Science.gov

Sample records for peripheral vasculature implications

  1. Optoacoustic angiography of peripheral vasculature

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey; Su, Richard; Zamora, Mario; Hernandez, Travis; Nadvoretsky, Vyacheslav; Oraevsky, Alexander

    2012-02-01

    We developed a new optoacoustic microangiography system (OmAS) intended for in-vivo vascular imaging of a human finger. The system employs an arc-shaped acoustic array that is rotated 360 degrees around the finger providing optoacoustic data necessary for tomographic reconstruction of the three-dimensional images of a finger. A near-infrared Q-switched laser is used to generate optoacoustic signals with increased contrast of blood vessels. The laser is coupled through two randomized fiberoptic bundles oriented in orthogonal optoacoustic mode. To demonstrate OmAS capabilities, we present a time-series of optoacoustic images of a human finger taken after the hypothermia stress test. The images show a detailed vascular anatomy of a finger down to the capillary level. A series of quick 30s scans allowed us to visualize the thermoregulatory response within the studied finger as it was manifested via vasomotor activity during the hypothermia recovery. We propose that the developed system can be used for diagnostics of various medical conditions that are manifested in change of the peripheral (finger) blood flow. Examples of the medical conditions that could be diagnosed and staged using the OmAS include the peripheral arterial disease (PAD), thrombosis, frostbite, and traumas.

  2. Real time imaging of peripheral nerve vasculature using optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srikanth; Kumsa, Doe; Takmakov, Pavel; Welle, Cristin G.; Hammer, Daniel X.

    2016-03-01

    The peripheral nervous system (PNS) carries bidirectional information between the central nervous system and distal organs. PNS stimulation has been widely used in medical devices for therapeutic indications, such as bladder control and seizure cessation. Investigational uses of PNS stimulation include providing sensory feedback for improved control of prosthetic limbs. While nerve safety has been well documented for stimulation parameters used in marketed devices, novel PNS stimulation devices may require alternative stimulation paradigms to achieve maximum therapeutic benefit. Improved testing paradigms to assess the safety of stimulation will expedite the development process for novel PNS stimulation devices. The objective of this research is to assess peripheral nerve vascular changes in real-time with optical coherence angiography (OCA). A 1300-nm OCA system was used to image vasculature changes in the rat sciatic nerve in the region around a surface contacting single electrode. Nerves and vasculature were imaged without stimulation for 180 minutes to quantify resting blood vessel diameter. Walking track analysis was used to assess motor function before and 6 days following experiments. There was no significant change in vessel diameter between baseline and other time points in all animals. Motor function tests indicated the experiments did not impair functionality. We also evaluated the capabilities to image the nerve during electrical stimulation in a pilot study. Combining OCA with established nerve assessment methods can be used to study the effects of electrical stimulation safety on neural and vascular tissue in the periphery.

  3. Structure of solid tumors and their vasculature: Implications for therapy with monoclonal antibodies

    SciTech Connect

    Dvorak, H.F.; Nagy, J.A.; Dvorak, A.M. )

    1991-03-01

    Delivery of monoclonal antibodies to solid tumors is a vexing problem that must be solved if these antibodies are to realize their promise in therapy. Such success as has been achieved with monoclonal antibodies is attributable to the local hyperpermeability of the tumor vasculature, a property that favors antibody extravasation at tumor sites and that is mediated by a tumor-secreted vascular permeability factor. However, leaky tumor blood vessels are generally some distance removed from target tumor cells, separated by stroma and by other tumor cells that together represent significant barriers to penetration by extravasated monoclonal antibodies. For this reason, alternative approaches may be attractive. These include the use of antibody-linked cytotoxins, which are able to kill tumor cells without immediate contact, and direction of antibodies against nontumor cell targets, for example, antigens unique to the tumor vascular endothelium or to tumor stroma. 50 refs.

  4. Sex Steroids Modulate Uterine-Placental Vasculature: Implications for Obstetrics and Neonatal Outcomes

    PubMed Central

    Maliqueo, Manuel; Echiburú, Bárbara; Crisosto, Nicolás

    2016-01-01

    Adequate blood supply to the uterine-placental region is crucial to ensure the transport of oxygen and nutrients to the growing fetus. Multiple factors intervene to achieve appropriate uterine blood flow and the structuring of the placental vasculature during the early stages of pregnancy. Among these factors, oxygen concentrations, growth factors, cytokines, and steroid hormones are the most important. Sex steroids are present in extremely high concentrations in the maternal circulation and are important paracrine and autocrine regulators of a wide range of maternal and placental functions. In this regard, progesterone and estrogens act as modulators of uterine vessels and decrease the resistance of the spiral uterine arteries. On the other hand, androgens have the opposite effect, increasing the vascular resistance of the uterus. Moreover, progesterone and estrogens modulate the synthesis and release of angiogenic factors by placental cells, which regulates trophoblastic invasion and uterine artery remodeling. In this scenario, it is not surprising that women with pregnancy-related pathologies, such as early miscarriages, preterm delivery, preeclampsia, and fetal growth restriction, exhibit altered sex steroid concentrations. PMID:27199767

  5. Aortic stiffness and blood pressure variability in young people: a multimodality investigation of central and peripheral vasculature

    PubMed Central

    Boardman, Henry; Lewandowski, Adam J.; Lazdam, Merzaka; Kenworthy, Yvonne; Whitworth, Polly; Zwager, Charlotte L.; Francis, Jane M.; Aye, Christina Y.L.; Williamson, Wilby; Neubauer, Stefan; Leeson, Paul

    2017-01-01

    Introduction: Increased blood pressure (BP) variability is a cardiovascular risk marker for young individuals and may relate to the ability of their aorta to buffer cardiac output. We used a multimodality approach to determine relations between central and peripheral arterial stiffness and BP variability. Methods: We studied 152 adults (mean age of 31 years) who had BP variability measures based on SD of awake ambulatory BPs, 24-h weighted SD and average real variability (ARV). Global and regional aortic distensibility was measured by cardiovascular magnetic resonance, arterial stiffness by cardio-ankle vascular index (CAVI) and pulse wave velocity (PWV) by SphygmoCor (carotid–femoral) and Vicorder (brachial–femoral). Results: In young people, free from overt cardiovascular disease, all indices of SBP and DBP variability correlated with aortic distensibility (global aortic distensibility versus awake SBP SD: r = −0.39, P < 0.001; SBP ARV: r = −0.34, P < 0.001; weighted 24-h SBP SD: r = −0.42, P < 0.001). CAVI, which closely associated with aortic distensibility, also related to DBP variability, as well as awake SBP SD (r = 0.19, P < 0.05) and weighted 24-h SBP SD (r = 0.24, P < 0.01), with a trend for SBP ARV (r = 0.17, P = 0.06). In contrast, associations with PWV were only between carotid–femoral PWV and weighted SD of SBP (r = 0.20, P = 0.03) as well as weighted and ARV of DBP. Conclusion: Greater BP variability in young people relates to increases in central aortic stiffness, strategies to measure and protect aortic function from a young age may be important to reduce cardiovascular risk. PMID:27846043

  6. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment.

    PubMed

    Hendry, Shona A; Farnsworth, Rae H; Solomon, Benjamin; Achen, Marc G; Stacker, Steven A; Fox, Stephen B

    2016-01-01

    Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host's immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion.

  7. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment

    PubMed Central

    Hendry, Shona A.; Farnsworth, Rae H.; Solomon, Benjamin; Achen, Marc G.; Stacker, Steven A.; Fox, Stephen B.

    2016-01-01

    Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host’s immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion. PMID:28066431

  8. Emerging Roles of Lymphatic Vasculature in Immunity

    PubMed Central

    2017-01-01

    The lymphatic vasculature has been regarded as a passive conduit for interstitial fluid and responsible for the absorption of macromolecules such as proteins or lipids and transport of nutrients from food. However, emerging data show that the lymphatic vasculature system plays an important role in immune modulation. One of its major roles is to coordinate antigen transport and immune-cell trafficking from peripheral tissues to secondary lymphoid organs, lymph nodes. This perspective was recently updated with the notion that the interaction between lymphatic endothelial cells and leukocytes controls the immune-cell migration and immune responses by regulating lymphatic flow and various secreted molecules such as chemokines and cytokines. In this review, we introduce the lymphatic vasculature networks and genetic transgenic models for research on the lymphatic vasculature system. Next, we discuss the contribution of lymphatic endothelial cells to the control of immune-cell trafficking and to maintenance of peripheral tolerance. Finally, the physiological roles and features of the lymphatic vasculature system are further discussed regarding inflammation-induced lymphangiogenesis in a pathological condition, especially in mucosal tissues such as the gastrointestinal tract and respiratory tract. PMID:28261022

  9. Ghrelin: Central and Peripheral Implications in Anorexia Nervosa

    PubMed Central

    Méquinion, Mathieu; Langlet, Fanny; Zgheib, Sara; Dickson, Suzanne; Dehouck, Bénédicte; Chauveau, Christophe; Viltart, Odile

    2012-01-01

    Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a major symptom described in restrictive anorexia nervosa (AN) patients, and they also suffer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN, mostly observed in young women, is the third largest cause of chronic illness in teenagers of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be considered an adaptation that permits the endurance of reduced energy supply, involving central and/or peripheral reprograming. The severe weight loss observed in AN patients is accompanied by significant changes in hormones involved in energy balance, feeding behavior, and bone formation, all of which can be replicated in animals models. Increasing evidence suggests that AN could be an addictive behavior disorder, potentially linking defects in the reward mechanism with suppressed food intake, heightened physical activity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels seems paradoxical in light of the restrained eating adopted by AN patients, and may rather result from an adaptation to the disease. The aim of this review is to describe the role played by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent AN models, chronic food restriction induces profound alterations in the « ghrelin » signaling that leads to the development of inappropriate behaviors like hyperactivity or addiction to food starvation and therefore a greater depletion in energy reserves. The question of a transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in regard of new clinical treatments currently investigated. PMID:23549309

  10. Sarcomas related to the heart and vasculature.

    PubMed

    Raaf, H N; Raaf, J H

    1994-01-01

    Soft tissue sarcoma is the most common malignant neoplasm of the heart, pericardium, and great vessels. Its presentation is infrequent, nonspecific, and subtle. For example, emboli from these tumors to the lungs or peripheral arteries may mimic thrombotic embolic disease. New noninvasive techniques such as echocardiography and magnetic resonance imaging (MRI) aid in diagnosis and preoperative assessment. Angiosarcoma, the most common cardiac sarcoma, is aggressive and usually arises in the right atrium. Kaposi's sarcoma of the heart has been found in patients with AIDS and in immunosuppressed organ transplant recipients. Most primary sarcomas of the aorta and pulmonary artery (the elastic arteries) show minimal differentiation and are classified as "intimal, sarcomas," whereas leiomyosarcomas predominate in the muscular arteries and great veins. Surgical resection of any sarcoma of the vasculature, when feasible, is technically challenging but may result in cure or palliation. Adjuvant chemotherapy and radiation therapy can also relieve symptoms and prolong survival.

  11. Constriction of bovine vasculature caused by endophyte-infected tall fescue seed extract is similar to pure ergovaline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mixture of ergot alkaloids does not increase the contractile response of peripheral bovine vasculature, but may increase the contractile response of foregut vasculature. Preliminary data indicated that an extract of tall fescue seed induced a greater contractile response in ruminal artery and vein...

  12. Nicotine stimulates expression of proteins implicated in peripheral and central sensitization.

    PubMed

    Hawkins, J L; Denson, J E; Miley, D R; Durham, P L

    2015-04-02

    Pain patients who are nicotine dependent report a significantly increased incidence and severity of pain intensity. The goal of this study was to determine the effects of prolonged nicotine administration on inflammatory proteins implicated in the development of peripheral and central sensitization of the trigeminal system. Behavioral, immunohistochemical, and microarray studies were utilized to investigate the effects of nicotine administered daily for 14 days via an Alzet® osmotic pump in Sprague Dawley rats. Systemic nicotine administration caused a significant increase in nocifensive withdrawals to mechanical stimulation of trigeminal neurons. Nicotine stimulated expression of the pro-inflammatory signal transduction proteins phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-c-Jun N-terminal kinase (p-JNK), and protein kinase A (PKA) in the spinal trigeminal nucleus. Nicotine also promoted elevations in the expression of glial fibrillary acidic protein (GFAP), a biomarker of activated astrocytes, and the microglia biomarker ionized calcium-binding adapter molecule 1 (Iba1). Similarly, levels of eleven cytokines were significantly elevated with the largest increase in expression of TNF-α. Levels of PKA, p-ERK, and p-JNK in trigeminal ganglion neurons were increased by nicotine. Our findings demonstrate that prolonged systemic administration of nicotine promotes sustained behavioral and cellular changes in the expression of key proteins in the spinal trigeminal nucleus and trigeminal ganglion implicated in the development and maintenance of peripheral and central sensitization.

  13. Complexity analysis of angiogenesis vasculature

    NASA Astrophysics Data System (ADS)

    Mahadevan, Vijay; Tyrell, James A.; Tong, Ricky T.; Brown, Edward B.; Jain, Rakesh K.; Roysam, Badrinath

    2005-04-01

    Tumor vasculature has a high degree of irregularity as compared to normal vasculature. The quantification of the morphometric complexity in tumor images can be useful in diagnosis. Also, it is desirable in several other medical applications to have an automated complexity analysis to aid in diagnosis and prognosis under treatment. e.g. in diabetic retinopathy and in arteriosclerosis. In addition, prior efforts at segmentation of the tumor vasculature using matched filtering, template matching and splines have been hampered by the irregularity of these vessels. We try to solve both problems by introducing a novel technique for vessel detection, followed by a tracing-independent complexity analysis based on a combination of ideas. First, the vessel cross-sectional profile is modeled using a continuous and everywhere differentiable family of super-Gaussian curves. This family generates rectangular profiles that can accurately localize the vessel boundaries in microvasculature images. Second, a robust non-linear regression algorithm based on M-estimators is used to estimate the parameters that optimally characterize the vessel"s shape. A framework for the quantitative analysis of the complexity of the vasculature based on the vessel detection is presented. A set of measures that quantify the complexity are proposed viz. Squared Error, Entropy-based and Minimum Description Length-based Shape Complexities. They are completely automatic and can deal with complexities of the entire vessel unlike existing tortuousity measures which deal only with vessel centerlines. The results are validated using carefully constructed phantom and real image data with ground truth information from an expert observer.

  14. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance.

    PubMed

    Lotta, Luca A; Gulati, Pawan; Day, Felix R; Payne, Felicity; Ongen, Halit; van de Bunt, Martijn; Gaulton, Kyle J; Eicher, John D; Sharp, Stephen J; Luan, Jian'an; De Lucia Rolfe, Emanuella; Stewart, Isobel D; Wheeler, Eleanor; Willems, Sara M; Adams, Claire; Yaghootkar, Hanieh; Forouhi, Nita G; Khaw, Kay-Tee; Johnson, Andrew D; Semple, Robert K; Frayling, Timothy; Perry, John R B; Dermitzakis, Emmanouil; McCarthy, Mark I; Barroso, Inês; Wareham, Nicholas J; Savage, David B; Langenberg, Claudia; O'Rahilly, Stephen; Scott, Robert A

    2017-01-01

    Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.

  15. “Galectin-1 Induces Central and Peripheral Cell Death: Implications in T-Cell Physiopathology”

    PubMed Central

    Rabinovich, G. A.

    2000-01-01

    The immune system has a remarkable capacity to maintain a state of equilibrium even as it responds to a diverse array of foreign proteins and despite its contact exposure to self-antigens. Apoptosis is one of the mechanisms aimed at preserving the homeostasis after the completion of an immune response, thus returning the immune system to a basal state and warranting the elimination of autoagressive cells in both central and peripheral lymphoid organs. Targeted deletions in critical genes involved in the apoptotic death machinery together with natural spontaneous mutations have clearly shown the importance of apoptosis in the regulation of the immune response. This complex scenario of stimulatory and inhibitory genes has been enriched with the finding that galectin-1, a 14.5 kDa β-galactoside-binding protein, is able to induce apoptosis of immature cortical thymocytes and mature T cells by cross-linking cell surface glycoconjugates. Galectin-1 is present not only in central and peripheral lymphoid organs, but also at sites of immune privilege. In the present article we will discuss the implications of galectin-1-induced apoptosis in T-cell physiopathology in an attempt to validate its therapeutic potential in autoimmune and inflammatory diseases. PMID:11097206

  16. Unilateral persistent fetal vasculature coexisting with anterior segment dysgenesis.

    PubMed

    Khokhar, Sudarshan; Gupta, Shikha; Arora, Tarun; Gogia, Varun; Dada, Tanuj

    2013-08-01

    Persistent fetal vasculature (PFV) is a common congenital developmental anomaly of the eye which results from failure of the embryological primary vitreous and hyaloid vasculature to regress by the time of birth (Int Ophthalmol Clin 48: 53-62, 2008). Typically, it is divided into anterior, posterior or combined types and is characterized by the presence of a vascular stalk located between the optic disc and the posterior lens capsule (Int Ophthalmol Clin 48: 53-62, 2008). Although it has been reported to manifest itself differently, in our case it presented in a microphthalmic eye as anterior segment dysgenesis with broad-based mid-peripheral synechiae, posterior embryotoxon, iridoschisis, ectropion uveae, hypotony and subluxated cataractous lens with a taut anterior hyaloid face which are rare associations with PFV.

  17. The Vasculature in Chagas Disease

    PubMed Central

    Prado, Cibele M.; Jelicks, Linda A.; Weiss, Louis M.; Factor, Stephen M.; Tanowitz, Herbert B.; Rossi, Marcos A.

    2013-01-01

    The cardiovascular manifestations of Chagas disease are well known. However, the contribution of the vasculature and specifically the microvasculature has received little attention. This chapter reviews the evidence supporting the notion that alterations in the microvasculature especially in the heart contribute to the pathogenesis of chagasic cardiomyopathy. These data may also be important in understanding the contributions of the microvasculature in the aetiologies of other cardiomyopathies. The role of endothelin-1 and of thromboxane A2 vascular spasm and platelet aggregation is also discussed. Further, these observations may provide target(s) for intervention. PMID:21884888

  18. Anthropometry of fetal vasculature in the chorionic plate.

    PubMed

    Gordon, Z; Elad, D; Almog, R; Hazan, Y; Jaffa, A J; Eytan, O

    2007-12-01

    Normal fetal development is dependent on adequate placental blood perfusion. The functional role of the placenta takes place mainly in the capillary system; however, ultrasound imaging of fetal blood flow is commonly performed on the umbilical artery, or on its first branches over the chorionic plate. The objective of this study was to evaluate the structural organization of the feto-placental vasculature of the chorionic plate. Casting of the placental vasculature was performed on 15 full-term placentas using a dental polymer mixed with colored ink. Observations of the cast models revealed that the branching architecture of the chorionic vessel is a combination of dichotomous and monopodial patterns, where the first two to three generations are always of a dichotomous nature. Analysis of the daughter-to-mother diameter ratios in the chorionic vessels provided a maximum in the range of 0.6-0.8 for the dichotomous branches, whereas in monopodial branches it was in the range of 0.1-0.3. Similar to previous studies, this study reveals that the vasculature architecture is mostly monopodial for the marginal cord insertion and mostly dichotomous for the central insertion. The more marginal the umbilical cord insertion is on the chorionic plate, the more monopodial branching patterns are created to compensate the dichotomous pattern deficiency to perfuse peripheral placental territories.

  19. The Pleiotropic Role of L1CAM in Tumor Vasculature

    PubMed Central

    Angiolini, Francesca; Cavallaro, Ugo

    2017-01-01

    Angiogenesis, the formation of new vessels, is a key step in the development, invasion, and dissemination of solid tumors and, therefore, represents a viable target in the context of antitumor therapy. Indeed, antiangiogenic approaches have given promising results in preclinical models and entered the clinical practice. However, in patients, the results obtained so far with antiangiogenic drugs have not completely fulfilled expectations, especially because their effect has been transient with tumors developing resistance and evasion mechanisms. A better understanding of the mechanisms that underlie tumor vascularization and the functional regulation of cancer vessels is a prerequisite for the development of novel and alternative antiangiogenic treatments. The L1 cell adhesion molecule (L1CAM), a cell surface glycoprotein previously implicated in the development and plasticity of the nervous system, is aberrantly expressed in the vasculature of various cancer types. L1CAM plays multiple pro-angiogenic roles in the endothelial cells of tumor-associated vessels, thus emerging as a potential therapeutic target. In addition, L1CAM prevents the maturation of cancer vasculature and its inhibition promotes vessel normalization, a process that is thought to improve the therapeutic response of tumors to cytotoxic drugs. We here provide an overview on tumor angiogenesis and antiangiogenic therapies and summarize the current knowledge on the biological role of L1CAM in cancer vasculature. Finally, we highlight the clinical implications of targeting L1CAM as a novel antiangiogenic and vessel-normalizing approach. PMID:28134764

  20. Retinal vasculature classification using novel multifractal features

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Ward, W. O. C.; Duan, Jinming; Auer, D. P.; Gowland, Penny; Bai, L.

    2015-11-01

    Retinal blood vessels have been implicated in a large number of diseases including diabetic retinopathy and cardiovascular diseases, which cause damages to retinal blood vessels. The availability of retinal vessel imaging provides an excellent opportunity for monitoring and diagnosis of retinal diseases, and automatic analysis of retinal vessels will help with the processes. However, state of the art vascular analysis methods such as counting the number of branches or measuring the curvature and diameter of individual vessels are unsuitable for the microvasculature. There has been published research using fractal analysis to calculate fractal dimensions of retinal blood vessels, but so far there has been no systematic research extracting discriminant features from retinal vessels for classifications. This paper introduces new methods for feature extraction from multifractal spectra of retinal vessels for classification. Two publicly available retinal vascular image databases are used for the experiments, and the proposed methods have produced accuracies of 85.5% and 77% for classification of healthy and diabetic retinal vasculatures. Experiments show that classification with multiple fractal features produces better rates compared with methods using a single fractal dimension value. In addition to this, experiments also show that classification accuracy can be affected by the accuracy of vessel segmentation algorithms.

  1. [Regeneration and repair of peripheral nerves: clinical implications in facial paralysis surgery].

    PubMed

    Hontanilla, B; Vidal, A

    2000-01-01

    Peripheral nerve lesions are one of the most frequent causes of chronic incapacity. Upper or lower limb palsies due to brachial or lumbar plexus injuries, facial paralysis and nerve lesions caused by systemic diseases are one of the major goals of plastic and reconstructive surgery. However, the poor results obtained in repaired peripheral nerves during the Second World War lead to a pessimist vision of peripheral nerve repair. Nevertheless, a well understanding of microsurgical principles in reconstruction and molecular biology of nerve regeneration have improved the clinical results. Thus, although the results obtained are quite far from perfect, these procedures give to patients a hope in the recuperation of their lesions and then on function. Technical aspects in nerve repair are well established; the next step is to manipulate the biology. In this article we will comment the biological processes which appear in peripheral nerve regeneration, we will establish the main concepts on peripheral nerve repair applied in facial paralysis cases and, finally, we will proportionate some ideas about how clinical practice could be affected by manipulation of the peripheral nerve biology.

  2. Detection of the KIT D816V mutation in peripheral blood of systemic mastocytosis: diagnostic implications.

    PubMed

    Jara-Acevedo, Maria; Teodosio, Cristina; Sanchez-Muñoz, Laura; Álvarez-Twose, Ivan; Mayado, Andrea; Caldas, Carolina; Matito, Almudena; Morgado, José M; Muñoz-González, Javier I; Escribano, Luis; Garcia-Montero, Andrés C; Orfao, Alberto

    2015-08-01

    Recent studies have found the KIT D816V mutation in peripheral blood of virtually all adult systemic mastocytosis patients once highly sensitive PCR techniques were used; thus, detection of the KIT D816V mutation in peripheral blood has been proposed to be included in the diagnostic work-up of systemic mastocytosis algorithms. However, the precise frequency of the mutation, the biological significance of peripheral blood-mutated cells and their potential association with involvement of bone marrow hematopoietic cells other than mast cells still remain to be investigated. Here, we determined the frequency of peripheral blood involvement by the KIT D816V mutation, as assessed by two highly sensitive PCR methods, and investigated its relationship with multilineage involvement of bone marrow hematopoiesis. Overall, our results confirmed the presence of the KIT D816V mutation in peripheral blood of most systemic mastocytosis cases (161/190; 85%)--with an increasing frequency from indolent systemic mastocytosis without skin lesions (29/44; 66%) to indolent systemic mastocytosis with skin involvement (124/135; 92%), and more aggressive disease subtypes (11/11; 100%)--as assessed by the allele-specific oligonucleotide-qPCR method, which was more sensitive (P<.0001) than the peptide nucleic acid-mediated PCR approach (84/190; 44%). Although the presence of the KIT mutation in peripheral blood, as assessed by the allele-specific oligonucleotide-qPCR technique, did not accurately predict for multilineage bone marrow involvement of hematopoiesis, the allele-specific oligonucleotide-qPCR allele burden and the peptide nucleic acid-mediated-PCR approach did. These results suggest that both methods provide clinically useful and complementary information through the identification and/or quantification of the KIT D816V mutation in peripheral blood of patients suspected of systemic mastocytosis.

  3. Chemotherapy-induced peripheral neuropathy: a review and implications for oncology nursing practice.

    PubMed

    Wickham, Rita

    2007-06-01

    Advances in supportive care have increased the likelihood that previously less common adverse effects of chemotherapy will be more evident. The incidence of chemotherapy-induced peripheral neuropathy (CIPN) is increasing because more neurotoxic drugs have been developed and because patients are living longer and receiving multiple chemotherapy regimens. This article reviews the anatomy of the peripheral nervous system, the proposed mechanisms of CIPN, and manifestations of CIPN from vinca alkaloids, taxanes, and platinum analogs. Major topics of this article are evidence-based data regarding symptom management, a review of medical management, and a synthesis of nursing care for patients at risk for or experiencing CIPN.

  4. Gpr177 regulates pulmonary vasculature development.

    PubMed

    Jiang, Ming; Ku, Wei-yao; Fu, Jiang; Offermanns, Stefan; Hsu, Wei; Que, Jianwen

    2013-09-01

    Establishment of the functional pulmonary vasculature requires intimate interaction between the epithelium and mesenchyme. Previous genetic studies have led to inconsistent conclusions about the contribution of epithelial Wnts to pulmonary vasculature development. This discrepancy is possibly due to the functional redundancy among different Wnts. Here, we use Shh-Cre to conditionally delete Gpr177 (the mouse ortholog of Drosophila Wntless, Wls), a chaperon protein important for the sorting and secretion of Wnt proteins. Deletion of epithelial Gpr177 reduces Wnt signaling activity in both the epithelium and mesenchyme, resulting in severe hemorrhage and abnormal vasculature, accompanied by branching defects and abnormal epithelial differentiation. We then used multiple mouse models to demonstrate that Wnt/β-catenin signaling is not only required for the proliferation and differentiation of mesenchyme, but also is important for the maintenance of smooth muscle cells through the regulation of the transcription factor Kruppel-like factor 2 (Klf2). Together, our studies define a novel mechanism by which epithelial Wnts regulate the normal development and maintenance of pulmonary vasculature. These findings provide insight into the pathobiology of congenital lung diseases, such as alveolar capillary dysplasia (ACD), that have abnormal alveolar development and dysmorphic pulmonary vasculature.

  5. In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits

    PubMed Central

    Zhang, Yahui; Yu, Yin; Akkouch, Adil; Dababneh, Amer; Dolati, Farzaneh

    2014-01-01

    The ability to create three dimensional (3D) thick tissues is still a major tissue engineering challenge. It requires the development of a suitable vascular supply for an efficient media exchange. An integrated vasculature network is particularly needed when building thick functional tissues and/or organs with high metabolic activities, such as the heart, liver and pancreas. In this work, human umbilical vein smooth muscle cells (HUVSMCs) were encapsulated in sodium alginate and printed in the form of vasculature conduits using a coaxial deposition system. Detailed investigations were performed to understand the dehydration, swelling and degradation characteristics of printed conduits. In addition, because perfusional, permeable and mechanical properties are unique characteristics of natural blood vessels, for printed conduits these properties were also explored in this work. The results show that cells encapsulated in conduits had good proliferation activities and that their viability increased during prolonged in vitro culture. Deposition of smooth muscle matrix and collagen was observed around the peripheral and luminal surface in long-term cultured cellular vascular conduit through histology studies. PMID:25574378

  6. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    PubMed Central

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  7. Nonclassical Patrolling Monocyte Function in the Vasculature

    PubMed Central

    Thomas, Graham; Tacke, Robert; Hedrick, Catherine C.

    2015-01-01

    Nonclassical patrolling monocytes are characterized by their unique ability to actively patrol the vascular endothelium under homeostatic and inflammatory conditions. Patrolling monocyte subsets (CX3CR1highLy6C− in mouse, and CX3CR1highCD14dimCD16+ in humans) are distinct from the classical monocyte subsets (CCR2highLy6C+ in mouse, and CCR2highCD14+CD16− in humans) and exhibit unique functions in the vasculature and inflammatory disease. Patrolling monocytes function in a number of disease settings to remove damaged cells and debris from the vasculature, and have been associated with wound healing and the resolution of inflammation in damaged tissues. This review highlights the unique functions of these patrolling monocytes in the vasculature and during inflammation. PMID:25838429

  8. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy.

    PubMed

    Lees, Justin G; Makker, Preet G S; Tonkin, Ryan S; Abdulla, Munawwar; Park, Susanna B; Goldstein, David; Moalem-Taylor, Gila

    2017-03-01

    Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain are challenging complications of cancer treatment. Many of the major classes of chemotherapeutics can cause neurotoxicity and significantly modulate the immune system. There is ongoing investigation regarding whether reciprocal crosstalk between the nervous and immune systems occurs and, indeed, contributes to neuropathic pain during treatment with chemotherapeutics. An emerging concept is that neuroinflammation is one of the major mechanisms underlying CIPN. Here, we discuss recent findings, which provide insight into this complex process of neuroimmune interactions. Findings show limited infiltration of leukocytes into the nervous system of CIPN animals and varying degrees of peripheral and central glial activation depending on the chemotherapeutic drug, dose, schedule, and timing. Most evidence suggests an increase in pro-inflammatory cytokine expression and changes in immune signalling pathways. There is, however, limited evidence available from human studies and it remains unclear whether neuroinflammatory responses are the cause of neuropathy or a bystander effect of the chemotherapy treatment.

  9. Malignant peripheral nerve sheath tumour (MPNST): the clinical implications of cellular signalling pathways.

    PubMed

    Katz, Daniela; Lazar, Alexander; Lev, Dina

    2009-10-19

    Malignant peripheral nerve sheath tumour (MPNST) is a rare malignancy accounting for 3-10% of all soft tissue sarcomas. Most MPNSTs arise in association with peripheral nerves or deep neurofibromas and may originate from neural crest cells, although the specific cell of origin is uncertain. Approximately half of MPNSTs occur in the setting of neurofibromatosis type 1 (NF1), an autosomal dominant disorder with an incidence of approximately one in 3500 persons; the remainder of MPNSTs develop sporadically. In addition to a variety of clinical manifestations, approximately 8-13% of NF1 patients develop MPNSTs, which are the leading cause of NF1-related mortality. Surgical resection is the mainstay of MPNST clinical management. However, because of invasive growth, propensity to metastasise, and limited sensitivity to chemotherapy and radiation, MPNST has a guarded to poor prognosis. Five-year survival rates of only 20-50% indicate an urgent need for improved therapeutic approaches. Recent work in this field has identified several altered intracellular signal transduction cascades and deregulated tyrosine kinase receptors, posing the possibility of personalised, targeted therapeutics. However, expanded knowledge of MPNST molecular pathobiology will be needed to meaningfully apply such approaches for the benefit of afflicted patients.

  10. Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral.

    PubMed

    Nunes, F; Norris, R D; Knowlton, N

    2009-10-01

    Limited dispersal and connectivity in marine organisms can have negative fitness effects in populations that are small and isolated, but reduced genetic exchange may also promote the potential for local adaptation. Here, we compare the levels of genetic diversity and connectivity in the coral Montastraea cavernosa among both central and peripheral populations throughout its range in the Atlantic. Genetic data from one mitochondrial and two nuclear loci in 191 individuals show that M. cavernosa is subdivided into three genetically distinct regions in the Atlantic: Caribbean-North Atlantic, Western South Atlantic (Brazil) and Eastern Tropical Atlantic (West Africa). Within each region, populations have similar allele frequencies and levels of genetic diversity; indeed, no significant differentiation was found between populations separated by as much as 3000 km, suggesting that this coral species has the ability to disperse over large distances. Gene flow within regions does not, however, translate into connectivity across the entire Atlantic. Instead, substantial differences in allele frequencies across regions suggest that genetic exchange is infrequent between the Caribbean, Brazil and West Africa. Furthermore, markedly lower levels of genetic diversity are observed in the Brazilian and West African populations. Genetic diversity and connectivity may contribute to the resilience of a coral population to disturbance. Isolated peripheral populations may be more vulnerable to human impacts, disease or climate change relative to those in the genetically diverse Caribbean-North Atlantic region.

  11. PSP activates monocytes in resting human peripheral blood mononuclear cells: immunomodulatory implications for cancer treatment.

    PubMed

    Sekhon, Bhagwant Kaur; Sze, Daniel Man-Yuen; Chan, Wing Keung; Fan, Kei; Li, George Qian; Moore, Douglas Edwin; Roubin, Rebecca Heidi

    2013-06-15

    Polysaccharopeptide (PSP), from Coriolus versicolor, has been used as an adjuvant to chemotherapy, and has demonstrated anti-tumor and immunomodulating effects. However its mechanism remains unknown. To elucidate how PSP affects immune populations, we compared PSP treatments both with and without prior incubation in phytohaemagglutinin (PHA) - a process commonly used in immune population experimentation. We first standardised a capillary electrophoresis fingerprinting technique for PSP identification and characterisation. We then established the proliferative capability of PSP on various immune populations in peripheral blood mononuclear cells, using flow cytometry, without prior PHA treatment. It was found that PSP significantly increased the number of monocytes (CD14(+)/CD16(-)) compared to controls without PHA. This increase in monocytes was confirmed using another antibody panel of CD14 and MHCII. In contrast, proliferations of T-cells, NK, and B-cells were not significantly changed by PSP. Thus, stimulating monocyte/macrophage function with PSP could be an effective therapeutic intervention in targeting tumors.

  12. The Instructive Role of the Vasculature in Stem Cell Niches

    PubMed Central

    Putnam, Andrew J.

    2014-01-01

    An important hallmark of many adult stem cell niches is their proximity to the vasculature in vivo, a feature common to neural stem cells (NSCs), mesenchymal stem cells (MSCs) from bone marrow, adipose, and other tissues, hematopoietic stem cells (HSCs), and many tumor stem cells. This review summarizes key studies supporting the vasculature’s instructive role in adult stem cell niches, and the putative underlying molecular mechanisms by which blood vessels in these niches exert control over progenitor cell fates. The importance of the perivascular niche for pathology, notably tumor metastasis and dormancy, is also highlighted. Finally, the implications of the perivascular regulation of stem and progenitor cells on biomaterial design and the impact on future research directions are discussed. PMID:25530848

  13. Peripheral neuropathy in Parkinson's disease: levodopa exposure and implications for duodenal delivery.

    PubMed

    Müller, Thomas; van Laar, Teus; Cornblath, David R; Odin, Per; Klostermann, Fabian; Grandas, Francisco J; Ebersbach, Georg; Urban, Peter P; Valldeoriola, Francesc; Antonini, Angelo

    2013-05-01

    In advanced Parkinson's disease (PD) patients, continuous intra-duodenal infusion of levodopa/carbidopa intestinal gel (LCIG) is an established approach in the management of motor complications that cannot be further improved by conventional oral therapy. In general, tolerability of LCIG has resembled that of oral dopaminergic therapy; however, cases of symptomatic peripheral neuropathy (PN), sometimes severe, have been reported in patients receiving LCIG. Cases are generally a sensorimotor polyneuropathy with both subacute and chronic onsets, often associated with vitamin B12 and/or B6 deficiency. Rare cases clinically resemble Guillain-Barré syndrome. In the absence of prospectively collected data on possible associations between LCIG and PN, it is prudent to explore potential mechanisms that may explain a possible relationship. The PN may be linked to use of high-dose levodopa, promoting high levels of homocysteine and methylmalonic acid or reduced absorption of vitamins essential for homocysteine metabolism. Cases of LCIG-associated PN often have responded to vitamin supplementation without need for LCIG cessation, although LCIG cessation is sometimes necessary. It may be advisable to monitor vitamin B12/B6 status before and after patients start LCIG and be vigilant for signs of PN. Prospective, large-scale, long-term studies are needed to clarify whether vitamin supplementation and routine use of a catechol-O-methyltransferase inhibitor may help prevent PN in LCIG recipients and whether these measures should be routine practice in patients with PD on high-dose oral levodopa.

  14. Romidepsin in peripheral and cutaneous T-cell lymphoma: mechanistic implications from clinical and correlative data.

    PubMed

    Bates, Susan E; Eisch, Robin; Ling, Alexander; Rosing, Douglas; Turner, Maria; Pittaluga, Stefania; Prince, H Miles; Kirschbaum, Mark H; Allen, Steven L; Zain, Jasmine; Geskin, Larisa J; Joske, David; Popplewell, Leslie; Cowen, Edward W; Jaffe, Elaine S; Nichols, Jean; Kennedy, Sally; Steinberg, Seth M; Liewehr, David J; Showe, Louise C; Steakley, Caryn; Wright, John; Fojo, Tito; Litman, Thomas; Piekarz, Richard L

    2015-07-01

    Romidepsin is an epigenetic agent approved for the treatment of patients with cutaneous or peripheral T-cell lymphoma (CTCL and PTCL). Here we report data in all patients treated on the National Cancer Institute 1312 trial, demonstrating long-term disease control and the ability to retreat patients relapsing off-therapy. In all, 84 patients with CTCL and 47 with PTCL were enrolled. Responses occurred early, were clinically meaningful and of very long duration in some cases. Notably, patients with PTCL receiving romidepsin as third-line therapy or later had a comparable response rate (32%) of similar duration as the total population (38%). Eight patients had treatment breaks of 3.5 months to 10 years; in four of six patients, re-initiation of treatment led to clear benefit. Safety data show slightly greater haematological and constitutional toxicity in PTCL. cDNA microarray studies show unique individual gene expression profiles, minimal overlap between patients, and both induction and repression of gene expression that reversed within 24 h. These data argue against cell death occurring as a result of an epigenetics-mediated gene induction programme. Together this work supports the safety and activity of romidepsin in T-cell lymphoma, but suggests a complex mechanism of action.

  15. Limb-state information encoded by peripheral and central somatosensory neurons: implications for an afferent interface.

    PubMed

    Weber, Douglas J; London, Brian M; Hokanson, James A; Ayers, Christopher A; Gaunt, Robert A; Torres, Ricardo R; Zaaimi, Boubker; Miller, Lee E

    2011-10-01

    A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of limb state in terms of neural discharge. This model can then be used to design stimuli that artificially activate the nervous system to convey information about limb state to the subject. Electrically activating DRG neurons using naturalistic stimulus patterns, modeled on recordings made during passive limb movement, evoked activity in S1 that was similar to that of the original movement. We also found that S1 neural populations could accurately discriminate different patterns of DRG stimulation across a wide range of stimulus pulse-rates. In studying the neural coding in S1, we also decoded the kinematics of active limb movement using multi-electrode recordings in the monkey. Neurons having both proprioceptive and cutaneous receptive fields contributed equally to this decoding. Some neurons were most informative of limb state in the recent past, but many others appeared to signal upcoming movements suggesting that they also were modulated by an efference copy signal. Finally, we show that a monkey was able to detect stimulation through a large percentage of electrodes implanted in area 2. We discuss the design of appropriate stimulus paradigms for conveying time-varying limb state information, and the relative merits and limitations of central and peripheral approaches.

  16. Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration

    PubMed Central

    Yoo, Soonmoon; van Niekerk, Erna A.; Merianda, Tanuja T.; Twiss, Jeffery L.

    2009-01-01

    Locally generating new proteins in subcellular regions provides means to spatially and temporally modify protein content in polarized cells. Recent years have seen resurgence of the concept that axonal processes of neurons can locally synthesize proteins. Experiments from a number of groups have now shown that axonal protein synthesis helps to initiate growth, provides a means to respond to guidance cues, and generates retrograde signaling complexes. Additionally, there is increasing evidence that locally synthesized proteins provide functions beyond injury responses and growth in the mature peripheral nervous system. A key regulatory event in this translational regulation is moving the mRNA templates into the axonal compartment. Transport of mRNAs into axons is a highly regulated and specific process that requires interaction of RNA binding proteins with specific cis-elements or structures within the mRNAs. mRNAs are transported in ribonucleoprotein particles that interact with microtubule motor proteins for long-range axonal transport and likely use microfilaments for short-range movement in the axons. The mature axon is able to recruit mRNAs into translation with injury and possibly other stimuli suggesting that mRNAs can be stored in a dormant state in the distal axon until needed. Axotomy triggers a shift in the populations of mRNAs localized to axons indicating a dynamic regulation of the specificity of the axonal transport machinery. In this review, we discuss how axonal mRNA transport and localization are regulated to achieve specific changes in axonal RNA content in response to axonal stimuli. PMID:19699200

  17. Mycolactone Diffuses into the Peripheral Blood of Buruli Ulcer Patients - Implications for Diagnosis and Disease Monitoring

    PubMed Central

    Aka, N'Guetta; Phillips, Richard O.; Amoako, Yaw; Boneca, Ivo G.; Lenormand, Pascal; Dosso, Mireille; Wansbrough-Jones, Mark; Veyron-Churlet, Romain; Guenin-Macé, Laure; Demangel, Caroline

    2011-01-01

    Background Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU), is unique among human pathogens in its capacity to produce a polyketide-derived macrolide called mycolactone, making this molecule an attractive candidate target for diagnosis and disease monitoring. Whether mycolactone diffuses from ulcerated lesions in clinically accessible samples and is modulated by antibiotic therapy remained to be established. Methodology/Principal Finding Peripheral blood and ulcer exudates were sampled from patients at various stages of antibiotic therapy in Ghana and Ivory Coast. Total lipids were extracted from serum, white cell pellets and ulcer exudates with organic solvents. The presence of mycolactone in these extracts was then analyzed by a recently published, field-friendly method using thin layer chromatography and fluorescence detection. This approach did not allow us to detect mycolactone accurately, because of a high background due to co-extracted human lipids. We thus used a previously established approach based on high performance liquid chromatography coupled to mass spectrometry. By this means, we could identify structurally intact mycolactone in ulcer exudates and serum of patients, and evaluate the impact of antibiotic treatment on the concentration of mycolactone. Conclusions/Significance Our study provides the proof of concept that assays based on mycolactone detection in serum and ulcer exudates can form the basis of BU diagnostic tests. However, the identification of mycolactone required a technology that is not compatible with field conditions and point-of-care assays for mycolactone detection remain to be worked out. Notably, we found mycolactone in ulcer exudates harvested at the end of antibiotic therapy, suggesting that the toxin is eliminated by BU patients at a slow rate. Our results also indicated that mycolactone titres in the serum may reflect a positive response to antibiotics, a possibility that it will be interesting to examine

  18. Pulmonary vasculature in COPD: The silent component.

    PubMed

    Blanco, Isabel; Piccari, Lucilla; Barberà, Joan Albert

    2016-08-01

    Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction that results from an inflammatory process affecting the airways and lung parenchyma. Despite major abnormalities taking place in bronchial and alveolar structures, changes in pulmonary vessels also represent an important component of the disease. Alterations in vessel structure are highly prevalent and abnormalities in their function impair gas exchange and may result in pulmonary hypertension (PH), an important complication of the disease associated with reduced survival and worse clinical course. The prevalence of PH is high in COPD, particularly in advanced stages, although it remains of mild to moderate severity in the majority of cases. Endothelial dysfunction, with imbalance between vasodilator/vasoconstrictive mediators, is a key determinant of changes taking place in pulmonary vasculature in COPD. Cigarette smoke products may perturb endothelial cells and play a critical role in initiating vascular changes. The concurrence of inflammation, hypoxia and emphysema further contributes to vascular damage and to the development of PH. The use of drugs that target endothelium-dependent signalling pathways, currently employed in pulmonary arterial hypertension, is discouraged in COPD due to the lack of efficacy observed in randomized clinical trials and because there is compelling evidence indicating that these drugs may worsen pulmonary gas exchange. The subgroup of patients with severe PH should be ideally managed in centres with expertise in both PH and chronic lung diseases because alterations of pulmonary vasculature might resemble those observed in pulmonary arterial hypertension. Because this condition entails poor prognosis, it warrants specialist treatment.

  19. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation

    PubMed Central

    Gadd, Victoria L.; Patel, Preya J.; Jose, Sara; Horsfall, Leigh

    2016-01-01

    Background and Aims Liver and systemic inflammatory factors influence monocyte phenotype and function, which has implications for hepatic recruitment and subsequent inflammatory and fibrogenic responses, as well as host defence. Methods Peripheral blood monocyte surface marker (CD14, CD16, CD163, CSF1R, CCR2, CCR4, CCR5, CXCR3, CXCR4, CX3CR1, HLA-DR, CD62L, SIGLEC-1) expression and capacity for phagocytosis, oxidative burst and LPS-stimulated TNF production were assessed in patients with hepatitis C (HCV) (n = 39) or non-alcoholic fatty liver disease (NAFLD) (n = 34) (classified as non-advanced disease, compensated cirrhosis and decompensated cirrhosis) and healthy controls (n = 11) by flow cytometry. Results The selected markers exhibited similar monocyte-subset-specific expression patterns between patients and controls. Monocyte phenotypic signatures differed between NAFLD and HCV patients, with an increased proportion of CD16+ non-classical monocytes in NAFLD, but increased expression of CXCR3 and CXCR4 in HCV. In both cohorts, monocyte CCR2 expression was reduced and CCR4 elevated over controls. CD62L expression was specifically elevated in patients with decompensated cirrhosis and positively correlated with the model-for-end-stage-liver-disease score. Functionally, monocytes from patients with decompensated cirrhosis had equal phagocytic capacity, but displayed features of dysfunction, characterised by lower HLA-DR expression and blunted oxidative responses. Lower monocyte TNF production in response to LPS stimulation correlated with time to death in 7 (46%) of the decompensated patients who died within 8 months of recruitment. Conclusions Chronic HCV and NAFLD differentially affect circulating monocyte phenotype, suggesting specific injury-induced signals may contribute to hepatic monocyte recruitment and systemic activation state. Monocyte function, however, was similarly impaired in patients with both HCV and NAFLD, particularly in advanced disease, which

  20. Mechanisms Underlying Drug Delivery to Peripheral Arteries.

    PubMed

    Li, Jun; Tzafriri, Rami; Patel, Sandeep M; Parikh, Sahil A

    2017-04-01

    Delivery of drugs onto arterial targets via endovascular devices commands several principles: dissolution, diffusion, convection, drug binding, barriers to absorption, and interaction between the drug, delivery vehicle, and accepting arterial wall. The understanding of drug delivery in the coronary vasculature is vast; there is ongoing work needed in the peripheral arteries. There are differences that account for some failures of application of coronary technology into the peripheral vascular space. Breakthroughs in peripheral vascular interventional techniques building on current technologies require investigators willing to acknowledge the similarities and differences between these different vascular territories, while developing technologies adapted for peripheral arteries.

  1. What optimization principle explains the zebrafish vasculature?

    NASA Astrophysics Data System (ADS)

    Chang, Shyr-Shea; Baek, Kyung In; Hsiai, Tzung; Roper, Marcus

    2016-11-01

    Many multicellular organisms depend on biological transport networks; from the veins of leaves to the animal circulatory system, to redistribute nutrients internally. Since natural selection rewards efficiency, those networks are thought to minimize the cost of maintaining the flow inside. But optimizing these costs creates tradeoffs with other functions, e.g. mixing or uniform distribution of nutrients. We develop an extended Lagrange multiplier approach that allows the optimization of general network functionals. We also follow the real zebrafish vasculature and blood flows during organism development. Taken together, our work shows that the challenge of uniform oxygen perfusion, and not transport efficiency, explain zebrafish vascular organization. Ruth L. Kirschstein National Research Service Award (T32-GM008185).

  2. Tendon Vasculature in Health and Disease

    PubMed Central

    Tempfer, Herbert; Traweger, Andreas

    2015-01-01

    Tendons represent a bradytrophic tissue which is poorly vascularized and, compared to bone or skin, heal poorly. Usually, a vascularized connective scar tissue with inferior functional properties forms at the injury site. Whether the increased vascularization is the root cause of tissue impairments such as loss of collagen fiber orientation, ectopic formation of bone, fat or cartilage, or is a consequence of these pathological changes remains unclear. This review provides an overview of the role of tendon vasculature in healthy and chronically diseased tendon tissue as well as its relevance for tendon repair. Further, the nature and the role of perivascular tendon stem/progenitor cells residing in the vascular niche will be discussed and compared to multipotent stromal cells in other tissues. PMID:26635616

  3. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  4. Hippo Signaling Mediators Yap and Taz Are Required in the Epicardium for Coronary Vasculature Development.

    PubMed

    Singh, Anamika; Ramesh, Sindhu; Cibi, Dasan Mary; Yun, Lim Sze; Li, Jun; Li, Li; Manderfield, Lauren J; Olson, Eric N; Epstein, Jonathan A; Singh, Manvendra K

    2016-05-17

    Formation of the coronary vasculature is a complex and precisely coordinated morphogenetic process that begins with the formation of epicardium. The epicardium gives rise to many components of the coronary vasculature, including fibroblasts, smooth muscle cells, and endothelium. Hippo signaling components have been implicated in cardiac development and regeneration. However, a role of Hippo signaling in the epicardium has not been explored. Employing a combination of genetic and pharmacological approaches, we demonstrate that inhibition of Hippo signaling mediators Yap and Taz leads to impaired epicardial epithelial-to-mesenchymal transition (EMT) and a reduction in epicardial cell proliferation and differentiation into coronary endothelial cells. We provide evidence that Yap and Taz control epicardial cell behavior, in part by regulating Tbx18 and Wt1 expression. Our findings show a role for Hippo signaling in epicardial cell proliferation, EMT, and cell fate specification during cardiac organogenesis.

  5. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development

    PubMed Central

    Singh, Anamika; Ramesh, Sindhu; Cibi, Dasan Mary; Yun, Lim Sze; Li, Jun; Li, Li; Manderfield, Lauren J.; Olson, Eric N.; Epstein, Jonathan A.; Singh, Manvendra K.

    2016-01-01

    Summary Formation of the coronary vasculature is a complex and precisely coordinated morphogenetic process that begins with the formation of epicardium. The epicardium gives rise to many components of the coronary vasculature, including fibroblasts, smooth muscle cells and endothelium. Hippo signaling components have been implicated in cardiac development and regeneration. However a role of Hippo signaling in the epicardium has not been explored. Employing a combination of genetic and pharmacological approaches, we demonstrate that inhibition of Hippo signaling mediators Yap and Taz leads to impaired epicardial epithelial-to-mesenchymal transition (EMT) and a reduction in epicardial cell proliferation and differentiation into coronary endothelial cells. We provide evidence that Yap and Taz control epicardial cell behavior, in part by regulating Tbx18 and Wt1 expression. Our findings show a role for Hippo signaling in epicardial cell proliferation, EMT and cell fate specification during cardiac organogenesis. PMID:27160901

  6. Neocortical vasculature abnormalities in the Fragile X mental retardation syndrome.

    PubMed

    Galvan, Ashley M; Galvez, Roberto

    2012-08-30

    The Fragile X syndrome (FXS) is the leading form of inherited mental retardation. To date, the most prominent neuronal phenotype associated with the syndrome is an abundance of long thin spines exhibiting an immature morphology. However, in addition to synaptic abnormalities, recent case studies have demonstrated that Fragile X (FX) patients also exhibit abnormal cerebral blood flow (CBF). To examine the role of the Fragile X mental retardation protein (FMRP) in altering CBF, we examined blood vessel density (BVD) in the visual cortex of Adult and Middle-aged FX mice. Analysis of Middle-aged FX mice demonstrated elevated BVD compared to wildtype controls, suggesting that FX mice exhibit a lack of age-induced BVD plasticity. However, Adult FX and wildtype mice did not exhibit consistent differences in BVD. These data demonstrate that FMRP is required for age-induced neocortical vasculature plasticity. Furthermore, these data suggest a new role for FMRP in blood vessel regulation that would have profound implications towards appropriately timed delivery of neuronal nutrients, thus contributing to or exacerbating FX cognitive and neuronal abnormalities.

  7. Local oestrogenic/androgenic balance in the cerebral vasculature.

    PubMed

    Krause, D N; Duckles, S P; Gonzales, R J

    2011-09-01

    Reproductive effects of sex steroids are well-known; however it is increasingly apparent that these hormones have important actions on non-reproductive tissues such as the vasculature. The latter effects can be relevant throughout the lifespan, not just limited to reproductive years, and are not necessarily restricted to one gender or the other. Our work has established that cerebral blood vessels are a non-reproductive target tissue for sex steroids. We have found that oestrogen and androgens alter vascular tone, endothelial function, oxidative stress and inflammatory responses in cerebral vessels. Often the actions of oestrogen and androgens oppose each other. Moreover, it is clear that cerebral vessels are directly targeted by sex steroids, as they express specific receptors for these hormones. Interestingly, cerebral blood vessels also express enzymes that metabolize sex steroids. These findings suggest that local synthesis of 17ß-estradiol and dihydrotestosterone can occur within the vessel wall. One of the enzymes present, aromatase, converts testosterone to 17ß-estradiol, which would alter the local balance of androgenic and oestrogenic influences. Thus cerebral vessels are affected by circulating sex hormones as well as locally synthesized sex steroids. The presence of vascular endocrine effector mechanisms has important implications for male-female differences in cerebrovascular function and disease. Moreover, the cerebral circulation is a target for gonadal hormones as well as anabolic steroids and therapeutic drugs used to manipulate sex steroid actions. The long-term consequences of these influences are yet to be determined.

  8. Functional photoacoustic microscopy of diabetic vasculature.

    PubMed

    Krumholz, Arie; Wang, Lidai; Yao, Junjie; Wang, Lihong V

    2012-06-01

    We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (≈ 400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change.

  9. Vascular metallomics: copper in the vasculature

    PubMed Central

    Easter, Renee N.; Chan, Qilin; Lai, Barry; Ritman, Erik L.; Caruso, Joseph A.; Qin, Zhenyu

    2009-01-01

    Due to recent progress in analytical techniques, metallomics are evolving from detecting distinct trace metals in a defined state to monitoring the dynamic changes in the abundance and location of trace metals in vitro and in vivo. Vascular metallomics is an emerging field that studies the role of trace metals in vasculature. This review will introduce common metallomics techniques including atomic absorption spectrometry, inductively coupled plasma-atomic emission spectrometry, inductively coupled plasma-mass spectrometry and X-ray fluorescence spectrometry with a summary table to compare these techniques. Moreover, we will summarize recent research findings that have applied these techniques to human population studies in cardiovascular diseases, with a particular emphasis on the role of copper in these diseases. In order to address the issue of interdisciplinary studies between metallomics and vascular biology, we will review the progress of efforts to understand the role of copper in neovascularization. This recent progress in the metallomics field may be a powerful tool to elucidating the signaling pathways and specific biological functions of these trace metals. Finally, we summarize the evidence to support the notion that copper is a dynamic signaling molecule. As a future direction, vascular metallomics studies may lead to the identification of targets for diagnosis and therapy in cardiovascular disease. PMID:19808712

  10. Functional photoacoustic microscopy of diabetic vasculature

    NASA Astrophysics Data System (ADS)

    Krumholz, Arie; Wang, Lidai; Yao, Junjie; Wang, Lihong V.

    2012-06-01

    We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (~400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change.

  11. Matrix stiffening promotes a tumor vasculature phenotype

    PubMed Central

    Bordeleau, Francois; Mason, Brooke N.; Lollis, Emmanuel Macklin; Mazzola, Michael; Zanotelli, Matthew R.; Somasegar, Sahana; Califano, Joseph P.; Montague, Christine; LaValley, Danielle J.; Huynh, John; Mencia-Trinchant, Nuria; Negrón Abril, Yashira L.; Hassane, Duane C.; Bonassar, Lawrence J.; Butcher, Jonathan T.; Weiss, Robert S.; Reinhart-King, Cynthia A.

    2017-01-01

    Tumor microvasculature tends to be malformed, more permeable, and more tortuous than vessels in healthy tissue, effects that have been largely attributed to up-regulated VEGF expression. However, tumor tissue tends to stiffen during solid tumor progression, and tissue stiffness is known to alter cell behaviors including proliferation, migration, and cell–cell adhesion, which are all requisite for angiogenesis. Using in vitro, in vivo, and ex ovo models, we investigated the effects of matrix stiffness on vessel growth and integrity during angiogenesis. Our data indicate that angiogenic outgrowth, invasion, and neovessel branching increase with matrix cross-linking. These effects are caused by increased matrix stiffness independent of matrix density, because increased matrix density results in decreased angiogenesis. Notably, matrix stiffness up-regulates matrix metalloproteinase (MMP) activity, and inhibiting MMPs significantly reduces angiogenic outgrowth in stiffer cross-linked gels. To investigate the functional significance of altered endothelial cell behavior in response to matrix stiffness, we measured endothelial cell barrier function on substrates mimicking the stiffness of healthy and tumor tissue. Our data indicate that barrier function is impaired and the localization of vascular endothelial cadherin is altered as function of matrix stiffness. These results demonstrate that matrix stiffness, separately from matrix density, can alter vascular growth and integrity, mimicking the changes that exist in tumor vasculature. These data suggest that therapeutically targeting tumor stiffness or the endothelial cell response to tumor stiffening may help restore vessel structure, minimize metastasis, and aid in drug delivery. PMID:28034921

  12. Quantitative peripheral blood perturbations of γδ T cells in human disease and their clinical implications.

    PubMed

    Bank, Ilan; Marcu-Malina, Victoria

    2014-12-01

    Human γδ T cells, which play innate and adaptive, protective as well as destructive, roles in the immune response, were discovered in 1986, but the clinical significance of alterations of the levels of these cells in the peripheral blood in human diseases has not been comprehensively reviewed. Here, we review patterns of easily measurable changes of this subset of T cells in peripheral blood from relevant publications in PubMed and their correlations with specific disease categories, specific diagnoses within disease categories, and prognostic outcomes. These collective data suggest that enumeration of γδ T cells and their subsets in the peripheral blood of patients could be a useful tool to evaluate diagnosis and prognosis in the clinical setting.

  13. GPU accelerating technique for rendering implicitly represented vasculatures.

    PubMed

    Hong, Qingqi; Wang, Beizhan; Li, Qingde; Li, Yan; Wu, Qingqiang

    2014-01-01

    With the flooding datasets of medical Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), implicit modeling techniques are increasingly applied to reconstruct the human organs, especially the vasculature. However, displaying implicitly represented geometric objects arises heavy computational burden. In this study, a Graphics Processing Unit (GPU) accelerating technique was developed for high performance rendering of implicitly represented objects, especially the vasculatures. The experimental results suggested that the rendering performance was greatly enhanced via exploiting the advantages of modern GPUs.

  14. Peripheral Neuropathy

    MedlinePlus

    Peripheral neuropathy Overview By Mayo Clinic Staff Peripheral neuropathy, a result of damage to your peripheral nerves, often causes weakness, numbness and pain, usually in your hands and feet. It can also ...

  15. Hierarchical bioimaging and quantification of vasculature in disease models using corrosion casts and microcomputed tomography

    NASA Astrophysics Data System (ADS)

    Heinzer, Stefan; Krucker, Thomas; Stampanoni, Marco; Abela, Rafael; Meyer, Eric P.; Schuler, Alexandra; Schneider, Philipp; Muller, Ralph

    2004-10-01

    A wide range of disorders are associated with alterations of the central and peripheral vascular system. Modified vascular corrosion casting using a newly developed polymer, allows for the first time hierarchical assessment of 3D vessel data in animals down to the level of capillaries. Imaging of large volumes of vasculature at intermediate resolution (16 um) was performed using a desktop micro-computed tomography system. Subsequently regions of interest were identified for additional high resolution imaging (1.4 um) at the X-ray Tomographic Microscopy (XTM) station of the Swiss Light Source (SLS). A framework for systematic hierarchical imaging and quantification was developed. Issues addressed included enhanced XTM data acquisition, introduction of local tomography, sample navigation, advanced post processing, and data combination. In addition to visual assessment of qualitative changes, morphometrical and architectural indices were determined using direct 3D morphometry software developed in house. Vessel specific parameters included thickness, surface, connectivity, and vessel length. Reconstructions of cerebral vasculature in mutant mice modeling Alzheimer's disease revealed significant changes in vessel architecture and morphology. In the future, a combination of these techniques may support drug discovery. Additionally, future ultra-high-resolution in vivo systems may even allow non-invasive tracking of temporal alterations in vascular morphology.

  16. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease.

    PubMed

    Jones, Simon P; Franco, Nunzio F; Varney, Bianca; Sundaram, Gayathri; Brown, David A; de Bie, Josien; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J

    2015-01-01

    The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.

  17. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease

    PubMed Central

    Jones, Simon P.; Franco, Nunzio F.; Varney, Bianca; Sundaram, Gayathri; Brown, David A.; de Bie, Josien; Lim, Chai K.; Guillemin, Gilles J.; Brew, Bruce J.

    2015-01-01

    The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes. PMID:26114426

  18. The Multifaceted Role of the Vasculature in Endochondral Fracture Repair

    PubMed Central

    Bahney, Chelsea S.; Hu, Diane P.; Miclau, Theodore; Marcucio, Ralph S.

    2015-01-01

    Fracture healing is critically dependent upon an adequate vascular supply. The normal rate for fracture delayed or non-union is estimated to be between 10 and 15%, and annual fracture numbers are approximately 15 million cases per year. However, when there is decreased vascular perfusion to the fracture, incidence of impaired healing rises dramatically to 46%. Reduction in the blood supply to the fracture can be the result of traumatic injuries that physically disrupt the vasculature and damage supportive soft tissue, the result of anatomical location (i.e., distal tibia), or attributed to physiological conditions such as age, diabetes, or smoking. The role of the vasculature during repair is multifaceted and changes during the course of healing. In this article, we review recent insights into the role of the vasculature during fracture repair. Taken together these data highlight the need for an updated model for endochondral repair to facilitate improved therapeutic approaches to promote bone healing. PMID:25699016

  19. Modeling Nanoparticle Transport and Distribution in Lung Vasculature

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Zheng, Junda

    2013-11-01

    The nanoparticle targeted delivery in vascular system involves interplay of transport, hydrodynamic force, and multivalent interactions with targeted biosurfaces. To estimate the percentage of NPs delivered to the targeted region, properties of the vascular environment must be considered, i.e., the vascular geometry and flow conditions. This paper describes a computational model for NP transport and distribution in a complex lung vasculature through combined NP Brownian dynamics and computational fluid dynamics approaches. MRI sliced lung vasculature images are transferred into vascular geometry, discretized into tetrahedral meshes, and used in blood velocity calculation and particle deposition simulation. A non-uniform NP distribution is observed on the vascular surface, with a high NP concentration in the bifurcation region. The simulation results show that NPs with different size have different distribution pattern in lung vasculature. This study provides a tool to predict NP distribution in a complex vascular network.

  20. Regulation of peripheral blood flow in Complex Regional Pain Syndrome: clinical implication for symptomatic relief and pain management

    PubMed Central

    Groeneweg, George; Huygen, Frank JPM; Coderre, Terence J; Zijlstra, Freek J

    2009-01-01

    Background During the chronic stage of Complex Regional Pain Syndrome (CRPS), impaired microcirculation is related to increased vasoconstriction, tissue hypoxia, and metabolic tissue acidosis in the affected limb. Several mechanisms may be responsible for the ischemia and pain in chronic cold CPRS. Discussion The diminished blood flow may be caused by either sympathetic dysfunction, hypersensitivity to circulating catecholamines, or endothelial dysfunction. The pain may be of neuropathic, inflammatory, nociceptive, or functional nature, or of mixed origin. Summary The origin of the pain should be the basis of the symptomatic therapy. Since the difference in temperature between both hands fluctuates over time in cold CRPS, when in doubt, the clinician should prioritize the patient's report of a persistent cold extremity over clinical tests that show no difference. Future research should focus on developing easily applied methods for clinical use to differentiate between central and peripheral blood flow regulation disorders in individual patients. PMID:19775468

  1. Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight

    NASA Technical Reports Server (NTRS)

    Cassone, Vincent M.; Stephan, Friedrich K.

    2002-01-01

    Circadian clocks have evolved to predict and coordinate physiologic processes with the rhythmic environment on Earth. Space studies in non-human primates and humans have suggested that this clock persists in its rhythmicity in space but that its function is altered significantly in long-term space flight. Under normal circumstances, the clock is synchronized by the light-dark cycle via the retinohypothalamic tract and the suprachiasmatic nucleus. It is also entrained by restricted feeding regimes via a suprachiasmatic nucleus-independent circadian oscillator. The site of this suboscillator (or oscillators) is not known, but new evidence has suggested that peripheral tissues in the liver and viscera may express circadian clock function when forced to do so by restricted feeding schedules or other homeostatic disruptions. New research on the role of the circadian clock in the control of feeding on Earth and in space is warranted.

  2. TRPA1 channels in the vasculature

    PubMed Central

    Earley, Scott

    2012-01-01

    This review is focused on the role of the ankyrin (A) transient receptor potential (TRP) channel TRPA1 in vascular regulation. TRPA1 is activated by environmental irritants, pungent compounds found in foods such as garlic, mustard and cinnamon, as well as metabolites produced during oxidative stress. The structure of the channel is distinguished by the ∼14–19 ankyrin repeat (AR) domains present in the intracellular amino terminus. TRPA1 has a large unitary conductance (98 pS) and slight selectivity for Ca2+ versus Na+ ions (PCa/PNa ≍ 7.9). TRPA1 is involved in numerous important physiological processes, including nociception, mechanotransduction, and thermal and oxygen sensing. TRPA1 agonists cause arterial dilation through two distinctive pathways. TRPA1 channels present in perivascular nerves mediate vasodilatation of peripheral arteries in response to chemical agonists through a mechanism requiring release of calcitonin gene-related peptide. In the cerebral circulation, TRPA1 channels are present in the endothelium, concentrated within myoendothelial junction sites. Activation of TRPA1 channels in this vascular bed causes endothelium-dependent smooth muscle cell hyperpolarization and vasodilatation that requires the activity of small and intermediate conductance Ca2+-activated K+ channels. Systemic administration of TRPA1 agonists causes transient depressor responses, followed by sustained increases in heart rate and blood pressure that may result from elevated sympathetic nervous activity. These findings indicate that TRPA1 activity influences vascular function, but the precise role and significance of the channel in the cardiovascular system remains to be determined. PMID:22563804

  3. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes.

    PubMed

    Ruggiero, Alessandro; Villa, Carlos H; Holland, Jason P; Sprinkle, Shanna R; May, Chad; Lewis, Jason S; Scheinberg, David A; McDevitt, Michael R

    2010-10-05

    Single wall carbon nanotube (SWCNT) constructs were covalently appended with radiometal-ion chelates (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA] or desferrioxamine B [DFO]) and the tumor neovascular-targeting antibody E4G10. The E4G10 antibody specifically targeted the monomeric vascular endothelial-cadherin (VE-cad) epitope expressed in the tumor angiogenic vessels. The construct specific activity and blood compartment clearance kinetics were significantly improved relative to corresponding antibodyalone constructs. We performed targeted radioimmunotherapy with a SWCNT-([(225)Ac]DOTA) (E4G10) construct directed at the tumor vasculature in a murine xenograft model of human colon adenocarcinoma (LS174T). The specific construct reduced tumor volume and improved median survival relative to controls. We also performed positron emission tomographic (PET) radioimmunoimaging of the tumor vessels with a SWCNT-([(89)Zr]DFO)(E4G10) construct in the same murine LS174T xenograft model and compared the results to appropriate controls. Dynamic and longitudinal PET imaging of LS174T tumor-bearing mice demonstrated rapid blood clearance (<1 hour) and specific tumor accumulation of the specific construct. Incorporation of the SWCNT scaffold into the construct design permitted us to amplify the specific activity to improve the signal-to-noise ratio without detrimentally impacting the immunoreactivity of the targeting antibody moiety. Furthermore, we were able to exploit the SWCNT pharmacokinetic (PK) profile to favorably alter the blood clearance and provide an advantage for rapid imaging. Near-infrared three-dimensional fluorescent-mediated tomography was used to image the LS174T tumor model, collect antibody-alone PK data, and calculate the number of copies of VE-cad epitope per cell. All of these studies were performed as a single administration of construct and were found to be safe and well tolerated by the murine model. These data have implications that

  4. Identification of functional progenitor cells in the pulmonary vasculature

    PubMed Central

    Firth, Amy L.; Yuan, Jason X. -J.

    2012-01-01

    The pulmonary vasculature comprises a complex network of branching arteries and veins all functioning to reoxygenate the blood for circulation around the body. The cell types of the pulmonary artery are able to respond to changes in oxygen tension in order to match ventilation to perfusion. Stem and progenitor cells in the pulmonary vasculature are also involved, be it in angiogenesis, endothelial dysfunction or formation of vascular lesions. Stem and progenitor cells may be circulating around the body, residing in the pulmonary artery wall or stimulated for release from a central niche like the bone marrow and home to the pulmonary vasculature along a chemotactic gradient. There may currently be some controversy over the pathogenic versus therapeutic roles of stem and progenitor cells and, indeed, it is likely both chains of evidence are correct due to the specific influence of the immediate environmental niche a progenitor cell may be in. Due to their great plasticity and a lack of specific markers for stem and progenitor cells, they can be difficult to precisely identify. This review discusses the methodological approaches used to validate the presence of and subtype of progenitors cells in the pulmonary vasculature while putting it in context of the current knowledge of the therapeutic and pathogenic roles for such progenitor cells. PMID:22558524

  5. Thermal modelling using discrete vasculature for thermal therapy: a review

    PubMed Central

    Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.

    2013-01-01

    Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700

  6. The lymphatic vasculature: development and role in shaping immunity.

    PubMed

    Betterman, Kelly L; Harvey, Natasha L

    2016-05-01

    The lymphatic vasculature is an integral component of the immune system. Lymphatic vessels are a key highway via which immune cells are trafficked, serving not simply as a passive route of transport, but to actively shape and coordinate immune responses. Reciprocally, immune cells provide signals that impact the growth, development, and activity of the lymphatic vasculature. In addition to immune cell trafficking, lymphatic vessels are crucial for fluid homeostasis and lipid absorption. The field of lymphatic vascular research is rapidly expanding, fuelled by rapidly advancing technology that has enabled the manipulation and imaging of lymphatic vessels, together with an increasing recognition of the involvement of lymphatic vessels in a myriad of human pathologies. In this review we provide an overview of the genetic pathways and cellular processes important for development and maturation of the lymphatic vasculature, discuss recent work revealing important roles for the lymphatic vasculature in directing immune cell traffic and coordinating immune responses and highlight the involvement of lymphatic vessels in a range of pathological settings.

  7. Effect of Ergot Alkaloids on Bovine Foregut Vasculature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids induce vasoconstriction of bovine foregut vasculature. Ergovaline induced the greatest response in ruminal artery while ergovaline and ergotamine induced the greatest response in ruminal vein. Lysergic acid did not stimulate a contractile response in either the ruminal artery or vein...

  8. High-dose mitoxantrone with peripheral blood progenitor cell rescue: toxicity, pharmacokinetics and implications for dosage and schedule.

    PubMed Central

    Ballestrero, A.; Ferrando, F.; Garuti, A.; Basta, P.; Gonella, R.; Esposito, M.; Vannozzi, M. O.; Sorice, G.; Friedman, D.; Puglisi, M.; Brema, F.; Mela, G. S.; Sessarego, M.; Patrone, F.

    1997-01-01

    The optimal use of mitoxantrone (NOV) in the high-dose range requires elucidation of its maximum tolerated dose with peripheral blood progenitor cell (PBPC) support and the time interval needed between drug administration and PBPC reinfusion in order to avoid graft toxicity. The aims of this study were: (1) to verify the feasibility and haematological toxicity of escalating NOV up to 90 mg m(-2) with PBPC support; and (2) to verify the safeness of a short (96 h) interval between NOV administration and PBPC reinfusion. Three cohorts of ten patients with breast cancer (BC) or non-Hodgkin's lymphoma (NHL) received escalating doses of NOV, 60, 75 and 90 mg m(-2) plus melphalan (L-PAM), 140-180 mg m(-2), with PBPC rescue 96 h after NOV. Haematological toxicity was evaluated daily (WHO criteria). NOV plasma pharmacokinetics was also evaluated, as well as NOV cytotoxicity against PBPCs. Haematological recovery was rapid and complete at each NOV dose level without statistically significant differences, and there were no major toxicities. NOV plasma concentrations at the time of PBPC reinfusion were below the toxicity threshold against haemopoietic progenitors. It is concluded that, when adequately supported with PBPCs, NOV can be escalated up to 90 mg m(-2) with acceptable haematological toxicity. PBPCs can be safely reinfused as early as 96 h after NOV administration. PMID:9310249

  9. Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy.

    PubMed

    Régina, Anthony; Jodoin, Julie; Khoueir, Paul; Rolland, Yannève; Berthelet, France; Moumdjian, Robert; Fenart, Laurence; Cecchelli, Romeo; Demeule, Michel; Béliveau, Richard

    2004-01-15

    Primary brain tumors, particularly glioblastomas (GB), remain a challenge for oncology. An element of the malignant brain tumors' aggressive behavior is the fact that GB are among the most densely vascularized tumors. To determine some of the molecular regulations occuring at the brain tumor endothelium level during tumoral progression would be an asset in understanding brain tumor biology. Caveolin-1 is an essential structural constituent of caveolae that has been implicated in mitogenic signaling, oncogenesis, and angiogenesis. In this work we investigated regulation of caveolin-1 expression in brain endothelial cells (ECs) under angiogenic conditions. In vitro, brain EC caveolin-1 is down-regulated by angiogenic factors treament and by hypoxia. Coculture of brain ECs with tumoral cells induced a similar down-regulation. In addition, activation of the p42/44 MAP kinase is demonstrated. By using an in vivo brain tumor model, we purified ECs from gliomas as well as from normal brain to investigate possible regulation of caveolin-1 expression in tumoral brain vasculature. We show that caveolin-1 expression is strikingly down-regulated in glioma ECs, whereas an increase of phosphorylated caveolin-1 is observed. Whole-brain radiation treatment, a classical way in which GB is currently being treated, resulted in increased caveolin-1 expression in tumor isolated ECs. The level of tumor cells spreading around newly formed blood vessels was also elevated. The regulation of caveolin-1 expression in tumoral ECs may reflect the tumoral vasculature state and correlates with angiogenesis kinetics.

  10. Imaging of retinal vasculature using adaptive optics SLO/OCT

    PubMed Central

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K.; Pircher, Michael

    2015-01-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system. PMID:25909024

  11. Imaging of retinal vasculature using adaptive optics SLO/OCT.

    PubMed

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K; Pircher, Michael

    2015-04-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system.

  12. System for definition of the central-chest vasculature

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2009-02-01

    Accurate definition of the central-chest vasculature from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. For instance, the aorta and pulmonary artery help in automatic definition of the Mountain lymph-node stations for lung-cancer staging. This work presents a system for defining major vascular structures in the central chest. The system provides automatic methods for extracting the aorta and pulmonary artery and semi-automatic methods for extracting the other major central chest arteries/veins, such as the superior vena cava and azygos vein. Automatic aorta and pulmonary artery extraction are performed by model fitting and selection. The system also extracts certain vascular structure information to validate outputs. A semi-automatic method extracts vasculature by finding the medial axes between provided important sites. Results of the system are applied to lymph-node station definition and guidance of bronchoscopic biopsy.

  13. 3D morphological measurement of whole slide histological vasculature reconstructions

    NASA Astrophysics Data System (ADS)

    Xu, Yiwen; Pickering, J. G.; Nong, Zengxuan; Ward, Aaron D.

    2016-03-01

    Properties of the microvasculature that contribute to tissue perfusion can be assessed using immunohistochemistry on 2D histology sections. However, the vasculature is inherently 3D and the ability to measure and visualize the vessel wall components in 3D will aid in detecting focal pathologies. Our objectives were (1) to develop a method for 3D measurement and visualization of microvasculature in 3D, (2) to compare the normal and regenerated post-ischemia mouse hind limb microvasculature, and (3) to compare the 2D and 3D vessel morphology measures. Vessels were stained for smooth muscle using 3,3'-Diaminobenzidine (DAB) immunostain for both normal (n = 6 mice) and regenerated vasculature (n = 5 mice). 2D vessel segmentations were reconstructed into 3D using landmark based registration. No substantial bias was found in the 2D measurements relative to 3D, but larger differences were observed for individual vessels oriented non-orthogonally to the plane of sectioning. A larger value of area, perimeter, and vessel wall thickness was found in the normal vasculature as compared to the regenerated vasculature, for both the 2D and 3D measurements (p < 0.01). Aggregated 2D measurements are sufficient for identifying morphological differences between groups of mice; however, one must interpret individual 2D measurements with caution if the vessel centerline direction is unknown. Visualization of 3D measurements permits the detection of localized vessel morphology aberrations that are not revealed by 2D measurements. With vascular measure visualization methodologies in 3D, we are now capable of locating focal pathologies on a whole slide level.

  14. Segmentation and separation of venous vasculatures in liver CT images

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Hansen, Christian; Zidowitz, Stephan; Hahn, Horst K.

    2014-03-01

    Computer-aided analysis of venous vasculatures including hepatic veins and portal veins is important in liver surgery planning. The analysis normally consists of two important pre-processing tasks: segmenting both vasculatures and separating them from each other by assigning different labels. During the acquisition of multi-phase CT images, both of the venous vessels are enhanced by injected contrast agent and acquired either in a common phase or in two individual phases. The enhanced signals established by contrast agent are often not stably acquired due to non-optimal acquisition time. Inadequate contrast and the presence of large lesions in oncological patients, make the segmentation task quite challenging. To overcome these diffculties, we propose a framework with minimal user interactions to analyze venous vasculatures in multi-phase CT images. Firstly, presented vasculatures are automatically segmented adopting an efficient multi-scale Hessian-based vesselness filter. The initially segmented vessel trees are then converted to a graph representation, on which a series of graph filters are applied in post-processing steps to rule out irrelevant structures. Eventually, we develop a semi-automatic workow to refine the segmentation in the areas of inferior vena cava and entrance of portal veins, and to simultaneously separate hepatic veins from portal veins. Segmentation quality was evaluated with intensive tests enclosing 60 CT images from both healthy liver donors and oncological patients. To quantitatively measure the similarities between segmented and reference vessel trees, we propose three additional metrics: skeleton distance, branch coverage, and boundary surface distance, which are dedicated to quantifying the misalignment induced by both branching patterns and radii of two vessel trees.

  15. Physics of the tumor vasculature: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Rieger, Heiko; Fredrich, Thierry; Welter, Michael

    2016-02-01

    Growing solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth and gain of metastatic potential. Consequently the tumor vasculature has been a major target of anti cancer therapies since four decades. The main underlying strategic concepts range from "starving a tumor to death" over "blood vessel normalization" to "blood vessel growth promotion" for improved drug delivery and oxygenation for increased success rates of radiation therapy. A mechanistic understanding of the these strategies is often elusive and call for a quantitative analysis of the underlying physics. Oxygen supply as well as drug delivery is determined by blood and interstitial fluid flow, for which reason such an analysis must focus on the relation between the intra- and extra-vascular transport characteristics and the tumor vasculature morphology. Here we review the current status of theoretical concepts and computational analysis of physical determinants of the tumor vasculature and the emerging predictions for blood flow, oxygen distribution, interstitial fluid pressure and efficiency of drug delivery.

  16. Image fusion for visualization of hepatic vasculature and tumors

    NASA Astrophysics Data System (ADS)

    Chou, Jin-Shin; Chen, Shiuh-Yung J.; Sudakoff, Gary S.; Hoffmann, Kenneth R.; Chen, Chin-Tu; Dachman, Abraham H.

    1995-05-01

    We have developed segmentation and simultaneous display techniques to facilitate the visualization of the three-dimensional spatial relationships between organ structures and organ vasculature. We concentrate on the visualization of the liver based on spiral computed tomography images. Surface-based 3-D rendering and maximal intensity projection algorithms are used for data visualization. To extract the liver in the serial of images accurately and efficiently, we have developed a user-friendly interactive program with a deformable-model segmentation. Surface rendering techniques are used to visualize the extracted structures, adjacent contours are aligned and fitted with a Bezier surface to yield a smooth surface. Visualization of the vascular structures, portal and hepatic veins, is achieved by applying a MIP technique to the extracted liver volume. To integrate the extracted structures they are surface-rendered and their MIP images are aligned and a color table is designed for simultaneous display of the combined liver/tumor and vasculature images. By combining the 3-D surface rendering and MIP techniques, portal veins, hepatic veins, and hepatic tumor can be inspected simultaneously and their spatial relationships can be more easily perceived. The proposed technique will be useful for visualization of both hepatic neoplasm and vasculature in surgical planning for tumor resection or living-donor liver transplantation.

  17. Response of the cerebral vasculature following traumatic brain injury.

    PubMed

    Salehi, Arjang; Zhang, John H; Obenaus, Andre

    2017-01-01

    The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.

  18. Effects of dietary amines on the gut and its vasculature.

    PubMed

    Broadley, Kenneth J; Akhtar Anwar, M; Herbert, Amy A; Fehler, Martina; Jones, Elen M; Davies, Wyn E; Kidd, Emma J; Ford, William R

    2009-06-01

    Trace amines, including tyramine and beta-phenylethylamine (beta-PEA), are constituents of many foods including chocolate, cheeses and wines and are generated by so-called 'friendly' bacteria such as Lactobacillus, Lactococcus and Enterococcus species, which are found in probiotics. We therefore examined whether these dietary amines could exert pharmacological effects on the gut and its vasculature. In the present study we examined the effects of tyramine and beta-PEA on the contractile activity of guinea-pig and rat ileum and upon the isolated mesenteric vasculature and other blood vessels. Traditionally, these amines are regarded as sympathomimetic amines, exerting effects through the release of noradrenaline from sympathetic nerve endings, which should relax the gut. A secondary aim was therefore to confirm this mechanism of action. However, contractile effects were observed in the gut and these were independent of noradrenaline, acetylcholine, histamine and serotonin receptors. They were therefore probably due to the recently described trace amine-associated receptors. These amines relaxed the mesenteric vasculature. In contrast, the aorta and coronary arteries were constricted, a response that was also independent of a sympathomimetic action. From these results, we propose that after ingestion, trace amines could stimulate the gut and improve intestinal blood flow. Restriction of blood flow elsewhere diverts blood to the gut to aid digestion. Thus, trace amines in the diet may promote the digestive process through stimulation of the gut and improved gastrointestinal circulation.

  19. Lung vasculature imaging using speckle variance optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lee, Anthony M. D.; Lane, Pierre M.; McWilliams, Annette; Shaipanich, Tawimas; MacAulay, Calum E.; Yang, Victor X. D.; Lam, Stephen

    2012-02-01

    Architectural changes in and remodeling of the bronchial and pulmonary vasculature are important pathways in diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. However, there is a lack of methods that can find and examine small bronchial vasculature in vivo. Structural lung airway imaging using optical coherence tomography (OCT) has previously been shown to be of great utility in examining bronchial lesions during lung cancer screening under the guidance of autofluorescence bronchoscopy. Using a fiber optic endoscopic OCT probe, we acquire OCT images from in vivo human subjects. The side-looking, circumferentially-scanning probe is inserted down the instrument channel of a standard bronchoscope and manually guided to the imaging location. Multiple images are collected with the probe spinning proximally at 100Hz. Due to friction, the distal end of the probe does not spin perfectly synchronous with the proximal end, resulting in non-uniform rotational distortion (NURD) of the images. First, we apply a correction algorithm to remove NURD. We then use a speckle variance algorithm to identify vasculature. The initial data show a vascaulture density in small human airways similar to what would be expected.

  20. Role of lymphatic vasculature in regional and distant metastases.

    PubMed

    Podgrabinska, Simona; Skobe, Mihaela

    2014-09-01

    In cancer, lymphatic vasculature has been traditionally viewed only as a transportation system for metastatic cells. It has now become clear that lymphatics perform many additional functions which could influence cancer progression. Lymphangiogenesis, induced at the primary tumor site and at distant sites, potently augments metastasis. Lymphatic endothelial cells (LECs) control tumor cell entry and exit from the lymphatic vessels. LECs also control immune cell traffic and directly modulate adaptive immune responses. This review highlights advances in our understanding of the mechanisms by which lymphatic vessels, and in particular lymphatic endothelium, impact metastasis.

  1. Biologic Effects of Dopamine on Tumor Vasculature in Ovarian Carcinoma12

    PubMed Central

    Moreno-Smith, Myrthala; Lee, Sun Joo; Lu, Chunhua; Nagaraja, Archana S; He, Guangan; Rupaimoole, Rajesha; Han, Hee Dong; Jennings, Nicholas B; Roh, Ju-Won; Nishimura, Masato; Kang, Yu; Allen, Julie K; Armaiz, Guillermo N; Matsuo, Koji; Shahzad, Mian M K; Bottsford-Miller, Justin; Langley, Robert R; Cole, Steve W; Lutgendorf, Susan K; Siddik, Zahid H; Sood, Anil K

    2013-01-01

    Chronic sympathetic nervous system activation results in increased angiogenesis and tumor growth in orthotopic mouse models of ovarian carcinoma. However, the mechanistic effects of such activation on the tumor vasculature are not well understood. Dopamine (DA), an inhibitory catecholamine, regulates the functions of normal and abnormal blood vessels. Here, we examined whether DA, an inhibitory catecholamine, could block the effects of chronic stress on tumor vasculature and tumor growth. Exogenous administration of DA not only decreased tumor microvessel density but also increased pericyte coverage of tumor vessels following daily restraint stress in mice. Daily restraint stress resulted in significantly increased tumor growth in the SKOV3ip1 and HeyA8 ovarian cancer models. DA treatment blocked stress-mediated increases in tumor growth and increased pericyte coverage of tumor endothelial cells. Whereas the antiangiogenic effect of DA is mediated by dopamine receptor 2 (DR2), our data indicate that DA, through DR1, stimulates vessel stabilization by increasing pericyte recruitment to tumor endothelial cells. DA significantly stimulated migration of mouse 10T1/2 pericyte-like cells in vitro and increased cyclic adenosine mono-phosphate (cAMP) levels in these cells. Moreover, DA or the DR1 agonist SKF 82958 increased platinum concentration in SKOV3ip1 tumor xenografts following cisplatin administration. In conclusion, DA stabilizes tumor blood vessels through activation of pericyte cAMP-protein kinase A signaling pathway by DR1. These findings could have implications for blocking the stimulatory effects of chronic stress on tumor growth. PMID:23633922

  2. Targeting tumor vasculature through oncolytic virotherapy: recent advances.

    PubMed

    Toro Bejarano, Marcela; Merchan, Jaime R

    2015-01-01

    The oncolytic virotherapy field has made significant advances in the last decade, with a rapidly increasing number of early- and late-stage clinical trials, some of them showing safety and promising therapeutic efficacy. Targeting tumor vasculature by oncolytic viruses (OVs) is an attractive strategy that offers several advantages over nontargeted viruses, including improved tumor viral entry, direct antivascular effects, and enhanced antitumor efficacy. Current understanding of the biological mechanisms of tumor neovascularization, novel vascular targets, and mechanisms of resistance has allowed the development of oncolytic viral vectors designed to target tumor neovessels. While some OVs (such as vaccinia and vesicular stomatitis virus) can intrinsically target tumor vasculature and induce vascular disruption, the majority of reported vascular-targeted viruses are the result of genetic manipulation of their viral genomes. Such strategies include transcriptional or transductional endothelial targeting, "armed" viruses able to downregulate angiogenic factors, or to express antiangiogenic molecules. The above strategies have shown preclinical safety and improved antitumor efficacy, either alone, or in combination with standard or targeted agents. This review focuses on the recent efforts toward the development of vascular-targeted OVs for cancer treatment and provides a translational/clinical perspective into the future development of new generation biological agents for human cancers.

  3. Peripheral Artery Disease

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Peripheral Artery Disease (PAD) Peripheral artery disease (PAD) refers to ... is peripheral artery disease treated? What is peripheral artery disease (PAD)? Peripheral artery disease, or PAD, refers ...

  4. Three-dimensional stereotactic atlas of the extracranial vasculature correlated with the intracranial vasculature, cranial nerves, skull and muscles

    PubMed Central

    Shoon Let Thaung, Thant; Choon Chua, Beng; Hnin Wut Yi, Su; Yang, Yili; Urbanik, Andrzej

    2015-01-01

    Our objective was to construct a 3D, interactive, and reference atlas of the extracranial vasculature spatially correlated with the intracranial blood vessels, cranial nerves, skull, glands, and head muscles. The atlas has been constructed from multiple 3T and 7T magnetic resonance angiogram (MRA) brain scans, and 3T phase contrast and inflow MRA neck scans of the same specimen in the following steps: vessel extraction from the scans, building 3D tubular models of the vessels, spatial registration of the extra- and intracranial vessels, vessel editing, vessel naming and color-coding, vessel simplification, and atlas validation. This new atlas contains 48 names of the extracranial vessels (25 arterial and 23 venous) and it has been integrated with the existing brain atlas. The atlas is valuable for medical students and residents to easily get familiarized with the extracranial vasculature with a few clicks; is useful for educators to prepare teaching materials; and potentially can serve as a reference in the diagnosis of vascular disease and treatment, including craniomaxillofacial surgeries and radiologic interventions of the face and neck. PMID:25923683

  5. Three-dimensional stereotactic atlas of the extracranial vasculature correlated with the intracranial vasculature, cranial nerves, skull and muscles.

    PubMed

    Nowinski, Wieslaw L; Shoon Let Thaung, Thant; Choon Chua, Beng; Hnin Wut Yi, Su; Yang, Yili; Urbanik, Andrzej

    2015-04-01

    Our objective was to construct a 3D, interactive, and reference atlas of the extracranial vasculature spatially correlated with the intracranial blood vessels, cranial nerves, skull, glands, and head muscles.The atlas has been constructed from multiple 3T and 7T magnetic resonance angiogram (MRA) brain scans, and 3T phase contrast and inflow MRA neck scans of the same specimen in the following steps: vessel extraction from the scans, building 3D tubular models of the vessels, spatial registration of the extra- and intracranial vessels, vessel editing, vessel naming and color-coding, vessel simplification, and atlas validation.This new atlas contains 48 names of the extracranial vessels (25 arterial and 23 venous) and it has been integrated with the existing brain atlas.The atlas is valuable for medical students and residents to easily get familiarized with the extracranial vasculature with a few clicks; is useful for educators to prepare teaching materials; and potentially can serve as a reference in the diagnosis of vascular disease and treatment, including craniomaxillofacial surgeries and radiologic interventions of the face and neck.

  6. Molecular specialization of breast vasculature: A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature

    NASA Astrophysics Data System (ADS)

    Essler, Markus; Ruoslahti, Erkki

    2002-02-01

    In vivo phage display identifies peptides that selectively home to the vasculature of individual organs, tissues, and tumors. Here we report the identification of a cyclic nonapeptide, CPGPEGAGC, which homes to normal breast tissue with a 100-fold selectivity over nontargeted phage. The homing of the phage is inhibited by its cognate synthetic peptide. Phage localization in tissue sections showed that the breast-homing phage binds to the blood vessels in the breast, but not in other tissues. The phage also bound to the vasculature of hyperplastic and malignant lesions in transgenic breast cancer mice. Expression cloning with a phage-displayed cDNA library yielded a phage that specifically bound to the breast-homing peptide. The cDNA insert was homologous to a fragment of aminopeptidase P. The homing peptide bound aminopeptidase P from malignant breast tissue in affinity chromatography. Antibodies against aminopeptidase P inhibited the in vitro binding of the phage-displayed cDNA to the peptide and the in vivo homing of phage carrying the peptide. These results indicate that aminopeptidase P is the receptor for the breast-homing peptide. This peptide may be useful in designing drugs for the prevention and treatment of breast cancer.

  7. Imaging Nanotherapeutics in Inflamed Vasculature by Intravital Microscopy

    PubMed Central

    Wang, Zhenjia

    2016-01-01

    Intravital microscopy (IVM) is the application of light microscopy to real time study biology of live animal tissues in intact and physiological conditions with the high spatial and temporal resolution. Advances in imaging systems, genetic animal models and imaging probes, IVM has offered quantitative and dynamic insight into cell biology, immunology, neurobiology and cancer. In this review, we will focus on the targeting of nanotherapeutics to inflamed vasculature. We will introduce the basic concept and principle of IVM and demonstrate that IVM is a powerful tool used to quantitatively determine the molecular mechanisms of interactions between nanotherapeutics and neutrophils or endothelium in living mice. In the future, it is needed to develop new imaging systems and novel imaging contrast agents to better understand molecular mechanisms of tissue processing of nanotherapeutics in vivo. PMID:27877245

  8. 3D visualization of the human cerebral vasculature

    NASA Astrophysics Data System (ADS)

    Zrimec, Tatjana; Mander, Tom; Lambert, Timothy; Parker, Geoffrey

    1995-04-01

    Computer assisted 3D visualization of the human cerebro-vascular system can help to locate blood vessels during diagnosis and to approach them during treatment. Our aim is to reconstruct the human cerebro-vascular system from the partial information collected from a variety of medical imaging instruments and to generate a 3D graphical representation. This paper describes a tool developed for 3D visualization of cerebro-vascular structures. It also describes a symbolic approach to modeling vascular anatomy. The tool, called Ispline, is used to display the graphical information stored in a symbolic model of the vasculature. The vascular model was developed to assist image processing and image fusion. The model consists of a structural symbolic representation using frames and a geometrical representation of vessel shapes and vessel topology. Ispline has proved to be useful for visualizing both the synthetically constructed vessels of the symbolic model and the vessels extracted from a patient's MR angiograms.

  9. Emerging concepts regarding pannexin 1 in the vasculature

    PubMed Central

    Good, Miranda E.; Begandt, Daniela; DeLalio, Leon J.; Keller, Alexander S.; Billaud, Marie; Isakson, Brant E.

    2016-01-01

    Pannexin channels are newly discovered ATP release channels expressed throughout the body. Pannexin 1 (Panx1) channels have become of great interest as they appear to participate in a multitude of signalling cascades, including regulation of vascular function. Although numerous Panx1 pharmacological inhibitors have been discovered, these inhibitors are not specific for Panx1 and have additional effects on other proteins. Therefore, molecular tools, such as RNA interference and knockout animals, are needed to demonstrate the role of pannexins in various cellular functions. This review focuses on the known roles of Panx1 related to purinergic signalling in the vasculature focusing on post-translational modifications and channel gating mechanisms that may participate in the regulated release of ATP. PMID:26009197

  10. Oligodendrocyte precursors migrate along vasculature in the developing nervous system.

    PubMed

    Tsai, Hui-Hsin; Niu, Jianqin; Munji, Roeben; Davalos, Dimitrios; Chang, Junlei; Zhang, Haijing; Tien, An-Chi; Kuo, Calvin J; Chan, Jonah R; Daneman, Richard; Fancy, Stephen P J

    2016-01-22

    Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation.

  11. Contrast-enhanced imaging of cerebral vasculature with laser speckle

    NASA Astrophysics Data System (ADS)

    Murari, K.; Li, N.; Rege, A.; Jia, X.; All, A.; Thakor, N.

    2007-08-01

    High-resolution cerebral vasculature imaging has applications ranging from intraoperative procedures to basic neuroscience research. Laser speckle, with spatial contrast processing, has recently been used to map cerebral blood flow. We present an application of the technique using temporal contrast processing to image cerebral vascular structures with a field of view a few millimeters across and approximately 20 μm resolution through a thinned skull. We validate the images using fluorescent imaging and demonstrate a factor of 2-4 enhancement in contrast-to-noise ratios over reflectance imaging using white or spectrally filtered green light. The contrast enhancement enables the perception of approximately 10%-30% more vascular structures without the introduction of any contrast agent.

  12. Studying Cerebral Vasculature Using Structure Proximity and Graph Kernels

    PubMed Central

    Kwitt, Roland; Pace, Danielle; Niethammer, Marc; Aylward, Stephen

    2014-01-01

    An approach to study population differences in cerebral vasculature is proposed. This is done by 1) extending the concept of encoding cerebral blood vessel networks as spatial graphs and 2) quantifying graph similarity in a kernel-based discriminant classifier setup. We argue that augmenting graph vertices with information about their proximity to selected brain structures adds discriminative information and consequently leads to a more expressive encoding. Using graph-kernels then allows us to quantify graph similarity in a principled way. To demonstrate our approach, we assess the hypothesis that gender differences manifest as variations in the architecture of cerebral blood vessels, an observation that previously had only been tested and confirmed for the Circle of Willis. Our results strongly support this hypothesis, i.e, we can demonstrate non-trivial, statistically significant deviations from random gender classification in a cross-validation setup on 40 healthy patients. PMID:24579182

  13. Ultrasound imaging beyond the vasculature with new generation contrast agents.

    PubMed

    Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer.

  14. Long-term immunological reconstitution by peripheral blood leucocytes in severe combined immune deficiency disease: implications for the role of mature lymphocytes in histocompatible bone marrow transplantation.

    PubMed Central

    Polmar, S H; Schacter, B Z; Sorensen, R U

    1986-01-01

    A 7 month old girl with severe combined immunodeficiency disease (SCID) received a single transfusion of peripheral blood leucocytes from her histocompatible grandfather in an attempt to achieve immunological reconstitution. There was rapid restoration of humoral and cellular immunity which has persisted undiminished over a 54 month follow-up period and the patient has remained free of any significant infections. Lymphocytes of donor karyotype were repeatedly demonstrated in the patient's peripheral blood. In contrast, no evidence of donor cell engraftment in her bone marrow could be obtained by karyotypic, antigenic or enzyme phenotypic analyses. These observations suggest that long term immunological reconstitution may be achieved solely by peripheral engraftment of mature lymphocytes. A review of the literature reveals that this mechanism of immunological reconstitution may not be uncommon following histocompatible bone marrow transplantation for treatment of SCID. PMID:3539420

  15. Dilated iris vasculature in the setting of the neonatal hypoxic encephelopathy.

    PubMed

    Gorovoy, Ian R; Vaccari, Jordan C

    2015-07-01

    The differential diagnosis of dilated iris vasculature in a neonate includes retinopathy of prematurity with anterior segment plus disease, persistent fetal vasculature, intrauterine cocaine exposure, maternal diabetes, and other pathologies associated with iris neovascularization and ischemia seen in adult populations, such as central retinal vein occlusions, ocular ischemic syndrome, and chronic retinal detachment. We present neonatal hypoxic ischemic encephalopathy as a new etiology of dilated iris vasculature in a male baby who suffered a large in-utero brain vasculature insult three weeks prior to delivery but with normal fundi, no risk factors for retinopathy of prematurity (normal birth weight, and gestational age), and no other explanatory etiologies. The mechanism of the dilated iris vasculature is likely also ischemic and therefore its presence likely portends a poor prognosis. We recommend that the neonatologist evaluate for this sign for this reason and consult ophthalmology to ensure its correct etiology.

  16. Studies on entry and egress of poliomyelitic infection. VI. Centrifugal spread of the virus into peripheral nerve with notes on its possible implications.

    PubMed

    FABER, H K; SILVERBERG, R J; DONG, L

    1953-03-01

    We have demonstrated a progressive centrifugal migration of poliomyelitis virus from the CNS into various peripheral ganglia and into peripheral nerves, including their distal portions. This phenomenon appears to be a regular occurrence in experimental animals, and is similar to that found in two other neurotropic infections, rabies and Borna disease. Viremia appears to be secondary to primary neural infection. The presence of virus in the lumen of the alimentary tract appears to be secondary to primary neural infection and not to viremia, and to be associated with the centrifugal spread of virus in peripheral nerves. The presence of virus in "extraneural" tissues is not per se referable to infection of their constituent cells but rather to infection of their supplying nerves or, in some instances, to their content of virus-bearing blood. The finding of virus in the vagus nerve may throw light on some of the electrocardiographic changes noted in certain cases of human poliomyelitis. The presence of virus in peripheral nerves may throw light on the etiology of the most frequent clinical manifestations of human poliomyelitis, localized pain and tenderness.

  17. Epigenetics and Peripheral Artery Disease.

    PubMed

    Golledge, Jonathan; Biros, Erik; Bingley, John; Iyer, Vikram; Krishna, Smriti M

    2016-04-01

    The term epigenetics is usually used to describe inheritable changes in gene function which do not involve changes in the DNA sequence. These typically include non-coding RNAs, DNA methylation and histone modifications. Smoking and older age are recognised risk factors for peripheral artery diseases, such as occlusive lower limb artery disease and abdominal aortic aneurysm, and have been implicated in promoting epigenetic changes. This brief review describes studies that have associated epigenetic factors with peripheral artery diseases and investigations which have examined the effect of epigenetic modifications on the outcome of peripheral artery diseases in mouse models. Investigations have largely focused on microRNAs and have identified a number of circulating microRNAs associated with human peripheral artery diseases. Upregulating or antagonising a number of microRNAs has also been reported to limit aortic aneurysm development and hind limb ischemia in mouse models. The importance of DNA methylation and histone modifications in peripheral artery disease has been relatively little studied. Whether circulating microRNAs can be used to assist identification of patients with peripheral artery diseases and be modified in order to improve the outcome of peripheral artery disease will require further investigation.

  18. Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activation

    PubMed Central

    Wang, Yurong; Wang, Bin; Guerram, Mounia; Sun, Li; Shi, Wei; Tian, Chongchong; Zhu, Xiong; Jiang, Zhenzhou; Zhang, Luyong

    2015-01-01

    Angiogenesis plays a critical role in the growth and metastasis of tumors, which makes it an attractive target for anti-tumor drug development. Deoxypodophyllotoxin (DPT), a natural product isolated from Anthriscus sylvestris, inhibits cell proliferation and migration in various cancer cell types. Our previous studies indicate that DPT possesses both anti-angiogenic and vascular-disrupting activities. Although the RhoA/ RhoA kinase (ROCK) signaling pathway is implicated in DPT-stimulated cytoskeleton remodeling and tumor vasculature suppressing, the detailed mechanisms by which DPT mediates these effects are poorly understood. In the current study, we found that DPT promotes cytoskeleton remodeling in human umbilical vein endothelial cells (HUVECs) via stimulation of AMP-activated protein kinase (AMPK) and that this effect is abolished by either treatment with a selective AMPK inhibitor or knockdown. Moreover, the cellular levels of LKB1, a kinase upstream of AMPK, were enhanced following DPT exposure. DPT-induced activation of AMPK in tumor vasculature effect was also verified by transgenic zebrafish (VEGFR2:GFP), Matrigel plug assay, and xenograft model in nude mice. The present findings may lay the groundwork for a novel therapeutic approach in treating cancer. PMID:26470595

  19. An immunocytochemical study of the germinal layer vasculature in the developing fetal brain using Ulex europaeus 1 lectin.

    PubMed

    Gould, S J; Howard, S

    1988-10-01

    The characteristics of the germinal matrix vasculature were studied in the developing fetal brain using immunocytochemical methods. A preliminary comparative immunocytochemical study was made on six fetal brains to compare endothelial staining by Ulex europaeus I lectin with that of antibody to Factor VIII related antigen. Ulex was found to stain germinal layer vessels better than Factor VIII related antigen. Subsequently, the germinal layers of a further 15 fetal and preterm infant brains ranging from 13 to 35 weeks' gestation were stained with Ulex europaeus I to demonstrate the vasculature. With increasing gestation, there was a gradual increase in vessel density, particularly of capillaries. This was not a uniform process. A plexus of capillaries was prominent immediately beneath the ependyma while the more central parts of the germinal matrix contained fewer, but often larger diameter, vessels. The variation in vessel density which was a feature of the later gestation brains may have implications for local blood flow and may be a factor in haemorrhage at this site.

  20. Impact of Immune Deficiency on Remodeling of Maternal Resistance Vasculature 4 Weeks Postpartum in Mice.

    PubMed

    Bonney, Elizabeth A; Howard, Ann; Krebs, Kendall; Begin, Kelly; Veilleux, Kelsey; Gokina, Natalia I

    2017-04-01

    Pregnancy manifests changes in the vascular and immune systems that persist postpartum (PP), have important implications for future pregnancies, and may modify responses to cardiovascular stress in late life. The association between immune and vascular function and the generation or progression of cardiovascular disease beg the question of whether altered immunity modifies pregnancy-induced changes in the vasculature. Our objective was to compare changes in the function and remodeling of systemic resistance vessels 4 weeks PP in normal C57BL/6 (B6), and immunodeficient mice recombinase 1-deficient/B6 ( Rag1(-/-)). Immune deficiency did not change the responsiveness to acetylcholine (ACh) and phenylephrine at baseline but decreased arterial distensibility and increased stiffness PP. Adoptive transfer of CD8 T cells into Rag1(-/-) mice decreased the response to ACh while increasing distensibility and wall thickness. When compared to PP Rag1(-/-), vessels from PP CD4-deficient mice, which have B cells and CD8 T cells, but no CD4 cells, show increased distensibility and decreased responsiveness to ACh in a pattern similar to that seen in Rag1(-/-) given CD8 T cells prior to mating. These studies suggest a key role for T cell, particularly CD8 T cell, associated factors in the PP remodeling of maternal resistance vessels.

  1. The lymphatic vasculature revisited-new developments in the zebrafish.

    PubMed

    Padberg, Y; Schulte-Merker, S; van Impel, A

    2017-01-01

    The lymphatic system is lined by endothelial cells and part of the vasculature. It is essential for tissue fluid homeostasis, absorption of dietary fats, and immune surveillance in vertebrates. Misregulation of lymphatic vessel formation and dysfunction of the lymphatic system have been indicated in a number of pathological conditions including lymphedema formation, obesity or chronic inflammatory diseases such as rheumatoid arthritis. In zebrafish, lymphatics were discovered about 10years ago, and the underlying molecular pathways involved in its development have since been studied in detail. Due to its superior live cell imaging possibilities and the broad tool kit for forward and reverse genetics, the zebrafish has become an important model organism to study the development of the lymphatic system during early embryonic development. In the current review, we will focus on the key players during zebrafish lymphangiogenesis and compare the roles of these genes to their mammalian counterparts. In particular, we will focus on novel findings that shed new light on the molecular mechanisms of lymphatic cell fate specification, as well as sprouting and migration of lymphatic precursor cells.

  2. Importance Rat Liver Morphology and Vasculature in Surgical Research

    PubMed Central

    Vdoviaková, Katarína; Petrovová, Eva; Krešáková, Lenka; Maloveská, Marcela; Teleky, Jana; Jenčová, Janka; Živčák, Jozef; Jenča, Andrej

    2016-01-01

    Background The laboratory rat is one of the most popular experimental models for the experimental surgery of the liver. The objective of this study was to investigate the morphometric parameters, physiological data, differences in configuration of liver lobes, biliary system, and vasculature (arteries, veins, and lymphatic vessels) of the liver in laboratory rats. In addition, this study supports the anatomic literature and identified similarities and differences with human and other mammals. Material/Methods Forty laboratory rats were dissected to prepare corrosion casts of vascular system specimens (n=20), determine the lymph vessels and lymph nodes (n=10), and for macroscopic anatomical dissection (n=10) of the rat liver. The results are listed in percentages. The anatomical nomenclature of the liver morphology, its arteries, veins, lymph nodes, and lymphatic vessels are in accordance with Nomina Anatomica Veterinaria. Results We found many variations in origin, direction, and division of the arterial, venous, and lymphatic systems in rat livers, and found differences in morphometric parameters compared to results reported by other authors. The portal vein was formed by 4 tributaries in 23%, by 3 branches in 64%, and by 2 tributaries in 13%. The liver lymph was drained to the 2 different lymph nodes. The nomenclature and morphological characteristics of the rat liver vary among authors. Conclusions Our results may be useful for the planing of experimental surgery and for cooperation with other investigation methods to help fight liver diseases in human populations. PMID:27911356

  3. Hematopoietic progenitors are required for proper development of coronary vasculature

    PubMed Central

    Lluri, Gentian; Huang, Vincent; Touma, Marlin; Liu, Xiaoqian; Harmon, Andrew W.; Nakano, Atsushi

    2015-01-01

    Rationale During embryogenesis, hematopoietic cells appear in the myocardium prior to the initiation of coronary formation. However, their role is unknown. Objective Here we investigate whether pre-existing hematopoietic cells are required for the formation of coronary vasculature. Methods and Results As a model of for hematopoietic cell deficient animals, we used Runx1 knockout embryos and Vav1-cre; R26-DTA embryos, latter of which genetically ablates 2/3 of CD45+ hematopoietic cells. Both Runx1 knockout embryos and Vav1-cre; R26-DTA embryos revealed disorganized, hypoplastic microvasculature of coronary vessels on section and whole-mount stainings. Furthermore, coronary explant experiments showed that the mouse heart explants from Runx1 and Vav1-cre; R26-DTA embryos exhibited impaired coronary formation ex vivo. Interestingly, in both models it appears that epicardial to mesenchymal transition is adversely affected in the absence of hematopoietic progenitors. Conclusion Hematopoietic cells are not merely passively transported via coronary vessel, but substantially involved in the induction of the coronary growth. Our findings suggest a novel mechanism of coronary growth. PMID:26241844

  4. Modulation of the Tumor Vasculature and Oxygenation to Improve Therapy

    PubMed Central

    Siemann, Dietmar W.; Horsman, Michael R.

    2015-01-01

    The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient nutritional support to tumor cells. As a consequence the expanding neoplastic cell population initiates its own vascular network which is both structurally and functionally abnormal. This aberrant vasculature impacts all aspects of the tumor microenvironment including the cells, extracellular matrix, and extracellular molecules which together are essential for the initiation, progression and spread of tumor cells. The physical conditions that arise are imposing and manifold, and include elevated interstitial pressure, localized extracellular acidity, and regions of oxygen and nutrient deprivation. No less important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers that create a significant hindrance to the control of cancers by conventional anticancer therapies. However, the aberrant nature of the tumor microenvironments also offers unique therapeutic opportunities. Particularly interventions that seek to improve tumor physiology and alleviate tumor hypoxia will selectively impair the neoplastic cell populations residing in these environments. Ultimately, by combining such therapeutic strategies with conventional anticancer treatments it may be possible to bring cancer growth, invasion, and metastasis to a halt. PMID:26073310

  5. Endothelial cell metabolism in normal and diseased vasculature

    PubMed Central

    Eelen, Guy; de Zeeuw, Pauline; Simons, Michael; Carmeliet, Peter

    2015-01-01

    Higher organisms rely on a closed cardiovascular circulatory system with blood vessels supplying vital nutrients and oxygen to distant tissues. Not surprisingly, vascular pathologies rank among the most life-threatening diseases. At the crux of most of these vascular pathologies are (dysfunctional) endothelial cells (ECs), the cells lining the blood vessel lumen. ECs display the remarkable capability to switch rapidly from a quiescent state to a highly migratory and proliferative state during vessel sprouting. This angiogenic switch has long been considered to be dictated by angiogenic growth factors (eg vascular endothelial growth factor; VEGF) and other signals (eg Notch) alone, but recent findings show that it is also driven by a metabolic switch in ECs. Furthermore, these changes in metabolism may even override signals inducing vessel sprouting. Here, we review how EC metabolism differs between the normal and dysfunctional/diseased vasculature and how it relates to or impacts the metabolism of other cell types contributing to the pathology. We focus on the biology of ECs in tumor blood vessel and diabetic ECs in atherosclerosis as examples of the role of endothelial metabolism in key pathological processes. Finally, current as well as unexplored ‘EC metabolism’-centric therapeutic avenues are discussed. PMID:25814684

  6. Three-dimensional ultrasound imaging of the vasculature.

    PubMed

    Fenster, A; Lee, D; Sherebrin, S; Rankin, R; Downey, D

    1998-02-01

    With conventional ultrasonography, the diagnostician must view a series of two-dimensional images in order to form a mental impression of the three-dimensional anatomy, an efficient and time consuming practice prone to operator variability, which may cause variable or even incorrect diagnoses. Also, a conventional two-dimensional ultrasound image represents a thin slice of the patients anatomy at a single location and orientation, which is difficult to reproduce at a later time. These factors make conventional ultrasonography non-optimal for prospective or follow-up studies. Our efforts have focused on overcoming these deficiencies by developing three-dimensional ultrasound imaging techniques that are capable of acquiring B-mode, colour Doppler and power Doppler images of the vasculature, by using a conventional ultrasound system to acquire a series of two-dimensional images and then mathematically reconstructing them into a single three-dimensional image, which may then be viewed interactively on an inexpensive desktop computer. We report here on two approaches: (1) free-hand scanning, in which a magnetic positioning device is attached to the ultrasound transducer to record the position and orientation of each two-dimensional image needed for the three-dimensional image reconstruction; and (2) mechanical scanning, in which a motor-driven assembly is used to translate the transducer linearly across the neck, yielding a set of uniformly-spaced parallel two-dimensional images.

  7. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature.

    PubMed

    Ayata, Cenk; Lauritzen, Martin

    2015-07-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.

  8. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature

    PubMed Central

    Ayata, Cenk; Lauritzen, Martin

    2015-01-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases. PMID:26133935

  9. Three-dimensional volume analysis of vasculature in engineered tissues

    NASA Astrophysics Data System (ADS)

    YousefHussien, Mohammed; Garvin, Kelley; Dalecki, Diane; Saber, Eli; Helguera, María.

    2013-01-01

    Three-dimensional textural and volumetric image analysis holds great potential in understanding the image data produced by multi-photon microscopy. In this paper, an algorithm that quantitatively analyzes the texture and the morphology of vasculature in engineered tissues is proposed. The investigated 3D artificial tissues consist of Human Umbilical Vein Endothelial Cells (HUVEC) embedded in collagen exposed to two regimes of ultrasound standing wave fields under different pressure conditions. Textural features were evaluated using the normalized Gray-Scale Cooccurrence Matrix (GLCM) combined with Gray-Level Run Length Matrix (GLRLM) analysis. To minimize error resulting from any possible volume rotation and to provide a comprehensive textural analysis, an averaged version of nine GLCM and GLRLM orientations is used. To evaluate volumetric features, an automatic threshold using the gray level mean value is utilized. Results show that our analysis is able to differentiate among the exposed samples, due to morphological changes induced by the standing wave fields. Furthermore, we demonstrate that providing more textural parameters than what is currently being reported in the literature, enhances the quantitative understanding of the heterogeneity of artificial tissues.

  10. Importance Rat Liver Morphology and Vasculature in Surgical Research.

    PubMed

    Vdoviaková, Katarína; Vdoviaková, Katarína; Petrovová, Eva; Krešáková, Lenka; Maloveská, Marcela; Teleky, Jana; Jenčová, Janka; Živčák, Jozef; Jenča, Andrej

    2016-12-02

    BACKGROUND The laboratory rat is one of the most popular experimental models for the experimental surgery of the liver. The objective of this study was to investigate the morphometric parameters, physiological data, differences in configuration of liver lobes, biliary system, and vasculature (arteries, veins, and lymphatic vessels) of the liver in laboratory rats. In addition, this study supports the anatomic literature and identified similarities and differences with human and other mammals. MATERIAL AND METHODS Forty laboratory rats were dissected to prepare corrosion casts of vascular system specimens (n=20), determine the lymph vessels and lymph nodes (n=10), and for macroscopic anatomical dissection (n=10) of the rat liver. The results are listed in percentages. The anatomical nomenclature of the liver morphology, its arteries, veins, lymph nodes, and lymphatic vessels are in accordance with Nomina Anatomica Veterinaria. RESULTS We found many variations in origin, direction, and division of the arterial, venous, and lymphatic systems in rat livers, and found differences in morphometric parameters compared to results reported by other authors. The portal vein was formed by 4 tributaries in 23%, by 3 branches in 64%, and by 2 tributaries in 13%. The liver lymph was drained to the 2 different lymph nodes. The nomenclature and morphological characteristics of the rat liver vary among authors. CONCLUSIONS Our results may be useful for the planing of experimental surgery and for cooperation with other investigation methods to help fight liver diseases in human populations.

  11. Schistosomiasis and the pulmonary vasculature (2013 Grover Conference series)

    PubMed Central

    2014-01-01

    Abstract Inflammation is associated with multiple forms of pulmonary arterial hypertension (PAH), including autoimmune (scleroderma) and infectious (HIV, schistosomiasis) etiologies. More than 200 million people worldwide are infected with Schistosoma, predominantly in Brazil, Africa, the Middle East, and South Asia. Schistosomiasis causes PAH in about 6.1% of those chronically infected and is particularly associated with the species Schistosoma mansoni. Treatment for schistosomiasis-associated PAH includes antihelminthic treatment, if active infection is present (although associated with little immediate benefit to the pulmonary hypertension), and then pharmacologic treatment with targeted pulmonary vascular therapies, including phosphodiesterase type 5 inhibitors and endothelin receptor antagonists. The pathophysiological mechanism by which this parasitic infection causes pulmonary hypertension is unknown but is unlikely to be simple mechanical obstruction of the pulmonary vasculature by parasite eggs. Preexisting hepatosplenic disease due to Schistosoma infection is likely important because of portopulmonary hypertension and/or because it allows egg embolization to the lung by portocaval shunts. Potential immune signaling originating in the periegg granulomas causing the pulmonary vascular disease includes the cytokines interleukin (IL)-4, IL-6, IL-13, and transforming growth factor β. Modulating these pathways may be possible targets for future therapy of schistosomiasis-associated PAH specifically, and study of this disease may provide novel insights into other inflammatory causes of PAH. PMID:25621148

  12. Fractal analysis of the retinal vasculature and chronic kidney disease.

    PubMed

    Sng, Chelvin C A; Sabanayagam, Charumathi; Lamoureux, Ecosse L; Liu, Erica; Lim, Su Chi; Hamzah, Haslina; Lee, Jeannette; Tai, E Shyong; Wong, Tien Y

    2010-07-01

    BACKGROUND. Fractal analysis provides a global index of the geometric complexity and optimality of vascular networks. In this study, we investigated the relationship between fractal measurements of the retinal vasculature and chronic kidney disease (CKD). METHODS. This was a population-based case-control study which included participants from the Singapore Prospective Study Program. We identified 261 participants with CKD, defined as estimated glomerular filtration rate of <60 mL/min/1.73 m(2), and 651 controls. The retinal fractal dimension (D(f)) was quantified from digitized fundus photographs using a computer-based programme. RESULTS. The mean D(f) was 1.43 +/- 0.048 in the participants with CKD and 1.44 +/- 0.042 in controls (P = 0.013). Suboptimal D(f) in the lowest (first) and highest (fifth) quintiles were associated with an increased prevalence of CKD after adjusting for age, systolic blood pressure, diabetes and other risk factors [odds ratio (OR) 2.10, 95% confidence interval (CI) 1.15, 3.83 and OR 1.84, 95% CI 1.06, 3.17; compared to the fourth quintile, respectively). This association was present even in participants without diabetes or hypertension. CONCLUSIONS. Our study found that an abnormal retinal vascular network is associated with an increased risk of CKD, supporting the hypothesis that deviations from optimal microvascular architecture may be related to kidney damage.

  13. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  14. NORMALIZATION OF THE VASCULATURE FOR TREATMENT OF CANCER AND OTHER DISEASES

    PubMed Central

    Goel, Shom; Duda, Dan G.; Xu, Lei; Munn, Lance L.; Boucher, Yves; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a “normalization” of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more “mature” or “normal” phenotype. This “vascular normalization” is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics

  15. In vivo imaging of pulmonary nodule and vasculature using endoscopic co-registered optical coherence tomography and autofluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carely; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    Peripheral lung nodules found by CT-scans are difficult to localize and biopsy bronchoscopically particularly for those ≤ 2 cm in diameter. In this work, we present the results of endoscopic co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI) of normal and abnormal peripheral airways from 40 patients using 0.9 mm diameter fiber optic rotary pullback catheter. Optical coherence tomography (OCT) can visualize detailed airway morphology endoscopically in the lung periphery. Autofluorescence imaging (AFI) can visualize fluorescing tissue components such as collagen and elastin, enabling the detection of airway lesions with high sensitivity. Results indicate that AFI of abnormal airways is different from that of normal airways, suggesting that AFI can provide a sensitive visual presentation for rapidly identifying possible sites of pulmonary nodules. AFI can also rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. It is known that tumor vasculature is structurally and functionally different from normal vessels. Thus, AFI can be potentially used for differentiating normal and abnormal lung vasculature for studying vascular remodeling.

  16. A mutagenesis-derived Lrp5 mouse mutant with abnormal retinal vasculature and low bone mineral density

    PubMed Central

    Charette, Jeremy R.; Earp, Sarah E.; Bell, Brent A.; Ackert-Bicknell, Cheryl L.; Godfrey, Dana A.; Rao, Sujata; Anand-Apte, Bela; Nishina, Patsy M.

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is caused by mutations in the genes encoding low-density lipoprotein receptor-related protein (LRP5) or its interacting partners, namely frizzled class receptor 4 (FZD4) and norrin cystine knot growth factor (NDP). Mouse models for Lrp5, Fzd4, and Ndp have proven to be important for understanding the retinal pathophysiology underlying FEVR and systemic abnormalities related to defective Wnt signaling. Here, we report a new mouse mutant, tvrm111B, which was identified by electroretinogram (ERG) screening of mice generated in the Jackson Laboratory Translational Vision Research Models (TVRM) mutagenesis program. Methods ERGs were used to examine outer retinal physiology. The retinal vasculature was examined by in vivo retinal imaging, as well as by histology and immunohistochemistry. The tvrm111B locus was identified by genetic mapping of mice generated in a cross to DBA/2J, and subsequent sequencing analysis. Gene expression was examined by real-time PCR of retinal RNA. Bone mineral density (BMD) was examined by peripheral dual-energy X-ray absorptiometry. Results The tvrm111B allele is inherited as an autosomal recessive trait. Genetic mapping of the decreased ERG b-wave phenotype of tvrm111B mice localized the mutation to a region on chromosome 19 that included Lrp5. Sequencing of Lrp5 identified the insertion of a cytosine (c.4724_4725insC), which is predicted to cause a frameshift that disrupts the last three of five conserved PPPSPxS motifs in the cytoplasmic domain of LRP5, culminating in a premature termination. In addition to a reduced ERG b-wave, Lrp5tvrm111B homozygotes have low BMD and abnormal features of the retinal vasculature that have been reported previously in Lrp5 mutant mice, including persistent hyaloid vessels, leakage on fluorescein angiography, and an absence of the deep retinal capillary bed. Conclusions The phenotype of the Lrp5tvrm111B mutant includes abnormalities of the retinal

  17. Normal Doppler velocimetry of renal vasculature in Persian cats.

    PubMed

    Carvalho, Cibele F; Chammas, Maria C

    2011-06-01

    Renal diseases are common in older cats. Decreased renal blood flow may be the first sign of dysfunction and can be evaluated by Doppler ultrasound. But previous studies suggest that the resistive index (RI) has a low sensitivity for detecting renal disease. Doppler waveforms of renal and intrarenal arteries demonstrate decreased blood flow before there are any changes in the RI. The purpose of this study was to evaluate the normal Doppler flowmetrics parameters of renal arteries (RAs), interlobar arteries (IAs) and abdominal aorta (AO) in adult healthy, Persian cats. Twenty-five Persian cats (13 females and 12 males with mean age of 30 months and an age range 12-60 months) with normal clinical examinations and biochemical tests and normal systemic blood pressure were given B-mode ultrasonographies in order to exclude all nephropathies, including polycystic kidney disease. All measurements were performed on both kidneys. Both kidneys (n=50) were examined by color mapping of the renal vasculature. Pulsed Doppler was used to examine both RAs, the IAs at cranial, middle and caudal sites, and the AO. The RI was calculated for all of the vessels. Early systolic acceleration (ESA) of RA and IA was obtained with Doppler spectral analysis. Furthermore, the ratio indices between RA/AO, and IA/RA velocities were calculated. The mean values of peak systolic velocity (PSV) and the diameter for AO were 53.17±13.46 cm/s and 0.38±0.08 cm, respectively. The mean RA diameter for all 50 kidneys was 0.15±0.02 cm. Considering the velocimetric values in both RAs, the mean PSV and RI that were obtained were 41.17±9.40 cm/s and 0.54±0.07. The RA had a mean ESA of 1.12±1.14 m/s(2) and the calculated upper limit of the reference value was 3.40 m/s(2). The mean renal-aortic ratio was 0.828±0.296. The IA showed PSV and RI values of 32.16±9.33 cm/s and 0.52±0.06, respectively. The mean ESA of all IAs was 0.73±0.61 m/s(2). The calculated upper limit of the reference value was 2.0m

  18. Homology of lungs and gas bladders: insights from arterial vasculature.

    PubMed

    Longo, Sarah; Riccio, Mark; McCune, Amy R

    2013-06-01

    Gas bladders of ray-finned fishes serve a variety of vital functions and are thus an important novelty of most living vertebrates. The gas bladder has long been regarded as an evolutionary modification of lungs. Critical evidence for this hypothesized homology is whether pulmonary arteries supply the gas bladder as well as the lungs. Pulmonary arteries, paired branches of the fourth efferent branchial arteries, deliver blood to the lungs in osteichthyans with functional lungs (lungfishes, tetrapods, and the ray-finned polypterid fishes). The fact that pulmonary arteries also supply the respiratory gas bladder of Amia calva (bowfin) has been used to support the homology of lungs and gas bladders, collectively termed air-filled organs (AO). However, the homology of pulmonary arteries in bowfin and lunged osteichthyans has been uncertain, given the apparent lack of pulmonary arteries in critical taxa. To re-evaluate the homology of pulmonary arteries in bowfin and lunged osteichthyans, we studied, using micro-CT technology, the arterial vasculature of Protopterus, Polypterus, Acipenser, Polyodon, Amia, and Lepisosteus, and analyzed these data using a phylogenetic approach. Our data reveal that Acipenser and Polyodon have paired posterior branches of the fourth efferent branchial arteries, which are thus similar in origin to pulmonary arteries. We hypothesize that these arteries are vestigial pulmonary arteries that have been coopted for new functions due to the dorsal shift of the AO and/or the loss of respiration in these taxa. Ancestral state reconstructions support pulmonary arteries as a synapomorphy of the Osteichthyes, provide the first concrete evidence for the retention of pulmonary arteries in Amia, and support thehomology of lungs and gas bladders due to a shared vascular supply. Finally, we use ancestral state reconstructions to show that arterial AO supplies from the celiacomesenteric artery or dorsal aorta appear to be convergent between teleosts and

  19. A multifactorial conceptual model of peripheral neuromusculoskeletal predisposing factors in task-specific focal hand dystonia in musicians: etiologic and therapeutic implications.

    PubMed

    Leijnse, J N A L; Hallett, M; Sonneveld, G J

    2015-02-01

    A model is presented showing how peripheral factors may cause a process of movement adaptation that leads to task-specific focal hand dystonia in musicians (FHDM). To acquire a playing technique, the hand must find effective and physiologically sustainable movements within a complex set of functional demands and anatomic, ergonomic, and physiological constraints. In doing so, individually discriminating constraints may become effective, such as limited anatomic independence of finger muscles/tendons, limited joint ranges of motion, or (subclinical) neuromusculoskeletal defects. These factors may, depending on the instrument-specific playing requirements, compromise or exclude functional playing movements. The controller (i.e., the brain) then needs to develop alternative motions to execute the task, which is called compensation. We hypothesize that, if this compensation process does not converge to physiologically sustainable muscle activation patterns that satisfy all constraints, compensation could increase indefinitely under the pressure of practice. Dystonic symptoms would become manifest when overcompensation occurs, resulting in motor patterns that fail in proper task execution. The model presented in this paper only concerns the compensatory processes preceding such overcompensations and does not aim to explain the nature of the dystonic motions themselves. While the model considers normal learning processes in the development of compensations, neurological predispositions could facilitate developing overcompensations or further abnormal motor programs. The model predicts that if peripheral factors are involved, FHDM symptoms would be preceded by long-term gradual changes in playing movements, which could be validated by prospective studies. Furthermore, the model implies that treatment success might be enhanced by addressing the conflict between peripheral factors and playing tasks before decompensating/retraining the affected movements.

  20. [(3) H]-L685,458 binding sites are abundant in multiple peripheral organs in rats: implications for safety assessment of putative γ-secretase targeting drugs.

    PubMed

    Yang, Zhi-Ying; Li, Jian-Ming; Xiao, Ling; Mou, Lin; Cai, Yan; Huang, He; Luo, Xue-Gang; Yan, Xiao-Xin

    2014-12-01

    γ-Secretase is a multimeric enzyme complex that carries out proteolytic processing to a variety of cellular proteins. It is currently explored as a therapeutic target for Alzheimer's disease (AD) and cancer. Mechanism-based toxicity needs to be thoroughly evaluated for γ-secretase inhibitory and/or modulatory drugs. This study comparatively assessed putative γ-secretase catalytic sites in rat peripheral tissues relative to brain and explored an effort of its pharmacological inhibition on hair regeneration. Using [(3) H]-labelled L685,458, a potent γ-secretase inhibitor, as probe, we found more abundant presence of γ-secretase binding sites in the liver, gastrointestinal tract, hair follicle, pituitary gland, ovary and testis, as compared to the brain. Local application of L658,458 delayed vibrissal regrowth following whisker removal. These results suggest that γ-secretase may execute important biological functions in many peripheral systems, as in the brain. The development of γ-secretase inhibitors/modulators for AD and cancer therapy should include close monitoring of toxicological panels for hepatic, gastrointestinal, endocrinal and reproductive functions.

  1. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan

    PubMed Central

    Chen, San-Ni; Hwang, Jiunn-Feng; Wu, Wen-Chuan

    2016-01-01

    This is an observational study of fluorescein angiography (FA) in consecutive patients with rhegmatogenous retinal detachment (RRD) in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL), and refraction status (RF) recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8%) in group 1, 3 eyes (4.1%) in group 2, 40 eyes (54.8%) in group 3 and 17 eyes (23.3%) in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion. PMID:26909812

  2. Effects of simulated neural mobilization on fluid movement in cadaveric peripheral nerve sections: implications for the treatment of neuropathic pain and dysfunction

    PubMed Central

    Roger James, C.; Apte, Gail; Brown, Cynthia; Sizer, Phillip S.; Brismée, Jean-Michel; Smith, Michael P.

    2015-01-01

    Background and purpose Neural mobilization techniques are used clinically to treat neuropathic pain and dysfunction. While selected studies report efficacy of these techniques, the mechanisms of benefit are speculative. The purpose of this study was to evaluate the effects of in vitro simulated stretch/relax neural mobilization cycles on fluid dispersion within sections of unembalmed cadaveric peripheral nerve tissue. Methods Bilateral sciatic nerve sections were harvested from six cadavers. Matched pairs of nerve sections were secured in a tissue tester and injected with a plasma/Toluidine Blue dye solution. Once the initial dye spread stabilized, the experimental nerve sections underwent 25 stretch/relaxation cycles (e.g. simulated neural mobilization) produced by a mechanical tissue tester. Post-test dye spread measurements were compared to pre-test measurements as well as control findings (no simulated mobilization). Data were analyzed using paired t-tests. Results Individual dye spread measurements were reliable [ICC(3,1) = 0·99]. The post-test intraneural fluid movement (dye spread) in the experimental section increased significantly with simulated neural mobilization compared to pre-test measurements (3·2±2·1 mm; P = 0·015) and control measurements (3·3±2·7 mm; P = 0·013). Conclusion Repetitive simulated neural mobilization, incorporating stretch/relax cycles, of excised cadaveric peripheral nerve tissue produced an increase in intraneural fluid dispersion. Neural mobilization may alter nerve tissue environment, promoting improved function and nerve health, by dispersing tissue fluid and diminishing intraneural swelling and/or pressure. PMID:26917940

  3. Percentage of Peripheral CD19+CD24hiCD38hi Regulatory B Cells in Neonatal Sepsis Patients and Its Functional Implication.

    PubMed

    Pan, Xiao; Ji, Zuoquan; Xue, Jiang

    2016-07-07

    BACKGROUND As a major cause of mortality in neonates, neonatal sepsis is often accompanied by immune dysfunctions, which are frequently caused by dysregulated T cell sub-populations. The role of regulatory B cells in neonatal sepsis, however, remains unknown. Therefore, this study investigated the percentage and functional variation of CD19+CD24hiCD38hi regulatory B cells in peripheral blood of neonatal sepsis patients in an attempt to elucidate the role of these regulatory B cells in pathogenesis of sepsis. MATERIAL AND METHODS Flow cytometry was used to quantify the percentage of CD19+CD24hiCD38hi regulatory B cells from peripheral blood samples. The correlation between B cell percentage and C reactive protein (CRP) level was analyzed. Secretion level of interleukin-10 (IL-10) and effects on the proliferation of naïve CD4+ T cells were further analyzed. RESULTS The percentage of CD19+CD24hiCD38hi regulatory B cells in neonatal sepsis patients was significantly higher compared to healthy controls (p<0.05), and was positively correlated with serum CRP level. The percentage of IL-10+ CD19+CD24hiCD38hi regulatory B cells was also higher in sepsis patients, and also had more potent inhibition on naïve CD4+ T cells (p<0.01). CONCLUSIONS The elevation of CD19+CD24hiCD38hi regulatory B cells in neonatal sepsis can inhibit body immune function and thus may participate in the pathogenesis of sepsis.

  4. In vivo transcriptional targeting into the retinal vasculature using recombinant baculovirus carrying the human flt-1 promoter

    PubMed Central

    Luz-Madrigal, Agustín; Clapp, Carmen; Aranda, Jorge; Vaca, Luis

    2007-01-01

    Background Endothelial cells are a target for gene therapy because they are implicated in a number of vascular diseases. Recombinant baculovirus have emerged as novel gene delivery vectors. However, there is no information available concerning the use of endothelial-specific promoters in the context of the baculovirus genome. In the present study, we have generated a recombinant baculovirus containing the human flt-1 promoter (BacFLT-GFP) driving the expression of the green fluorescent protein. Transcriptional gene targeting was analyzed in vitro in different mammalian cell lines and in vivo in adult rat retinal vasculature. Results BacFLT-GFP evoked the highest levels of expression in the endothelial cell line BUVEC-E6E7-1, similar to those reached by recombinant baculovirus carrying the CMV promoter (112% relative to BacCMV-GFP, n = 4). Interestingly, BacFLT-GFP directed high levels of expression in rat glioma C6 and in human glioblastoma CH235 cells (34.78% and 47.86% relative to BacCMV-GFP, respectively). Histone deacetylase inhibitors such as butyrate or trichostatin A enhanced the transcriptional activity of both BacCMV-GFP and BacFLT-GFP. Thus, in this study histone deacetylation appears to be a central mechanism for the silencing of baculovirus, independently of the promoter utilized. In vivo transcriptional targeting was demonstrated in adult rat retinal vasculature by intravitreal delivery of BacFLT-GFP and immunohistochemical staining with von Willebrand factor (vWF). Analysis by fluorescence microscopy and deconvolved three-dimensional confocal microscopy of retinal whole mounts obtained after 3 days of baculovirus injection showed that most GFP-expressing cells localized to the inner limiting membrane (ILM) and ganglion cell layer (GCL) and colocalize with vWF (70%, n = 10) in blood vessels, confirming the endothelial phenotype of the transduced cells. Conclusion Taken together, our results indicate that the restricted expression in endothelial cells

  5. Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature.

    PubMed

    Cushing, Leah; Costinean, Stefan; Xu, Wei; Jiang, Zhihua; Madden, Lindsey; Kuang, Pingping; Huang, Jingshu; Weisman, Alexandra; Hata, Akiko; Croce, Carlo M; Lü, Jining

    2015-05-01

    Differentiation of lung vascular smooth muscle cells (vSMCs) is tightly regulated during development or in response to challenges in a vessel specific manner. Aberrant vSMCs specifically associated with distal pulmonary arteries have been implicated in the pathogenesis of respiratory diseases, such as pulmonary arterial hypertension (PAH), a progressive and fatal disease, with no effective treatment. Therefore, it is highly relevant to understand the underlying mechanisms of lung vSMC differentiation. miRNAs are known to play critical roles in vSMC maturation and function of systemic vessels; however, little is known regarding the role of miRNAs in lung vSMCs. Here, we report that miR-29 family members are the most abundant miRNAs in adult mouse lungs. Moreover, high levels of miR-29 expression are selectively associated with vSMCs of distal vessels in both mouse and human lungs. Furthermore, we have shown that disruption of miR-29 in vivo leads to immature/synthetic vSMC phenotype specifically associated with distal lung vasculature, at least partially due to the derepression of KLF4, components of the PDGF pathway and ECM-related genes associated with synthetic phenotype. Moreover, we found that expression of FBXO32 in vSMCs is significantly upregulated in the distal vasculature of miR-29 null lungs. This indicates a potential important role of miR-29 in smooth muscle cell function by regulating FBXO32 and SMC protein degradation. These results are strongly supported by findings of a cell autonomous role of endogenous miR-29 in promoting SMC differentiation in vitro. Together, our findings suggested a vessel specific role of miR-29 in vSMC differentiation and function by targeting several key negative regulators.

  6. ADAM12 is expressed in the tumour vasculature and mediates ectodomain shedding of several membrane-anchored endothelial proteins.

    PubMed

    Fröhlich, Camilla; Klitgaard, Marie; Noer, Julie B; Kotzsch, Alexander; Nehammer, Camilla; Kronqvist, Pauliina; Berthelsen, Jens; Blobel, Carl; Kveiborg, Marie; Albrechtsen, Reidar; Wewer, Ulla M

    2013-05-15

    ADAM (a disintegrin and metalloproteinase) 12 is a metalloprotease implicated in cancer progression. ADAM12 can activate membrane-anchored proteins, such as sonic hedgehog, Delta-like 1 and certain epidermal growth factor receptor ligands, through a process called ectodomain shedding. We screened several membrane-anchored proteins to further dissect the substrate profile of ADAM12-mediated ectodomain shedding, and found shedding of five previously unreported substrates [Kitl1, VE-cadherin (vascular endothelial cadherin), Flk-1 (fetal liver kinase 1), Tie-2, and VCAM-1 (vascular cell adhesion molecule 1)], of which the latter four are specifically expressed by endothelial cells. We also observed that ADAM12 expression was increased in the tumour vasculature of infiltrating ductal carcinoma of the human breast as compared with little to no expression in normal breast tissue vasculature, suggesting a role for ADAM12 in tumour vessels. These results prompted us to further evaluate ADAM12-mediated shedding of two endothelial cell proteins, VE-cadherin and Tie-2. Endogenous ADAM12 expression was very low in cultured endothelial cells, but was significantly increased by cytokine stimulation. In parallel, the shed form of VE-cadherin was elevated in such cytokine-stimulated endothelial cells, and ADAM12 siRNA (small interfering RNA) knockdown reduced cytokine-induced shedding of VE-cadherin. In conclusion, the results of the present study demonstrate a role for ADAM12 in ectodomain shedding of several membrane-anchored endothelial proteins. We speculate that this process may have importance in tumour neovascularization or/and tumour cell extravasation.

  7. Reevaluating and Refining Peripherality.

    ERIC Educational Resources Information Center

    Thomas, Erik R.

    The idea that vowel nuclei in many northern European languages can be divided into peripheral and non-peripheral categories is discussed. Peripheral vowels are those located at the edge of the vowel envelope, and non-peripheral nuclei are those located on the inside. This assertion has not received as much scrutiny as it should. There are at least…

  8. CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions

    PubMed Central

    Feng, Yi; Cui, Peng; Lu, Xiaowei; Hsueh, Brian; Möller Billig, Fredrik; Zarnescu Yanez, Livia; Tomer, Raju; Boerboom, Derek; Carmeliet, Peter; Deisseroth, Karl; Hsueh, Aaron J. W.

    2017-01-01

    Optimal distribution of heterogeneous organelles and cell types within an organ is essential for physiological processes. Unique for the ovary, hormonally regulated folliculogenesis, ovulation, luteal formation/regression and associated vasculature changes lead to tissue remodeling during each reproductive cycle. Using the CLARITY approach and marker immunostaining, we identified individual follicles and corpora lutea in intact ovaries. Monitoring lifetime changes in follicle populations showed age-dependent decreases in total follicles and percentages of advanced follicles. Follicle development from primordial to preovulatory stage was characterized by 3 × 105-fold increases in volume, decreases in roundness, and decreased clustering of same stage follicles. Construction of follicle-vasculature relationship maps indicated age- and gonadotropin-dependent increases in vasculature and branching surrounding follicles. Heterozygous mutant mice with deletion of hypoxia-response element in the vascular endothelial growth factor A (VEGFA) promoter showed defective ovarian vasculature and decreased ovulatory responses. Unilateral intrabursal injection of axitinib, an inhibitor of VEGF receptors, retarded neo-angiogenesis that was associated with defective ovulation in treated ovaries. Our approach uncovers unique features of ovarian architecture and essential roles of vasculature in organizing follicles to allow future studies on normal and diseased human ovaries. Similar approaches could also reveal roles of neo-angiogenesis during embryonic development and tumorigenesis. PMID:28333125

  9. Direct interactions of androgenic/anabolic steroids with the peripheral benzodiazepine receptor in rat brain: implications for the psychological and physiological manifestations of androgenic/anabolic steroid abuse.

    PubMed

    Masonis, A E; McCarthy, M P

    1996-08-01

    The peripheral benzodiazepine receptor (PBR) is a mitochondrial protein involved in regulating steroid synthesis and transport. We report here the effects of androgenic/anabolic steroids (AAS) on the binding of the PBR-specific ligand [3H] PK11195 to male rat brain cortical synaptoneurosomes. Two synthetic AAS, stanozolol and 17beta-testosterone cypionate (17beta-cyp), significantly inhibited 1 nM [3H] PK11195 binding at concentrations greater than 5 and 25 microM, respectively. Stanozolol was the most effective inhibitor, reducing [3H] PK11195 binding by up to 75%, compared to only 40% inhibition by 17beta-cyp, at 50 microM AAS concentration. Two other AAS, 17alpha-methyltestosterone and nortestosterone decanoate, were incapable of inhibiting [3H] PK11195 binding at concentrations up to 50 microM. On the basis of Scatchard/Rosenthal analysis, [3H] PK11195 binds to two classes of binding sites, and the inhibition of [3H] PK11195 binding by stanozolol appears to be allosteric, primarily reducing binding to the higher affinity [3H] PK11195 binding site. These results, in combination with earlier studies indicating the direct effects of AAS on the function of additional central nervous system receptor complexes, suggest that the behavioral and psychological effects of AAS result from the interactions of AAS with multiple regulatory systems in the brain.

  10. Trapping and dynamic manipulation with magnetomotive photoacoustic imaging of targeted microspheres mimicking metastatic cancer cells trafficking in the vasculature

    NASA Astrophysics Data System (ADS)

    Wei, Chenwei; Xia, Jinjun; Pelivanov, Ivan; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2012-02-01

    Trapping and manipulation of micro-scale objects mimicking metastatic cancer cells in a flow field have been demonstrated with magnetomotive photoacoustic (mmPA) imaging. Coupled contrast agents combining gold nanorods (15 nm × 50 nm; absorption peak around 730 nm) with 15 nm diameter magnetic nanospheres were targeted to 10 μm polystyrene beads recirculating in a 1.6 mm diameter tube mimicking a human peripheral vessel. Targeted objects were then trapped by an external magnetic field produced by a dual magnet system consisting of two disc magnets separated by 6 cm to form a polarizing field (0.04 Tesla in the tube region) to magnetize the magnetic contrast agents, and a custom designed cone magnet array with a high magnetic field gradient (about 0.044 Tesla/mm in the tube region) producing a strong trapping force to magnetized contrast agents. Results show that polystyrene beads linked to nanocomposites can be trapped at flow rates up to 12 ml/min. It is shown that unwanted background in a photoacoustic image can be significantly suppressed by changing the position of the cone magnet array with respect to the tube, thus creating coherent movement of the trapped objects. This study makes mmPA imaging very promising for differential visualization of metastatic cells trafficking in the vasculature.

  11. Vascular endothelial growth factor co-ordinates proper development of lung epithelium and vasculature.

    PubMed

    Zhao, Liqing; Wang, Ke; Ferrara, Napoleone; Vu, Thiennu H

    2005-07-01

    The vasculature forms an intrinsic functional component of the lung and its development must be tightly regulated and coordinated with lung epithelial morphogenesis. Vascular endothelial growth factor (VEGF) and its receptors are highly expressed in a complementary pattern in the lungs during embryonic development. VEGF is expressed by epithelium and the receptors in the surrounding mesenchyme. To determine the function of VEGF in lung formation, we inhibited its activity using a soluble receptor in lung renal capsule grafts. Inhibition of VEGF results in inhibition of vascular development and significant alteration in epithelial development. Epithelial proliferation is inhibited, sacculation is impaired, and the epithelium undergoes apoptosis. Interestingly, when VEGF is attenuated, epithelial differentiation still proceeds, as shown by acquisition of both proximal and distal markers. These data show that VEGF co-ordinates epithelial and vascular development. It is required for the development of the lung vasculature and the vasculature is necessary for epithelial proliferation and morphogenesis, but not for cell differentiation.

  12. Anatomy and development of the cardiac lymphatic vasculature: Its role in injury and disease.

    PubMed

    Norman, Sophie; Riley, Paul R

    2016-04-01

    Lymphatic vessels are present throughout the entire body in all mammals and function to regulate tissue fluid balance, lipid transport and survey the immune system. Despite the presence of an extensive lymphatic plexus within the heart, until recently the importance of the cardiac lymphatic vasculature and its origins were unknown. Several studies have described the basic anatomy of the developing cardiac lymphatic vasculature and more recently the detailed development of the murine cardiac lymphatics has been documented, with important insight into their cellular sources during embryogenesis. In this review we initially describe the development of systemic lymphatic vasculature, to provide the background for a comparative description of the spatiotemporal development of the cardiac lymphatic vessels, including detail of both canonical, typically venous, and noncanonical (hemogenic endothelium) cellular sources. Subsequently, we address the response of the cardiac lymphatic network to myocardial infarction (heart attack) and the therapeutic potential of targeting cardiac lymphangiogenesis.

  13. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  14. Kinetics and functional implications of Th1 and Th2 cytokine production following activation of peripheral blood mononuclear cells in primary culture.

    PubMed

    McHugh, S; Deighton, J; Rifkin, I; Ewan, P

    1996-06-01

    The importance of cytokine production in some disease processes is now widely recognized. To investigate temporal relationships between cytokines, we stimulated peripheral blood mononuclear cells (PBMC) in vitro using the T cell mitogen phytohemagglutinin (PHA) and various antigens chosen to induce predominantly Th1 (streptokinase: streptodornase or purified protein derivative) or Th2 (Dermatophagoides pteronyssinus, bee or wasp venom: allergens in sensitive subjects) responses. Cytokine production was measured by sensitive bioassays or enzyme-linked immunosorbent assays. Of the 30 subjects studied, 10 were normal and 20 individuals were allergic to either D. pteronyssinus (n = 10) or bee venom (n = 10) (examined before specific allergen immunotherapy). We examined the temporal profiles of a panel of cytokines produced in primary culture. In PHA-driven cultures, cytokines were found to be sequentially produced in the order interleukin (IL)-2, IL-4, IL-5, IL-3, interferon (IFN)-gamma, IL-10, IL-6, IL-12 and tumor necrosis factor (TNF)-alpha. The response to allergen in allergic patients was predominantly Th2 in nature, with the production of IL-4, IL-5, IL-6 and IL-10, but little or no IFN-gamma. IL-2, IL-3, TNF-alpha and IL-12 were also produced in low amounts. The response of both atopic and normal subjects to recall bacterial antigens was predominantly Th1, with high levels of IFN-gamma, IL-2 and TNF-alpha. The relevance of the order, amount and speed of production, characteristic kinetics (production, consumption, homeostatic regulation) and the cell source of the cytokines are discussed.

  15. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: Implications for chemotherapy-induced peripheral neuropathy

    PubMed Central

    LaPointe, Nichole E.; Morfini, Gerardo; Brady, Scott T.; Feinstein, Stuart C.; Wilson, Leslie; Jordan, Mary Ann

    2014-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a serious, painful and dose-limiting side effect of cancer drugs that target microtubules. The mechanisms underlying the neuronal damage are unknown, but may include disruption of fast axonal transport, an essential microtubule-based process that moves cellular components over long distances between neuronal cell bodies and nerve terminals. This idea is supported by the “dying back” pattern of degeneration observed in CIPN, and by the selective vulnerability of sensory neurons bearing the longest axonal projections. In this study, we test the hypothesis that microtubule-targeting drugs disrupt fast axonal transport using vesicle motility assays in isolated squid axoplasm and a cell-free microtubule gliding assay with defined components. We compare four clinically-used drugs, eribulin, vincristine, paclitaxel and ixabepilone. Of these, eribulin is associated with a relatively low incidence of severe neuropathy, while vincristine has a relatively high incidence. In vesicle motility assays, we found that all four drugs inhibited anterograde (conventional kinesin-dependent) fast axonal transport, with the potency being vincristine = ixabepilone > paclitaxel = eribulin. Interestingly, eribulin and paclitaxel did not inhibit retrograde (cytoplasmic dynein-dependent) fast axonal transport, in contrast to vincristine and ixabepilone. Similarly, vincristine and ixabepilone both exerted significant inhibitory effects in an in vitro microtubule gliding assay consisting of recombinant kinesin (kinesin-1) and microtubules composed of purified bovine brain tubulin, whereas paclitaxel and eribulin had negligible effects. Our results suggest that (i) inhibition of microtubule-based fast axonal transport may be a significant contributor to neurotoxicity induced by microtubule-targeting drugs, and (ii) that individual microtubule-targeting drugs affect fast axonal transport through different mechanisms. PMID:23711742

  16. The deep accumulation of 10Be at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in peripheral ice sheet landscapes

    NASA Astrophysics Data System (ADS)

    Briner, Jason P.; Goehring, Brent M.; Mangerud, Jan; Svendsen, John Inge

    2016-09-01

    Cosmogenic nuclide exposure dating is a widely used method for constraining past ice sheet histories. We scrutinize a recently published data set of cosmogenic 10Be data from erratic boulders in Norway used to constrain the deglaciation of the western Scandinavian Ice Sheet to 20 ka. Our model of the 10Be inventory in glacial surfaces leads us to conclude that the chronology may be afflicted by the deep subsurface accumulation of 10Be during long-lasting ice-free periods that resulted in 10Be ages >10% too old. We suggest that the majority of the dated erratic boulders contain a uniform level of inherited muon-produced 10Be and were derived from bedrock depths >2.5 m and most likely ~4 m. The implication of our finding is that for landscapes that experience long ice-free periods between brief maximum glacial phases, glacial erosion of >5 m is required to remove detectable traces of inherited 10Be.

  17. Mechanics and Function of the Pulmonary Vasculature: Implications for Pulmonary Vascular Disease and Right Ventricular Function

    PubMed Central

    Lammers, Steven; Scott, Devon; Hunter, Kendall; Tan, Wei; Shandas, Robin; Stenmark, Kurt R.

    2012-01-01

    The relationship between cardiac function and the afterload against which the heart muscle must work to circulate blood throughout the pulmonary circulation is defined by a complex interaction between many coupled system parameters. These parameters range broadly and incorporate system effects originating primarily from three distinct locations: input power from the heart, hydraulic impedance from the large conduit pulmonary arteries, and hydraulic resistance from the more distal microcirculation. These organ systems are not independent, but rather, form a coupled system in which a change to any individual parameter affects all other system parameters. The result is a highly nonlinear system which requires not only detailed study of each specific component and the effect of disease on their specific function, but also requires study of the interconnected relationship between the microcirculation, the conduit arteries, and the heart in response to age and disease. Here, we investigate systems-level changes associated with pulmonary hypertensive disease progression in an effort to better understand this coupled relationship. PMID:23487595

  18. Interaction of isoflavones and endophyte-infected tall fescue seed extract on vasoactivity of bovine mesenteric vasculature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was hypothesized that isoflavones may attenuate ergot alkaloid-induced vasoconstriction and possibly alleviate diminished contractility of vasculature after exposure to ergot alkaloids. The objective of this study was to determine if prior incubation of bovine mesenteric vasculature with the isof...

  19. Peripheral artery bypass - leg

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007394.htm Peripheral artery bypass - leg To use the sharing features on this page, please enable JavaScript. Peripheral artery bypass is surgery to reroute the blood supply ...

  20. Multiscale imaging and computational modeling of blood flow in the tumor vasculature.

    PubMed

    Kim, Eugene; Stamatelos, Spyros; Cebulla, Jana; Bhujwalla, Zaver M; Popel, Aleksander S; Pathak, Arvind P

    2012-11-01

    The evolution in our understanding of tumor angiogenesis has been the result of pioneering imaging and computational modeling studies spanning the endothelial cell, microvasculature and tissue levels. Many of these primary data on the tumor vasculature are in the form of images from pre-clinical tumor models that provide a wealth of qualitative and quantitative information in many dimensions and across different spatial scales. However, until recently, the visualization of changes in the tumor vasculature across spatial scales remained a challenge due to a lack of techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such data from patients presents a serious hurdle for the development and validation of predictive, multiscale computational models of tumor angiogenesis. In this review, we discuss the development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of "image-based models" of tumor blood flow and molecular transport. Collectively, these developments are helping us gain a fundamental understanding of the cellular and molecular regulation of tumor angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this exciting integration of multiscale imaging and mathematical modeling to have widespread application beyond the tumor vasculature to other diseases involving a pathological vasculature, such as stroke and spinal cord injury.

  1. A New Presentation and Exploration of Human Cerebral Vasculature Correlated with Surface and Sectional Neuroanatomy

    ERIC Educational Resources Information Center

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…

  2. Posterior tunica vasculosa lentis and "brittle star" of persistent fetal vasculature.

    PubMed

    Pellegrini, Marco; Shields, Carol L; Arepalli, Sruthi; Shields, Jerry A

    2014-11-19

    A 17-month-old girl referred for a suspected ciliary body medulloepithelioma was found to have persistent fetal vasculature. Fluorescein angiography showed perfused hyaloid artery posterior tunica vasculosa lentis with brittle star appearance and nonperfused anterior pupillary membrane. Ultrasound biomicroscopy confirmed absence of iris or ciliary body solid tumor.

  3. Multiscale Imaging and Computational Modeling of Blood Flow in the Tumor Vasculature

    PubMed Central

    Kim, Eugene; Stamatelos, Spyros; Cebulla, Jana; Bhujwalla, Zaver M.; Popel, Aleksander S.; Pathak, Arvind P.

    2013-01-01

    The evolution in our understanding of tumor angiogenesis has been the result of pioneering imaging and computational modeling studies spanning the endothelial cell, microvasculature and tissue levels. Many of these primary data on the tumor vasculature are in the form of images from pre-clinical tumor models that provide a wealth of qualitative and quantitative information in many dimensions and across different spatial scales. However, until recently, the visualization of changes in the tumor vasculature across spatial scales remained a challenge due to a lack of techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such data from patients presents a serious hurdle for the development and validation of predictive, multiscale computational models of tumor angiogenesis. In this review, we discuss the development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of “image-based models”of tumor blood flow and molecular transport. Collectively, these developments are helping us gain a fundamental understanding of the cellular and molecular regulation of tumor angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this exciting integration of multiscale imaging and mathematical modeling to have widespread application beyond the tumor vasculature to other diseases involving a pathological vasculature, such as stroke and spinal cord injury. PMID:22565817

  4. TISSUE-SPECIFIC VENOUS EXPRESSION OF THE EPH FAMILY RECEPTOR EPHB1 IN THE SKIN VASCULATURE

    PubMed Central

    Li, Wenling; Mukouyama, Yoh-suke

    2013-01-01

    Background The major arteries and veins are formed early during development. The molecular tools to identify arterial and venous endothelial cells improve our understanding of arterial-venous differentiation and branching morphogenesis. Compared to arterial differentiation, relatively little is known about what controls venous development, due to a lack of definitive molecular markers for venous endothelial cells. Results Here we report that the antibody against EphB1, an EphB class receptor, makes it possible to establish a reliable whole-mount immunohistochemical analysis of venous identity with greater resolution than previously possible in embryonic and adult skin vasculature models. EphB1 expression is restricted to the entire venous vasculature throughout embryonic development to adulthood, whereas the previously established venous marker EphB4 is also detectable in lymphatic vasculature. This venous-restricted expression of EphB1 is established after the vascular remodeling of the primary capillary plexus has occurred. Compared to its venous-specific expression in the skin, however, EphB1 is not restricted to the venous vasculature in yolk sac, trunk and lung. Conclusions These studies introduce EphB1 as a new venous-restricted marker in a tissue-specific and time-dependent manner. PMID:23649798

  5. Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis

    PubMed Central

    Chen, Yu; Doughman, Yong-qiu; Gu, Shi; Jarrell, Andrew; Aota, Shin-ichi; Cvekl, Ales; Watanabe, Michiko; Dunwoodie, Sally L.; Johnson, Randall S.; van Heyningen, Veronica; Kleinjan, Dirk A.; Beebe, David C.; Yang, Yu-Chung

    2009-01-01

    Cited2 is a transcriptional modulator with pivotal roles in different biological processes. Cited2-deficient mouse embryos manifested two major defects in the developing eye. An abnormal corneal-lenticular stalk was characteristic of Cited2−/− developing eyes, a feature reminiscent of Peters’ anomaly, which can be rescued by increased Pax6 gene dosage in Cited2−/− embryonic eyes. In addition, the hyaloid vascular system showed hyaloid hypercellularity consisting of aberrant vasculature, which might be correlated with increased VEGF expression in the lens. Deletion of Hif1a (which encodes HIF-1α) in Cited2−/− lens specifically eliminated the excessive accumulation of cellular mass and aberrant vasculature in the developing vitreous without affecting the corneal-lenticular stalk phenotype. These in vivo data demonstrate for the first time dual functions for Cited2: one upstream of, or together with, Pax6 in lens morphogenesis; and another in the normal formation of the hyaloid vasculature through its negative modulation of HIF-1 signaling. Taken together, our study provides novel mechanistic revelation for lens morphogenesis and hyaloid vasculature formation and hence might offer new insights into the etiology of Peters’ anomaly and ocular hypervascularity. PMID:18653562

  6. Pregnane X receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress

    PubMed Central

    Swales, Karen E.; Moore, Rick; Truss, Nicola J.; Tucker, Arthur; Warner, Timothy D.; Negishi, Masahiko; Bishop-Bailey, David

    2012-01-01

    Aims Circulating endogenous, dietary, and foreign chemicals can contribute to vascular dysfunction. The mechanism by which the vasculature protects itself from these chemicals is unknown. This study investigates whether the pregnane X receptor (PXR), the major transcriptional regulator of hepatic drug metabolism and transport that responds to such xenobiotics, mediates vascular protection by co-ordinating a defence gene programme in the vasculature. Methods and results PXR was detected in primary human and rat aortic endothelial and smooth muscle cells (SMC) and blood vessels including the human and rat aorta. Metabolic PXR target genes cytochrome P450 3A, 2B, 2C, and glutathione S-transferase mRNA and activity were induced by PXR ligands in rodent and human vascular cells and absent in the aortas from PXR-null mice stimulated in vivo or in rat aortic SMC expressing dominant-negative PXR. Activation of aortic PXR by classical agonists had several protective effects: increased xenobiotic metabolism demonstrated by bioactivation of the pro-drug clopidogrel, which reduced adenosine diphosphate-induced platelet aggregation; increased expression of multidrug resistance protein 1, mediating chemical efflux from the vasculature; and protection from reactive oxygen species-mediated cell death. Conclusion PXR co-ordinately up-regulates drug metabolism, transport, and antioxidant genes to protect the vasculature from endogenous and exogenous insults, thus representing a novel gatekeeper for vascular defence. PMID:22166712

  7. Floral vasculature and its variation for carpellary supply in Anthurium (Araceae, Alismatales)

    PubMed Central

    Temponi, Lívia G.; Coan, Alessandra I.

    2017-01-01

    Introduction and Aims Anthurium is the largest genus of Araceae, with 950 species distributed in the neotropics. Despite the great diversity of the genus, the knowledge of its floral vasculature is based on observations in only two species, viz. A. denudatum and A. lhotzkyanum, with remarkable variation in vascular carpellary supply: carpels are either vascularized by ventral bundles alone or by reduced dorsal bundles in addition to the ventral ones. Our main objective is to test this peculiar variation through a detailed anatomical study of the floral vasculature in taxa belonging to some sections of Anthurium designated as monophyletic groups in recent phylogenies. Methods We compare the floral vasculature of 20 neotropical species belonging to distinct sections of Anthurium, using both light and confocal laser scanning microscopies. Results The number and position of vascular bundles are constant within the tepals and stamens, regardless of the species and sections studied. However, the gynoecium vasculature exhibits variation between species belonging to the same or different sections. Our results reveal two patterns of vasculature: carpels vascularized by synlateral bundles alone (Pattern A) and carpels vascularized by both dorsal and synlateral bundles (Pattern B). Pattern A is shared by the majority of species studied here and corroborates the previous data in the literature. Pattern B occurs in three species: A. affine (Anthurium sect. Pachyneurium series Pachyneurium), A. obtusum and A. scandens (Anthurium sect. Tetraspermium), described here for the first time for the genus. Conclusions The variation in the supply to the carpels in Anthurium is corroborated here. However, our results in addition to those from the available literature suggest the existence of three patterns (A, B and C) of carpellary vasculature. Based on the recent phylogeny of Anthurium it is possible to notice that the three patterns of carpellary vasculature occur in representatives of

  8. Cone beam CT tumor vasculature dynamic study (Murine model)

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Ning, Ruola; Conover, David; Ricardo, Betancourt; Liu, Shaohua

    2008-03-01

    Tumor angiogenesis is the process by which new blood vessels are formed from the existing vessels in a tumor to promote tumor growth. Tumor angiogenesis has important implications in the diagnosis and treatment of various solid tumors. Flat panel detector based cone beam CT opens up a new way for detection of tumors, and tumor angiogenesis associated with functional CBCT has the potential to provide more information than traditional functional CT due to more overall coverage during the same scanning period and the reconstruction being isotropic resulting in a more accurate 3D volume intensity measurement. A functional study was conducted by using CBCT to determine the degree of the enhancement within the tumor after injecting the contrast agent intravenously. For typical doses of contrast material, the amount of enhancement is proportional to the concentration of this material within the region of interest. A series of images obtained at one location over time allows generation of time-attenuation data from which a number of semi-quantitative parameters, such as enhancement rate, can be determined. An in vivo mice study with and without mammo tumor was conducted on our prototype CBCT system, and half scan scheme is used to determine the time-intensity curve within the VOI of the mouse. The CBCT has an x-ray tube, a gantry with slip ring technology, and a 40×30 cm Varian Paxscan 4030CB real time FPD.

  9. CAVAREV—an open platform for evaluating 3D and 4D cardiac vasculature reconstruction

    NASA Astrophysics Data System (ADS)

    Rohkohl, Christopher; Lauritsch, Günter; Keil, Andreas; Hornegger, Joachim

    2010-05-01

    The 3D reconstruction of cardiac vasculature, e.g. the coronary arteries, using C-arm CT (rotational angiography) is an active and challenging field of research. There are numerous publications on different reconstruction techniques. However, there is still a lack of comparability of achieved results for several reasons: foremost, datasets used in publications are not open to public and thus experiments are not reproducible by other researchers. Further, the results highly depend on the vasculature motion, i.e. cardiac and breathing motion patterns which are also not comparable across publications. We aim to close this gap by providing an open platform, called Cavarev (CArdiac VAsculature Reconstruction EValuation). It features two simulated dynamic projection datasets based on the 4D XCAT phantom with contrasted coronary arteries which was derived from patient data. In the first dataset, the vasculature undergoes a continuous periodic motion. The second dataset contains aperiodic heart motion by including additional breathing motion. The geometry calibration and acquisition protocol were obtained from a real-world C-arm system. For qualitative evaluation of the reconstruction results, the correlation of the morphology is used. Two segmentation-based quality measures are introduced which allow us to assess the 3D and 4D reconstruction quality. They are based on the spatial overlap of the vasculature reconstruction with the ground truth. The measures enable a comprehensive analysis and comparison of reconstruction results independent from the utilized reconstruction algorithm. An online platform (www.cavarev.com) is provided where the datasets can be downloaded, researchers can manage and publish algorithm results and download a reference C++ and Matlab implementation.

  10. Mesenteric Vasculature-guided Small Bowel Segmentation on 3D CT

    PubMed Central

    Zhang, Weidong; Liu, Jiamin; Yao, Jianhua; Louie, Adeline; Nguyen, Tan B.; Wank, Stephen; Nowinski, Wieslaw L.; Summers, Ronald M.

    2014-01-01

    Due to its importance and possible applications in visualization, tumor detection and pre-operative planning, automatic small bowel segmentation is essential for computer-aided diagnosis of small bowel pathology. However, segmenting the small bowel directly on CT scans is very difficult because of the low image contrast on CT scans and high tortuosity of the small bowel and its close proximity to other abdominal organs. Motivated by the intensity characteristics of abdominal CT images, the anatomic relationship between the mesenteric vasculature and the small bowel, and potential usefulness of the mesenteric vasculature for establishing the path of the small bowel, we propose a novel mesenteric vasculature map-guided method for small bowel segmentation on high-resolution CT angiography scans. The major mesenteric arteries are first segmented using a vessel tracing method based on multi-linear subspace vessel model and Bayesian inference. Second, multi-view, multi-scale vesselness enhancement filters are used to segment small vessels, and vessels directly or indirectly connecting to the superior mesenteric artery are classified as mesenteric vessels. Third, a mesenteric vasculature map is built by linking vessel bifurcation points, and the small bowel is segmented by employing the mesenteric vessel map and fuzzy connectness. The method was evaluated on 11 abdominal CT scans of patients suspected of having carcinoid tumors with manually labeled reference standard. The result, 82.5% volume overlap accuracy compared with the reference standard, shows it is feasible to segment the small bowel on CT scans using the mesenteric vasculature as a roadmap. PMID:23807437

  11. Optical imaging of the chorioretinal vasculature in the living human eye.

    PubMed

    Kim, Dae Yu; Fingler, Jeff; Zawadzki, Robert J; Park, Susanna S; Morse, Lawrence S; Schwartz, Daniel M; Fraser, Scott E; Werner, John S

    2013-08-27

    Detailed visualization of microvascular changes in the human retina is clinically limited by the capabilities of angiography imaging, a 2D fundus photograph that requires an intravenous injection of fluorescent dye. Whereas current angiography methods enable visualization of some retinal capillary detail, they do not adequately reveal the choriocapillaris or other microvascular features beneath the retina. We have developed a noninvasive microvascular imaging technique called phase-variance optical coherence tomography (pvOCT), which identifies vasculature three dimensionally through analysis of data acquired with OCT systems. The pvOCT imaging method is not only capable of generating capillary perfusion maps for the retina, but it can also use the 3D capabilities to segment the data in depth to isolate vasculature in different layers of the retina and choroid. This paper demonstrates some of the capabilities of pvOCT imaging of the anterior layers of choroidal vasculature of a healthy normal eye as well as of eyes with geographic atrophy (GA) secondary to age-related macular degeneration. The pvOCT data presented permit digital segmentation to produce 2D depth-resolved images of the retinal vasculature, the choriocapillaris, and the vessels in Sattler's and Haller's layers. Comparisons are presented between en face projections of pvOCT data within the superficial choroid and clinical angiography images for regions of GA. Abnormalities and vascular dropout observed within the choriocapillaris for pvOCT are compared with regional GA progression. The capability of pvOCT imaging of the microvasculature of the choriocapillaris and the anterior choroidal vasculature has the potential to become a unique tool to evaluate therapies and understand the underlying mechanisms of age-related macular degeneration progression.

  12. Advances in understanding the peripheral circadian clocks.

    PubMed

    Richards, Jacob; Gumz, Michelle L

    2012-09-01

    In the past decade, it has become increasingly evident that the circadian clock system plays an important role in many physiological processes. The circadian clock can be divided into 2 parts: the central clock, residing in the suprachiasmatic nucleus of the hypothalamus, which receives light cues, and the peripheral clocks that reside in various tissues throughout the body. The peripheral clocks play an integral and unique role in each of their respective tissues, driving the circadian expression of specific genes involved in a variety of physiological functions. The goal of this review is to provide an introduction to and overview of the peripheral clocks, including potential mechanisms, targets, and implications for disease states. The peripheral clocks include the cardiovascular, metabolic, endocrine, immune, and reproductive systems.

  13. Peripheral visual changes and spatial attention.

    PubMed

    Lambert, A; Spencer, M; Hockey, R

    1991-04-01

    Three experiments are reported investigating the attentional effects of peripheral visual changes. In agreement with previous work, experiment 1 demonstrated facilitatory and inhibitory effects of a peripheral visual change on the latency of peripheral target detection. However, after a few minutes practice the facilitatory effect disappeared entirely. The inhibitory effect, though slightly reduced in later blocks, remained significant. Hence, the two effects are dissociable and not inter-dependent as argued by Maylor (1985). In experiments 2 and 3 the perceptual salience of the peripheral cue was manipulated. With a low energy, barely noticeable cue there was no reduction in either facilitation or inhibition as a function of practice. In contrast, the attentional effects of cues higher in energy tended to diminish with practice. Theoretical implications of these data are discussed.

  14. Peripheral Neuropathy and Agent Orange

    MedlinePlus

    ... ZIP code here Enter ZIP code here Peripheral Neuropathy and Agent Orange VA presumes Veterans' early-onset ... percent disabling by VA's rating regulations. About peripheral neuropathy Peripheral neuropathy is a condition of the peripheral ...

  15. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer

    PubMed Central

    Sullivan, Robert; Dailey, Travis; Duncan, Kelsey; Abel, Naomi; Borlongan, Cesario V.

    2016-01-01

    Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration. PMID:27983642

  16. A model for gas and nutrient exchange in the chorionic vasculature system of the mouse placenta

    NASA Astrophysics Data System (ADS)

    Mirbod, Parisa; Sled, John

    2015-11-01

    The aim of this study is to develop an analytical model for the oxygen and nutrient transport from the umbilical cord to the small villous capillaries. The nutrient and carbon dioxide removal from the fetal cotyledons in the mouse placental system has also been considered. This model describes the mass transfer between the fetal and the maternal red blood cells in the chorionic arterial vasculature system. The model reveals the detail fetal vasculature system and its geometry and the precise mechanisms of mass transfer through the placenta. The dimensions of the villous capillaries, the total length of the villous trees, the total villi surface area, and the total resistance to mass transport in the fetal villous trees has also been defined. This is the first effort to explain the reason why there are at least 7 lobules in the mouse placenta from the fluid dynamics point of view.

  17. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis.

    PubMed

    Yoshida, Shosei; Sukeno, Mamiko; Nabeshima, Yo-Ichi

    2007-09-21

    Mammalian spermatogenesis produces numerous sperm for a long period based on a highly potent stem cell system, which relies on a special microenvironment, or niche, that has not yet been identified. In this study, using time-lapse imaging of green fluorescent protein-labeled undifferentiated spermatogonia (A(undiff)) and three-dimensional reconstitution, we revealed a biased localization of A(undiff) to the vascular network and accompanying Leydig and other interstitial cells, in intact testes. Differentiating spermatogonia left these niche regions and dispersed throughout the basal compartment of the seminiferous epithelium. Moreover, rearrangement of A(undiff) accompanied the vasculature alteration. We propose that the mammalian germline niche is established as a consequence of vasculature pattern formation. This is different from what is observed in Drosophila or Caenorhabditis elegans, which display developmentally specified niche structures within polarized gonads.

  18. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery

    PubMed Central

    2012-01-01

    Tumor vasculature expresses a distinct set of molecule signatures on the endothelial cell surface different from the resting blood vessels of other organs and tissues in the body. This makes them an attractive target for cancer therapy and molecular imaging. The current technology using the in vivo phage display biopanning allows us to quickly isolate and identify peptides potentially homing to various tumor blood vessels. Tumor-homing peptides in conjugation with chemotherapeutic drugs or imaging contrast have been extensively tested in various preclinical and clinical studies. These tumor-homing peptides have valuable potential as targeting probes for tumor molecular imaging and drug delivery. In this review, we summarize the recent advances about the applications of tumor-homing peptides selected by in vivo phage display library screening against tumor vasculature. We also introduce the characteristics of the latest discovered tumor-penetrating peptides in their potential clinical applications. PMID:23046982

  19. The biomechanical properties of an epithelial tissue determine the location of its vasculature

    PubMed Central

    Kragl, Martin; Schubert, Rajib; Karsjens, Haiko; Otter, Silke; Bartosinska, Barbara; Jeruschke, Kay; Weiss, Jürgen; Chen, Chunguang; Alsteens, David; Kuss, Oliver; Speier, Stephan; Eberhard, Daniel; Müller, Daniel J.; Lammert, Eckhard

    2016-01-01

    An important question is how growing tissues establish a blood vessel network. Here we study vascular network formation in pancreatic islets, endocrine tissues derived from pancreatic epithelium. We find that depletion of integrin-linked kinase (ILK) in the pancreatic epithelial cells of mice results in glucose intolerance due to a loss of the intra-islet vasculature. In turn, blood vessels accumulate at the islet periphery. Neither alterations in endothelial cell proliferation, apoptosis, morphology, Vegfa expression and VEGF-A secretion nor ‘empty sleeves' of vascular basement membrane are found. Instead, biophysical experiments reveal that the biomechanical properties of pancreatic islet cells, such as their actomyosin-mediated cortex tension and adhesive forces to endothelial cells, are significantly changed. These results suggest that a sorting event is driving the segregation of endothelial and epithelial cells and indicate that the epithelial biomechanical properties determine whether the blood vasculature invades or envelops a growing epithelial tissue. PMID:27995929

  20. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery.

    PubMed

    Li, Zhi Jie; Cho, Chi Hin

    2012-09-19

    Tumor vasculature expresses a distinct set of molecule signatures on the endothelial cell surface different from the resting blood vessels of other organs and tissues in the body. This makes them an attractive target for cancer therapy and molecular imaging. The current technology using the in vivo phage display biopanning allows us to quickly isolate and identify peptides potentially homing to various tumor blood vessels. Tumor-homing peptides in conjugation with chemotherapeutic drugs or imaging contrast have been extensively tested in various preclinical and clinical studies. These tumor-homing peptides have valuable potential as targeting probes for tumor molecular imaging and drug delivery. In this review, we summarize the recent advances about the applications of tumor-homing peptides selected by in vivo phage display library screening against tumor vasculature. We also introduce the characteristics of the latest discovered tumor-penetrating peptides in their potential clinical applications.

  1. Assessment of variability in cerebral vasculature for neuro-anatomical surgery planning in rodent brain

    NASA Astrophysics Data System (ADS)

    Rangarajan, J. R.; Van Kuyck, K.; Himmelreich, U.; Nuttin, B.; Maes, F.; Suetens, P.

    2011-03-01

    Clinical and pre-clinical studies show that deep brain stimulation (DBS) of targeted brain regions by neurosurgical techniques ameliorate psychiatric disorder such as anorexia nervosa. Neurosurgical interventions in preclinical rodent brain are mostly accomplished manually with a 2D atlas. Considering both the large number of animals subjected to stereotactic surgical experiments and the associated imaging cost, feasibility of sophisticated pre-operative imaging based surgical path planning and/or robotic guidance is limited. Here, we spatially normalize vasculature information and assess the intra-strain variability in cerebral vasculature for a neurosurgery planning. By co-registering and subsequently building a probabilistic vasculature template in a standard space, we evaluate the risk of a user defined electrode trajectory damaging a blood vessel on its path. The use of such a method may not only be confined to DBS therapy in small animals, but also could be readily applicable to a wide range of stereotactic small animal surgeries like targeted injection of contrast agents and cell labeling applications.

  2. Adaptive Image Enhancement for Tracing 3D Morphologies of Neurons and Brain Vasculatures.

    PubMed

    Zhou, Zhi; Sorensen, Staci; Zeng, Hongkui; Hawrylycz, Michael; Peng, Hanchuan

    2015-04-01

    It is important to digitally reconstruct the 3D morphology of neurons and brain vasculatures. A number of previous methods have been proposed to automate the reconstruction process. However, in many cases, noise and low signal contrast with respect to the image background still hamper our ability to use automation methods directly. Here, we propose an adaptive image enhancement method specifically designed to improve the signal-to-noise ratio of several types of individual neurons and brain vasculature images. Our method is based on detecting the salient features of fibrous structures, e.g. the axon and dendrites combined with adaptive estimation of the optimal context windows where such saliency would be detected. We tested this method for a range of brain image datasets and imaging modalities, including bright-field, confocal and multiphoton fluorescent images of neurons, and magnetic resonance angiograms. Applying our adaptive enhancement to these datasets led to improved accuracy and speed in automated tracing of complicated morphology of neurons and vasculatures.

  3. Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish

    PubMed Central

    Kumar, Sunil; Lockwood, Nicola; Ramel, Marie-Christine; Correia, Teresa; Ellis, Matthew; Alexandrov, Yuriy; Andrews, Natalie; Patel, Rachel; Bugeon, Laurence; Dallman, Margaret J.; Brandner, Sebastian; Arridge, Simon; Katan, Matilda; McGinty, James; Frankel, Paul; French, Paul M.W.

    2016-01-01

    We describe a novel approach to study tumour progression and vasculature development in vivo via global 3-D fluorescence imaging of live non-pigmented adult zebrafish utilising angularly multiplexed optical projection tomography with compressive sensing (CS-OPT). This “mesoscopic” imaging method bridges a gap between established ~μm resolution 3-D fluorescence microscopy techniques and ~mm-resolved whole body planar imaging and diffuse tomography. Implementing angular multiplexing with CS-OPT, we demonstrate the in vivo global imaging of an inducible fluorescently labelled genetic model of liver cancer in adult non-pigmented zebrafish that also present fluorescently labelled vasculature. In this disease model, addition of a chemical inducer (doxycycline) drives expression of eGFP tagged oncogenic K-RASV12 in the liver of immune competent animals. We show that our novel in vivo global imaging methodology enables non-invasive quantitative imaging of the development of tumour and vasculature throughout the progression of the disease, which we have validated against established methods of pathology including immunohistochemistry. We have also demonstrated its potential for longitudinal imaging through a study of vascular development in the same zebrafish from early embryo to adulthood. We believe that this instrument, together with its associated analysis and data management tools, constitute a new platform for in vivo cancer studies and drug discovery in zebrafish disease models. PMID:27259259

  4. Tissue Myeloid Progenitors Differentiate into Pericytes through TGF-β Signaling in Developing Skin Vasculature.

    PubMed

    Yamazaki, Tomoko; Nalbandian, Ani; Uchida, Yutaka; Li, Wenling; Arnold, Thomas D; Kubota, Yoshiaki; Yamamoto, Seiji; Ema, Masatsugu; Mukouyama, Yoh-Suke

    2017-03-21

    Mural cells (pericytes and vascular smooth muscle cells) are essential for the regulation of vascular networks and maintenance of vascular integrity, but their origins are diverse in different tissues and not known in the organs that arise from the ectoderm, such as skin. Here, we show that tissue-localized myeloid progenitors contribute to pericyte development in embryonic skin vasculature. A series of in vivo fate-mapping experiments indicates that tissue myeloid progenitors differentiate into pericytes. Furthermore, depletion of tissue myeloid cells and their progenitors in PU.1 (also known as Spi1) mutants results in defective pericyte development. Fluorescence-activated cell sorting (FACS)-isolated myeloid cells and their progenitors from embryonic skin differentiate into pericytes in culture. At the molecular level, transforming growth factor-β (TGF-β) induces pericyte differentiation in culture. Furthermore, type 2 TGF-β receptor (Tgfbr2) mutants exhibit deficient pericyte development in skin vasculature. Combined, these data suggest that pericytes differentiate from tissue myeloid progenitors in the skin vasculature through TGF-β signaling.

  5. Revisiting tumor angiogenesis: vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation.

    PubMed

    Qian, Chao-Nan; Tan, Min-Han; Yang, Jun-Ping; Cao, Yun

    2016-01-08

    Tumor growth and metastasis depend on the establishment of tumor vasculature to provide oxygen, nutrients, and other essential factors. The well-known vascular endothelial growth factor (VEGF) signaling is crucial for sprouting angiogenesis as well as recruitment of circulating progenitor endothelial cells to tumor vasculature, which has become therapeutic targets in clinical practice. However, the survival benefits gained from targeting VEGF signaling have been very limited, with the inevitable development of treatment resistance. In this article, we discuss the most recent findings and understanding on how solid tumors evade VEGF-targeted therapy, with a special focus on vessel co-option, vessel remodeling, and tumor cell-derived vasculature establishment. Vessel co-option may occur in tumors independently of sprouting angiogenesis, and sprouting angiogenesis is not always required for tumor growth. The differences between vessel-like structure and tubule-like structure formed by tumor cells are also introduced. The exploration of the underlying mechanisms of these alternative angiogenic approaches would not only widen our knowledge of tumor angiogenesis but also provide novel therapeutic targets for better controlling cancer growth and metastasis.

  6. The association between retinal vasculature changes and stroke: a literature review and Meta-analysis

    PubMed Central

    Wu, Hui-Qun; Wu, Huan; Shi, Li-Li; Yu, Li-Yuan; Wang, Li-Yuan; Chen, Ya-Lan; Geng, Jin-Song; Shi, Jian; Jiang, Kui; Dong, Jian-Cheng

    2017-01-01

    AIM To determine the association between retinal vasculature changes and stroke. METHODS MEDLINE and EMBASE were searched for relevant human studies to September 2015 that investigated the association between retinal vasculature changes and the prevalence or incidence of stroke; the studies were independently examined for their qualities. Data on clinical characteristics and calculated summary odds ratios (ORs) were extracted for associations between retinal microvascular abnormalities and stroke, including stroke subtypes where possible, and adjusted for key variables. RESULTS Nine cases were included in the study comprising 20 659 patients, 1178 of whom were stroke patients. The retinal microvascular morphological markers used were hemorrhage, microaneurysm, vessel caliber, arteriovenous nicking, and fractal dimension. OR of retinal arteriole narrowing and retinal arteriovenous nicking and stroke was 1.42 and 1.91, respectively, indicating that a small-caliber retinal arteriole and retinal arteriovenous nicking were associated with stroke. OR of retinal hemorrhage and retinal microaneurysm and stroke was 3.21 and 3.83, respectively, indicating that retinal microvascular lesions were highly associated with stroke. Results also showed that retinal fractal dimension reduction was associated with stroke (OR: 2.28 for arteriole network, OR: 1.80 for venular network). CONCLUSION Retinal vasculature changes have a specific relationship to stroke, which is promising evidence for the prediction of stroke using computerized retinal vessel analysis. PMID:28149786

  7. Endocrine vasculatures are preferable targets of an antitumor ineffective low dose of anti-VEGF therapy

    PubMed Central

    Zhang, Yin; Yang, Yunlong; Hosaka, Kayoko; Huang, Guichun; Zang, Jingwu; Chen, Fang; Zhang, Yun; Samani, Nilesh J.; Cao, Yihai

    2016-01-01

    Anti-VEGF–based antiangiogenic drugs are designed to block tumor angiogenesis for treatment of cancer patients. However, anti-VEGF drugs produce off-tumor target effects on multiple tissues and organs and cause broad adverse effects. Here, we show that vasculatures in endocrine organs were more sensitive to anti-VEGF treatment than tumor vasculatures. In thyroid, adrenal glands, and pancreatic islets, systemic treatment with low doses of an anti-VEGF neutralizing antibody caused marked vascular regression, whereas tumor vessels remained unaffected. Additionally, a low dose of VEGF blockade significantly inhibited the formation of thyroid vascular fenestrae, leaving tumor vascular structures unchanged. Along with vascular structural changes, the low dose of VEGF blockade inhibited vascular perfusion and permeability in thyroid, but not in tumors. Prolonged treatment with the low-dose VEGF blockade caused hypertension and significantly decreased circulating levels of thyroid hormone free-T3 and -T4, leading to functional impairment of thyroid. These findings show that the fenestrated microvasculatures in endocrine organs are more sensitive than tumor vasculatures in response to systemic anti-VEGF drugs. Thus, our data support the notion that clinically nonbeneficial treatments with anti-VEGF drugs could potentially cause adverse effects. PMID:27035988

  8. Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish.

    PubMed

    Kumar, Sunil; Lockwood, Nicola; Ramel, Marie-Christine; Correia, Teresa; Ellis, Matthew; Alexandrov, Yuriy; Andrews, Natalie; Patel, Rachel; Bugeon, Laurence; Dallman, Margaret J; Brandner, Sebastian; Arridge, Simon; Katan, Matilda; McGinty, James; Frankel, Paul; French, Paul M W

    2016-07-12

    We describe a novel approach to study tumour progression and vasculature development in vivo via global 3-D fluorescence imaging of live non-pigmented adult zebrafish utilising angularly multiplexed optical projection tomography with compressive sensing (CS-OPT). This "mesoscopic" imaging method bridges a gap between established ~μm resolution 3-D fluorescence microscopy techniques and ~mm-resolved whole body planar imaging and diffuse tomography. Implementing angular multiplexing with CS-OPT, we demonstrate the in vivo global imaging of an inducible fluorescently labelled genetic model of liver cancer in adult non-pigmented zebrafish that also present fluorescently labelled vasculature. In this disease model, addition of a chemical inducer (doxycycline) drives expression of eGFP tagged oncogenic K-RASV12 in the liver of immune competent animals. We show that our novel in vivo global imaging methodology enables non-invasive quantitative imaging of the development of tumour and vasculature throughout the progression of the disease, which we have validated against established methods of pathology including immunohistochemistry. We have also demonstrated its potential for longitudinal imaging through a study of vascular development in the same zebrafish from early embryo to adulthood. We believe that this instrument, together with its associated analysis and data management tools, constitute a new platform for in vivo cancer studies and drug discovery in zebrafish disease models.

  9. Peripheral neuropathy in diabetes.

    PubMed

    Majumder, A; Chatterjee, S; Maji, D

    2013-06-01

    Peripheral neuropathy is common complication of diabetes. The prevalence of peripheral neuropathy among diabetic patients on the basis of loss of vibration sensation had been studied. Detailed clinical history of each patient including age, gender, duration of diabetes, foot ulcer and biothesiometry was recorded in 211 diabetic patients between 20 and 80 years of age. It was observed that all patients under 30 years age (n = 8) felt vibration below 15 volts (no risk zone); 77% (24 out of 31) of the patients in the age group of 30-39 years were in the no risk zone, and 23% (n = 7) had mild peripheral neuropathy. Sixty per cent of the patients between 40 and 50 years (n = 44) were in the no risk zone, while 32% (n = 24) had mild peripheral neuropathy, 5% (n = 4) had moderate neuropathy and 3% (n = 2) had severe peripheral neuropathy. Amongst patients above 50 years of age, 31% (n = 31) were in no risk zone, 34% (n = 34) had mild peripheral neuropathy, 22% (n = 20) had moderate peripheral neuropathy and 13% (n = 13) had severe peripheral neuropathy. Of the patients with diabetes for less than 5 years, 58% had no neuropathy, and only 3% had severe neuropathy. Of the patients with diabetes for 5 to 15 years, 50% had no neuropathy, 30% had mild, and 10% had severe peripheral neuropathy. When patients with diabetes for over 15 years were studied, only 6% had no neuropathy and 19% had severe peripheral neuropathy. The study re-establishes that the severity of peripheral neuropathy increases with age and vibration perception decreses progressively with increased duration of diabetes. Vibration perception threshold testing helps to identify the high risk subjects who require special counselling and education to protect their feet.

  10. Angioplasty and stent placement - peripheral arteries - discharge

    MedlinePlus

    Percutaneous transluminal angioplasty - peripheral artery - discharge; PTA - peripheral artery - discharge; Angioplasty - peripheral artery - discharge; Balloon angioplasty - peripheral artery- discharge; PAD - PTA discharge; PVD - PTA discharge

  11. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons

    PubMed Central

    Lin, Yuting; Paganetti, Harald; McMahon, Stephen J.; Schuemann, Jan

    2015-01-01

    Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached

  12. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons

    SciTech Connect

    Lin, Yuting Paganetti, Harald; Schuemann, Jan; McMahon, Stephen J.

    2015-10-15

    Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached

  13. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature.

    PubMed

    Dellinger, Michael T; Meadows, Stryder M; Wynne, Katherine; Cleaver, Ondine; Brekken, Rolf A

    2013-01-01

    Vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed by lymphatic endothelial cells and has been shown to stimulate lymphangiogenesis in adult mice. However, the role VEGFR2 serves in the development of the lymphatic vascular system has not been defined. Here we use the Cre-lox system to show that the proper development of the lymphatic vasculature requires VEGFR2 expression by lymphatic endothelium. We show that Lyve-1(wt/Cre);Vegfr2(flox/flox) mice possess significantly fewer dermal lymphatic vessels than Vegfr2(flox/flox) mice. Although Lyve-1(wt/Cre);Vegfr2(flox/flox) mice exhibit lymphatic hypoplasia, the lymphatic network is functional and contains all of the key features of a normal lymphatic network (initial lymphatic vessels and valved collecting vessels surrounded by smooth muscle cells (SMCs)). We also show that Lyve-1(Cre) mice display robust Cre activity in macrophages and in blood vessels in the yolk sac, liver and lung. This activity dramatically impairs the development of blood vessels in these tissues in Lyve-1(wt/Cre);Vegfr2(flox/flox) embryos, most of which die after embryonic day14.5. Lastly, we show that inactivation of Vegfr2 in the myeloid lineage does not affect the development of the lymphatic vasculature. Therefore, the abnormal lymphatic phenotype of Lyve-1(wt/Cre);Vegfr2(flox/flox) mice is due to the deletion of Vegfr2 in the lymphatic vasculature not macrophages. Together, this work demonstrates that VEGFR2 directly promotes the expansion of the lymphatic network and further defines the molecular mechanisms controlling the development of the lymphatic vascular system.

  14. Maternal heme oxygenase 1 regulates placental vasculature development via angiogenic factors in mice.

    PubMed

    Zhao, Hui; Azuma, Junya; Kalish, Flora; Wong, Ronald J; Stevenson, David K

    2011-11-01

    The placental vasculature is critical for nutrient, gas, and waste exchange between the maternal and fetal systems. Its development depends on the proper expression and interaction of angiogenesis and associated growth factors. Heme oxygenase (HMOX), the enzyme for heme degradation, plays a role in angiogenesis and is highly expressed in the placenta. To evaluate the role of maternal HMOX1, the inducible HMOX isozyme, on placental vasculature formation, mice with a partial deficiency in Hmox1 (Hmox1(+/-)) were used. Three-dimensional images of placental vasculatures as well as spiral arteries from Hmox1(+/+) or Hmox1(+/-) placentas were created by vascular corrosion casting technique and imaged by micro-computerized tomography (microCT). The structures and morphologies of fetomaternal interfaces were observed by histological staining and the ultrastructure of uterine natural killer (uNK) cells, a major regulator in spiral artery remodeling, was analyzed by transmission electron microscopy. A group of growth factors and angiogenic factors from the decidua/mesometrial lymphoid aggregate of pregnancy (MLAp) as well as labyrinth regions were quantified using an angiogenesis PCR array kit and compared between Hmox1(+/+) or Hmox1(+/-) placentas. In conclusion, a partial deficiency of maternal Hmox1 resulted in the malformation of fetomaternal interface, insufficiency of spiral artery remodeling, and alteration of uNK cell differentiation and maturation. These changes were independent of the fetal genotype, but relied on the maternal HMOX1 level, which determined the balance of expression levels of pro- and antiangiogenic factors in the decidua/MLAp region. These results implied that Hmox1 polymorphisms among the human population might contribute to some unexplained cases of pregnancy disorders, such as fetal growth retardation and preeclampsia.

  15. WE-G-BRE-04: Gold Nanoparticle Induced Vasculature Damage for Proton Therapy: Monte Carlo Simulation

    SciTech Connect

    Lin, Y; Paganetti, H; Schuemann, J

    2014-06-15

    Purpose: The aim of this work is to investigate the gold nanoparticle (GNP) induced vasculature damage in a proton beam. We compared the results using a clinical proton beam, 6MV photon beam and two kilovoltage photon beams. Methods: Monte Carlo simulations were carried out using TOPAS (TOol for PArticle Simulation) to obtain the spatial dose distribution in close proximity to GNPs up to 20μm distance. The spatial dose distribution was used as an input to calculate the additional dose deposited to the blood vessels. For this study, GNP induced vasculature damage is evaluated for three particle sources (proton beam, MV photon beam and kV photon beam), various treatment depths for each particle source, various GNP uptakes and three different vessel diameters (8μm, 14μm and 20μm). Results: The result shows that for kV photon, GNPs induce more dose in the vessel wall for 150kVp photon source than 250kVp. For proton therapy, GNPs cause more dose in the vessel wall at shallower treatment depths. For 6MV photons, GNPs induce more dose in the vessel wall at deeper treatment depths. For the same GNP concentration and prescribed dose, the additional dose at the inner vessel wall is 30% more than the prescribed dose for the kVp photon source, 15% more for the proton source and only 2% more for the 6MV photon source. In addition, the dose from GNPs deceases sharper for proton therapy than kVp photon therapy as the distance from the vessel inner wall increases. Conclusion: We show in this study that GNPs can potentially be used to enhance radiation therapy by causing vasculature damage using clinical proton beams. The GNP induced damage for proton therapy is less than for the kVp photon source but significantly larger than for the clinical MV photon source.

  16. Changes of the vasculature and innervation in the anterior segment of the RCS rat eye.

    PubMed

    May, Christian Albrecht

    2011-12-01

    Investigating the anterior eye segment vasculature and innervation of dystrophic RCS rats, two major unique findings were observed: in the iris, young adult animals with retinal dystrophy showed an increase in substance P nerve fibres and a dilation of arterioles and capillaries. This finding continued during ageing. In the pars plana region, the surface covered by venules decreased continuously with age. In older animals, this decrease was parallelled by a local decrease of sympathetic TH-positive nerve fibres supplying these venules. For both conditions, no comparable data exists so far in the literature. They might point to a unique situation in the anterior eye segment of the dystrophic RCS rat.

  17. In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography

    NASA Astrophysics Data System (ADS)

    Bassi, Andrea; Fieramonti, Luca; D'Andrea, Cosimo; Mione, Marina; Valentini, Gianluca

    2011-10-01

    We introduce flow optical projection tomography, an imaging technique capable of visualizing the vasculature of living specimens in 3-D. The method detects the movement of cells in the bloodstream and creates flow maps using a motion-analysis procedure. Then, flow maps obtained from projection taken at several angles are used to reconstruct sections of the circulatory system of the specimen. We therefore demonstrate an in vivo, 3-D optical imaging technique that, without the use of any labeling, is able to reconstruct and visualize the vascular network of transparent and weakly scattering living specimens.

  18. Peripheral Tissue Homing Receptor Control of Naïve, Effector, and Memory CD8 T Cell Localization in Lymphoid and Non-Lymphoid Tissues

    PubMed Central

    Brinkman, C. Colin; Peske, J. David; Engelhard, Victor Henry

    2013-01-01

    T cell activation induces homing receptors that bind ligands on peripheral tissue vasculature, programing movement to sites of infection and injury. There are three major types of CD8 effector T cells based on homing receptor expression, which arise in distinct lymphoid organs. Recent publications indicate that naïve, effector, and memory T cell migration is more complex than once thought; while many effectors enter peripheral tissues, some re-enter lymph nodes (LN), and contain central memory precursors. LN re-entry can depend on CD62L or peripheral tissue homing receptors. Memory T cells in LN tend to express the same homing receptors as their forebears, but often are CD62Lneg. Homing receptors also control CD8 T cell tumor entry. Tumor vasculature has low levels of many peripheral tissue homing receptor ligands, but portions of it resemble high endothelial venules (HEV), enabling naïve T cell entry, activation, and subsequent effector activity. This vasculature is associated with positive prognoses in humans, suggesting it may sustain ongoing anti-tumor responses. These findings reveal new roles for homing receptors expressed by naïve, effector, and memory CD8 T cells in controlling entry into lymphoid and non-lymphoid tissues. PMID:23966998

  19. Peripheral Vascular Disease

    MedlinePlus

    ... PVD can result from a condition known as atherosclerosis, where a waxy substance forms inside of the ... cramping in the legs. The risk factors for atherosclerosis in the peripheral arteries are the same as ...

  20. [Peripheral ulcerative keratitis].

    PubMed

    Stamate, Alina-cristina; Avram, Corina Ioana; Malciolu, R; Oprea, S; Zemba, M

    2014-01-01

    Ulcerative keratitis is frequently associated with collagen vascular diseases and presents a predilection for peripheral corneal localization, due to the distinct morphologic and immunologic features of the limbal conjunctiva, which provides access for the circulating immune complexes to the peripheral cornea via the capillary network. Deposition of immune complexes in the terminal ends of limbal vessels initiates an immune-mediated vasculitis process, with inflammatory cells and mediators involvement by alteration of the vascular permeability. Peripheral ulcerative keratitis generally correlates with exacerbations of the background autoimmune systemic disease. Associated sceritis, specially the necrotizing form, is usually observed in severe cases, which may evolve in corneal perforation and loss of vision. Although the first-line of treatment in acute phases is represented by systemic administration of corticosteroids, immunosuppressive and cytotoxic agents are necessary for the treatment of peripheral ulcerative keratitis associated with systemic diseases.

  1. Three-dimensional micro computed tomography analysis of the lung vasculature and differential adipose proteomics in the Sugen/hypoxia rat model of pulmonary arterial hypertension

    PubMed Central

    Verdelis, Kostas; Passineau, Michael J.; Faight, Erin M.; Zourelias, Lee; Wu, Changgong; Chong, Rong; Benza, Raymond L.

    2016-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a rare disease characterized by significant vascular remodeling. The obesity epidemic has produced great interest in the relationship between small visceral adipose tissue depots producing localized inflammatory conditions, which may link metabolism, innate immunity, and vascular remodeling. This study used novel micro computed tomography (microCT) three-dimensional modeling to investigate the degree of remodeling of the lung vasculature and differential proteomics to determine small visceral adipose dysfunction in rats with severe PAH. Sprague-Dawley rats were subjected to a subcutaneous injection of vascular endothelial growth factor receptor blocker (Sugen 5416) with subsequent hypoxia exposure for 3 weeks (SU/hyp). At 12 weeks after hypoxia, microCT analysis showed a decrease in the ratio of vascular to total tissue volume within the SU/hyp group (mean ± standard deviation: 0.27 ± 0.066; P = 0.02) with increased vascular separation (0.37 ± 0.062 mm; P = 0.02) when compared with the control (0.34 ± 0.084 and 0.30 ± 0.072 mm). Differential proteomics detected an up-regulation of complement protein 3 (C3; SU/hyp∶control ratio = 2.86) and the adipose tissue–specific fatty acid binding protein-4 (FABP4, 2.66) in the heart adipose of the SU/hyp. Significant remodeling of the lung vasculature validates the efficacy of the SU/hyp rat for modeling human PAH. The upregulation of C3 and FABP4 within the heart adipose implicates small visceral adipose dysfunction. C3 has been associated with vascular stiffness, and FABP4 suppresses peroxisome proliferator–activated receptor, which is a major regulator of adipose function and known to be downregulated in PAH. These findings reveal that small visceral adipose tissue within the SU/hyp model provides mechanistic links for vascular remodeling and adipose dysfunction in the pathophysiology of PAH. PMID:28090302

  2. Technical Note: Contrast free angiography of the pulmonary vasculature in live mice using a laboratory x-ray source

    PubMed Central

    Samarage, Chaminda R.; Carnibella, Richard; Preissner, Melissa; Jones, Heather D.; Pearson, James T.; Fouras, Andreas; Dubsky, Stephen

    2016-01-01

    Purpose: In vivo imaging of the pulmonary vasculature in small animals is difficult yet highly desirable in order to allow study of the effects of a host of dynamic biological processes such as hypoxic pulmonary vasoconstriction. Here the authors present an approach for the quantification of changes in the vasculature. Methods: A contrast free angiography technique is validated in silico through the use of computer-generated images and in vivo through microcomputed tomography (μCT) of live mice conducted using a laboratory-based x-ray source. Subsequent image processing on μCT data allowed for the quantification of the caliber of pulmonary vasculature without the need for external contrast agents. These measures were validated by comparing with quantitative contrast microangiography in the same mice. Results: Quantification of arterial diameters from the method proposed in this study is validated against laboratory-based x-ray contrast microangiography. The authors find that there is a high degree of correlation (R = 0.91) between measures from microangiography and their contrast free method. Conclusions: A technique for quantification of murine pulmonary vasculature without the need for contrast is presented. As such, this technique could be applied for longitudinal studies of animals to study changes to vasculature without the risk of premature death in sensitive mouse models of disease. This approach may also be of value in the clinical setting. PMID:27806595

  3. A chronic window imaging device for the investigation of in vivo peripheral nerves.

    PubMed

    Brodnick, Sarah K; Hayat, Mohammed R; Kapur, Sahil; Richner, Thomas J; Nonte, Michael W; Eliceiri, Kevin W; Krugner-Higby, Lisa; Williams, Justin C; Poore, Samuel O

    2014-01-01

    Chronic imaging of the peripheral nervous system with contemporary techniques requires repetitive surgical procedures to reopen an area of interest in order to see underlying biological processes over time. The recurrence of surgical openings on an animal increases trauma, stress, and risk of infection. Such effects can greatly lessen the physiological relevance of any data recorded in this manner. In order to bypass repetitive surgery, a Peripheral Nerve Window (PNW) device has been created for chronic in vivo imaging purposes. Intravital imaging window devices have been used previously to image parts of the rodent model such as the brain, spinal cord, and mammary tissue, but currently have not been used in the peripheral nervous system because of lack of bone anchoring and access to deep nerve tissue. We demonstrate a novel surgical technique in a rat which transposes the sciatic nerve above the surrounding muscle tissue allowing the PNW access to an 8mm section of the nerve. Subsequent days of observation revealed increased vasculature development primarily around the nerve, showing that this preparation can be used to image nerve tissue and surrounding vasculature for up to one week post-implantation.

  4. Expression and activation of the farnesoid X receptor in the vasculature

    NASA Astrophysics Data System (ADS)

    Bishop-Bailey, David; Walsh, Desmond T.; Warner, Timothy D.

    2004-03-01

    The farnesoid X receptor/bile acid receptor (FXR) is a recently discovered member of the nuclear hormone superfamily. FXR ligands have been proposed as targets in cardiovascular disease, regulating cholesterol metabolism and bile acid transport and metabolism in the liver and gastrointestinal tract. When we used a human cardiovascular tissue array, we found that FXR is expressed in a variety of normal and pathological human tissue. Particularly high levels of FXR were found in the vasculature and in a number of different metastatic cancers, as well as the previously identified target tissues of the liver, small intestine, and kidney. In vitro, FXR is present in rat and human vascular smooth muscle cells. When treated with a range of FXR ligands, vascular smooth muscle cells undergo apoptosis in a manner that correlates with the ligands' ability to activate FXR. Furthermore, FXR activators induce mRNA for the FXR target genes, phospholipid transfer protein, and the small heterodimer partner. FXR therefore is a functional protein in the vasculature that may provide a direct target for the treatment of proliferative and dyslipidaemic diseases.

  5. A new presentation and exploration of human cerebral vasculature correlated with surface and sectional neuroanatomy.

    PubMed

    Nowinski, Wieslaw L; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables dynamic scene compositing, real-time interaction combined with animation, correlation of 3D models with sectional images, quantification as well as 3D manipulation-independent labeling and knowledge-related meta labeling (with name, diameter, description, variants, and references). This novel exploration is incorporated into a 3D atlas of cerebral vasculature with arteries and veins along with the surrounding surface and sectional neuroanatomy derived from 3.0 Tesla scans. This exploration paradigm is useful in medical education, training, research, and clinical applications. It enables development of new generation systems for rapid and intelligent exploration of complicated digital body models in real time with dynamic scene compositing from highly parcellated 3D models, continuous navigation, and manipulation-independent labeling with multiple features.

  6. Functional and structural evaluation of the vasculature of skin flaps after ischemia and reperfusion

    SciTech Connect

    Marzella, L.; Jesudass, R.R.; Manson, P.N.; Myers, R.A.; Bulkley, G.B.

    1988-05-01

    Free radicals and other toxic oxygen species play a role in the pathogenesis of ischemic organ damage. The abdominal skin flap has been used as a model to study the effects of superoxide dismutase on the survival of ischemic skin. We have evaluated the evolution of functional and structural injury to the vasculature after ischemic injury in superoxide dismutase-treated and control skin flaps. Ischemia was induced by creating abdominal skin flaps and occluding either the venous or both the venous and arterial blood supplies. Superoxide dismutase was administered immediately after the occlusion was released. At 1 hour of reflow, erythrocyte stasis, platelet deposition, neutrophil adherence, and injury to the endothelium of the large vessels and of the microvasculature were evident. The blood flow in the ischemic skin was only 3 percent of normal. Superoxide dismutase caused no change in the ultrastructure of the vasculature and a marginal decrease in vascular permeability in the ischemic skin at 1 hour of reflow. Increased fluorescent staining of the skin was evident after 24 hours of reflow in the superoxide dismutase-treated flaps. These findings indicate that injury to vascular endothelium by ischemia and reperfusion plays a role in the evolution of skin necrosis.

  7. The Effects of Zoledronic Acid in the Bone and Vasculature Support of Hematopoietic Stem Cell Niches

    PubMed Central

    Soki, Fabiana N.; Li, Xin; Berry, Janice; Koh, Amy; Sinder, Benjamin P.; Qian, Xu; Kozloff, Kenneth M.; Taichman, Russell S.; McCauley, Laurie K.

    2013-01-01

    Hematopoietic stem cells (HSC) are maintained in a tightly regulated bone microenvironment constituted by a rich milieu of cells. Bone cells such as osteoblasts are associated with niche maintenance as regulators of the endosteal microenvironment. Bone remodeling also plays a role in HSC mobilization although it is poorly defined. The effects of zoledronic acid (ZA), a potent bisphosphonate that inhibits bone resorption, were investigated on bone marrow cell populations focusing on HSCs, and the endosteal and vascular niches in bone. ZA treatment significantly increased bone volume and HSCs in both young and adult mice (4 week and 4 month old, respectively). ZA increased vessel numbers with no overall change in vascular volume in bones of young and had no effect on vasculature in adult mice. Since both young and adult mice had increased HSCs and bone mass with differing vasculature responses, this suggests that ZA indirectly supports HSCs via the osteoblastic niche and not the vascular niche. Additionally, gene expression in Lin- cells demonstrated increased expression of self-renewal-related genes Bmi1 and Ink4a suggesting a role of ZA in the modulation of cell commitment and differentiation toward a long-term self-renewing cell. Genes that support the osteoblastic niche, BMP2 and BMP6 were also augmented in ZA treated mice. In conclusion, ZA-induced HSC expansion occurs independent of the vascular niche via indirect modulation of the osteoblastic niche. PMID:22833499

  8. The Cadaveric Perfusion and Angiography as a Teaching Tool: Imaging the Intracranial Vasculature in Cadavers

    PubMed Central

    Turkoglu, Erhan; Seckin, Hakan; Gurer, Bora; Ahmed, Azam; Uluc, Kutluay; Pulfer, Kari; Arat, Anıl; Niemann, David; Baskaya, Mustafa K.

    2014-01-01

    Background and Study Aim To enhance the visualization of the intracranial vasculature of cadavers under gross examination with a combination of imaging modalities. Material and Methods A total of 20 cadaver heads were used to test two different perfusion techniques. First, fixed cadaver heads were perfused with water; second, fresh cadavers were perfused with saline and 10% formalin. Subsequently, brains were removed and fixed. The compounds used were silicone rubber, silicone rubber mixed with powdered barium sulfate, and silicone rubber mixed with tantalum dioxide prepared by the first perfusion technique and gelatin mixed with liquid barium prepared with the second technique. Conventional X-ray imaging, computed tomography (CT), dynamic computed tomography (dCT), and postprocessing three-dimensional (3D) images were used to evaluate all the heads. Results Gelatinized barium was better visualized when compared with tantalum dioxide in conventional X-ray images. The blood vessels injected with either tantalum dioxide or gelatinized barium demonstrated a higher enhancement than the surrounding soft tissues with CT or dCT. The quality of the 3D reconstruction of the intracranial vasculature was significantly better in the CT images obtained from the gelatinized barium group. Conclusions Radiologic examinations of the heads injected with gelatinized barium facilitates the 3D understanding of cerebrovascular anatomy as an important tool for neuroanatomy training. PMID:25452903

  9. Claudin-5 expression in the vasculature of the developing chick embryo.

    PubMed

    Collins, Michelle M; Baumholtz, Amanda I; Ryan, Aimee K

    2012-01-01

    The claudin family of proteins are integral components of tight junctions and are responsible for determining the ion specificity and permeability of paracellular transport within epithelial and endothelial cell layers. Studies in human, mouse, Xenopus, and zebrafish have shown that only a limited number of claudins are expressed in endothelial cells. Here, we report the expression pattern of Claudin-5 during chick development. Between HH stage 4 and 6 Claudin-5 expression was observed exclusively in extraembryonic tissue. Claudin-5 expression was not observed in the embryo until HH stage 8, coincident with the onset of embryonic vascularization. Claudin-5 expression was maintained in the developing vasculature in the embryonic and extraembryonic tissue throughout organogenesis (HH stage 19-35), including the vasculature of the ectoderm and of organs derived from the mesoderm and endoderm lineages. These data describe a conserved expression pattern for Claudin-5 in the endothelial tight junction barrier and is the first report of the onset of Claudin-5 expression in a vertebrate embryo.

  10. In vivo photoacoustic imaging of vasculature with a low-cost miniature light emitting diode excitation.

    PubMed

    Dai, Xianjin; Yang, Hao; Jiang, Huabei

    2017-04-01

    In this Letter, we present a photoacoustic imaging (PAI) system based on a low-cost high-power miniature light emitting diode (LED) that is capable of in vivo mapping vasculature networks in biological tissue. Overdriving with 200 ns pulses and operating at a repetition rate of 40 kHz, a 1.2 W 405 nm LED with a radiation area of 1000  μm×1000  μm and a size of 3.5  mm×3.5  mm was used to excite photoacoustic signals in tissue. Phantoms including black stripes, lead, and hair were used to validate the system in which a volumetric PAI image was obtained by scanning the transducer and the light beam in a two-dimensional x-y plane over the object. In vivo imaging of the vasculature of a mouse ear shows that LED-based PAI could have great potential for label-free biomedical imaging applications where the use of bulky and expensive pulsed lasers is impractical.

  11. Variation in the position, relation and vasculature of left suprarenal gland: a case report.

    PubMed

    Oztürk, N C; Uzmansel, D; Kara, A; Oztürk, H

    2010-12-01

    A malposition of the left suprarenal gland with varied relations and vasculature was observed in a 50-year-old male cadaver during the routine dissection of the abdominal region. The gland was partly situated over the hilum of the left kidney. Its posterior surface was related to the left crus of the diaphragm and to the hilum of the left kidney extending some distance above on the medial margin of the kidney. Its anterior surface was totally covered by the body of the pancreas and the splenic artery and vein. There were only two suprarenal arteries. A left lateral branch of the aorta divided into three branches of which the middle and inferior branches entered the gland as seperate suprarenal arteries. There were the two suprarenal veins of the gland which were draining into the left renal vein. Such a malposition with varied relations and vasculature is of utmost importance from the surgical point of view because it can affect the orientation of the surgeon in laparoscopic adrenalectomy.

  12. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    NASA Astrophysics Data System (ADS)

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; De Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-10-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  13. Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction

    NASA Astrophysics Data System (ADS)

    Schwemmer, C.; Rohkohl, C.; Lauritsch, G.; Müller, K.; Hornegger, J.

    2013-06-01

    Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gating window. A large temporal window is desirable to avoid undersampling. However, residual motion will occur in a large window, causing motion artefacts. We present an algorithm to correct for residual motion. Our approach is based on a deformable 2D-2D registration between the forward projection of an initial, ECG-gated reconstruction, and the original projection data. The approach is fully automatic and does not require any complex segmentation of vasculature, or landmarks. The estimated motion is compensated for during the backprojection step of a subsequent reconstruction. We evaluated the method using the publicly available CAVAREV platform and on six human clinical datasets. We found a better visibility of structure, reduced motion artefacts, and increased sharpness of the vessels in the compensated reconstructions compared to the initial reconstructions. At the time of writing, our algorithm outperforms the leading result of the CAVAREV ranking list. For the clinical datasets, we found an average reduction of motion artefacts by 13 ± 6%. Vessel sharpness was improved by 25 ± 12% on average.

  14. The role of vasculature in bone development, regeneration and proper systemic functioning.

    PubMed

    Filipowska, Joanna; Tomaszewski, Krzysztof A; Niedźwiedzki, Łukasz; Walocha, Jerzy A; Niedźwiedzki, Tadeusz

    2017-02-13

    Bone is a richly vascularized connective tissue. As the main source of oxygen, nutrients, hormones, neurotransmitters and growth factors delivered to the bone cells, vasculature is indispensable for appropriate bone development, regeneration and remodeling. Bone vasculature also orchestrates the process of hematopoiesis. Blood supply to the skeletal system is provided by the networks of arteries and arterioles, having distinct molecular characteristics and localizations within the bone structures. Blood vessels of the bone develop through the process of angiogenesis, taking place through different, bone-specific mechanisms. Impaired functioning of the bone blood vessels may be associated with the occurrence of some skeletal and systemic diseases, i.e., osteonecrosis, osteoporosis, atherosclerosis or diabetes mellitus. When a disease or trauma-related large bone defects appear, bone grafting or bone tissue engineering-based strategies are required. However, a successful bone regeneration in both approaches largely depends on a proper blood supply. In this paper, we review the most recent data on the functions, molecular characteristics and significance of the bone blood vessels, with a particular emphasis on the role of angiogenesis and blood vessel functioning in bone development and regeneration, as well as the consequences of its impairment in the course of different skeletal and systemic diseases.

  15. Mapping the Extracellular and Membrane Proteome Associated with the Vasculature and the Stroma in the Embryo*

    PubMed Central

    Soulet, Fabienne; Kilarski, Witold W.; Roux-Dalvai, Florence; Herbert, John M. J.; Sacewicz, Izabela; Mouton-Barbosa, Emmanuelle; Bicknell, Roy; Lalor, Patricia; Monsarrat, Bernard; Bikfalvi, Andreas

    2013-01-01

    In order to map the extracellular or membrane proteome associated with the vasculature and the stroma in an embryonic organism in vivo, we developed a biotinylation technique for chicken embryo and combined it with mass spectrometry and bioinformatic analysis. We also applied this procedure to implanted tumors growing on the chorioallantoic membrane or after the induction of granulation tissue. Membrane and extracellular matrix proteins were the most abundant components identified. Relative quantitative analysis revealed differential protein expression patterns in several tissues. Through a bioinformatic approach, we determined endothelial cell protein expression signatures, which allowed us to identify several proteins not yet reported to be associated with endothelial cells or the vasculature. This is the first study reported so far that applies in vivo biotinylation, in combination with robust label-free quantitative proteomics approaches and bioinformatic analysis, to an embryonic organism. It also provides the first description of the vascular and matrix proteome of the embryo that might constitute the starting point for further developments. PMID:23674615

  16. Swept-source OCT Angiography of the Retinal Vasculature using Intensity Differentiation Based OMAG Algorithms

    PubMed Central

    Huang, Yanping; Zhang, Qinqin; Thorell, Mariana Rossi; An, Lin; Durbin, Mary; Laron, Michal; Sharma, Utkarsh; Gregori, Giovanni; Rosenfeld, Philip J.; Wang, Ruikang K

    2014-01-01

    Background and Objective To demonstrate the feasibility of using a 1050 nm swept-source OCT (SS-OCT) system to achieve noninvasive retinal vasculature imaging in human eyes. Materials and Methods Volumetric datasets were acquired using a ZEISS 1 µm SS-OCT prototype that operated at an A-line rate of 100 kHz. A scanning protocol designed to allow for motion contrast processing, referred to as OCT angiography or optical microangiography (OMAG), was used to scan ~3 mm × 3 mm area in the central macular region of the retina within ~4.5 seconds. Intensity differentiation based OMAG algorithm was used to extract 3-D retinal functional microvasculature information. Results Intensity signal differentiation generated capillary-level resolution en face OMAG images of the retina. The parafoveal capillaries were clearly visible, thereby allowing visualization of the foveal avascular zone (FAZ) in normal subjects. Conclusion The capability of OMAG to produce retinal vascular images was demonstrated using the ZEISS 1 µm SS-OCT prototype. This technique can potentially have clinical value for studying retinal vasculature abnormalities. PMID:25230403

  17. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    PubMed Central

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; de Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-01-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature. PMID:27703233

  18. Cosmos 1887: morphology, histochemistry, and vasculature of the growing rat tibia

    NASA Technical Reports Server (NTRS)

    Doty, S. B.; Morey-Holton, E. R.; Durnova, G. N.; Kaplansky, A. S.

    1990-01-01

    Light microscopy, electron microscopy, and enzyme histochemistry were used to study the effects of spaceflight on metaphyseal and cortical bone of the rat tibia. Cortical cross-sectional area and perimeter were not altered by a 12.5-day spaceflight in 3-month-old male rats. The endosteal osteoblast population and the vasculature near the periosteal surface in flight rats compared with ground controls showed more pronounced changes in cortical bone than in metaphyseal bone. The osteoblasts demonstrated greater numbers of transitional Golgi vesicles, possibly caused by a decreased cellular metabolic energy source, but no difference in the large Golgi saccules or the cell membrane-associated alkaline phosphatase activity. The periosteal vasculature in the diaphysis of flight rats often showed lipid accumulations within the lumen of the vessels, occasional degeneration of the vascular wall, and degeneration of osteocytes adjacent to vessels containing intraluminal deposits. These changes were not found in the metaphyseal region of flight animals. The focal vascular changes may be due to ischemia of bone or a developing fragility of the vessel walls as a result of spaceflight.

  19. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability.

    PubMed

    Palomba, R; Parodi, A; Evangelopoulos, M; Acciardo, S; Corbo, C; de Rosa, E; Yazdi, I K; Scaria, S; Molinaro, R; Furman, N E Toledano; You, J; Ferrari, M; Salvatore, F; Tasciotti, E

    2016-10-05

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  20. On the way to subcellular imaging of mechanotransduction in the developing vasculature

    NASA Astrophysics Data System (ADS)

    Larina, Irina V.; Wang, Yingxiao; Chien, Shu; Lane, Mary E.; Dickinson, Mary E.

    2007-05-01

    Endothelial cells that comprise vessels and line the heart are known to respond to mechanical forces imparted by fluid flow. It is also known that blood flow is required for vascular remodeling and that abnormal heart contractions lead to the failure of the vasculature to remodel properly. Although there is considerable evidence to indicate that flow is necessary, little is known about how mechanical signals are transduced in endothelial cells in the embryo. This project is focused on understanding the role mechanical forces play in the development of the cardiovascular system using recently generated FRET (Fluorescence Resonance Energy Transfer) reporter that can detect real-time Src-kinase activity in cells using fluorescence microscopy. Src kinase regulates integrin-cytoskeleton interactions that are essential for mechanotransduction, and its activity is upregulated in cultured endothelial cells exposed to flow. Experiments reported here were focused on testing potential feasibility of the proposed technique to sense Src changes in vivo. Successful implementation of this project will reveal previously unknown signaling events involved in the mechanism of vascular remodeling and their relation to the blood flow, thus providing a unique tool for in vivo sub-cellular imaging of mechanotransduction in the vasculature and other organs.

  1. Segmentation of digitized histological sections for quantification of the muscularized vasculature in the mouse hind limb.

    PubMed

    Xu, Yiwen; Pickering, J Geoffrey; Nong, Zengxuan; Ward, Aaron D

    2017-04-01

    Immunohistochemical tissue staining enhances microvasculature characteristics, including the smooth muscle in the medial layer of the vessel walls that is responsible for regulation of blood flow. The vasculature can be imaged in a comprehensive fashion using whole-slide scanning. However, since each such image potentially contains hundreds of small vessels, manual vessel delineation and quantification is not practically feasible. In this work, we present a fully automatic segmentation and vasculature quantification algorithm for whole-slide images. We evaluated its performance on tissue samples drawn from the hind limbs of wild-type mice, stained for smooth muscle using 3,3'-Diaminobenzidine (DAB) immunostain. The algorithm was designed to be robust to vessel fragmentation due to staining irregularity, and artefactual staining of nonvessel objects. Colour deconvolution was used to isolate the DAB stain for detection of vessel wall fragments. Complete vessels were reconstructed from the fragments by joining endpoints of topological skeletons. Automatic measures of vessel density, perimeter, wall area and local wall thickness were taken. The segmentation algorithm was validated against manual measures, resulting in a Dice similarity coefficient of 89%. The relationships observed between these measures were as expected from a biological standpoint, providing further reinforcement of the accuracy of this system. This system provides a fully automated and accurate means of measuring the arteriolar and venular morphology of vascular smooth muscle.

  2. Fusion Guidance in Endovascular Peripheral Artery Interventions: A Feasibility Study

    SciTech Connect

    Sailer, Anna M. Haan, Michiel W. de Graaf, Rick de Zwam, Willem H. van; Schurink, Geert Willem H.; Nelemans, Patricia J.; Wildberger, Joachim E. Das, Marco

    2015-04-15

    PurposeThis study was designed to evaluate the feasibility of endovascular guidance by means of live fluoroscopy fusion with magnetic resonance angiography (MRA) and computed tomography angiography (CTA).MethodsFusion guidance was evaluated in 20 endovascular peripheral artery interventions in 17 patients. Fifteen patients had received preinterventional diagnostic MRA and two patients had undergone CTA. Time for fluoroscopy with MRA/CTA coregistration was recorded. Feasibility of fusion guidance was evaluated according to the following criteria: for every procedure the executing interventional radiologists recorded whether 3D road-mapping provided added value (yes vs. no) and whether PTA and/or stenting could be performed relying on the fusion road-map without need for diagnostic contrast-enhanced angiogram series (CEAS) (yes vs. no). Precision of the fusion road-map was evaluated by recording maximum differences between the position of the vasculature on the virtual CTA/MRA images and conventional angiography.ResultsAverage time needed for image coregistration was 5 ± 2 min. Three-dimensional road-map added value was experienced in 15 procedures in 12 patients. In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic CEAS. In two patients, MRA roadmap showed a false-positive lesion. Excluding three patients with inordinate movements, mean difference in position of vasculature on angiography and MRA/CTA road-map was 1.86 ± 0.95 mm, implying that approximately 95 % of differences were between 0 and 3.72 mm (2 ± 1.96 standard deviation).ConclusionsFluoroscopy with MRA/CTA fusion guidance for peripheral artery interventions is feasible. By reducing the number of CEAS, this technology may contribute to enhance procedural safety.

  3. Optimization of Peripheral Vascular Sizing with Conductance Guidewire: Theory and Experiment.

    PubMed

    Choi, Hyo Won; Berwick, Zachary C; Sulkin, Matthew S; Owens, Christopher D; Kassab, Ghassan S

    2017-01-01

    Although the clinical range of interventions for coronary arteries is about 2 to 5 mm, the range of diameters of peripheral vasculature is significantly larger (about 10 mm for human iliac artery). When the vessel diameter is increased, the spacing between excitation electrodes on a conductance sizing device must also increase to accommodate the greater range of vessel diameters. The increase in the excitation electrodes distance, however, causes higher parallel conductance or current losses outside of artery lumen. We have previously shown that the conductance catheter/guidewire excitation electrode distances affects the measurement accuracy for the peripheral artery lumen sizing. Here, we propose a simple solution that varies the detection electrode distances to compensate for parallel conductance losses. Computational models were constructed to simulate the conductance guidewire with various electrodes spacing combinations over a range of peripheral artery lumen diameters and surrounding tissue electrical conductivities. The results demonstrate that the measurement accuracy may be significantly improved by increased detection spacing. Specifically, an optimally configured detection/excitation spacing (i.e., 5-5-5 or an equidistant electrode interval with a detection-to-excitation spacing ratio of 0.3) was shown to accurately predict the lumen diameter (i.e., -10% < error < 10%) over a broad range of peripheral artery dimensions (4 mm < diameter < 10 mm). The computational results were substantiated with both ex-vivo and in-vivo measurements of peripheral arteries. The present results support the accuracy of the conductance technique for measurement of peripheral reference vessel diameter.

  4. Dose reduction in CT urography and vasculature phantom studies using model-based iterative reconstruction.

    PubMed

    Page, Leland; Wei, Wei; Kundra, Vikas; Rong, John

    2016-11-08

    To evaluate the feasibility of radiation dose reduction using model-based iterative reconstruction (MBIR) for evaluating the ureters and vasculature in a phantom, a tissue-equivalent CT dose phantom was scanned using a 64-channel CT scan-ner. Tubes of varying diameters filled with different dilutions of a contrast agent, simulating ureters or vessels, were inserted into the center of the phantom. Each combination was scanned using an existing renal protocol at 140 kVp or 120 kVp, yielding a display volumetric CT dose index (CTDIvol) of 24 mGy. The scans were repeated using reduced scan techniques to achieve lower radiation doses down to 0.8 mGy. The images were reconstructed using filtered back-projection (FBP) and model-based iterative reconstruction (MBIR). The noise and contrast-to-noise ratio (CNR) was measured for each contrast object. Comparisons between the two reconstruction methods at different dose levels were evaluated using a factorial design. At each CTDIvol the measured image noise was lower using MBIR compared to FBP (p < 0.0001). At low doses, the percent change in measured image noise between FBP and MBIR was larger. For the 12 mm object simulating a ureter or large vessel with an HU of 600, the measured CNR using MBIR at a CTDIvol of 1.7 mGy was greater than the CNR of FBP at a CTIDvol of 24 mGy (p < 0.0001). For the 5 mm object simulating a medium-sized vessel with a HU of 250, the mea-sured CNR using MBIR at a CTDIvol of 1.7 mGy was equivalent to that of FBP at a CTDIvol of 24 mGy. For the 2 mm, 100 HU object simulating a small vessel, the measured CNR using MBIR at a CTDIvol of 1.7 mGy was equivalent to that of FBP at a CTDIvol of 24 mGy. Low-dose (3.6 mGy) CT imaging of vasculature and ureter phantoms using MBIR results in similar noise and CNR compared to FBP at approximately one-sixth the dose. This suggests that, using MBIR, a one milliSievert exam of the ureters and vasculature may be clinically possible whilst still maintaining adequate

  5. Direct visualization of neo-vessel formation following peripheral injection of bone marrow derived CD34+ cells in experimental myocardial damage.

    PubMed

    Ciulla, M M; Ferrero, S; Gianelli, U; Paliotti, R; Magrini, F; Braidotti, P

    2007-01-01

    The definitive fate of peripherally injected PKH26 labelled bone marrow mononuclear cells expressing the CD34+ antigen following experimental myocardial cryodamage in rats (n=10) has been examined by direct visualization on photoconverted light and electron microscopy images. One week after the injection in each rat of about 150,000 CD34+ cells early stage PKH26+ vascular structures were localized in the infarcted areas, suggesting that a potential benefit of this therapeutic approach consists in the regeneration of the vasculature.

  6. Cerebral aneurysms: relations between geometry, hemodynamics and aneurysm location in the cerebral vasculature

    NASA Astrophysics Data System (ADS)

    Passerini, Tiziano; Veneziani, Alessandro; Sangalli, Laura; Secchi, Piercesare; Vantini, Simone

    2010-11-01

    In cerebral blood circulation, the interplay of arterial geometrical features and flow dynamics is thought to play a significant role in the development of aneurysms. In the framework of the Aneurisk project, patient-specific morphology reconstructions were conducted with the open-source software VMTK (www.vmtk.org) on a set of computational angiography images provided by Ospedale Niguarda (Milano, Italy). Computational fluid dynamics (CFD) simulations were performed with a software based on the library LifeV (www.lifev.org). The joint statistical analysis of geometries and simulations highlights the possible association of certain spatial patterns of radius, curvature and shear load along the Internal Carotid Artery (ICA) with the presence, position and previous event of rupture of an aneurysm in the entire cerebral vasculature. Moreover, some possible landmarks are identified to be monitored for the assessment of a Potential Rupture Risk Index.

  7. Automated Protein Localization of Blood Brain Barrier Vasculature in Brightfield IHC Images

    PubMed Central

    Keenan, Brendan T.; Pack, Allan I.; Shackleford, James A.

    2016-01-01

    In this paper, we present an objective method for localization of proteins in blood brain barrier (BBB) vasculature using standard immunohistochemistry (IHC) techniques and bright-field microscopy. Images from the hippocampal region at the BBB are acquired using bright-field microscopy and subjected to our segmentation pipeline which is designed to automatically identify and segment microvessels containing the protein glucose transporter 1 (GLUT1). Gabor filtering and k-means clustering are employed to isolate potential vascular structures within cryosectioned slabs of the hippocampus, which are subsequently subjected to feature extraction followed by classification via decision forest. The false positive rate (FPR) of microvessel classification is characterized using synthetic and non-synthetic IHC image data for image entropies ranging between 3 and 8 bits. The average FPR for synthetic and non-synthetic IHC image data was found to be 5.48% and 5.04%, respectively. PMID:26828723

  8. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature

    PubMed Central

    Kolaczkowska, Elzbieta; Jenne, Craig N.; Surewaard, Bas G. J.; Thanabalasuriar, Ajitha; Lee, Woo-Yong; Sanz, Maria-Jesus; Mowen, Kerri; Opdenakker, Ghislain; Kubes, Paul

    2015-01-01

    Neutrophil extracellular traps (NETs) composed of DNA decorated with histones and proteases trap and kill bacteria but also injure host tissue. Here we show that during a bloodstream infection with methicillin-resistant Staphylococcus aureus, the majority of bacteria are sequestered immediately by hepatic Kupffer cells, resulting in transient increases in liver enzymes, focal ischaemic areas and a robust neutrophil infiltration into the liver. The neutrophils release NETs into the liver vasculature, which remain anchored to the vascular wall via von Willebrand factor and reveal significant neutrophil elastase (NE) proteolytic activity. Importantly, DNase although very effective at DNA removal, and somewhat effective at inhibiting NE proteolytic activity, fails to remove the majority of histones from the vessel wall and only partly reduces injury. By contrast, inhibition of NET production as modelled by PAD4-deficiency, or prevention of NET formation and proteolytic activity as modelled in NE−/− mice prevent collateral host tissue damage. PMID:25809117

  9. Macroscopic two-pump two-vasculature cardiovascular model to support treatment of acute heart failure.

    PubMed

    Sugimachi, Masaru; Sunagawa, Kenji; Uemura, Kazunori; Kamiya, Atsunori; Shimizu, Shuji; Inagaki, Masashi; Shishido, Toshiaki

    2009-01-01

    Comprehensive understanding of hemodynamics remains a challenge even for expert cardiologists, partially due to a lack of an appropriate macroscopic model. We attempted to amend three major problems of Guyton's conceptual model (unknown left atrial pressure, unilateral heart damage, blood redistribution) and developed a comprehensive macroscopic model of hemodynamics that provides quantitative information. We incorporated a third axis of left atrial pressure, resulting in a 3D coordinate system. Pump functions of left and right heart are expressed by an integrated cardiac output curve, and the capacitive function of total vasculature by a venous return surface. The equations for both the cardiac output curve and venous return surface would facilitate precise diagnosis (especially evaluation of blood volume) and choice of appropriate treatments, including application to autopilot systems.

  10. From the Cover: Adipose tissue mass can be regulated through the vasculature

    NASA Astrophysics Data System (ADS)

    Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.

    2002-08-01

    Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.

  11. Speckle variance OCT imaging of the vasculature in live mammalian embryos

    NASA Astrophysics Data System (ADS)

    Sudheendran, N.; Syed, S. H.; Dickinson, M. E.; Larina, I. V.; Larin, K. V.

    2011-03-01

    Live imaging of normal and abnormal vascular development in mammalian embryos is important tool in embryonic research, which can potentially contribute to understanding, prevention and treatment of cardiovascular birth defects. Here, we used speckle variance analysis of swept source optical coherence tomography (OCT) data sets acquired from live mouse embryos to reconstruct the 3-D structure of the embryonic vasculature. Both Doppler OCT and speckle variance algorithms were used to reconstruct the vascular structure. The results demonstrates that speckle variance imaging provides more accurate representation of the vascular structure, as it is not sensitive to the blood flow direction, while the Doppler OCT imaging misses blood flow component perpendicular to the beam direction. These studies suggest that speckle variance imaging is a promising tool to study vascular development in cultured mouse embryos.

  12. Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery

    NASA Astrophysics Data System (ADS)

    Pandey, Ambarish; Sarangi, Sasmit; Chien, Kelly; Sengupta, Poulomi; Papa, Anne-Laure; Basu, Sudipta; Sengupta, Shiladitya

    2014-11-01

    Tumor vasculature is critically dependent on platelet mediated hemostasis and disruption of the same can augment delivery of nano-formulation based chemotherapeutic agents which depend on enhanced permeability and retention for tumor penetration. Here, we evaluated the role of Clopidogrel, a well-known inhibitor of platelet aggregation, in potentiating the tumor cytotoxicity of cisplatin nano-formulation in a murine breast cancer model. In vivo studies in murine syngeneic 4T1 breast cancer model showed a significant greater penetration of macromolecular fluorescent nanoparticles after clopidogrel pretreatment. Compared to self-assembling cisplatin nanoparticles (SACNs), combination therapy with clopidogrel and SACN was associated with a 4 fold greater delivery of cisplatin to tumor tissue and a greater reduction in tumor growth as well as higher survival rate. Clopidogrel enhances therapeutic efficiency of novel cisplatin based nano-formulations agents by increasing tumor drug delivery and can be used as a potential targeting agent for novel nano-formulation based chemotherapeutics.

  13. Detecting abnormal vasculature from photoacoustic signals using wavelet-packet features

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Kolios, Michael C.

    2011-03-01

    Photoacoustic systems can produce high-resolution, high-contrast images of vascular structures. To reconstruct images at very high-resolution, signals must be collected from many transducer locations, which can be time consuming due to limitations in transducer array technology. A method is presented to quickly discriminate between normal and abnormal tissue based on the structural morphology of vasculature. To demonstrate that the approach may be useful for cancer detection, a special simulator that produces photoacoustic signals from 3D models of vascular tissue is developed. Results show that it is possible to differentiate tissue classes even when it is not possible to resolve individual blood vessels. Performance of the algorithm remains strong as the number of transducer locations decreases and in the presence of noise.

  14. Selective Alpha-Particle Mediated Depletion of Tumor Vasculature with Vascular Normalization

    PubMed Central

    Seshan, Surya V.; Kappel, Barry J.; Chattopadhyay, Debjit; May, Chad; McDevitt, Michael R.; Nolan, Daniel; Mittal, Vivek; Benezra, Robert; Scheinberg, David A.

    2007-01-01

    Background Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. Methodology and Principal Findings Actinium-225 (225Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, 225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in 225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following 225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following 225Ac-E4G10 therapy. Conclusions The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy. PMID:17342201

  15. 3D reconstruction of digitized histological sections for vasculature quantification in the mouse hind limb

    NASA Astrophysics Data System (ADS)

    Xu, Yiwen; Pickering, J. Geoffrey; Nong, Zengxuan; Gibson, Eli; Ward, Aaron D.

    2014-03-01

    In contrast to imaging modalities such as magnetic resonance imaging and micro computed tomography, digital histology reveals multiple stained tissue features at high resolution (0.25μm/pixel). However, the two-dimensional (2D) nature of histology challenges three-dimensional (3D) quantification and visualization of the different tissue components, cellular structures, and subcellular elements. This limitation is particularly relevant to the vasculature, which has a complex and variable structure within tissues. The objective of this study was to perform a fully automated 3D reconstruction of histology tissue in the mouse hind limb preserving the accurate systemic orientation of the tissues, stained with hematoxylin and immunostained for smooth muscle α actin. We performed a 3D reconstruction using pairwise rigid registrations of 5μm thick, paraffin-embedded serial sections, digitized at 0.25μm/pixel. Each registration was performed using the iterative closest points algorithm on blood vessel landmarks. Landmarks were vessel centroids, determined according to a signed distance map of each pixel to a decision boundary in hue-saturation-value color space; this decision boundary was determined based on manual annotation of a separate training set. Cell nuclei were then automatically extracted and corresponded to refine the vessel landmark registration. Homologous nucleus landmark pairs appearing on not more than two adjacent slides were chosen to avoid registrations which force curved or non-sectionorthogonal structures to be straight and section-orthogonal. The median accumulated target registration errors ± interquartile ranges for the vessel landmark registration, and the nucleus landmark refinement were 43.4+/-42.8μm and 2.9+/-1.7μm, respectively (p<0.0001). Fully automatic and accurate 3D rigid reconstruction of mouse hind limb histology imaging is feasible based on extracted vasculature and nuclei.

  16. Mechanisms of the biphasic effects of peroxides on the retinal vasculature of newborn and adult pigs.

    PubMed

    Abran, D; Hardy, P; Varma, D R; Chemtob, S

    1995-09-01

    We tested whether the ontogenic differences in the constrictor effects of peroxides on the retinal vasculature were modulated by dilator cyclo-oxygenase products. Retinal arteriole (100-200 microns) vasomotor response to H2O2, t-butyl hydroperoxide, and cumene hydroperoxide were studied in isolated eyecup preparations using video camera monitoring of vessel diameter. A time- and dose-dependent biphasic retinal vasomotor response to all peroxides was observed on tissues of newborn and adult pigs. A rapid vasoconstriction (first 2 min) was followed by a relaxation which was greater in the adult than in the newborn tissues. The constrictor as well as the dilator response to peroxides and the observed increase in prostanoids were blocked by the cyclo-oxygenase inhibitor indomethacin. The peroxide-induced relaxation was inhibited or markedly attenuated by the prostaglandin I2 synthase blockers, trans-2-phenyl cyclopropylamine and minoxidil on tissues of newborn and adult animals. These agents also prevented the increase of the prostaglandin I2 receptor-coupled second messenger, cyclic 3',5'-adenosine monophosphate. Our data indicate that prostaglandin I2 plays a major role in counteracting the initial constrictor effects of peroxides in the retinal vasculature, and that the reversal of this constriction is greater in the adult than the newborn. These findings suggest that reduced reversal of vasoconstriction by the dilator prostaglandin I2 during an oxidative stress in the newborn may facilitate vasoconstriction by the dilator prostaglandin I2 during an oxidative stress in the newborn may facilitate neovascularization in retinopathy of prematurity.

  17. Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature

    PubMed Central

    2014-01-01

    Background Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology? Discussion Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology. Mechanism Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of ‘immunosterol’ 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease. Summary We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology

  18. Differentiation between normal and tumor vasculature of animal and human glioma by FTIR imaging.

    PubMed

    Wehbe, Katia; Pineau, Raphael; Eimer, Sandrine; Vital, Anne; Loiseau, Hugues; Déléris, Gérard

    2010-12-01

    Malignant gliomas are very aggressive tumors, highly angiogenic and invading heterogeneously the surrounding brain parenchyma, making their resection very difficult. To overcome the limits of current diagnostic imaging techniques used for gliomas, we proposed using FTIR imaging, with a spatial resolution from 6 to 10 μm, to provide molecular information for their histological examination, based on discrimination between normal and tumor vasculature. Differentiation between normal and tumor blood vessel spectra by hierarchical cluster analysis was performed on tissue sections obtained from xenografted brain tumors of Rag-gamma mice 28 days after intracranial implantation of glioma cells, as well as for human brain tumors obtained in clinics. Classical pathological examination and immunohistochemistry were performed in parallel to the FTIR spectral imaging of brain tissues. First on the animal model, classification of FTIR spectra of blood vessels could be performed using spectral intervals based on fatty acyl (3050-2800 cm(-1)) and carbohydrate (1180-950 cm(-1)) absorptions, with the formation of two clusters corresponding to healthy and tumor parts of the tissue sections. Further data treatments on these two spectral intervals provided interpretable information about the molecular contents involved in the differentiation between normal and tumor blood vessels, the latter presenting a higher level of fatty acyl chain unsaturation and an unexpected loss of absorption from osidic residues. This classification method was further successfully tested on human glioma tissue sections. These findings demonstrate that FTIR imaging could highlight discriminant molecular markers to distinguish between normal and tumor vasculature, and help to delimitate areas of corresponding tissue.

  19. Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice

    PubMed Central

    Rana, Ujala; Liu, Zhong; Kumar, Suresh N.; Zhao, Baofeng; Hu, Wenquan; Bordas, Michelle; Cossette, Stephanie; Szabo, Sara; Foeckler, Jamie; Weiler, Hartmut; Chrzanowska-Wodnicka, Magdalena; Holtz, Mary L.; Misra, Ravindra P.; Salato, Valerie; North, Paula; Ramchandran, Ramani; Miao, Qing Robert

    2016-01-01

    Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development. PMID:26746789

  20. Elevation of serum IgE level and peripheral eosinophil count during T lymphocyte-directed gene therapy for ADA deficiency: implication of Tc2-like cells after gene transduction procedure.

    PubMed

    Kawamura, N; Ariga, T; Ohtsu, M; Yamada, M; Tame, A; Furuta, H; Kobayashi, I; Okano, M; Yanagihara, Y; Sakiyama, Y

    1998-11-01

    We have successfully carried out T-cell-directed gene therapy for a boy with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA SCID) and unexpectedly found an elevation of serum IgE level and peripheral eosinophil count during the course. More than 90% of transduced cells cultured for 7-11 days before infusion into the patient were positive for CD8 and expressed Th2-type cytokine genes such as IL-4, IL-5 and IL-13. Furthermore, CD4(+) T-depleted PBMC (peripheral blood mononuclear cells) from the patient synthesized IgE in vitro by stimulation with IL-4. Collectively, these results suggested that Tc2-like cells in the transduced cells have distinct immunological functions to help IgE synthesis and activate eosinophils.

  1. Barriers of the peripheral nerve

    PubMed Central

    Peltonen, Sirkku; Alanne, Maria; Peltonen, Juha

    2013-01-01

    This review introduces the traditionally defined anatomic compartments of the peripheral nerves based on light and electron microscopic topography and then explores the cellular and the most recent molecular basis of the different barrier functions operative in peripheral nerves. We also elucidate where, and how, the homeostasis of the normal human peripheral nerve is controlled in situ and how claudin-containing tight junctions contribute to the barriers of peripheral nerve. Also, the human timeline of the development of the barriers of the peripheral nerve is depicted. Finally, potential future therapeutic modalities interfering with the barriers of the peripheral nerve are discussed. PMID:24665400

  2. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: Comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs

    SciTech Connect

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J.G.; Marceau, François

    2013-07-15

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent K{sub M} 1.1 vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥ 2.5 μM, ≥ 2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake V{sub max}. PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes). - Highlights: • Quinacrine is concentrated in acidic organelles via V-ATPase-mediated ion

  3. Treatment of peripheral neuropathies.

    PubMed Central

    Hallett, M; Tandon, D; Berardelli, A

    1985-01-01

    There are three general approaches to treatment of peripheral neuropathy. First, an attempt should be made to reverse the pathophysiological process if its nature can be elucidated. Second, nerve metabolism can be stimulated and regeneration encouraged. Third, even if the neuropathy itself cannot be improved, symptomatic therapy can be employed. This review outlines the options available for each approach. PMID:3003254

  4. Peripheral neuropathies 1988

    SciTech Connect

    Assal, J.P.; Liniger, C.

    1990-01-01

    The authors present results and experience in sixteen specific disciplines related to the study of nerve physiopathology, diagnosis and treatment. Twenty-two different peripheral neuropathies are presented, and different models related to health care strategies are discussed. The authors report on Inflammatory and autoimmune neuropathies and Genetic neuropathies.

  5. A CD276 Antibody Guided Missile with One Warhead and Two Targets: The Tumor and Its Vasculature.

    PubMed

    Khan, Kabir A; Kerbel, Robert S

    2017-04-10

    In this issue of Cancer Cell, Seaman et al. demonstrate that antibody drug conjugates (ADCs) against CD276 expressed by tumor cells and tumor vasculature have promising anti-tumor activity while showing little toxicity. Importantly, these agents have the potential to target both angiogenic vessels and non-angiogenic vessels co-opted by tumor cells.

  6. iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation

    PubMed Central

    Thanabalasuriar, A; Neupane, A.S; Wang, J; Krummel, M.F; Kubes, P

    2017-01-01

    iNKT cells are a subset of innate T cells that recognize glycolipids presented on CD1d molecules and protect against a variety of bacterial infections including S. pneumoniae. Using lung intravital imaging, we examined the behavior and mechanism of pulmonary iNKT cell activation in response to the potent iNKT cell ligand α-galactosylceramide or during S. pneumoniae infection. In untreated mice the major fraction of iNKT cells resided in the vasculature, but a small critical population resided in the extravascular space in proximity to monocyte-derived DCs. Administration of either α-GalCer or S. pneumoniae, induced CD1d dependent rapid recruitment of neutrophils out of the vasculature. This neutrophil exodus paved the way for extravasation of iNKT cells from the lung vasculature via CCL17. Depletion of monocyte-derived DCs abrogated both the neutrophil and subsequent iNKT cell extravasation. Moreover, impairing iNKT cell migration out of the lung vasculature by blocking CCL17 greatly increased susceptibility to S. pneumoniae infection, suggesting a critical role for the secondary wave of iNKT cells in host defense. PMID:27653688

  7. Peripheral artery bypass - leg - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000239.htm Peripheral artery bypass - leg - discharge To use the sharing features ... this page, please enable JavaScript. You had peripheral artery bypass surgery to re-route the blood supply ...

  8. What Is Peripheral Artery Disease?

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Peripheral Artery Disease? Peripheral artery disease (P.A.D.) is ... that affects blood flow to the legs. Normal Artery and Artery With Plaque Buildup The illustration shows ...

  9. Peripheral Artery Disease and Diabetes

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Peripheral Artery Disease & Diabetes Updated:Jan 26,2016 People with ... developing atherosclerosis, the most common cause of peripheral artery disease (PAD) . And individuals with PAD have a ...

  10. Peripheral Neuropathy: Symptoms and Signs

    MedlinePlus

    ... Tomography Scan (CAT) Electrodiagnostic Testing Lumbar Puncture Imaging Quantitative Sensory Testing (QST) Peripheral Neuropathy Treatments Facts + Risk ... Tomography Scan (CAT) Electrodiagnostic Testing Lumbar Puncture Imaging Quantitative Sensory Testing (QST) Peripheral Neuropathy Treatments Facts + Risk ...

  11. Use of the Trellis{sup TM} Peripheral Infusion System for Enhancement of rt-PA Thrombolysis in Acute Lower Limb Ischemia

    SciTech Connect

    Tsetis, Dimitrios K. Katsamouris, Asterios N.; Androulakakis, Zacharias; Chamalakis, Konstantinos; Kostas, Theodoros; Chlapoutakis, Konstantinos; Gourtsoyiannis, Nicholas C.

    2003-11-15

    The Trellis{sup TM} Peripheral Infusion System is an over-the-wire 0.035'' guidewire compatible device, designed to isolate a region of the peripheral vasculature to allow for lytic drug infusion and dispersion. We used it successfully through a percutaneous approach in two cases of acute thrombosis of a native lower limb artery. The total amount of rt-PA used was 12 and 9 mg, respectively and was delivered through bolus injections obviating the need for a supplementary continuous infusion of the agent. The time for dissolution of thrombus was 45 and 35 minutes, respectively. No complications were observed.

  12. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  13. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs.

    PubMed

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J G; Marceau, François

    2013-07-15

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent KM 1.1 vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥2.5 μM, ≥2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake Vmax. PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes).

  14. [Peripheral neuropathies: Diagnostic strategy].

    PubMed

    Magy, L

    2017-02-28

    Diagnosing a peripheral neuropathy is sometimes challenging, as the causes are diverse and the clinical pictures heterogeneous. Overall, diagnosing a patient with peripheral neuropathy will require some knowledge in almost every field of medicine. Therefore, it appears crucial to adopt a diagnostic strategy that is based on solid clinical and neurophysiological grounds. The present paper describes a three-step diagnostic strategy: (1) to delineate a clinico-pathologic entity from clinical and electrodiagnostic findings; (2) to propose a list of plausible causes based on step one, history and clinical context; (3) to use appropriate workup in order to determine the cause or mechanism of the neuropathy. The three steps of this diagnostic strategy necessitate a high level of expertise and interaction between physicians is highly desirable. Finally, an aggressive course and a severe impairment should lead to relentlessly look for a curable cause.

  15. Optimization of Peripheral Vision.

    DTIC Science & Technology

    1986-11-01

    or corporation ; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto...peripheral field than were nonathletes. Reardon of Trams~orld Airliaes (TWA) (personal commnication ) reports that senior pilots have siglificantly...the writer that he should reexamine the data that were available in the three reports by his and Crannelll. Briggs (personal commnication ) pointed out

  16. Wntless is required for peripheral lung differentiation and pulmonary vascular development.

    PubMed

    Cornett, Bridget; Snowball, John; Varisco, Brian M; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-07-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease.

  17. Peripheral arterial disease

    PubMed Central

    2011-01-01

    Introduction Up to 20% of adults aged over 55 years have detectable peripheral arterial disease of the legs, but this may cause symptoms of intermittent claudication in only a small proportion of affected people. The main risk factors are smoking and diabetes mellitus, but other risk factors for cardiovascular disease are also associated with peripheral arterial disease. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for people with chronic peripheral arterial disease? We searched: Medline, Embase, The Cochrane Library, and other important databases up to May 2010. Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review. We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 70 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: antiplatelet agents, bypass surgery, cilostazol, exercise, pentoxifylline, percutaneous transluminal angioplasty (PTA), prostaglandins, smoking cessation, and statins. PMID:21477401

  18. Peripheral arterial disease

    PubMed Central

    2009-01-01

    Introduction Up to 20% of adults aged over 55 years have detectable peripheral arterial disease of the legs, but this may cause symptoms of intermittent claudication in only a small proportion of affected people. The main risk factors are smoking and diabetes mellitus, but other risk factors for cardiovascular disease are also associated with peripheral arterial disease. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for people with chronic peripheral arterial disease? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2009. (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 59 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antiplatelet agents; bypass surgery; cilostazol; exercise; pentoxifylline; percutaneous transluminal angioplasty (PTA); prostaglandins; smoking cessation; and statins. PMID:19454099

  19. Sex-based differential regulation of oxidative stress in the vasculature by nitric oxide

    PubMed Central

    Morales, Rommel C.; Bahnson, Edward S.M.; Havelka, George E.; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Kibbe, Melina R.

    2015-01-01

    Background Nitric oxide (•NO) is more effective at inhibiting neointimal hyperplasia following arterial injury in male versus female rodents, though the etiology is unclear. Given that superoxide (O2•−) regulates cellular proliferation, and •NO regulates superoxide dismutase-1 (SOD-1) in the vasculature, we hypothesized that •NO differentially regulates SOD-1 based on sex. Materials and methods Male and female vascular smooth muscle cells (VSMC) were harvested from the aortae of Sprague-Dawley rats. O2•− levels were quantified by electron paramagnetic resonance (EPR) and HPLC. sod-1 gene expression was assayed by qPCR. SOD-1, SOD-2, and catalase protein levels were detected by Western blot. SOD-1 activity was measured via colorimetric assay. The rat carotid artery injury model was performed on Sprague-Dawley rats ±•NO treatment and SOD-1 protein levels were examined by Western blot. Results In vitro, male VSMC have higher O2•− levels and lower SOD − 1 activity at baseline compared to female VSMC (P < 0.05). •NO decreased O2•− levels and increased SOD − 1 activity in male (P<0.05) but not female VSMC. •NO also increased sod− 1 gene expression and SOD − 1 protein levels in male (P<0.05) but not female VSMC. In vivo, SOD-1 levels were 3.7-fold higher in female versus male carotid arteries at baseline. After injury, SOD-1 levels decreased in both sexes, but •NO increased SOD-1 levels 3-fold above controls in males, but returned to baseline in females. Conclusions Our results provide evidence that regulation of the redox environment at baseline and following exposure to •NO is sex-dependent in the vasculature. These data suggest that sex-based differential redox regulation may be one mechanism by which •NO is more effective at inhibiting neointimal hyperplasia in male versus female rodents. PMID:25617803

  20. Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy.

    PubMed

    Persson, Anna-Karin; Hoeijmakers, Janneke G J; Estacion, Mark; Black, Joel A; Waxman, Stephen G

    2016-05-01

    Peripheral neuropathy results from damage to peripheral nerves and is often accompanied by pain in affected limbs. Treatment represents an unmet medical need and a thorough understanding of the mechanisms underlying axonal injury is needed. Longer nerve fibers tend to degenerate first (length-dependence), and patients carrying pathogenic mutations throughout life usually become symptomatic in mid- or late-life (time-dependence). The activity of voltage-gated sodium channels can contribute to axonal injury and sodium channel gain-of-function mutations have been linked to peripheral neuropathy. Recent studies have implicated sodium channel activity, mitochondrial compromise, and reverse-mode Na(+)/Ca(2+) exchange in time- and length-dependent axonal injury. Elucidation of molecular mechanisms underlying axonal injury in peripheral neuropathy may provide new therapeutic strategies for this painful and debilitating condition.

  1. Prostaglandin F2 alpha as the luteolysin in swine: VI. Hormonal regulation of the movement of exogenous PGF2 alpha from the uterine lumen into the vasculature.

    PubMed

    Marengo, S R; Bazer, F W; Thatcher, W W; Wilcox, C J; Wetteman, R P

    1986-03-01

    To test the endocrine-exocrine theory of maternal recognition of pregnancy in the pig 16 gilts were assigned randomly to a 2 X 2 factorial involving pretreatment with sesame oil (SO) or estradiol valerate (5 mg; EV) injected on Days 11 through 14 of the estrous cycle and an intrauterine injection of saline (5 ml; SA) or prostaglandin F2 alpha (50 micrograms; PGF) on Day 14. Peripheral blood samples were collected for 120 min postinjection and analyzed for 15-keto-13,14-dihydro-PGF2 alpha (PGFM). PGFM concentrations were lower in EV than SO gilts (438 vs. 844 pg/ml; p less than 0.05). There was heterogeneity of regression between EV and SO gilts (p less than 0.01), with EV gilts having a slower release of PGF from the uterine lumen into the vasculature. Prostaglandin F2 alpha did not increase mean PGFM concentrations (p greater than 0.10), but resulted in an altered temporal pattern of PGFM (p less than 0.05) compared to SA gilts. There was an interaction between the two treatments over time, with EV-PGF gilts demonstrating a slower, more gradual release of PGFM than SO-PGF gilts. To test whether prostaglandins of the E series were involved in this mechanism, gilts were assigned to two 4 X 4 latin squares balanced for residual effects and treated with saline or flunixen meglumine (Banamine). Each gilt was treated with four PGE:PGF infusion sequences (SEQ) in each uterine horn: phosphate-buffered saline (PBS; PBS-SEQ), PGE1 (50 micrograms), PGE2 (50 micrograms), and PGE1 (25 micrograms) + PGE2 (25 micrograms) (PGE-SEQ), with each infusion followed 15 min later by PGF (25 micrograms).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy

    PubMed Central

    Adapala, Ravi K.; Thoppil, Roslin J.; Ghosh, Kaustabh; Cappelli, Holly; Dudley, Andrew C.; Paruchuri, Sailaja; Keshamouni, Venkateshwar; Klagsbrun, Michael; Meszaros, J. Gary; Chilian, William M.; Ingber, Donald E.; Thodeti, Charles K.

    2016-01-01

    Tumor vessels are characterized by abnormal morphology and hyper-permeability that together cause inefficient delivery of chemotherapeutic agents. Although VEGF has been established as a critical regulator of tumor angiogenesis, the role of mechanical signaling in the regulation of tumor vasculature or tumor endothelial cell (TEC) function is not known. Here, we show that the mechanosensitive ion channel TRPV4 regulates tumor angiogenesis and tumor vessel maturation via modulation of TEC mechanosensitivity. We found that TEC exhibit reduced TRPV4 expression and function, which is correlated with aberrant mechanosensitivity towards ECM stiffness, increased migration and abnormal angiogenesis by TEC. Further, syngeneic tumor experiments revealed that the absence of TRPV4 induced increased vascular density, vessel diameter and reduced pericyte coverage resulting in enhanced tumor growth in TRPV4 KO mice. Importantly, overexpression or pharmacological activation of TRPV4 restored aberrant TEC mechanosensitivity, migration and normalized abnormal angiogenesis in vitro by modulating Rho activity. Finally, a small molecule activator of TRPV4, GSK1016790A, in combination with anti-cancer drug Cisplatin, significantly reduced tumor growth in WT mice by inducing vessel maturation. Our findings demonstrate TRPV4 channels to be critical regulators of tumor angiogenesis and represent a novel target for anti-angiogenic and vascular normalization therapies. PMID:25867067

  3. Expression and function of potassium channels in the human placental vasculature.

    PubMed

    Wareing, Mark; Bai, Xilian; Seghier, Fella; Turner, Claire M; Greenwood, Susan L; Baker, Philip N; Taggart, Michael J; Fyfe, Gregor K

    2006-08-01

    In the placental vasculature, where oxygenation may be an important regulator of vascular reactivity, there is a paucity of data on the expression of potassium (K) channels, which are important mediators of vascular smooth muscle tone. We therefore addressed the expression and function of several K channel subtypes in human placentas. The expression of voltage-gated (Kv)2.1, KV9.3, large-conductance Ca2+-activated K channel (BKCa), inward-rectified K+ channel (KIR)6.1, and two-pore domain inwardly rectifying potassium channel-related acid-sensitive K channels (TASK)1 in chorionic plate arteries, veins, and placental homogenate was assessed by RT-PCR and Western blot analysis. Functional activity of K channels was assessed pharmacologically in small chorionic plate arteries and veins by wire myography using 4-aminopyridine, iberiotoxin, pinacidil, and anandamide. Experiments were performed at 20, 7, and 2% oxygen to assess the effect of oxygenation on the efficacy of K channel modulators. KV2.1, KV9.3, BKCa, KIR6.1, and TASK1 channels were all demonstrated to be expressed at the message level. KV2.1, BKCa, KIR6.1, and TASK1 were all demonstrated at the protein level. Pharmacological manipulation of voltage-gated and ATP-sensitive channels produced the most marked modifications in vascular tone, in both arteries and veins. We conclude that K channels play an important role in controlling placental vascular function.

  4. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres

    PubMed Central

    Lu, Wei; Huang, Qian; Ku, Geng; Wen, Xiaoxia; Zhou, Min; Guzatov, Dmitry; Brecht, Peter; Su, Richard; Oraevsky, Alexander; Wang, Lihong V.; Li, Chun

    2010-01-01

    Photoacoustic tomography (PAT) also referred to as optoacoustic tomography (OAT) is a hybrid imaging modality that employs nonionizing optical radiation and ultrasonic detection. Here, we describe the application of a new class of optical contrast agents based on mesoscopic hollow gold nanospheres (HAuNS) to PAT. HAuNS are ~40 nm in diameter with a hollow interior and consist of a thin gold wall. They display strong resonance absorption tuned to the near infrared (NIR) range, with an absorption peak at 800 nm, whose photoacoustic efficiency is significantly greater than that of blood. Following surface conjugation with thiolated poly(ethylene glycol), the pegylated HAuNS (PEG-HAuNS) had distribution and elimination half-lives of 1.38±0.38 and 71.82±30.46 h, respectively. Compared with PAT images based on the intrinsic optical contrast in nude mice, the PAT images acquired within 2 h after intravenous administration of PEG-HAuNS showed the brain vasculature with greater clarity and detail. The image depicted brain blood vessels as small as ~100 µm in diameter using PEG-HAuNS as contrast agents. Preliminary results showed no acute toxicity to the liver, spleen, or kidneys in mice following a single imaging dose of PEG-HAuNS. Our results indicate that PEG-HAuNS are promising contrast agents for PAT, with high spatial resolution and enhanced sensitivity. PMID:20036000

  5. Circulatory therapeutics: use of antihypertensive agents and their effects on the vasculature

    PubMed Central

    Schiffrin, Ernesto L

    2010-01-01

    Abstract This review addresses the use of the different antihypertensive agents currently available and some in development, and their effects on the vasculature. The different classes of agents used in the treatment of hypertension, and the results of recent large clinical trials, dosing protocols and adverse effects are first briefly summarized. The consequences on blood vessels of the use of antihypertensive drugs and the differential effects on the biology of large and small arteries resulting in modulation of vascular remodelling and dysfunction in hypertensive patients are then described. Large elastic conduit arteries exhibit outward hypertrophic remodelling and increased stiffness, which contributes to raise systolic blood pressure and afterload on the heart. Small resistance arteries undergo eutrophic or hypertrophic inward remodelling, and impair tissue perfusion. By these mechanisms both large and small arteries may contribute to trigger cardiovascular events. Some antihypertensive agents correct these changes, which could contribute to improved outcome. The mechanisms that at the level of the vascular wall lead to remodelling and can be beneficially affected by antihypertensive agents will also be addressed. These include vasoconstriction, growth and inflammation. The molecular pathways contributing to growth and inflammation will be summarily described. Further identification of these signalling pathways should allow identification of novel targets leading to development of new and improved medications for the treatment of hypertension and cardiovascular disease. PMID:20345850

  6. Congenital cataract associated with persistent fetal vasculature: findings from IoLunder2.

    PubMed

    Solebo, A L; Russell-Eggitt, I; Cumberland, P; Rahi, J S

    2016-09-01

    PurposeTo describe the frequency, characteristics, and treatment outcome of persistent fetal vasculature (PFV) in children undergoing surgery for congenital and infantile cataract in the first 2 years of life.Patients and methodsObservational population-based cohort study with case identification through active surveillance and standardised data collection via a national clinical network, the British Isles Congenital Cataract Interest Group (BCCIG).ResultsThe IoLunder2 cohort comprises 246 children undergoing surgery for bilateral and unilateral congenital and infantile cataract in the first 2 years of life. A total of 58/246 (24%) children had PFV (%): overall, 46/95 (46%) with unilateral cataract, and 12/141 (8%) with bilateral disease. Anterior segment vascular remnants were more common in bilateral than unilateral disease (75 vs 11%, P=0.01). At 1 year after surgery, 20% of children with bilateral PFV and 24% with unilateral had achieved normal vision for age within the operated eye. The prevalence of post-operative glaucoma was 9% (of children with bilateral disease) and 4% (unilateral).ConclusionPFV is significantly more common than previously reported, and outcomes are comparable to that for congenital and infantile cataract overall.

  7. In-vivo imaging of nanoshell extravasation from solid tumor vasculature by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Li, Meng-Lin; Schwartz, Jon A.; Wang, James; Stoica, George; Wang, Lihong V.

    2007-02-01

    In this study, high resolution reflection-mode (backward-mode) photoacoustic microscopy (PAM) is used to noninvasively image progressive extravasation and accumulation of nanoshells within a solid tumor in vivo. This study takes advantage of the strong near-infrared absorption of nanoshells, a novel type of optically tunable gold nanoparticles that tend to extravasate from leaky tumor vasculatures (i.e., passive targeting) via the "enhanced permeability and retention" effect due to their nanoscale size. Tumors were grown in immunocompetent BALB/c mice by subcutaneous inoculation of CT26.wt murine colon carcinoma cells. PEGylated nanoshells with a peak optical absorption at ~800 nm were intravenously administered. Pre-scans prior to nanoshell injection were taken using a 584-nm laser source to highlight blood content and an 800-nm laser source to mark the background limit for nanoshell accumulation. After injection, the three-dimensional nanoshell distribution inside the tumor was monitored by PAM for 7 hours. Experimental results show that nanoshell accumulation is heterogeneous in tumors: more concentrated within the tumor cortex and largely absent from the tumor core. This correlates with others' observation that drug delivery within tumor cores is ineffective because of both high interstitial pressure and tendency to necrosis of tumor cores. Since nanoshells have been recently applied to thermal therapy for subcutaneous tumors, we anticipate that PAM will be important to this therapeutic technique.

  8. Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos.

    PubMed

    Yokomizo, Tomomasa; Dzierzak, Elaine

    2010-11-01

    Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Despite their importance, hematopoietic clusters have not been systematically quantitated or mapped because of technical limitations posed by the opaqueness of whole mouse embryos. Here, we combine an approach to make whole mouse embryos transparent, with multicolor marking, to allow observation of hematopoietic clusters using high-resolution 3-dimensional confocal microscopy. Our method provides the first complete map and temporal quantitation of all hematopoietic clusters in the mouse embryonic vasculature. We show that clusters peak in number at embryonic day 10.5, localize to specific vascular subregions and are heterogeneous, indicating a basal endothelial to non-basal (outer cluster) hematopoietic cell transition. Clusters enriched with the c-Kit(+)CD31(+)SSEA1(-) cell population contain functional hematopoietic progenitors and stem cells. Thus, three-dimensional cartography of transparent mouse embryos provides novel insight into the vascular subregions instrumental in hematopoietic progenitor/stem cell development, and represents an important technological advancement for comprehensive in situ hematopoietic cluster analysis.

  9. Manufactured Aluminum Oxide Nanoparticles Decrease Expression of Tight Junction Proteins in Brain Vasculature

    PubMed Central

    Yokel, Robert A.; Hennig, Bernhard

    2009-01-01

    Manufactured nanoparticles of aluminum oxide (nano-alumina) have been widely used in the environment; however, their potential toxicity provides a growing concern for human health. The present study focuses on the hypothesis that nano-alumina can affect the blood-brain barrier and induce endothelial toxicity. In the first series of experiments, human brain microvascular endothelial cells (HBMEC) were exposed to alumina and control nanoparticles in dose- and time-responsive manners. Treatment with nano-alumina markedly reduced HBMEC viability, altered mitochondrial potential, increased cellular oxidation, and decreased tight junction protein expression as compared to control nanoparticles. Alterations of tight junction protein levels were prevented by cellular enrichment with glutathione. In the second series of experiments, rats were infused with nano-alumina at the dose of 29 mg/kg and the brains were stained for expression of tight junction proteins. Treatment with nano-alumina resulted in a marked fragmentation and disruption of integrity of claudin-5 and occludin. These results indicate that cerebral vasculature can be affected by nano-alumina. In addition, our data indicate that alterations of mitochondrial functions may be the underlying mechanism of nano-alumina toxicity. PMID:18830698

  10. Ambient temperature affects glabrous skin vasculature and sweating responses to mental task in humans.

    PubMed

    Hayashi, Naoyuki; Someya, Nami; Hirooka, Yoshitaka; Koga, Shunsaku

    2008-09-01

    We compared responses in heart rate (HR), mean blood pressure (MAP), sweating rate (SR), sweating expulsion (SwE), and skin vascular conductance (VC) to mental task among different ambient temperature (Ta) conditions, i.e., 12, 16, 20, and 24 degrees C. Seven subjects (27+/-5 yrs, 64+/-14 kg) underwent a 2-min color word conflict test (CWT) after 2 mins of baseline data acquisition following a 20-min resting period. All subjects wore long sleeve shirts and long pants. The skin blood flow was measured with a laser Doppler probe on the left index finger pulp to calculate skin VC, and the SR and sweating expulsion (SwE) were measured with a ventilated capsule on the left thenar. CWT significantly increased the HR and MAP, while there was no significant effect of Ta on the magnitudes of these responses. CWT significantly decreased the skin VC when the Ta was 24 degrees C, whereas it significantly increased the skin VC when the Ta was 12 or 16 degrees C. CWT significantly increased SR and SwE in all Ta conditions, and the SwE was greater in warmer conditions. These findings suggest that different ambient temperatures induce different responses in finger skin vasculature to mental task, implying the independent response of cutaneous vasomotor tone and sweat glands in glabrous skin to mental task.

  11. Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos

    PubMed Central

    Yokomizo, Tomomasa; Dzierzak, Elaine

    2010-01-01

    Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Despite their importance, hematopoietic clusters have not been systematically quantitated or mapped because of technical limitations posed by the opaqueness of whole mouse embryos. Here, we combine an approach to make whole mouse embryos transparent, with multicolor marking, to allow observation of hematopoietic clusters using high-resolution 3-dimensional confocal microscopy. Our method provides the first complete map and temporal quantitation of all hematopoietic clusters in the mouse embryonic vasculature. We show that clusters peak in number at embryonic day 10.5, localize to specific vascular subregions and are heterogeneous, indicating a basal endothelial to non-basal (outer cluster) hematopoietic cell transition. Clusters enriched with the c-Kit+CD31+SSEA1– cell population contain functional hematopoietic progenitors and stem cells. Thus, three-dimensional cartography of transparent mouse embryos provides novel insight into the vascular subregions instrumental in hematopoietic progenitor/stem cell development, and represents an important technological advancement for comprehensive in situ hematopoietic cluster analysis. PMID:20876651

  12. Physiological and genomic basis of mechanical-functional trade-off in plant vasculature

    PubMed Central

    Sengupta, Sonali; Majumder, Arun Lahiri

    2014-01-01

    Some areas in plant abiotic stress research are not frequently addressed by genomic and molecular tools. One such area is the cross reaction of gravitational force with upward capillary pull of water and the mechanical-functional trade-off in plant vasculature. Although frost, drought and flooding stress greatly impact these physiological processes and consequently plant performance, the genomic and molecular basis of such trade-off is only sporadically addressed and so is its adaptive value. Embolism resistance is an important multiple stress- opposition trait and do offer scopes for critical insight to unravel and modify the input of living cells in the process and their biotechnological intervention may be of great importance. Vascular plants employ different physiological strategies to cope with embolism and variation is observed across the kingdom. The genomic resources in this area have started to emerge and open up possibilities of synthesis, validation and utilization of the new knowledge-base. This review article assesses the research till date on this issue and discusses new possibilities for bridging physiology and genomics of a plant, and foresees its implementation in crop science. PMID:24904619

  13. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature.

    PubMed

    Chen, Lei; Yokel, Robert A; Hennig, Bernhard; Toborek, Michal

    2008-12-01

    Manufactured nanoparticles of aluminum oxide (nano-alumina) have been widely used in the environment; however, their potential toxicity provides a growing concern for human health. The present study focuses on the hypothesis that nano-alumina can affect the blood-brain barrier and induce endothelial toxicity. In the first series of experiments, human brain microvascular endothelial cells (HBMEC) were exposed to alumina and control nanoparticles in dose- and time-responsive manners. Treatment with nano-alumina markedly reduced HBMEC viability, altered mitochondrial potential, increased cellular oxidation, and decreased tight junction protein expression as compared to control nanoparticles. Alterations of tight junction protein levels were prevented by cellular enrichment with glutathione. In the second series of experiments, rats were infused with nano-alumina at the dose of 29 mg/kg and the brains were stained for expression of tight junction proteins. Treatment with nano-alumina resulted in a marked fragmentation and disruption of integrity of claudin-5 and occludin. These results indicate that cerebral vasculature can be affected by nano-alumina. In addition, our data indicate that alterations of mitochondrial functions may be the underlying mechanism of nano-alumina toxicity.

  14. Binaural blood flow control by astrocytes: listening to synapses and the vasculature.

    PubMed

    Mishra, Anusha

    2017-03-15

    Astrocytes are the most common glial cells in the brain with fine processes and endfeet that intimately contact both neuronal synapses and the cerebral vasculature. They play an important role in mediating neurovascular coupling (NVC) via several astrocytic Ca(2+) -dependent signalling pathways such as K(+) release through BK channels, and the production and release of arachidonic acid metabolites. They are also involved in maintaining the resting tone of the cerebral vessels by releasing ATP and COX-1 derivatives. Evidence also supports a role for astrocytes in maintaining blood pressure-dependent change in cerebrovascular tone, and perhaps also in blood vessel-to-neuron signalling as posited by the 'hemo-neural hypothesis'. Thus, astrocytes are emerging as new stars in preserving the intricate balance between the high energy demand of active neurons and the supply of oxygen and nutrients from the blood by maintaining both resting blood flow and activity-evoked changes therein. Following neuropathology, astrocytes become reactive and many of their key signalling mechanisms are altered, including those involved in NVC. Furthermore, as they can respond to changes in vascular pressure, cardiovascular diseases might exert previously unknown effects on the central nervous system by altering astrocyte function. This review discusses the role of astrocytes in neurovascular signalling in both physiology and pathology, and the impact of these findings on understanding BOLD-fMRI signals.

  15. Selenoprotein expression in endothelial cells from different human vasculature and species.

    PubMed

    Miller, S; Walker, S W; Arthur, J R; Lewin, M H; Pickard, K; Nicol, F; Howie, A F; Beckett, G J

    2002-10-09

    Selenium (Se) can protect endothelial cells (EC) from oxidative damage by altering the expression of selenoproteins with antioxidant function such as cytoplasmic glutathione peroxidase (cyGPX), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and thioredoxin reductase (TR). If the role of Se on EC function is to be studied, it is essential that a model system be chosen which reflects selenoprotein expression in human EC derived from vessels prone to developing atheroma. We have used [75Se]-selenite labelling and selenoenzyme measurements to compare the selenoproteins expressed by cultures of EC isolated from different human vasculature with EC bovine and porcine aorta. Only small differences were observed in selenoprotein expression and activity in EC originating from human coronary artery, human umbilical vein (HUVEC), human umbilical artery and the human EC line EAhy926. The selenoprotein profile in HUVEC was consistent over eight passages and HUVEC isolated from four cords also showed little variability. In contrast, EC isolated from pig and bovine aorta showed marked differences in selenoprotein expression when compared to human cells. This study firmly establishes the suitability and consistency of using HUVEC (and possibly the human cell line EAhy926) as a model to study the effects of Se on EC function in relation to atheroma development in the coronary artery. Bovine or porcine EC appear to be an inappropriate model.

  16. Surgical Anatomy of the Gastrointestinal Tract and Its Vasculature in the Laboratory Rat.

    PubMed

    Vdoviaková, Katarína; Petrovová, Eva; Maloveská, Marcela; Krešáková, Lenka; Teleky, Jana; Elias, Mario Zefanias Joao; Petrášová, Darina

    2016-01-01

    The aim of this study was to describe and illustrate the morphology of the stomach, liver, intestine, and their vasculature to support the planning of surgical therapeutic methods in abdominal cavity. On adult Wistar rats corrosion casts were prepared from the arterial system and Duracryl Dental and PUR SP were used as a casting medium and was performed macroscopic anatomical dissection of the stomach, liver, and intestine was performed. The rat stomach was a large, semilunar shaped sac with composite lining. On the stomach was very marked fundus, which formed a blind sac (saccus cecus). The rat liver was divided into six lobes, but without gall bladder. Intestine of the rat was simple, but cecum had a shape as a stomach. The following variations were observed in the origin of the cranial mesenteric artery. On the corrosion cast specimens we noticed the presence of the anastomosis between middle colic artery (a. colica media) and left colic artery (a. colica sinistra). We investigated the second anastomosis between middle colic artery and left colic artery. The results of this study reveal that the functional anatomical relationship between the rat stomach, liver and intestine is important for the development of surgical research in human and veterinary medicine.

  17. Impact of a Combined High Cholesterol Diet and High Glucose Environment on Vasculature

    PubMed Central

    Cui, Taixing; Tang, Dongqi; Wang, Xing Li

    2013-01-01

    Aims Vascular complications are the leading cause of mortality and morbidity in patients with diabetes. However, proper animal models of diabetic vasculopathy that recapitulate the accelerated progression of vascular lesions in human are unavailable. In the present study, we developed a zebrafish model of diabetic vascular complications and the methodology for quantifying vascular lesion formation real-time in the living diabetic zebrafish. Methods and Results Wild type zebrafish (AB) and transgenic zebrafish lines of fli1:EGFP, lyz:EGFP, gata1:dsRed, double transgenic zebrafish of gata1:dsRed/fli1:EGFP were exposed to high cholesterol diet and 3% glucose (HCD-HG) for 10 days. The zebrafish model with HCD-HG treatment was characterized by significantly increased tissue levels of insulin, glucagon, glucose, total triglyceride and cholesterol. Confocal microscopic analysis further revealed that the diabetic larvae developed clearly thickened endothelial layers, distinct perivascular lipid depositions, substantial accumulations of inflammatory cells in the injured vasculature, and a decreased velocity of blood flow. Moreover, the vascular abnormalities were improved by the treatment of pioglitazone and metformin. Conclusion A combination of high cholesterol diet and high glucose exposure induces a rapid onset of vascular complications in zebrafish similar to the early atherosclerotic vascular injuries in mammalian diabetic models, suggesting that zebrafish may be used as a novel animal model for diabetic vasculopathy. PMID:24349075

  18. Multiscale bi-Gaussian filter for adjacent curvilinear structures detection with application to vasculature images.

    PubMed

    Xiao, Changyan; Staring, Marius; Wang, Yaonan; Shamonin, Denis P; Stoel, Berend C

    2013-01-01

    The intensity or gray-level derivatives have been widely used in image segmentation and enhancement. Conventional derivative filters often suffer from an undesired merging of adjacent objects because of their intrinsic usage of an inappropriately broad Gaussian kernel; as a result, neighboring structures cannot be properly resolved. To avoid this problem, we propose to replace the low-level Gaussian kernel with a bi-Gaussian function, which allows independent selection of scales in the foreground and background. By selecting a narrow neighborhood for the background with regard to the foreground, the proposed method will reduce interference from adjacent objects simultaneously preserving the ability of intraregion smoothing. Our idea is inspired by a comparative analysis of existing line filters, in which several traditional methods, including the vesselness, gradient flux, and medialness models, are integrated into a uniform framework. The comparison subsequently aids in understanding the principles of different filtering kernels, which is also a contribution of this paper. Based on some axiomatic scale-space assumptions, the full representation of our bi-Gaussian kernel is deduced. The popular γ-normalization scheme for multiscale integration is extended to the bi-Gaussian operators. Finally, combined with a parameter-free shape estimation scheme, a derivative filter is developed for the typical applications of curvilinear structure detection and vasculature image enhancement. It is verified in experiments using synthetic and real data that the proposed method outperforms several conventional filters in separating closely located objects and being robust to noise.

  19. Smartphone-Based Accurate Analysis of Retinal Vasculature towards Point-of-Care Diagnostics

    PubMed Central

    Xu, Xiayu; Ding, Wenxiang; Wang, Xuemin; Cao, Ruofan; Zhang, Maiye; Lv, Peilin; Xu, Feng

    2016-01-01

    Retinal vasculature analysis is important for the early diagnostics of various eye and systemic diseases, making it a potentially useful biomarker, especially for resource-limited regions and countries. Here we developed a smartphone-based retinal image analysis system for point-of-care diagnostics that is able to load a fundus image, segment retinal vessels, analyze individual vessel width, and store or uplink results. The proposed system was not only evaluated on widely used public databases and compared with the state-of-the-art methods, but also validated on clinical images directly acquired with a smartphone. An Android app is also developed to facilitate on-site application of the proposed methods. Both visual assessment and quantitative assessment showed that the proposed methods achieved comparable results to the state-of-the-art methods that require high-standard workstations. The proposed system holds great potential for the early diagnostics of various diseases, such as diabetic retinopathy, for resource-limited regions and countries. PMID:27698369

  20. Vasculature of the ophthalmic rete in night herons (Nycticorax nycticorax): scanning electron microscopy of corrosion casts.

    PubMed

    Ninomiya, Hiroyoshi

    2002-09-01

    Vasculature of the ophthalmic rete (rete ophthalmicum) in the night heron (Nycticorax nycticorax) was studied using scanning electron microscopy of vascular corrosion casts and light microscopy on tissue sections. Most blood to the eyeball and a lesser volume of blood to the brain passed through the ophthalmic rete via the external ophthalmic artery. The collateral retial arterioles originated from the external ophthalmic artery forming a flat and fusiform-shaped arterial network at the ventrotemporal region of the eyeball. The arterial network was intermixed with a similar complex of the veins from the eye. The ophthalmotemporal artery, which supplied the eyeball posteriorly, and supraorbital and infraorbital arteries, which supplied the eyeball anteriorly, originated from the rete. Blood from the eye, which is a site of potential heat loss, drained into the ophthalmic rete via the ophthalmotemporal vein. On the casts of retial arterioles, slit-like cleavages at branching sites representing flap valves, which might play a role as sluice valves, were seen. In addition, marks of circularly running grooves, which might represent tufts of smooth muscle cells and might contribute to a sphincter activity, were observed. These anatomical specializations of the avian ophthalmic rete, involving parallel arrangement of arteries and veins, may function to facilitate counter-current heat exchange and to regulate blood pressure and volume to the eye and the brain.

  1. Mechanosignaling in the vasculature: emerging concepts in sensing, transduction and physiological responses

    PubMed Central

    Fujiwara, Keigi; Pérez, Néstor Gustavo; Ushio-Fukai, Masuko; Fisher, Aron B.

    2015-01-01

    Cells are constantly exposed to mechanical forces that play a role in modulating cellular structure and function. The cardiovascular system experiences physical forces in the form of shear stress and stretch associated with blood flow and contraction, respectively. These forces are sensed by endothelial cells and cardiomyocytes and lead to responses that control vascular and cardiac homeostasis. This was highlighted at the Pan American Physiological Society meeting at Iguassu Falls, Brazil, in a symposium titled “Mechanosignaling in the Vasculature.” This symposium presented recent research that showed the existence of a vital link between mechanosensing and downstream redox sensitive signaling cascades. This link helps to transduce and transmit the physical force into an observable physiological response. The speakers showcased how mechanosensors such as ion channels, membrane receptor kinases, adhesion molecules, and other cellular components transduce the force via redox signals (such as reactive oxygen species and nitric oxide) to receptors (transcription factors, growth factors, etc.). Receptor activated pathways then lead to cellular responses including cellular proliferation, contraction, and remodeling. These responses have major relevance to the physiology and pathophysiology of various cardiovascular diseases. Thus an understanding of the complex series of events, from the initial sensing through the final response, is essential for progress in this field. Overall, this symposium addressed some important emerging concepts in the field of mechanosignaling and the eventual pathophysiological responses. PMID:25862828

  2. Vasculature segmentation for radio frequency ablation of non-resectable hepatic tumors

    NASA Astrophysics Data System (ADS)

    Hemler, Paul F.; McCreedy, Evan S.; Cheng, Ruida; Wood, Brad; McAuliffe, Matthew J.

    2006-03-01

    In Radio Frequency Ablation (RFA) procedures, hepatic tumor tissue is heated to a temperature where necrosis is insured. Unfortunately, recent results suggest that heating tumor tissue to necrosis is complicated because nearby major blood vessels provide a cooling effect. Therefore, it is fundamentally important for physicians to perform a careful analysis of the spatial relationship of diseased tissue to larger liver blood vessels. The liver contains many of these large vessels, which affect the RFA ablation shape and size. There are many sophisticated vasculature detection and segmentation techniques reported in the literature that identify continuous vessels as the diameter changes size and it transgresses through many bifurcation levels. However, the larger blood vessels near the treatment area are the only vessels required for proper RFA treatment plan formulation and analysis. With physician guidance and interaction, our system can segment those vessels which are most likely to affect the RFA ablations. We have found that our system provides the physician with therapeutic, geometric and spatial information necessary to accurately plan treatment of tumors near large blood vessels. The segmented liver vessels near the treatment region are also necessary for computing isolevel heating profiles used to evaluate different proposed treatment configurations.

  3. Vasculature of the orbital rete in the Japanese deer (Cervus nippon).

    PubMed

    Ninomiya, H.; Masui, M.

    1999-01-01

    The vasculature of the orbital rete (rete mirabile ophthalmicum) in Japanese deer (Cervus nippon) was studied using corrosion casting, scanning electron microscopy, and histology. The orbital rete is a flat, triangular- or leaf-shaped arterial network, which consists of a complex of small arterioles, that intermixes with a similar complex of the supraorbital vein at the base of the orbital cavity. Blood to the retina passes through the orbital rete. The orbital retial arterioles leave the parent external ophthalmic artery at right angles forming T-shaped bifurcations, and follow a tortuous, undulating course. Each retial arteriole is connected by side branches and forms a rope-ladder-like network. Some of the side branches are surrounded by a groove representing the intra-arterial cushion that regulates blood flow at branching sites. The central retinal artery supplying the retina originates from the orbital rete. The ciliary arteries supplying the choroid arise from the external ophthalmic artery proximal to the orbital rete. The anatomical specializations of the orbital rete may involve buffering the blood pressure and flow to the retina and regulating ocular tissue temperature as in the carotid rete. In addition, the orbital rete may help dampen the tension that the vessel exerts on the retina, by stretching in response to eyeball movement.

  4. Inflammatory lipid mediator generation elicited by viable hemolysin- forming Escherichia coli in lung vasculature

    PubMed Central

    1990-01-01

    Escherichia coli hemolysin, a transmembrane pore-forming exotoxin, is considered an important virulence factor for E. coli-related extraintestinal infections and sepsis. The possible significance of hemolysin liberation for induction of inflammatory lipid mediators was investigated in isolated rabbit lungs infused with viable bacteria (concentration range, 10(4)-10(7)/ml). Hemolysin-secreting E. coli (E. coli-Hly+), but not an E. coli strain that releases an inactive form of the exotoxin, induced marked lung leukotriene (LT) generation with predominance of cysteinyl LTs. Eicosanoid synthesis was not inhibited in the presence of plasma with toxin-neutralizing capacity. Pre- application of 2 x 10(8) human granulocytes, which sequestered in the lung microvasculature, caused a severalfold increase in leukotriene generation in response to E. coli-Hly+ challenge both in the absence and presence of plasma. Data are presented indicating neutrophil- endothelial cell cooperation in arachidonic acid lipoxygenase metabolism as an underlying mechanism. We conclude that liberation of hemolysin from viable E. coli induces marked lipid mediator generation in lung vasculature, which is potentiated in the presence of neutrophil sequestration and may contribute to microcirculatory disturbances during the course of severe infections. PMID:2120384

  5. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    SciTech Connect

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  6. Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Yong, Ken-Tye; Roy, Indrajit; Ding, Hong; Law, Wing-Cheung; Cai, Hongxing; Zhang, Xihe; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

    2010-04-01

    In this paper, we report the use of near-infrared (NIR)-emitting alloyed quantum dots (QDs) as efficient optical probes for high contrast in vivo imaging of tumors. Alloyed CdTe1 - xSex/CdS QDs were prepared in the non-aqueous phase using the hot colloidal synthesis approach. Water dispersion of the QDs were accomplished by their encapsulation within polyethyleneglycol (PEG)-grafted phospholipid micelles. For tumor-specific delivery in vivo, the micelle-encapsulated QDs were conjugated with the cyclic arginine-glycine-aspartic acid (cRGD) peptide, which targets the αvβ3 integrins overexpressed in the angiogenic tumor vasculatures. Using in vivo NIR optical imaging of mice bearing pancreatic cancer xenografts, implanted both subcutaneously and orthotopically, we have demonstrated that systemically delivered cRGD-conjugated QDs, but not the unconjugated ones, can efficiently target and label the tumors with high signal-to-noise ratio. Histopathological analysis of major organs of the treated mice showed no evidence of systemic toxicity associated with these QDs. These experiments suggest that cRGD-conjugated NIR QDs can serve as safe and efficient probes for optical bioimaging of tumors in vivo. Furthermore, by co-encapsulating these QDs and anticancer drugs within these micelles, we have demonstrated a promising theranostic, nanosized platform for both cancer imaging and therapy.

  7. Segmentation methods for breast vasculature in dual-energy contrast-enhanced digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lau, Kristen C.; Lee, Hyo Min; Singh, Tanushriya; Maidment, Andrew D. A.

    2015-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) uses an iodinated contrast agent to image the three-dimensional breast vasculature. The University of Pennsylvania has an ongoing DE CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 post-contrast). DE images are obtained by a weighted logarithmic subtraction of the high-energy (HE) and low-energy (LE) image pairs. Temporal subtraction of the post-contrast DE images from the pre-contrast DE image is performed to analyze iodine uptake. Our previous work investigated image registration methods to correct for patient motion, enhancing the evaluation of vascular kinetics. In this project we investigate a segmentation algorithm which identifies blood vessels in the breast from our temporal DE subtraction images. Anisotropic diffusion filtering, Gabor filtering, and morphological filtering are used for the enhancement of vessel features. Vessel labeling methods are then used to distinguish vessel and background features successfully. Statistical and clinical evaluations of segmentation accuracy in DE-CBT images are ongoing.

  8. Response of the forelimb vasculature to vasoactive agents: effects of ouabain.

    PubMed

    Dobbins, D E; Swindall, B T; Haddy, F J; Dabney, J M

    1985-01-01

    The effect of the local intra-arterial infusion of ouabain (11.8 micrograms/min.) on the response of the forelimb to vasoactive agents was examined. In seven dogs, bolus injections of CaCl2, MgSO4, KCl, norepinephrine, adenosine, acetylcholine, PGE1 and saline were made into the forelimb perfused at constant flow before and three times during ouabain infusion. Ouabain blocked potassium vasodilation and changed the response to CaCl2 from vasoconstriction to vasodilation. The response of the forelimb to the other vasoactive agents was initially unaffected by ouabain but with time the forelimb vasculature became less sensitive to all agents studied. These changes were not seen in a series of 5 saline infused control animals. In a third series of animals steady-state dose responses to CaCl2, Ca-gluconate and KCl were explored by infusing solutions intrabrachially at three dosages. Before ouabain, forelimb resistance increased as a function of Ca++ and decreased as a function of K+. Ouabain completely blocked potassium vasodilation and on the average blocked Ca++ vasoconstriction although a number of animals evidenced vasodilation to Ca++ during ouabain infusion. These data indicate that K+ vasodilation is Na+, K+-ATPase dependent and that Na+, K+-ATPase inhibition unmasks a vasodilatory action of locally applied Ca++.

  9. Clinical peripherality: development of a peripherality index for rural health services

    PubMed Central

    Swan, Gillian M; Selvaraj, Sivasubramaniam; Godden, David J

    2008-01-01

    Background The configuration of rural health services is influenced by geography. Rural health practitioners provide a broader range of services to smaller populations scattered over wider areas or more difficult terrain than their urban counterparts. This has implications for training and quality assurance of outcomes. This exploratory study describes the development of a "clinical peripherality" indicator that has potential application to remote and rural general practice communities for planning and research purposes. Methods Profiles of general practice communities in Scotland were created from a variety of public data sources. Four candidate variables were chosen that described demographic and geographic characteristics of each practice: population density, number of patients on the practice list, travel time to nearest specialist led hospital and travel time to Health Board administrative headquarters. A clinical peripherality index, based on these variables, was derived using factor analysis. Relationships between the clinical peripherality index and services offered by the practices and the staff profile of the practices were explored in a series of univariate analyses. Results Factor analysis on the four candidate variables yielded a robust one-factor solution explaining 75% variance with factor loadings ranging from 0.83 to 0.89. Rural and remote areas had higher median values and a greater scatter of clinical peripherality indices among their practices than an urban comparison area. The range of services offered and the profile of staffing of practices was associated with the peripherality index. Conclusion Clinical peripherality is determined by the nature of the practice and its location relative to secondary care and administrative and educational facilities. It has features of both gravity model-based and travel time/accessibility indicators and has the potential to be applied to training of staff for rural and remote locations and to other aspects

  10. Peripherally induced oromandibular dystonia

    PubMed Central

    Sankhla, C.; Lai, E.; Jankovic, J.

    1998-01-01

    OBJECTIVES—Oromandibular dystonia (OMD) is a focal dystonia manifested by involuntary muscle contractions producing repetitive, patterned mouth, jaw, and tongue movements. Dystonia is usually idiopathic (primary), but in some cases it follows peripheral injury. Peripherally induced cervical and limb dystonia is well recognised, and the aim of this study was to characterise peripherally induced OMD.
METHODS—The following inclusion criteria were used for peripherally induced OMD: (1) the onset of the dystonia was within a few days or months (up to 1 year) after the injury; (2) the trauma was well documented by the patient's history or a review of their medical and dental records; and (3) the onset of dystonia was anatomically related to the site of injury (facial and oral).
RESULTS—Twenty seven patients were identified in the database with OMD, temporally and anatomically related to prior injury or surgery. No additional precipitant other than trauma could be detected. None of the patients had any litigation pending. The mean age at onset was 50.11 (SD 14.15) (range 23-74) years and there was a 2:1 female preponderance. Mean latency between the initial trauma and the onset of OMD was 65 days (range 1 day-1 year). Ten (37%) patients had some evidence of predisposing factors such as family history of movement disorders, prior exposure to neuroleptic drugs, and associated dystonia affecting other regions or essential tremor. When compared with 21 patients with primary OMD, there was no difference for age at onset, female preponderance, and phenomenology. The frequency of dystonic writer's cramp, spasmodic dysphonia, bruxism, essential tremor, and family history of movement disorder, however, was lower in the post-traumatic group (p<0.05). In both groups the response to botulinum toxin treatment was superior to medical therapy (p<0.005). Surgical intervention for temporomandibular disorders was more frequent in the post-traumatic group and was associated with

  11. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    PubMed Central

    Acevedo, Lisette M.; Lindquist, Jeffrey N.; Walsh, Breda M.; Sia, Peik; Cimadamore, Flavio; Chen, Connie; Denzel, Martin; Pernia, Cameron D.; Ranscht, Barbara; Terskikh, Alexey; Snyder, Evan Y.; Cheresh, David A.

    2015-01-01

    Summary To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC), not the neural tube (NT). Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC)-secreted nitric oxide (NO) and direct contact with vascular smooth muscle cells (VSMCs) via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning. PMID:26004631

  12. A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice

    PubMed Central

    Letourneur, Annelise; Chen, Victoria; Waterman, Gar; Drew, Patrick J.

    2014-01-01

    Abstract In the weeks following birth, both the brain and the vascular network that supplies it undergo dramatic alteration. While studies of the postnatal evolution of the pial vasculature and blood flow through its vessels have been previously done histologically or acutely, here we describe a neonatal reinforced thin‐skull preparation for longitudinally imaging the development of the pial vasculature in mice using two‐photon laser scanning microscopy. Starting with mice as young as postnatal day 2 (P2), we are able to chronically image cortical areas >1 mm2, repeatedly for several consecutive days, allowing us to observe the remodeling of the pial arterial and venous networks. We used this method to measure blood velocity in individual vessels over multiple days, and show that blood flow through individual pial venules was correlated with subsequent diameter changes. This preparation allows the longitudinal imaging of the developing mammalian cerebral vascular network and its physiology. PMID:25524276

  13. Does the sequence of pulmonary vasculature ligation have any oncological impact during an anatomical lung resection for non-small-cell lung cancer?

    PubMed

    Toufektzian, Levon; Attia, Rizwan; Polydorou, Nicolaos; Veres, Lukacs

    2015-02-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was 'in patients with primary lung carcinoma, does the sequence of pulmonary vasculature ligation during anatomical lung resection influence the oncological outcomes?' A total of 48 papers were found using the reported search, of which 7 represented the best evidence to answer the question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Among six prospective studies included, five of them randomized patients to either pulmonary vein or artery occlusion first during anatomical lung resection, while one study was retrospective. Two reports did not find any difference between pulmonary vein and artery occlusion first during long-term follow-up in terms of either disease recurrence (51 vs 53%, P = 0.7), or 5-year overall survival (54 vs 50%, P = 0.82). One report did not find any difference with regard to circulating tumour cells either after thoracotomy (5.0 vs 3.9, P = 0.4), or after the completion of lobectomy (38.0 vs 70.0, P = 0.23). One report found a higher expression of CD44v6 (P = 0.008) and CK19 (P = 0.05) in patients undergoing pulmonary arterial occlusion first. One report found that pulmonary vein occlusion before that of the pulmonary arterial branches has a favourable outcome on circulating carcino-embryonic antigen (CEA) mRNA in the peripheral blood, while another one did not find a significant difference in circulating levels of CEA mRNA (P = 0.075) and CK19 mRNA (P = 0.086) with either method. Another study reported no correlation between circulating pin1 mRNA levels in peripheral blood after the completion of the resection and the sequence of ligation of pulmonary vessels (9.95 ± 0.91 vs 14.71 ± 1.64, P > 0.05). Based on the two studies assessing the long-term outcome of patients with primary lung cancer undergoing anatomical curative

  14. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum.

    PubMed

    Grade, Sofia; Weng, Yuan C; Snapyan, Marina; Kriz, Jasna; Malva, João O; Saghatelyan, Armen

    2013-01-01

    Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.

  15. Correlative Imaging of the Murine Hind Limb Vasculature and Muscle Tissue by MicroCT and Light Microscopy

    PubMed Central

    Schaad, Laura; Hlushchuk, Ruslan; Barré, Sébastien; Gianni-Barrera, Roberto; Haberthür, David; Banfi, Andrea; Djonov, Valentin

    2017-01-01

    A detailed vascular visualization and adequate quantification is essential for the proper assessment of novel angiomodulating strategies. Here, we introduce an ex vivo micro-computed tomography (microCT)-based imaging approach for the 3D visualization of the entire vasculature down to the capillary level and rapid estimation of the vascular volume and vessel size distribution. After perfusion with μAngiofil®, a novel polymerizing contrast agent, low- and high-resolution scans (voxel side length: 2.58–0.66 μm) of the entire vasculature were acquired. Based on the microCT data, sites of interest were defined and samples further processed for correlative morphology. The solidified, autofluorescent μAngiofil® remained in the vasculature and allowed co-registering of the histological sections with the corresponding microCT-stack. The perfusion efficiency of μAngiofil® was validated based on lectin-stained histological sections: 98 ± 0.5% of the blood vessels were μAngiofil®-positive, whereas 93 ± 2.6% were lectin-positive. By applying this approach we analyzed the angiogenesis induced by the cell-based delivery of a controlled VEGF dose. Vascular density increased by 426% mainly through the augmentation of medium-sized vessels (20–40 μm). The introduced correlative and quantitative imaging approach is highly reproducible and allows a detailed 3D characterization of the vasculature and muscle tissue. Combined with histology, a broad range of complementary structural information can be obtained. PMID:28169309

  16. “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”

    PubMed Central

    Mannino, Robert G.; Myers, David R.; Ahn, Byungwook; Wang, Yichen; Margo Rollins; Gole, Hope; Lin, Angela S.; Guldberg, Robert E.; Giddens, Don P.; Timmins, Lucas H.; Lam, Wilbur A.

    2015-01-01

    Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses, and bifurcations, and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models. PMID:26202603

  17. Pigment epithelium-derived factor enhances tumor response to radiation through vasculature normalization in allografted lung cancer in mice.

    PubMed

    Xu, Z; Dong, Y; Peng, F; Yu, Z; Zuo, Y; Dai, Z; Chen, Y; Wang, J; Hu, X; Zhou, Q; Ma, H; Bao, Y; Gao, G; Chen, M

    2015-03-01

    This study aimed to explore the potential therapeutic effects of the combination of pigment epithelium-derived factor (PEDF) and radiation on lung cancer. The Lewis lung cancer (LLC) allografts in nude mice were treated with radiation, PEDF and PEDF combined with radiation. The morphologic changes of tumor vasculature and the hypoxic fraction of tumor tissues were evaluated. Significant inhibition of tumor growth was observed when radiation was applied between the 3rd and 7th day (the vasculature normalization window) after the initiation of PEDF treatment. During the vasculature normalization window, the tumor blood vessels in PEDF-treated mice were less tortuous and more uniform than those in the LLC allograft tumor treated with phosphate-buffered saline. Meanwhile, the thickness of the basement membrane was remarkably reduced and pericyte coverage was significantly increased with the PEDF treatment. We also found that tumor hypoxic fraction decreased during the 3rd to the 7th day after PEDF treatment, suggesting improved intratumoral oxygenation. Taken together, our results show that PEDF improved the effects of radiation therapy on LLC allografts by inducing a vascular normalization window from the 3rd to the 7th day after PEDF treatment. Our findings provide a basis for treating lung cancer with the combination of PEDF and radiation.

  18. “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”

    NASA Astrophysics Data System (ADS)

    Mannino, Robert G.; Myers, David R.; Ahn, Byungwook; Wang, Yichen; Margo Rollins; Gole, Hope; Lin, Angela S.; Guldberg, Robert E.; Giddens, Don P.; Timmins, Lucas H.; Lam, Wilbur A.

    2015-07-01

    Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses, and bifurcations, and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models.

  19. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    PubMed Central

    Packard, Scott D; Mandeville, Joseph B; Ichikawa, Tomotsugu; Ikeda, Keiro; Terada, Kinya; Niloff, Stephanie; Chiocca, E Antonio; Rosen, Bruce R; Marota, John J A

    2003-01-01

    Abstract In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1% / mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/ mm Hg CO2, (P < .0001, group t-test). Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed. PMID:14511404

  20. Peripheral neuropathy: the importance of rare subtypes

    PubMed Central

    Callaghan, Brian C.; Price, Ray S.; Chen, Kevin S.; Feldman, Eva L.

    2016-01-01

    Importance Peripheral neuropathy is a prevalent condition that usually warrants a thorough history and examination, but limited diagnostic evaluation. Rare localizations of peripheral neuropathy, however, often require more extensive diagnostic testing and different treatments. Objective To describe rare localizations of peripheral neuropathy, including the appropriate diagnostic evaluation and available treatments. Evidence Review References were identified from PubMed searches with an emphasis on systematic reviews and randomized clinical trials. Articles were also identified through the use of the author's own files. Search terms included common rare neuropathy localizations and their causes, as well as epidemiology, pathophysiology, diagnosis, and treatment. Findings Diffuse, non-length dependent neuropathies, multiple mononeuropathies, polyradiculopathies, plexopathies, and radiculoplexus neuropathies are rare peripheral neuropathy localizations that often require extensive diagnostic testing. Atypical neuropathy features, such as acute/subacute onset, asymmetry, and/or motor predominant signs, are frequently present. The most common diffuse, non-length dependent neuropathies are Guillain-Barre syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), multifocal motor neuropathy (MMN), and amyotrophic lateral sclerosis (ALS). Effective disease modifying therapies exist for many diffuse, non-length dependent neuropathies including GBS, CIDP, MMN, and some paraprotein-associated demyelinating neuropathies. Vasculitic neuropathy (multiple mononeuropathy) also has efficacious treatment options, but definitive evidence of a treatment effect for IgM anti-MAG neuropathy and diabetic amyoptrophy (radiculoplexus neuropathy) is lacking. Conclusions and Relevance Recognition of rare localizations of periperhal neuropathy is essential given the implications for diagnostic testing and treatment. Electrodiagnostic studies are an important early step in the

  1. Focal adhesion kinase regulates smooth muscle cell recruitment to the developing vasculature

    PubMed Central

    Cheng, Zhaokang; Sundberg-Smith, Liisa J.; Mangiante, Lee E.; Sayers, Rebecca L.; Hakim, Zeenat S.; Musunuri, Srilaxmi; Maguire, Colin T.; Majesky, Mark W.; Zhou, Zhigang; Mack, Christopher P.; Taylor, Joan M.

    2011-01-01

    Objective The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved. Methods and Results We crossed fakloxp targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAKwnt and FAKnk) or coronary SMC (FAKcSMC). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with post-natal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC, but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, PDGFBB. FAK depletion resulted in un-stable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1 and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in PDGF-stimulated extracellular matrix degradation. Conclusions FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus. PMID:21757658

  2. Brief Communication: Tissue-engineered Microenvironment Systems for Modeling Human Vasculature

    PubMed Central

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2015-01-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain-barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a “parent” vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific endothelial cells (ECs) within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described

  3. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.

    PubMed

    Dunham-Snary, Kimberly J; Hong, Zhigang G; Xiong, Ping Y; Del Paggio, Joseph C; Herr, Julia E; Johri, Amer M; Archer, Stephen L

    2016-01-01

    The mammalian homeostatic oxygen sensing system (HOSS) initiates changes in vascular tone, respiration, and neurosecretion that optimize oxygen uptake and tissue oxygen delivery within seconds of detecting altered environmental or arterial PO2. The HOSS includes carotid body type 1 cells, adrenomedullary cells, neuroepithelial bodies, and smooth muscle cells (SMCs) in pulmonary arteries (PAs), ductus arteriosus (DA), and fetoplacental arteries. Hypoxic pulmonary vasoconstriction (HPV) optimizes ventilation-perfusion matching. In utero, HPV diverts placentally oxygenated blood from the non-ventilated lung through the DA. At birth, increased alveolar and arterial oxygen tension dilates the pulmonary vasculature and constricts the DA, respectively, thereby transitioning the newborn to an air-breathing organism. Though modulated by endothelial-derived relaxing and constricting factors, O2 sensing is intrinsic to PASMCs and DASMCs. Within the SMC's dynamic mitochondrial network, changes in PO2 alter the reduction-oxidation state of redox couples (NAD(+)/NADH, NADP(+)/NADPH) and the production of reactive oxygen species, ROS (e.g., H2O2), by complexes I and III of the electron transport chain (ETC). ROS and redox couples regulate ion channels, transporters, and enzymes, changing intracellular calcium [Ca(2+)]i and calcium sensitivity and eliciting homeostatic responses to hypoxia. In PASMCs, hypoxia inhibits ROS production and reduces redox couples, thereby inhibiting O2-sensitive voltage-gated potassium (Kv) channels, depolarizing the plasma membrane, activating voltage-gated calcium channels (CaL), increasing [Ca(2+)]i, and causing vasoconstriction. In DASMCs, elevated PO2 causes mitochondrial fission, increasing ETC complex I activity and ROS production. The DASMC's downstream response to elevated PO2 (Kv channel inhibition, CaL activation, increased [Ca(2+)]i, and rho kinase activation) is similar to the PASMC's hypoxic response. Impaired O2 sensing contributes to

  4. Histomorphometry of the placental vasculature and microcotyledons in Thoroughbred mares with chronic laminitis.

    PubMed

    Pazinato, Fernanda M; Curcio, Bruna da Rosa; Fernandes, Cristina G; Santos, Carlos A; Feijó, Lorena S; Varela, Antonio Sérgio; Nogueira, Carlos E W

    2017-03-15

    The objective of this study was to assess the placental vasculature and microcotyledons in pregnant mares with chronic laminitis. Twenty-six pregnant mares were enrolled in the study, 13 had chronic laminitis (Laminitis Group) and 13 were healthy mares (Healthy Group). Arterial systolic pressure and heart rate were measured in the last 30 days of gestation. After foaling, the fetal membranes were grossly evaluated and samples were harvested for histopathologic examination. All mares had digitalized images taken from chorioallantois for histomorphometry analyses (software-NIH ImageJ). Images were assessed for: (i) arterioles from the allantoic region: total and lumen vascular diameter and vascular wall thickness; (ii) microcotiledonary and capillary area/field. Mares in the Laminitis Group showed hypertension, shorter gestational length, lower placental weight and lower birthweight (p < 0.05) foal in comparison with mares in the Healthy Group. Laminitis mares had a reduction of vascular lumen diameters in the uterine body and pregnant horn (p < 0.05), vascular wall thickening in the pregnant horn (p < 0.05) and smaller capillary area/field in the microcotyledons of uterine body and pregnant horn (p < 0.05). In conclusion, pregnant mares with chronic laminitis presented signs of hypertension syndrome, and vascular abnormalitities in placental vessels such as reduction in the vascular lumen and capillary area in the microcotyledones, and thickening of the vascular wall. Foals born from mares with chronic laminitis showed lower birth weight and shorter gestation lengths.

  5. Endothelial α5 and αv integrins cooperate in remodeling of the vasculature during development

    PubMed Central

    van der Flier, Arjan; Badu-Nkansah, Kwabena; Whittaker, Charles A.; Crowley, Denise; Bronson, Roderick T.; Lacy-Hulbert, Adam; Hynes, Richard O.

    2010-01-01

    Integrin cell adhesion receptors and fibronectin, one of their extracellular matrix ligands, have been demonstrated to be important for angiogenesis using functional perturbation studies and complete knockout mouse models. Here, we report on the roles of the α5 and αv integrins, which are the major endothelial fibronectin receptors, in developmental angiogenesis. We generated an integrin α5-floxed mouse line and ablated α5 integrin in endothelial cells. Unexpectedly, endothelial-specific knockout of integrin α5 has no obvious effect on developmental angiogenesis. We provide evidence for genetic interaction between mutations in integrin α5 and αv and for overlapping functions and compensation between these integrins and perhaps others. Nonetheless, in embryos lacking both α5 and αv integrins in their endothelial cells, initial vasculogenesis and angiogenesis proceed normally, at least up to E11.5, including the formation of apparently normal embryonic vasculature and development of the branchial arches. However, in the absence of endothelial α5 and αv integrins, but not of either alone, there are extensive defects in remodeling of the great vessels and heart resulting in death at ~E14.5. We also found that fibronectin assembly is somewhat affected in integrin α5 knockout endothelial cells and markedly reduced in integrin α5/αv double-knockout endothelial cell lines. Therefore, neither α5 nor αv integrins are required in endothelial cells for initial vasculogenesis and angiogenesis, although they are required for remodeling of the heart and great vessels. These integrins on other cells, and/or other integrins on endothelial cells, might contribute to fibronectin assembly and vascular development. PMID:20570943

  6. A full 3-D reconstruction of the entire porcine coronary vasculature

    PubMed Central

    Kaimovitz, Benjamin; Lanir, Yoram

    2010-01-01

    We have previously reconstructed the entire coronary arterial tree of the porcine heart down to the first segment of capillaries. Here, we extend the vascular model through the capillary bed and the entire coronary venous system. The reconstruction was based on comprehensive morphometric data previously measured in the porcine heart. The reconstruction was formulated as a large-scale optimization process, subject to both global constraints relating to the location of the larger veins and to local constraints of measured morphological features. The venous network was partitioned into epicardial, transmural, and perfusion functional subnetworks. The epicardial portion was generated by a simulated annealing search for the optimal coverage of the area perfused by the arterial epicardial vessels. The epicardial subnetwork and coronary arterial capillary network served as boundary conditions for the reconstruction of the in-between transmural and perfusion networks, which were generated to optimize vascular homogeneity. Five sets of full coronary trees, which spanned the entire network down to the capillary level, were reconstructed. The total number of reconstructed venous segments was 17,148,946 ± 1,049,498 (n = 5), which spanned the coronary sinus (order −12) to the first segment of the venous capillary (order 0v). Combined with the reconstructed arterial network, the number of vessel segments for the entire coronary network added up to 27,307,376 ± 1,155,359 (n = 5). The reconstructed full coronary vascular network agreed with the gross anatomy of coronary networks in terms of structure, location of major vessels, and measured morphometric statistics of native coronary networks. This is the first full model of the entire coronary vasculature, which can serve as a foundation for realistic large-scale coronary flow analysis. PMID:20622105

  7. Effect of blood pressure on the retinal vasculature in a multi-ethnic Asian population.

    PubMed

    Jeganathan, V Swetha E; Sabanayagam, Charumathi; Tai, E Shyong; Lee, Jeannette; Sun, Cong; Kawasaki, Ryo; Nagarajan, Sangeetha; Huey-Shi, Maisie Ho; Sandar, Mya; Wong, Tien Yin

    2009-11-01

    Blood pressure has a significant effect on retinal arterioles. There are few data on whether this effect varies by race/ethnicity. We examined the relationship of blood pressure and retinal vascular caliber in a multi-ethnic Asian population. The study is population-based and cross sectional in design. A total of 3749 Chinese, Malay and Indian participants aged > or =24 years residing in Singapore were included in the study. Retinal vascular caliber was measured using a computer program from digital retinal photographs. The associations of retinal vascular caliber with blood pressure and hypertension in each racial/ethnic group were analyzed. The main outcome measures are retinal arteriolar caliber and venular caliber. The results show that retinal arterioles were narrower in persons with uncontrolled/untreated hypertension (140.0 microm) as compared with persons with controlled hypertension (142.1 microm, P=0.0001) and those with no hypertension (146.0 microm, P<0.0001). On controlling for age, gender, body mass index, lipids and smoking, each 10 mm Hg increase in mean arterial blood pressure was associated with a 3.1 microm decrease in arteriolar caliber (P<0.0001), with a similar magnitude seen in all three racial/ethnic groups: 3.1 microm in Chinese, 2.8 microm in Malays and 3.2 microm in Indians (P<0.0001 for all). Each 10 mm Hg increase in mean arterial blood pressure was associated with a 1.8 microm increase in venular caliber (P<0.0001); furthermore, the magnitude of this effect was similar across the three racial/ethnic groups. The effect of blood pressure on the retinal vasculature was similar across three major racial/ethnic groups in Asia.

  8. Purinoceptor-mediated contractility of the perfused uterine vasculature of the guinea-pig: influence of oestradiol and pregnancy.

    PubMed

    Haynes, John M; Pennefather, Jocelyn N; Sikorski, Bogdan

    2003-01-01

    1. The effects of ATP, the stable ATP analogues alpha,beta-methylene ATP (alpha,beta-mATP), 2-methylthioATP (2meSATP) and adenosine tetraphosphate (ATP4), the pyrimidine nucleotide uridine 5'-triphosphate (UTP) and the alpha1-adrenoceptor agonist phenylephrine were examined on the isolated perfused uterine vasculature of dioestrous, oestradiol-treated, dexamethasone-treated and late-pregnant guinea-pigs. 2. The alpha1-adrenoceptor agonist phenylephrine elicited concentration-dependent vasoconstriction from preparations of perfused uterine vasculature from dioestrous, estradiol-treated and late-pregnant guinea-pigs. The mean maximal response to phenylephrine was unaffected by treatment of dioestrus guinea-pigs with oestradiol or dexamethasone, but was reduced in preparations from late-pregnant animals. 3. In perfused uterine arteries from dioestrous animals, the pyrimidine UTP, but not ATP4 and ATP, elicited vasoconstrictor responses. In preparations from oestradiol-treated animals, all three agonists elicited vasoconstriction, with a rank order of potency of ATP4 = UTP > ATP, whereas in preparations from late-pregnant animals this order of potency was ATP4 > UTP = ATP. In preparations from dexamethasone-treated animals, the vasoconstriction was similar to that seen in dioestrous animals. Vasoconstrictor responses to ATP4 were significantly greater in preparations of uterine vasculature from oestradiol-treated and pregnant animals than in preparations from dioestrous animals or dexamethasone-treated animals. 4. In preparations from dioestrous, oestradiol-treated, pregnant and dexamethasone-treated animals, alpha,beta-mATP was approximately two to three orders of magnitude more potent than 2meSATP. Compared with preparations from dioestrous animals, the maximal responses to alpha,beta-mATP were significantly greater in tissues from oestradiol-treated and pregnant animals. In preparations from dioestrous animals, the P2 purinoceptor antagonist suramin (100 micro mol

  9. Peripheral arylation of subporphyrazines.

    PubMed

    Higashino, Tomohiro; Rodríguez-Morgade, M Salomé; Osuka, Atsuhiro; Torres, Tomás

    2013-07-29

    Peripherally hexaarylated subporphyrazines (SubPzs) have been prepared through a Pd-catalyzed, CuTC-mediated coupling of a hexaethylsulfanylated subporphyrazine with arylboronic acids. The introduced aryl substituents strongly influence the electronic properties of the subporphyrazine through effective conjugative interaction. Aryl rings endowed with π-electron-donating groups at the para positions produce a remarkable perturbation of the electron density of the SubPz macrocycle. This is reflected through significant redshifts of the SubPz CT and Q-bands, together with increase of the molar absorptivity of the former, with respect to those exhibited by the hexaphenyl-SubPz 2 a. Moreover, the trend in the first SubPz reduction potentials correlates with the Hammett constants (σp ) corresponding to the para substituents of the aryl. The domed, extended SubPz π-system self-assembles in the solid state to form a dimeric capsule that houses a solvent molecule.

  10. Peripheral circulatory failure.

    PubMed

    Lodha, Rakesh; Kapoor, Vishal

    2003-02-01

    Shock is a syndrome arising from any of several initiating causes, resulting in inadequate tissue perfusion. Untreated shock due to any cause can lead to irreversible cellular damage. Early diagnosis and intervention are, therefore, key to improved outcomes. In children, hypotension is not a sensitive marker for diagnosing peripheral circulatory failure. A detailed evaluation to assess perfusion particularly estimating capillary refill time and end organ perfusion is required. Septic shock is a complex condition with varying contribution of hypovolemia, cardiac dysfunction and distributive shock. Aggressive fluid therapy in the early stages is essential to recovery. Understanding the pathophysiology will help in judicious use of vasoactive drugs. Newer modalities of treatment for severe sepsis and septic shock still need evaluation in children.

  11. Impaired Nitric Oxide Mediated Vasodilation In The Peripheral Circulation In The R6/2 Mouse Model Of Huntington’s Disease

    PubMed Central

    Kane, Andrew D.; Niu, Youguo; Herrera, Emilio A.; Morton, A. Jennifer; Giussani, Dino A.

    2016-01-01

    Recent evidence shows that the Huntington’s disease (HD) extends beyond the nervous system to other sites, including the cardiovascular system. Further, the cardiovascular pathology pre-dates neurological decline, however the mechanisms involved remain unclear. We investigated in the R6/2 mouse model of HD nitric oxide (NO) dependent and independent endothelial mechanisms. Femoral artery reactivity was determined by wire myography in wild type (WT) and R6/2 mice at 12 and 16 weeks of adulthood. WT mice showed increased endothelial relaxation between 12 and 16 weeks (Rmax: 72 ± 7% vs. 97 ± 13%, P < 0.05). In contrast, R6/2 mice showed enhanced endothelial relaxation already by 12 weeks (Rmax at 12w: 72 ± 7% vs. 94 ± 5%, WT vs. R6/2, P < 0.05) that declined by 16 weeks compared with WT mice (Rmax at 16w: 97 ± 13% vs. 68 ± 7%, WT vs. R6/2, P < 0.05). In WT mice, the increase in femoral relaxation between 12 and 16 weeks was due to enhanced NO dependent mechanisms. By 16 weeks of adult age, the R6/2 mouse developed overt endothelial dysfunction due to an inability to increase NO dependent vasodilation. The data add to the growing literature of non-neural manifestations of HD and implicate NO depletion as a key mechanism underlying the HD pathophysiology in the peripheral vasculature. PMID:27181166

  12. Peripheral Polyneuropathy and Mefloquine Prophylaxis

    PubMed Central

    Chester, Alexander C.; Sandroni, Paola

    2011-01-01

    We describe a case of a woman who developed a peripheral polyneuropathy shortly after completing 4 weekly doses of mefloquine hydrochloride (250 mg) malaria prophylaxis. Although mefloquine-related central nervous system neuropathy is well described in the literature, peripheral polyneuropathy similar to this case has been documented only once before, to our knowledge. PMID:22144435

  13. Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions

    PubMed Central

    Iwaszkiewicz, Katerina S.; Schneider, Jennifer J.; Hua, Susan

    2013-01-01

    Mechanisms of endogenous pain control are significant. Increasing studies have clearly produced evidence for the clinical usefulness of opioids in peripheral analgesia. The immune system uses mechanisms of cell migration not only to fight pathogens but also to control pain and inflammation within injured tissue. It has been demonstrated that peripheral inflammatory pain can be effectively controlled by an interaction of immune cell-derived opioid peptides with opioid receptors on peripheral sensory nerve terminals. Experimental and clinical studies have clearly shown that activation of peripheral opioid receptors with exogenous opioid agonists and endogenous opioid peptides are able to produce significant analgesic and anti-inflammatory effects, without central opioid mediated side effects (e.g., respiratory depression, sedation, tolerance, dependence). This article will focus on the role of opioids in peripheral inflammatory conditions and the clinical implications of targeting peripheral opioid receptors. PMID:24167491

  14. Acute psychological stress increases peripheral blood CD3+CD56+ natural killer T cells in healthy men: possible implications for the development and treatment of allergic and autoimmune disorders.

    PubMed

    Atanackovic, Djordje; Nowottne, Ulrike; Freier, Eva; Weber, Cora Stefanie; Meyer, Sabrina; Bartels, Katrin; Hildebrandt, York; Cao, Yanran; Kröger, Nicolaus; Brunner-Weinzierl, Monika Christine; Bokemeyer, Carsten; Deter, Hans-Christian

    2013-07-01

    Acute psychological stress has primarily been investigated regarding its effects on conventional lymphocytes such as natural killer (NK) cells and CD4(+) and CD8(+) T cells. However, it might be important to focus on more "specialized" lymphocyte subsets, playing a role, for instance, in allergic conditions and autoimmunity, to identify links between stress, the immune system and somatic diseases. Using flow cytometry we determined frequencies of circulating T helper (Th)1-type (CD226(+)) and Th2-type (CRTH2(+)) T cells, γδ T cells, conventional CD56(+) natural killer T (NKT) cells and invariant NKT cells (iNKT) in healthy young males (N = 31; median age 26 years) undergoing a laboratory computer-based stressor lasting 12 min. We found that acute psychological stress induced a prolonged increase in CD4(+) and CD8(+) T cells expressing a Th2 phenotype. We also detected an acute increase in CD4(-) and CD8(-) double negative γδ T cells. Finally, we found that the well-known increase in NK cells under stressful conditions was paralleled by a significant increase in numbers of conventional CD56(+) NKT cells. In contrast, numbers of iNKT was not altered by stress. This study adds further evidence to a psychoneuroimmunological model proposing that under stressful conditions certain lymphocyte subsets, including iNKT and less mature T cells, are retained in lymphoid tissues while antigen-experienced effector-type T cells with a Th2 phenotype, γδ T cells and conventional CD56(+) NKT cells are mobilized into the peripheral blood. We suggest that in the case of frequent stress exposure, this might result in the promotion of, for example, allergic conditions.

  15. Optimization of Peripheral Vascular Sizing with Conductance Guidewire: Theory and Experiment

    PubMed Central

    Choi, Hyo Won; Berwick, Zachary C.; Sulkin, Matthew S.; Owens, Christopher D.; Kassab, Ghassan S.

    2017-01-01

    Although the clinical range of interventions for coronary arteries is about 2 to 5 mm, the range of diameters of peripheral vasculature is significantly larger (about 10 mm for human iliac artery). When the vessel diameter is increased, the spacing between excitation electrodes on a conductance sizing device must also increase to accommodate the greater range of vessel diameters. The increase in the excitation electrodes distance, however, causes higher parallel conductance or current losses outside of artery lumen. We have previously shown that the conductance catheter/guidewire excitation electrode distances affects the measurement accuracy for the peripheral artery lumen sizing. Here, we propose a simple solution that varies the detection electrode distances to compensate for parallel conductance losses. Computational models were constructed to simulate the conductance guidewire with various electrodes spacing combinations over a range of peripheral artery lumen diameters and surrounding tissue electrical conductivities. The results demonstrate that the measurement accuracy may be significantly improved by increased detection spacing. Specifically, an optimally configured detection/excitation spacing (i.e., 5-5-5 or an equidistant electrode interval with a detection-to-excitation spacing ratio of 0.3) was shown to accurately predict the lumen diameter (i.e., -10% < error < 10%) over a broad range of peripheral artery dimensions (4 mm < diameter < 10 mm). The computational results were substantiated with both ex-vivo and in-vivo measurements of peripheral arteries. The present results support the accuracy of the conductance technique for measurement of peripheral reference vessel diameter. PMID:28045933

  16. Effects of Vascular-Endothelial Protein Tyrosine Phosphatase Inhibition on Breast Cancer Vasculature and Metastatic Progression

    PubMed Central

    2013-01-01

    Background The solid tumor microvasculature is characterized by structural and functional abnormality and mediates several deleterious aspects of tumor behavior. Here we determine the role of vascular endothelial protein tyrosine phosphatase (VE-PTP), which deactivates endothelial cell (EC) Tie-2 receptor tyrosine kinase, thereby impairing maturation of tumor vessels. Methods AKB-9778 is a first-in-class VE-PTP inhibitor. We examined its effects on ECs in vitro and on embryonic angiogenesis in vivo using zebrafish assays. We studied the impact of AKB-9778 therapy on the tumor vasculature, tumor growth, and metastatic progression using orthotopic models of murine mammary carcinoma as well as spontaneous and experimental metastasis models. Finally, we used endothelial nitric oxide synthase (eNOS)–deficient mice to establish the role of eNOS in mediating the effects of VE-PTP inhibition. All statistical tests were two-sided. Results AKB-9778 induced ligand-independent Tie-2 activation in ECs and impaired embryonic zebrafish angiogenesis. AKB-9778 delayed the early phase of mammary tumor growth by maintaining vascular maturity (P < .01, t test); slowed growth of micrometastases (P < .01, χ2 test) by preventing extravasation of tumor cells (P < 0.01, Fisher exact test), resulting in a trend toward prolonged survival (27.0 vs 36.5 days; hazard ratio of death = 0.33, 95% confidence interval = 0.11 to 1.03; P = .05, Mantel–Cox test); and stabilized established primary tumor blood vessels, enhancing tumor perfusion (P = .03 for 4T1 tumor model and 0.05 for E0771 tumor model, by two-sided t tests) and, hence, radiation response (P < .01, analysis of variance; n = 7 mice per group). The effects of AKB-9778 on tumor vessels were mediated in part by endothelial nitric oxide synthase activation. Conclusions Our results demonstrate that pharmacological VE-PTP inhibition can normalize the structure and function of tumor vessels through Tie-2 activation, which delays tumor

  17. Mechanisms of peripheral fatigue.

    PubMed

    Kirkendall, D T

    1990-08-01

    Fatigue can be defined as the failure to maintain an expected power output. This is often an antecedent to some sports-related injury. It is important for those involved in physical performance to be familiar with the variety of mechanisms which can lead to fatigue. All too often, a single factor is described as the cause of fatigue when actually fatigue may be a combination of factors that contribute to the sequence of events that results in decreased performance. It may be suggested that every step in the chain of events that leads to voluntary contraction of skeletal muscle could be a culprit in fatigue. Peripheral sites and processes include the motor neuron, neuromuscular junction, sarcolemmal membrane, excitation-contraction coupling, accumulation of metabolites, or depletion of fuels. Physical training is frequently designed to delay the onset of fatigue. The actual mechanism(s) add to the specificity concept, that is, a "specificity of fatigue". To the performer, the end result is the same, the inability to maintain his or her expected level of performance or power output.

  18. Mice lacking the extracellular matrix protein WARP develop normally but have compromised peripheral nerve structure and function.

    PubMed

    Allen, Justin M; Zamurs, Laura; Brachvogel, Bent; Schlötzer-Schrehardt, Ursula; Hansen, Uwe; Lamandé, Shireen R; Rowley, Lynn; Fitzgerald, Jamie; Bateman, John F

    2009-05-01

    WARP is a recently identified extracellular matrix molecule with restricted expression in permanent cartilages and a distinct subset of basement membranes in peripheral nerves, muscle, and the central nervous system vasculature. WARP interacts with perlecan, and we also demonstrate here that WARP binds type VI collagen, suggesting a function in bridging connective tissue structures. To understand the in vivo function of WARP, we generated a WARP-deficient mouse strain. WARP-null mice were healthy, viable, and fertile with no overt abnormalities. Motor function and behavioral testing demonstrated that WARP-null mice exhibited a significantly delayed response to acute painful stimulus and impaired fine motor coordination, although general motor function was not affected, suggesting compromised peripheral nerve function. Immunostaining of WARP-interacting ligands demonstrated that the collagen VI microfibrillar matrix was severely reduced and mislocalized in peripheral nerves of WARP-null mice. Further ultrastructural analysis revealed reduced fibrillar collagen deposition within the peripheral nerve extracellular matrix and abnormal partial fusing of adjacent Schwann cell basement membranes, suggesting an important function for WARP in stabilizing the association of the collagenous interstitial matrix with the Schwann cell basement membrane. In contrast, other WARP-deficient tissues such as articular cartilage, intervertebral discs, and skeletal muscle showed no detectable abnormalities, and basement membranes formed normally. Our data demonstrate that although WARP is not essential for basement membrane formation or musculoskeletal development, it has critical roles in the structure and function of peripheral nerves.

  19. [Chemokines and attraction of myeloid cells in peripheral neuropathic pains].

    PubMed

    Sapienza, Anaïs; Réaux-Le Goazigo, Annabelle; Rostène, William; Mélik-Parsadaniantz, Stéphane

    2014-01-01

    Chronic neuropathic pain has become a real social issue, due to the difficulty of its treatment and by the major impairment to quality of life that it causes in every day behavior. Understanding neurobiological basis and pathophysiological causes of diverse painful syndromes constantly evolves and reports the complexity of its mechanisms. Unfortunately this complexity makes it difficult to discover effective treatments against chronic pain syndromes, in particular as regards peripheral neuropathic pains. Recent studies reveal that, during chronic peripheral neuropathy, inflammatory mediators (in particular chemokines), besides their implications in the modulation of nociceptive messages and central neuroinflammatory mechanisms, play a critical role in the orchestration of the immune response induced by a peripheral nerve lesion. In this review, after a brief introduction about chemokines and their role in neuromodulation of the nociceptive message, we will attempt to define their functions and implications in the immune response associated to peripheral neuropathies. Thus, perfectly understanding the molecular and cellular communications between the nervous system and the immune system will be useful for the future development of novel and innovative therapeutic strategies against these highly disabling pathologies.

  20. Peripheral nerve surgery.

    PubMed

    McQuarrie, I G

    1985-05-01

    In treating the three main surgical problems of peripheral nerves--nerve sheath tumors, entrapment neuropathies, and acute nerve injuries--the overriding consideration is the preservation and restoration of neurologic function. Because of this, certain other principles may need to be compromised. These include achieving a gross total excision of benign tumors, employing conservative therapy as long as a disease process is not clearly progressing, and delaying repair of a nerve transection until the skin wound has healed. Only three pathophysiologic processes need be considered: neurapraxia (focal segmental dymyelination), axonotmesis (wallerian degeneration caused by a lesion that does not disrupt fascicles of nerve fibers), and neurotmesis (wallerian degeneration caused by a lesion that interrupts fascicles). With nerve sheath tumors and entrapment neuropathies, the goal is minimize the extent to which neurapraxia progresses to axonotmesis. The compressive force is relieved without carrying out internal neurolysis, a procedure that is poorly tolerated, presumably because a degree of nerve ischemia exists with any long-standing compression. When the nerve has sustained blunt trauma (through acute compression, percussion, or traction), the result can be a total loss of function and an extensive neuroma-in-continuity (scarring within the nerve). However, the neural pathophysiology may amount to nothing more than axonotmesis. Although this lesion, in time, leads to full and spontaneous recovery, it must be differentiated from the neuroma-in-continuity that contains disrupted fascicles requiring surgery. Finally, with open nerve transection, the priority is to match the fascicles of the proximal stump with those of the distal stump, a goal that is best achieved if primary neurorrhaphy is carried out.

  1. Expression patterns of mRNAs for the gap junction proteins connexin43 and connexin42 suggest their involvement in chick limb morphogenesis and specification of the arterial vasculature.

    PubMed

    Dealy, C N; Beyer, E C; Kosher, R A

    1994-02-01

    Gap junctions which comprise a family of proteins called connexins have been implicated in the morphogenesis of the chick limb bud. We have examined the expression patterns of two members of the connexin family, connexin43 (Cx43) and connexin42 (Cx42), during the early development of the chick limb bud and embryo by in situ hybridization. Cx43 mRNA is expressed in high amounts in the apical ectodermal ridge (AER), which promotes the outgrowth of the mesodermal cells of the limb bud, and in the ectopic AER of the limb buds of polydactylous diplopodia-5 mutant embryos. In contrast, little Cx43 expression is detectable in nonridge limb ectoderm at early stages of limb development. These results suggest that Cx43 gap junctions may integrate the activity of the cells comprising the AER and compartmentalize them into a functionally distinct entity capable of directing limb outgrowth. In addition, Cx43 exhibits high expression in the posterior subridge mesoderm of the early limb bud that is growing out in response to the AER, but little expression in the anterior mesoderm. This graded distribution of Cx43 transcripts correlates with a functional gradient of gap junctional communication along the anteroposterior (AP) axis, and suggests that Cx43 gap junctions may be involved in pattern formation across the AP axis. At later stages of development, Cx43 is transiently expressed in high amounts in the precartilage condensations of the carpals and metacarpals, at a time when critical cell-cell interactions are occurring that trigger cartilage differentiation. In contrast, in the developing limb, Cx42 is expressed exclusively by the central artery. In the remainder of the chick embryo, Cx42 is expressed in high amounts by the vessels comprising the arterial vasculature, but is not expressed by the venous vasculature. Thus, Cx42 gap junctions may be involved in specification of the arterial vasculature of the limb and embryo. Cx42, but not Cx43, is expressed in the ventricle of

  2. COSMOS - a study comparing peripheral intravenous systems.

    PubMed

    López, Juan Luis González; Del Palacio, Encarnación Ferenández; Marti, Carmen Benedicto; Corral, Javier Olivares; Portal, Pilar Herrera; Vilela, Ana Arribi

    In many areas of the world, safety peripheral intravenous systems have come into widespread use. The Madrid region was the first in Spain to adopt such an approach. These systems, though initially introduced to protect users from sharps injuries, have now evolved to include patient protection features as well. Patient protection, simply stated, means closing the system to pathogen entry. The authors' purpose was to investigate, in a prospective and randomized study, the clinical performance of a closed safe intravenous system versus an open system (COSMOS - Compact Closed System versus Mounted Open System). COSMOS is designed to provide definitive answers, from a nursing perspective, to many topics related to peripheral venous catheterization, which have important implications in intravenous therapy and which have not been validated scientifically. Furthermore, it forms pioneering research in that it is the first clinical trial on medical devices in a legislated environment carried out entirely by nurses and whose promoter and principal investigator is a nurse. The objectives of COSMOS are to compare the effectiveness (as defined by time of survival without complications) and rates of catheter-related complications, such as phlebitis, pain, extravasation, blockage and catheter-related infections. It also looks at rates of catheter colonization, the ease of handling of both systems and overall costs. This article outlines the authors' approach, both in preparing hospital units for such an evaluation as well as in the choice of parameters and their method of study. Further articles will detail the results and findings of the study.

  3. Peripheral neuropathy in mitochondrial disorders.

    PubMed

    Pareyson, Davide; Piscosquito, Giuseppe; Moroni, Isabella; Salsano, Ettore; Zeviani, Massimo

    2013-10-01

    Why is peripheral neuropathy common but mild in many mitochondrial disorders, and why is it, in some cases, the predominant or only manifestation? Although this question remains largely unanswered, recent advances in cellular and molecular biology have begun to clarify the importance of mitochondrial functioning and distribution in the peripheral nerve. Mutations in proteins involved in mitochondrial dynamics (ie, fusion and fission) frequently result in a Charcot-Marie-Tooth phenotype. Peripheral neuropathies with different phenotypic presentations occur in mitochondrial diseases associated with abnormalities in mitochondrial DNA replication and maintenance, or associated with defects in mitochondrial respiratory chain complex V. Our knowledge of mitochondrial disorders is rapidly growing as new nuclear genes are identified and new phenotypes described. Early diagnosis of mitochondrial disorders, essential to provide appropriate genetic counselling, has become crucial in a few treatable conditions. Recognising and diagnosing an underlying mitochondrial defect in patients presenting with peripheral neuropathy is therefore of paramount importance.

  4. Peripheral Neuropathy and Agent Orange

    MedlinePlus

    ... Z) Hepatitis HIV Mental Health Mental Health Home Suicide Prevention Substance Abuse Military Sexual Trauma PTSD Research ( ... eligible for a free Agent Orange registry health exam . Research on peripheral neuropathy and herbicides The Health ...

  5. Mitochondrial dynamics and peripheral neuropathy.

    PubMed

    Baloh, Robert H

    2008-02-01

    Peripheral neuropathy is perhaps the archetypal disease of axonal degeneration, characteristically involving degeneration of the longest axons in the body. Evidence from both inherited and acquired forms of peripheral neuropathy strongly supports that the primary pathology is in the axons themselves and points to disruption of axonal transport as an important disease mechanism. Recent studies in human genetics have further identified abnormalities in mitochondrial dynamics--the fusion, fission, and movement of mitochondria--as a player in the pathogenesis of inherited peripheral neuropathy. This review provides an update on the mechanisms of mitochondrial trafficking in axons and the emerging relationship between the disruption of mitochondrial dynamics and axonal degeneration. Evidence suggests mitochondria are a "critical cargo" whose transport is necessary for proper axonal and synaptic function. Importantly, understanding the regulation of mitochondrial movement and the consequences of decreased axonal mitochondrial function may define new paths for therapeutic agents in peripheral neuropathy and other neurodegenerative diseases.

  6. Peripheral arterial disease and revascularization of the diabetic foot.

    PubMed

    Forsythe, R O; Brownrigg, J; Hinchliffe, R J

    2015-05-01

    Diabetes is a complex disease with many serious potential sequelae, including large vessel arterial disease and microvascular dysfunction. Peripheral arterial disease is a common large vessel complication of diabetes, implicated in the development of tissue loss in up to half of patients with diabetic foot ulceration. In addition to peripheral arterial disease, functional changes in the microcirculation also contribute to the development of a diabetic foot ulcer, along with other factors such as infection, oedema and abnormal biomechanical loading. Peripheral arterial disease typically affects the distal vessels, resulting in multi-level occlusions and diffuse disease, which often necessitates challenging distal revascularisation surgery or angioplasty in order to improve blood flow. However, technically successful revascularisation does not always result in wound healing. The confounding effects of microvascular dysfunction must be recognised--treatment of a patient with a diabetic foot ulcer and peripheral arterial disease should address this complex interplay of pathophysiological changes. In the case of non-revascularisable peripheral arterial disease or poor response to conventional treatment, alternative approaches such as cell-based treatment, hyperbaric oxygen therapy and the use of vasodilators may appear attractive, however more robust evidence is required to justify these novel approaches.

  7. Development and characterization of targeted poly(NIPAm) nanoparticles for delivery of anti-inflammatory peptides in peripheral artery disease and osteoarthritis

    NASA Astrophysics Data System (ADS)

    McMasters, James F.

    Inflammation is the underlying cause of several severe diseases including cardiovascular disease and osteoarthritis. Peripheral artery disease (PAD) is characterized by atherosclerotic occlusions within the peripheral vasculature. Current treatment for severe PAD involves mechanical widening of the artery via percutaneous transluminal angioplasty. Unfortunately, deployment of the balloon damages the endothelial layer, exposing the underlying collagenous matrix. Circulating platelets can bind to this collagen and become activated, releasing proinflammatory cytokines that promote proliferation of local smooth muscle cells. These proliferating cells eventually reocclude the vessel, resulting in restenosis and necessitating the need for a second procedure to reopen the vessel. Current treatments for moderate osteoarthritis include local injection of anti-inflammatory compounds such as glucocorticoids. Unfortunately, prolonged treatment carries with it significant side effects including osteoporosis, and cardiovascular complications. Our lab has developed an anti-inflammatory cell-penetrating peptide that inhibits mitogen-activated protein kinase activated protein kinase 2 (MK2). MK2 is implicated in the inflammatory cascade of atherosclerosis and osteoarthritis, making it a potentially effective strategy for reducing inflammation in both disease states. Unfortunately, these peptides are untargeted and quickly degraded in the presence of serum proteases, making the development of an effective delivery system of paramount importance. The overall goal of the research presented here is to detail the development of a poly(N-isopropylacrylamide) nanoparticle that is able to effectively load and release anti-inflammatory peptides for the treatment of these inflammatory diseases. In this dissertation, I will discuss the development of a collagen-binding nanoparticle that is able to inhibit platelet binding following angioplasty, thereby halting the initial inflammatory cascade

  8. Patients with resistant hypertension have more peripheral arterial disease than other uncontrolled hypertensives.

    PubMed

    Korhonen, P E; Kautiainen, H; Kantola, I

    2015-01-01

    The aim of this study was to investigate whether resistant hypertension differs from uncontrolled and controlled hypertension in terms of target organ damage. Hypertensive subjects with antihypertensive medication (n=385) were identified in a population survey conducted in southwestern Finland. None of the study subjects had previously diagnosed cardiovascular or renal disease or diabetes. Ankle-brachial index, estimated glomerular filtration rate, electrocardiogram-determined left ventricular hypertrophy and cardiometabolic risk factors were assessed. The prevalence of peripheral arterial disease among subjects with resistant, uncontrolled and controlled hypertension was 6/37 (16%), 22/275 (8%) and 0/73 (0%), respectively (P=0.006). There were no differences in the prevalence of renal insufficiency, left ventricular hypertrophy or metabolic parameters between the groups. Resistant hypertension affects vasculature more than uncontrolled hypertension, and thus it can be regarded as a marker of more severe disease.

  9. Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves.

    PubMed

    Cattin, Anne-Laure; Burden, Jemima J; Van Emmenis, Lucie; Mackenzie, Francesca E; Hoving, Julian J A; Garcia Calavia, Noelia; Guo, Yanping; McLaughlin, Maeve; Rosenberg, Laura H; Quereda, Victor; Jamecna, Denisa; Napoli, Ilaria; Parrinello, Simona; Enver, Tariq; Ruhrberg, Christiana; Lloyd, Alison C

    2015-08-27

    The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue.

  10. Detecting lower extremity vascular dynamics in patients with peripheral artery disease using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khalil, Michael A.; Kim, Hyun-Keol K.; Kim, In-Kyong; Dayal, Rajeev; Hielscher, Andreas H.

    2011-02-01

    Peripheral Artery Disease (PAD) affects over 10 million Americans and is associated with significant morbidity and mortality. While in many cases the ankle-brachial index (ABI) can be used for diagnosing the disease, this parameter is not dependable in the diabetic and elderly population. These populations tend to have calcified arteries, which leads to elevated ABI values. Dynamic optical tomography (DDOT) promises to overcome the limitations of the current diagnostic techniques and has the potential to initiate a paradigm shift in the diagnosis of vascular disease. We have performed initial pilot studies involving 5 PAD patients and 3 healthy volunteers. The time traces and tomographic reconstruction obtained from measurements on the feet show significant differences between healthy and affected vasculatures. In addition, we found that DOT is capable of identifying PAD in diabetic patients, who are misdiagnosed by the traditional ABI screening.

  11. Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography

    PubMed Central

    Motaghiannezam, Reza; Fraser, Scott

    2012-01-01

    We formulate a theory to show that the statistics of OCT signal amplitude and intensity are highly dependent on the sample reflectivity strength, motion, and noise power. Our theoretical and experimental results depict the lack of speckle amplitude and intensity contrasts to differentiate regions of motion from static areas. Two logarithmic intensity-based contrasts, logarithmic intensity variance (LOGIV) and differential logarithmic intensity variance (DLOGIV), are proposed for serving as surrogate markers for motion with enhanced sensitivity. Our findings demonstrate a good agreement between the theoretical and experimental results for logarithmic intensity-based contrasts. Logarithmic intensity-based motion and speckle-based contrast methods are validated and compared for in vivo human retinal vasculature visualization using high-speed swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was identified as regions of motion by creating LOGIV and DLOGIV tomograms: multiple B-scans were collected of individual slices through the retina and the variance of logarithmic intensities and differences of logarithmic intensities were calculated. Both methods captured the small vessels and the meshwork of capillaries associated with the inner retina in en face images over 4 mm2 in a normal subject. PMID:22435098

  12. The ultrasound brain helmet: early human feasibility study of multiple simultaneous 3D scans of cerebral vasculature

    NASA Astrophysics Data System (ADS)

    Lindsey, Brooks D.; Ivancevich, Nikolas M.; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A.; Laskowitz, Daniel T.; Smith, Stephen W.

    2009-02-01

    We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time 3D scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64° pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128° sector, two simultaneous parasagittal images merged into a 128° × 64° C-mode plane, and a simultaneous 64° axial image. Real-time 3D color Doppler images acquired in initial clinical studies after contrast injection demonstrate flow in several representative blood vessels. An offline Doppler rendering of data from two transducers simultaneously scanning via the temporal windows provides an early visualization of the flow in vessels on both sides of the brain. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission, thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.

  13. Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium

    PubMed Central

    Kerr, Bethany A.; West, Xiaoxia Z.; Kim, Young-Woong; Zhao, Yongzhong; Tischenko, Miroslava; Cull, Rebecca M.; Phares, Timothy W.; Peng, Xiao-Ding; Bernier-Latmani, Jeremiah; Petrova, Tatiana V.; Adams, Ralf H.; Hay, Nissim; Naga Prasad, Sathyamangla V.; Byzova, Tatiana V.

    2016-01-01

    The signalling pathways operational in quiescent, post-development vasculature remain enigmatic. Here we show that unlike neovascularization, endothelial Akt signalling in established vasculature is crucial not for endothelial cell (EC) survival, but for sustained interactions with pericytes and vascular smooth muscle cells (VSMCs) regulating vascular stability and function. Inducible endothelial-specific Akt1 deletion in adult global Akt2KO mice triggers progressive VSMC apoptosis. In hearts, this causes a loss of arteries and arterioles and, despite a high capillary density, diminished vascular patency and severe cardiac dysfunction. Similarly, endothelial Akt deletion induces retinal VSMC loss and basement membrane deterioration resulting in vascular regression and retinal atrophy. Mechanistically, the Akt/mTOR axis controls endothelial Jagged1 expression and, thereby, Notch signalling regulating VSMC maintenance. Jagged1 peptide treatment of Akt1ΔEC;Akt2KO mice and Jagged1 re-expression in Akt-deficient endothelium restores VSMC coverage. Thus, sustained endothelial Akt1/2 signalling is critical in maintaining vascular stability and homeostasis, thereby preserving tissue and organ function. PMID:26971877

  14. Epac1 Blocks NLRP3 Inflammasome to Reduce IL-1β in Retinal Endothelial Cells and Mouse Retinal Vasculature

    PubMed Central

    Jiang, Youde; Liu, Li; Curtiss, Elizabeth

    2017-01-01

    Inflammation is an important component of diabetic retinal damage. We previously reported that a novel β-adrenergic receptor agonist, Compound 49b, reduced Toll-like receptor 4 (TLR4) signaling in retinal endothelial cells (REC) grown in high glucose. Others reported that TLR4 activates high-mobility group box 1 (HMGB1), which has been associated with the NOD-like receptor 3 (NLRP3) inflammasome. Thus, we hypothesized that Epac1, a downstream mediator of β-adrenergic receptors, would block TLR4/HMGB1-mediated stimulation of the NLRP3 inflammasome, leading to reduced cleavage of caspase-1 and interleukin-1 beta (IL-1β). We generated vascular specific conditional knockout mice for Epac1 and used REC grown in normal and high glucose treated with an Epac1 agonist and/or NLRP3 siRNA. Protein analyses were done for Epac1, TLR4, HMGB1, NLRP3, cleaved caspase-1, and IL-1β. Loss of Epac1 in the mouse retinal vasculature significantly increased all of the inflammatory proteins. Epac1 effectively reduced high glucose-induced increases in TLR4, HMGB1, cleaved caspase-1, and IL-1β in REC. Taken together, the data suggest that Epac1 reduces formation of the NLRP3 inflammasome to reduce inflammatory responses in the retinal vasculature. PMID:28348460

  15. Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney.

    PubMed

    Xu, Jinshu; Nie, Xuguang; Cai, Xiaoqiang; Cai, Chen-Leng; Xu, Pin-Xian

    2014-07-01

    Tbx18 has been shown to be essential for ureteral development. However, it remains unclear whether it plays a direct role in kidney development. Here we addressed this by focusing on examining the pattern and contribution of Tbx18+ cells in the kidney and its role in kidney vascular development. Expression studies and genetic lineage tracing revealed that Tbx18 is expressed in renal capsule, vascular smooth muscle cells and pericytes and glomerular mesangial cells in the kidney and that Tbx18-expressing progenitors contribute to these cell types. Examination of Tbx18(-/-) kidneys revealed large reduction in vasculature density and dilation of glomerular capillary loops. While SMA+ cells were reduced in the mutant, PDGFRβ+ cells were seen in early capillary loop renal corpuscles in the mutant, but fewer than in the controls, and further development of the mesangium failed. Analysis of kidney explants cultured from E12.5 excluded the possibility that the defects observed in the mutant were caused by ureter obstruction. Reduced proliferation in glomerular tuft and increased apoptosis in perivascular mesenchyme were observed in Tbx18(-/-) kidneys. Thus, our analyses have identified a novel role of Tbx18 in kidney vasculature development.

  16. Short-Term Peripheral Auditory Effects of Cranial Irradiation: A Mouse Model

    PubMed Central

    Gasser Rutledge, Krysta L.; Prasad, Kumar G.; Emery, Kara R.; Mikulec, Anthony A.; Varvares, Mark; Gratton, Michael Anne

    2015-01-01

    Objectives Assess post-cranial irradiation short-term threshold shift short-term peripheral auditory histopathology the mouse as an experimental model Methods Adult mice were exposed to single-dose radiation of 10 – 60 Gy. Pre- and post-irradiation (baseline, 2 – 8 days) audiometric brainstem response data were recorded with analysis of cochlear ultrastructure. Results Significant threshold shift occurred at all test frequencies in mice exposed to ≥ 20 Gy at 4 – 6 days post-irradiation. Ultrastructurally in Rosenthal’s canal and the spiral lamina, neuronal density and extracellular matrix decreased dramatically. There was overall preservation of hair cells, stria vascularis, and vasculature. No difference within Gy group was noted in the frequency or severity of pathology along the length of the cochlea. Conclusions The initial impact of radiation in the first week post-exposure focuses on spiral ganglion cell bodies and peripheral projections, resulting in significant threshold shift for irradiation dosages ≥ 20 Gy. This study demonstrates that the mouse is a viable model for study of short-term peripheral auditory effects using single-dose cranial irradiation. Additionally, with access to a precise animal irradiator, the mouse may be used as an experimental model for a fractionated irradiation dosage of 10 Gy, simulating stereotactic therapeutic cranial irradiation. PMID:26085370

  17. The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development.

    PubMed

    Chatelet, David S; Rost, Thomas L; Matthews, Mark A; Shackel, Kenneth A

    2008-01-01

    It has been hypothesized that the substantial reductions in xylemic water flow occurring at veraison are due to physical disruption (breaking) of the xylem as a result of renewed berry growth. In a companion paper, evidence was presented that the vast majority of xylem tracheary elements remained intact despite the growth of the berry, and it was proposed that existing tracheary elements stretch to accommodate growth and that additional elements may also differentiate after veraison. Measurements of the intergyre distance of tracheary elements in macerated tissue were used to test for stretching, and the numbers of tracheary elements per vascular bundle and of branch points of the peripheral xylem network were analysed to test for continued differentiation from 18 to 120 d after anthesis in Chardonnay berries. The distance between the epidermis and the vasculature increased substantially from pre- to post-veraison, potentially increasing the amount of skin available for analysis of compounds important for winemaking. Tracheary elements continued to differentiate within the existing vascular bundles throughout berry development. Additional vascular bundles also appeared until after veraison, thereby increasing the complexity of the peripheral vascular network. The results also confirmed that tracheary elements stretched by approximately 20%, but this was not as much as that predicted based on the growth of the vascular diameter (40%). These results complete a comprehensive evaluation of grape berry peripheral xylem during its development and show that tracheary development continues further into berry maturation than previously thought.

  18. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy.

    PubMed

    Zheng, Huaien; Xiao, Wen Hua; Bennett, Gary J

    2011-12-01

    Cancer chemotherapeutics like paclitaxel and oxaliplatin produce a dose-limiting chronic sensory peripheral neuropathy that is often accompanied by neuropathic pain. The cause of the neuropathy and pain is unknown. In animal models, paclitaxel-evoked and oxaliplatin-evoked painful peripheral neuropathies are accompanied by an increase in the incidence of swollen and vacuolated mitochondria in peripheral nerve axons. It has been proposed that mitochondrial swelling and vacuolation are indicative of a functional impairment and that this results in a chronic axonal energy deficiency that is the cause of the neuropathy's symptoms. However, the significance of mitochondrial swelling and vacuolation is ambiguous and a test of the hypothesis requires a direct assessment of the effects of chemotherapy on mitochondrial function. The results of such an assessment are reported here. Mitochondrial respiration and ATP production were measured in rat sciatic nerve samples taken 1-2 days after and 3-4 weeks after induction of painful peripheral neuropathy with paclitaxel and oxaliplatin. Significant deficits in Complex I-mediated and Complex II-mediated respiration and significant deficits in ATP production were found for both drugs at both time points. In addition, prophylactic treatment with acetyl-l-carnitine, which inhibited the development of paclitaxel-evoked and oxaliplatin-evoked neuropathy, prevented the deficits in mitochondrial function. These results implicate mitotoxicity as a possible cause of chemotherapy-evoked chronic sensory peripheral neuropathy.

  19. Wall shear stress and near-wall convective transport: Comparisons with vascular remodelling in a peripheral graft anastomosis

    NASA Astrophysics Data System (ADS)

    Gambaruto, A. M.; Doorly, D. J.; Yamaguchi, T.

    2010-08-01

    Fluid dynamic properties of blood flow are implicated in cardiovascular diseases. The interaction between the blood flow and the wall occurs through the direct transmission of forces, and through the dominating influence of the flow on convective transport processes. Controlled, in vitro testing in simple geometric configurations has provided much data on the cellular-level responses of the vascular walls to flow, but a complete, mechanistic explanation of the pathogenic process is lacking. In the interim, mapping the association between local haemodynamics and the vascular response is important to improve understanding of the disease process and may be of use for prognosis. Moreover, establishing the haemodynamic environment in the regions of disease provides data on flow conditions to guide investigations of cellular-level responses. This work describes techniques to facilitate comparison between the temporal alteration in the geometry of the vascular conduit, as determined by in vivo imaging, with local flow parameters. Procedures to reconstruct virtual models from images by means of a partition-of-unity implicit function formulation, and to align virtual models of follow-up scans to a common coordinate system, are outlined. A simple Taylor series expansion of the Lagrangian dynamics of the near-wall flow is shown to provide both a physical meaning to the directional components of the flow, as well as demonstrating the relation between near-wall convection in the wall normal direction and spatial gradients of the wall shear stress. A series of post-operative follow-up MRI scans of two patient cases with bypass grafts in the peripheral vasculature are presented. These are used to assess how local haemodynamic parameters relate to vascular remodelling at the location of the distal end-to-side anastomosis, i.e. where the graft rejoins the host artery. Results indicate that regions of both low wall shear stress and convective transport towards the wall tend to be

  20. Mitochondrial dynamics and inherited peripheral nerve diseases.

    PubMed

    Pareyson, Davide; Saveri, Paola; Sagnelli, Anna; Piscosquito, Giuseppe

    2015-06-02

    Peripheral nerves have peculiar energetic requirements because of considerable length of axons and therefore correct mitochondria functioning and distribution along nerves is fundamental. Mitochondrial dynamics refers to the continuous change in size, shape, and position of mitochondria within cells. Abnormalities of mitochondrial dynamics produced by mutations in proteins involved in mitochondrial fusion (mitofusin-2, MFN2), fission (ganglioside-induced differentiation-associated protein-1, GDAP1), and mitochondrial axonal transport usually present with a Charcot-Marie-Tooth disease (CMT) phenotype. MFN2 mutations cause CMT type 2A by altering mitochondrial fusion and trafficking along the axonal microtubule system. CMT2A is an axonal autosomal dominant CMT type which in most cases is characterized by early onset and rather severe course. GDAP1 mutations also alter fission, fusion and transport of mitochondria and are associated either with recessive demyelinating (CMT4A) and axonal CMT (AR-CMT2K) and, less commonly, with dominant, milder, axonal CMT (CMT2K). OPA1 (Optic Atrophy-1) is involved in fusion of mitochondrial inner membrane, and its heterozygous mutations lead to early-onset and progressive dominant optic atrophy which may be complicated by other neurological symptoms including peripheral neuropathy. Mutations in several proteins fundamental for the axonal transport or forming the axonal cytoskeleton result in peripheral neuropathy, i.e., CMT, distal hereditary motor neuropathy (dHMN) or hereditary sensory and autonomic neuropathy (HSAN), as well as in hereditary spastic paraplegia. Indeed, mitochondrial transport involves directly or indirectly components of the kinesin superfamily (KIF5A, KIF1A, KIF1B), responsible of anterograde transport, and of the dynein complex and related proteins (DYNC1H1, dynactin, dynamin-2), implicated in retrograde flow. Microtubules, neurofilaments, and chaperones such as heat shock proteins (HSPs) also have a fundamental

  1. Peripheral facial nerve palsy after therapeutic endoscopy.

    PubMed

    Kim, Eun Jeong; Lee, Jun; Lee, Ji Woon; Lee, Jun Hyung; Park, Chol Jin; Kim, Young Dae; Lee, Hyun Jin

    2015-03-01

    Peripheral facial nerve palsy (FNP) is a mononeuropathy that affects the peripheral part of the facial nerve. Primary causes of peripheral FNP remain largely unknown, but detectable causes include systemic infections (viral and others), trauma, ischemia, tumor, and extrinsic compression. Peripheral FNP in relation to extrinsic compression has rarely been described in case reports. Here, we report a case of a 71-year-old man who was diagnosed with peripheral FNP following endoscopic submucosal dissection. This case is the first report of the development of peripheral FNP in a patient undergoing therapeutic endoscopy. We emphasize the fact that physicians should be attentive to the development of peripheral FNP following therapeutic endoscopy.

  2. Fetal blood flow in branching models of the chorionic arterial vasculature.

    PubMed

    Gordon, Zoya; Eytan, Osnat; Jaffa, Ariel J; Elad, David

    2007-04-01

    Fetal development depends on adequate exchange of materials between the fetus and maternal circulatory systems, which requires optimal distribution of blood vessels over the chorionic plate to ensure perfusion of the whole placental volume. Based on a previous investigation of the architecture of the chorionic vessels in the human placenta, we developed in this study typical models for the dichotomous and monopodial segments of the chorionic arteries of a mature placenta. Each model also included some intraplacental (IP) vessels that branch off into the cotyledons perpendicular to the chorionic arteries. Computational analysis of steady blood flow through these models was performed to explore the distribution of fetal blood over the chorionic plate. The results demonstrated that energy losses are small in the monopodial model, which explains their efficient delivery of fetal blood over the chorionic plate in cases of a marginal cord insertion. On the other hand, the dichotomous model is efficient in distributing a relatively large volume of blood over large areas near the bifurcation. Accordingly, the combination of dichotomous and monopodial bifurcation in a normal chorionic plate ensures a uniform blood perfusion of the placenta. Simulations with narrow daughter and IP vessels did not result in significant changes in the main mother tubes, supporting clinical observations in which umbilical blood flow remains normal although some peripheral vessels may be occluded.

  3. Production and physiological actions of anandamide in the vasculature of the rat kidney.

    PubMed Central

    Deutsch, D G; Goligorsky, M S; Schmid, P C; Krebsbach, R J; Schmid, H H; Das, S K; Dey, S K; Arreaza, G; Thorup, C; Stefano, G; Moore, L C

    1997-01-01

    The endogenous cannabinoid receptor agonist anandamide is present in central and peripheral tissues. As the kidney contains both the amidase that degrades anandamide and transcripts for anandamide receptors, we characterized the molecular components of the anandamide signaling system and the vascular effects of exogenous anandamide in the kidney. We show that anandamide is present in kidney homogenates, cultured renal endothelial cells (EC), and mesangial cells; these cells also contain anandamide amidase. Reverse-transcriptase PCR shows that EC contain transcripts for cannabinoid type 1 (CB1) receptors, while mesangial cells have mRNA for both CB1 and CB2 receptors. EC exhibit specific, high-affinity binding of anandamide (Kd = 27.4 nM). Anandamide (1 microM) vasodilates juxtamedullary afferent arterioles perfused in vitro; the vasodilation can be blocked by nitric oxide (NO) synthase inhibition with L-NAME (0.1 mM) or CB1 receptor antagonism with SR 141716A (1 microM), but not by indomethacin (10 microM). Anandamide (10 nM) stimulates CB1-receptor-mediated NO release from perfused renal arterial segments; a similar effect was seen in EC. Finally, anandamide (1 microM) produces a NO-mediated inhibition of KCl-stimulated [3H]norepinephrine release from sympathetic nerves on isolated renal arterial segments. Hence, an anandamide signaling system is present in the kidney, where it exerts significant vasorelaxant and neuromodulatory effects. PMID:9294122

  4. Imaging Beta Cell Regeneration and Interactions with Islet Vasculature in Transparent Adult Zebrafish

    PubMed Central

    Moss, Larry G.; Caplan, Tanner V.

    2013-01-01

    Abstract Blood vessel networks provide nutrients and gaseous exchange that are essential for functions. Pancreatic islet capillaries deliver oxygen to endocrine cells while transporting hormones to organs and peripheral locations throughout the body. We have developed a zebrafish diabetes model in which adult islets can be followed in vivo during beta cell regeneration while calibrating changes in beta cell mass and fasting blood glucose levels. After genetic ablation, beta cells are initially dysfunctional or dying, and blood glucose levels increase fourfold. During a 2-week period, hyperglycemia eventually normalizes as beta cell mass regenerates. We show that mCherry-fluorescent, insulin-positive beta cells re-emerge in close contact with the vascular endothelium. Alterations in the dense vascular network of zebrafish islets were visualized by the expression of green fluorescent protein (GFP) in endothelial cells derived from the Fli transcription factor promoter. The rapid destruction and regeneration of beta cell mass was evaluated in the same animal over time, providing a functional model for investigating the interactions of islet cell types with vascular cells as well as the consequences of hyperglycemia on other tissues. Regenerating adult zebrafish can be utilized as vertebrate, metabolically active models for generating new insights into treatments for type 2 diabetes. PMID:23682836

  5. PERIPHERAL MECHANISMS IN APPETITE REGULATION

    PubMed Central

    Camilleri, Michael

    2014-01-01

    Peripheral mechanisms in appetite regulation include the motor functions of the stomach, such as the rate of emptying and accommodation, which convey symptoms of satiation to the brain. The rich repertoire of peripherally released peptides and hormones provides feedback from the arrival of nutrients in different regions of the gut from where they are released to exert effects on satiation, or regulate metabolism through their incretin effects. Ultimately, these peripheral factors provide input to the highly organized hypothalamic circuitry and vagal complex of nuclei to determine cessation of energy intake during meal ingestion, and the return of appetite and hunger after fasting. Understanding these mechanisms is key to the physiological control of feeding and the derangements that occur in obesity and their restoration with treatment (as demonstrated by the effects of bariatric surgery). PMID:25241326

  6. Pleiotrophin and peripheral nerve injury.

    PubMed

    Jin, Li; Jianghai, Chen; Juan, Liu; Hao, Kang

    2009-10-01

    The proto-oncogene pleiotrophin, discovered in 1989, was considered as a multifunctional growth factor, which played an important role in tumor occurrence, development, and central nervous system. The latest research showed that pleiotrophin signal pathway probably participated in neural repair after peripheral nerve injury, especially in the following critical points, such as the protection of spinal cord neuron, the promotion of the speed of neuron axon regeneration, the guidance of neuron axon regeneration, skeleton muscle reinnervation, and so on. It potentially plays a key role in the guidance of neural axon regeneration in peripheral nervous system and muscle reinnervation. With the deepening of related researches, pleiotrophin gene would become a controllable target for improving the repairing effect of peripheral nerve injury and reconstruction of the neuromuscular junction.

  7. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  8. Cardiac Involvement in Peripheral Neuropathies.

    PubMed

    Burakgazi, Ahmet Z; AlMahameed, Soufian

    2016-03-01

    Cardiac autonomic neuropathy (CAN) is the least recognized and understood complication of peripheral neuropathy. However, because of its potential adverse effects including sudden death, CAN is one of the most important forms of autonomic neuropathies. CAN presents with different clinical manifestations including postural hypotension, exercise intolerance, fluctuation of blood pressure and heart rate, arrhythmia, and increased risk of myocardial infarction. In this article, the prevalence, clinical presentations, and management of cardiac involvement in certain peripheral neuropathies, including diabetic neuropathy, Guillain-Barré syndrome, chronic inflammatory polyneuropathy, human immunodeficiency virus-associated neuropathy, hereditary neuropathies, and amyloid neuropathy are examined in detail.

  9. The action of a dopamine (DA1) receptor agonist, fenoldopam in human vasculature in vivo and in vitro.

    PubMed Central

    Hughes, A; Thom, S; Martin, G; Redman, D; Hasan, S; Sever, P

    1986-01-01

    This study was designed to investigate dopaminergic mechanisms in human vasculature using the selective vascular dopamine receptor agonist fenoldopam in vivo and in vitro. In vivo, forearm blood flow was measured plethysmographically and in vitro isolated rings of human blood vessels from a variety of sites were used for tissue bath studies. Intra-arterial fenoldopam markedly increased forearm blood flow, this effect was antagonised by (R) sulpiride, a vascular dopamine (DA1) antagonist, but not by metoclopramide, a neuronal (DA2) antagonist, or by guanethidine, an adrenergic neurone blocking agent. In vitro, fenoldopam relaxed preconstricted human renal, mesenteric and lumbar arteries, but not saphenous vein in a concentration dependent manner. (RS) sulpiride and SCH 23390 competitively antagonised this effect. These studies demonstrate the presence of a vasodilatory vascular dopamine receptor in man both in vivo and in vitro. PMID:2878679

  10. Unilateral anterior persistent fetal vasculature in a child with blepharophimosis-ptosis-epicanthus inversus syndrome: A surgical challenge.

    PubMed

    Kemmanu, Vasudha; Rathod, Pragnya; Anaspure, Hemant; Yadav, Naresh K

    2016-06-01

    Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal dominant genetic disease. It is clinically characterized by four major features; blepharophimosis, ptosis, epicanthus inversus, and telecanthus. We report a case of a 1-year-old female with BPES with unilateral anterior persistent fetal vasculature (PFV). On examination, she was found to have all the clinical features of BPES, along with calcified and partially absorbed cataract with elongated ciliary processes in her left eye. B-scan of left eye showed attached retina with no evidence of posterior PFV. Systemic examination was normal. She underwent cataract surgery with primary posterior capsulotomy with intraocular lens implantation under general anesthesia. Literature search did not reveal any previous reports of unilateral anterior PFV and BPES. The clinical features, other associations, and the difficulties in the surgical management of this condition are discussed.

  11. Unilateral anterior persistent fetal vasculature in a child with blepharophimosis-ptosis-epicanthus inversus syndrome: A surgical challenge

    PubMed Central

    Kemmanu, Vasudha; Rathod, Pragnya; Anaspure, Hemant; Yadav, Naresh K

    2016-01-01

    Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal dominant genetic disease. It is clinically characterized by four major features; blepharophimosis, ptosis, epicanthus inversus, and telecanthus. We report a case of a 1-year-old female with BPES with unilateral anterior persistent fetal vasculature (PFV). On examination, she was found to have all the clinical features of BPES, along with calcified and partially absorbed cataract with elongated ciliary processes in her left eye. B-scan of left eye showed attached retina with no evidence of posterior PFV. Systemic examination was normal. She underwent cataract surgery with primary posterior capsulotomy with intraocular lens implantation under general anesthesia. Literature search did not reveal any previous reports of unilateral anterior PFV and BPES. The clinical features, other associations, and the difficulties in the surgical management of this condition are discussed. PMID:27488160

  12. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis

    NASA Astrophysics Data System (ADS)

    Zhang, Boyang; Montgomery, Miles; Chamberlain, M. Dean; Ogawa, Shinichiro; Korolj, Anastasia; Pahnke, Aric; Wells, Laura A.; Massé, Stéphane; Kim, Jihye; Reis, Lewis; Momen, Abdul; Nunes, Sara S.; Wheeler, Aaron R.; Nanthakumar, Kumaraswamy; Keller, Gordon; Sefton, Michael V.; Radisic, Milica

    2016-06-01

    We report the fabrication of a scaffold (hereafter referred to as AngioChip) that supports the assembly of parenchymal cells on a mechanically tunable matrix surrounding a perfusable, branched, three-dimensional microchannel network coated with endothelial cells. The design of AngioChip decouples the material choices for the engineered vessel network and for cell seeding in the parenchyma, enabling extensive remodelling while maintaining an open-vessel lumen. The incorporation of nanopores and micro-holes in the vessel walls enhances permeability, and permits intercellular crosstalk and extravasation of monocytes and endothelial cells on biomolecular stimulation. We also show that vascularized hepatic tissues and cardiac tissues engineered by using AngioChips process clinically relevant drugs delivered through the vasculature, and that millimetre-thick cardiac tissues can be engineered in a scalable manner. Moreover, we demonstrate that AngioChip cardiac tissues implanted with direct surgical anastomosis to the femoral vessels of rat hindlimbs establish immediate blood perfusion.

  13. Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Trinh, Le A.; Fingler, Jeff; Fraser, Scott E.

    2016-12-01

    A phase variance optical coherence microscope (pvOCM) has been created to image blood flow in the microvasculature of zebrafish embryos, without the use of exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2.8 μm in tissue and imaging depth of more than 100 μm. Images of 2 to 5 days postfertilization zebrafish embryos identified the detailed anatomical structure based on OCM intensity contrast. Phase variance contrast offered visualization of blood flow in the arteries, veins, and capillaries. The pvOCM images of the vasculature were confirmed by direct comparisons with fluorescence microscopy images of transgenic embryos in which the vascular endothelium is labeled with green fluorescent protein. The ability of pvOCM to capture activities of regional blood flow permits it to reveal functional information that is of great utility for the study of vascular development.

  14. Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic

    PubMed Central

    Iftakhar-E-Khuda, Imtiaz; Fair-Mäkelä, Ruth; Kukkonen-Macchi, Anu; Elima, Kati; Karikoski, Marika; Rantakari, Pia; Miyasaka, Masayuki; Salmi, Marko; Jalkanen, Sirpa

    2016-01-01

    Afferent lymphatic vessels bring antigens and diverse populations of leukocytes to draining lymph nodes, whereas efferent lymphatics allow only lymphocytes and antigens to leave the nodes. Despite the fundamental importance of afferent vs. efferent lymphatics in immune response and cancer spread, the molecular characteristics of these different arms of the lymphatic vasculature are largely unknown. The objective of this work was to explore molecular differences behind the distinct functions of afferent and efferent lymphatic vessels, and find possible molecules mediating lymphocyte traffic. We used laser-capture microdissection and cell sorting to isolate lymphatic endothelial cells (LECs) from the subcapsular sinus (SS, afferent) and lymphatic sinus (LS, efferent) for transcriptional analyses. The results reveal marked differences between afferent and efferent LECs and identify molecules on lymphatic vessels. Further characterizations of Siglec-1 (CD169) and macrophage scavenger receptor 1 (MSR1/CD204), show that they are discriminatively expressed on lymphatic endothelium of the SS but not on lymphatic vasculature of the LS. In contrast, endomucin (EMCN) is present on the LS endothelium and not on lymphatic endothelium of the SS. Moreover, both murine and human MSR1 on lymphatic endothelium of the SS bind lymphocytes and in in vivo studies MSR1 regulates entrance of lymphocytes from the SS to the lymph node parenchyma. In conclusion, this paper reports surprisingly distinct molecular profiles for afferent and efferent lymphatics and a function for MSR1. These results may open avenues to explore some of the now-identified molecules as targets to manipulate the function of lymphatic vessels. PMID:27601677

  15. In Vivo Quantitative Microcomputed Tomographic Analysis of Vasculature and Organs in a Normal and Diseased Mouse Model

    PubMed Central

    Das, Nanditha Mohan; Hatsell, Sarah; Nannuru, Kalyan; Huang, Lily; Wen, Xialing; Wang, Lili; Wang, Li-Hsien; Idone, Vincent; Meganck, Jeffrey A.; Murphy, Andrew; Economides, Aris; Xie, LiQin

    2016-01-01

    Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1–2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 μm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models. PMID:26910759

  16. Platelet peripheral benzodiazepine receptors are decreased in Parkinson's disease

    SciTech Connect

    Bonuccelli, U.; Nuti, A.; Del Dotto, P.; Piccini, P.; Martini, C.; Giannacccini, G.; Lucacchini, A.; Muratorio, A. )

    1991-01-01

    Peripheral benzodiazepine (BDZ) receptors are located in a variety of tissues, including platelets, in the nuclear and/or mitochondrial membranes. The authors studied the density of peripheral BDZ receptors in platelets of 10 de novo Parkinson's disease (PD) patients, 18 PD patients treated with a levodopa/carbidopa combination, and in 15 healthy subjects matched for sex and age. The binding assay was conducted using ({sup 3}H)PK 11195, a specific ligand for peripheral BDZ receptors. A significant decrease in the density of ({sup 3}H)PK 11195 binding sites has been observed in PD patients with respect to controls but not between de novo and treated PD patients. No correlation has been found between the decrease in density of ({sup 3}H)PK 11195 binding sites in platelets and either the duration or severity of PD. Peripheral BDZ receptors are implicated in the regulation of mitochondrial respiratory function. Thus, their decrease in PD might parallel the abnormalities in mitochondrial function recently found in this neurologic disease.

  17. [Peripheral Nerve Injuries in Sports].

    PubMed

    Tettenborn, B; Mehnert, S; Reuter, I

    2016-09-01

    Peripheral nerve injuries due to sports are relatively rare but the exact incidence is not known due to a lack of epidemiological studies. Particular sports activities tend to cause certain peripheral nerve injuries including direct acute compression or stretching, repetitive compression and stretching over time, or another mechanism such as ischemia or laceration. These nerve lesions may be severe and delay or preclude the athlete's return to sports, especially in cases with delayed diagnosis. Repetitive and vigorous use or overuse makes the athlete vulnerable to disorders of the peripheral nerves, and sports equipment may cause compression of the nerves. Depending on etiology, the treatment is primarily conservative and includes physiotherapy, modification of movements and sports equipment, shoe inserts, splinting, antiphlogistic drugs, sometimes local administration of glucocorticoids or, lately, the use of extracorporeal shock waves. Most often, cessation of the offending physical activity is necessary. Surgery is only indicated in the rare cases of direct traumatic nerve injury or when symptoms are refractory to conservative therapy. Prognosis mainly depends on the etiology and the available options of modifying measures.This article is based on the publications "Reuter I, Mehnert S. Engpasssyndrome peripherer Nerven bei Sportlern". Akt Neurol 2012;39:292-308 and Sportverl Sportschad 2013;27:130-146.

  18. Peripheral nerve injury during anesthesia.

    PubMed

    Lieblich, S E

    1990-01-01

    A case is presented where a peripheral nerve injury occurred due to the pressure of a restraint buckle causing a postoperative motor and sensory deficit. Because these are iatrogenic injuries it is useful to review the mechanism of injury and means of prevention.

  19. Peripheral nerve injury during anesthesia.

    PubMed Central

    Lieblich, S. E.

    1990-01-01

    A case is presented where a peripheral nerve injury occurred due to the pressure of a restraint buckle causing a postoperative motor and sensory deficit. Because these are iatrogenic injuries it is useful to review the mechanism of injury and means of prevention. Images Figure 1 PMID:2096751

  20. How Necessary is the Vasculature in the Life of Neural Stem and Progenitor Cells? Evidence from Evolution, Development and the Adult Nervous System

    PubMed Central

    Koutsakis, Christos; Kazanis, Ilias

    2016-01-01

    Augmenting evidence suggests that such is the functional dependance of neural stem cells (NSCs) on the vasculature that they normally reside in “perivascular niches”. Two examples are the “neurovascular” and the “oligovascular” niches of the adult brain, which comprise specialized microenvironments where NSCs or oligodendrocyte progenitor cells survive and remain mitotically active in close proximity to blood vessels (BVs). The often observed co-ordination of angiogenesis and neurogenesis led to these processes being described as “coupled”. Here, we adopt an evo-devo approach to argue that some stages in the life of a NSC, such as specification and commitment, are independent of the vasculature, while stages such as proliferation and migration are largely dependent on BVs. We also explore available evidence on the possible involvement of the vasculature in other phenomena such as the diversification of NSCs during evolution and we provide original data on the senescence of NSCs in the subependymal zone stem cell niche. Finally, we will comment on the other side of the story; that is, on how much the vasculature is dependent on NSCs and their progeny. PMID:26909025

  1. Using Fractal Geometry and Universal Growth Curves as Diagnostics for Comparing Tumor Vasculature and Metabolic Rate With Healthy Tissue and for Predicting Responses to Drug Therapies.

    PubMed

    Savage, Van M; Herman, Alexander B; West, Geoffrey B; Leu, Kevin

    2013-06-01

    Healthy vasculature exhibits a hierarchical branching structure in which, on average, vessel radius and length change systematically with branching order. In contrast, tumor vasculature exhibits less hierarchy and more variability in its branching patterns. Although differences in vasculature have been highlighted in the literature, there has been very little quantification of these differences. Fractal analysis is a natural tool for comparing tumor and healthy vasculature, especially because it has already been used extensively to model healthy tissue. In this paper, we provide a fractal analysis of existing vascular data, and we present a new mathematical framework for predicting tumor growth trajectories by coupling: (1) the fractal geometric properties of tumor vascular networks, (2) metabolic properties of tumor cells and host vascular systems, and (3) spatial gradients in resources and metabolic states within the tumor. First, we provide a new analysis for how the mean and variation of scaling exponents for ratios of vessel radii and lengths in tumors differ from healthy tissue. Next, we use these characteristic exponents to predict metabolic rates for tumors. Finally, by combining this analysis with general growth equations based on energetics, we derive universal growth curves that enable us to compare tumor and ontogenetic growth. We also extend these growth equations to include necrotic, quiescent, and proliferative cell states and to predict novel growth dynamics that arise when tumors are treated with drugs. Taken together, this mathematical framework will help to anticipate and understand growth trajectories across tumor types and drug treatments.

  2. In silico analyses of pericycle cell populations reinforce their relation with associated vasculature in Arabidopsis.

    PubMed

    Parizot, Boris; Roberts, Ianto; Raes, Jeroen; Beeckman, Tom; De Smet, Ive

    2012-06-05

    In Arabidopsis, lateral root initiation occurs in a subset of pericycle cells at the xylem pole that will divide asymmetrically to give rise to a new lateral root organ. While lateral roots never develop at the phloem pole, it is unclear how the interaction with xylem and phloem poles determines the distinct pericycle identities with different competences. Nevertheless, pericycle cells at these poles are marked by differences in size, by ultrastructural features and by specific proteins and gene expression. Here, we provide transcriptional evidence that pericycle cells are intimately associated with their vascular tissue instead of being a separate concentric layer. This has implications for the identification of cell- and tissue-specific promoters that are necessary to drive and/or alter gene expression locally, avoiding pleiotropic effects. We were able to identify a small set of genes that display specific expression in the phloem or xylem pole pericycle cells, and we were able to identify motifs that are likely to drive expression in either one of those tissues.

  3. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors

    PubMed Central

    Bergers, Gabriele; Song, Steven; Meyer-Morse, Nicole; Bergsland, Emily; Hanahan, Douglas

    2003-01-01

    Functions of receptor tyrosine kinases implicated in angiogenesis were pharmacologically impaired in a mouse model of pancreatic islet cancer. An inhibitor targeting VEGFRs in endothelial cells (SU5416) is effective against early-stage angiogenic lesions, but not large, well-vascularized tumors. In contrast, a kinase inhibitor incorporating selectivity for PDGFRs (SU6668) is shown to block further growth of end-stage tumors, eliciting detachment of pericytes and disruption of tumor vascularity. Importantly, PDGFRs were expressed only in perivascular cells of this tumor type, suggesting that PDGFR+ pericytes in tumors present a complimentary target to endothelial cells for efficacious antiangiogenic therapy. Therapeutic regimes combining the two kinase inhibitors (SU5416 and SU6668) were more efficacious against all stages of islet carcinogenesis than either single agent. Combination of the VEGFR inhibitor with another distinctive kinase inhibitor targeting PDGFR activity (Gleevec) was also able to regress late-stage tumors. Thus, combinatorial targeting of receptor tyrosine kinases shows promise for treating multiple stages in tumorigenesis, most notably the often-intractable late-stage solid tumor. PMID:12727920

  4. Hypothyroidism: Can It Cause Peripheral Neuropathy?

    MedlinePlus

    Hypothyroidism: Can it cause peripheral neuropathy? Can hypothyroidism cause peripheral neuropathy and, if so, how is it treated? Answers from Todd B. Nippoldt, M.D. Hypothyroidism — a condition in which your ...

  5. Adult peripheral neuroepithelioma in Meckel's cave.

    PubMed

    Midroni, G; Dhanani, A N; Gray, T; Tucker, W S; Bilbao, J M

    1991-02-01

    A case of peripheral neuroepithelioma arising from the trigeminal nerve in Meckel's cave is presented. The discussion emphasizes the pathological criteria for the diagnosis of a peripheral neuroepithelioma and the current controversy about the classification of this and related tumors.

  6. Theory underlying the peripheral vision horizon device

    NASA Technical Reports Server (NTRS)

    Money, K. E.

    1984-01-01

    Peripheral Vision Horizon Device (PVHD) theory states that the likelihood of pilot disorientation in flight is reduced by providing an artificial horizon that provides orientation information to peripheral vision. In considering the validity of the theory, three areas are explored: the use of an artificial horizon device over some other flight instrument; the use of peripheral vision over foveal vision; and the evidence that peripheral vision is well suited to the processing of orientation information.

  7. Coaching Peripheral Vision Training for Soccer Athletes

    ERIC Educational Resources Information Center

    Marques, Nelson Kautzner, Jr.

    2010-01-01

    Brazilian Soccer began developing its current emphasis on peripheral vision in the late 1950s, by initiative of coach of the Canto do Rio Football Club, in Niteroi, Rio de Janeiro, a pioneer in the development of peripheral vision training in soccer players. Peripheral vision training gained world relevance when a young talent from Canto do Rio,…

  8. Design and verification of a shape memory polymer peripheral occlusion device.

    PubMed

    Landsman, Todd L; Bush, Ruth L; Glowczwski, Alan; Horn, John; Jessen, Staci L; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R; Hasan, Sayyeda M; Nash, Daniel; Clubb, Fred J; Maitland, Duncan J

    2016-10-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways.

  9. Marvels, Mysteries, and Misconceptions of Vascular Compensation to Peripheral Artery Occlusion

    PubMed Central

    ZIEGLER, MATTHEW A.; DISTASI, MATTHEW R.; BILLS, RANDALL G.; MILLER, STEVEN J.; ALLOOSH, MOUHAMAD; MURPHY, MICHAEL P.; AKINGBA, A. GEORGE; STUREK, MICHAEL; DALSING, MICHAEL C.; UNTHANK, JOSEPH L.

    2010-01-01

    Peripheral arterial disease is a major health problem and there is a significant need to develop therapies to prevent its progression to claudication and critical limb ischemia. Promising results in rodent models of arterial occlusion have generally failed to predict clinical success and led to questions of their relevance. While sub-optimal models may have contributed to the lack of progress, we suggest that advancement has also been hindered by misconceptions of the human capacity for compensation and the specific vessels which are of primary importance. We present and summarize new and existing data from humans, Ossabaw miniature pigs, and rodents which provide compelling evidence that natural compensation to occlusion of a major artery (i) may completely restore perfusion, (ii) occurs in specific pre-existing small arteries, rather than the distal vasculature, via mechanisms involving flow-mediated dilation and remodeling (iii) is impaired by cardiovascular risk factors which suppress the flow-mediated mechanisms and (iv) can be restored by reversal of endothelial dysfunction. We propose that restoration of the capacity for flow-mediated dilation and remodeling in small arteries represents a largely unexplored potential therapeutic opportunity to enhance compensation for major arterial occlusion and prevent the progression to critical limb ischemia in the peripheral circulation. PMID:20141596

  10. Interaction of Isoflavones and Endophyte-Infected Tall Fescue Seed Extract on Vasoactivity of Bovine Mesenteric Vasculature

    PubMed Central

    Jia, Yang; Harmon, David L.; Flythe, Michael D.; Klotz, James L.

    2015-01-01

    It was hypothesized that isoflavones may attenuate ergot alkaloid-induced vasoconstriction and possibly alleviate diminished contractility of vasculature after exposure to ergot alkaloids. The objective of this study was to determine if prior incubation of bovine mesenteric vasculature with the isoflavones formononetin (F), biochanin A (B), or an ergovaline-containing tall fescue seed extract (EXT) and their combinations affect ergotamine (ERT)-induced contractility. Multiple segments of mesenteric artery and vein supporting the ileal flange of the small intestine were collected from Angus heifers at slaughter (n = 5, bodyweight = 639 ± 39 kg). Duplicates of each vessel type were incubated in tissue culture flasks at 37°C with a 50-mL volume of Krebs–Henseleit buffer containing: only buffer (control); or 1 × 10−6 M EXT; F; or B; and combinations of 1 × 10−6 M EXT + F; 1 × 10−6 M EXT + B; 1 × 10−6 M F + B; or 1 × 10−6 M EXT + F + B. After incubation for 2 h, sections were mounted in a multimyograph chamber. The ERT dose responses were normalized to 0.12 M KCl. Pretreatment with F, B, and F + B without EXT resulted in similar contractile responses to ERT in mesenteric artery and all incubations containing EXT resulted in a complete loss of vasoactivity to ERT. In mesenteric artery pretreated with EXT, treatments that contained B had higher contractile responses (P < 0.05) at ERT concentrations of 1 × 10−7 and 5 × 10−7 M. Also, treatments containing B tended (P < 0.1) to have greater responses than treatments without B at ERT concentrations of 1 × 10−6, 5 × 10−6, and 5 × 10−5 M. In mesenteric vein pretreated with EXT, treatments containing F had greater contractile responses to ERT at 1 × 10−5, 5 × 10−5, and 1 × 10−4 M (P < 0.05). These data indicated that F and B at 1 × 10−6 M and their

  11. PERIPHERAL BLOOD FILM - A REVIEW

    PubMed Central

    Adewoyin, AS; Nwogoh, B.

    2014-01-01

    The peripheral blood film (PBF) is a laboratory work-up that involves cytology of peripheral blood cells smeared on a slide. As basic as it is, PBF is invaluable in the characterization of various clinical diseases. This article highlights the basic science and art behind the PBF. It expounds its laboratory applications, clinical indications and interpretations in the light of various clinical diseases. Despite advances in haematology automation and application of molecular techniques, the PBF has remained a very important diagnostic test to the haematologist. A good quality smear, thorough examination and proper interpretation in line with patient's clinical state should be ensured by the haemato-pathologist. Clinicians should be abreast with its clinical utility and proper application of the reports in the management of patients. PMID:25960697

  12. Sarcoidosis of the peripheral nervous system.

    PubMed

    Said, Gérard

    2013-01-01

    Neurological manifestations of sarcoidosis are relatively rare but constitute a treatable cause of central and peripheral neurological manifestations. Regarding the peripheral nervous system, cranial nerves are predominantly affected, and peripheral facial nerve palsy, often bilateral, is the most common neurological manifestation of sarcoidosis. Multifocal peripheral neuropathy is a rare event in sarcoidosis. In some cases, however, peripheral neuropathy is the presenting manifestation and seemingly the only organ affected. Definite diagnosis of sarcoidosis rests ideally on histological demonstration of sarcoid granulomas in tissue biopsy specimens.

  13. Assessing transmission of Salmonella to bovine peripheral lymph nodes upon horn fly feeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blood-feeding ectoparasites are an economic burden to cattle production systems. Their role in mechanical dissemination of bacterial pathogens is also of significance. Biting arthropods are implicated in the transdermal transmission of Salmonella to bovine peripheral lymph nodes (PLNs), which may ul...

  14. Insulin-like growth factors in the peripheral nervous system.

    PubMed

    Sakowski, Stacey A; Feldman, Eva L

    2012-06-01

    Insulin-like growth factors (IGFs) play an integral role in development, growth, and survival. This article details the current understanding of the effects of IGFs in the peripheral nervous system (PNS) during health and disease, and introduces how the IGF system regulates PNS development and impacts growth and survival of PNS cells. Also discussed are implications of IGF signaling in neurodegeneration and the status and prospects of IGF therapies for PNS conditions. There is substantial support for the application of IGF therapies in the treatment of PNS injury and disease.

  15. Peripheral doses from pediatric IMRT

    SciTech Connect

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-07-15

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged

  16. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases.

    PubMed

    Gil, Margaret; Seshadri, Mukund; Komorowski, Marcin P; Abrams, Scott I; Kozbor, Danuta

    2013-04-02

    Oncolytic viruses hold promise for the treatment of cancer, but their interaction with the tumor microenvironment needs to be elucidated for optimal tumor cell killing. Because the CXCR4 receptor for the stromal cell-derived factor-1 (SDF-1/CXCL12) chemokine is one of the key stimuli involved in signaling interactions between tumor cells and their stromal microenvironment, we used oncolytic virotherapy with a CXCR4 antagonist to target the CXCL12/CXCR4 signaling axis in a triple-negative 4T1 breast carcinoma in syngeneic mice. We show here that CXCR4 antagonist expression from an oncolytic vaccinia virus delivered intravenously to mice with orthotopic tumors attains higher intratumoral concentration than its soluble counterpart and exhibits increased efficacy over that mediated by oncolysis alone. A systemic delivery of the armed virus after resection of the primary tumor was efficacious in inhibiting the development of spontaneous metastasis and increased overall tumor-free survival. Inhibition of tumor growth with the armed virus was associated with destruction of tumor vasculature, reductions in expression of CXCL12 and VEGF, and decrease in intratumoral numbers of bone marrow-derived endothelial and myeloid cells. These changes led to induction of antitumor antibody responses and resistance to tumor rechallenge. Engineering an oncolytic virus armed with a CXCR4 antagonist represents an innovative strategy that targets multiple elements within the tumor microenvironment. As such, this approach could have a significant therapeutic impact against primary and metastatic breast cancer.

  17. Ectopic expression a tomato KNOX Gene Tkn4 affects the formation and the differentiation of meristems and vasculature.

    PubMed

    Yan, Fang; Hu, Guojian; Ren, Zhenxin; Deng, Wei; Li, Zhengguo

    2015-12-01

    The KNOTTED-LIKE HOMEODOMAIN genes are involved in maintenance of the shoot apical meristem which produces the whole above-ground body of vascular plants. In this report, a tomato homolog gene, named as Tkn4 (a nucleus targeted transcription factor) was identified and characterized. By performing RT-PCR, the transcript level of Tkn4 was separately found in stem, root, stamen, stigma, fruit and sepal but hardly visible in the leaf. Besides, Tkn4 was induced by a series of plant hormones. Overexpression of Tkn4 gene in tomato resulted in dwarf phenotype and strongly repressed the formation of shoot apical meristem, lateral meristem and cambiums in transgenic lines. The transgenic lines had wrinkled leaves and anatomic analysis showed that there was no obvious palisade tissues in the leaves and the layer of cells changed in vascular tissue (xylem and phloem). To explore the regulation network of Tkn4, RNA-sequencing was performed in overexpression lines and wild type plants, by which many genes related to the synthesis and the signal transduction of cytokinin, auxin, gibberellin, ethylene, abscisic acid, and tracheary element differentiation or extracellular matrix synthesis were significantly regulated. Taken together, our results demonstrate that Tkn4 plays important roles in regulating the biosynthesis and signal transduction of diverse plant hormones, and the formation and differentiation of meristems and vasculature in tomato.

  18. Estradiol-stimulated nitric oxide release in nervous tissue, vasculature, and gonads of the giant cockroach Blaberus craniifer.

    PubMed

    Nieto-Fernandez, F E; Ianuzzi, F; Ruiz, Adriana; Nodimele, Lilian

    2004-01-01

    The vertebrate system of steroid hormones appears to have been conserved widely throughout the animal kingdom. The sex hormone estrogen, 17-beta-estradiol (E2), long considered to be exclusively a vertebrate hormone, is found also in invertebrates related to reproductive and developmental processes such as spawning, vitellogenesis and molting. These processes are affected by estrogen induced changes at the genomic level and take place at a large time scale. The discovery of surface membrane receptors for E2 has opened new possibilities for the involvement of estrogen in biological functions other than reproductive. These processes take place within a few seconds to minutes and involve sudden cytosolic calcium transients, activation of adenylate cyclase or activation of phospholipase C (PLC). E2 can modulate the production of nitric oxide (NO) in endotheliar and other cells. A similar mechanism linking estrogen to cNOS catalized nitric oxide (NO) release is reported herein for the first time in several tissues of the giant cockroach Blaberus craniifer. This process has been identified in the brain, nerve cord, vasculature and ovaries. This effect is concentration dependent and is inhibited by tamoxifen an estrogen receptor blocker.

  19. New Role of P/Q-type Voltage-gated Calcium Channels: From Transmitter Release to Contraction of Renal Vasculature.

    PubMed

    Hansen, Pernille B L

    2015-05-01

    Voltage-gated calcium channels are important for the depolarization-evoked contraction of vascular smooth muscle cells (SMCs), with L-type channels being the classical channel involved in this mechanism. However, it has been demonstrated that the CaV2.1 subunit, which encodes a neuronal isoform of the voltage-gated calcium channels (P/Q-type), is also expressed and contributes functionally to contraction of renal blood vessels in both mice and humans. Furthermore, preglomerular vascular SMCs and aortic SMCs coexpress L-, P-, and Q-type calcium channels within the same cell. Calcium channel blockers are widely used as pharmacological treatments. However, calcium channel antagonists vary in their selectivity for the various calcium channel subtypes, and the functional contribution from P/Q-type channels as compared with L-type should be considered. Confirming the presence of P/Q-type voltage-gated calcium channels in other types of vascular SMCs could be important when investigating phenomena such as hypertension, migraine, and other diseases known to involve SMCs and voltage-gated calcium channels. The purpose of this review was to give a short overview of the possible roles of P/Q-type calcium channels within the vascular system with special focus on the renal vasculature.

  20. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking

    PubMed Central

    Zhang, Qinqin; Huang, Yanping; Zhang, Thomas; Kubach, Sophie; An, Lin; Laron, Michal; Sharma, Utkarsh; Wang, Ruikang K.

    2015-01-01

    Abstract. Optical coherence tomography (OCT)-based optical microangiography (OMAG) is a high-resolution, noninvasive imaging technique capable of providing three-dimensional in vivo blood flow visualization within microcirculatory tissue beds in the eye. Although the technique has demonstrated early clinical utility by imaging diseased eyes, its limited field of view (FOV) and the sensitivity to eye motion remain the two biggest challenges for the widespread clinical use of the technology. Here, we report the results of retinal OMAG imaging obtained from a Zeiss Cirrus 5000 spectral domain OCT system with motion tracking capability achieved by a line scan ophthalmoscope (LSO). The tracking LSO is able to guide the OCT scanning, which minimizes the effect of eye motion in the final results. We show that the tracking can effectively correct the motion artifacts and remove the discontinuities and distortions of vascular appearance due to microsaccade, leading to almost motion-free OMAG angiograms with good repeatability and reliability. Due to the robustness of the tracking LSO, we also show the montage scan protocol to provide unprecedented wide field retinal OMAG angiograms. We experimentally demonstrate a 12×16  mm2 retinal OMAG angiogram acquired from a volunteer, which is the widest FOV retinal vasculature imaging up to now in the community. PMID:26102573

  1. Stem cell-derived vasculature: A potent and multidimensional technology for basic research, disease modeling, and tissue engineering

    PubMed Central

    Lowenthal, Justin; Gerecht, Sharon

    2016-01-01

    Proper blood vessel networks are necessary for constructing and re-constructing tissues, promoting wound healing, and delivering metabolic necessities throughout the body. Conversely, an understanding of vascular dysfunction has provided insight into the pathogenesis and progression of diseases both common and rare. Recent advances in stem cell-based regenerative medicine – including advances in stem cell technologies and related progress in bioscaffold design and complex tissue engineering – have allowed rapid advances in the field of vascular biology, leading in turn to more advanced modeling of vascular pathophysiology and improved engineering of vascularized tissue constructs. In this review we examine recent advances in the field of stem cell-derived vasculature, providing an overview of stem cell technologies as a source for vascular cell types and then focusing on their use in three primary areas: studies of vascular development and angiogenesis, improved disease modeling, and the engineering of vascularized constructs for tissue-level modeling and cell-based therapies. PMID:26427871

  2. The role of nitric oxide in the regulation of the systemic and pulmonary vasculature of the rattlesnake, Crotalus durissus terrificus.

    PubMed

    Galli, Gina L J; Skovgaard, Nini; Abe, Augusto S; Taylor, Edwin W; Wang, Tobias

    2005-04-01

    The functional role of nitric oxide (NO) was investigated in the systemic and pulmonary circulations of the South American rattlesnake, Crotalus durissus terrificus. Bolus, intra-arterial injections of the NO donor, sodium nitroprusside (SNP) caused a significant systemic vasodilatation resulting in a reduction in systemic resistance (Rsys). This response was accompanied by a significant decrease in systemic pressure and a rise in systemic blood flow. Pulmonary resistance (Rpul) remained constant while pulmonary pressure (Ppul) and pulmonary blood flow (Qpul) decreased. Injection of L-Arginine (L-Arg) produced a similar response to SNP in the systemic circulation, inducing an immediate systemic vasodilatation, while Rpul was unaffected. Blockade of NO synthesis via the nitric oxide synthase inhibitor, L-NAME, did not affect haemodynamic variables in the systemic circulation, indicating a small contribution of NO to the basal regulation of systemic vascular resistance. Similarly, Rpul and Qpul remained unchanged, although there was a significant rise in Ppul. Via injection of SNP, this study clearly demonstrates that NO causes a systemic vasodilatation in the rattlesnake, indicating that NO may contribute in the regulation of systemic vascular resistance. In contrast, the pulmonary vasculature seems far less responsive to NO.

  3. Crawling phagocytes recruited in the brain vasculature after pertussis toxin exposure through IL6, ICAM1 and ITGαM.

    PubMed

    Richard, Jean-François; Roy, Monica; Audoy-Rémus, Julie; Tremblay, Pierrot; Vallières, Luc

    2011-11-01

    The cerebral vasculature is constantly patrolled by rod-shaped leukocytes crawling on the luminal endothelial surface. These cells are recruited in greater numbers after exposure to bacterial lipopolysaccharide (LPS) by a mechanism involving tumor necrosis factor (TNF), interleukin-1β (IL1β) and angiopoietin-2 (Angpt2). Here, we report that the population of crawling leukocytes, consisting mainly of granulocytes, is also increased in the brains of mice suffering from experimental autoimmune encephalomyelitis (EAE) or injected with pertussis toxin (PTX), which is commonly used to induce EAE. However, this recruitment occurs through an alternative mechanism, independent of Angpt2. In a series of experiments using DNA microarrays, knockout mice and neutralizing antibodies, we found that PTX acts indirectly on the endothelium in part through IL6, which is essential for the post-transcriptional upregulation of intercellular adhesion molecule 1 (ICAM1) in response to PTX but not to LPS. We also found that phagocytes adhere to brain capillaries through the interaction of integrin αM (ITGαM) with ICAM1 and an unidentified ligand. In conclusion, this study supports the concept that PTX promotes EAE, at least in part, by inducing vascular changes necessary for the recruitment of patrolling leukocytes.

  4. Hemodynamic Assessment of Compliance of Pre-Stressed Pulmonary Valve-Vasculature in Patient Specific Geometry Using an Inverse Algorithm

    NASA Astrophysics Data System (ADS)

    Hebbar, Ullhas; Paul, Anup; Banerjee, Rupak

    2016-11-01

    Image based modeling is finding increasing relevance in assisting diagnosis of Pulmonary Valve-Vasculature Dysfunction (PVD) in congenital heart disease patients. This research presents compliant artery - blood interaction in a patient specific Pulmonary Artery (PA) model. This is an improvement over our previous numerical studies which assumed rigid walled arteries. The impedance of the arteries and the energy transfer from the Right Ventricle (RV) to PA is governed by compliance, which in turn is influenced by the level of pre-stress in the arteries. In order to evaluate the pre-stress, an inverse algorithm was developed using an in-house script written in MATLAB and Python, and implemented using the Finite Element Method (FEM). This analysis used a patient specific material model developed by our group, in conjunction with measured pressure (invasive) and velocity (non-invasive) values. The analysis was performed on an FEM solver, and preliminary results indicated that the Main PA (MPA) exhibited higher compliance as well as increased hysteresis over the cardiac cycle when compared with the Left PA (LPA). The computed compliance values for the MPA and LPA were 14% and 34% lesser than the corresponding measured values. Further, the computed pressure drop and flow waveforms were in close agreement with the measured values. In conclusion, compliant artery - blood interaction models of patient specific geometries can play an important role in hemodynamics based diagnosis of PVD.

  5. Vasculature based model for characterizing the oxygen transport in skin tissues - analogy to the Weinbaum-Jiji bioheat equation

    NASA Astrophysics Data System (ADS)

    Ji, Yan; Liu, Jing

    Based on the conceptual three-layer microvascular structure of skin tissues proposed by Weinbaum et al. [20-25] and in analogy to the well known Weinbaum-Jiji (W-J) bioheat equation, a new oxygen transport model was established in this paper, which collectively included the contributions of the vascular geometry and the blood flow condition. The new one-dimensional three-layer oxygen transport model was then applied to predict the average oxygen concentration distribution in skin tissues and numerical solutions for the boundary value problem coupling the three layers were obtained. A simple expression for the tensor diffusivity (Deff) of oxygen transport over the deep tissue layer was presented, which was orders of magnitude higher than the intrinsic diffusivity (Dt) in tissue without blood flow. Effects of blood flow velocity and vascular geometry to the oxygen transport were investigated. Calculations indicated that the vascular geometry had significant effects on oxygen transport. The oxygen exchange between the arteries and veins was relatively small for the deep tissue layer. Further, the average oxygen concentration gradient appears low in intermediate layer due to large capillary perfusion. The theoretical results were implemented to interpret some previous experimental results and a better understanding on the oxygen transport across the vascularized living tissues was obtained. The strategy proposed in this paper may provide a feasible way to comprehensively characterize the oxygen transport behaviors in living tissues with real and complex vasculature.

  6. New vessel formation in the context of cardiomyocyte regeneration--the role and importance of an adequate perfusing vasculature.

    PubMed

    Michelis, Katherine C; Boehm, Manfred; Kovacic, Jason C

    2014-11-01

    The history of revascularization for cardiac ischemia dates back to the early 1960's when the first coronary artery bypass graft procedures were performed in humans. With this 50 year history of providing a new vasculature to ischemic and hibernating myocardium, a profound depth of experience has been amassed in clinical cardiovascular medicine as to what does, and does not work in the context of cardiac revascularization, alleviating ischemia and adequacy of myocardial perfusion. These issues are of central relevance to contemporary cell-based cardiac regenerative approaches. While the cardiovascular cell therapy field is surging forward on many exciting fronts, several well accepted clinical axioms related to the cardiac arterial supply appear to be almost overlooked by some of our current basic conceptual and experimental cell therapy paradigms. We present here information drawn from five decades of the clinical revascularization experience, review relevant new data on vascular formation via cell therapy, and put forward the case that for optimal cell-based cardiac regeneration due attention must be paid to providing an adequate vascular supply.

  7. New vessel formation in the context of cardiomyocyte regeneration – the role and importance of an adequate perfusing vasculature

    PubMed Central

    Michelis, Katherine C.; Boehm, Manfred; Kovacic, Jason C.

    2014-01-01

    The history of revascularization for cardiac ischemia dates back to the early 1960's when the first coronary artery bypass graft procedures were performed in humans. With this 50 year history of providing a new vasculature to ischemic and hibernating myocardium, a profound depth of experience has been amassed in clinical cardiovascular medicine as to what does, and does not work in the context of cardiac revascularization, alleviating ischemia and adequacy of myocardial perfusion. These issues are of central relevance to contemporary cell-based cardiac regenerative approaches. While the cardiovascular cell therapy field is surging forward on many exciting fronts, several well accepted clinical axioms related to the cardiac arterial supply appear to be almost overlooked by some of our current basic conceptual and experimental cell therapy paradigms. We present here information drawn from five decades of the clinical revascularization experience, review relevant new data on vascular formation via cell therapy, and put forward the case that for optimal cell-based cardiac regeneration due attention must be paid to providing an adequate vascular supply. PMID:24841067

  8. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis

    PubMed Central

    Zhang, Boyang; Montgomery, Miles; Chamberlain, M. Dean; Ogawa, Shinichiro; Korolj, Anastasia; Pahnke, Aric; Wells, Laura A.; Massé, Stéphane; Kim, Jihye; Reis, Lewis; Momen, Abdulah; Nunes, Sara S.; Wheeler, Aaron; Nanthakumar, Kumaraswamy; Keller, Gordon; Sefton, Michael V.; Radisic, Milica

    2016-01-01

    We report the fabrication of a scaffold (hereafter referred to as AngioChip) that supports the assembly of parenchymal cells on a mechanically tunable matrix surrounding a perfusable, branched, three-dimensional microchannel network coated with endothelial cells. The design of AngioChip decouples the material choices for the engineered vessel network and for cell seeding in the parenchyma, enabling extensive remodelling while maintaining an open-vessel lumen. The incorporation of nanopores and micro-holes in the vessel walls enhances permeability, and permits intercellular crosstalk and extravasation of monocytes and endothelial cells on biomolecular stimulation. We also show that vascularized hepatic tissues and cardiac tissues engineered by using AngioChips process clinically relevant drugs delivered through the vasculature, and that millimeter-thick cardiac tissues can be engineered in a scalable manner. Moreover, we demonstrate that AngioChip cardiac tissues implanted via direct surgical anastomosis to the femoral vessels of rat hindlimbs establish immediate blood perfusion. PMID:26950595

  9. Photodynamic Therapy Induced Enhancement of Tumor Vasculature Permeability Using an Upconversion Nanoconstruct for Improved Intratumoral Nanoparticle Delivery in Deep Tissues

    PubMed Central

    Gao, Weidong; Wang, Zhaohui; Lv, Liwei; Yin, Deyan; Chen, Dan; Han, Zhihao; Ma, Yi; Zhang, Min; Yang, Man; Gu, Yueqing

    2016-01-01

    Photodynamic therapy (PDT) has recently emerged as an approach to enhance intratumoral accumulation of nanoparticles. However, conventional PDT is greatly limited by the inability of the excitation light to sufficiently penetrate tissue, rendering PDT ineffective in the relatively deep tumors. To address this limitation, we developed a novel PDT platform and reported for the first time the effect of deep-tissue PDT on nanoparticle uptake in tumors. This platform employed c(RGDyK)-conjugated upconversion nanoparticles (UCNPs), which facilitate active targeting of the nanoconstruct to tumor vasculature and achieve the deep-tissue photosensitizer activation by NIR light irradiation. Results indicated that our PDT system efficiently enhanced intratumoral uptake of different nanoparticles in a deep-seated tumor model. The optimal light dose for deep-tissue PDT (34 mW/cm2) was determined and the most robust permeability enhancement was achieved by administering the nanoparticles within 15 minutes following PDT treatment. Further, a two-step treatment strategy was developed and validated featuring the capability of improving the therapeutic efficacy of Doxil while simultaneously reducing its cardiotoxicity. This two-step treatment resulted in a tumor inhibition rate of 79% compared with 56% after Doxil treatment alone. These findings provide evidence in support of the clinical application of deep-tissue PDT for enhanced nano-drug delivery. PMID:27279907

  10. RGD-conjugated Two-photon Absorbing Near-IR Emitting Fluorescent Probes for Tumor Vasculature Imaging

    PubMed Central

    Yue, Xiling; Morales, Alma R.; Githaiga, Grace W.; Woodward, Adam W.; Tang, Simon; Sawada, Junko; Komatsu, Masanobu; Liu, Xuan; Belfield, Kevin D.

    2015-01-01

    Observation of the activation and inhibition of angiogenesis processes is important in the progression of cancer. Application of targeting peptides, such as a small peptide that contains adjacent L-arginine (R), glycine (G) and L-aspartic acid (D) residues can afford high selectivity and deep penetration in vessel imaging. To facilitate deep tissue vasculature imaging, probes that can be excited via two-photon absorption (2PA) in the near-infrared (NIR) and subsequently emit in the NIR are essential. In this study, the enhancement of tissue image quality with RGD conjugates was investigated with new NIR-emitting pyranyl fluorophore derivatives in two-photon fluorescence microscopy. Linear and nonlinear photophysical properties of the new probes were comprehensively characterized; significantly the probes exhibited good 2PA over a broad spectral range from 700–1100 nm. Cell and tissue images were then acquired and examined, revealing deep penetration and high contrast with the new pyranyl RGD-conjugates up to 350 μm in tumor tissue. PMID:26351137

  11. Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment (Review).

    PubMed

    Wang, Xin; Shen, Yanwei; Li, Shuting; Lv, Meng; Zhang, Xiaoman; Yang, Jiao; Wang, Fan; Yang, Jin

    2016-10-01

    Over the past 60 years, thalidomide has metamorphosized from a drug prescribed to treat morning sickness in pregnant women, which was subsequently found to induce birth defects, into a highly effective therapy for treating leprosy and multiple myeloma. Several mechanisms have been proposed to explain the anticancer effects of thalidomide, including antiangiogenic and immunomodulatory activities. At present, evidence suggests that thalidomide may induce vessel maturation. Vascular normalization may be an effective strategy to enhance cancer immunotherapy. Numerous studies have shown that the tumor infiltrating immune cell subsets are important in regulating the process of tumor angiogenesis. The mechanisms associated with antiangiogenesis and the potent immunomodulatory effects of thalidomide obtained the most support. The studies of the antiangiogenic activity of thalidomide were guided in a novel direction by a hypothesis regarding the vascular normalization of tumors. Hence, thalidomide is effective in cancer treatment due to the interaction between immune cells and tumor vasculature. This mechanism provides new avenues to explore for the treatment of cancer.

  12. [Ultrasound for peripheral neural block].

    PubMed

    Kefalianakis, F

    2005-03-01

    Ultrasound is well established in medicine. Unfortunately, ultrasound is still rarely used in the area of anesthesia. The purpose of the article is to illustrate the possibilities and limitations of ultrasound in regional anesthesia. The basic principles of ultrasound are the piezoelectric effect and the behaviour of acoustic waveforms in human tissue. Ultrasound imaging in medicine uses high frequency pulses of sound waves (2.5-10 MHz). The following images are built up from the reflected sounds. The ultrasound devices used in regional anesthesia (commonly by 10 MHz) deliver a two-dimensional view. The main step for a successful regional anaesthesia is to identify the exact position of the nerve. In addition, specific surface landmarks and the use of peripheral nerve stimulator help to detect the correct position of the needle. Nerves are demonstrated as an composition of hyperechogenic (white) and hypoechogenic (black) areas. The surrounding hyperechogenic parts are epi- and perineurium, the dark hypoechogenic part is the neural tissue. The composition of peripheral nerves are always similar, but the quantities of each part, of surrounding perineurium and nerval structures, differ. Further the imaging of nerves is significantly influenced by the angle of beam to the nerve and the surrounding anatomic structures. Only experience and correct interpretation make the ultrasound a valid method in clinical practice. Correct interpretation has to be learned by standardized education. Three examples of peripheral nerve blocks are described. The detection of nerves and the visualization of the correct spread of local anesthetics to the nerves are the main principles of effective ultrasound-guided regional anesthesia, whereas closest proximity of the needle to the target nerve is not necessary. The described examples of ultrasound guidance for nerval block illustrates the specific procedures with reduced probability of nerval irritation, high success and low rate of

  13. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging

    PubMed Central

    Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C.; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P.; Leitgeb, Rainer A.; Kittler, Harald; Drexler, Wolfgang

    2016-01-01

    Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo. PMID:27699106

  14. Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization

    NASA Astrophysics Data System (ADS)

    Motaghiannezam, S. M. Reza; Koos, David; Fraser, Scott E.

    2012-02-01

    Human retinal and choroidal vasculature was visualized by a differential phase-contrast (DPC) method using high-speed, swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was recognized as regions of motion by creating differential phase-variance (DPV) tomograms: multiple B-scans of individual slices through the retina were collected and the variance of the phase differences was calculated. DPV captured the small vessels and the meshwork of capillaries associated with the inner retina in en-face images over 4 mm2. The swept-source laser at 1060 nm offered the needed phase sensitivity to perform DPV and generated en-face images that capture motion in the inner choroidal layer exceeding the capabilities of previous spectrometer-based instruments. In comparison with the power Doppler phase-shift method, DPV provided better visualization of the foveal avascular zone in en-face images.

  15. Effect of des-aspartate-angiotensin I on the actions of angiotensin II in the isolated renal and mesenteric vasculature of hypertensive and STZ-induced diabetic rats.

    PubMed

    Dharmani, M; Mustafa, M R; Achike, F I; Sim, M K

    2005-07-15

    The present study investigated the action of des-aspartate-angiotensin I (DAA-I) on the pressor action of angiotensin II in the renal and mesenteric vasculature of WKY, SHR and streptozotocin (STZ)-induced diabetic rats. Angiotensin II-induced a dose-dependent pressor response in the renal vasculature. Compared to the WKY, the pressor response was enhanced in the SHR and reduced in the STZ-induced diabetic rat. DAA-I attenuated the angiotensin II pressor action in renal vasculature of WKY and SHR. The attenuation was observed for DAA-I concentration as low as 10(-18) M and was more prominent in SHR. However, the ability of DAA-I to reduce angiotensin II response was lost in the STZ-induced diabetic kidney. Instead, enhancement of angiotensin II pressor response was seen at the lower doses of the octapeptide. The effect of DAA-I was not inhibited by PD123319, an AT2 receptor antagonist, and indomethacin, a cyclo-oxygenase inhibitor in both WKY and SHR, indicating that its action was not mediated by angiotensin AT2 receptor and prostaglandins. The pressor responses to angiotensin II in mesenteric vascular bed were also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses were significantly smaller in SHR but no significant difference was observed between STZ-induced diabetic and WKY rat. Similarly, PD123319 and indomethacin had no effect on the action of DAA-I. The findings reiterate a regulatory role for DAA-I in vascular bed of the kidney and mesentery. By being active at circulating level, DAA-I subserves a physiological role. This function appears to be present in animals with diseased state of hypertension and diabetes. It is likely that DAA-I functions are modified to accommodate the ongoing vascular remodeling.

  16. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN)

    PubMed Central

    Han, Yaqin; Smith, Maree T.

    2013-01-01

    Chemotherapy induced peripheral neuropathy (CIPN) is a type of neuropathic pain that is a major dose-limiting side-effect of potentially curative cancer chemotherapy treatment regimens that develops in a “stocking and glove” distribution. When pain is severe, a change to less effective chemotherapy agents may be required, or patients may choose to discontinue treatment. Medications used to alleviate CIPN often lack efficacy and/or have unacceptable side-effects. Hence the unmet medical need for novel analgesics for relief of this painful condition has driven establishment of rodent models of CIPN. New insights on the pathobiology of CIPN gained using these models are discussed in this review. These include mitochondrial dysfunction and oxidative stress that are implicated as key mechanisms in the development of CIPN. Associated structural changes in peripheral nerves include neuronopathy, axonopathy and/or myelinopathy, especially intra-epidermal nerve fiber (IENF) degeneration. In patients with CIPN, loss of heat sensitivity is a hallmark symptom due to preferential damage to myelinated primary afferent sensory nerve fibers in the presence or absence of demyelination. The pathobiology of CIPN is complex as cancer chemotherapy treatment regimens frequently involve drug combinations. Adding to this complexity, there are also subtle differences in the pathobiological consequences of commonly used cancer chemotherapy drugs, viz platinum compounds, taxanes, vincristine, bortezomib, thalidomide and ixabepilone, on peripheral nerves. PMID:24385965

  17. Fine processes of Nestin-GFP–positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature

    PubMed Central

    Moss, Jonathan; Gebara, Elias; Sánchez-Pascual, Irene; O’Laoi, Ruadhan; El M’Ghari, Imane; Kocher-Braissant, Jacqueline; Ellisman, Mark H.; Toni, Nicolas

    2016-01-01

    Adult hippocampal neurogenesis relies on the activation of neural stem cells in the dentate gyrus, their division, and differentiation of their progeny into mature granule neurons. The complex morphology of radial glia-like (RGL) stem cells suggests that these cells establish numerous contacts with the cellular components of the neurogenic niche that may play a crucial role in the regulation of RGL stem cell activity. However, the morphology of RGL stem cells remains poorly described. Here, we used light microscopy and electron microscopy to examine Nestin-GFP transgenic mice and provide a detailed ultrastructural reconstruction analysis of Nestin-GFP–positive RGL cells of the dentate gyrus. We show that their primary processes follow a tortuous path from the subgranular zone through the granule cell layer and ensheathe local synapses and vasculature in the inner molecular layer. They share the ensheathing of synapses and vasculature with astrocytic processes and adhere to the adjacent processes of astrocytes. This extensive interaction of processes with their local environment could allow them to be uniquely receptive to signals from local neurons, glia, and vasculature, which may regulate their fate. PMID:27091993

  18. Assessment of peripheral lung mechanics.

    PubMed

    Bates, Jason H T; Suki, Béla

    2008-11-30

    The mechanical properties of the lung periphery are major determinants of overall lung function, and can change dramatically in disease. In this review we examine the various experimental techniques that have provided data pertaining to the mechanical properties of the lung periphery, together with the mathematical models that have been used to interpret these data. These models seek to make a clear distinction between the central and peripheral compartments of the lung by encapsulating functional differences between the conducing airways, the terminal airways and the parenchyma. Such a distinction becomes problematic in disease, however, because of the inevitable onset of regional variations in mechanical behavior throughout the lung. Accordingly, lung models are used both in the inverse sense as vehicles for extracting physiological insight from experimental data, and in the forward sense as virtual laboratories for the testing of specific hypothesis about mechanisms such as the effects of regional heterogeneities. Pathologies such as asthma, acute lung injury and emphysema can alter the mechanical properties of the lung periphery through the direct alteration of intrinsic tissue mechanics, the development of regional heterogeneities in mechanical function, and the complete derecruitment of airspaces due to airway closure and alveolar collapse. We are now beginning to decipher the relative contributions of these various factors to pathological alterations in peripheral lung mechanics, which may eventually lead to the development and assessment of novel therapies.

  19. Diagnostic approach to peripheral neuropathy

    PubMed Central

    Misra, Usha Kant; Kalita, Jayantee; Nair, Pradeep P.

    2008-01-01

    Peripheral neuropathy refers to disorders of the peripheral nervous system. They have numerous causes and diverse presentations; hence, a systematic and logical approach is needed for cost-effective diagnosis, especially of treatable neuropathies. A detailed history of symptoms, family and occupational history should be obtained. General and systemic examinations provide valuable clues. Neurological examinations investigating sensory, motor and autonomic signs help to define the topography and nature of neuropathy. Large fiber neuropathy manifests with the loss of joint position and vibration sense and sensory ataxia, whereas small fiber neuropathy manifests with the impairment of pain, temperature and autonomic functions. Electrodiagnostic (EDx) tests include sensory, motor nerve conduction, F response, H reflex and needle electromyography (EMG). EDx helps in documenting the extent of sensory motor deficits, categorizing demyelinating (prolonged terminal latency, slowing of nerve conduction velocity, dispersion and conduction block) and axonal (marginal slowing of nerve conduction and small compound muscle or sensory action potential and dennervation on EMG). Uniform demyelinating features are suggestive of hereditary demyelination, whereas difference between nerves and segments of the same nerve favor acquired demyelination. Finally, neuropathy is classified into mononeuropathy commonly due to entrapment or trauma; mononeuropathy multiplex commonly due to leprosy and vasculitis; and polyneuropathy due to systemic, metabolic or toxic etiology. Laboratory investigations are carried out as indicated and specialized tests such as biochemical, immunological, genetic studies, cerebrospinal fluid (CSF) examination and nerve biopsy are carried out in selected patients. Approximately 20% patients with neuropathy remain undiagnosed but the prognosis is not bad in them. PMID:19893645

  20. Different segments of the cerebral vasculature reveal specific endothelial specifications, while tight junction proteins appear equally distributed.

    PubMed

    Hanske, Sophie; Dyrna, Felix; Bechmann, Ingo; Krueger, Martin

    2017-04-01

    The identification of the "paucity of transportation vesicles" and "belt-like" tight junctions (TJs) of endothelial cells as the "morphological correlate of a blood-brain barrier" (BBB) by Reese and Karnovsky (J Cell Biol 34:207-217, 1967) has become textbook knowledge, and countless studies have helped to further define the elements, functions, and dynamics of the BBB. Most work, however, has focused on parenchymal capillaries or less clearly defined "microvessels", while a systematic study on similarities and differences between BBB architecture along the vascular tree within the brain and the meninges has been lacking. Since astrocytes induce endothelial cells to display BBB-typical characteristics by sonic hedgehog and Wnt/β-catenin signaling, we hypothesized that BBB-typical features should be most pronounced in parenchymal capillaries, where endothelium and astrocytes are separated by a basement membrane only. In contrast, this intimate contact is absent in leptomeningeal vessels, thereby potentially affecting BBB architecture. However, here, we show that claudin-3, claudin-5, zonula occludens-1, and occludin as typical constitutes of BBB TJs are comparably distributed in all segments of the parenchymal and the meningeal vascular tree of C57Bl6 mice. While electron microscopy revealed equally occluded interendothelial clefts, arterial vessels of the brain parenchyma but not within the meninges exhibited significantly longer TJ overlaps compared to capillaries. The highest density of endothelial vesicles was found in arterial vessels. Thus, endothelial expression of BBB-typical TJ proteins is not reflected by the distance to surrounding astrocytes, but electron microscopy reveals significant differences of endothelial specification along different segments of the CNS vasculature.

  1. A novel model for ectopic, chronic, intravital multiphoton imaging of bone marrow vasculature and architecture in split femurs

    PubMed Central

    Bălan, Mirela; Kiefer, Friedemann

    2015-01-01

    Creating a model for intravital visualization of femoral bone marrow, a major site of hematopoiesis in adult mammalian organisms, poses a serious challenge, in that it needs to overcome bone opacity and the inaccessibility of marrow. Furthermore, meaningful analysis of bone marrow developmental and differentiation processes requires the repetitive observation of the same site over long periods of time, which we refer to as chronic imaging. To surmount these issues, we developed a chronic intravital imaging model that allows the observation of split femurs, ectopically transplanted into a dorsal skinfold chamber of a host mouse. Repeated, long term observations are facilitated by multiphoton microscopy, an imaging technique that combines superior imaging capacity at greater tissue depth with low phototoxicity. The transplanted, ectopic femur was stabilized by its sterile environment and rapidly connected to the host vasculature, allowing further development and observation of extended processes. After optimizing transplant age and grafting procedure, we observed the development of new woven bone and maturation of secondary ossification centers in the transplanted femurs, preceded by the sprouting of a sinusoidal-like vascular network, which was almost entirely composed of femoral endothelial cells. After two weeks, the transplant was still populated with stromal and haematopoietic cells belonging both to donor and host. Over this time frame, the transplant partially retained myeloid progenitor cells with single and multi-lineage differentiation capacity. In summary, our model allowed repeated intravital imaging of bone marrow angiogenesis and hematopoiesis. It represents a promising starting point for the development of improved chronic optical imaging models for femoral bone marrow. PMID:28243515

  2. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    PubMed Central

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367

  3. Targeting the Tumour Vasculature: Exploitation of Low Oxygenation and Sensitivity to NOS Inhibition by Treatment with a Hypoxic Cytotoxin

    PubMed Central

    Baker, Jennifer H. E.; Kyle, Alastair H.; Bartels, Kirsten L.; Methot, Stephen P.; Flanagan, Erin J.; Balbirnie, Andrew; Cran, Jordan D.; Minchinton, Andrew I.

    2013-01-01

    Many cancer research efforts focus on exploiting genetic-level features that may be targeted for therapy. Tissue-level features of the tumour microenvironment also represent useful therapeutic targets. Here we investigate the presence of low oxygen tension and sensitivity to NOS inhibition of tumour vasculature as potential tumour-specific features that may be targeted by hypoxic cytotoxins, a class of therapeutics currently under investigation. We have previously demonstrated that tirapazamine (TPZ) mediates central vascular dysfunction in tumours. TPZ is a hypoxic cytotoxin that is also a competitive inhibitor of NOS. Here we further investigated the vascular-targeting activity of TPZ by combining it with NOS inhibitor L-NNA, or with low oxygen content gas breathing. Tumours were analyzed via multiplex immunohistochemical staining that revealed irreversible loss of perfusion and enhanced tumour cell death when TPZ was combined with either low oxygen or a NOS inhibitor. Tumour growth rate was reduced by TPZ + NOS inhibition, and tumours previously resistant to TPZ-mediated vascular dysfunction were sensitized by low oxygen breathing. Additional mapping analysis suggests that tumours with reduced vascular-associated stroma may have greater sensitivity to these effects. These results indicate that poorly oxygenated tumour vessels, also being abnormally organized and with inadequate smooth muscle, may be successfully targeted for significant anti-cancer effects by inhibition of NOS and hypoxia-activated prodrug toxicity. This strategy illustrates a novel use of hypoxia-activated cytotoxic prodrugs as vascular targeting agents, and also represents a novel mechanism for targeting tumour vessels. PMID:24204680

  4. Spatial variation in sympathetic influences on the vasculature of the synovium and medial collateral ligament of the rabbit knee joint.

    PubMed

    McDougall, J J; Ferrell, W R; Bray, R C

    1997-09-01

    1. Laser Doppler perfusion imaging was used to assess the role of the sympathetic nervous system in the control of blood flow to the medial collateral ligament and capsule (synovium and overlying fibrous tissues) of the rabbit knee joint. 2. Electrical stimulation of the saphenous nerve (width 1 ms; amplitude 20V; 1-30 Hz) produced a frequency-dependent vasoconstriction of knee joint vasculature. The response was maximal at 30 Hz and gave the greatest fall in perfusion at the femoral insertion of the ligament (by 33.8 +/- 7.4%, mean +/- S.E.M.; n = 5-6) and the smallest decrease at the tibial insertion of the ligament (by 10.6 +/- 2.9%). 3. Topical application of phentolamine (10(-6) mol) had no significant effect on basal knee joint blood flow. However, it abolished the nerve-mediated constrictor responses in all regions of the medial collateral ligament and synovium at all frequencies. 4. Topical administration of adrenaline (10(-14) to 10(-7) mol) caused a dose-dependent decrease in knee joint blood flow with the highest dose producing > 75% reduction in perfusion at all areas. 5. There was no evidence of a reactive hyperaemia in the 5 min following a 5 min period of femoral artery occlusion. Artificial manipulation of arterial blood pressure by intravenous infusion or withdrawal of blood caused a proportional change in ligament and synovial blood flow. These observations may indicate a lack of autoregulation in the joint and its exclusion from baroreflex modulation. 6. These results suggest a potential role for the sympathetic nervous system in the control of knee joint blood flow. Neuromodulation of ligament perfusion appears to predominate at the femoral insertion and this could prove to have functional significance.

  5. Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging

    PubMed Central

    Mordant, D J; Al-Abboud, I; Muyo, G; Gorman, A; Harvey, A R; McNaught, A I

    2014-01-01

    Purpose To determine whether there are differences in retinal vascular oxygen saturation measurements, estimated using a hyperspectral fundus camera, between normal eyes and treated eyes of subjects with asymmetrical primary open-angle glaucoma (POAG). Methods A noninvasive hyperspectral fundus camera was used to acquire spectral images of the retina at wavelengths between 556 and 650 nm in 2-nm increments. In total, 14 normal eyes and both eyes of 11 treated POAG subjects were imaged and analyzed using algorithms that use the spectral variation of the optical densities of blood vessels to estimate the oxygen saturation of blood within the retinal vasculature. In the treated POAG group, each of the eyes were categorized, based on the mean deviation of the Humphrey visual-field analyzer result, as either more-advanced or less-advanced, glaucomatous eyes. Unpaired t-tests (two-tailed) with Welch's correction were used to compare the mean oxygen saturation between the normal subjects and the treated POAG subgroups. Results In less-advanced and more-advanced-treated POAG eyes, mean retinal venular oxygen saturations (48.2±21.6% and 42.6±18.8%, respectively) were significantly higher than in normal eyes (27.9±9.9% P=0.03 and 0.01, respectively). Arteriolar oxygen saturation was not significantly different between normal eyes and treated POAG eyes. Conclusions The increased oxygen saturation of the retinal venules in advanced-treated POAG eyes may indicate reduced metabolic consumption of oxygen in the inner retinal tissues. PMID:25060843

  6. FOXF1 Transcription Factor Is Required for Formation of Embryonic Vasculature by Regulating VEGF Signaling in Endothelial Cells

    PubMed Central

    Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A.; Bolte, Craig S.; Shannon, John M.; Kalin, Tanya V.; Kalinichenko, Vladimir V.

    2016-01-01

    Rationale Inactivating mutations in the FOXF1 gene locus are frequently found in patients with Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACD/MPV), a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardio-vascular and gastro-intestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal and gall bladder morphogenesis. Objective While FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and ACD/MPV patients remain uncharacterized due to lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. Methods and Results A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia and vascular abnormalities in the lung, placenta, yolk sac and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited VEGF signaling and decreased expression of endothelial genes critical for vascular development, including VEGF receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2 and the non-coding RNA Fendrr. ChIP assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1 and Tie2 genes are direct transcriptional targets of FOXF1. Conclusions FOXF1 is required for formation of embryonic vasculature by regulating endothelial genes critical for vascular development and VEGF signaling. PMID:25091710

  7. Peripheral visual performance enhancement by neurofeedback training.

    PubMed

    Nan, Wenya; Wan, Feng; Lou, Chin Ian; Vai, Mang I; Rosa, Agostinho

    2013-12-01

    Peripheral visual performance is an important ability for everyone, and a positive inter-individual correlation is found between the peripheral visual performance and the alpha amplitude during the performance test. This study investigated the effect of alpha neurofeedback training on the peripheral visual performance. A neurofeedback group of 13 subjects finished 20 sessions of alpha enhancement feedback within 20 days. The peripheral visual performance was assessed by a new dynamic peripheral visual test on the first and last training day. The results revealed that the neurofeedback group showed significant enhancement of the peripheral visual performance as well as the relative alpha amplitude during the peripheral visual test. It was not the case in the non-neurofeedback control group, which performed the tests within the same time frame as the neurofeedback group but without any training sessions. These findings suggest that alpha neurofeedback training was effective in improving peripheral visual performance. To the best of our knowledge, this is the first study to show evidence for performance improvement in peripheral vision via alpha neurofeedback training.

  8. Drug-eluting stents in the management of peripheral arterial disease.

    PubMed

    Bosiers, Marc; Cagiannos, Catherine; Deloose, Koen; Verbist, Jürgen; Peeters, Patrick

    2008-01-01

    Since major meta-analyses of randomized controlled trials in interventional cardiology showed the potential of drug-eluting stents in decreasing restenosis and reintervention rates after coronary artery stenting, one of the next steps in the treatment of arterial occlusive disease is the transfer of the active coating technology towards peripheral arterial interventions. In this manuscript, we aim to provide a literature overview on available peripheral (lower limb, renal, and supra-aortic) drug-eluting stent applications, debate the cost implications, and give recommendations for future treatment strategies.

  9. Drug-eluting stents in the management of peripheral arterial disease

    PubMed Central

    Bosiers, Marc; Cagiannos, Catherine; Deloose, Koen; Verbist, Jürgen; Peeters, Patrick

    2008-01-01

    Since major meta-analyses of randomized controlled trials in interventional cardiology showed the potential of drug-eluting stents in decreasing restenosis and reintervention rates after coronary artery stenting, one of the next steps in the treatment of arterial occlusive disease is the transfer of the active coating technology towards peripheral arterial interventions. In this manuscript, we aim to provide a literature overview on available peripheral (lower limb, renal, and supra-aortic) drug-eluting stent applications, debate the cost implications, and give recommendations for future treatment strategies. PMID:18827906

  10. Management of left ventricular distension during peripheral extracorporeal membrane oxygenation for cardiogenic shock.

    PubMed

    Soleimani, B; Pae, W E

    2012-07-01

    The application of peripheral veno-arterial extracorporeal membrane oxygenation in the management of inotrope-refractory cardiogenic shock has proven controversial because of concerns about sub-optimal drainage of the left heart, resulting in left ventricular distension and pulmonary oedema. In this article, we will discuss the pathophysiological basis and clinical implications of left ventricular distension following institution of peripheral extracorporeal life support. We will also review the clinical strategies used to circumvent left ventricular distension and pulmonary oedema in these patients.

  11. Targeting Breast Cancer Vasculature

    DTIC Science & Technology

    2006-03-01

    Scadden, D. T. & Weissleder, R. (2000) Nat. Biotechnol. 18, 410–414. 28. Bulte, J. W. M., Douglas, T., Witwer, B., Zhang, S., Strable, E., Lewis , B. K...Liu, J., Razani, B., Tang, S., Terman , B.I., Ware, J.A., Lisanti, M.P., 1999. Angiogenesis activators and inhibitors differentially regulate caveolin-1...peptide produced a fibrillar network in mouse Lewis lung carcinoma similar to that seen in the tumors after i.v. injection of the peptide (Fig. 2A

  12. Treatment of Peripheral Precocious Puberty

    PubMed Central

    Schoelwer, Melissa; Eugster, Erica A.

    2017-01-01

    There are many etiologies of peripheral precocious puberty (PPP) with diverse manifestations resulting from exposure to androgens, estrogens, or both. The clinical presentation depends on the underlying process and may be acute or gradual. The primary goals of therapy are to halt pubertal development and restore sex steroids to prepubertal values. Attenuation of linear growth velocity and rate of skeletal maturation in order to maximize height potential are additional considerations for many patients. McCune-Albright syndrome (MAS) and familial male-limited precocious puberty (FMPP) represent rare causes of PPP that arise from activating mutations in GNAS1 and the LH receptor gene, respectively. Several different therapeutic approaches have been investigated for both conditions with variable success. Experience to date suggests that the ideal therapy for precocious puberty secondary to MAS in girls remains elusive. In contrast, while the number of treated patients remains small, several successful therapeutic options for FMPP are available. PMID:26680582

  13. Updates in diabetic peripheral neuropathy.

    PubMed

    Juster-Switlyk, Kelsey; Smith, A Gordon

    2016-01-01

    Diabetes has become one of the largest global health-care problems of the 21 (st) century. According to the Centers for Disease Control and Prevention, the population prevalence of diabetes in the US is approaching 10% and is increasing by 5% each year. Diabetic neuropathy is the most common complication associated with diabetes mellitus. Diabetes causes a broad spectrum of neuropathic complications, including acute and chronic forms affecting each level of the peripheral nerve, from the root to the distal axon. This review will focus on the most common form, distal symmetric diabetic polyneuropathy. There has been an evolution in our understanding of the pathophysiology and the management of diabetic polyneuropathy over the past decade. We highlight these new perspectives and provide updates from the past decade of research.

  14. Updates in diabetic peripheral neuropathy

    PubMed Central

    Juster-Switlyk, Kelsey; Smith, A. Gordon

    2016-01-01

    Diabetes has become one of the largest global health-care problems of the 21 st century. According to the Centers for Disease Control and Prevention, the population prevalence of diabetes in the US is approaching 10% and is increasing by 5% each year. Diabetic neuropathy is the most common complication associated with diabetes mellitus. Diabetes causes a broad spectrum of neuropathic complications, including acute and chronic forms affecting each level of the peripheral nerve, from the root to the distal axon. This review will focus on the most common form, distal symmetric diabetic polyneuropathy. There has been an evolution in our understanding of the pathophysiology and the management of diabetic polyneuropathy over the past decade. We highlight these new perspectives and provide updates from the past decade of research. PMID:27158461

  15. Peripheral Developing Odontoma or Peripheral Ameloblastic Fibroodontoma: A Rare Challenging Case

    PubMed Central

    Atarbashi Moghadam, Saede

    2016-01-01

    Peripheral odontogenic lesions are considered to be rare within the classification of odontogenic tumors. They share the same microscopic characteristics of their central counterparts. Here, we report an ulcerated mass of the maxillary gingiva that on histopathological examination was diagnosed as peripheral developing odontoma or peripheral ameloblastic fibroodontoma. The diagnosis of this tumor is challenging and may lead to unnecessary treatment. PMID:26981293

  16. Raman microspectroscopy for visualization of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  17. Beauty and cuteness in peripheral vision

    PubMed Central

    Kuraguchi, Kana; Ashida, Hiroshi

    2015-01-01

    Guo et al. (2011) showed that attractiveness was detectable in peripheral vision. Since there are different types of attractiveness (Rhodes, 2006), we investigated how beauty and cuteness are detected in peripheral vision with a brief presentation. Participants (n = 45) observed two Japanese female faces for 100 ms, then were asked to respond which face was more beautiful (or cuter). The results indicated that both beauty and cuteness were detectable in peripheral vision, but not in the same manner. Discrimination rates for judging beauty were invariant in peripheral and central vision, while discrimination rates for judging cuteness declined in peripheral vision as compared with central vision. This was not explained by lower resolution in peripheral vision. In addition, for male participants, it was more difficult to judge cuteness than beauty in peripheral vision, thus suggesting that gender differences can have a certain effect when judging cuteness. Therefore, central vision might be suitable for judging cuteness while judging beauty might not be affected by either central or peripheral vision. This might be related with the functional difference between beauty and cuteness. PMID:25999883

  18. Peripheral Arterial Disease (P.A.D.)

    MedlinePlus

    ... turn Javascript on. Peripheral Artery Disease (P.A.D.) What is P.A.D.? Arteries Clogged With Plaque Peripheral arterial disease (P. ... button on your keyboard.) Why Is P.A.D. Dangerous? Click for more information Blocked blood flow ...

  19. Beauty and cuteness in peripheral vision.

    PubMed

    Kuraguchi, Kana; Ashida, Hiroshi

    2015-01-01

    Guo et al. (2011) showed that attractiveness was detectable in peripheral vision. Since there are different types of attractiveness (Rhodes, 2006), we investigated how beauty and cuteness are detected in peripheral vision with a brief presentation. Participants (n = 45) observed two Japanese female faces for 100 ms, then were asked to respond which face was more beautiful (or cuter). The results indicated that both beauty and cuteness were detectable in peripheral vision, but not in the same manner. Discrimination rates for judging beauty were invariant in peripheral and central vision, while discrimination rates for judging cuteness declined in peripheral vision as compared with central vision. This was not explained by lower resolution in peripheral vision. In addition, for male participants, it was more difficult to judge cuteness than beauty in peripheral vision, thus suggesting that gender differences can have a certain effect when judging cuteness. Therefore, central vision might be suitable for judging cuteness while judging beauty might not be affected by either central or peripheral vision. This might be related with the functional difference between beauty and cuteness.

  20. Peripheral Ulcerative Keratitis with Pyoderma Gangrenosum

    PubMed Central

    Imbernón-Moya, Adrián; Vargas-Laguna, Elena; Aguilar, Antonio; Gallego, Miguel Ángel; Vergara, Claudia; Nistal, María Fernanda

    2015-01-01

    Pyoderma gangrenosum is an unusual necrotizing noninfective and ulcerative skin disease whose cause is unknown. Ophthalmic involvement in pyoderma gangrenosum is an unusual event. Only a few cases have been reported, from which we can highlight scleral, corneal, and orbital cases. Peripheral ulcerative keratitis is a process which destroys the peripheral cornea. Its cause is still unknown although it is often associated with autoimmune conditions. Pyoderma gangrenosum should be included in the differential diagnosis of peripheral ulcerative keratitis. Early recognition of these manifestations can vary the prognosis by applying the appropriate treatment. We introduce a 70-year-old woman who suffered pyoderma gangrenosum associated with peripheral ulcerative keratitis in her left eye. The patient's skin lesions and peripheral keratitis responded successfully to systemic steroids and cyclosporine A. PMID:26527531

  1. Peripheral iridotomy for pigmentary glaucoma

    PubMed Central

    Michelessi, Manuele; Lindsley, Kristina

    2016-01-01

    Background Glaucoma is a chronic optic neuropathy characterized by retinal ganglion cell death resulting in damage to the optic nerve head and the retinal nerve fiber layer. Pigment dispersion syndrome is characterized by a structural disturbance in the iris pigment epithelium (the densely pigmented posterior surface of the iris) that leads to dispersion of the pigment and its deposition on various structures within the eye. Pigmentary glaucoma is a specific form of open-angle glaucoma found in patients with pigment dispersion syndrome. Topcial medical therapy is usually the first-line treatment; however, peripheral laser iridotomy has been proposed as an alternate treatment. Peripheral laser iridotomy involves creating an opening in the iris tissue to allow drainage of fluid from the posterior chamber to the anterior chamber and vice versa. Equalizing the pressure within the eye may help to alleviate the friction that leads to pigment dispersion and prevent visual field deterioration. However, the effectiveness of peripheral laser iridotomy in reducing the development or progression of pigmentary glaucoma is unknown. Objectives The objective of this review was to assess the effects of peripheral laser iridotomy compared with other interventions, including medication, trabeculoplasty, and trabeculectomy, or no treatment, for pigment dispersion syndrome and pigmentary glaucoma. Search methods We searched a number of electronic databases including CENTRAL, MEDLINE and EMBASE and clinical trials websites such as (mRCT) and ClinicalTrials.gov. We last searched the electronic databases on 2 November 2015. Selection criteria We included randomized controlled trials (RCTs) that had compared peripheral laser iridotomy versus no treatment or other treatments for pigment dispersion syndrome and pigmentary glaucoma. Data collection and analysis We used standard methodological procedures for systematic reviews. Two review authors independently screened articles for eligibility

  2. β-Secretase-1 elevation in aged monkey and Alzheimer's disease human cerebral cortex occurs around vasculature in partnership with multisystem axon terminal pathogenesis and β-amyloid accumulation

    PubMed Central

    Cai, Yan; Xiong, Kun; Zhang, Xue-Mei; Cai, Huaibin; Luo, Xue-Gang; Feng, Jia-Chun; Clough, Richard W.; Struble, Robert G.; Patrylo, Peter R.; Chu, Yaping; Kordower, Jeffrey H.; Yan, Xiao-Xin

    2010-01-01

    Alzheimer's disease (AD) is the most common dementia-causing disorder in the elderly, which may relate to multiple risk factors and is pathologically featured by cerebral hypometabolism, paravascular β-amyloid (Aβ) plaques, neuritic dystrophy and intra-neuronal aggregation of phosphorylated-tau. To explore potential pathogenic link among some of these lesions, we examined β-secretase-1 (BACE1) alteration relative to Aβ deposition, neuritic pathology and vascular organization in aged monkey and AD human cerebral cortex. Western blot analyses detected increased levels of BACE1 proteins and β-site-cleavage amyloid precursor protein C-terminal fragments in plaque-bearing human and monkey cortex relative to controls. In immunohistochemistry, locally elevated BACE1 immunoreactivity (IR) occurred in AD but not in control human cortex, with a trend of increased overall density among cases with greater plaque pathology. In double labeling preparations, BACE1 IR colocalized with immunolabeling for Aβ but not for phosphorylated tau. In perfusion-fixed monkey cortex, locally increased BACE1 IR co-existed with intra-axonal and extracellular Aβ IR among virtually all neuritic plaques ranging from primitive to typical cored forms. This BACE1 labeling localized to swollen/sprouting axon terminals that might co-express one or another neuronal phenotype marker (GABAergic, glutamatergic, cholinergic or catecholaminergic). Importantly, these BACE1-labeled dystrophic axons resided near or in direct contact with blood vessels. These finds implicate that plaque formation in AD or normal aging primates relate to a multisystem axonal pathogenesis that occurs in partnership with potential vascular or metabolic deficit. The data provide a tangible mechanistic explanation as to why senile plaques are present preferentially near cerebral vasculature. PMID:20726888

  3. Evaluation and management of peripheral neuropathy in diabetic patients with cancer.

    PubMed

    Visovsky, Constance; Meyer, Rachel R; Roller, Jeffre; Poppas, Megan

    2008-04-01

    Recently, chemotherapy-induced peripheral neuropathy has received a great deal of attention. However, the interaction of diabetic neuropathy with potentially neurotoxic chemotherapy is far less understood. The incidence of type II diabetes has risen exponentially in the past two decades. In concert with the rise in type II diabetes, the number of individuals with diabetes who need chemotherapy for cancer also is expected to increase. Diabetic neuropathy and the neurotoxic effects of chemotherapy have a significant potential to cause functional disability. Diabetics may be most at risk for the effects of neurotoxic agents on peripheral nerve functioning, in addition to the other effects induced by chemotherapeutic agents. The purpose of this article is to review the evaluation, management, and clinical implications of peripheral neuropathy in patients with cancer and diabetes.

  4. Chemotherapy-induced peripheral neuropathy.

    PubMed

    Fehrenbacher, Jill C

    2015-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is common in patients receiving anticancer treatment and can affect survivability and long-term quality of life of the patient following treatment. The symptoms of CIPN primarily include abnormal sensory discrimination of touch, vibration, thermal information, and pain. There is currently a paucity of pharmacological agents to prevent or treat CIPN. The lack of efficacious therapeutics is due, at least in part, to an incomplete understanding of the mechanisms by which chemotherapies alter the sensitivity of sensory neurons. Although the clinical presentation of CIPN can be similar with the various classes of chemotherapeutic agents, there are subtle differences, suggesting that each class of drugs might induce neuropathy via different mechanisms. Multiple mechanisms have been proposed to underlie the development and maintenance of neuropathy; however, most pharmacological agents generated from preclinical experiments have failed to alleviate the symptoms of CIPN in the clinic. Further research is necessary to identify the specific mechanisms by which each class of chemotherapeutics induces neuropathy.

  5. Malignant Peripheral Nerve Sheath Tumors.

    PubMed

    Durbin, Adam D; Ki, Dong Hyuk; He, Shuning; Look, A Thomas

    2016-01-01

    Malignant peripheral nerve sheath tumors (MPNST) are tumors derived from Schwann cells or Schwann cell precursors. Although rare overall, the incidence of MPNST has increased with improved clinical management of patients with the neurofibromatosis type 1 (NF1) tumor predisposition syndrome. Unfortunately, current treatment modalities for MPNST are limited, with no targeted therapies available and poor efficacy of conventional radiation and chemotherapeutic regimens. Many murine and zebrafish models of MPNST have been developed, which have helped to elucidate the genes and pathways that are dysregulated in MPNST tumorigenesis, including the p53, and the RB1, PI3K-Akt-mTOR, RAS-ERK and Wnt signaling pathways. Preclinical results have suggested that new therapies, including mTOR and ERK inhibitors, may synergize with conventional chemotherapy in human tumors. The discovery of new genome editing technologies, like CRISPR-cas9, and their successful application to the zebrafish model will enable rapid progress in the faithful modeling of MPNST molecular pathogenesis. The zebrafish model is especially suited for high throughput screening of new targeted therapeutics as well as drugs approved for other purposes, which may help to bring enhanced treatment modalities into human clinical trials for this devastating disease.

  6. Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity

    PubMed Central

    2013-01-01

    Background The meninges (arachnoid and pial membranes) and associated vasculature (MAV) and choroid plexus are important in maintaining cerebrospinal fluid (CSF) generation and flow. MAV vasculature was previously observed to be adversely affected by environmentally-induced hyperthermia (EIH) and more so by a neurotoxic amphetamine (AMPH) exposure. Herein, microarray and RT-PCR analysis was used to compare the gene expression profiles between choroid plexus and MAV under control conditions and at 3 hours and 1 day after EIH or AMPH exposure. Since AMPH and EIH are so disruptive to vasculature, genes related to vasculature integrity and function were of interest. Results Our data shows that, under control conditions, many of the genes with relatively high expression in both the MAV and choroid plexus are also abundant in many epithelial tissues. These genes function in transport of water, ions, and solutes, and likely play a role in CSF regulation. Most genes that help form the blood–brain barrier (BBB) and tight junctions were also highly expressed in MAV but not in choroid plexus. In MAV, exposure to EIH and more so to AMPH decreased the expression of BBB-related genes such as Sox18, Ocln, and Cldn5, but they were much less affected in the choroid plexus. There was a correlation between the genes related to reactive oxidative stress and damage that were significantly altered in the MAV and choroid plexus after either EIH or AMPH. However, AMPH (at 3 hr) significantly affected about 5 times as many genes as EIH in the MAV, while in the choroid plexus EIH affected more genes than AMPH. Several unique genes that are not specifically related to vascular damage increased to a much greater extent after AMPH compared to EIH in the MAV (Lbp, Reg3a, Reg3b, Slc15a1, Sct and Fst) and choroid plexus (Bmp4, Dio2 and Lbp). Conclusions Our study indicates that the disruption of choroid plexus function and damage produced by AMPH and EIH is significant, but the changes

  7. Combination of an optical parametric oscillator and quantum-dots 655 to improve imaging depth of vasculature by intravital multicolor two-photon microscopy.

    PubMed

    Ricard, Clément; Lamasse, Lisa; Jaouen, Alexandre; Rougon, Geneviève; Debarbieux, Franck

    2016-06-01

    Simultaneous imaging of different cell types and structures in the mouse central nervous system (CNS) by intravital two-photon microscopy requires the characterization of fluorophores and advances in approaches to visualize them. We describe the use of a two-photon infrared illumination generated by an optical parametric oscillator (OPO) on quantum-dots 655 (QD655) nanocrystals to improve resolution of the vasculature deeper in the mouse brain both in healthy and pathological conditions. Moreover, QD655 signal can be unmixed from the DsRed2, CFP, EGFP and EYFP fluorescent proteins, which enhances the panel of multi-parametric correlative investigations both in the cortex and the spinal cord.

  8. Effects of melatonin on peripheral nerve regeneration.

    PubMed

    Turgut, Mehmet; Kaplan, Süleyman

    2011-05-01

    In the available literature, there are thousands of studies on peripheral nerve regeneration using many nerves of several animals at different ages with various types of lesions and different methods of evaluation at certain time of follow-up. Despite many experimental data and clinical observations, there is still no ideal treatment method enhancing peripheral nerve regeneration. In clinical practice, various types of surgical nerve repair techniques do not frequently result in complete recovery due to neuroma formation, lipid peroxidative damage, ischemia and other factors. Recently, a number of neuroscientists demonstrated that pineal neurohormone melatonin (MLT) has an effect on the morphologic features of the nerve tissue, suggesting its neuroprotective, free radical scavenging, antioxidative, and analgesic effects in degenerative diseases of peripheral nerves. At present, it is widely accepted that MLT has a useful effect on axon length and sprouting after traumatic events to peripheral nerves. Our studies using various experimental injury models clearly suggest positive effects of MLT on the number of axons, thickness of myelin sheath by inhibition of collagen accumulation and neuroma formation following traumatic events to peripheral nerves, myelination of developing peripheral nerve after intrauterine ethanol exposure. Nevertheless, further experimental and randomized controlled clinical studies are vital to identify the clinical use of MLT hormone. This is an overview of recent patents and current literature in terms of the effects of MLT on peripheral nerve regeneration based on a critical analysis of electrophysiological, biochemical and light and electron microscopic findings, in addition to functional observations.

  9. Optical coherence tomography and hyperspectral imaging of vascular recovery in a model of peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Poole, Kristin M.; Sit, Wesley W.; Tucker-Schwartz, Jason M.; Duvall, Craig L.; Skala, Melissa C.

    2013-03-01

    Peripheral arterial disease (PAD) leads to an increased risk of myocardial infarction and stroke, increased mortality, and reduced quality of life. The mouse hind limb ischemia (HLI) model is the most commonly used system for studying the mechanisms of collateral vessel formation and for testing new PAD therapies, but there is a lack of techniques for acquiring physiologically-relevant, quantitative data intravitally in this model. In this work, non-invasive, quantitative optical imaging techniques were applied to the mouse HLI model over a time course. Optical coherence tomography (OCT) imaged changes in blood flow (Doppler OCT) and microvessel morphology (speckle variance OCT) through the skin of haired mice with high resolution. Hyperspectral imaging was also used to quantify blood oxygenation. In ischemic limbs, blood oxygenation in the footpad was substantially reduced after induction of ischemia followed by complete recovery by three weeks, consistent with standard measures. Three dimensional images of the vasculature distal to vessel occlusion acquired with speckle variance OCT revealed changes in OCT flow signal and vessel morphology. Taken together, OCT and hyperspectral imaging enable intravital acquisition of both functional and morphological data which fill critical gaps in understanding structure-function relationships that contribute to recovery in the mouse HLI model. Therefore, these optical imaging methods hold promise as tools for studying the mechanisms of vascular recovery and evaluating novel therapeutic treatments in preclinical studies.

  10. Systemic administration of a TLR7 ligand leads to transient immune incompetence due to peripheral-blood leukocyte depletion.

    PubMed

    Gunzer, Matthias; Riemann, Helge; Basoglu, Yasmin; Hillmer, Anja; Weishaupt, Carsten; Balkow, Sandra; Benninghoff, Bernd; Ernst, Beat; Steinert, Meike; Scholzen, Thomas; Sunderkötter, Cord; Grabbe, Stephan

    2005-10-01

    Toll-like receptor (TLR) ligands lead to the induction of proinflammatory cytokines and are potent enhancers of specific immune responses. We show here that a single systemic dose of R-848, a ligand for TLR7, potently enhanced hapten sensitization during the induction of contact hypersensitivity (CHS). However, R-848 administration also resulted in a rapid and almost complete depletion of leukocytes from the blood. This effect was transient and was associated with general induction of endothelial adhesiveness. In response to R-848, endothelial cells up-regulated adhesion molecules in vitro and in vivo and leukocytes exhibited increased rolling on endothelia in R-848-treated animals. Adhesion molecule induction appeared to be a direct effect, because endothelial cells expressed TLR7 in vitro and in vivo. After R-848 treatment, the tissue residence time of leukocytes was markedly prolonged in all major peripheral organs. The resulting transiently reduced availability of peripheral-blood leukocytes (PBLs) (TRAP) significantly inhibited otherwise potent CHS responses until the effector cells returned. Thus, although TLR7 ligands are effective adjuvants for the induction of cell-mediated immunity, they can transiently inhibit the elicitation of localized immune responses, possibly due to a systemic endothelial activation throughout the vasculature.

  11. A templated agarose scaffold for axon guidance in the central and peripheral nervous system

    NASA Astrophysics Data System (ADS)

    Gros, Thomas Richard

    This thesis examined the hypothesis that axonal guidance could be improved in the central and peripheral nervous systems using a highly linearized templated agarose scaffold. In the present study we examined whether a templated agarose scaffold improved axon retention across a large central nervous system (CNS) lesion and how cellular and axonal orientation was affected within the scaffold channels. The "physical" guidance from the scaffold was applied to an existing CNS "chemical" guidance strategy, shown to promote axons beyond the lesion site, to enhance the number of crossing axons in larger, disorganized, lesions. Specifically, there was the greatest number of long-tract sensory axons reaching the distal aspect of the lesion when the templated agarose scaffold was combined with a neurotrophic source of NT-3 beyond the lesion site and a conditioning lesion, to enhance chemical axon guidance and the intrinsic growth state of axons, respectively. When comparing the scaffold implant to a cell suspension grafts, we found a higher retention of long-tract ascending (sensory) axons and descending (motor) axons crossing large lesions (2mm). The enhanced axon retention may be attributed to the finding that cellular orientation within the scaffold channels is highly linear, thus promoting a less tortuous environment for axon orientation and bridging. Although an enhanced number of axons were able to cross the lesion, the axons did not repenetrate the host tissue due to a reactive cell layer, present only in scaffold the implant groups. Additionally, a peripheral nerve conduit, with the agarose scaffold as the core, displayed biocompatiablility and supported axon growth and vasculature beyond the clinically applicable distance of 4mm. Thus, the templated agarose scaffold enhances axon retention and guidance within CNS injury sites and has potential applications to the PNS.

  12. Systems and methods to control multiple peripherals with a single-peripheral application code

    DOEpatents

    Ransom, Ray M.

    2013-06-11

    Methods and apparatus are provided for enhancing the BIOS of a hardware peripheral device to manage multiple peripheral devices simultaneously without modifying the application software of the peripheral device. The apparatus comprises a logic control unit and a memory in communication with the logic control unit. The memory is partitioned into a plurality of ranges, each range comprising one or more blocks of memory, one range being associated with each instance of the peripheral application and one range being reserved for storage of a data pointer related to each peripheral application of the plurality. The logic control unit is configured to operate multiple instances of the control application by duplicating one instance of the peripheral application for each peripheral device of the plurality and partitioning a memory device into partitions comprising one or more blocks of memory, one partition being associated with each instance of the peripheral application. The method then reserves a range of memory addresses for storage of a data pointer related to each peripheral device of the plurality, and initializes each of the plurality of peripheral devices.

  13. [When prions use the systems of communication between the immune system and the peripheral nervous system].

    PubMed

    Dorban, Gauthier; Antoine, Nadine; Defaweux, Valérie

    2010-01-01

    Prion disease pathogenesis has been largely studied since the inter-species transmissibility of the infectious protein (PrPSc), the oral uptake as natural route of infection and the exceptional implication in a problem of public health were highlighted. Two sequential preclinical stages are observed before the development of irreversible and fatal lesions in the central nervous system: the lymphoinvasion and the neuroinvasion. The first is characterized by the accumulation of PrPSc within lymphoid tissues and the second by PrPSc scattering the peripheral nervous system towards the central nervous system. The mechanisms involved in the communication between the immune and the peripheral nervous system are still debated. Recent studies even suggest that neuroinvasion can occur through the hematogenous route, independently of the peripheral nervous system. This review analyses (i) the role of immune cells, implicated in prion pathogenesis: dendritic cells as PrPSc vehicle, follicular dendritic cells as PrPSc accumulator and nerve fibres as PrPSc driver and (ii) the respective relations they maintain with peripheral nerve fibres to migrate to the brain.

  14. Peripheral neuropathy in subclinical hypothyroidism.

    PubMed

    Misiunas, A; Niepomniszcze, H; Ravera, B; Faraj, G; Faure, E

    1995-08-01

    Alterations in peripheral nerves are well documented in overt myxedema but not in subclinical hypothyroidism. We performed electrophysiologic studies to investigate such abnormalities in patients with normal serum total T4 and hyperresponsiveness of TSH to TRH, either with normal or high levels of basal circulating TSH. Subjects were divided in three groups: (i) Hypothyroidism Stage I (group () (n = 17, mean age = 39 +/- 34 years), T4 = 9 +/- 0.7 micrograms/dL, TSH = 4.3 +/- 0.4 microU/mL, sTSH post-TRH (peak value) = 37.6 +/- 1.6 microU/mL; (ii) Hypothyroidism Stage II (group II) (n = 10, mean age: 43 +/- 6 years), T4 = 7.7 +/- 0.8 microgram/dL, TSH = 20 +/- 5 microU/mL, TSH post-TRH > 50 microU/mL; (iii) Control Group (n = 20, mean age 41 +/- 5 years), healthy subjects. All patients and controls were women. TRH test consisted in the i.v. injection of 200 micrograms TRH (normal peak value up to 25 microU/mL, normal basal TSH < 5.5 microU/mL. None of the patients had carpal tunnel syndrome or any other neurological or metabolic disturbances. We studied the distal motor latencies, motor and sensory amplitudes, and nerve conduction velocities. The motor parameters were measured in the median and external sciatic popliteal (ESP) nerves, and the sensory parameters in the median and sural nerves. In most cases values were obtained from both right and left nerves. Motor parameters: no differences were found between all groups for conduction velocities (CV).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Acupuncture for peripheral joint osteoarthritis

    PubMed Central

    Manheimer, Eric; Cheng, Ke; Linde, Klaus; Lao, Lixing; Yoo, Junghee; Wieland, Susan; van der Windt, Daniëlle AWM; Berman, Brian M; Bouter, Lex M

    2011-01-01

    Background Peripheral joint osteoarthritis is a major cause of pain and functional limitation. Few treatments are safe and effective. Objectives To assess the effects of acupuncture for treating peripheral joint osteoarthritis. Search strategy We searched the Cochrane Central Register of Controlled Trials (The Cochrane Library 2008, Issue 1), MEDLINE, and EMBASE (both through December 2007), and scanned reference lists of articles. Selection criteria Randomized controlled trials (RCTs) comparing needle acupuncture with a sham, another active treatment, or a waiting list control group in people with osteoarthritis of the knee, hip, or hand. Data collection and analysis Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We calculated standardized mean differences using the differences in improvements between groups. Main results Sixteen trials involving 3498 people were included. Twelve of the RCTs included only people with OA of the knee, 3 only OA of the hip, and 1 a mix of people with OA of the hip and/or knee. In comparison with a sham control, acupuncture showed statistically significant, short-term improvements in osteoarthritis pain (standardized mean difference -0.28, 95% confidence interval -0.45 to -0.11; 0.9 point greater improvement than sham on 20 point scale; absolute percent change 4.59%; relative percent change 10.32%; 9 trials; 1835 participants) and function (-0.28, -0.46 to -0.09; 2.7 point greater improvement on 68 point scale; absolute percent change 3.97%; relative percent change 8.63%); however, these pooled short-term benefits did not meet our predefined thresholds for clinical relevance (i.e. 1.3 points for pain; 3.57 points for function) and there was substantial statistical heterogeneity. Additionally, restriction to sham-controlled trials using shams judged most likely to adequately blind participants to treatment assignment (which were also the same shams judged most

  16. The heme precursor delta-aminolevulinate blocks peripheral myelin formation

    PubMed Central

    Felitsyn, Natalia; McLeod, Colin; Shroads, Albert L.; Stacpoole, Peter W.; Notterpek, Lucia

    2008-01-01

    Delta-aminolevulinic acid (δ-ALA) is a heme precursor implicated in neurological complications associated with porphyria and tyrosinemia type I. Delta-ALA is also elevated in the urine of animals and patients treated with the investigational drug dichloroacetate (DCA). We postulated that δ-ALA may be responsible, in part, for the peripheral neuropathy observed in subjects receiving DCA. To test this hypothesis, myelinating cocultures of Schwann cells and sensory neurons were exposed to δ-ALA (0.1–1 mM) and analyzed for the expression of neural proteins and lipids and markers of oxidative stress. Exposure of myelinating samples to δ-ALA is associated with a pronounced reduction in the levels of myelin-associated lipids and proteins, including myelin protein zero and peripheral myelin protein 22. We also observed an increase in protein carbonylation and the formation of hydroxynonenal and malondialdehyde after treatment with δ-ALA. Studies of isolated Schwann cells and neurons indicate that glial cells are more vulnerable to this pro-oxidant than neurons, based on a selective decrease in the expression of mitochondrial respiratory chain proteins in glial, but not in neuronal, cells. These results suggest that the neuropathic effects of δ-ALA are attributable, at least in part, to its pro-oxidant properties which damage myelinating Schwann cells. PMID:18665889

  17. Peripherally inserted central catheter - dressing change

    MedlinePlus

    PICC - dressing change ... You have a peripherally inserted central catheter (PICC). This is a tube that goes into a vein in your arm. It carries nutrients and medicines into your body. It may also ...

  18. Could Peripheral Arterial Disease Be Your Problem?

    MedlinePlus

    ... exercise and yoga classes and has returned to teaching. Fast Facts Peripheral arterial disease (P.A.D.) occurs when a fatty material called plaque (pronounced plak) builds up on the inside walls of the arteries that carry blood from ...

  19. Intrasellar malignant peripheral nerve sheath tumor (MPNST).

    PubMed

    Krayenbühl, N; Heppner, F; Yonekawa, Y; Bernays, R L

    2007-02-01

    Intracranial malignant peripheral nerve sheath tumors (MPNST) and intrasellar schwannomas are rare tumors. We describe a case of an intrasellar schwannoma with progression to a MPNST, a finding that, although very rare, extends the differential diagnosis of intrasellar lesions.

  20. Unhealthy behaviours for self-management of HIV-related peripheral neuropathy.

    PubMed

    Nicholas, P K; Voss, J G; Corless, I B; Lindgren, T G; Wantland, D J; Kemppainen, J K; Canaval, G E; Sefcik, E F; Nokes, K M; Bain, C A; Kirksey, K M; Eller, L S; Dole, P J; Hamilton, M J; Coleman, C L; Holzemer, W L; Reynolds, N R; Portillo, C J; Bunch, E H; Tsai, Y-F; Mendez, M R; Davis, S M; Gallagher, D M

    2007-11-01

    The prevalence of peripheral neuropathy is frequent in HIV disease and is often associated with antiretroviral therapy. Unhealthy behaviours, particularly substance-use behaviours, are utilized by many HIV-positive individuals to manage neuropathic symptoms. As part of a larger study on self-care for symptoms in HIV disease, this study analyzed the prevalence and characteristics of unhealthy behaviours to self-manage peripheral neuropathy in HIV disease. Sociodemographic and disease-related correlates and unhealthy behaviours were examined in a convenience sample of 1,217 respondents who were recruited from data collection sites in several US cities, Puerto Rico, Colombia, and Taiwan. Results of the study indicated that respondents with peripheral neuropathy (n=450) identified a variety of unhealthy self-care behaviours including injection drug use, oral drug use, smoking cigarettes and alcohol ingestion. Specific unhealthy behaviours that participants reported to alleviate peripheral neuropathy included use of marijuana (n=67), smoking cigarettes (n=139), drinking alcohol (n=81) and street drugs (n=30). A subset of those individuals (n=160), who identified high levels of neuropathy (greater than five on a scale of 1-10), indicated significantly higher use of amphetamines and injection drug use in addition to alcohol use and cigarette smoking. For participants from Norway, substance use (using alcohol: 56%) was one of the most frequent self-management strategies. Implications for clinical practice include assessment and education of persons with HIV for self-care management of the complex symptom of peripheral neuropathy.

  1. Effects of exercise training and detraining on cutaneous microvascular function in man: the regulatory role of endothelium-dependent dilation in skin vasculature.

    PubMed

    Wang, Jong-Shyan

    2005-01-01

    This study investigated how exercise training and detraining affect the cutaneous microvascular function and the regulatory role of endothelium-dependent dilation in skin vasculature. Ten healthy sedentary subjects cycled on an ergometer at 50% of maximal oxygen uptake (VO(2max)) for 30 min daily, 5 days a week, for 8 weeks, and then detrained for 8 weeks. Plasma nitric oxide (NO) metabolites (nitrite plus nitrate) were measured by a microplate fluorometer. The cutaneous microvascular perfusion responses to six graded levels of iontophoretically applied 1% acetylcholine (ACh) and 1% sodium nitroprusside (SNP) in the forearm skin were determined by laser Doppler. After training, (1) resting heart rate and blood pressure were reduced, whereas VO(2max), skin blood flow and cutaneous vascular conductance to acute exercise were enhanced; (2) plasma NO metabolite levels and ACh-induced cutaneous perfusion were increased; (3) skin vascular responses to SNP did not change significantly. However, detraining reversed these effects on cutaneous microvascular function and plasma NO metabolite levels. The results suggest that endothelium-dependent dilation in skin vasculature is enhanced by moderate exercise training and reversed to the pretraining state with detraining.

  2. Three-dimensional interactive and stereotactic atlas of the cranial nerves and their nuclei correlated with surface neuroanatomy, vasculature and magnetic resonance imaging.

    PubMed

    Nowinski, Wieslaw L; Johnson, Aleksandra; Chua, Beng Choon; Nowinska, Natalia G

    2012-01-01

    Knowledge of the cranial nerves and their nuclei is critical in clinical practice, medical research and education. However to our best knowledge, a comprehensive source capturing full three-dimensional (3D) relationships of the cranial nerves along with surrounding neuroanatomy is not yet available. This work addresses the construction and validation of an atlas of the cranial nerves with their nuclei, correlated with surface neuroanatomy, vasculature, and magnetic resonance imaging. The atlas is interactive, stereotactic, 3D, detailed, fully parcellated, completely labeled, consistent in 3D, electronically dissectible, and scalable. A 3D geometrical model of the 12 pairs of cranial nerves with nuclei was created from an in vivo magnetic resonance scan exploiting in-house developed tools and methods, including tubular and iso-surface modeling, interactive editing, and mesh compression. This virtual model contains 439 objects with 121 different names, labeled based on Terminologia Anatomica. The model was integrated with a 3D atlas of structure, vasculature and tracts developed earlier, and correlated with sectional magnetic resonance anatomy. The whole model or its components can be interactively rotated, zoomed, panned, and add or removed with a simple few clicks. The studied material can be adaptively selected in an in-depth manner by using controls available in the user interface. This atlas is potentially useful for anatomy browsing, user self-testing, automatic student assessment, preparing materials, and localization in clinical neurology.

  3. Prenatal Exposure to apoE Deficiency and Postnatal Hypercholesterolemia Are Associated with Altered Cell-Specific Lysine Methyltransferase and Histone Methylation Patterns in the Vasculature

    PubMed Central

    Alkemade, Fanneke E.; van Vliet, Patrick; Henneman, Peter; van Dijk, Ko Willems; Hierck, Beerend P.; van Munsteren, J. Conny; Scheerman, Joyce A.; Goeman, Jelle J.; Havekes, Louis M.; Gittenberger-de Groot, Adriana C.; van den Elsen, Peter J.; DeRuiter, Marco C.

    2010-01-01

    We recently demonstrated that neointima formation of adult heterozygous apolipoprotein E (apoE+/−) offspring from hypercholesterolemic apoE−/− mothers was significantly increased as compared with genetically identical apoE+/− offspring from normocholesterolemic wild-type mothers. Since atherosclerosis is the consequence of a complex microenvironment and local cellular interactions, the effects of in utero programming and type of postnatal diet on epigenetic histone modifications in the vasculature were studied in both groups of offspring. An immunohistochemical approach was used to detect cell-specific histone methylation modifications and expression of accompanying lysine methyltransferases in the carotid arteries. Differences in histone triple-methylation modifications in vascular endothelial and smooth muscle cells revealed that the offspring from apoE−/− mothers had significantly different responses to a high cholesterol diet when compared with offspring from wild-type mothers. Our results suggest that both in utero programming and postnatal hypercholesterolemia affect epigenetic patterning in the vasculature, thereby providing novel insights regarding initiation and progression of vascular disease in adults. PMID:20035052

  4. In situ demonstration of Fluoro-Turquoise conjugated gelatin for visualizing brain vasculature and endothelial cells and their characterization in normal and kainic acid exposed animals.

    PubMed

    Sarkar, Sumit; Raymick, James; Paule, Merle G; Schmued, Larry

    2013-10-15

    The present study describes a new method for the visualization of the vasculature lumen and endothelial cells and characterizes their morphology in the brains of normal and kainic acid (KA) treated rats. Herein, labeling was accomplished using Fluoro-Turquoise (FT), a novel reactive blue fluorochrome conjugated to gelatin. Strong blue fluorescence was observed throughout the brain vasculature following intra-cardiac perfusion with FT-gel in normal animals. However, in the brains of KA treated rats (hippocampus, midline and ventral thalamus, piriform cortex), the vascular lumen was typically constricted, sclerotic and only faintly stained. The advantages of FT-gel over other markers can be attributed to its unique chemical and spectral properties. Specifically, Fluoro-Turquoise is a very bright blue UV excitable dye that does not bleed through when visualized using other filters, making it ideal for multiple immunofluorescent labeling studies. Its brightness at low magnification also makes it ideal for low magnification whole brain imaging. Compared to alternative techniques for visualizing blood vessels, such as India ink, fluorescent dye-conjugated dextran, the corrosion technique, endothelial cell markers and lectins, the present method results in excellent visualization of blood vessels.

  5. [The efficacy of Charleux's peripheral iridectomy].

    PubMed

    Radian, A B; Corşatea, L; Grigoraş, V; Alupei, L

    1998-01-01

    The simplicity of Charleux's technique for peripheral iridectomy is underlined. In a lot of 15 eyes with acute angle closure glaucoma, the i.o.p. after surgery was under 21 mm Hg when the attack lasted less than 48 hours. In a second group of 20 eyes with occludable angle/congener eyes suffered attacks/peripheral iridectomy with Charleux's technique prevented acute angle closure/56 months of postoperative observation.

  6. Clinical Profile of Peripheral Neuropathy in Leprosy.

    PubMed

    Sarker, U K; Uddin, M J; Chowdhury, R; Roy, N; Bhattacharjee, M; Roy, J

    2015-10-01

    The objectives of the study were to see the association of peripheral neuropathy in leprosy and to find out the clinical profile of peripheral neuropathy and disability status in leprosy. It was descriptive type of cross sectional study was conducted among the cases of leprosy attended in the out-patient departments of neurology, Mymensingh Medical College Hospital (MMCH) and Mymensingh tuberculosis and leprosy hospital that fulfilled the inclusion criteria were included in this study, during the study period of January 2010 to December 2011.In this study of 62 cases revealed that leprosy is more common in male (71%) people and 21% leprosy patient had contact with known case of leprosy. Leprosy causes peripheral neuropathy (61.3%). Duration of occurrence of peripheral neuropathy was prolonged (>6 month) in most of the patients (47.4%) and the disease progression was also slow (63.2%). Numbness was complained by 89.4% patients and 65.8% subjects complained of weakness of limbs. Deformities and ulcers were present in 26.3% and 50% of patients respectively. Ulnar nerve (43.6%), Lateral popliteal nerve (41.9%), Posterior tibial nerve (41.9%) and Great auricular nerve (17.7%) were the most commonly involved thickened peripheral nerves. The rate of visible physical impairment (WHO Grade 2 disability) among people affected by leprosy in feet was 27.4% and in hands was 16.1%. The position and vibration sense was found to normal all patients of peripheral neuropathy.

  7. Brain imaging correlates of peripheral nerve stimulation

    PubMed Central

    Bari, Ausaf A.; Pouratian, Nader

    2012-01-01

    Direct peripheral nerve stimulation is an effective treatment for a number of disorders including epilepsy, depression, neuropathic pain, cluster headache, and urological dysfunction. The efficacy of this stimulation is ultimately due to modulation of activity in the central nervous system. However, the exact brain regions involved in each disorder and how they are modulated by peripheral nerve stimulation is not fully understood. The use of functional neuroimaging such as SPECT, PET and fMRI in patients undergoing peripheral nerve stimulation can help us to understand these mechanisms. We review the literature for functional neuroimaging performed in patients implanted with peripheral nerve stimulators for the above-mentioned disorders. These studies suggest that brain activity in response to peripheral nerve stimulation is a complex interaction between the stimulation parameters, disease type and severity, chronicity of stimulation, as well as nonspecific effects. From this information we may be able to understand which brain structures are involved in the mechanism of peripheral nerve stimulation as well as define the neural substrates underlying these disorders. PMID:23230531

  8. Neurogenesis in the adult peripheral nervous system☆

    PubMed Central

    Czaja, Krzysztof; Fornaro, Michele; Geuna, Stefano

    2012-01-01

    Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system. PMID:25722694

  9. Neurogenesis in the adult peripheral nervous system.

    PubMed

    Czaja, Krzysztof; Fornaro, Michele; Geuna, Stefano

    2012-05-15

    Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.

  10. Peripheral vision and child pedestrian accidents.

    PubMed

    David, S S; Chapman, A J; Foot, H C; Sheehy, N P

    1986-11-01

    In both adults and children, peripheral vision is poorer than foveal vision, but there is evidence that detection in peripheral vision is relatively poorer in children than it is in adults. That may contribute to the particularly high pedestrian accident rates of children. Two laboratory experiments investigated peripheral vision in men and women and in boys and girls aged 7, 9 and 11. Using an array of stationary lights, Expt 1 examined reactions to apparent movement (the phi phenomenon) in mid and extreme periphery; and, using film sequences of a moving car, Expt 2 included a comparison of foveal and peripheral fields. Overall there was little evidence to support the hypothesis that children have poorer peripheral vision than adults relative to their foveal vision. Nonetheless there were some experimental differences: in Expt 1, 7-year-olds made fewer detections, particularly in the extreme periphery; and, in both experiments, detections tended to be slower. The relatively complex car movements in Expt 2 were detected faster in foveal than peripheral vision. There were no sex differences. Children detected more movements on the left. In Expt 2 these detections were faster, and children made relatively more simulated road crossings when the car approached from the left (all adults 'crossed' in all trials).

  11. Improving In Vivo High-Resolution CT Imaging of the Tumour Vasculature in Xenograft Mouse Models through Reduction of Motion and Bone-Streak Artefacts

    PubMed Central

    Kersemans, Veerle; Kannan, Pavitra; Beech, John S.; Bates, Russell; Irving, Benjamin; Gilchrist, Stuart; Allen, Philip D.; Thompson, James; Kinchesh, Paul; Casteleyn, Christophe; Schnabel, Julia; Partridge, Mike; Muschel, Ruth J.; Smart, Sean C.

    2015-01-01

    Introduction Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. Procedures A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. Results Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 μm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. Conclusions The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging

  12. Tissue engineered constructs for peripheral nerve surgery

    PubMed Central

    Johnson, P. J.; Wood, M. D.; Moore, A. M.; Mackinnon, S. E.

    2013-01-01

    Summary Background Tissue engineering has been defined as “an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ”. Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. Methods A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. Results Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. Conclusions The field of tissue engineering should consider its challenge to not only meet the autograft “gold standard” but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft. PMID:24385980

  13. Mitochondrial Bioenergetics in the Metabolic Myopathy Accompanying Peripheral Artery Disease

    PubMed Central

    Rontoyanni, Victoria G.; Nunez Lopez, Omar; Fankhauser, Grant T.; Cheema, Zulfiqar F.; Rasmussen, Blake B.; Porter, Craig

    2017-01-01

    Peripheral artery disease (PAD) is a serious but relatively underdiagnosed and undertreated clinical condition associated with a marked reduction in functional capacity and a heightened risk of morbidity and mortality. The pathophysiology of lower extremity PAD is complex, and extends beyond the atherosclerotic arterial occlusion and subsequent mismatch between oxygen demand and delivery to skeletal muscle mitochondria. In this review, we evaluate and summarize the available evidence implicating mitochondria in the metabolic myopathy that accompanies PAD. Following a short discussion of the available in vivo and in vitro methodologies to quantitate indices of muscle mitochondrial function, we review the current evidence implicating skeletal muscle mitochondrial dysfunction in the pathophysiology of PAD myopathy, while attempting to highlight questions that remain unanswered. Given the rising prevalence of PAD, the detriment in quality of life for patients, and the associated significant healthcare resource utilization, new alternate therapies that ameliorate lower limb symptoms and the functional impairment associated with PAD are needed. A clear understanding of the role of mitochondria in the pathophysiology of PAD may contribute to the development of novel therapeutic interventions. PMID:28348531

  14. APOE gene polymorphisms and diabetic peripheral neuropathy.

    PubMed

    Monastiriotis, Christodoulos; Papanas, Nikolaos; Veletza, Stavroula; Maltezos, Efstratios

    2012-09-08

    Genetic factors may influence the natural course of diabetic peripheral neuropathy and explain some of its variability. The aim of this review was to examine the association between apolipoprotein E (apoE) gene polymorphisms and diabetic peripheral neuropathy. Four relevant studies were identified. The two earlier works provided evidence that the ɛ4 allele is a risk factor for this complication, while the two more recent studies were negative. Important differences in the methodology used and in the populations included are obvious, rendering difficult the comparison between studies. In conclusion, the association between APOE gene polymorphisms and diabetic peripheral neuropathy is still unclear. Available evidence is rather limited and results have so far been contradictory. Future studies should employ more robust methodology, adjusting for potential confounders and for the prevalence of neuropathy in the general population with diabetes.

  15. In vivo volumetric depth-resolved vasculature imaging of human limbus and sclera with 1 μm swept source phase-variance optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Poddar, Raju; Zawadzki, Robert J.; Cortés, Dennis E.; Mannis, Mark J.; Werner, John S.

    2015-06-01

    We present in vivo volumetric depth-resolved vasculature images of the anterior segment of the human eye acquired with phase-variance based motion contrast using a high-speed (100 kHz, 105 A-scans/s) swept source optical coherence tomography system (SSOCT). High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. The human corneo-scleral junction and sclera were imaged with swept source phase-variance optical coherence angiography and compared with slit lamp images from the same eyes of normal subjects. Different features of the rich vascular system in the conjunctiva and episclera were visualized and described. This system can be used as a potential tool for ophthalmological research to determine changes in the outflow system, which may be helpful for identification of abnormalities that lead to glaucoma.

  16. In vivo volumetric depth-resolved vasculature imaging of human limbus and sclera with 1μm swept source phase-variance optical coherence angiography

    PubMed Central

    Poddar, Raju; Zawadzki, Robert J; Cortés, Dennis E; Mannis, Mark J; Werner, John S

    2015-01-01

    We present nnnnnin vivo volumetric depth-resolved vasculature images of the anterior segment of the human eye acquired with phase-variance based motion contrast using a high-speed (100 kHz, 105 A-scans/s) swept source optical coherence tomography system (SSOCT). High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. The human corneo–scleral junction and sclera were imaged with swept source phase-variance optical coherence angiography and compared with slit lamp images from the same eyes of normal subjects. Different features of the rich vascular system in the conjunctiva and episclera were visualized and described. This system can be used as a potential tool for ophthalmological research to determine changes in the outflow system, which may be helpful for identification of abnormalities that lead to glaucoma. PMID:25984290

  17. The Escherichia coli Peripheral Inner Membrane Proteome*

    PubMed Central

    Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios

    2013-01-01

    Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with

  18. Examination by radioligand binding of the alpha1 adrenoceptors in the mesenteric arterial vasculature during the development of salt-sensitive hypertension.

    PubMed

    Caveney, S W; Taylor, D A; Fleming, W W

    1997-09-01

    Previous experiments have suggested that the vascular smooth muscle of Dahl salt-sensitive (DS) rats may possess a difference in the alpha1-adrenoceptor population or its transduction processes compared to Dahl salt-resistant (DR) rats. The purpose of the current research is to study the role of alpha1-adrenoceptors in the specific supersensitivity to norepinephrine (NE) seen prior to and early in the development of hypertension in the DS rat. Experiments in isolated perfused superior mesenteric arterial vasculature from DS rats chronically fed a high (7%) salt diet for 5 days or 3 weeks, in the absence or presence of an elevation in systolic blood pressure, respectively, demonstrated a specific supersensitivity to NE relative to DR rats. The enhanced responsiveness was specific to NE after 5 days of high salt since no differences in sensitivity of these preparations was observed to either KCl or 5-HT. A small but significant elevation in sensitivity to KCl following 3 weeks of treatment suggests that multiple factors may contribute to tissue responsiveness at this time. Radioligand binding experiments were performed using [125I]-HEAT to study the alpha1-adrenoceptor population and its subtypes. Saturation experiments using membranes prepared from the superior mesenteric arterial vasculature or mesenteric arterial branches showed no significant differences in overall alpha1-adrenoceptor population between DS and DR rats fed a high-salt diet for 5 days or 3 weeks. Competition experiments using membranes prepared from the superior mesenteric arterial branches in the presence of the alpha1A-subtype selective antagonist 5-methylurapidil showed two binding sites (high and low affinity) in these resistance vessels but no significant differences in nature or ratio of these sites between the DS and DR groups. These results suggest that changes in the alpha1-adrenoceptor population are not responsible for the specific supersensitivity to NE, which may be an early event in

  19. Multimodal approach to assess tumour vasculature and potential treatment effect with DCE-US and DCE-MRI quantification in CWR22 prostate tumour xenografts.

    PubMed

    Arteaga-Marrero, N; Rygh, C B; Mainou-Gomez, J F; Nylund, K; Roehrich, D; Heggdal, J; Matulaniec, P; Gilja, O H; Reed, R K; Svensson, L; Lutay, N; Olsen, D R

    2015-01-01

    The aim of this study was to compare intratumoural heterogeneity and longitudinal changes assessed by dynamic contrast-enhanced ultrasound (DCE-US) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in prostate tumour xenografts. In vivo DCE-US and DCE-MRI were obtained 24 h pre- (day 0) and post- (day 2) radiation treatment with a single dose of 7.5 Gy. Characterization of the tumour vasculature was determined by Brix pharmacokinetic analysis of the time-intensity curves. Histogram analysis of voxels showed significant changes (p < 0.001) from day 0 to day 2 in both modalities for kep , the exchange rate constant from the extracellular extravascular space to the plasma, and kel , the elimination rate constant of the contrast. In addition, kep and kel values from DCE-US were significantly higher than those derived from DCE-MRI at day 0 (p < 0.0001) for both groups. At day 2, kel followed the same tendency for both groups, whereas kep showed this tendency only for the treated group in intermediate-enhancement regions. Regarding kep median values, longitudinal changes were not found for any modality. However, at day 2, kep linked to DCE-US was correlated to MVD in high-enhancement areas for the treated group (p = 0.05). In contrast, correlation to necrosis was detected for the control group in intermediate-enhancement areas (p < 0.1). Intratumoural heterogeneity and longitudinal changes in tumour vasculature were assessed for both modalities. Microvascular parameters derived from DCE-US seem to provide reliable biomarkers during radiotherapy as validated by histology. Furthermore, DCE-US could be a stand-alone or a complementary technique.

  20. Gonadotropin-binding sites in the rhesus monkey ovary: role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle

    SciTech Connect

    Zeleznik, A.J.; Schuler, H.M.; Reichert, L.E. Jr.

    1981-08-01

    These experiments were initiated to determine if differences exist in the vasculature of individual follicles in the rhesus monkey ovary during the late follicular phase of the menstrual cycle and to determine whether differences in vascularity result in differential exposure of certain follicles to gonadotropic hormones. The density of blood vessels within the thecal layer of the dominant follicle and other antral follicles was determined in ovaries from four animals removed on day 9 or 10 of the menstrual cycle. Blood vessels were identified using a histochemical stain for hemoglobin. Morphometric analysis indicated that the percentage of the thecal layer occupied by blood vessels in the dominant follicles (48%) was significantly greater (P less than 0.005) than that of other smaller antral follicles either within the same ovary as the dominant follicle (24%) or in the contralateral ovary (26%). To determine if differences in vascularity result in a differential supply of gonadotropins to the dominant follicle, we studied, by autoradiography, the in vivo and in vitro binding of (125I)hCG in four rhesus monkeys on day 9 of the menstrual cycle. Results of in vitro binding studies indicated that the thecal layer of virtually every antral follicle possessed hCG-binding sites. However, when (125I)hcg was injected iv into animals and allowed to distribute via the vasculature, the dominant follicle was heavily labeled while other smaller antral follicles accumulated little, if any, radioiodinated hCG. These observations indicate that increased vascularization of individual follicles results in preferential delivery of gonadotropins, and suggest that blood flow to individual follicles may play an instrumental role in the selective maturation of the preovulatory follicle in the rhesus monkey.

  1. Inflammation and programmed cell death in Alzheimer's disease: comparison of the central nervous system and peripheral blood.

    PubMed

    Macchi, Beatrice; Marino-Merlo, Francesca; Frezza, Caterina; Cuzzocrea, Salvatore; Mastino, Antonio

    2014-10-01

    Although the central nervous system (CNS) has been defined as a privileged site in Alzheimer's disease (AD), periphery can be more than simply witness of events leading to neurodegeneration. The CNS and peripheral blood can mutually communicate through cells and factors trafficking from the circulation into the brain and vice versa. A number of articles have reviewed inflammatory profiles and programmed cell death (PCD) in AD, separately in the CNS and at the peripheral level. This review does not provide an exhaustive account of what has been published on inflammation and PCD in AD. Rather, the aim of this review is to focus on possible linkages between the central and the peripheral compartments during AD progression, by critically analyzing, in a comparative manner, phenomena occurring in the CNS as well as the peripheral blood. In fact, growing evidence suggests that CNS and peripheral inflammation might present common features in the disease. Microarrays and metabolomics revealed that dysfunction of the glycolytic and oxidative pathways is similar in the brain and in the periphery. Moreover, dysregulated autophagosome/lysosomal molecular machinery, both at the CNS and the peripheral level, in AD-related cell damage, has been observed. Possible implications of these observations have been discussed.

  2. Long-term neurological complications associated with surgery and peripheral nerve blockade: outcomes after 1065 consecutive blocks.

    PubMed

    Watts, S A; Sharma, D J

    2007-02-01

    Peripheral nerve blockade is gaining popularity as an analgesic option for both upper or lower limb surgery. Published evidence supports the improved efficacy of regional techniques when compared to conventional opioid analgesia. The incidence of neurological deficit after surgery associated with peripheral nerve block is unclear. This paper reports on neurological outcomes occurring after 1065 consecutive peripheral nerve blocks over a one-year period from a single institution. All patients receiving peripheral nerve blocks for surgery were prospectively followed for up to 12 months to determine the incidence and probable cause of any persistent neurological deficit. Formal independent neurological review and testing was undertaken as indicated. Thirteen patients reported symptoms that warranted further investigation. A variety of probable causes were identified, with peripheral nerve block being implicated in two cases (one resolved at nine months and one remaining persistent). Overall incidence of block-related neuropathy was 0.22%. Persistent postoperative neuropathy is a rare but serious complication of surgery associated with peripheral nerve block. Formal follow-up of all such blocks is recommended to assess causality and allow for early intervention.

  3. The Effect of Nitric Oxide Inhibition in Spinal Cord Injured Humans with and without Preserved Sympathetic Control of the Vasculature

    PubMed Central

    Brown, Rachael; Celermajer, David; Macefield, Vaughan; Sander, Mikael

    2016-01-01

    Systemic pharmacological inhibition of nitric oxide (NO) causes a hypertensive response, which has been attributed both to inhibition of peripheral NO-mediated vasodilatation and to inhibition of central nervous NO-production leading to a later onset sympathetic vasoconstriction. In the present study we aimed to test the importance of these two mechanisms by comparing the time-courses of the hypertensive responses in spinal cord injured (SCI) subjects with varying degrees of loss of sympathetic vascular control depending on level of injury as well as able-bodied controls. We hypothesized that high level SCI with no sympathetic vasoconstrictor control would have an abbreviated time-course of the hypertensive response to the NO-inhibitor L-NAME, because they would lack the late onset sympathetic component to the hypertensive response. NO production was blocked in 12 subjects with SCI and 6 controls by intravenous infusion of L-NAME (1.55–2.7 mg/kg). We measured blood pressure, heart rate, and vascular conductance in the carotid, brachial, and femoral arteries before, during, and after 1 h of L-NAME in a 4-h protocol. Peak increases in mean arterial pressure were significantly larger in high level SCI vs. controls: 32 ± 6 vs. 12 ± 2 mmHg (both groups received 1.55 mg/kg). The decreases in vascular conductance in the brachial and femoral vascular beds were also larger in the high level SCI group, whereas decreases in heart rate and carotid conductance were not significantly different between the groups. There were no indications of any abbreviated responses in blood pressure or vascular conductance in the high level SCI compared to control. The mid level and low-level SCI subject had responses similar to controls. These data confirm previous reports that NO inhibition causes a larger increase in blood pressure in high level SCI, and extend these data by providing evidence for differences in vascular conductance in the limbs. The current data do not support an

  4. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  5. Cafestol, a coffee-specific diterpene, induces peripheral antinociception mediated by endogenous opioid peptides.

    PubMed

    Guzzo, Luciana S; Perez, Andrea C; Romero, Thiago Rl; Azevedo, Adolfo O; Duarte, Igor Dg

    2012-05-01

    The opioid peptides have been implicated in peripheral antinociception induced by non-opioidergic compounds, including non-steroidal anti-inflammatory drugs and α(2) -adrenoceptor agonists. The aims of the present study were to investigate the possible peripheral antinociceptive effect of cafestol, a diterpene present in the oil derived from coffee beans, and to evaluate the involvement of opioid peptides in its effect. The rat paw pressure test was used to assess antinocipeptive effects. Hyperalgesia was induced by intraplantar injection of prostaglandin E(2) (2 μg/paw). All drugs were locally administered into the hind-paws of male Wistar rats. Intraplantar injection of cafestol (20, 40 and 80 μg) induced peripheral antinociception. The antinociceptive effect of cafestol was due to a local action because the higher dose (80 μg/paw) did not produce any effect in the contralateral paw. The opioid receptor antagonist naloxone (25, 50 and 100 μg/paw) prevented the action of cafestol (80 μg/paw), whereas the aminopeptidase inhibitor bestatin (400 μg/paw) potentiated the antinociceptive effect of cafestol (40 μg/paw). The results of the present study provide evidence that cafestol treatment has a peripheral antinociceptive effect and suggest that this effect is mediated by the release of endogenous opioids.

  6. Glutamate decreases the secretion of IL-10 by peripheral blood lymphocytes in persons with autoimmune thyroiditis.

    PubMed

    Kvaratskhelia, E; Dabrundashvili, N; Gagua, M; Maisuradze, E; Mikeladze, D

    2008-11-01

    Human T lymphocytes expose ionotropic and metabotropic glutamate receptors, which control immune responses, cell activation, maturation, and death. Several cytokines release during inflammation which identification may have important physiological and clinical implications. Main biological function of IL-10 is limitation and termination of inflammatory responses and the regulation of differentiation and proliferation of several immune cells. Various inflammatory molecules regulated the secretion of IL-8 and IL-10, but the action of glutamate on the biosynthesis of cytokines is unknown. We have found that in peripheral blood lymphocytes glutamate at the concentrations within normal plasma levels (1 x 10(-5) M), as well as at lower concentration (0.3 x 10(-6) M) changes the secretion of immunosuppressive cytokine IL-10, whereas synthesis of proinflammatory chemokine, IL-8 did not changed significantly. Moreover, our results have shown that peripheral blood lymphocytes from patients with autoimmune thyroiditis release less IL-10 at both concentration of glutamate than peripheral blood lymphocytes from healthy persons. These data suggest that glutamate decrease the secretion of IL-10 by peripheral blood lymphocytes, especially in patients with autoimmune thyroiditis that may be responsible for prolongation of inflammation.

  7. Legitimate Peripheral Participation and Home Education

    ERIC Educational Resources Information Center

    Safran, L.

    2010-01-01

    After a description of home education, Lave and Wenger's (1991) theory of legitimate peripheral participation (LPP) is applied to the situation of home educators who join a neighbourhood home education group, a community of practice. Then, it is argued that the theory of LPP, with suitable modification, can also apply to and illuminate the…

  8. The Development of Peripheral Vision in Infants.

    ERIC Educational Resources Information Center

    Guez, Jean R.

    This study investigated the extent of infant peripheral vision, specifically the extent of infants' constricted field, or tunnel vision. Thirteen infants, 2 to 5 months old, were tested using a psychophysical procedure to obtain contrast sensitivity thresholds at four retinal loci (-40, -15, +15, +40 deg.). Infants were placed in an infant bed in…

  9. Painful peripheral neuropathy and sodium channel mutations.

    PubMed

    Hoeijmakers, Janneke G J; Faber, Catharina G; Merkies, Ingemar S J; Waxman, Stephen G

    2015-06-02

    Peripheral neuropathy can lead to neuropathic pain in a subset of patients. Painful peripheral neuropathy is a debilitating disorder, reflected by a reduced quality of life. Therapeutic strategies are limited and often disappointing, as in most cases targeted treatment is not available. Elucidating pathogenetic factors for pain might provide a target for optimal treatment. Voltage-gated sodium channels NaV1.7-NaV1.9 are expressed in the small-diameter dorsal root ganglion neurons and their axons. By a targeted gene approach, missense gain-of-function mutations of NaV1.7-NaV1.9 have been demonstrated in painful peripheral neuropathy. Functional analyses have shown that these mutations produce a spectrum of pro-excitatory changes in channel biophysics, with the shared outcome at the cellular level of dorsal root ganglion hyperexcitability. Reduced neurite outgrowth may be another consequence of sodium channel mutations, and possible therapeutic strategies include blockade of sodium channels or block of reverse operation of the sodium-calcium exchanger. Increased understanding of the pathophysiology of painful peripheral neuropathy offers new targets that may provide a basis for more effective treatment.

  10. Dense peripheral corneal clouding in Scheie syndrome.

    PubMed

    Summers, C G; Whitley, C B; Holland, E J; Purple, R L; Krivit, W

    1994-05-01

    A 28-year-old woman with Scheie syndrome (MPS I-S) presented with the unusual feature of extremely dense peripheral corneal clouding, allowing maintenance of good central visual acuity. Characteristic systemic features, an abnormal electroretinogram result, and absent alpha-L-iduronidase activity confirmed the diagnosis despite the unusual corneal pattern of clouding.

  11. Peripherally inserted central catheters. Intravenous Nurses Society.

    PubMed

    1997-01-01

    The Intravenous Nurses Society (INS) recognizes the need for uniform terminology for peripherally inserted central catheters (PICCs) to encourage standardization for indications, care, and maintenance strategies for these devices. It also recognizes the need for recommendations regarding the choice, use, management, and discontinuation of PICCs to promote positive patient outcomes and enhance patient comfort, safety, and satisfaction.

  12. Peripheral Participation and the Kwakiutl Potlatch.

    ERIC Educational Resources Information Center

    Wolcott, Harry F.

    1996-01-01

    A 25-year association with the Kwakiutl led to an invitation in 1987 to a Kwakiutl memorial potlatch in British Columbia (Canada). Jean Lave's concept of peripheral participation is used as a framework for examining how humans find their "way in" to such cultural events. (Author/MMU)

  13. Unusually large-sized peripheral ossifying fibroma.

    PubMed

    John, Reena Rachel; Kandasamy, Saravanan; Achuthan, Narendran

    2016-01-01

    Fibrous growths in the gingiva with the histopathological presence of calcifications are a common occurrence in the oral cavity. These lesions can be neoplastic in nature with either odontogenic or non odontogenic origin or they can be reactive lesions. This is a case report of an unusual presentation of peripheral ossifying fibroma , unusual because of its abnormally large size with review of literature.

  14. Peripheral Mechanisms of Pain and Analgesia

    PubMed Central

    Stein, Christoph; Clark, J. David; Oh, Uhtaek; Vasko, Michael R.; Wilcox, George L.; Overland, Aaron C.; Vanderah, Todd W.; Spencer, Robert H.

    2009-01-01

    This review summarizes recent findings on peripheral mechanisms underlying the generation and inhibition of pain. The focus is on events occurring in peripheral injured tissues that lead to the sensitization and excitation of primary afferent neurons, and on the modulation of such mechanisms. Primary afferent neurons are of particular interest from a therapeutic perspective because they are the initial generator of noxious impulses traveling towards relay stations in the spinal cord and the brain. Thus, if one finds ways to inhibit the sensitization and/or excitation of peripheral sensory neurons, subsequent central events such as wind-up, sensitization and plasticity may be prevented. Most importantly, if agents are found that selectively modulate primary afferent function and do not cross the blood-brain-barrier, centrally mediated untoward side effects of conventional analgesics (e.g. opioids, anticonvulsants) may be avoided. This article begins with the peripheral actions of opioids, turns to a discussion of the effects of adrenergic co-adjuvants, and then moves on to a discussion of pro-inflammatory mechanisms focusing on TRP channels and nerve growth factor, their signaling pathways and arising therapeutic perspectives. PMID:19150465

  15. Peripheral circadian oscillators and their rhythmic regulation.

    PubMed

    Fukuhara, Chiaki; Tosini, Gianluca

    2003-05-01

    Most of the organisms living on earth show 24 hour (circadian) rhythms that are endogenously controlled by biological clocks. In mammals, these rhythms are generated by the circadian pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. However, recent studies have demonstrated that circadian oscillators can be found in many organs and tissues, and it appears that the circadian oscillators in the periphery are not self-sustained, since, in vitro, the oscillation disappears after a few cycles. Although analysis of the clockwork mechanism indicates that the molecular composition of the clock in the SCN and in the peripheral tissues is very similar, the mechanism responsible for the damping of the circadian oscillation in the periphery is unknown. Recent studies have also indicated that the mammalian circadian system is hierarchically organized in that the SCN (i.e., the master circadian pacemaker) controls the peripheral oscillators in order to coordinate the physiological events in an entire body. The mechanisms by which the SCN controls peripheral oscillators are just starting to be elucidated. The aim of this review is to summarize the most recent findings on functioning of these extra-SCN oscillators and the mechanisms the SCN controls peripheral oscillators.

  16. Analysis of peripheral amyloid precursor protein in Angelman Syndrome.

    PubMed

    Erickson, Craig A; Wink, Logan K; Baindu, Bayon; Ray, Balmiki; Schaefer, Tori L; Pedapati, Ernest V; Lahiri, Debomoy K

    2016-09-01

    Angelman Syndrome is a rare neurodevelopmental disorder associated with significant developmental and communication delays, high risk for epilepsy, motor dysfunction, and a characteristic behavioral profile. While Angelman Syndrome is known to be associated with the loss of maternal expression of the ubiquitin-protein ligase E3A gene, the molecular sequelae of this loss remain to be fully understood. Amyloid precursor protein (APP) is involved in neuronal development and APP dysregulation has been implicated in the pathophysiology of other developmental disorders including fragile X syndrome and idiopathic autism. APP dysregulation has been noted in preclinical model of chromosome 15q13 duplication, a disorder whose genetic abnormality results in duplication of the region that is epigenetically silenced in Angelman Syndrome. In this duplication model, APP levels have been shown to be significantly reduced leading to the hypothesis that enhanced ubiquitin-protein ligase E3A expression may be associated with this phenomena. We tested the hypothesis that ubiquitin-protein ligase E3A regulates APP protein levels by comparing peripheral APP and APP derivative levels in humans with Angelman Syndrome to those with neurotypical development. We report that APP total, APP alpha (sAPPα) and A Beta 40 and 42 are elevated in the plasma of humans with Angelman Syndrome compared to neurotypical matched human samples. Additionally, we found that elevations in APP total and sAPPα correlated positively with peripheral brain derived neurotrophic factor levels previously reported in this same patient cohort. Our pilot report on APP protein levels in Angelman Syndrome warrants additional exploration and may provide a molecular target of treatment for the disorder. © 2016 Wiley Periodicals, Inc.

  17. Peripheral Neuromodulation to Treat Postamputation Pain.

    PubMed

    Soin, Amol; Fang, Zi-Ping; Velasco, Jon

    2015-01-01

    Some of the more common peripherally mediated pain disorders are postamputation stump pain and phantom pain. These disabling conditions have proven difficult to treat. Here we aim to illustrate an option to treat postamputation pain using peripheral neurostimulation techniques. Traditional peripheral neuromodulation techniques use standard stimulation parameters and work by stimulation of nerve tissues which are then felt by the patient as a tingling sensation or paresthesia. Recently introduced high-frequency (10 kHz) electrical nerve block [HFAC (high-frequency alternating current) block] via a surgically implanted peripheral nerve cuff electrode results in true conduction block which actually blocks action potentials emanating from the painful neuroma and thus suppresses pain without tingling or paresthesia felt by the patient. In a recently completed 10-patient pilot study, the average pain level decreased from a score of 5.7 to 1.4 (out of 10) after HFAC block therapy with 85% of all testing sessions yielding a >50% pain reduction; a very significant reduction in the use of opioid and other analgesics was also noted, with all tested patients either stopping or decreasing their analgesic intake significantly. Patients achieved meaningful and significant pain reduction throughout the study, and patients who had phantom pain (in addition to stump pain) that responded to local anesthetic injections also responded favorably with HFAC block, presumably because in these particular patients, the phantom symptoms were peripherally generated. Each of the tested patients reported that HFAC block provided the most significant amount of pain reduction they had ever experienced when compared to other pain modalities tried since their amputations. The high-frequency electric nerve block technique is currently investigational pending FDA clearance. The next step for this modality is a pivotal trial, with the goal of having this therapy available to the mass market upon FDA

  18. Cadmium Exposure and Incident Peripheral Arterial Disease

    PubMed Central

    Tellez-Plaza, Maria; Guallar, Eliseo; Fabsitz, Richard R.; Howard, Barbara V.; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; Devereux, Richard B.; Navas-Acien, Ana

    2014-01-01

    Background Cadmium has been associated with peripheral arterial disease in cross-sectional studies but prospective evidence is lacking. Our goal was to evaluate the association of urine cadmium concentrations with incident peripheral arterial disease in a large population-based cohort. Methods and Results A prospective cohort study was performed with 2,864 adult American Indians 45-74 years old from Arizona, Oklahoma and North and South Dakota who participated in the Strong Heart Study in 1989-91 and were followed through two follow-up examination visits in 1993-1995 and 1997-1999. Participants were free of peripheral arterial disease, defined as an ankle brachial index <0.9 or >1.4, at baseline and had complete baseline information on urine cadmium, potential confounders and ankle brachial index determinations in the follow-up examinations. Urine cadmium was measured using inductively coupled plasma mass spectrometry (ICPMS) and corrected for urinary dilution by normalization to urine creatinine.. Multivariable-adjusted hazard ratios (HR) were computed using Cox-proportional hazards models for interval-censored data. A total of 470 cases of incident peripheral arterial disease, defined as an ankle brachial index <0.9 or >1.4, were identified. After adjustment for cardiovascular disease risk factors including smoking status and pack-years, the hazard ratio comparing the 80th to the 20th percentile of urine cadmium concentrations was 1.41 (1.05, 1.81). The hazard ratio comparing the highest to the lowest tertile was 1.96 (1.32, 2.81). The associations persisted after excluding participants with ankle brachial index > 1.4 only as well as in subgroups defined by sex and smoking status. Conclusions Urine cadmium, a biomarker of long-term cadmium exposure, was independently associated with incident peripheral arterial disease, providing further support for cadmium as a cardiovascular disease risk factor. PMID:24255048

  19. Complications of Diabetes and Their Implications for Service Providers.

    ERIC Educational Resources Information Center

    Ponchillia, S. V.

    1993-01-01

    This article presents information on the complications of both Type I and Type II diabetes and the implications for the rehabilitation of persons with diabetes and visual impairment. Topics covered include retinopathy, cataracts, glaucoma, peripheral neuropathy, carpal tunnel syndrome, diabetic hand syndrome, neuropathy of the autonomic nervous…

  20. Peripheral ameloblastic fibro-odontoma or peripheral developing complex odontoma: report of a case.

    PubMed

    Reibel, Jesper; Grønbaek, Anni B; Poulsen, Sven

    2011-11-01

    BACKGROUND. Peripheral (extraosseous) odontogenic tumors are rare. CASE REPORT. This report describes a case which illustrates the clinical and histopathological features of a lesion in an 8-year-old, healthy Caucasian girl that on purely morphological grounds would seem to be an ameloblastic fibro-odontoma, but may represent a case of a peripheral developing complex odontoma. CONCLUSION. Conservative surgical enucleation of the lesion was followed by unbcomplicated healing and no recurrence was seen.

  1. Genotoxicity test of self-renovated ceramics in primary human peripheral lymphocytes.

    PubMed

    Hua, Nan; Zhu, Huifang; Zhuang, Jing; Chen, Liping

    2014-12-01

    Zirconia-based ceramics is widely used in dentistry. Different compositions of ceramics have different features. Our self-renovated ceramics become more machinable without scarifying its dental restoration properties after adjusting ratio of lanthanum phosphate (LaPO4)/yttrium oxide (Y2O3). In order to evaluate its safety, here, we tested its genotoxicity in primary human peripheral lymphocytes. The human lymphocytes cultured on three groups of different ratios of LaPO4/Y2O3 diphase ceramics for 6 days showed little effect of growth inhibition and similar effect of growth trend to the negative control. Furthermore, single-cell gel electrophoresis (comet assay) indicated that there was no significant difference of the value of tail moment between the tested ceramics and negative control, the IPS Empress II (P > 0.05). Our findings implicate that our self-renovated ceramics do not induce DNA damages in human peripheral lymphocytes and support their future clinic application.

  2. Speciation in peripheral populations: effects of drift load and mating systems.

    PubMed

    Rettelbach, A; Servedio, M R; Hermisson, J

    2016-05-01

    Speciation in peripheral populations has long been considered one of the most plausible scenarios for speciation with gene flow. In this study, however we identify two additional problems of peripatric speciation, as compared to the parapatric case, that may impede the completion of the speciation process for most parameter regions. First, with (predominantly) unidirectional gene flow, there is no selection pressure to evolve assortative mating on the continent. We discuss the implications of this for different mating schemes. Second, genetic load can build up in small populations. This can lead to extinction of the peripheral species, or generate selection pressure for lower assortative mating to avoid inbreeding. In this case, either a stable equilibrium with intermediate assortment evolves or there is cycling between phases of hybridization and phases of complete isolation.

  3. Peripheral artery disease of the legs - self-care

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000577.htm Peripheral artery disease of the legs - self-care To use ... features on this page, please enable JavaScript. Peripheral artery disease (PAD) is a narrowing of the blood ...

  4. Peripheral genetic structure of Helicoverpa zea indicates asymmetrical panmixia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal climatic shifts create peripheral habitats that alternate between habitable and uninhabitable for migratory species. Such dynamic peripheral habitats are potential sites where migratory species could evolve high genetic diversity resulting from convergence of immigrants from multiple region...

  5. Advancing Beyond the ‘Heart-Healthy Diet’ for Peripheral Arterial Disease

    PubMed Central

    Nosova, Emily V.; Conte, Michael S.; Grenon, S. Marlene

    2014-01-01

    Objectives Peripheral arterial disease (PAD) is a burdensome cardiovascular condition that results from chronic inflammatory insults to the arterial vasculature. Key risk factors include age, gender, Type II diabetes mellitus, hypertension, hypercholesterolemia, hyperhomocysteinemia, smoking, lack of physical fitness and poor diet, the latter three being modifiable in the development and progression of PAD. A growing body of evidence indicates that imbalanced nutrient intake may contribute to the development and progression of PAD. The purpose of this review is to summarize current knowledge about nutritional patterns among patients with PAD, and to ascertain whether certain health- promoting foods and nutrients could benefit patients with this condition. Methods We conducted a comprehensive literature review to examine primary source evidence for or against the nutrients that are commonly associated with PAD, and their potential utility as therapies. Results We summarized nine categories of nutrients, as well as four diets endorsed by the American Heart Association that may be prescribed to patients with or at risk for PAD. The nutrients reviewed included omega-3 polyunsaturated fatty acids (n-3 PUFAs), folate and B-series vitamins, and anti-oxidants. The diet plans described include the DASH diet, Mediterranean diet, low-fat diet, low carbohydrate diet, Dr. Dean Ornish’s Spectrum® Diet and Dr. Andrew Weil’s Anti-Inflammatory Diet. Conclusion PAD is a chronic inflammatory condition that is associated with longstanding poor nutrition habits. We advocate for an intensified use of diet in PAD therapy, and we specifically recommend following eating patterns that are rich in nutrients with anti-inflammatory and anti-oxidant properties. PMID:25534981

  6. Peripheral doses in CyberKnife radiosurgery

    SciTech Connect

    Petti, Paula L.; Chuang, Cynthia F.; Smith, Vernon; Larson, David A.

    2006-06-15

    The purpose of this work is to measure the dose outside the treatment field for conformal CyberKnife treatments, to compare the results to those obtained for similar treatments delivered with gamma knife or intensity-modulated radiation therapy (IMRT), and to investigate the sources of peripheral dose in CyberKnife radiosurgery. CyberKnife treatment plans were developed for two hypothetical lesions in an anthropomorphic phantom, one in the thorax and another in the brain, and measurements were made with LiF thermoluminescent dosimeters (TLD-100 capsules) placed within the phantom at various depths and distances from the irradiated volume. For the brain lesion, gamma knife and 6-MV IMRT treatment plans were also developed, and peripheral doses were measured at the same locations as for the CyberKnife plan. The relative contribution to the CyberKnife peripheral dose from inferior- or superior-oblique beams entering or exiting through the body, internally scattered radiation, and leakage radiation was assessed through additional experiments using the single-isocenter option of the CyberKnife treatment-planning program with different size collimators. CyberKnife peripheral doses (in cGy) ranged from 0.16 to 0.041 % ({+-}0.003%) of the delivered number of monitor units (MU) at distances between 18 and 71 cm from the field edge. These values are two to five times larger than those measured for the comparable gamma knife brain treatment, and up to a factor of four times larger those measured in the IMRT experiment. Our results indicate that the CyberKnife peripheral dose is due largely to leakage radiation, however at distances less than 40 cm from the field edge, entrance, or exit dose from inferior- or superior-oblique beams can also contribute significantly. For distances larger than 40 cm from the field edge, the CyberKnife peripheral dose is directly related to the number of MU delivered, since leakage radiation is the dominant component.

  7. 16 CFR 1203.14 - Peripheral vision test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Peripheral vision test. 1203.14 Section 1203... SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.14 Peripheral vision test. Position the helmet on... the helmet to set the comfort or fit padding. (Note: Peripheral vision clearance may be...

  8. 16 CFR 1203.14 - Peripheral vision test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Peripheral vision test. 1203.14 Section 1203... SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.14 Peripheral vision test. Position the helmet on... the helmet to set the comfort or fit padding. (Note: Peripheral vision clearance may be...

  9. 16 CFR 1203.14 - Peripheral vision test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Peripheral vision test. 1203.14 Section 1203... SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.14 Peripheral vision test. Position the helmet on... the helmet to set the comfort or fit padding. (Note: Peripheral vision clearance may be...

  10. 16 CFR 1203.14 - Peripheral vision test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Peripheral vision test. 1203.14 Section 1203... SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.14 Peripheral vision test. Position the helmet on... the helmet to set the comfort or fit padding. (Note: Peripheral vision clearance may be...

  11. 16 CFR 1203.14 - Peripheral vision test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Peripheral vision test. 1203.14 Section 1203... SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.14 Peripheral vision test. Position the helmet on... the helmet to set the comfort or fit padding. (Note: Peripheral vision clearance may be...

  12. Imaging of vascular dynamics within the foot using dynamic diffuse optical tomography to diagnose peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Khalil, M. A.; Kim, H. K.; Hoi, J. W.; Kim, I.; Dayal, R.; Shrikande, G.; Hielscher, A. H.

    2013-03-01

    Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. The current diagnostic method for PAD is the ankle-brachial index (ABI). The ABI is a ratio of the patient's systolic blood pressure in the foot to that of the brachial artery in the arm, a ratio below 0.9 is indicative of affected vasculature. However, this method is ineffective in patients with calcified arteries (diabetic and end-stage renal failure patients), which falsely elevates the ABI recording resulting in a false negative reading. In this paper we present our results in a pilot study to deduce optical tomography's ability to detect poor blood perfusion in the foot. We performed an IRB approved 30 patient study, where we imaged the feet of the enrolled patients during a five stage dynamic imaging sequence. The patients were split up into three groups: 10 healthy subjects, 10 PAD patients and 10 PAD patients with diabetes and they were imaged while applying a pressure cuff to their thigh. Differences in the magnitude of blood pooling in the foot and rate at which the blood pools in the foot are all indicative of arterial disease.

  13. Peripheral modulation of smell: fact or fiction?

    PubMed

    Lucero, Mary T

    2013-01-01

    Despite studies dating back 30 or more years showing modulation of odorant responses at the level of the olfactory epithelium, most descriptions of the olfactory system infer that odorant signals make their way from detection by cilia on olfactory sensory neurons to the olfactory bulb unaltered. Recent identification of multiple subtypes of microvillar cells and identification of neuropeptide and neurotransmitter expression in the olfactory mucosa add to the growing body of literature for peripheral modulation in the sense of smell. Complex mechanisms including perireceptor events, modulation of sniff rates, and changes in the properties of sensory neurons match the sensitivity of olfactory sensory neurons to the external odorant environment, internal nutritional status, reproductive status, and levels of arousal or stress. By furthering our understanding of the players mediating peripheral olfaction, we may open the door to novel approaches for modulating the sense of smell in both health and disease.

  14. Light emitting device having peripheral emissive region

    DOEpatents

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  15. Paraneoplastic disorders of the peripheral nervous system.

    PubMed

    Antoine, Jean-Christophe; Camdessanché, Jean-Philippe

    2013-06-01

    Paraneoplastic neurological syndromes are rare but can affect any part of the peripheral nervous system (PNS) including motor neurons, sensory ganglia, nerve roots, plexuses, cranial and peripheral nerves, and neuromuscular junctions. The type of cancer, lymphoma or solid tumour, is a determinant factor of the underlying mechanism. With solid tumour, antibodies directed to intracellular (anti-Hu or anti-CV2/CRMP5 antibodies) or surface antigens (anti-VGCC,or LGI1 and Caspr2 antibodies) have been identified while with lymphoma, the neuropathy is usually linked to a monoclonal gammopathy. This review discusses the different etiologies and mechanisms of paraneoplastic disorders of the PNS in patients emphasising their evaluation, diagnosis and treatment.

  16. Effects of Laser Irradiation on Peripheral Nerve

    NASA Astrophysics Data System (ADS)

    Baxter, G. D.; Chow, R.; Armati, P.; Bjordal, J. M.; Laakso, L.

    2009-06-01

    A literature review was undertaken to determine the electrophysiological effects of Laser Irradiation (LI) on peripheral mammalian nerves, as a means of elucidating the potential mechanisms underlying pain relief associated with laser therapy. Relevant computerized databases and reference lists were searched, and experts consulted for further articles. A total of 38 studies, comprising 82 separate experiments were identified. In human studies, all types of LI (red and infrared, pulsed and cw) slowed nerve conduction velocity, and reduced compound action potential of irradiated nerves. In animal studies, infrared LI suppressed conduction velocity, as well as noxious stimulation evoked potential. This review thus indicates the potential of laser irradiation to inhibit activity in peripheral nerves, and highlights one potential mechanism of action for laser-mediated pain relief.

  17. Diabetic peripheral neuropathic pain: recognition and management.

    PubMed

    Cole, B Eliot

    2007-09-01

    The occurrence of diabetic peripheral neuropathy (DPN) is linked to poor glycemic control over time. While most people never develop diabetic peripheral neuropathic pain (DPNP) as a consequence of DPN, enough of them do that we must have effective options for the management of this disabling condition. Two years ago there were no formally approved medications for the treatment of DPNP, and now there are two medications with Food and Drug Administration approval for DPNP. One of these medications, duloxetine has been established to significantly improve pain and to address depression by its reuptake inhibition of norepinephrine and serotonin. This article examines the epidemiology of DPNP, its underlying pathogenesis, necessary evaluation methods, and treatment options available with a focus on the role of duloxetine.

  18. Peripheral primitive neuroectodermal tumour in a dog.

    PubMed

    Junginger, J; Röthlisberger, A; Lehmbecker, A; Stein, V M; Ludwig, D C; Baumgärtner, W; Seehusen, F

    2013-11-01

    A 1-year-old German shepherd dog was presented with paraparesis quickly progressing to paraplegia. Magnetic resonance imaging revealed a large mass beneath the thoracolumbar vertebral column infiltrating the spinal canal and resulting in severe extradural compression of the spinal cord. Microscopically, this comprised a cell-rich unencapsulated tumour supported by fine bands of a fibrovascular stroma and occasionally forming primitive rosettes. Immunohistochemistry showed the tumour cells to express synaptophysin and neuron-specific enolase. Ultrastructurally, the neoplastic cells had low to moderate numbers of intracytoplasmic neurosecretory granules. A peripheral primitive neuroectodermal tumour was diagnosed. This is a rare embryonal tumour of neural origin that may have arisen from adrenal medulla, autonomic ganglia or peripheral nerves.

  19. Binocular summation and peripheral visual response time

    NASA Technical Reports Server (NTRS)

    Gilliland, K.; Haines, R. F.

    1975-01-01

    Six males were administered a peripheral visual response time test to the onset of brief small stimuli imaged in 10-deg arc separation intervals across the dark adapted horizontal retinal meridian under both binocular and monocular viewing conditions. This was done in an attempt to verify the existence of peripheral binocular summation using a response time measure. The results indicated that from 50-deg arc right to 50-deg arc left of the line of sight binocular summation is a reasonable explanation for the significantly faster binocular data. The stimulus position by viewing eye interaction was also significant. A discussion of these and other analyses is presented along with a review of related literature.

  20. Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients

    PubMed Central

    Harshyne, Larry A.; Nasca, Brian J.; Kenyon, Lawrence C.; Andrews, David W.; Hooper, D. Craig

    2016-01-01

    Background Glioblastoma (GBM) is an aggressive infiltrative brain tumor with a particularly poor prognosis that is characterized by microvascular proliferation, necrotic tissue, and significant infiltration of M2-like monocytes. Compromised barrier function in tumor vasculature might be expected to permit communication between the tumor microenvironment and peripheral blood. Methods To ascertain whether tumor-derived vesicles and/or factors might reach the bloodstream and what effects these molecules have on the peripheral compartment, we analyzed blood samples collected from primary GBM patients. Results Notably, a significant number of patient sera samples contained tumor exosome-reactive immunoglobulin (Ig)G2 and IgG4 antibody isotypes, which are consistent with Th2 immunity. M2-like monocytes expressing CD14+ and CD163+, another indicator of Th2 bias, are elevated in GBM patient blood and associated with high serum concentrations of colony−stimulating factor 2 and 3, as well as interleukin-2, -4, and -13, the latter 2 cytokines being hallmarks of Th2 immunity. GBM patient sera samples induce high levels of CD163 expression when added to normal monocytes, providing mechanistic evidence of a basis for Th2 bias. Fractionation of GBM patient sera into samples enriched for exosomes or soluble factors proved that both fractions are capable of inducing CD163 expression in normal monocytes. Conclusions The results of the current study indicate a Th2 bias in the periphery of GBM patients, likely as a result of products elaborated by the tumor. Consequentially, through immune modulation these brain tumors exert systemic effects beyond the confines of the CNS. PMID:26180083

  1. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved

    PubMed Central

    2012-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10–9 M to 10–5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP. PMID:22559843

  2. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved.

    PubMed

    Davis, Robert Patrick; Pattison, Jill; Thompson, Janice M; Tiniakov, Ruslan; Scrogin, Karie E; Watts, Stephanie W

    2012-05-06

    Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10-9 M to 10-5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP.

  3. Peripheral osmotic stimulation inhibits the brain's innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus

    PubMed Central

    Hu, Sanmei

    2009-01-01

    During the brain's innate immune response microglia, astroglia and ependymal cells resolve/repair damaged tissue and control infection. Released interleukin-1β (IL-1β) reaching cerebroventricles stimulates circumventricular organs (CVOs; subfornical organ, SFO; organum vasculosum lamina terminalis, OVLT), the median preoptic nucleus (MePO), and magnocellular and parvocellular neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. Hypertonic saline (HS) also activates these osmosensory CVOs and neuroendocrine systems, but, in contrast to IL-1β, inhibits the peripheral immune response. To examine whether the brain's innate immune response is attenuated by osmotic stimulation, sterile acidic perfusion fluid was microdialyzed (2 μl/min) in the SON area of conscious rats for 6 h with sterile HS (1.5 M NaCl) injected subcutaneously (15 ml/kg) at 5 h. Immunohistochemistry identified cytokine sources (IL-1β+; OX-42+ microglia) and targets (IL-1R+; inducible cyclooxygenase, COX-2+; c-Fos+) near the probe, in CVOs, MePO, ependymal cells, periventricular hypothalamus, SON, and PVN. Inserting the probe stimulated magnocellular neurons (c-Fos+; SON; PVN) via the MePO (c-Fos+), a response enhanced by HS. Microdialysis activated microglia (OX-42+; amoeboid/hypertrophied; IL-1β+) in the adjacent SON and bilaterally in perivascular areas of the PVN, periventricular hypothalamus and ependyma, coincident with c-Fos expression in ependymal cells and COX-2 in the vasculature. These microglial responses were attenuated by HS, coincident with activating parvocellular and magnocellular neuroendocrine systems and elevating circulating IL-1β, oxytocin, and vasopressin. Acidosis-induced cellular injury from microdialysis activated the brain's innate immune response by a mechanism inhibited by peripheral osmotic stimulation. PMID:19759333

  4. Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review

    PubMed Central

    Kawwass, Jennifer F.; Summer, Ross; Kallen, Caleb B.

    2015-01-01

    Obesity is a risk factor for infertility and adverse reproductive outcomes. Adipose tissue is an important endocrine gland that secretes a host of endocrine factors, called adipokines, which modulate diverse physiologic processes including appetite, metabolism, cardiovascular function, immunity and reproduction. Altered adipokine expression in obese individuals has been implicated in the pathogenesis of a host of health disorders including diabetes and cardiovascular disease. It remains unclear whether adipokines play a significant role in the pathogenesis of adverse reproductive outcomes in obese individuals and, if so, whether the adipokines are acting directly or indirectly on the peripheral reproductive tissues. Many groups have demonstrated that receptors for the adipokines leptin and adiponectin are expressed in peripheral reproductive tissues and that these adipokines are likely, therefore, to exert direct effects on these tissues. Many groups have tested for direct effects of leptin and adiponectin on reproductive tissues including the testis, ovary, uterus, placenta and egg/embryo. The hypothesis that decreased fertility potential or adverse reproductive outcomes may result, at least in part, from defects in adipokine signaling within reproductive tissues has also been tested. Here, we present a critical analysis of published studies with respect to two adipokines, leptin and adiponectin, for which significant data have been generated. Our evaluation reveals significant inconsistencies and methodological limitations regarding the direct effects of these adipokines on peripheral reproductive tissues. We also observe a pervasive failure to account for in vivo data that challenge observations made in vitro. Overall, while leptin and adiponectin may directly modulate peripheral reproductive tissues, existing data suggest that these effects are minor and non-essential to human or mouse reproductive function. Current evidence suggests that direct effects of

  5. [Diagnostic imaging of peripheral renal vascular disorders].

    PubMed

    Hélénon, O; Correas, J M; Eiss, D; Khairoune, A; Merran, S

    2004-02-01

    Peripheral vascular disorders of the kidney involve the intrarenal branches of the renal vascular tree. It include occlusive (infarction and cortical necrosis) and non-occlusive vascular lesions (acquired arteriovenous fistulas, arteriovenous malformation, false aneurysms and microaneurysms). Initial diagnosis relies on color Doppler US and CT angiography. Angiography plays a therapeutic role. MR imaging provides useful diagnostic information on perfusion disorders especially in patients with renal insufficiency.

  6. Chiral dynamics and peripheral transverse densities

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  7. Unusually large-sized peripheral ossifying fibroma

    PubMed Central

    John, Reena Rachel; Kandasamy, Saravanan; Achuthan, Narendran

    2016-01-01

    Fibrous growths in the gingiva with the histopathological presence of calcifications are a common occurrence in the oral cavity. These lesions can be neoplastic in nature with either odontogenic or non odontogenic origin or they can be reactive lesions. This is a case report of an unusual presentation of peripheral ossifying fibroma , unusual because of its abnormally large size with review of literature. PMID:28299276

  8. Symmetrical peripheral gangrene associated with peripartum cardiomyopathy

    PubMed Central

    Jaryal, Ajay; Raina, Sujeet; Thakur, Surender; Sontakke, Tushar

    2013-01-01

    Symmetrical peripheral gangrene (SPG) is a rare clinical entity. It was first described in late 19th century and since then has been reported with array of medical conditions mainly those complicated with shock, sepsis, and disseminated intravascular coagulation (DIC). Here in, we describe a parturient with peripartum cardiomyopathy (PPCM) and SPG. Clinicians should be aware of this entity as early recognition can help in reducing morbidity and mortality. PMID:23984243

  9. Peripheral Nervous System Manifestations of Infectious Diseases

    PubMed Central

    Brizzi, Kate T.

    2014-01-01

    Infectious causes of peripheral nervous system (PNS) disease are underrecognized but potentially treatable. Heightened awareness educed by advanced understanding of the presentations and management of these infections can aid diagnosis and facilitate treatment. In this review, we discuss the clinical manifestations, diagnosis, and treatment of common bacterial, viral, and parasitic infections that affect the PNS. We additionally detail PNS side effects of some frequently used antimicrobial agents. PMID:25360209

  10. Peripheral contrast sensitivity and attention in myopia

    PubMed Central

    Kerber, Kristen L.; Thorn, Frank; Bex, Peter J.; Vera-Diaz, Fuensanta A.

    2017-01-01

    Disruption of normal visual experience or changes in the normal interaction between central and peripheral retinal input may lead to the development of myopia. In order to examine the relationship between peripheral contrast sensitivity and myopia, we manipulated attentional load for foveal vision in emmetropes and myopes while observers detected targets with peripheral vision. Peripheral contrast detection thresholds were measured binocularly using vertical Gabor stimuli presented at three eccentricities (±8°, 17°, 30°) in a spatial 2 alternative forced choice task. Contrast thresholds were measured in young adult (mean age 24.5 ± 2.6 years) emmetropes (n = 17; group SE: +0.19 ± 0.32D) and myopes (n = 25; group SE: −3.74 ± 1.99D). Attention at central fixation was manipulated with: (1) a low attention task, requiring simple fixation; or (2) a high attention task, which required subjects to perform a mathematical task. We found that at 30° all subjects exhibited lower contrast sensitivity (higher thresholds). In addition, myopes (Wilcoxon, p < 0.01), but not emmetropes (Wilcoxon, p = 0.1), had a significant decrease in sensitivity at 30° during the high attention task. However, the attention dependent threshold increase for myopes was not significantly greater than for emmetropes (Wilcoxon, p = 0.27). Attentional load did not increase thresholds at 8° or 17° for either refractive group. These data indicate that myopes experience a greater decrease in contrast sensitivity in the far periphery than emmetropes when attention is deployed in central vision. PMID:27264028

  11. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb.

    PubMed

    Kowalska, Berta; Sudoł-Szopińska, Iwona

    2012-06-01

    The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal