to the CN and control. Withdrawal of vascular occlusion caused no improvement, and in some cases a decline in motor and memory function. In conclusion, cyanide toxicity caused a decline in motor and memory function after the treatment while vascular occlusion caused no significant decline in cognition and motor function at this time. After the withdrawal phase, the effect of cyanide toxicity was reduced and significant improvements were observed in the behavioral tests (motor and cognitive), while a decline in these functions were

  15. Effects of sildenafil on hypoxic pulmonary vascular function in dogs.

    PubMed

    Fesler, Pierre; Pagnamenta, Alberto; Rondelet, Benoit; Kerbaul, François; Naeije, Robert

    2006-10-01

    Sildenafil has been shown to be an effective treatment of pulmonary arterial hypertension and is believed to present with pulmonary selectivity. This study was designed to determine the site of action of sildenafil compared with inhaled nitric oxide (NO) and intravenous sodium nitroprusside (SNP), known as selective and nonselective pulmonary vasodilators, respectively. Inhaled NO (40 ppm), and maximum tolerated doses of intravenous SNP and sildenafil, (5 microg x kg(-1) x min(-1) and 0.1 mg x kg(-1) x h(-1)), respectively, were administered to eight dogs ventilated in hypoxia. Pulmonary vascular resistance (PVR) was evaluated by pulmonary arterial pressure (Ppa) minus left atrial pressure (Pla) vs. flow curves, and partitioned into arterial and venous segments by the occlusion method. Right ventricular hydraulic load was defined by pulmonary arterial characteristic impedance (Zc) and elastance (Ea) calculations. Right ventricular arterial coupling was estimated by the ratio of end-systolic elastance (Ees) to Ea. Decreasing the inspired oxygen fraction from 0.4 to 0.1 increased Ppa - Pla at a standardized flow of 3 l x min(-1) x m(-2) from 6 +/- 1 to 18 +/- 1 mmHg (mean +/- SE). Ppa - Pla was decreased to 9 +/- 1 by inhaled NO, 14 +/- 1 by SNP, and 14 +/- 1 mmHg by sildenafil. The partition of PVR, Zc, Ea, and Ees/Ea was not affected by the three interventions. Inhaled NO did not affect systemic arterial pressure, which was similarly decreased by sildenafil and SNP, from 115 +/- 4 to 101 +/- 4 and 98 +/- 5 mmHg, respectively. We conclude that inhaled NO inhibits hypoxic pulmonary vasoconstriction more effectively than sildenafil or SNP, and sildenafil shows no more selectivity for the pulmonary circulation than SNP.

  16. Episomal Induced Pluripotent Stem Cells Promote Functional Recovery of Transected Murine Peripheral Nerve

    PubMed Central

    Kao, Huang-Kai; Cardona, Esteban; Chuang, Sheng-Hao

    2016-01-01

    Traumatic peripheral nerve neurotmesis occurs frequently and functional recovery is often slow and impaired. Induced pluripotent stem cells (iPSCs) have shown much promise in recent years due to its regenerative properties similar to that of embryonic stem cells. However, the potential of iPSCs in promoting the functional recovery of a transected peripheral nerve is largely unknown. This study is the first to investigate in vivo effects of episomal iPSCs (EiPSCs) on peripheral nerve regeneration in a murine sciatic nerve transection model. Episomal iPSCs refer to iPSCs that are generated via Oct3/4-Klf4-Sox2 plasmid reprogramming instead of the conventional viral insertion techniques. It represents a relatively safer form of iPSC production without permanent transgene integration which may raise questions regarding risks of genomic mutation. A minimal number of EiPSCs were added directly to the transected nerve. Functional recovery of the EiPSC group was significantly improved compared to the negative control group when assessed via serial five-toe spread measurement and gait analysis of ankle angles. EiPSC promotion of nerve regeneration was also evident on stereographic analysis of axon density, myelin thickness, and axonal cross-sectional surface area. Most importantly, the results observed in EiPSCs are similar to that of the embryonic stem cell group. A roughly ten-fold increase in neurotrophin-3 levels was seen in EiPSCs which could have contributed to peripheral nerve regeneration and recovery. No abnormal masses or adverse effects were noted with EiPSC administration after one year of follow-up. We have hence shown that functional recovery of the transected peripheral nerve can be improved with the use of EiPSC therapy, which holds promise for the future of nerve regeneration. PMID:27736950

  17. Peripheral Blood-Derived Mesenchymal Stromal Cells Promote Angiogenesis via Paracrine Stimulation of Vascular Endothelial Growth Factor Secretion in the Equine Model

    PubMed Central

    Bussche, Leen

    2014-01-01

    Mesenchymal stromal cells (MSCs) have received much attention as a potential treatment of ischemic diseases, including ischemic tissue injury and cardiac failure. The beneficial effects of MSCs are thought to be mediated by their ability to provide proangiogenic factors, creating a favorable microenvironment that results in neovascularization and tissue regeneration. To study this in more detail and to explore the potential of the horse as a valuable translational model, the objectives of the present study were to examine the presence of angiogenic stimulating factors in the conditioned medium (CM) of peripheral blood-derived equine mesenchymal stromal cells (PB-MSCs) and to study their in vitro effect on angiogenesis-related endothelial cell (EC) behavior, including proliferation and vessel formation. Our salient findings were that CM from PB-MSCs contained significant levels of several proangiogenic factors. Furthermore, we found that CM could induce angiogenesis in equine vascular ECs and confirmed that endothelin-1, insulin growth factor binding protein 2, interleukin-8, and platelet-derived growth factor-AA, but not urokinase-type plasminogen activator, were responsible for this enhanced EC network formation by increasing the expression level of vascular endothelial growth factor-A, an important angiogenesis stimulator. PMID:25313202

  18. Effects of Fetal and Neonatal Murine Peripheral Blood Mononuclear Cells Infusion on MicroRNA-145 Expression in Renal Vascular Smooth Muscle Cells in MRL/lpr Mice.

    PubMed

    Wen, C; Liu, X Y; Wan, W Q; Yi, Z W

    2015-10-01

    For patients with refractory systemic lupus erythematosus, current medications are insufficient to control their condition, and new treatments are necessary. We aimed to evaluate the therapeutic effect of fetal and neonatal murine peripheral blood (FNPB) mononuclear cells and their impact on microRNA-145 (miR-145) in renal vascular smooth muscle cells (VSMCs) of MRL/lpr lupus-prone mice. MRL/lpr mice aged 20 weeks were randomized to 3 groups of 15 (control group, radiation group, infusion group). The renal tissues were subjected to pathological examination. In situ hybridization assay was applied to measure miR-145 expression in renal vessels of MRL/lpr mice. The infusion group had significantly better results for pathological renal tissue lesions than either the control or radiation group. In MRL/lpr mice, there was positive expression of miR-145 in renal VSMCs, although the expression of miR-145 was not discernible in renal vascular intima and adventitia. The miR-145 expression in renal VSMCs in the infusion group was significantly higher than in the control or radiation group, and higher in the radiation group than in the control group; however, the difference was not statistically significant. The increased expression of miR-145 in renal VSMCs might be one of the mechanisms supporting FNPB as a therapy for lupus nephritis; it also suggests that the miR-145 in renal vessels might be a new target for treatment of lupus nephritis.

  19. Long-term prognostic value of preoperative dipyridamole thallium imaging and clinical indexes in patients with diabetes mellitus undergoing peripheral vascular surgery.

    PubMed

    Cohen, M C; Curran, P J; L'Italien, G J; Mittleman, M A; Zarich, S W

    1999-04-01

    The objective of this study is to assess the prognostic impact of preoperative dipyridamole thallium imaging and clinical variables on the long-term outcome of diabetic patients undergoing peripheral vascular surgery. Complete follow-up was obtained in 101 consecutive patients with diabetes mellitus undergoing routine dipyridamole thallium scintigraphy before vascular surgery (mean 4.2 +/- 3.2 years, range 1 month to 11 years). Low risk was defined by diabetes alone with a normal resting electrocardiogram. High risk was defined as a history of angina, myocardial infarction, congestive heart failure, or resting electrocardiogram abnormalities. There were 71 deaths in 98 patients discharged alive from the hospital (median survival 4.4 years). Age, the presence of resting electrocardiogram abnormalities, and an abnormal thallium scan were independent predictors of late death. After adjusting for age >70 years and thallium abnormalities, high-risk patients had a death rate 4.8 times (95% confidence interval 1.7 to 13.4, p <0.002) greater than low-risk patients. The presence of >2 reversible thallium defects was useful in further risk stratification of both low- and high-risk patients. Low-risk patients with >2 reversible defects had a median survival of 4.0 years compared with 9.4 years in those with < or =2 reversible defects (p <0.001). Similarly, high-risk patients with < or =2 reversible defects had an intermediate median survival rate of 4.7 years compared with 1.8 years in the group with >2 reversible defects (p <0.001). Therefore, advanced age and the presence of resting electrocardiographic or thallium abnormalities identifies a subset of diabetic patients with a poor long-term outcome after vascular surgery. Combined clinical and thallium variables may identify a population in whom intensive medical or surgical interventions may be warranted to reduce both perioperative and late cardiac events.

  20. Maternal Hyperleptinemia Is Associated with Male Offspring’s Altered Vascular Function and Structure in Mice

    PubMed Central

    Pollock, Kelly E.; Talton, Omonseigho O.; Foote, Christopher A.; Reyes-Aldasoro, Constantino C.; Wu, Ho-Hsiang; Ji, Tieming; Martinez-Lemus, Luis A.; Schulz, Laura C.

    2016-01-01

    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies. PMID:27187080

  1. Ca2+/calmodulin-dependent protein kinase II function in vascular remodelling.

    PubMed

    Singer, Harold A

    2012-03-15

    Vascular smooth muscle (VSM) undergoes a phenotypic switch in response to injury, a process that contributes to pathophysiological vascular wall remodelling. VSM phenotype switching is a consequence of changes in gene expression, including an array of ion channels and pumps affecting spatiotemporal features of intracellular Ca(2+) signals. Ca(2+) signalling promotes vascular wall remodelling by regulating cell proliferation, motility, and/or VSM gene transcription, although the mechanisms are not clear. In this review, the functions of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in VSM phenotype switching and synthetic phenotype function are considered. CaMKII isozymes have complex structural and autoregulatory properties. Vascular injury in vivo results in rapid changes in CaMKII isoform expression with reduced expression of CaMKIIγ and upregulation of CaMKIIδ in medial wall VSM. SiRNA-mediated suppression of CaMKIIδ or gene deletion attenuates VSM proliferation and consequent neointimal formation. In vitro studies support functions for CaMKII in the regulation of cell proliferation, motility and gene expression via phosphorylation of CREB1 and HDACIIa/MEF2 complexes. These studies support the concept, and provide potential mechanisms, whereby Ca(2+) signalling through CaMKIIδ promotes VSM phenotype transitions and vascular remodelling.

  2. Ca2+/calmodulin-dependent protein kinase II function in vascular remodelling

    PubMed Central

    Singer, Harold A

    2012-01-01

    Vascular smooth muscle (VSM) undergoes a phenotypic switch in response to injury, a process that contributes to pathophysiological vascular wall remodelling. VSM phenotype switching is a consequence of changes in gene expression, including an array of ion channels and pumps affecting spatiotemporal features of intracellular Ca2+ signals. Ca2+ signalling promotes vascular wall remodelling by regulating cell proliferation, motility, and/or VSM gene transcription, although the mechanisms are not clear. In this review, the functions of multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) in VSM phenotype switching and synthetic phenotype function are considered. CaMKII isozymes have complex structural and autoregulatory properties. Vascular injury in vivo results in rapid changes in CaMKII isoform expression with reduced expression of CaMKIIγ and upregulation of CaMKIIδ in medial wall VSM. SiRNA-mediated suppression of CaMKIIδ or gene deletion attenuates VSM proliferation and consequent neointimal formation. In vitro studies support functions for CaMKII in the regulation of cell proliferation, motility and gene expression via phosphorylation of CREB1 and HDACIIa/MEF2 complexes. These studies support the concept, and provide potential mechanisms, whereby Ca2+ signalling through CaMKIIδ promotes VSM phenotype transitions and vascular remodelling. PMID:22124148

  3. Function, Role, and Clinical Application of MicroRNAs in Vascular Aging

    PubMed Central

    Zhan, Jun-Kun; Wang, Yan-Jiao; Tan, Pan; Chen, Yi-Yin; Deng, Hui-Qian

    2016-01-01

    Vascular aging, a specific type of organic aging, is related to age-dependent changes in the vasculature, including atherosclerotic plaques, arterial stiffness, fibrosis, and increased intimal thickening. Vascular aging could influence the threshold, process, and severity of various cardiovascular diseases, thus making it one of the most important risk factors in the high mortality of cardiovascular diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cell biological basis of these pathology changes of the vasculature, the structure and function of ECs and VSMCs play a key role in vascular aging. MicroRNAs (miRNAs), small noncoding RNAs, have been shown to regulate the expression of multiple messenger RNAs (mRNAs) posttranscriptionally, contributing to many crucial aspects of cell biology. Recently, miRNAs with functions associated with aging or aging-related diseases have been studied. In this review, we will summarize the reported role of miRNAs in the process of vascular aging with special emphasis on EC and VSMC functions. In addition, the potential application of miRNAs to clinical practice for the diagnosis and treatment of cardiovascular diseases will also be discussed. PMID:28097140

  4. Acute Effect of Mineralocorticoid Receptor Antagonism on Vascular Function in Healthy Older Adults

    PubMed Central

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H.; English, Mark; Talcott, Susanne; Jaffe, Iris Z.; Christou, Demetra D.

    2015-01-01

    Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 y; mean ± SE, 53–79 y) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4mg) following eplerenone (100 mg/dose, 2 doses, 24 hours between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6 %, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOSSer1177 to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5 %, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77± 4/2 mmHg, P ≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure. PMID:26639352

  5. Acute effect of mineralocorticoid receptor antagonism on vascular function in healthy older adults.

    PubMed

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H; English, Mark; Talcott, Susanne; Jaffe, Iris Z; Christou, Demetra D

    2016-01-01

    Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 years; mean±SE, 53-79 years) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4 mg) following eplerenone (100 mg/dose, 2 doses, 24h between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6%, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOS(Ser1177) to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5%, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77±4/2 mmHg, P≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure.

  6. Quantitative vascular neuroimaging of the rat brain using superparamagnetic nanoparticles: New insights on vascular organization and brain function.

    PubMed

    Gharagouzloo, Codi A; Timms, Liam; Qiao, Ju; Fang, Zihang; Nneji, Joseph; Pandya, Aniket; Kulkarni, Praveen; van de Ven, Anne L; Ferris, Craig; Sridhar, Srinivas

    2017-09-06

    A method called Quantitative Ultra-Short Time-to-Echo Contrast Enhanced (QUTE-CE) Magnetic Resonance Imaging (MRI) which utilizes superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent to yield positive contrast angiograms with high clarity and definition is applied to the whole live rat brain. QUTE-CE MRI intensity data are particularly well suited for measuring quantitative cerebral blood volume (qCBV). A global map of qCBV in the awake resting-state with unprecedented detail was created via application of a 3D MRI rat brain atlas with 173 segmented and annotated brain areas. From this map we identified two distributed, integrated neural circuits showing the highest capillary densities in the brain. One is the neural circuitry involved with the primary senses of smell, hearing and vision and the other is the neural circuitry of memory. Under isoflurane anesthesia, these same circuits showed significant decreases in qCBV suggesting a role in consciousness. Neural circuits in the brainstem associated with the reticular activating system and the maintenance of respiration, body temperature and cardiovascular function showed an increase in qCBV with anesthesia. During awake CO2 challenge, 84 regions showed significant increases relative to an awake baseline state. This CO2 response provides a measure of cerebral vascular reactivity and regional perfusion reserve with the highest response measured in the somatosensory cortex. These results demonstrate the utility of QUTE-CE MRI for qCBV analysis and offer a new perspective on brain function and vascular organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing.

    PubMed

    Pang, Yonggang; Tsigkou, Olga; Spencer, Joel A; Lin, Charles P; Neville, Craig; Grottkau, Brian

    2015-10-01

    Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (D,L-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad

  8. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing

    PubMed Central

    Pang, Yonggang; Tsigkou, Olga; Spencer, Joel A.; Lin, Charles P.; Neville, Craig

    2015-01-01

    Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (d,l-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad

  9. Effect of transportation on lower respiratory tract contamination and peripheral blood neutrophil function.

    PubMed

    Raidal, S L; Bailey, G D; Love, D N

    1997-06-01

    To evaluate the effect of transportation on lower respiratory tract contamination and peripheral blood neutrophil function in horses and to compare results from transported horses with those obtained in earlier experiments from horses confined with heads elevated. A prospective study. Six horses were transported by road for 12 h. Clinical and haematological examination, transtracheal aspiration and cell function studies were conducted before and after transportation. Results obtained after transportation were compared to pre-transportation values. After transportation, peripheral blood leucocyte and neutrophil numbers were increased and rectal temperatures were evaluated. Transtracheal aspirates showed an accumulation of purulent respiratory tract secretions with increased numbers of bacteria, particularly beta-haemolytic Streptococcus spp and members of the Pasteurellaceae family. Three horses also had increased numbers of bacteria from the Enterobacteriaceae family relative to corresponding samples from earlier studies. Phagocytosis by peripheral blood neutrophils was significantly reduced, while the oxidative burst activity of peripheral blood leucocytes was either unchanged or enhanced. Bacterial contamination of the lower respiratory tract occurs as a routine consequence of transportation of horses and is likely to be an important determinant in the development of transport-associated respiratory disease. Inflammatory airway secretions and increased numbers of bacteria were rapidly cleared, without clinical evidence of significant pulmonary disease and without additional treatment, in normal horses that were allowed to lower their heads after transportation. Peripheral blood neutrophilia and a reduction in neutrophil phagocytic function were evident for at least 36 h after transportation, suggesting that horses may require a number of days to recover from the stress of transportation. As the potential role of bacteria from the Enterobacteriaceae family in the

  10. Sox17 drives functional engraftment of endothelium converted from non-vascular cells

    PubMed Central

    Schachterle, William; Badwe, Chaitanya R.; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M.; Rafii, Shahin

    2017-01-01

    Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function. PMID:28091527

  11. The relation of digital vascular function to cardiovascular risk factors in African-Americans using digital tonometry: the Jackson Heart Study.

    PubMed

    McClendon, Eric E; Musani, Solomon K; Samdarshi, Tandaw E; Khaire, Sushant; Stokes, Donny; Hamburg, Naomi M; Sheffy, Koby; Mitchell, Gary F; Taylor, Herman R; Benjamin, Emelia J; Fox, Ervin R

    2017-06-01

    Digital vascular tone and function, as measured by peripheral arterial tonometry (PAT), are associated with cardiovascular risk and events in non-Hispanic whites. There are limited data on relations between PAT and cardiovascular risk in African-Americans. PAT was performed on a subset of Jackson Heart Study participants using a fingertip tonometry device. Resting digital vascular tone was assessed as baseline pulse amplitude. Hyperemic vascular response to 5 minutes of ischemia was expressed as the PAT ratio (hyperemic/baseline amplitude ratio). Peripheral augmentation index (AI), a measure of relative wave reflection, also was estimated. The association of baseline pulse amplitude (PA), PAT ratio, and AI to risk factors was assessed using stepwise multivariable models. The study sample consisted of 837 participants from the Jackson Heart Study (mean age, 54 ± 11 years; 61% women). In stepwise multivariable regression models, baseline pulse amplitude was related to male sex, body mass index, and diastolic blood pressure (BP), accounting for 16% of the total variability of the baseline pulse amplitude. Age, male sex, systolic BP, diastolic BP, antihypertensive medication, and prevalent cardiovascular disease contributed to 11% of the total variability of the PAT ratio. Risk factors (primarily age, sex, and heart rate) explained 47% of the total variability of the AI. We confirmed in our cohort of African-Americans, a significant relation between digital vascular tone and function measured by PAT and multiple traditional cardiovascular risk factors. Further studies are warranted to investigate the utility of these measurements in predicting clinical outcomes in African-Americans. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  12. Differential effects of maternal hypoxia or nutrient restriction on carotid and femoral vascular function in neonatal rats.

    PubMed

    Williams, Sarah J; Campbell, Morag E; McMillen, I Caroline; Davidge, Sandra T

    2005-02-01

    In response to reduced oxygen or nutrient supply, the fetus may redistribute cardiac output to conserve brain and heart growth, at the expense of the peripheral tissues; however, it is not known whether alterations in vascular function are maintained after birth or whether reduced fetal oxygen versus nutrient supply produces distinct effects. Using a pressure myograph, we examined isolated carotid and femoral artery responses to phenylephrine and endothelin-1 in neonatal rats, after either reduced maternal oxygen or global nutrient restriction during late gestation. Timed-pregnant Sprague-Dawley rats were randomly assigned to control (n = 10), hypoxia (12% O2, n = 9), or nutrient restriction (NR, 40% of control diet, n = 7) protocol and treated from day 15-21 of pregnancy. Pups were collected 3-12 h after birth. Neonatal weights (P < 0.001) and relative liver weights (P < 0.001) were lower in hypoxia and nutrient restriction treatments compared with control, while relative heart weights were greater in the hypoxia than in the control or nutrient restriction groups (P < 0.01). Constriction to phenylephrine was reduced in carotid arteries from the hypoxia and nutrient restriction groups compared with control (P < 0.001), while the femoral artery response was greater in hypoxia-treated neonates compared with control or nutrient-restricted neonates (P < 0.01). Only the hypoxia reduced carotid responses to endothelin-1, while no differences were observed in the endothelin-1 responses in femoral arteries. Maternal hypoxia and maternal nutrient restriction produced distinct effects on heart growth and neonatal vascular function, suggesting that regional changes in cardiovascular function after poor fetal growth are dependent on the nature of the insult in utero.

  13. A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct