Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L
2017-09-15
Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Air conducted ocular VEMP: II. First clinical investigations].
Walther, L E; Schaaf, H; Sommer, D; Hörmann, K
2011-10-01
Vestibular-evoked myogenic potentials (VEMP) are widely used to assess vestibular function. Air conducted (AC) cervical VEMP (cVEMP) reflect sacculus and inferior vestibular nerve function. Ocular VEMP (oVEMP) however has been hardly examined up to now. In recent studies it has been assumed that AC oVEMP probably reflects superior vestibular nerve function. The aim of this pilot study was to evaluate clinical application of the AC oVEMP. AC oVEMP were recorded in patients with peripheral vestibular disorders (n=21). In addition thermal irritation and head impulse test were performed and AC cVEMP were recorded. For intense AC-sound stimulation tone bursts (500 Hz) with 100 dB nHL were used. In peripheral vestibular disorders AC oVEMP and AC cVEMP could be classified into: • type 1 (inferior vestibular neuritis) with loss of AC oVEMP but normal AC cVEMP, • type 2, probable type of superior vestibular neuritis, showing present AC cVEMP but loss of AC oVEMP, • type 3, probable complete vestibular neuritis, without AC oVEMP and AC cVEMP. AC oVEMP may be used as an appropriate test for clinical investigation in patients with vestibular disorders. AC oVEMP is an additional, essential test for assessing otolith function beside AC cVEMP. Further vestibular test are necessary for precise clinical interpretation. © Georg Thieme Verlag KG Stuttgart · New York.
Arshad, Q; Roberts, R E; Ahmad, H; Lobo, R; Patel, M; Ham, T; Sharp, D J; Seemungal, B M
2017-04-01
We hypothesised that chronic vestibular symptoms (CVS) of imbalance and dizziness post-traumatic head injury (THI) may relate to: (i) the occurrence of multiple simultaneous vestibular diagnoses including both peripheral and central vestibular dysfunction in individual patients increasing the chance of missed diagnoses and suboptimal treatment; (ii) an impaired response to vestibular rehabilitation since the central mechanisms that mediate rehabilitation related brain plasticity may themselves be disrupted. We report the results of a retrospective analysis of both the comprehensive clinical and vestibular laboratory testing of 20 consecutive THI patients with prominent and persisting vestibular symptoms still present at least 6months post THI. Individual THI patients typically had multiple vestibular diagnoses and unique to this group of vestibular patients, often displayed both peripheral and central vestibular dysfunction. Despite expert neuro-otological management, at two years 20% of patients still had persisting vestibular symptoms. In summary, chronic vestibular dysfunction in THI could relate to: (i) the presence of multiple vestibular diagnoses, increasing the risk of 'missed' vestibular diagnoses leading to persisting symptoms; (ii) the impact of brain trauma which may impair brain plasticity mediated repair mechanisms. Apart from alerting physicians to the potential for multiple vestibular diagnoses in THI, future work to identify the specific deficits in brain function mediating poor recovery from post-THI vestibular dysfunction could provide the rationale for developing new therapy for head injury patients whose vestibular symptoms are resistant to treatment. Copyright © 2017. Published by Elsevier B.V.
Heinze, B; Swanepoel, D W; Hofmeyr, L M
2011-09-01
Disorders of the auditory and vestibular system are often associated with human immunodeficiency virus infection and acquired immunodeficiency syndrome. However, the extent and nature of these vestibular manifestations are unclear. To systematically review the current peer-reviewed literature on vestibular manifestations and pathology related to human immunodeficiency virus and acquired immunodeficiency syndrome. Systematic review of peer-reviewed articles related to vestibular findings in individuals with human immunodeficiency virus infection and acquired immunodeficiency syndrome. Several electronic databases were searched. We identified 442 records, reduced to 210 after excluding duplicates and reviews. These were reviewed for relevance to the scope of the study. We identified only 13 reports investigating vestibular functioning and pathology in individuals affected by human immunodeficiency virus and acquired immunodeficiency syndrome. This condition can affect both the peripheral and central vestibular system, irrespective of age and viral disease stage. Peripheral vestibular involvement may affect up to 50 per cent of patients, and central vestibular involvement may be even more prevalent. Post-mortem studies suggest direct involvement of the entire vestibular system, while opportunistic infections such as oto- and neurosyphilis and encephalitis cause secondary vestibular dysfunction resulting in vertigo, dizziness and imbalance. Patients with human immunodeficiency virus and acquired immunodeficiency syndrome should routinely be monitored for vestibular involvement, to minimise functional limitations of quality of life.
Yip, Chun Wai; Strupp, Michael
2018-05-01
The Dizziness Handicap Inventory (DHI) is believed to quantitate the handicap related to the presence or severity of underlying vestibular dysfunction. However, patients with chronic vestibular diseases may manifest various degrees of behavioural and physiological adaptation resulting in variances of the DHI. Our primary study objective is to evaluate the correlation between the DHI and measurable vestibular parameters. Secondarily, we compared DHI among different vestibular disorders (central, peripheral and functional), and different types of anatomic deficits (semicircular canal vs otolithic). We also correlated the DHI and posturography. We prospectively evaluated 799 patients with precise vestibular diagnoses using video head impulse testing (vHIT), caloric irrigation, and cervical/ocular vestibular-evoked myogenic potentials (c/oVEMP). Posturography was done for 84 patients. All participants completed the DHI. No significant correlation was found between DHI and (1) vestibulo-ocular reflex parameters: unilateral weakness r = - 0.018, total calorics r = 0.055, vHIT right r = 0.007, vHIT left r = - 0.091, vHIT asymmetry r = 0.013; (2) otolith parameters: cVEMP amplitude right r = - 0.034, amplitude left r = - 0.004, asymmetry r = 0.016; oVEMP amplitude right r = 0.044, amplitude left r = - 0.007, asymmetry r = - 0.008. Patients with central vestibular disorders had higher DHI than those with peripheral (z = - 4.743, p = 0.001) or functional disorders (z = - 2.902, p = 0.004). DHI of patients with deficits of canal or otolith function did not differ significantly from those with no deficits (z = 2.153, p = 0.541). There was no significant correlation between DHI and postural sway on posturography. Therefore, the DHI does not correlate with vestibular tests, and neither reflects the presence nor severity of peripheral vestibular deficits.
Anxiety and depression among patients with different types of vestibular peripheral vertigo.
Yuan, Qing; Yu, Lisheng; Shi, Dongmei; Ke, Xingxing; Zhang, Hua
2015-02-01
Numerous studies have been published on comorbid anxiety and depression in patients with vertigo. However, very few studies have separately described and analyzed anxiety or depression in patients with different types of vestibular peripheral vertigo. The present study investigated anxiety and depression among patients with 4 different types of peripheral vertigo. A total of 129 patients with 4 types of peripheral vertigo, namely, benign paroxysmal positional vertigo (BPPV, n = 49), migrainous vertigo (MV, n = 37), Menière disease (MD, n = 28), and vestibular neuritis (VN, n = 15), were included in the present study. Otological and neurootological examinations were carefully performed, and self-rating anxiety scale and self-rating depression scale were used to evaluate anxiety and depression. Patients were divided into 2 groups, according to the vestibular function: normal and abnormal vestibular function. There was no significant difference in the risk of anxiety/depression between these 2 groups. However, for patients with the 4 different vertigo types, the prevalence of anxiety (MV = 45.9%, MD = 50%) and depression (MV = 27%, MD = 28.6%) was significantly higher in the patients with MV or MD than those with BPPV or VN (P < 0.05). Vestibular function is not significantly associated with the risk of anxiety/depression. Anxiety/depression is more common in patients with MV or MD than those with BPPV or VN. This may be due to the different mechanisms involved in these 4 types of vertigo, as well as differences in the prevention and self-control of the patients against the vertigo.
Anxiety and Depression Among Patients With Different Types of Vestibular Peripheral Vertigo
Yuan, Qing; Yu, Lisheng; Shi, Dongmei; Ke, Xingxing; Zhang, Hua
2015-01-01
Abstract Numerous studies have been published on comorbid anxiety and depression in patients with vertigo. However, very few studies have separately described and analyzed anxiety or depression in patients with different types of vestibular peripheral vertigo. The present study investigated anxiety and depression among patients with 4 different types of peripheral vertigo. A total of 129 patients with 4 types of peripheral vertigo, namely, benign paroxysmal positional vertigo (BPPV, n = 49), migrainous vertigo (MV, n = 37), Menière disease (MD, n = 28), and vestibular neuritis (VN, n = 15), were included in the present study. Otological and neurootological examinations were carefully performed, and self-rating anxiety scale and self-rating depression scale were used to evaluate anxiety and depression. Patients were divided into 2 groups, according to the vestibular function: normal and abnormal vestibular function. There was no significant difference in the risk of anxiety/depression between these 2 groups. However, for patients with the 4 different vertigo types, the prevalence of anxiety (MV = 45.9%, MD = 50%) and depression (MV = 27%, MD = 28.6%) was significantly higher in the patients with MV or MD than those with BPPV or VN (P < 0.05). Vestibular function is not significantly associated with the risk of anxiety/depression. Anxiety/depression is more common in patients with MV or MD than those with BPPV or VN. This may be due to the different mechanisms involved in these 4 types of vertigo, as well as differences in the prevention and self-control of the patients against the vertigo. PMID:25654382
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.
Petri, Maria; Chirilă, Magdalena; Bolboacă, Sorana D; Cosgarea, Marcel
Health-related quality of life is used to denote that portion of the quality of life that is influenced by the person's health. To compare the health-related quality of life of individuals with vestibular disorders of peripheral origin by analyzing functional, emotional and physical disabilities before and after vestibular treatment. A prospective, non randomized case-controlled study was conduced in the ENT Department, between January 2015 and December 2015. All patients were submitted to customize a 36 item of health survey on quality of life, short form 36 health survey questionnaire (SF-36) and the Dizziness Handicap Inventory for assessing the disability. Individuals were diagnosed with acute unilateral vestibular peripheral disorders classified in 5 groups: vestibular neuritis, Ménière Disease, Benign Paroxysmal Positional Vertigo, cochlear-vestibular dysfunction (other than Ménière Disease), or other type of acute peripheral vertigo (as vestibular migraine). There was a statistical significant difference for each parameter of Dizziness Handicap Inventory score (the emotional, functional and physical) between the baseline and one month both in men and women, but with any statistical significant difference between 7 days and 14 days. It was found a statistical significant difference for all eight parameters of SF-36 score between the baseline and one month later both in men and women; the exception was the men mental health perception. The correlation between the Dizziness Handicap Inventory and the SF-36 scores according to diagnostics type pointed out that the Spearman's correlation coefficient was moderate correlated with the total scores of these instruments. The Dizziness Handicap Inventory and the SF-36 are useful, proved practical and valid instruments for assessing the impact of dizziness on the quality of life of patients with unilateral peripheral vestibular disorders. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Head-shaking nystagmus predicts greater disability in unilateral peripheral vestibulopathy.
Angeli, Simon I; Velandia, Sandra; Snapp, Hillary
2011-01-01
The objective of this study was to determine the association of the bedside test of head-shaking nystagmus (HSN) with patients' self-perceived dizziness handicap as well as this test's sensitivity and specificity in unilateral peripheral vestibular hypofunction. A retrospective case-control study was performed. The study was held at an academic, tertiary referral center. Fifty-three adult patients with unilateral peripheral hypofunction defined by the caloric test of the videonystagmography with documented bedside HSN and who had completed questionnaires of self-perceived dizziness handicap were included. The sensitivity and specificity of the bedside HSN in patients and 10 healthy controls in diagnosing unilateral vestibular hypofunction defined by videonystagmographic caloric testing and by abnormal gain and symmetry of the vestibular-ocular reflex by rotary chair testing were determined. Scores of the screening test of the Dizziness Handicap Index and Functional Level Scale questionnaires were taken. When using the caloric irrigation test as the reference standard for unilateral vestibular hypofunction, the sensitivity, specificity, and positive predictive value of the bedside HSN were 31%, 96%, and 97%, respectively. When comparing with results of rotational chair testing (vestibular-ocular reflex gain and symmetry), the sensitivity of the HSN test increases to 71%. Patients with positive bedside HSN had higher scores (greater self-perceived dizziness handicap) of the Dizziness Handicap Index (P = .049) and higher (worse) scores of the Functional Level Scale (P = .0377) than those with negative bedside HSN (Wilcoxon rank test). Greater perceived handicap was correlated with a positive bedside HSN in patients with unilateral peripheral vestibulopathy. The HSN has sufficient sensitivity to be used as screening test of uncompensated vestibulopathy in this series. However, a negative HSN alone does not rule out the diagnosis of peripheral vestibular dysfunction. Copyright © 2011 Elsevier Inc. All rights reserved.
Recovery of vestibular function following hair cell destruction by streptomycin
NASA Technical Reports Server (NTRS)
Jones, T. A.; Nelson, R. C.
1992-01-01
Can the vestibular periphery of warm-blooded vertebrates recover functionally from severe sensory hair cell loss? Recent findings in birds suggest a mechanism for recovery but in fact no direct functional evidence has been reported. We produced vestibular hair cell lesions using the ototoxic agent streptomycin sulfate (600 mg/kg/day, 8 days, chicks, Gallus domesticus). Compound action potentials of the vestibular nerve were used as a direct measure of peripheral vestibular function. Vestibular thresholds, neural activation latencies and amplitudes were documented. Eight days of drug treatment elevated thresholds significantly (P < 0.001) and eliminated all but remnants of vestibular activity. Virtually complete physiological recovery occurred in all animals studied over a period of 70 days following treatment. Thresholds recovered within two weeks of drug treatment whereas the return of response morphologies including activation latencies and amplitudes required an additional 6-8 weeks.
Agrawal, Yuri; Carey, John P; Della Santina, Charles C; Schubert, Michael C; Minor, Lloyd B
2010-12-01
Patients with diabetes are at increased risk both for falls and for vestibular dysfunction, a known risk factor for falls. Our aims were 1) to further characterize the vestibular dysfunction present in patients with diabetes and 2) to evaluate for an independent effect of vestibular dysfunction on fall risk among patients with diabetes. National cross-sectional survey. Ambulatory examination centers. Adults from the United States aged 40 years and older who participated in the 2001-2004 National Health and Nutrition Examination Survey (n = 5,86). Diagnosis of diabetes, peripheral neuropathy, and retinopathy. Vestibular function measured by the modified Romberg Test of Standing Balance on Firm and Compliant Support Surfaces and history of falling in the previous 12 months. We observed a higher prevalence of vestibular dysfunction in patients with diabetes with longer duration of disease, greater serum hemoglobin A1c levels and other diabetes-related complications, suggestive of a dose-response relationship between diabetes mellitus severity and vestibular dysfunction. We also noted that vestibular dysfunction independently increased the odds of falling more than 2-fold among patients with diabetes (odds ratio, 2.3; 95% confidence interval, 1.1-5.1), even after adjusting for peripheral neuropathy and retinopathy. Moreover, we found that including vestibular dysfunction, peripheral neuropathy, and retinopathy in multivariate models eliminated the significant association between diabetes and fall risk. Vestibular dysfunction may represent a newly recognized diabetes-related complication, which acts as a mediator of the effect of diabetes mellitus on fall risk.
Colnaghi, Silvia; Rezzani, Cristiana; Gnesi, Marco; Manfrin, Marco; Quaglieri, Silvia; Nuti, Daniele; Mandalà, Marco; Monti, Maria Cristina; Versino, Maurizio
2017-01-01
Neurophysiological measurements of the vestibular function for diagnosis and follow-up evaluations provide an objective assessment, which, unfortunately, does not necessarily correlate with the patients' self-feeling. The literature provides many questionnaires to assess the outcome of rehabilitation programs for disequilibrium, but only for the Dizziness Handicap Inventory (DHI) is an Italian translation available, validated on a small group of patients suffering from a peripheral acute vertigo. We translated and validated the reliability and validity of the DHI, the Situational Vertigo Questionnaire (SVQ), and the Activities-Specific Balance Confidence Scale (ABC) in 316 Italian patients complaining of dizziness due either to a peripheral or to a central vestibular deficit, or in whom vestibular signs were undetectable by means of instrumental testing or clinical evaluation. Cronbach's coefficient alpha, the homogeneity index, and test-retest reproducibility, confirmed reliability of the Italian version of the three questionnaires. Validity was confirmed by correlation test between questionnaire scores. Correlations with clinical variables suggested that they can be used as a complementary tool for the assessment of vestibular symptoms. In conclusion, the Italian versions of DHI, SVQ, and ABC are reliable and valid questionnaires for assessing the impact of dizziness on the quality of life of Italian patients with peripheral or central vestibular deficit.
Colnaghi, Silvia; Rezzani, Cristiana; Gnesi, Marco; Manfrin, Marco; Quaglieri, Silvia; Nuti, Daniele; Mandalà, Marco; Monti, Maria Cristina; Versino, Maurizio
2017-01-01
Neurophysiological measurements of the vestibular function for diagnosis and follow-up evaluations provide an objective assessment, which, unfortunately, does not necessarily correlate with the patients’ self-feeling. The literature provides many questionnaires to assess the outcome of rehabilitation programs for disequilibrium, but only for the Dizziness Handicap Inventory (DHI) is an Italian translation available, validated on a small group of patients suffering from a peripheral acute vertigo. We translated and validated the reliability and validity of the DHI, the Situational Vertigo Questionnaire (SVQ), and the Activities-Specific Balance Confidence Scale (ABC) in 316 Italian patients complaining of dizziness due either to a peripheral or to a central vestibular deficit, or in whom vestibular signs were undetectable by means of instrumental testing or clinical evaluation. Cronbach’s coefficient alpha, the homogeneity index, and test–retest reproducibility, confirmed reliability of the Italian version of the three questionnaires. Validity was confirmed by correlation test between questionnaire scores. Correlations with clinical variables suggested that they can be used as a complementary tool for the assessment of vestibular symptoms. In conclusion, the Italian versions of DHI, SVQ, and ABC are reliable and valid questionnaires for assessing the impact of dizziness on the quality of life of Italian patients with peripheral or central vestibular deficit. PMID:29066999
Impaired math achievement in patients with acute vestibular neuritis.
Moser, Ivan; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W
2017-12-01
Broad cognitive difficulties have been reported in patients with peripheral vestibular deficit, especially in the domain of spatial cognition. Processing and manipulating numbers relies on the ability to use the inherent spatial features of numbers. It is thus conceivable that patients with acute peripheral vestibular deficit show impaired numerical cognition. Using the number Stroop task and a short math achievement test, we tested 20 patients with acute vestibular neuritis and 20 healthy, age-matched controls. On the one hand, patients showed normal congruency and distance effects in the number Stroop task, which is indicative of normal number magnitude processing. On the other hand, patients scored lower than healthy controls in the math achievement test. We provide evidence that the lower performance cannot be explained by either differences in prior math knowledge (i.e., education) or slower processing speed. Our results suggest that peripheral vestibular deficit negatively affects numerical cognition in terms of the efficient manipulation of numbers. We discuss the role of executive functions in math performance and argue that previously reported executive deficits in patients with peripheral vestibular deficit provide a plausible explanation for the lower math achievement scores. In light of the handicapping effects of impaired numerical cognition in daily living, it is crucial to further investigate the mechanisms that cause mathematical deficits in acute PVD and eventually develop adequate means for cognitive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of Diabetic Complications on Balance and Falls: Contribution of the Vestibular System
Lin, James; Staecker, Hinrich; Whitney, Susan L.; Kluding, Patricia M.
2016-01-01
Diabetes causes many complications, including retinopathy and peripheral neuropathy, which are well understood as contributing to gait instability and falls. A less understood complication of diabetes is the effect on the vestibular system. The vestibular system contributes significantly to balance in static and dynamic conditions by providing spatially orienting information. It is noteworthy that diabetes has been reported to affect vestibular function in both animal and clinical studies. Pathophysiological changes in peripheral and central vestibular structures due to diabetes have been noted. Vestibular dysfunction is associated with impaired balance and a higher risk of falls. As the prevalence of diabetes increases, so does the potential for falls due to diabetic complications. The purpose of this perspective article is to present evidence on the pathophysiology of diabetes-related complications and their influence on balance and falls, with specific attention to emerging evidence of vestibular dysfunction due to diabetes. Understanding this relationship may be useful for screening (by physical therapists) for possible vestibular dysfunction in people with diabetes and for further developing and testing the efficacy of interventions to reduce falls in this population. PMID:26251477
Herdman, Susan J.; Whitney, Susan L.; Cass, Stephen P.; Clendaniel, Richard A.; Fife, Terry D.; Furman, Joseph M.; Getchius, Thomas S. D.; Goebel, Joel A.; Shepard, Neil T.; Woodhouse, Sheelah N.
2016-01-01
Background: Uncompensated vestibular hypofunction results in postural instability, visual blurring with head movement, and subjective complaints of dizziness and/or imbalance. We sought to answer the question, “Is vestibular exercise effective at enhancing recovery of function in people with peripheral (unilateral or bilateral) vestibular hypofunction?” Methods: A systematic review of the literature was performed in 5 databases published after 1985 and 5 additional sources for relevant publications were searched. Article types included meta-analyses, systematic reviews, randomized controlled trials, cohort studies, case control series, and case series for human subjects, published in English. One hundred thirty-five articles were identified as relevant to this clinical practice guideline. Results/Discussion: Based on strong evidence and a preponderance of benefit over harm, clinicians should offer vestibular rehabilitation to persons with unilateral and bilateral vestibular hypofunction with impairments and functional limitations related to the vestibular deficit. Based on strong evidence and a preponderance of harm over benefit, clinicians should not include voluntary saccadic or smooth-pursuit eye movements in isolation (ie, without head movement) as specific exercises for gaze stability. Based on moderate evidence, clinicians may offer specific exercise techniques to target identified impairments or functional limitations. Based on moderate evidence and in consideration of patient preference, clinicians may provide supervised vestibular rehabilitation. Based on expert opinion extrapolated from the evidence, clinicians may prescribe a minimum of 3 times per day for the performance of gaze stability exercises as 1 component of a home exercise program. Based on expert opinion extrapolated from the evidence (range of supervised visits: 2-38 weeks, mean = 10 weeks), clinicians may consider providing adequate supervised vestibular rehabilitation sessions for the patient to understand the goals of the program and how to manage and progress themselves independently. As a general guide, persons without significant comorbidities that affect mobility and with acute or subacute unilateral vestibular hypofunction may need once a week supervised sessions for 2 to 3 weeks; persons with chronic unilateral vestibular hypofunction may need once a week sessions for 4 to 6 weeks; and persons with bilateral vestibular hypofunction may need once a week sessions for 8 to 12 weeks. In addition to supervised sessions, patients are provided a daily home exercise program. Disclaimer: These recommendations are intended as a guide for physical therapists and clinicians to optimize rehabilitation outcomes for persons with peripheral vestibular hypofunction undergoing vestibular rehabilitation. Video Abstract available for more insights from the author (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A124). PMID:26913496
Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect.
Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne
2015-01-01
Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields.
Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect
Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne
2015-01-01
Objectives Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Methods Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Results Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. Conclusions A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields. PMID:26247469
NASA Technical Reports Server (NTRS)
Keefe, J. R.
1985-01-01
Research on the precise timing and regulation of neuron production and maturation in the vestibular and visual systems of Wistar rats and several inbred strains of mice (C57B16 and Pallid mutant) concentrated upon establishing a timing baseline for mitotic development of the neurons of the vestibular nuclei and the peripheral vestibular sensory structures (maculae, cristae). This involved studies of the timing and site of neuronal cell birth and preliminary studies of neuronal cell death in both central and peripheral elements of the mammalian vestibular system. Studies on neuronal generation and maturation in the retina were recently added to provide a mechanism for more properly defining the in utero' developmental age of the individual fetal subject and to closely monitor potential transplacental effects of environmentally stressed maternal systems. Information is given on current efforts concentrating upon the (1) perinatal period of development (E18 thru P14) and (2) the role of cell death in response to variation in the functional loading of the vestibular and proprioreceptive systems in developing mammalian organisms.
Liu, Sheng; Angelaki, Dora E.
2009-01-01
Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those due to changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception. PMID:19605631
NASA Technical Reports Server (NTRS)
Zacharias, G. L.; Young, L. R.
1981-01-01
Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.
Brantberg, Krister; Löfqvist, Lennart
2007-01-01
Bilateral vestibulopathy, i.e. decreased peripheral vestibular function affecting both ears, is characterized by unsteadiness of gait, particularly in darkness and by motion-induced oscillopsia. We have recently seen a few patients with severely impaired semicircular canal function albeit with rather normal vestibular evoked myogenic potentials (VEMP) suggesting normal saccular function. The five young patients, mean age 27 years (range 15-45), 4 males and 1 female, had severely impaired balance in darkness and they all reported walking-induced vertical oscillopsia. Hence, these patients with incomplete vestibular lesions had symptoms that were indistinguishable from the typical patient with bilateral vestibulopathy. Further, the findings in these patients suggest that saccular function probably contributes little to prevent walking-induced vertical oscillopsia.
Magnusson, Anna K; Tham, Richard
A sudden unilateral loss of peripheral vestibular input results in the onset of acute dizziness and imbalance associated with spontaneous nystagmus, postural instability and nausea. Fortunately, these symptoms ameliorate rapidly, even without treatment, due to central nervous plastic changes which are collectively termed "vestibular compensation". This concept has become a widely accepted research model for studying lesion-induced plasticity. Recent research has dealt in particular with the plasticity of the medial vestibular nuclei that mediate the horizontal vestibulo-ocular reflex. Studies range from a cellular level in vitro to a functional level in vivo. Taken together, results from such studies have contributed greatly to what is known of vestibular compensation today. This article summarises evidence for several plasticity mechanisms that drive the recovery of spontaneous nystagmus, one of which is dependent on an endocrine stress-response. In the long run, such knowledge might influence the management and treatment of patients with balance disorders.
Diversity of head shaking nystagmus in peripheral vestibular disease.
Kim, Min-Beom; Huh, Se Hyung; Ban, Jae Ho
2012-06-01
To evaluate the characteristics of head shaking nystagmus in various peripheral vestibular diseases. Retrospective case series. Tertiary referral center. Data of 235 patients with peripheral vestibular diseases including vestibular neuritis, Ménière's disease, and benign paroxysmal positional vertigo, were retrospectively analyzed. All subjects presented between August 2009 and July 2010. Patients were tested for vestibular function including head shaking nystagmus and caloric information. Regarding vestibular neuritis, all tests were again performed during the 1-month follow-up. Head shaking nystagmus was classified as monophasic or biphasic and, according to the affected ear, was divided as ipsilesional or contralesional. Of the 235 patients, 87 patients revealed positive head shaking nystagmus. According to each disease, positive rates of head shaking nystagmus were as follows: 35 (100%) of 35 cases of vestibular neuritis, 11 (68.8%) of 16 cases of Ménière's disease, and 41 (22.2%) of 184 cases of benign paroxysmal positional vertigo. All cases of vestibular neuritis initially presented as a monophasic, contralesional beating, head shaking nystagmus. However, 1 month after first visit, the direction of nystagmus was changed to biphasic (contralesional first then ipsilesional beating) in 25 cases (72.5%) but not in 10 cases (27.5%). There was a significant correlation between the degree of initial caloric weakness and the biphasic conversion of head shaking nystagmus (p = 0.02). In 72.5% of vestibular neuritis cases, head shaking nystagmus was converted to biphasic during the subacute period. The larger the initial canal paresis was present, the more frequent the biphasic conversion of head shaking nystagmus occurred. However, Ménière's disease and benign paroxysmal positional vertigo did not have specific patterns of head shaking nystagmus.
The effects of hyperventilation on postural control mechanisms.
Sakellari, V; Bronstein, A M; Corna, S; Hammon, C A; Jones, S; Wolsley, C J
1997-09-01
The effect of hyperventilation on postural balance was investigated. Voluntary hyperventilation increased body sway in normal subjects, particularly in the sagittal plane. The possibility that this hyperventilation-induced unsteadiness is due to interference with lower limb somatosensory input, vestibular reflexes or cerebellar function was assessed. (i) The effect of hyperventilation on peripheral compound sensory action potentials (SAPs) and somatosensory evoked potentials (SEPs) (recorded centrally, from the scalp) elicited by electrical stimulation of the sural nerve was measured in six normal adults. A reduction in the scalp SEP amplitude and an increase in the peripheral SAP amplitude were observed during hyperventilation, which reversed during the recovery period. These changes indicate increased peripheral neural excitability which could lead to a higher level of ectopic activity; the latter would interfere with central reception of peripheral input. (ii) The click-evoked vestibulo-collic reflex was recorded to study the effect of hyperventilation on vestibulo-spinal activity. EMG recordings from both sternocleidomastoid muscles of six healthy subjects were made in response to loud clicks presented to either ear. Neither the amplitude nor the latency of the response were altered significantly by hyperventilation. (iii) Eye-movement recordings were obtained in the six normal subjects to assess the effect of hyperventilation on the vestibulo-ocular reflex and its visual suppression, the latter being a function largely mediated by the cerebellum; no changes were detected. (iv) Three-dimensional eye-movement recordings and body-sway measurements were obtained in six patients with longstanding unilateral vestibular loss in order to evaluate if hyperventilation disrupts vestibular compensation. In all patients, a horizontal nystagmus either appeared or was significantly enhanced for > or = 60 s after voluntary hyperventilation. Sway was also enhanced by hyperventilation in these patients, particularly in the frontal plane. This study suggests that hyperventilation disrupts mechanisms mediating vestibular compensation. The increase in sway may be, at least partly, mediated by deranged peripheral and central somatosensory signals from the lower limbs. Hyperventilation seems to spare vestibular reflex activity and cerebellar-mediated eye movements.
Nishi, Toshiko; Kamogashira, Teru; Fujimoto, Chisato; Kinoshita, Makoto; Egami, Naoya; Sugasawa, Keiko; Yamasoba, Tatsuya; Iwasaki, Shinichi
2017-06-01
To investigate the influence of vestibular function on dynamic postural stability assessed by the functional reach test (FRT) and the timed up and go test (TUG). Retrospective study. Tertiary referral center. The FRT and TUG were performed in 399 patients with dizziness. The effects of peripheral vestibular dysfunction assessed by the caloric test and cervical vestibular evoked myogenic potentials (cVEMPs) to air-conducted sound (500 Hz, tone burst) on the results of FRT and TUG were analyzed. Neither FRT nor TUG scores showed significant differences in relation to the results of the caloric test ( P > .3). The FRT scores in patients who showed abnormal cVEMP responses on both sides were significantly smaller than those in patients who showed normal cVEMP responses ( P < .01). The TUG scores in patients who showed abnormal cVEMP responses on both sides were significantly greater than those in patients who showed normal cVEMP responses ( P < .05). The vestibulo-spinal reflex mediated by the saccule and its afferents is one of the factors that influence the maintenance of dynamic postural stability as measured by FRT and TUG.
NASA Technical Reports Server (NTRS)
Ross, Muriel D.
2003-01-01
In a letter to Robert Hooke, written on 5 February, 1675, Isaac Newton wrote "If I have seen further than certain other men it is by standing upon the shoulders of giants." In his context, Newton was referring to the work of Galileo and Kepler, who preceded him. However, every field has its own giants, those men and women who went before us and, often with few tools at their disposal, uncovered the facts that enabled later researchers to advance knowledge in a particular area. This review traces the history of the evolution of views from early giants in the field of vestibular research to modern concepts of vestibular organ organization and function. Emphasis will be placed on the mammalian maculae as peripheral processors of linear accelerations acting on the head. This review shows that early, correct findings were sometimes unfortunately disregarded, impeding later investigations into the structure and function of the vestibular organs. The central themes are that the macular organs are highly complex, dynamic, adaptive, distributed parallel processors of information, and that historical references can help us to understand our own place in advancing knowledge about their complicated structure and functions.
Chiarovano, Elodie; Vidal, Pierre-Paul; Magnani, Christophe; Lamas, Georges; Curthoys, Ian S; de Waele, Catherine
2016-01-01
Falls in seniors are a major public health problem. Falls lead to fear of falling, reduced mobility, and decreased quality of life. Vestibular dysfunction is one of the fall risk factors. The relationship between objective measures of vestibular responses and age has been studied. However, the effects of age on vestibular perception during caloric stimulation have not been studied. Twenty senior subjects were included in the study, and separated in two groups: 10 seniors reporting postural instability (PI) and exhibiting absence of vestibular perception when they tested with caloric stimulation and 10 sex- and age-matched seniors with no such problems (controls). We assessed vestibular perception on a binary rating scale during the warm irrigation of the caloric test. The function of the various vestibular receptors was assessed using video head impulse test (vHIT), caloric tests, and cervical and ocular vestibular-evoked myogenic potentials. The Equitest was used to evaluate balance. No horizontal canal dysfunction assessed using both caloric test and vHIT was detected in either group. No significant difference was detected between PI and control groups for the peak SPV of caloric-induced ocular nystagmus or for the HVOR gain. All the controls perceived rotation when the maximal SPV during warm irrigation was equal to or ≥15°/s. None of the subjects in the PI group perceived rotation even while the peak SPV exceeded 15°/s, providing objective evidence of normal peripheral horizontal canal function. All the PI group had abnormal Equitest results, particularly in the two last conditions. These investigations show for the first time that vestibular perception can be absent during a caloric test despite normal horizontal canal function. We call this as dissociation vestibular neglect. Patients with poor vestibular perception may not be aware of postural perturbations and so will not correct for them. Thus, falls in the elderly may result, among other factors, from a vestibular neglect due to an inappropriate central processing of normal vestibular peripheral inputs. That is, failure to perceive rotation during caloric testing when the SPV is >15°/s, should prompt the clinician to envisage preventive actions to avoid future falls such as rehabilitation.
ERIC Educational Resources Information Center
Karapolat, Hale; Eyigor, Sibel; Kirazli, Yesim; Celebisoy, Nese; Bilgen, Cem; Kirazli, Tayfun
2010-01-01
The aim of this study is to evaluate the internal consistency, test-retest reliability, construct validity, and sensitivity to change of the Activities-specific Balance Confidence Scale (ABC) in people with peripheral vestibular disorder. Thirty-three patients with unilateral peripheral vestibular disease were included in the study. Patients were…
Postural compensation for vestibular loss and implications for rehabilitation.
Horak, Fay B
2010-01-01
This chapter summarizes the role of the vestibular system in postural control so that specific and effective rehabilitation can be designed that facilitates compensation for loss of vestibular function. Patients with bilateral or unilateral loss of peripheral vestibular function are exposed to surface perturbations to quantify automatic postural responses. Studies also evaluated the effects of audio- and vibrotactile-biofeedback to improve stability in stance and gait. The most important role of vestibular information for postural control is to control orientation of the head and trunk in space with respect to gravitoinertial forces, particularly when balancing on unstable surfaces. Vestibular sensory references are particularly important for postural control at high frequencies and velocities of self-motion, to reduce trunk drift and variability, to provide an external reference frame for the trunk and head in space; and to uncouple coordination of the trunk from the legs and the head-in-space from the body CoM. The goal of balance rehabilitation for patients with vestibular loss is to help patients 1) use remaining vestibular function, 2) depend upon surface somatosensory information as their primary postural sensory system, 3) learn to use stable visual references, and 4) identify efficient and effective postural movement strategies.
Central and peripheral components of short latency vestibular responses in the chicken
NASA Technical Reports Server (NTRS)
Nazareth, A. M.; Jones, T. A.
1998-01-01
Far-field recordings of short latency vestibular responses to pulsed cranial translation are composed of a series of positive and negative peaks occurring within 10 ms following stimulus onset. In the bird, these vestibular evoked potentials (VsEPs) can be recorded noninvasively and have been shown in the chicken and quail to depend strictly upon the activation of the vestibular component of the eighth nerve. The utility of the VsEP in the study of vestibular systems is dependent upon a clear understanding of the neural sources of response components. The primary aim of the current research in the chicken was to critically test the hypotheses that 1) responses are generated by both peripheral and central neurons and 2) peaks P1 and N1 originate from first order vestibular neurons, whereas later waves primarily depend on activity in higher order neurons. The principal strategy used here was to surgically isolate the eighth nerve as it enters the brainstem. Interruption of primary afferents of the eighth nerve in the brainstem substantially reduced or eliminated peaks beyond P2, whereas P1 and N1 were generally spared. Surgical sections that spared vestibular pathways had little effect on responses. The degree of change in response components beyond N1 was correlated with the extent of damage to central vestibular relays. These findings support the conclusion that responses are produced by both peripheral and central elements of the vestibular system. Further, response peaks later than N1 appear to be dependent upon central relays, whereas P1 and N1 reflect activity of the peripheral nerve. These findings clarify the roles of peripheral and central neurons in the generation of vestibular evoked potentials and provide the basis for a more useful and detailed interpretation of data from vestibular response testing.
NASA Technical Reports Server (NTRS)
Vinnikov, Y. A.; Gazenko, O. G.; Titova, L. K.; Bronshteyn, A. A.; Govardovskiy, V. I.; Pevzner, R. A.; Gribakin, G. G.; Aronova, M. Z.; Kharkeyevich, T. A.; Tsirulis, T. P.
1978-01-01
The vestibular apparatus was investigated in rats subjected to weightlessness for 19.5 days. The vestibular apparatus was removed and its sections were fixed in a glutaraldehyde solution for investigation by light and electron microscopes. Structural and functional charges were noted in the otolith portions of the ear, with the otolith particles clinging to the utricular receptor surface and with the peripheral arrangement of the nucleolus in the nuclei of the receptor cells. It is possible that increased edema of the vestibular tissue resulted in the destruction of some receptor cells and in changes in the form and structure of the otolith. In the horizontal crista, the capula was separated.
The Effects of Aging on Clinical Vestibular Evaluations
Maheu, Maxime; Houde, Marie-Soleil; Landry, Simon P.; Champoux, François
2015-01-01
Balance disorders are common issues for aging populations due to the effects of normal aging on peripheral vestibular structures. These changes affect the results of vestibular function evaluations and make the interpretation of these results more difficult. The objective of this article is to review the current state of knowledge of clinically relevant vestibular measures. We will first focus on otolith function assessment methods cervical-VEMP (cVEMP) and ocular-VEMP (oVEMP), then the caloric and video-head impulse test (vHIT) methods for semicircular canals assessment. cVEMP and oVEMP are useful methods, though research on the effects of age for some parameters are still inconclusive. vHIT results are largely independent of age as compared to caloric stimulation and should therefore be preferred for the evaluation of the semicircular canals function. PMID:26441824
[Peripheral, central and functional vertigo syndromes].
Strupp, M; Dieterich, M; Zwergal, A; Brandt, T
2015-12-01
Depending on the temporal course, three forms of vertigo syndrome can be differentiated: 1) vertigo attacks, e.g. benign paroxysmal positional vertigo (BPPV), Menière's disease and vestibular migraine, 2) acute spontaneous vertigo lasting for days, e.g. acute unilateral vestibulopathy, brainstem or cerebellar infarction and 3) symptoms lasting for months or years, e.g. bilateral vestibulopathy and functional vertigo. The specific therapy of the various syndromes is based on three principles: 1) physical treatment with liberatory maneuvers for BPPV and balance training for vestibular deficits, 2) pharmacotherapy, e.g. for acute unilateral vestibulopathy (corticosteroids) and Menière's disease (transtympanic administration of gentamicin or steroids and high-dose betahistine therapy); placebo-controlled pharmacotherapy studies are currently being carried out for acute unilateral vestibulopathy, vestibular paroxysmia, prophylaxis of BPPV, vestibular migraine, episodic ataxia type 2 and cerebellar ataxia; 3) psychotherapy for functional dizziness.
Vinnikov, Ia A; Gazenko, O G; Titova, L K; Bronshteĭn, A A; Govardovskiĭ, V I
1978-01-01
Vestibular apparatus was investigated in rats subjected to weightlessness for 19.5 days in the satelite "Cosmos-782" and experienced acceleration on launching and landing. Some structural and functional changes were noted. They were seen in otolith clinging to the utricular receptor surface and in the peripheral arrangement of the nucleolus in the nuclei of the receptor cells. It is also possible that increased edema of the vestibular tissue resulted in destruction of some receptor cells, and within the otolith--changes in the form and structure of otoconia. In the horizontal crista the cupula was separated.
Manual control of yaw motion with combined visual and vestibular cues
NASA Technical Reports Server (NTRS)
Zacharias, G. L.; Young, L. R.
1977-01-01
Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation was modelled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A correction to the frequency responses is provided by a separate measurement of manual control performance in an analogous visual pursuit nulling task. The resulting dual-input describing function for motion perception dependence on combined cue presentation supports the complementary model, in which vestibular cues dominate sensation at frequencies above 0.05 Hz. The describing function model is extended by the proposal of a non-linear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.
Bamiou, D E; Davies, R A; McKee, M; Luxon, L M
1999-02-01
This study compares the symptoms, disabilities and handicap, as assessed by means of a questionnaire, in two groups of patients with a unilateral peripheral vestibular disorder: those with a total canal paresis and those with a partial canal paresis, as judged by the duration parameter using the Fitzgerald Hallpike caloric test in the absence of optic fixation. The results of the study indicate that the severity of dizziness, the Dizziness Index (severity x frequency) and the overall level of disabilities related to visual vertigo are less severe in unilateral profound or total loss of vestibular function than in unilateral mild vestibular loss.
Vestibular signals in primate cortex for self-motion perception.
Gu, Yong
2018-04-21
The vestibular peripheral organs in our inner ears detect transient motion of the head in everyday life. This information is sent to the central nervous system for automatic processes such as vestibulo-ocular reflexes, balance and postural control, and higher cognitive functions including perception of self-motion and spatial orientation. Recent neurophysiological studies have discovered a prominent vestibular network in the primate cerebral cortex. Many of the areas involved are multisensory: their neurons are modulated by both vestibular signals and visual optic flow, potentially facilitating more robust heading estimation through cue integration. Combining psychophysics, computation, physiological recording and causal manipulation techniques, recent work has addressed both the encoding and decoding of vestibular signals for self-motion perception. Copyright © 2018. Published by Elsevier Ltd.
Vestibular Findings in Military Band Musicians
Zeigelboim, Bianca Simone; Gueber, Crislaine; Silva, Thanara Pruner da; Liberalesso, Paulo Breno Noronha; Gonçalves, Claudia Giglio de Oliveira; Faryniuk, João Henrique; Marques, Jair Mendes; Jurkiewicz, Ari Leon
2014-01-01
Introduction Exposure to music is the subject of many studies because it is related to an individual's professional and social activities. Objectives Evaluate the vestibular behavior in military band musicians. Methods A retrospective cross-sectional study was performed. Nineteen musicians with ages ranging from 21 to 46 years were evaluated (average = 33.7 years and standard deviation = 7.2 years). They underwent anamnesis and vestibular and otolaryngologic evaluation through vectoelectronystagmography. Results The most evident otoneurologic symptoms in the anamnesis were tinnitus (84.2%), hearing difficulties (47.3%), dizziness (36.8%), headache (26.3%), intolerance to intense sounds (21.0%), and earache (15.7%). Seven musicians (37.0%) showed vestibular abnormality, which occurred in the caloric test. The abnormality was more prevalent in the peripheral vestibular system, and there was a predominance of irritative peripheral vestibular disorders. Conclusion The alteration in vestibular exam occurred in the caloric test (37.0%). There were changes in the prevalence of peripheral vestibular system with a predominance of irritative vestibular dysfunction. Dizziness was the most significant symptom for the vestibular test in correlation with neurotologic symptoms. The present study made it possible to verify the importance of the labyrinthine test, which demonstrates that this population should be better studied because the systematic exposure to high sound pressure levels may cause major vestibular alterations. PMID:25992076
Wang, J; Zhou, Y J; Yu, J; Gu, J
2017-03-07
Objective: To analyze the relationship between directional preponderance (DP), spontaneous nystagmus(SN) and vestibular disorders, and to investigate the significance of DP in directing peripheral vestibular function in patients with vertigo. Methods: This was a retrospective analysis of 394 cases diagnosed with peripheral vestibular disease accompanied by vertigo from March 2012 to June 2014 in the Outpatient Department of the Eye & ENT Hospital of Fudan University. Results of static and dynamic posture equilibrium tests, SN, unilateral weakness(UW), and DP in videonystagmography(VNG) were analyzed and compared. Results: The mean interval time between the last vertigo attack and examination in patients with SN or DP in caloric test were 4.4 d and 7.3 d respectively, and those without SN or DP were 18.3 d and 17.5 d respectively. The patients were divided into two groups according to DP results of caloric test. DP-normal group had 203 cases and DP-abnormal group had 191 cases. Spontaneous nystagmus was presented in 44 cases in the DP-normal group (21.67%) and four in the DP-abnormal group (2.09%). A significant difference was found between the two groups (χ 2 =35.27, P =0.000). Deficiency of vestibular function was noted in 165 cases in the DP-normal group (81.28%) and 123 (64.40%) in the DP-abnormal group in static and dynamic posture equilibrium tests. The difference between the two groups was statistically significant (χ 2 =14.26, P =0.000). Conclusion: Compared with DP-normal patients, DP-abnormal patients are more likely to have spontaneous nystagmus and balance disorders due to vestibular dysfunction.
Love and fear of heights: the pathophysiology and psychology of height imbalance.
Salassa, John R; Zapala, David A
2009-01-01
Individual psychological responses to heights vary on a continuum from acrophobia to height intolerance, height tolerance, and height enjoyment. This paper reviews the English literature and summarizes the physiologic and psychological factors that generate different responses to heights while standing still in a static or motionless environment. Perceptual cues to height arise from vision. Normal postural sway of 2 cm for peripheral objects within 3 m increases as eye-object distance increases. Postural sway >10 cm can result in a fall. A minimum of 20 minutes of peripheral retinal arc is required to detect motion. Trigonometry dictates that a 20-minute peripheral retinal arch can no longer be achieved in a standing position at an eye-object distance of >20 m. At this distance, visual cues conflict with somatosensory and vestibular inputs, resulting in variable degrees of imbalance. Co-occurring deficits in the visual, vestibular, and somatosensory systems can significantly increase height imbalance. An individual's psychological makeup, influenced by learned and genetic factors, can influence reactions to height imbalance. Enhancing peripheral vision and vestibular, proprioceptive, and haptic functions may improve height imbalance. Psychotherapy may improve the troubling subjective sensations to heights.
[Preliminary application of video head impulse test in the diagnosis of vertigo].
Zhang, Yanmei; Chen, Siqi; Zhong, Zhen; Chen, Li; Wu, Yuanding; Zhao, Guiping; Liu, Yuhe
2015-06-01
To investigate clinical application of head impulse test with video recording eye movements in the diagnosis of vertigo. The video head impulse test(vHIT) was used to measure the eye saccades and velocity gain in 95 patients with vertigo which were divided into two groups, peripheral vertigo (47 cases) and central vertigo(48 cases); the characteristics of eye saccades and velocity gain of six semicircular canals in different patients with vertigo were analyzed, and were compared between the two groups. The vHIT result in patients with peripheral vertigo: in 22 patients (23 affected ears) with Meniere's disease, 21 ears were abnormal (91. 3%); the vHIT results in 4 patients with vestibular schwannoma, 2 patients with vestibular neuritis, 5 patients with delayed endolymphatic hydrops, 6 patients with sudden hearing loss accompanied vertigo, and 8 patients with vestibular dysfunction, were abnormal with correct saccades and/or lower velocity gain of vHIT. The abnormal vHIT results were also found in 35 of 48 patients (72. 9%) with central vertigo, which including posterior cerebral circulation ischemia(7 patients), cerebral infarction/stroke(6 patients), and dizziness with vertigo(17 patients) and others(18 patients). Abnormal rate of vHIT in patients with peripheral vertigo was 95. 7% (45/47), which was significantly higher than that (72. 9%) in patients with central vertigo. It is easy to perform the vHIT which without adverse reactions. We can record high-frequency characteristics of vestibular-ocular reflex among six semicircular canals through vHIT. The vHIT results which show the function of vestibular ocular reflex in different diseases with vertigo, can help discriminate peripheral vertigo from central vertigo, and it is a practical assessment method for vertigo.
Vinnikov, Y A; Gazenko, O G; Titova, L K; Bronstein, A A; Govardovskii, V I; Gribakin, F G; Pevzner, R A; Aronova, M Z; Kharkeevich, T A; Tsirulis, T P; Pyatkina, G A; Lichakov, D V; Pal'mbach, L P; Anichin, V F
1979-01-01
This investigation of the vestibular apparatus of rats exposed for 20 days to weightlessness on board an earth satellite and to acceleration during take-off and landing has revealed a set of changes in the structural and functional organization, such as adjoinment of the otolith to the utricle receptor surface and peripheral localization of the nucleoli inside the receptor cells' nuclei. Destruction of some receptor cells, apparently due to increased swelling of the vestibular apparatus tissue and alteration of the shape and structure of the otoconia were observed. In the horizontal crista, detachment of the cupula took place.
NASA Technical Reports Server (NTRS)
Kohl, Randall L.; Homick, Jerry L.; Cintron, Nitza; Calkins, Dick S.
1987-01-01
Astemizole was orally administered to 20 subjects in a randomized, double-blind design to assess the efficacy of this peripherally active antihistamine as an antimotion sickness drug possessing no central side-effects. Measures of vestibular ocular reflex (VOR) were made to evaluate the agent as a selective vestibular depressant. Following one week of orally administered astemizole (30 mg daily), a Staircase Profile Test, a VOR test, and a variety of tests of cognitive performance were administered. These tests revealed no statistically significant effects of astemizole. This leads to the conclusion that, although the drug probably reaches the peripheral vestibular apparatus in man by crossing the blood-vestibular barrier, a selective peripheral antihistamine (H1) action is inadequate to control motion sickness induced through cross-coupled accelerative semicircular canal stimulation in a rotating chair.
Evaluation of vestibular functions in children with vertigo attacks
Uneri, A; Turkdogan, D
2003-01-01
Aim: To examine vestibular system functions in children with episodic vertigo attacks. Methods: Thirty four children (20 males) aged 4–18 years with paroxysmal dizziness and/or vertigo attacks were evaluated. A medical history for vestibular symptoms and migraine was taken. Vestibular and auditory functions were assessed. Results: Chronic headache attacks consistent with migraine were reported in 12 children and motion sickness was reported in 30. Family history in first degree relatives was positive for migraine in 29 children and for episodic vertigo in 22. Electronystagmography and videonystagmography showed two types of nystagmus: spontaneous vestibular nystagmus (41%) and benign paroxysmal positional nystagmus (BPPN) (59%). The first type of nystagmus was assessed as a sign of vestibulopathy and the patients with BPPN were diagnosed as having benign paroxysmal positional vertigo (BPPV). Audiometric examination in four cases revealed bilateral sensory neural hearing loss in low frequencies. Pure tone averages in 30 cases were within normal ranges; however low frequencies in 28 of them were approximately 10 dB lower than high frequencies. Unilateral caloric responses diminished in eight children. Conclusions: Peripheral vestibular problems in childhood present in a wide spectrum, which varies from a short episode of dizziness to a typical vestibular attack with fluctuating sensory neural hearing loss or episodes of BPPV. A considerable number of these vestibular problems might be related to the migraine syndrome. PMID:12765917
Changes in resting-state fMRI in vestibular neuritis.
Helmchen, Christoph; Ye, Zheng; Sprenger, Andreas; Münte, Thomas F
2014-11-01
Vestibular neuritis (VN) is a sudden peripheral unilateral vestibular failure with often persistent head movement-related dizziness and unsteadiness. Compensation of asymmetrical activity in the primary peripheral vestibular afferents is accomplished by restoration of impaired brainstem vestibulo-ocular and vestibulo-spinal reflexes, but presumably also by changing cortical vestibular tone imbalance subserving, e.g., spatial perception and orientation. The aim of this study was to elucidate (i) whether there are changes of cerebral resting-state networks with respect to functional interregional connectivity (resting-state activity) in VN patients and (ii) whether these are related to neurophysiological, perceptual and functional parameters of vestibular-induced disability. Using independent component analysis (ICA), we compared resting-state networks between 20 patients with unilateral VN and 20 age- and gender-matched healthy control subjects. Patients were examined in the acute VN stage and after 3 months. A neural network (component 50) comprising the parietal lobe, medial aspect of the superior parietal lobule, posterior cingulate cortex, middle frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, insular cortex, caudate nucleus, thalamus and midbrain was modulated between acute VN patients and healthy controls and in patients over time. Within this network, acute VN patients showed decreased resting-state activity (ICA) in the contralateral intraparietal sulcus (IPS), in close vicinity to the supramarginal gyrus (SMG), which increased after 3 months. Resting-state activity in IPS tended to increase over 3 months in VN patients who improved with respect to functional parameters of vestibular-induced disability (VADL). Resting-state activity in the IPS was not related to perceptual (subjective visual vertical) or neurophysiological parameters of vestibular-induced disability (e.g., gain of vestibulo-ocular reflex, caloric responsiveness, postural sway). VN leads to a change in resting-state activity of the contralateral IPS adjacent to the SMG, which reverses during vestibular compensation over 3 months. The ventral intraparietal area in the IPS contains multimodal regions with directionally selective responses to vestibular stimuli making them suitable for participating in spatial orientation and multisensory integration. The clinical importance is indicated by the fact that the increase in resting-state activity tended to be larger in those patients with only little disability at the follow-up examination. This may indicate powerful restitution-related or compensatory cortical changes in resting-state activity.
Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Benolken, Martha S.
1991-01-01
Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.
Gene mapping of the Usher syndromes.
Kimberling, W; Smith, R J
1992-10-01
USH is an autosomal recessive group of diseases characterized by auditory impairment and visual loss owing to RP. Two common types of USH are known, types I and II. USH type I is characterized by a congenital severe to profound hearing impairment, absent vestibular function, and a progressive pigmentary retinopathy. Persons with type I do not find hearing aids useful, have delayed motor development, and experience progressive night blindness and peripheral visual loss, which usually begins in their second decade. USH type II is characterized by a congenital moderate to severe hearing loss with a down-sloping audiogram, normal vestibular function, and a progressive pigmentary retinopathy. Persons with USH2 find hearing aids beneficial, have normal psychomotor development, and experience progressive night blindness and peripheral visual loss, which usually begins in their third decade. Vestibular dysfunction is the best distinguishing hallmark to differentiate USH type I from type II. One USH type II gene (called USH2) has been assigned to chromosome 1q. One USH type I gene has been tentatively assigned to chromosome 14q. There are other USH genes that have not yet been localized.
Neurotology symptoms at referral to vestibular evaluation
2013-01-01
Background Dizziness-vertigo is common in adults, but clinical providers may rarely diagnose vestibular impairment and referral could be delayed. To assess neurotology symptoms (including triggers) reported by patients with peripheral vestibular disease, during the year just before their referral to vestibular evaluation. Methods 282 patients with peripheral vestibular disease and 282 control subjects accepted to participate. They had no middle ear, retinal, neurological, psychiatric, autoimmune or autonomic disorders. They reported their symptoms by a standardized questionnaire along with their anxiety/depression symptoms. Results Patients were referred after months or years from the onset of their symptoms, 24% of them reported frequent falls with a long clinical evolution; 10% of them reported no vertigo but instability related to specific triggers; 86% patients and 12% control subjects reported instability when moving the head rapidly and 79% patients and 6% control subjects reported instability when changing posture. Seven out of the 9 symptoms explored by the questionnaire allowed the correct classification of circa 95% of the participants (Discriminant function analysis, p < 0.001). High blood pressure, dyslipidemia and anxiety/depression symptoms showed a mild correlation with the total score of symptoms (multiple R2 =0.18, p < 0.001). Conclusions Late referral to vestibular evaluation may underlie a history of frequent falls; some patients may not report vertigo, but instability related to specific triggers, which could be useful to prompt vestibular evaluation. High blood pressure, dyslipidemia and anxiety/depression symptoms may have a mild influence on the report of symptoms of vestibular disease in both, patients and control subjects. PMID:24279682
NASA Technical Reports Server (NTRS)
Jian, B. J.; Shintani, T.; Emanuel, B. A.; Yates, B. J.
2002-01-01
The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.
Jian, B J; Shintani, T; Emanuel, B A; Yates, B J
2002-05-01
The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.
Outcome analysis of individualized vestibular rehabilitation protocols
NASA Technical Reports Server (NTRS)
Black, F. O.; Angel, C. R.; Pesznecker, S. C.; Gianna, C.
2000-01-01
OBJECTIVE: To determine the outcome of vestibular rehabilitation protocols in subjects with peripheral vestibular disorders compared with normal and abnormal control subjects. STUDY DESIGN: Prospective study using repeated measure, matched control design. Subjects were solicited consecutively according to these criteria: vestibular disorder subjects who had abnormal results of computerized dynamic posturography (CDP) sensory organization tests (SOTs) 5 and 6 and underwent rehabilitation; vestibular disorder subjects who had abnormal results of SOTs 5 and 6 and did not undergo rehabilitation; and normal subjects (normal SOTs). SETTING: Tertiary neurotology clinic. SUBJECTS: Men and women over age 18 with chronic vestibular disorders and chief complaints of unsteadiness, imbalance, and/or motion intolerance, and normal subjects. INTERVENTIONS: Pre- and post-rehabilitation assessment included CDP, vestibular disability, and activities of daily living questionnaires. Individualized rehabilitation plans were designed and implemented to address the subject's specific complaints and functional deficits. Supervised sessions were held at weekly intervals, and self-administered programs were devised for daily home use. MAIN OUTCOME MEASURES: CDP composite and SOT scores, number of falls on CDP, and self-assessment questionnaire results. RESULTS: Subjects who underwent rehabilitation (Group A) showed statistically significant improvements in SOTs, overall composite score, and reduction in falls compared with abnormal (Group B) control groups. Group A's performances after rehabilitation were not significantly different from those of normal subjects (Group C) in SOTs 3 through 6, and close to normal on SOTs 1 and 2. Subjects in Group A also reported statistically significant symptomatic improvement. CONCLUSIONS: Outcome measures of vestibular protocol physical therapy confirmed objective and subjective improvement in subjects with chronic peripheral vestibular disorders. These findings support results reported by other investigators.
Vestibular function in families with inherited autosomal dominant hearing loss
Street, Valerie A.; Kallman, Jeremy C.; Strombom, Paul D.; Bramhall, Naomi F.; Phillips, James O.
2008-01-01
The inner ear contains the developmentally related cochlea and peripheral vestibular labyrinth. Given the similar physiology between these two organs, hearing loss and vestibular dysfunction may be expected to occur simultaneously in individuals segregating mutations in inner ear genes. Twenty-two different genes have been discovered that when mutated lead to non-syndromic autosomal dominant hearing loss. A review of the literature indicates that families segregating mutations in 13 of these 22 genes have undergone formal clinical vestibular testing. Formal assessment revealed vestibular dysfunction in families with mutations in ten of these 13 genes. Remarkably, only families with mutations in the COCH and MYO7A genes self-report considerable vestibular challenges. Families segregating mutations in the other eight genes do not self-report significant balance problems and appear to compensate well in everyday life for vestibular deficits discovered during formal clinical vestibular assessment. An example of a family (referred to as the HL1 family) with progressive hearing loss and clinically-detected vestibular hypofunction that does not report vestibular symptoms is described in this review. Notably, one member of the HL1 family with clinically-detected vestibular hypofunction reached the summit of Mount Kilimanjaro. PMID:18776598
Zhao, Yuan; Chen, Taisheng; Wang, Wei; Xu, Kaixu; Wen, Chao; Liu, Qiang; Han, Xi; Li, Shanshan; Li, Xiaojie; Lin, Peng
2016-05-01
To discuss the characteristics of subjective visual gravity (subjective visual vertical/horizontal, SVV/SVH) and assess its clinical application for peripheral unilateral vestibular compensation. 69 cases of acute peripheral unilateral vestibular dysfunction patients (case group) accepted SVV/SVH, spontaneous nystagmus (SN), caloric test (CT) and other vestibular function tests. 49 healthy people (control group) accepted SVV/SVH only. SVV/SVH, SN and unilateral weakness (UW) were selected as for the observation indicators. The correlations between SVV/SVH, SN, UW and courses were investigated respectively, as well as the characteristic of SVV/SVH, SN in period of vestibular compensation. Among case group SVV, SVH positive in 42 patients(60.9%) and 44 patients(63.8%), the absolute values of the skew angle were in the range between 2.1°-20.0°, 2.1°-22.2°. Skew angles of SVV/SVH in control were in the range between -1.5°-2.0° and -2.0°-1.6°, and had no statistical significance with case group(t=5.336 and 5.864, P<0.05). SN-positive 28 cases (40.6%), the range of intensities at 2.4°-17.1°; UW-positive 50 cases (72.5%). In case group, positive correlation between SVV and SVH(r=0.948, P=0.00), negatively correlated between SVV/SVH and SN respectively(r values were -0.720, -0.733, P values were 0.00), no correlation between the skew angle of SVV/SVH, strength of SN and UW value(r values were 0.191, 0.189, and 0.179, P>0.05), there was no correlation between the absolute value of SVV, SVH, SN, UW with the duration (rs values were -0.075, -0.065, -0.212, and 0.126, P>0.05). Subjective visual gravity can be used not only to assess the range of unilateral peripheral vestibular dysfunction, but also help assess the static compensatory of otolithic, guidance and assessment of vestibular rehabilitation.
Neuroactive substances in the human vestibular end organs.
Usami, S; Matsubara, A; Shinkawa, H; Matsunaga, T; Kanzaki, J
1995-01-01
In order to evaluate the involvement of neuroactive substances in the human vestibular periphery, the immunocytochemical distribution of substance P (SP), calcitonin gene-related peptide (CGRP), and choline acetyltransferase (ChAT) was examined. SP-like immunoreactivity (LI) was present around and beneath sensory hair cells, probably corresponding to their afferent nerve endings. SP-LI was found predominantly in subpopulations of the primary afferents distributed in the peripheral region of the end organs. ChAT-LI and CGRP-LI were found throughout as small puncta below the hair cell layer, probably corresponding to efferent endings. The present results indicate that these neuroactive substances, previously described in animals, are also distributed in the human vestibular periphery, and almost certainly contribute to human vestibular function.
Head-Shaking Nystagmus Depends on Gravity
Marti, Sarah; Straumann, Dominik
2005-01-01
In acute unilateral peripheral vestibular deficit, horizontal spontaneous nystagmus (SN) increases when patients lie on their affected ear. This phenomenon indicates an ipsilesional reduction of otolith function that normally suppresses asymmetric semicircular canal signals. We asked whether head-shaking nystagmus (HSN) in patients with chronic unilateral vestibular deficit following vestibular neuritis is influenced by gravity in the same way as SN in acute patients. Using a three-dimensional (3-D) turntable, patients (N = 7) were placed in different whole-body positions along the roll plane and oscillated (1 Hz, ±10°) about their head-fixed vertical axis. Eye movements were recorded with 3-D magnetic search coils. HSN was modulated by gravity: When patients lay on their affected ear, slow-phase eye velocity significantly increased upon head shaking and consisted of a horizontal drift toward the affected ear (average: 1.2°/s ±0.5 SD), which was added to the gravity-independent and directionally nonspecific SN. In conclusion, HSN in patients with chronic unilateral peripheral vestibular deficit is best elicited when they are lying on their affected ear. This suggests a gravity-dependent mechanism similar to the one observed for SN in acute patients, i.e., an asymmetric suppression of vestibular nystagmus by the unilaterally impaired otolith organs. PMID:15735939
Current evidence of peripheral vestibular symptoms secondary to otitis media.
Monsanto, Rafael da Costa; Kasemodel, Ana Luiza Papi; Tomaz, Andreza; Paparella, Michael M; Penido, Norma de Oliveira
2018-05-06
The association between otitis media and vestibular symptoms has been hypothesized in the past. Thus, in this study, we aimed to critically analyze (based in a systematic review of the literature) whether patients who have otitis media are at greater risk of developing vestibular impairment or not. We performed a systematic review of the literature and identified potentially relevant articles reporting vestibular symptoms and results of vestibular function tests in patients with otitis media through searches of the PubMED, Web of Science, Scopus, and Google Scholar databases. The quality of the final set of records was assessed using the "Newcaste-Ottawa Scale". Of the 2334 records searched, 43 met our inclusion and exclusion criteria, and those included 2250 patients. The records comprised 20 longitudinal studies, 21 cross-sectional studies, and 2 case reports. Regarding the type of otitis media studied, 25 examined vestibular impairment in otitis media with effusion, 6 acute otitis media, and 12 chronic otitis media. Results of anamnesis, clinical exams, and several vestibular function tests are reported and critically discussed. Most studies evaluating the association between otitis media and vestibular symptoms have potential methodological flaws. Clinical evidence suggests that patients with otitis media have increased chances for having vestibular symptoms, delayed acquisition of developmental milestones, and abnormalities in several vestibular function tests as compared with controls. Future studies with rigorous methodology aiming to assess the clinical significance (and prognostic factors) of the association between otitis media and vestibular impairment are warranted. Key message Several studies demonstrated long-term sequelae secondary to otitis media. However, the evidence supporting those assumptions are based in low-quality evidence. Thus, better structured studies are warranted to better understand the clinical relevance of such association.
Zhang, F X; Pang, Y W; Zhang, M M; Zhang, T; Dong, Y L; Lai, C H; Shum, D K Y; Chan, Y S; Li, J L; Li, Y Q
2011-01-26
Glutamate transmission from vestibular end organs to central vestibular nuclear complex (VNC) plays important role in transferring sensory information about head position and movements. Three isoforms of vesicular glutamate transporters (VGLUTs) have been considered so far the most specific markers for glutamatergic neurons/cells. In this study, VGLUT1 and VGLUT2 were immunohistochemically localized to axon terminals in VNC and somata of vestibular primary afferents in association with their central and peripheral axon endings, and VGLUT1 and VGLUT3 were co-localized to hair cells of otolith maculae and cristae ampullaris. VGLUT1 and VGLUT2 defined three subsets of Scarpa's neurons (vestibular ganglionic neurons): those co-expressing VGLUT1 and VGLUT2 or expressing only VGLUT2, and those expressing neither. In addition, many neurons located in all vestibular subnuclei were observed to contain hybridized signals for VGLUT2 mRNA and a few VNC neurons, mostly scattered in medial vestibular nucleus (MVe), displayed VGLUT1 mRNA labelling. Following unilateral ganglionectomy, asymmetries of VGLUT1-immunoreactivity (ir) and VGLUT2-ir occurred between two VNCs, indicating that the VNC terminals containing VGLUT1 and/or VGLUT2 are partly of peripheral origin. The present data indicate that the constituent cells/neurons along the vestibular pathway selectively apply VGLUT isoforms to transport glutamate into synaptic vesicles for glutamate transmission. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Likhachev, S A; Mar'enko, I P; Antonenko, A I
2013-01-01
The objective of the present publication was to demonstrate a clinical case of peripheral vestibular paroxismia verified in a woman with the help of the MRI technique. Vestibular paroxismia is a relatively rare disease manifested in such characteristic signs and symptoms as sudden and short-lived episodes of dizziness, unstable gait, and the concomitant vegetative disorders accompanied as a rule by tympanophonia, impairment of hearing, and falls. In typical cases, the duration of such episodes varies from several minutes to a few days. A case of vestibular paroxismia associated with the lesion in the peripheral section of the vestibular system is described; it was caused by compression of the nerve by a blood vessel as shown by means of magnetic resonance imaging of cranial nerves.
10 years of Vertigo Clinic at National Hospital Abuja, Nigeria: what have we learned?
Olusesi, Abiodun D; Abubakar, J
2016-11-01
The clinician's major role in management of the dizzy patient involves determining what dizziness is vertigo, and what vertigo is of central or peripheral origin. These demand attention to details of history, otolaryngological workup including vestibular assessment, and often use of diagnostic and management algorithms. There is paucity of published reports of the management outcomes of peripheral vestibular diseases from Africa. Two tertiary care otologist-led dedicated vertigo clinics are located in Abuja, Nigeria. A prospective, non-randomized study of patients presenting with features of peripheral vestibular diseases attending the National Hospital Abuja Nigeria (between May 2005 and April 2014) and CSR Otologics Specialist Clinics (May 2010 to April 2014) was carried out. Both institutions adopted the same diagnostic and management protocols. Data extracted from anonymized databases created for this study include age, sex, vertigo duration (acute <12 weeks, chronic >12 weeks), dizziness handicap inventory score at presentation and at subsequent visits, otological and vestibular findings, ice-water caloric testing results, other investigation outcomes, treatments offered and outcomes. 561/575 (97.5 %) of the cases recorded had peripheral vestibular disease. The male-to-female ratio was 290:271. The mean age of the subjects was 44.7 years. Duration of vertigo at presentation was acute in 278 subjects and chronic in 283 subjects. Identifiable clinical diagnostic groups include BPPV (n = 200), Meniere's disease (n = 189), cervicogenic vertigo (n = 35), labyrinthitis (n = 32), Migraine-associated vertigo (MAV) (n = 32), cholesteatoma/perilymph Fistula (n = 10), climacteric vertigo (n = 8) and unclassified vertigo (n = 55). Migraine-associated vertigo recorded the highest DHI score (95 % CI 75 ± 4.3), followed by cholesteatoma/perilymph fistula (95 % CI 72 ± 6.1) and labyrinthitis (95 % CI 62 ± 1.9). Pure tone audiometry (95 % CI 67.3 ± 3.43), followed by thyroid function tests (95 % CI 66.7 ± 23.55) and ice-water caloric testing (95 % CI 59.7 ± 2.69) were investigations with the highest yields. 86.5 % of cases were treated by either vestibular suppressant medications alone (n = 285) and/or particle repositioning maneuver (n = 200) with improvement in vertigo control (95 % CI 63.63 to 74.37 % and 62.59 to 75.41 %, respectively). Peripheral vestibular diseases constitute majority of cases of self-reported vertigo seen in our setting. Migraine-associated vertigo seen in our setting all have peripheral vestibular signs. Dedicated vertigo clinics could significantly improve the diagnostic and treatment yield in a resource-constrained setting like ours. Most cases can be managed using non-operative measures.
Vélez León, Vanessa; Lucero Gutiérrez, Vanessa; Escobar Hurtado, Celia; Ramirez-Velez, Robinson
2010-01-01
To study the relationship between disability and health-related quality of life in women with vertigo of peripheral origin. Cross-sectional study in 26 women diagnosed with vertigo, classified by type of peripheral vestibular disturbance: benign paroxysmal positional vertigo (BPPV), vestibular neuritis, Ménière's disease, post-trauma and others. In a self-report interview, a 12-item short-form (SF-12) health survey on quality of life was applied; disability was assessed with the questionnaire "Dizziness Handicap Inventory" (DHI). Measures of central tendency, dispersion for the domains and types of vestibular disturbance were used and internal DHI consistency and inter-scale correlation were calculated. Patients in the vestibular neuritis and Ménière groups displayed a higher level of disability according to the DHI functional (29.5+/-5.5 vs. 27.0+/-8.8) and physical domains (23.0+/-4.1 vs. 21.5+/-6.6). Based on the SF-12 domains, greater deterioration in quality of life was perceived in physical (22.9+/-3.9 vs. 22.6+/-4.6) and emotional performance (15.4+/-5.0 vs. 11.3+/-6.0), respectively. Acceptable and significant inverse correlations were found between the physical component summary (PCS-12) of the SF-12 and the physical, emotional and functional aspects of the DHI questionnaire (r=-0.51 to -0.78, p<0.01). Internal consistency (Cronbach's alpha index) of the DHI questionnaire was appropriate for the sample. The DHI and the SF-12 are useful, practical and valid instruments for assessing the impact of dizziness on the quality of life of patients with this symptom. Copyright 2009 Elsevier España, S.L. All rights reserved.
Effects of high intensity noise on the vestibular system in rats
Stewart, Courtney; Yu, Yue; Huang, Jun; Maklad, Adel; Tang, Xuehui; Allison, Jerome; Mustain, William; Zhou, Wu; Zhu, Hong
2016-01-01
Some individuals with noise-induced hearing loss (NIHL) also report balance problems. These accompanying vestibular complaints are not well understood. The present study used a rat model to examine the effects of noise exposure on the vestibular system. Rats were exposed to continuous broadband white noise (0–24kHz) at an intensity of 116dB sound pressure level (SPL) via insert ear phones in one ear for three hours under isoflurane anesthesia. Seven days after the exposure, a significant increase in ABR threshold (43.3±1.9dB) was observed in the noise-exposed ears, indicating hearing loss. Effects of noise exposure on vestibular function were assessed by three approaches. First, fluorescein-conjugated phalloidin staining was used to assess vestibular stereocilia following noise exposure. This analysis revealed substantial sensory stereocilia bundle loss in the saccular and utricular maculae as well as in the anterior and horizontal semicircular canal cristae, but not in the posterior semicircular canal cristae. Second, single unit recording of vestibular afferent activity was performed under pentobarbital anesthesia. A total of 548 afferents were recorded from 10 noise-treated rats and 12 control rats. Noise exposure produced a moderate reduction in baseline firing rates of regular otolith afferents and anterior semicircular canal afferents. Also a moderate change was noted in the gain and phase of the horizontal and anterior semicircular canal afferent’s response to sinusoidal head rotation (1 and 2Hz, 45 degrees/s peak velocity). Third, noise exposure did not result in significant changes in gain or phase of the horizontal rotational and translational vestibular-ocular reflex (VOR). These results suggest that noise exposure not only causes hearing loss, but also causes substantial damage in the peripheral vestibular system in the absence of immediate clinically measurable vestibular signs. These peripheral deficits, however, may lead to vestibular disorders over time. PMID:26970474
Vestibular rehabilitation: clinical benefits to patients with Parkinson's disease.
Zeigelboim, Bianca Simone; Klagenberg, Karlin Fabianne; Teive, Hélio A Ghizoni; Munhoz, Renato Puppi; Martins-Bassetto, Jackeline
2009-06-01
To evaluate the effectiveness of the vestibular rehabilitation (VR) exercises by means of an assessment before and after the application of the Brazilian version of the Dizziness Handicap Inventory (DHI) questionnaire. Twelve patients were studied, the following procedures were carried out: anamnesis, otorhinolaryngological and vestibular evaluation, and the application of the DHI before and after the VR. Clinically resting tremors and subjective postural instability were the motor complaints most frequently associated with complaints of vertigo in 12 cases (100%); in the vestibular exam, all the patients presented abnormalities, frequently from the uni and bilateral peripheral vestibular deficiency syndromes in 10 cases (83.3%); there was significant improvement in the physical, functional and emotional aspects of the DHI after the completion of the VR. The VR following the Cawthorne and Cooksey protocol were shown to be useful in managing subjective complaints of several aspects evaluated in this protocol.
Use of the Dynamic Visual Acuity Test as a screener for community-dwelling older adults who fall.
Honaker, Julie A; Shepard, Neil T
2011-01-01
Adequate function of the peripheral vestibular system, specifically the vestibulo-ocular reflex (VOR; a network of neural connections between the peripheral vestibular system and the extraocular muscles) is essential for maintaining stable vision during head movements. Decreased visual acuity resulting from an impaired peripheral vestibular system may impede balance and postural control and place an individual at risk of falling. Therefore, sensitive measures of the vestibular system are warranted to screen for the tendency to fall, alerting clinicians to recommend further risk of falling assessment and referral to a falling risk reduction program. Dynamic Visual Acuity (DVA) testing is a computerized VOR assessment method to evaluate the peripheral vestibular system during head movements; reduced visual acuity as documented with DVA testing may be sensitive to screen for falling risk. This study examined the sensitivity and specificity of the computerized DVA test with yaw plane head movements for identifying community-dwelling adults (58-78 years) who are prone to falling. A total of 16 older adults with a history of two or more unexplained falls in the previous twelve months and 16 age and gender matched controls without a history of falls in the previous twelve months participated. Computerized DVA with horizontal head movements at a fixed velocity of 120 deg/sec was measured and compared with the Dynamic Gait Index (DGI) a gold standard gait assessment measurement for identifying falling risk. Receiver operating characteristics (ROC) curve analysis and area under the ROC curve (AUC) were used to assess the sensitivity and specificity of the computerized DVA as a screening measure for falling risk as determined by the DGI. Results suggested a link between computerized DVA and the propensity to fall; DVA in the yaw plane was found to be a sensitive (92%) and accurate screening measure when using a cutoff logMAR value of >0.25.
Glasauer, S; Dieterich, M; Brandt, T
2018-05-29
Acute unilateral lesions of vestibular graviceptive pathways from the otolith organs and semicircular canals via vestibular nuclei and the thalamus to the parieto-insular vestibular cortex regularly cause deviations of perceived verticality in the frontal roll plane. These tilts are ipsilateral in peripheral and in ponto-medullary lesions and contralateral in ponto-mesencephalic lesions. Unilateral lesions of the vestibular thalamus or cortex cause smaller tilts of the perceived vertical, which may be either ipsilateral or contralateral. Using a neural network model, we previously explained why unilateral vestibular midbrain lesions rarely manifest with rotational vertigo. We here extend this approach, focussing on the direction-specific deviations of perceived verticality in the roll plane caused by acute unilateral vestibular lesions from the labyrinth to the cortex. Traditionally, the effect of unilateral peripheral lesions on perceived verticality has been attributed to a lesion-based bias of the otolith system. We here suggest, on the basis of a comparison of model simulations with patient data, that perceived visual tilt after peripheral lesions is caused by the effect of a torsional semicircular canal bias on the central gravity estimator. We further argue that the change of gravity coding from a peripheral/brainstem vectorial representation in otolith coordinates to a distributed population coding at thalamic and cortical levels can explain why unilateral thalamic and cortical lesions have a variable effect on perceived verticality. Finally, we propose how the population-coding network for gravity direction might implement the elements required for the well-known perceptual underestimation of the subjective visual vertical in tilted body positions.
[Diagnosis and treatment options in vertigo syndromes].
Strupp, M; Dieterich, M; Zwergal, A; Brandt, T
2015-10-01
The key to diagnosing vertigo and balance disorders is systematic analysis of case history with clinical examination of the vestibular, oculomotor, and cerebral systems in particular. Important criteria for differentiating between the various vertigo syndromes are 1) the time course of symptoms, 2) the type of symptoms, 3) modulating factors, and 4) associated symptoms. For clinical examination of the vestibular system, six important tests are available: assessment of spontaneous nystagmus, head impulse test, dynamic visual acuity, subjective visual verticality, positioning manoeuvre, and the Romberg test/gait analysis with eyes open and closed. On the basis of five clinical signs (vertical divergence, central fixation nystagmus, gaze-evoked nystagmus, saccades, normal head impulse test), the clinical examination is able to differentiate between acute central and peripheral vestibular syndromes with a sensitivity and specificity of over 90%. The most relevant laboratory examinations are caloric irrigation and the video head-impulse test for canal function and the vestibular evoked myogenic potentials for otolith function. Finally, treatment is based upon four therapeutic principles: physiotherapy, pharmacotherapy, psychotherapy, and in rare cases, surgery.
Short latency vestibular evoked potentials in the chicken embryo
NASA Technical Reports Server (NTRS)
Jones, S. M.; Jones, T. A.
1996-01-01
Electrophysiological responses to pulsed linear acceleration stimuli were recorded in chicken embryos incubated for 19 or 20 days (E19/E20). Responses occurred within the first 16 ms following the stimulus onset. The evoked potentials disappeared following bilateral labyrinthectomy, but persisted following cochlear destruction alone, thus demonstrating that the responses were vestibular. Approximately 8 to 10 response peaks could be identified. The first 4 positive and corresponding negative components (early peaks with latencies < 6.0 ms) were scored and latencies and amplitudes quantified. Vestibular response latencies were significantly longer (P < 0.01) and amplitudes significantly smaller (P < 0.001) than those observed in 2-week-old birds. Mean response threshold for anesthetized embryos was -15.9dBre 1.0 g/ms, which was significantly higher (P < 0.03) than those observed in 2-week-old birds (-23.0dBre 1.0 g/ms). Latency/intensity functions (that is, slopes) were not significantly different between embryos and 2-week-old animals, but amplitude/intensity functions for embryos were significantly shallower than those for 2-week-old birds (P < 0.001). We presume that these differences reflect the refinement of sensory function that occurs following 19 to 20 days of incubation. The recording of vestibular evoked potentials provides an objective, direct and noninvasive measure of peripheral vestibular function in the embryo and, as such, the method shows promise as an investigative tool. The results of the present study form the definitive basis for using vestibular evoked potentials in the detailed study of avian vestibular ontogeny and factors that may influence it.
A new saccadic indicator of peripheral vestibular function based on the video head impulse test
MacDougall, Hamish G.; McGarvie, Leigh A.; Rogers, Stephen J.; Manzari, Leonardo; Burgess, Ann M.; Curthoys, Ian S.; Weber, Konrad P.
2016-01-01
Objective: While compensatory saccades indicate vestibular loss in the conventional head impulse test paradigm (HIMP), in which the participant fixates an earth-fixed target, we investigated a complementary suppression head impulse paradigm (SHIMP), in which the participant is fixating a head-fixed target to elicit anticompensatory saccades as a sign of vestibular function. Methods: HIMP and SHIMP eye movement responses were measured with the horizontal video head impulse test in patients with unilateral vestibular loss, patients with bilateral vestibular loss, and in healthy controls. Results: Vestibulo-ocular reflex gains showed close correlation (R2 = 0.97) with slightly lower SHIMP than HIMP gains (mean gain difference 0.06 ± 0.05 SD, p < 0.001). However, the 2 paradigms produced complementary catch-up saccade patterns: HIMP elicited compensatory saccades in patients but rarely in controls, whereas SHIMP elicited large anticompensatory saccades in controls, but smaller or no saccades in bilateral vestibular loss. Unilateral vestibular loss produced covert saccades in HIMP, but later and smaller saccades in SHIMP toward the affected side. Cumulative HIMP and SHIMP saccade amplitude differentiated patients from controls with high sensitivity and specificity. Conclusions: While compensatory saccades indicate vestibular loss in conventional HIMP, anticompensatory saccades in SHIMP using a head-fixed target indicate vestibular function. SHIMP saccades usually appear later than HIMP saccades, therefore being more salient to the naked eye and facilitating vestibulo-ocular reflex gain measurements. The new paradigm is intuitive and easy to explain to patients, and the SHIMP results complement those from the standard video head impulse test. Classification of evidence: This case-control study provides Class III evidence that SHIMP accurately identifies patients with unilateral or bilateral vestibulopathies. PMID:27251884
Tartaglia, Gianluca M.; Barozzi, Stefania; Marin, Federico; Cesarani, Antonio; Ferrario, Virgilio F.
2008-01-01
This study evaluated the electromyographic characteristics of masticatory and neck muscles in subjects with vestibular lesions. Surface electromyography of the masseter, temporalis and sternocleidomastoid muscles was performed in 19 patients with Ménière's disease, 12 patients with an acute peripheral vestibular lesion, and 19 control subjects matched for sex and age. During maximum voluntary clenching, patients with peripheral vestibular lesions had the highest co-contraction of the sternocleidomastoid muscle (analysis of covariance, p=0.02), the control subjects had the smallest values, and the patients with Ménière's disease had intermediate values. The control subjects had larger standardized muscle activities than the other patient groups (p=0.001). In conclusion, during maximum voluntary tooth clenching, patients with vestibular alterations have both more active neck muscles, and less active masticatory muscles than normal controls. Results underline the importance of a more inclusive craniocervical assessment of patients with vestibular lesions. PMID:19082397
Bamiou, D E; Davies, R A; McKee, M; Luxon, L M
2000-01-01
The aim of this study was to obtain a profile of disability and handicap in patients with unilateral peripheral vestibular disorders presenting to a specialist tertiary care unit. Two validated questionnaires were sent to patients who had a unilateral peripheral vestibular disorder as defined by strict criteria. Some patients still suffered moderate handicap and disability 5 years after the initial symptoms related to a unilateral vestibular disorder, although the duration of symptoms (onset to questionnaire completion) did not correlate with severity of disability and handicap, as judged by questionnaire scores. However, patients presenting to the unit within 6 months of onset of vertigo commenced balance exercises significantly earlier and had significantly lower disability scores than patients presenting later. A high proportion of non-compliance with, and delay in initiation of, vestibular rehabilitation exercises was noted in the total patient sample, while compliance with, and early initiation of, Cooksey Cawthorne exercises were significantly correlated with low disability and questionnaire scores. These findings suggest that early referral to a specialist balance unit for patients with persistent dizziness is associated with better outcome.
Gioacchini, Federico Maria; Albera, Roberto; Re, Massimo; Scarpa, Alfonso; Cassandro, Claudia; Cassandro, Ettore
2018-06-23
Diabetes mellitus is an independent risk factor for falling, particularly in the elderly. Due to chronic hyperglycemia and hyperinsulinemia patients with diabetes mellitus may have neurological deficits as peripheral neuropathy that is a debilitating micro-vascular complication affecting the proximal and distal peripheral sensory and motor nerves. Sensory neuropathy is prominent and represents the chief contributor to postural instability in diabetic subjects. Diabetic retinopathy is another complication consequent to a breakdown of the inner blood-retinal barrier with accumulation of extracellular fluids in the macula and growth of new vessels causing retinal detachment. Together peripheral neuropathy and retinopathy contribute to increase the risk of falls in diabetic patients, but a certain vestibular organs impairment should not be underestimated. Nevertheless, the exact mechanism and localization of peripheral vestibular damage consequent to chronic hyperglycemia and hyperinsulinemia are currently not still understood. Moreover it is not defined the possible role of these two blood conditions in worsening the prognosis of typical vestibular pathologies like "benign paroxysmal positional vertigo" and "Meniere disease". The aim of this review was to retrieve all studies investigating about the balance system alterations in patients suffering of diabetes. A search thorough Ovid MEDLINE was performed to enroll all eligible articles. Fourteen studies comprising a total of 1364 patients were included and analyzed in detail. On the basis of data reported in our review it appears plausible to hypothesize a direct connection among chronic hyperglycemic/hyperinsulinemic damage and peripheral vestibular organ dysfunction.
Morphological studies of the vestibular nerve
NASA Technical Reports Server (NTRS)
Bergstroem, B.
1973-01-01
The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.
Anson, Eric; Bigelow, Robin T; Studenski, Stephanie; Deshpande, Nandini; Agrawal, Yuri
2018-06-11
Standing on foam with eyes closed (FOEC) has been characterized as a measure of vestibular function; however, the relative contribution of vestibular function and proprioceptive function to the FOEC test has not been well described. In this study, the authors investigate the relationship between peripheral sensory systems (vestibular and proprioception) and performance on the FOEC test in a cohort of healthy adults. A total of 563 community-dwelling healthy adults (mean age, 72.7 [SD, 12.6] years; range, 27 to 93 years) participating in the Baltimore Longitudinal Study of Aging were tested. Proprioceptive threshold (PROP) was evaluated with passive motion detection at the right ankle. Vestibulo-ocular reflex (VOR) gain was measured using video head impulses. Otolith function was measured with cervical and ocular vestibular-evoked myogenic potentials. Participants stood on FOEC for 40 sec while wearing BalanSens (BioSensics, LLC, Watertown, MA) to quantify center of mass sway area. A mixed-model multiple logistic regression was used to examine the odds of passing the FOEC test based on PROP, VOR, cervical vestibular-evoked myogenic potential, and ocular vestibular-evoked myogenic potential function in a multisensory model while controlling for age and gender. The odds of passing the FOEC test decreased by 15% (p < 0.001) for each year of increasing age and by 8% with every 0.1 reduction in VOR gain (p = 0.025). Neither PROP nor otolith function was significantly associated with passing the FOEC test. Failure to maintain balance during FOEC may serve as a proxy for rotational vestibular contributions to postural control. Semicircular canals are more sensitive to low-frequency motion than otoliths that may explain these relationships because standing sway is dominated by lower frequencies. Lower VOR gain and increased age independently decreased the odds of passing the test.
The OTOLITH Experiment - Assessment of Otolith Function During Postflight Re-adaption
NASA Technical Reports Server (NTRS)
Clarke, A. H.; Wood, S. J.; Schoenfeld, U.
2010-01-01
The ongoing "Otolith" experiment is designed to comprehensively assess the otolith function during the re-adaptation phase after spaceflight. The novel protocol includes unilateral testing of each of the two otolith organs the utricle and the saccule. To assess utricle function, the otolith-ocular response (OOR) and the subjective visual vertical (SVV) are measured during unilateral centrifugation, which permits independent stimulation of the right and left ear. Measurement of the unilateral otolith-ocular response (uOOR) yields information on the response behaviour of the right and left peripheral utricles, whereas the SVV reflects the behaviour of the entire pathway from the peripheral otolith receptors to the vestibular cortex. Thus, by comparative evaluation of the results from the two tests, the degree of peripheral versus central adaptation during the post-flight period can be determined. To assess unilateral saccule function, vestibular evoked myogenic potentials (VEMP) are recorded. Since the saccules are predominantly aligned to gravity, and interplay with the antigravity muscles, it is hypothesised that these potentials shall be altered after spaceflight. To date the study has been conducted with 5 of a planned 8 short-flight Shuttle astronauts. Preliminary results will be discussed together with those from clinical studies of dizziness patients, where the same test protocol is employed. ACKNOWLEDGEMENT This work is supported by the German Aerospace Center (Grant DLR W130729) and is conducted under the auspices of ESA, in cooperation with NASA.
Kattah, Jorge C; Talkad, Arun V; Wang, David Z; Hsieh, Yu-Hsiang; Newman-Toker, David E
2009-11-01
Acute vestibular syndrome (AVS) is often due to vestibular neuritis but can result from vertebrobasilar strokes. Misdiagnosis of posterior fossa infarcts in emergency care settings is frequent. Bedside oculomotor findings may reliably identify stroke in AVS, but prospective studies have been lacking. The authors conducted a prospective, cross-sectional study at an academic hospital. Consecutive patients with AVS (vertigo, nystagmus, nausea/vomiting, head-motion intolerance, unsteady gait) with >or=1 stroke risk factor underwent structured examination, including horizontal head impulse test of vestibulo-ocular reflex function, observation of nystagmus in different gaze positions, and prism cross-cover test of ocular alignment. All underwent neuroimaging and admission (generally <72 hours after symptom onset). Strokes were diagnosed by MRI or CT. Peripheral lesions were diagnosed by normal MRI and clinical follow-up. One hundred one high-risk patients with AVS included 25 peripheral and 76 central lesions (69 ischemic strokes, 4 hemorrhages, 3 other). The presence of normal horizontal head impulse test, direction-changing nystagmus in eccentric gaze, or skew deviation (vertical ocular misalignment) was 100% sensitive and 96% specific for stroke. Skew was present in 17% and associated with brainstem lesions (4% peripheral, 4% pure cerebellar, 30% brainstem involvement; chi(2), P=0.003). Skew correctly predicted lateral pontine stroke in 2 of 3 cases in which an abnormal horizontal head impulse test erroneously suggested peripheral localization. Initial MRI diffusion-weighted imaging was falsely negative in 12% (all <48 hours after symptom onset). Skew predicts brainstem involvement in AVS and can identify stroke when an abnormal horizontal head impulse test falsely suggests a peripheral lesion. A 3-step bedside oculomotor examination (HINTS: Head-Impulse-Nystagmus-Test-of-Skew) appears more sensitive for stroke than early MRI in AVS.
Meldrum, Dara; Herdman, Susan; Moloney, Roisin; Murray, Deirdre; Duffy, Douglas; Malone, Kareena; French, Helen; Hone, Stephen; Conroy, Ronan; McConn-Walsh, Rory
2012-03-26
Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unknown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus® (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy. In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months. Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated. Clinical trials.gov identifier: NCT01442623.
Legters, Kristine; Whitney, Susan L; Porter, Rebecca; Buczek, Frank
2005-01-01
People with vestibular dysfunction experience dizziness, vertigo and postural instability. The persistence of these symptoms may result in decreased balance confidence. The purpose of the present study was to examine the relationship between decreased balance confidence and gait dysfunction in patients with unilateral peripheral vestibular dysfunction. A retrospective review of 137 charts with the Activities-specific Balance Confidence (ABC) Scale and the Dynamic Gait Index (DGI) scores was completed. Spearman rank-order correlation analysis was performed of the total sample, by age group and by degree of vestibular weakness. A moderate correlation of r = 0.58 (p < 0.001) was found between the ABC Scale score and the DGI score in the total sample. Those with mild or moderate vestibular weakness had a correlation of r = 0.72 (p < 0.001) between the ABC Scale score and the DGI score, compared with a correlation of r = 0.48 in those with severe or total vestibular weakness. Decreased balance confidence and increased fall risk are critical issues for people with vestibular dysfunction. The effects of aging did not have a significant impact on the relationship. The correlation between balance confidence and gait dysfunction was stronger in those with mild or moderate vestibular weakness, although those with severe or total weakness were more disabled by their vestibular symptoms.
Baseline vestibular and auditory findings in a trial of post-concussive syndrome
Meehan, Anna; Searing, Elizabeth; Weaver, Lindell; Lewandowski, Andrew
2016-01-01
Previous studies have reported high rates of auditory and vestibular-balance deficits immediately following head injury. This study uses a comprehensive battery of assessments to characterize auditory and vestibular function in 71 U.S. military service members with chronic symptoms following mild traumatic brain injury that did not resolve with traditional interventions. The majority of the study population reported hearing loss (70%) and recent vestibular symptoms (83%). Central auditory deficits were most prevalent, with 58% of participants failing the SCAN3:A screening test and 45% showing abnormal responses on auditory steady-state response testing presented at a suprathreshold intensity. Only 17% of the participants had abnormal hearing (⟩25 dB hearing loss) based on the pure-tone average. Objective vestibular testing supported significant deficits in this population, regardless of whether the participant self-reported active symptoms. Composite score on the Sensory Organization Test was lower than expected from normative data (mean 69.6 ±vestibular tests, vestibulo-ocular reflex, central auditory dysfunction, mild traumatic brain injury, post-concussive symptoms, hearing15.6). High abnormality rates were found in funduscopy torsion (58%), oculomotor assessments (49%), ocular and cervical vestibular evoked myogenic potentials (46% and 33%, respectively), and monothermal calorics (40%). It is recommended that a full peripheral and central auditory, oculomotor, and vestibular-balance evaluation be completed on military service members who have sustained head trauma.
Miller, D. M.; Cotter, L. A.; Gandhi, N. J.; Schor, R. H.; Cass, S. P.; Huff, N. O.; Raj, S. G.; Shulman, J. A; Yates, B. J.
2008-01-01
Although many previous experiments have considered the responses of vestibular nucleus neurons to rotations and translations of the head, little data are available regarding cells in the caudalmost portions of the vestibular nuclei (CVN), which mediate vestibulo-autonomic responses among other functions. This study examined the responses of CVN neurons of conscious cats to rotations in vertical planes, both before and after a bilateral vestibular neurectomy. None of the units included in the data sample had eye movement-related activity. In labyrinth-intact animals, some CVN neurons (22%) exhibited graviceptive responses consistent with inputs from otolith organs, but most (55%) had dynamic responses with phases synchronized with stimulus velocity. Furthermore, the large majority of CVN neurons had response vector orientations that were aligned either near the roll or vertical canal planes, and only 18% of cells were preferentially activated by pitch rotations. Sustained head-up rotations of the body provide challenges to the cardiovascular system and breathing, and thus the response dynamics of the large majority of CVN neurons were dissimilar to those of posturally-related autonomic reflexes. These data suggest that vestibular influences on autonomic control mediated by the CVN are more complex than previously envisioned, and likely involve considerable processing and integration of signals by brainstem regions involved in cardiovascular and respiratory regulation. Following a bilateral vestibular neurectomy, CVN neurons regained spontaneous activity within 24 h, and a very few neurons (<10%) responded to vertical tilts <15° in amplitude. These findings indicate that nonlabyrinthine inputs are likely important in sustaining the activity of CVN neurons; thus, these inputs may play a role in functional recovery following peripheral vestibular lesions. PMID:18368395
Peripheral vestibular pathology in Mondini dysplasia.
Kaya, Serdar; Hızlı, Ömer; Kaya, Fatıma Kübra; Monsanto, Rafael DaCosta; Paparella, Michael M; Cureoglu, Sebahattin
2017-01-01
In this study, our objective was to histopathologically analyze the peripheral vestibular system in patients with Mondini dysplasia. Comparative human temporal bone study. We assessed the sensory epithelium of the human vestibular system with a focus on the number of type I and type II hair cells, as well as the total number of hair cells. We compared those numbers in our Mondini dysplasia group versus our control group. The loss of type I and type II hair cells in the cristae of the superior, lateral, and posterior semicircular canals, as well as in the saccular and utricular macula, was significantly higher in our Mondini dysplasia group than in our control group. The total number of hair cells significantly decreased in the cristae of the superior, lateral, and posterior semicircular canals, as well as in the saccular and utricular macula, in our Mondini dysplasia group. Loss of vestibular hair cells can lead to vestibular dysfunction in patients with Mondini dysplasia. NA Laryngoscope, 127:206-209, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Treatment of peripheral vestibular dysfunction using photobiomodulation
NASA Astrophysics Data System (ADS)
Lee, Min Young; Hyun, Jai-Hwan; Suh, Myung-Whan; Ahn, Jin-Chul; Chung, Phil-Sang; Jung, Jae Yun; Rhee, Chung Ku
2017-08-01
Gentamicin, which is still used in modern medicine, is a known vestibular toxic agent, and various degrees of balance problems have been observed after exposure to this pharmacologic agent. Photobiomodulation is a candidate therapy for vertigo due to its ability to reach deep inner ear organs such as the cochlea. Previous reports have suggested that photobiomodulation can improve hearing and cochlea function. However, few studies have examined the effect of photobiomodulation on balance dysfunction. We used a rat model to mimic human vestibulopathy resulting from gentamicin treatment and evaluated the effect of photobiomodulation on vestibular toxicity. Slow harmonic acceleration (SHA) rotating platform testing was used for functional evaluation and both qualitative and quantitative epifluorescence analyses of cupula histopathology were performed. Animals were divided into gentamicin only and gentamicin plus laser treatment groups. Laser treatment was applied to one ear, and function and histopathology were evaluated in both ears. Decreased function was observed in both ears after gentamicin treatment, demonstrated by low gain and no SHA asymmetry. Laser treatment minimized the damage resulting from gentamicin treatment as shown by SHA asymmetry and recovered gain in the treated ear. Histology results reflected the functional results, showing increased hair cell density and epifluorescence intensity in laser-treated cupulae.
Scarfone, E; Ulfendahl, M; Lundeberg, T
1996-11-01
Four neuropeptides, substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y, were detected by radioimmunoassay in guinea-pig vestibular end-organs. High-resolution confocal microscopy visualization of immunofluorescence staining was used to determine the cellular localization of these peptides. Substance P- and neurokinin A-like immunoreactivities were found to co-exist in afferent fibers innervating the peripheral regions of both the utricular and ampullar sensory organs. The immunoreactivity was more concentrated in the distal ends of the calyceal-shaped nerve endings that innervate type I sensory cells. While in the guinea-pig, nerve calyces and type I cells are distributed in both the central and peripheral regions of the sensory epithelia, immunoreactive calyces were found only in the peripheral regions. Calcitonin gene-related peptide-like immunoreactivity was localized in small bouton endings situated at the level of the base of the hair cells. These boutons were in a position to make axosomatic contacts with type II sensory cells and axodendritic contacts with afferent nerve endings. Calcitonin gene-related peptide immunoreactivity co-existed with choline acetyltransferase immunoreactivity. The localization and shape of these boutons identified them as the axonal endings of efferent vestibular fibers. Neuropeptide Y-like immunoreactivity was not observed in the actual sensory epithelium but in the underlying connective tissue, where it was located in varicose fibers along blood vessels. The synaptic position of the tachykinins is clearly distinct from that of calcitonin gene-related peptide. This segregation distinguishes the vestibular end-organs from most peripheral tissues where these peptides are co-localized. The tachykinin-immunoreactive afferent fibers are postsynaptic to the hair cells. If, as in somatic sensory endings, these fibers can be triggered to release the neuropeptides by an axon reflex type of activation, then the tachykinins could interfere directly with the function of type I and type II vestibular hair cells. Calcitonin gene-related peptide co-exists with acetylcholine in the efferent axonal endings that are presynaptic to type II hair cells and to afferent fibers. Calcitonin gene-related peptide can thus interfere by direct synaptic action with type II hair cells only. It may also regulate the activity of the tachykinin-containing afferents.
Meldrum, Dara; Herdman, Susan; Vance, Roisin; Murray, Deirdre; Malone, Kareena; Duffy, Douglas; Glennon, Aine; McConn-Walsh, Rory
2015-07-01
To compare the effectiveness of virtual reality-based balance exercises to conventional balance exercises during vestibular rehabilitation in patients with unilateral peripheral vestibular loss (UVL). Assessor-blind, randomized controlled trial. Two acute care university teaching hospitals. Patients with UVL (N=71) who had dizziness/vertigo, and gait and balance impairment. Patients with UVL were randomly assigned to receive 6 weeks of either conventional (n=36) or virtual reality-based (n=35) balance exercises during vestibular rehabilitation. The virtual reality-based group received an off-the-shelf virtual reality gaming system for home exercise, and the conventional group received a foam balance mat. Treatment comprised weekly visits to a physiotherapist and a daily home exercise program. The primary outcome was self-preferred gait speed. Secondary outcomes included other gait parameters and tasks, Sensory Organization Test (SOT), dynamic visual acuity, Hospital Anxiety and Depression Scale, Vestibular Rehabilitation Benefits Questionnaire, and Activities Balance Confidence Questionnaire. The subjective experience of vestibular rehabilitation was measured with a questionnaire. Both groups improved, but there were no significant differences in gait speed between the groups postintervention (mean difference, -.03m/s; 95% confidence interval [CI], -.09 to .02m/s). There were also no significant differences between the groups in SOT scores (mean difference, .82%; 95% CI, -5.00% to 6.63%) or on any of the other secondary outcomes (P>.05). In both groups, adherence to exercise was high (∼77%), but the virtual reality-based group reported significantly more enjoyment (P=.001), less difficulty with (P=.009) and less tiredness after (P=.03) balance exercises. At 6 months, there were no significant between-group differences in physical outcomes. Virtual reality-based balance exercises performed during vestibular rehabilitation were not superior to conventional balance exercises during vestibular rehabilitation but may provide a more enjoyable method of retraining balance after unilateral peripheral vestibular loss. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Hong, Seok Min; Yeo, Seung Geun; Kim, Sung Wan; Cha, Chang Il
2008-08-01
We interpreted VEMP findings in patients with the three major peripheral vertigo diseases, taking age-related changes into consideration. We found different abnormal VEMP rates among the three diseases, as well as differences in the proportion of parameters that were abnormal, according to the type of disease. Vestibular neuritis, benign paroxysmal positional vertigo (BPPV), and Meniere's disease, common diseases that cause peripheral vertigo, often affect the saccule or inferior vestibular nerve, which are pathways of vestibular evoked myogenic potential (VEMP). Also, aging could have a primary effect on diminished VEMP responses. Our study investigated VEMP the findings in patients with the diseases in relation to their age. A total of 134 patients with vestibular neuritis, 62 with BPPV, and 29 with Meniere's disease were enrolled in this study. The VEMP findings in patients within the three disease groups were interpreted using our own normative ranges according to age. Abnormal VEMP rates in the vestibular neuritis, BPPV, and Meniere's disease groups were 36.6%, 25.8%, and 69%, respectively. The proportion of prolonged p13 latency in BPPV patients with abnormal VEMP responses was relatively high compared with the other two diseases. VEMP asymmetry in the patients with Meniere's disease was relatively high.
Iwasaki, Shinichi; Egami, Naoya; Inoue, Aki; Kinoshita, Makoto; Fujimoto, Chisato; Murofushi, Toshihisa; Yamasoba, Tatsuya
2013-07-01
Ocular vestibular evoked myogenic potentials (oVEMPs) to binaural air-conducted stimulation (ACS) may provide a convenient way of assessing the crossed vestibulo-ocular reflex in patients with vestibular dysfunction as well as in healthy subjects. To investigate the clinical feasibility of using oVEMPs in response to binaural ACS to assess normal subjects and patients with vestibular dysfunction. The study investigated 24 normal subjects (14 men and 10 women, aged from 23 to 60 years) and 14 patients with unilateral peripheral vestibular dysfunction. Each subject underwent oVEMP testing in response to monaural ACS and binaural ACS (500 Hz tone burst, 135 dBSPL). In normal subjects, bilateral oVEMPs were elicited in 75% of subjects in response to monaural ACS and in 91% in response to binaural ACS. Asymmetry ratios (ARs) of the responses to binaural ACS were significantly smaller than those of the responses to monaural ACS (p < 0.01). In patients with unilateral vestibular dysfunction, there were no significant differences in the amplitude, latency, or AR of the responses between monaural and binaural ACS. Approximately 30% of patients showed reduced ARs to binaural ACS relative to monaural ACS, primarily due to contamination by uncrossed responses elicited in healthy ears.
Anson, Eric; Bigelow, Robin T.; Swenor, Bonnielin; Deshpande, Nandini; Studenski, Stephanie; Jeka, John J.; Agrawal, Yuri
2017-01-01
Postural sway increases with age and peripheral sensory disease. Whether, peripheral sensory function is related to postural sway independent of age in healthy adults is unclear. Here, we investigated the relationship between tests of visual function (VISFIELD), vestibular function (CANAL or OTOLITH), proprioceptive function (PROP), and age, with center of mass sway area (COM) measured with eyes open then closed on firm and then a foam surface. A cross-sectional sample of 366 community dwelling healthy adults from the Baltimore Longitudinal Study of Aging was tested. Multiple linear regressions examined the association between COM and VISFIELD, PROP, CANAL, and OTOLITH separately and in multi-sensory models controlling for age and gender. PROP dominated sensory prediction of sway across most balance conditions (β's = 0.09–0.19, p's < 0.001), except on foam eyes closed where CANAL function loss was the only significant sensory predictor of sway (β = 2.12, p < 0.016). Age was not a consistent predictor of sway. This suggests loss of peripheral sensory function explains much of the age-associated increase in sway. PMID:28676758
Zeigelboim, Bianca Simone; Santos da Carvalho, Hugo Amilton; Gonçalves, Claudia Giglio de Oliveira; Albizu, Evelyn Joice; Marques, Jair Mendes; Fuck, Bruna Carla; Cardoso, Rafaella
2015-01-01
Fishing, one of the oldest productive activities, is an important sector of the Brazilian economy as well as the world economy. To evaluate the vestibular behavior in population of fishermen. It was realized as a retrospective and cross-sectional study. Thirty fishermen [mean age 49.5 (± 8.5) years] whose age ranged from 33 years to 67 years were submitted to anamnesis, otorhinolaryngological evaluation, and vestibular examination through the electronystagmography (ENG). The most evident otoneurological symptoms were: Tinnitus (66.7%), dizziness (63.3%), and hearing loss (53.3%). The most evident clinical symptoms were: Fatigue (36.7%), anxiety (23.3%), and depression (16.7%). There were alterations in the vestibular examination of 13 (43.3%) fishermen in the caloric test. There was a prevalence of alteration in the peripheral vestibular system and there was a major frequency of the peripheral vestibular irritative syndrome (30.0%). The otoneurological complaints were frequent in the population studied that verifies the importance of allowing labyrinth examinations and the need for adopting preventive measures related to noise exposure to carbon monoxide (CO), since they can cause and/enhance various manifestations of labyrinthine vestibular impairment that can affect the quality of life of these workers.
Quality of life of individuals submitted to vestibular rehabilitation.
Patatas, Olívia Helena Gomes; Ganança, Cristina Freitas; Ganança, Fernando Freitas
2009-01-01
Balance disorders affect social, family and professional activities. Vestibular rehabilitation can reduce the impact of these disorders on the quality of life of individuals with vertigo. to study the influence of vestibular rehabilitation on the quality of life of individuals, correlating it with gender, age, results from computerized vectoelectronystagmography and vertigo. Retrospective. Twenty-two individuals were submitted to customized vestibular rehabilitation and the Brazilian Dizziness Handicap Inventory - DHI before and after vestibular rehabilitation. Results from this questionnaire were correlated with gender, age, vestibular assessment and the presence of vertigo. all the DHI scores reduced significantly after vestibular rehabilitation. There were no differences among genders; adults and elderly patients; irritative peripheral vestibular syndromes; deficiency syndromes and normal exams; the presence or absence of vertigo. all the individuals had improvements in their quality of life after customized vestibular rehabilitation.
Efferent-Mediated Responses in Vestibular Nerve Afferents of the Alert Macaque
Sadeghi, Soroush G.; Goldberg, Jay M.; Minor, Lloyd B.; Cullen, Kathleen E.
2009-01-01
The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320°/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (∼10 spikes/s) than in regular afferents (∼2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50° upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition. PMID:19091917
Efferent-mediated responses in vestibular nerve afferents of the alert macaque.
Sadeghi, Soroush G; Goldberg, Jay M; Minor, Lloyd B; Cullen, Kathleen E
2009-02-01
The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320 degrees/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (approximately 10 spikes/s) than in regular afferents (approximately 2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50 degrees upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.
Uptake of Fluorescent Gentamicin by Peripheral Vestibular Cells after Systemic Administration
Liu, Jianping; Kachelmeier, Allan; Dai, Chunfu; Li, Hongzhe; Steyger, Peter S.
2015-01-01
Objective In addition to cochleotoxicity, systemic aminoglycoside pharmacotherapy causes vestibulotoxicity resulting in imbalance and visual dysfunction. The underlying trafficking routes of systemically-administered aminoglycosides from the vasculature to the vestibular sensory hair cells are largely unknown. We investigated the trafficking of systemically-administered gentamicin into the peripheral vestibular system in C56Bl/6 mice using fluorescence-tagged gentamicin (gentamicin-Texas-Red, GTTR) imaged by scanning laser confocal microscopy to determine the cellular distribution and intensity of GTTR fluorescence in the three semicircular canal cristae, utricular, and saccular maculae at 5 time points over 4 hours. Results Low intensity GTTR fluorescence was detected at 0.5 hours as both discrete puncta and diffuse cytoplasmic fluorescence. The intensity of cytoplasmic fluorescence peaked at 3 hours, while punctate fluorescence was plateaued after 3 hours. At 0.5 and 1 hour, higher levels of diffuse GTTR fluorescence were present in transitional cells compared to hair cells and supporting cells. Sensory hair cells typically exhibited only diffuse cytoplasmic fluorescence at all time-points up to 4 hours in this study. In contrast, non-sensory cells rapidly exhibited both intense fluorescent puncta and weaker, diffuse fluorescence throughout the cytosol. The numbers and size of fluorescent puncta in dark cells and transitional cells increased over time. There is no preferential GTTR uptake by the five peripheral vestibular organs’ sensory cells. Control vestibular tissues exposed to Dulbecco’s phosphate-buffered saline or hydrolyzed Texas Red had negligible fluorescence. Conclusions All peripheral vestibular cells rapidly take up systemically-administered GTTR, reaching peak intensity 3 hours after injection. Sensory hair cells exhibited only diffuse fluorescence, while non-sensory cells displayed both diffuse and punctate fluorescence. Transitional cells may act as a primary pathway for trafficking of systemic GTTR from the vasculature to endolymph prior to entering hair cells. PMID:25793391
Intranasal scopolamine affects the semicircular canals centrally and peripherally.
Weerts, Aurélie P; Putcha, Lakshmi; Hoag, Stephen W; Hallgren, Emma; Van Ombergen, Angelique; Van de Heyning, Paul H; Wuyts, Floris L
2015-08-01
Space motion sickness (SMS), a condition caused by an intravestibular conflict, remains an important obstacle that astronauts encounter during the first days in space. Promethazine is currently the standard treatment of SMS, but scopolamine is used by some astronauts to prevent SMS. However, the oral and transdermal routes of administration of scopolamine are known to have substantial drawbacks. Intranasal administration of scopolamine ensures a fast absorption and rapid onset of therapeutic effect, which might prove to be suitable for use during spaceflights. The aim of this study was to evaluate the effects of intranasally administered scopolamine (0.4 mg) on the semicircular canals (SCCs) and the otoliths. This double-blind, placebo-controlled study was performed on 19 healthy male subjects. The function of the horizontal SCC and the vestibulo-ocular reflex, as well as the saccular function and utricular function, were evaluated. Scopolamine turned out to affect mainly the SCCs centrally and peripherally but also the utricles to a lesser extent. Centrally, the most probable site of action is the medial vestibular nucleus, where the highest density of muscarinic receptors has been demonstrated and afferent fibers from the SCCs and utricles synapse. Furthermore, our results suggest the presence of muscarinic receptors in the peripheral vestibular system on which scopolamine has a suppressive effect. Given the depressant actions on the SCCs, it is suggested that the pharmacodynamic effect of scopolamine may be attributed to the obliteration of intravestibular conflict that arises during (S)MS. Copyright © 2015 the American Physiological Society.
Zeigelboim, Bianca Simone; Santos da Carvalho, Hugo Amilton; de Oliveira Gonçalves, Claudia Giglio; Albizu, Evelyn Joice; Marques, Jair Mendes; Fuck, Bruna Carla; Cardoso, Rafaella
2015-01-01
Fishing, one of the oldest productive activities, is an important sector of the Brazilian economy as well as the world economy. To evaluate the vestibular behavior in population of fishermen. It was realized as a retrospective and cross-sectional study. Thirty fishermen [mean age 49.5 (±8.5) years] whose age ranged from 33 years to 67 years were submitted to anamnesis, otorhinolaryngological evaluation, and vestibular examination through the electronystagmography (ENG). The most evident otoneurological symptoms were: Tinnitus (66.7%), dizziness (63.3%), and hearing loss (53.3%). The most evident clinical symptoms were: Fatigue (36.7%), anxiety (23.3%), and depression (16.7%). There were alterations in the vestibular examination of 13 (43.3%) fishermen in the caloric test. There was a prevalence of alteration in the peripheral vestibular system and there was a major frequency of the peripheral vestibular irritative syndrome (30.0%). Conclusion: The otoneurological complaints were frequent in the population studied that verifies the importance of allowing labyrinth examinations and the need for adopting preventive measures related to noise exposure to carbon monoxide (CO), since they can cause and/enhance various manifestations of labyrinthine vestibular impairment that can affect the quality of life of these workers. PMID:26356372
Otoneurologic Findings in a Fishermen Population of the State of Santa Catarina: Preliminary Study
Zeigelboim, Bianca Simone; da Silva, Thanara Pruner; Carvalho, Hugo; de Brito Malucelli, Diego Augusto; de Oliveira Gonçalves, Claudia Giglio; Albizu, Evelyn Joyce; Liberalesso, Paulo Breno Noronha; de Lacerda, Adriana Bender Moreira; Barilari, Gerusa Lopes
2013-01-01
Introduction Fishing, one of the oldest productive activities, is an important sector of the national and world economy. Aim To evaluate the vestibular behavior in a population of fishermen. Methods In a retrospective and cross-sectional study, 13 fishermen (mean 45.0), between 33 and 62 years of age, were submitted to anamnesis, otorhinolaryngological evaluation, and vestibular exam through the vector electronystagmography. Results The most evident otoneurologic symptoms were hearing loss (76.9%), tinnitus (61.7%), dizziness (46.1%), and headache (46.1%). The most evident clinical symptoms were fatigue (46.1%), depression (23.0%), anxiety (15.3%), insomnia (7.7%), and agitation during sleep (7.7%). There were alterations in the vestibular exam in 5 fishermen (38.5%) discovered in the caloric test. There was a prevalence of alteration in the peripheral vestibular system. There was a major frequency of the peripheral vestibular irritative syndrome. Conclusion The otoneurologic complaints were frequent in the population studied to verify the importance of allowing labyrinth exams and the need for adopting preventive measures relating to noise exposure as well as carbon monoxide exposure, because they can cause and/or enhance various manifestations of labyrinthine vestibular impairment that can affect the quality of life of these workers. PMID:25992055
Reicke, N
1976-01-01
The typical symptoms of kinesia were produced in 30 healthy test subjects by means of the Coriolis effect and the effect of cyclizine upon them was investigated in a single blind trial. The drug showed a clear effect on the autonomic symptoms (nausea) while there was no evidence of inhibition of the peripheral vestibular function.
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, Richard A.; Schuff, N. R.; Bancroft, J.
1994-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J
2007-04-25
Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.
Kv1 channels and neural processing in vestibular calyx afferents.
Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J
2015-01-01
Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.
NASA Astrophysics Data System (ADS)
Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.
2016-08-01
Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.
Tsutsumi, Takeshi; Ikeda, Takuo; Watanabe, Kensuke; Kikuchi, Shigeru
2011-12-01
Three-dimensional analysis of video-oculograms can be used to calculate Listing plane for patients and experimental subjects. Listing plane reflects the head's orientation with respect to gravity, which suggests that the plane is derived from otolithic vestibular input, itself, or from a gravity-oriented internal model constructed through integration of visual, vestibular, and proprioceptive sensory inputs. The goal of this study was to determine whether the Listing plane can serve as a parameter for evaluating static (peripheral or central) vestibular function. Prospective study. Tertiary referral center. Healthy subjects and patients with unilateral vestibular schwannoma without any previous treatment. Diagnostic. Video-oculograms were recorded from healthy subjects (aged 36.8 ± 6.3 yr) and from patients (aged 60.3 ± 7.5 yr) during voluntary gaze with the head in an upright or each-side-down orientation, and the thicknesses of the calculated Listing planes were then compared. Results revealed thickening of the Listing plane in patients only when the head was in an impaired-side-down orientation (1.250 ± 0.795 and 1.074 ± 0.759 degrees in the right- and left-side-down head orientations in healthy subjects versus 2.222 ± 1.237 degrees in the impaired-side-down orientation in patients), and this thickening correlated with caloric weakness. By contrast, neither the sensation of postural instability nor postural disturbance in force platform recordings contributed to the thickness of Listing plane. The thickness of the Listing plane could be a novel parameter for quantitatively evaluating static vestibular (otolithic) function, although central compensation might exist.
Current diagnostic procedures for diagnosing vertigo and dizziness
Walther, Leif Erik
2017-01-01
Vertigo is a multisensory syndrome that otolaryngologists are confronted with every day. With regard to the complex functions of the sense of orientation, vertigo is considered today as a disorder of the sense of direction, a disturbed spatial perception of the body. Beside the frequent classical syndromes for which vertigo is the leading symptom (e.g. positional vertigo, vestibular neuritis, Menière’s disease), vertigo may occur as main or accompanying symptom of a multitude of ENT-related diseases involving the inner ear. It also concerns for example acute and chronic viral or bacterial infections of the ear with serous or bacterial labyrinthitis, disorders due to injury (e.g. barotrauma, fracture of the oto-base, contusion of the labyrinth), chronic-inflammatory bone processes as well as inner ear affections in the perioperative course. In the last years, diagnostics of vertigo have experienced a paradigm shift due to new diagnostic possibilities. In the diagnostics of emergency cases, peripheral and central disorders of vertigo (acute vestibular syndrome) may be differentiated with simple algorithms. The introduction of modern vestibular test procedures (video head impulse test, vestibular evoked myogenic potentials) in the clinical practice led to new diagnostic options that for the first time allow a complex objective assessment of all components of the vestibular organ with relatively low effort. Combined with established methods, a frequency-specific assessment of the function of vestibular reflexes is possible. New classifications allow a clinically better differentiation of vertigo syndromes. Modern radiological procedures such as for example intratympanic gadolinium application for Menière’s disease with visualization of an endolymphatic hydrops also influence current medical standards. Recent methodical developments significantly contributed to the possibilities that nowadays vertigo can be better and more quickly clarified in particular in otolaryngology. PMID:29279722
McGovern, Tracey N; Fitzgerald, John E
2008-10-01
The performance of mental alerting during caloric testing has always been considered important, however its use/benefit during electronystagmography (ENG)/videonystagmography (VNG) testing has been questioned. The aim of this study was to investigate the effect of mental alerting tasks on peripheral type vestibular nystagmus recorded during ENG. Thirty patients with significant spontaneous/gaze or positional nystagmus (slow phase velocity >or= 6 degrees /s) were recruited from consecutive referrals for vestibular assessment. Nystagmus was recorded by ENG both in the presence and absence of mental alerting for each patient. Investigation of nystagmus by analysis of variance (ANOVA) revealed significantly larger nystagmus (higher value SPV) with mental alerting than with no alerting (p<0.001), and for some patients nystagmus traces were reduced to a flat line (no nystagmus) with no alerting. The study demonstrates the importance of mental alerting in helping overcome central suppression of nystagmus and highlights its importance to help identify peripheral type nystagmus during ENG.
Shao, Mei; Hirsch, June C.
2012-01-01
After unilateral peripheral vestibular lesions, the brain plasticity underlying early recovery from the static symptoms is not fully understood. Principal cells of the chick tangential nucleus offer a subset of morphologically defined vestibular nuclei neurons to study functional changes after vestibular lesions. Chickens show posture and balance deficits immediately after unilateral vestibular ganglionectomy (UVG), but by 3 days most subjects begin to recover, although some remain uncompensated. With the use of whole cell voltage-clamp, spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) and miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from principal cells in brain slices 1 and 3 days after UVG. One day after UVG, sEPSC frequency increased on the lesion side and remained elevated at 3 days in uncompensated chickens only. Also by 3 days, sIPSC frequency increased on the lesion side in all operated chickens due to major increases in GABAergic events. Significant change also occurred in decay time of the events. To determine whether fluctuations in frequency and kinetics influenced overall excitatory or inhibitory synaptic drive, synaptic charge transfer was calculated. Principal cells showed significant increase in excitatory synaptic charge transfer only on the lesion side of uncompensated chickens. Thus compensation continues when synaptic charge transfer is in balance bilaterally. Furthermore, excessive excitatory drive in principal cells on the lesion side may prevent vestibular compensation. Altogether, this work is important for it defines the time course and excitatory and inhibitory nature of changing spontaneous synaptic inputs to a morphologically defined subset of vestibular nuclei neurons during critical early stages of recovery after UVG. PMID:21957228
Adaptation of vestibular signals for self-motion perception
St George, Rebecca J; Day, Brian L; Fitzpatrick, Richard C
2011-01-01
A fundamental concern of the brain is to establish the spatial relationship between self and the world to allow purposeful action. Response adaptation to unvarying sensory stimuli is a common feature of neural processing, both peripherally and centrally. For the semicircular canals, peripheral adaptation of the canal-cupula system to constant angular-velocity stimuli dominates the picture and masks central adaptation. Here we ask whether galvanic vestibular stimulation circumvents peripheral adaptation and, if so, does it reveal central adaptive processes. Transmastoidal bipolar galvanic stimulation and platform rotation (20 deg s−1) were applied separately and held constant for 2 min while perceived rotation was measured by verbal report. During real rotation, the perception of turn decayed from the onset of constant velocity with a mean time constant of 15.8 s. During galvanic-evoked virtual rotation, the perception of rotation initially rose but then declined towards zero over a period of ∼100 s. For both stimuli, oppositely directed perceptions of similar amplitude were reported when stimulation ceased indicating signal adaptation at some level. From these data the time constants of three independent processes were estimated: (i) the peripheral canal-cupula adaptation with time constant 7.3 s, (ii) the central ‘velocity-storage’ process that extends the afferent signal with time constant 7.7 s, and (iii) a long-term adaptation with time constant 75.9 s. The first two agree with previous data based on constant-velocity stimuli. The third component decayed with the profile of a real constant angular acceleration stimulus, showing that the galvanic stimulus signal bypasses the peripheral transformation so that the brainstem sees the galvanic signal as angular acceleration. An adaptive process involving both peripheral and central processes is indicated. Signals evoked by most natural movements will decay peripherally before adaptation can exert an appreciable effect, making a specific vestibular behavioural role unlikely. This adaptation appears to be a general property of the internal coding of self-motion that receives information from multiple sensory sources and filters out the unvarying components regardless of their origin. In this instance of a pure vestibular sensation, it defines the afferent signal that represents the stationary or zero-rotation state. PMID:20937715
Gufoni, M; Guidetti, G; Nuti, D; Pagnini, P; Vicini, C; Tinelli, C; Mira, E
2005-06-01
Balance and spatial orientation complaints are very frequent in the elderly. The aetiology of these complaints may be related to specific peripheral or central vestibular disorders or to an extravestibular dizziness resulting from impairment or disease in multiple systems. A preliminary diagnostic orientation, permitting the patient to be referred to the most appropriate specialist (otologist, neurologist, consultant in internal medicine, psychiatrist, physical therapist) would be very useful. We examined 163 patients, referred for balance and spatial orientation complaints to the otoneurological outpatient services of 6 university hospital centres in the northern and central Italy, by a detailed questionnaire about characteristics, frequency, duration of any dizziness symptom and by a bedside vestibular examination. The questions were designed to determine whether the patients suffered from true vertigo, considered to be an expression of a vestibular disorder, or of an aspecific dizziness of multifactorial origin. Comparison of the conclusions of the vestibular examination and the diagnostic hypotheses deduced from the clinical history showed a high degree of concordance (Cohen Index 70.5%). To the patient, vertigo and dizziness are synonymous. By asking appropriate questions, a clearer picture should begin to emerge from the patient complaints so that distinction between psychogenic, nonvestibular and vestibular causes can be made. The importance of obtaining a good history cannot be overemphasized. A correct and rigorous approach by the general practitioner could be of great utility both for the health of the patient and for the efficiency of the national health service. The vestibular examination proved that about half the patients (80/163) suffered from vestibular disorders, mainly of peripheral origin (BPV, Menière's disease, vestibular neuritis).
Increased independence and decreased vertigo after vestibular rehabilitation.
Cohen, Helen S; Kimball, Kay T
2003-01-01
We sought to determine the effectiveness in decreasing some symptoms, such as vertigo, and increasing performance of daily life skills after vestibular rehabilitation. Patients who had chronic vertigo due to peripheral vestibular impairments were seen at a tertiary care center. They were referred for vestibular rehabilitation and were assessed on vertigo intensity and frequency with the use of the Vertigo Symptom Scale, the Vertigo Handicap Questionnaire, the Vestibular Disorders Activities of Daily Living Scale, and the Dizziness Handicap Inventory. They were then randomly assigned to 1 of 3 home program treatment groups. Vertigo decreased and independence in activities of daily living improved significantly. Improvement was not affected by age, gender, or history of vertigo. For many patients a simple home program of vestibular habituation head movement exercises is related to reduction in symptoms and increasing independence in activities of daily living.
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, R. A.; Schuff, N. R.; Bancroft, J.
1993-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Balaguer García, Ramón; Pitarch Corresa, Salvador; Baydal Bertomeu, José María; Morales Suárez-Varela, María M
2012-01-01
Posturography allows evaluating postural control. This study showed the posturographic parameters that were useful for assessing the functional ability to maintain balance in our sample of vestibular patients. Of a total of 89 patients, 59 were healthy subjects and 30 had a peripheral vestibular disorder. The subjects were studied using the posturographic NedSVE/IBV system, combining static (Romberg) and dynamic (stability limits and rhythmic weight shifts) tests. We then compared the measurements found in the groups. Normal subjects showed significantly lower oscillations than our patients in all of the posturographic parameters studied (except the displacement angle). In testing the limits of stability, although normal subjects achieved maximum displacements greater than the subjects with the disorder, the differences found were not significant. In rhythmic weight shift tests, normal subjects showed more favourable results than did the vestibular patients, with significant differences in 3 of the 4 parameters studied: 1) anteroposterior ability, 2) mediolateral ability, and 3) anteroposterior control and efficiency. Rhythmic weight shift tests and the static posturography test parameters used were useful in discriminating among the normal and pathological subjects in this study. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Brandt, Thomas; Grill, Eva; Strupp, Michael; Huppert, Doreen
2018-01-01
Aims: To determine the susceptibility to visual height intolerance (vHI) in patients with acquired bilateral vestibulopathy (BVP). The question was whether postural instability in BVP, which is partially compensated for by visual substitution of the impaired vestibular control of balance, leads to an increased susceptibility. This is of particular importance since fear of heights is dependent on body posture, and visual control of balance at heights can no longer substitute vestibular input. For comparison susceptibility to vHI was determined in patients with other vestibular or functional disorders. Methods: A total of 150 patients aged 18 or above who had been referred to the German Center for Vertigo and Balance Disorders and diagnosed to have BVP were surveyed with a standardized questionnaire by specifically trained neurological professionals. Further, 481 patients with other vestibular or functional disorders were included. Results: Susceptibility to vHI was reported by 29% (32 % in females, 25% in males) of the patients with BVP. Patients with vHI were slightly younger (67 vs. 71 years). Seventy percent of those with vHI reported avoidance of climbing, hiking, stairs, darkness, cycling or swimming (84% of those without vHI). Mean age for onset of vHI was 40 years. Susceptibility to vHI was higher in patients with other vertigo disorders than in those with BVP: 64% in those with phobic postural vertigo, 61% in vestibular migraine, 56% in vestibular paroxysmia, 54% in benign paroxysmal positional vertigo, 49% in unilateral vestibulopathy and 48% in Menière's disease. Conclusions: The susceptibility to vHI in BVP was not higher than that of the general population (28%).This allows two explanations that need not be alternatives but contribute to each other: (1) Patients with a bilateral peripheral vestibular deficit largely avoid exposure to heights because of their postural instability. (2) The irrational anxiety to fall from heights triggers increased susceptibility to vHI, not the objective postural instability. However, patients with BVP do not exhibit increased comorbid anxiety disorders. This view is supported by the significantly increased susceptibility to vHI in other vestibular syndromes, which are characterized by an increased comorbidity of anxiety disorders.
Schneider, Adam D.; Jamali, Mohsen; Carriot, Jerome; Chacron, Maurice J.
2015-01-01
Efficient processing of incoming sensory input is essential for an organism's survival. A growing body of evidence suggests that sensory systems have developed coding strategies that are constrained by the statistics of the natural environment. Consequently, it is necessary to first characterize neural responses to natural stimuli to uncover the coding strategies used by a given sensory system. Here we report for the first time the statistics of vestibular rotational and translational stimuli experienced by rhesus monkeys during natural (e.g., walking, grooming) behaviors. We find that these stimuli can reach intensities as high as 1500 deg/s and 8 G. Recordings from afferents during naturalistic rotational and linear motion further revealed strongly nonlinear responses in the form of rectification and saturation, which could not be accurately predicted by traditional linear models of vestibular processing. Accordingly, we used linear–nonlinear cascade models and found that these could accurately predict responses to naturalistic stimuli. Finally, we tested whether the statistics of natural vestibular signals constrain the neural coding strategies used by peripheral afferents. We found that both irregular otolith and semicircular canal afferents, because of their higher sensitivities, were more optimized for processing natural vestibular stimuli as compared with their regular counterparts. Our results therefore provide the first evidence supporting the hypothesis that the neural coding strategies used by the vestibular system are matched to the statistics of natural stimuli. PMID:25855169
De Cicco, Vincenzo; Tramonti Fantozzi, Maria P.; Cataldo, Enrico; Barresi, Massimo; Bruschini, Luca; Faraguna, Ugo; Manzoni, Diego
2018-01-01
It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders. PMID:29358907
The functional significance of velocity storage and its dependence on gravity.
Laurens, Jean; Angelaki, Dora E
2011-05-01
Research in the vestibular field has revealed the existence of a central process, called 'velocity storage', that is activated by both visual and vestibular rotation cues and is modified by gravity, but whose functional relevance during natural motion has often been questioned. In this review, we explore spatial orientation in the context of a Bayesian model of vestibular information processing. In this framework, deficiencies/ambiguities in the peripheral vestibular sensors are compensated for by central processing to more accurately estimate rotation velocity, orientation relative to gravity, and inertial motion. First, an inverse model of semicircular canal dynamics is used to reconstruct rotation velocity by integrating canal signals over time. However, its low-frequency bandwidth is limited to avoid accumulation of noise in the integrator. A second internal model uses this reconstructed rotation velocity to compute an internal estimate of tilt and inertial acceleration. The bandwidth of this second internal model is also restricted at low frequencies to avoid noise accumulation and drift of the tilt/translation estimator over time. As a result, low-frequency translation can be erroneously misinterpreted as tilt. The time constants of these two integrators (internal models) can be conceptualized as two Bayesian priors of zero rotation velocity and zero linear acceleration, respectively. The model replicates empirical observations like 'velocity storage' and 'frequency segregation' and explains spatial orientation (e.g., 'somatogravic') illusions. Importantly, the functional significance of this network, including velocity storage, is found during short-lasting, natural head movements, rather than at low frequencies with which it has been traditionally studied.
The functional significance of velocity storage and its dependence on gravity
Laurens, Jean
2013-01-01
Research in the vestibular field has revealed the existence of a central process, called ‘velocity storage’, that is activated by both visual and vestibular rotation cues and is modified by gravity, but whose functional relevance during natural motion has often been questioned. In this review, we explore spatial orientation in the context of a Bayesian model of vestibular information processing. In this framework, deficiencies/ambiguities in the peripheral vestibular sensors are compensated for by central processing to more accurately estimate rotation velocity, orientation relative to gravity, and inertial motion. First, an inverse model of semicircular canal dynamics is used to reconstruct rotation velocity by integrating canal signals over time. However, its low-frequency bandwidth is limited to avoid accumulation of noise in the integrator. A second internal model uses this reconstructed rotation velocity to compute an internal estimate of tilt and inertial acceleration. The bandwidth of this second internal model is also restricted at low frequencies to avoid noise accumulation and drift of the tilt/translation estimator over time. As a result, low-frequency translation can be erroneously misinterpreted as tilt. The time constants of these two integrators (internal models) can be conceptualized as two Bayesian priors of zero rotation velocity and zero linear acceleration, respectively. The model replicates empirical observations like ‘velocity storage’ and ‘frequency segregation’ and explains spatial orientation (e.g., ‘somatogravic’) illusions. Importantly, the functional significance of this network, including velocity storage, is found during short-lasting, natural head movements, rather than at low frequencies with which it has been traditionally studied. PMID:21293850
Viciana, David; Lopez-Escamez, Jose A
2010-08-01
To evaluate the usefulness of vestibular evoked myogenic potentials (VEMPs) in subjects with vestibular neuritis (VN) and to determine the impact of the disease in health-related quality of life (HRQoL). Case series. Tertiary referral center. Fifty patients with VN (episode of sudden onset of prolonged vertigo [>24 h] associated with peripheral vestibular hypofunction, imbalance in absence of hearing loss, or other neurologic symptoms). VEMPs were measured in 41 patients by using an air-conducted 500 Hz tone burst. HRQoL was evaluated in all cases by the Medical Outcomes Study 36-Item Short Form Health Survey (SF-36) and Dizziness Handicap Inventory Short Form (DHI-S) instruments, after the acute episode was resolved. Latencies P1 or N1 peaks, corrected amplitude or the absence of response, for VEMPs; scores obtained in SF-36 and DHI-S instruments. VEMPs showed abnormal results in 21 (51%) of 41 cases, with an increase in ipsilateral latencies for P1 and N1 peaks being the most common finding. Three patients (7%) had ipsilateral abnormal VEMP response with normal caloric response, indicating isolated involvement of inferior vestibular nerve. The total score obtained for the DHI-S was 14.76 +/- 11.07 (range, 0-34/40), suggesting a variable impact among patients with VN. For the SF-36, scores in men with VN were worse than their age-matched controls for all dimensions, except for mental health. However, women only showed lower scores for general health and social function. Abnormal VEMP responses demonstrate the involvement of the inferior vestibular nerve in half of the patients with VN. Moreover, VN has a moderate impact in HRQoL, and it is perceived more disabling by men than women.
Pavlou, Marousa; Acheson, James; Nicolaou, Despina; Fraser, Clare L; Bronstein, Adolfo M; Davies, Rosalyn A
2015-10-01
Customized vestibular rehabilitation incorporating optokinetic (OK) stimulation improves visual vertigo (VV) symptoms; however, the degree of improvement varies among individuals. Binocular vision abnormalities (misalignment of ocular axis, ie, strabismus) may be a potential risk factor. This study aimed to investigate the influence of binocular vision abnormalities on VV symptoms and treatment outcome. Sixty subjects with refractory peripheral vestibular symptoms underwent an orthoptic assessment after being recruited for participation in an 8-week customized program incorporating OK training via a full-field visual environment rotator or video display, supervised or unsupervised. Treatment response was assessed at baseline and at 8 weeks with dynamic posturography, Functional Gait Assessment (FGA), and questionnaires for symptoms, symptom triggers, and psychological state. As no significant effect of OK training type was noted for any variables, data were combined and new groups identified on the basis of the absence or presence of a binocular vision abnormality. A total of 34 among 60 subjects consented to the orthoptic assessment, of whom 8 of the 34 had binocular vision abnormalities and 30 of the 34 subjects completed both the binocular function assessment and vestibular rehabilitation program. No significant between-group differences were noted at baseline. The only significant between-group difference was observed for pre-/post-VV symptom change (P = 0.01), with significant improvements noted only for the group without binocular vision abnormalities (P < 0.0005). Common vestibular symptoms, posturography, and the FGA improved significantly for both groups (P < 0.05). Binocular vision abnormalities may affect VV symptom improvement. These findings may have important implications for the management of subjects with refractory vestibular symptoms.Video Abstract available for insights from the authors regarding clinical implication of the study findings (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A115).
2012-01-01
Background Peripheral vestibular hypofunction is a major cause of dizziness. When complicated with postural imbalance, this condition can lead to an increased incidence of falls. In traditional clinical practice, gaze stabilization exercise is commonly used to rehabilitate patients. In this study, we established a computer-aided vestibular rehabilitation system by coupling infrared LEDs to an infrared receiver. This system enabled the subjects’ head-turning actions to be quantified, and the training was performed using vestibular exercise combined with computer games and interactive video games that simulate daily life activities. Methods Three unilateral and one bilateral vestibular hypofunction patients volunteered to participate in this study. The participants received 30 minutes of computer-aided vestibular rehabilitation training 2 days per week for 6 weeks. Pre-training and post-training assessments were completed, and a follow-up assessment was completed 1 month after the end of the training period. Results After 6 weeks of training, significant improvements in balance and dynamic visual acuity (DVA) were observed in the four participants. Self-reports of dizziness, anxiety and depressed mood all decreased significantly. Significant improvements in self-confidence and physical performance were also observed. The effectiveness of this training was maintained for at least 1 month after the end of the training period. Conclusion Real-time monitoring of training performance can be achieved using this rehabilitation platform. Patients demonstrated a reduction in dizziness symptoms after 6 weeks of training with this short-term interactive game approach. This treatment paradigm also improved the patients’ balance function. This system could provide a convenient, safe and affordable treatment option for clinical practitioners. PMID:23043886
Video Head Impulse Test to Preoperatively Identify the Nerve of Origin of Vestibular Schwannomas.
Constanzo, Felipe; Sens, Patricia; Teixeira, Bernardo Corrêa de Almeida; Ramina, Ricardo
2018-05-10
Identification of the nerve of origin in vestibular schwannoma (VS) is an important prognostic factor for hearing preservation surgery. Thus far, vestibular functional tests and magnetic resonance imaging have not yielded reliable results to preoperatively evaluate this information. The development of the video head impulse test (vHIT) has allowed a precise evaluation of each semicircular canal, and its localizing value has been tested for some peripheral vestibular diseases, but not for VS. To correlate patterns of semicircular canal alteration on vHIT to intraoperative identification of the nerve of origin of VSs. A total 31 patients with sporadic VSs were preoperatively evaluated with vHIT (gain of vestibule-ocular reflex, overt and covert saccades on each semicircular canal) and then the nerve of origin was surgically identified during surgical resection via retrosigmoid approach. vHIT results were classified as normal, isolated superior vestibular nerve (SVN) pattern, isolated inferior vestibular nerve (IVN) pattern, predominant SVN pattern, and predominant IVN pattern. Hannover classification, cystic component, and distance between the tumor and the end of the internal auditory canal were also considered for analysis. Three patients had a normal vHIT, 12 had an isolated SVN pattern, 5 had an isolated IVN pattern, 7 had a predominant SVN pattern, and 4 had a predominant IVN pattern. vHIT was able to correctly identify the nerve of origin in 89.7% of cases (100% of altered exams). The pattern of semicircular canal dysfunction on vHIT has a localizing value to identify the nerve of origin in VSs.
Chen, Po-Yin; Hsieh, Wan-Ling; Wei, Shun-Hwa; Kao, Chung-Lan
2012-10-09
Peripheral vestibular hypofunction is a major cause of dizziness. When complicated with postural imbalance, this condition can lead to an increased incidence of falls. In traditional clinical practice, gaze stabilization exercise is commonly used to rehabilitate patients. In this study, we established a computer-aided vestibular rehabilitation system by coupling infrared LEDs to an infrared receiver. This system enabled the subjects' head-turning actions to be quantified, and the training was performed using vestibular exercise combined with computer games and interactive video games that simulate daily life activities. Three unilateral and one bilateral vestibular hypofunction patients volunteered to participate in this study. The participants received 30 minutes of computer-aided vestibular rehabilitation training 2 days per week for 6 weeks. Pre-training and post-training assessments were completed, and a follow-up assessment was completed 1 month after the end of the training period. After 6 weeks of training, significant improvements in balance and dynamic visual acuity (DVA) were observed in the four participants. Self-reports of dizziness, anxiety and depressed mood all decreased significantly. Significant improvements in self-confidence and physical performance were also observed. The effectiveness of this training was maintained for at least 1 month after the end of the training period. Real-time monitoring of training performance can be achieved using this rehabilitation platform. Patients demonstrated a reduction in dizziness symptoms after 6 weeks of training with this short-term interactive game approach. This treatment paradigm also improved the patients' balance function. This system could provide a convenient, safe and affordable treatment option for clinical practitioners.
ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.
Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M
2018-01-01
In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted efferent mechanism for altering hair cell membrane potential and decreasing membrane resistance that should reduce sensitivity to hair bundle displacements.
Imaging anatomy of the vestibular and visual systems.
Gunny, Roxana; Yousry, Tarek A
2007-02-01
This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.
Neurochemical background and approaches in the understanding of motion sickness
NASA Technical Reports Server (NTRS)
Kohl, R. L.
1982-01-01
The problems and nature of space motion sickness were defined. The neurochemical and neurophysiological bases of vestibular system function and of the expression of motion sickness wre reviewed. Emphasis was given to the elucidation of the neuropharmacological mechanisms underlying the effects of scopolamine and amphetamine on motion sickness. Characterization of the ascending reticular activating system and the limbic system provided clues to the etiology of the side effects of scopolamine. The interrelationship between central cholinergic pathways and the peripheral (autonomic) expression of motion sickness was described. A correlation between the stress of excessive motion and a variety of hormonal responses to that stress was also detailed. The cholinergic system is involved in the efferent modulation of the vestibular hair cells, as an afferent modulator of the vestibular nuclei, in the activation of cortical and limbic structures, in the expression of motion sickness symptoms and most likely underscores a number of the hormonal changes that occur in stressful motion environments. The role of lecithin in the regulation of the levels of neurotransmitters was characterized as a possible means by which cholinergic neurochemistry can be modulated.
Passive motion reduces vestibular balance and perceptual responses
Fitzpatrick, Richard C; Watson, Shaun R D
2015-01-01
With the hypothesis that vestibular sensitivity is regulated to deal with a range of environmental motion conditions, we explored the effects of passive whole-body motion on vestibular perceptual and balance responses. In 10 subjects, vestibular responses were measured before and after a period of imposed passive motion. Vestibulospinal balance reflexes during standing evoked by galvanic vestibular stimulation (GVS) were measured as shear reaction forces. Perceptual tests measured thresholds for detecting angular motion, perceptions of suprathreshold rotation and perceptions of GVS-evoked illusory rotation. The imposed conditioning motion was 10 min of stochastic yaw rotation (0.5–2.5 Hz ≤ 300 deg s−2) with subjects seated. This conditioning markedly reduced reflexive and perceptual responses. The medium latency galvanic reflex (300–350 ms) was halved in amplitude (48%; P = 0.011) but the short latency response was unaffected. Thresholds for detecting imposed rotation more than doubled (248%; P < 0.001) and remained elevated after 30 min. Over-estimation of whole-body rotation (30–180 deg every 5 s) before conditioning was significantly reduced (41.1 to 21.5%; P = 0.033). Conditioning reduced illusory vestibular sensations of rotation evoked by GVS (mean 113 deg for 10 s at 1 mA) by 44% (P < 0.01) and the effect persisted for at least 1 h (24% reduction; P < 0.05). We conclude that a system of vestibular sensory autoregulation exists and that this probably involves central and peripheral mechanisms, possibly through vestibular efferent regulation. We propose that failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. Key points Human activity exposes the vestibular organs to a wide dynamic range of motion. We aimed to discover whether the CNS regulates sensitivity to vestibular afference during exposure to ambient motion. Balance and perceptual responses to vestibular stimulation were measured before and after a 10 min period of imposed, moderate intensity, stochastic whole-body rotation. After this conditioning, vestibular balance reflexes evoked by galvanic vestibular stimulation were halved in amplitude. Conditioning doubled the thresholds for perceiving small rotations, and reduced perceptions of the amplitude of real rotations, and illusory rotation evoked by galvanic stimulation. We conclude that the CNS auto-regulates sensitivity to vestibular sensory afference and that this probably involves central and peripheral mechanisms, as might arise from vestibular efferent regulation. Failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. PMID:25809702
Wipperman, Jennifer
2014-03-01
Dizziness is a common and challenging condition seen in the primary care office. Because dizziness is a vague term that can include a wide array of medical disorders, it is important to use a stepwise approach to differentiate between causes. This article focuses on vertigo and its four most common causes: benign paroxysmal peripheral vertigo, vestibular neuritis, vestibular migraine, and Meniere's disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Benign paroxysmal vertigo of childhood: A review of the literature
Batson, Glenna
2004-01-01
Childrens’ complaints of headache and dizziness merit careful evaluation to differentially diagnose a vestibular disorder. Children can manifest with a syndrome mimicking certain classic signs and symptoms of adult vestibular disorders, such as benign paroxysmal positional vertigo, usually associated with aging. Benign paroxysmal vertigo of childhood in which migraine is a key manifestation along with sudden onset of dizziness, is a rare peripheral vestibular disorder in children that is commonly overlooked or misdiagnosed. This review covers the historical development of the diagnosis, evaluation and treatment approaches of benign paroxysmal vertigo of childhood. PMID:19654978
Melnikov, Oleg A; Lilenko, Sergey V; Nauta, Jos; Ouwens, Mario J N M
2015-11-01
This subanalysis compared the efficacy of betahistine plus piracetam dual therapy versus betahistine monotherapy using data from OSVaLD, a 3 month, open-label, observational study conducted in 2272 patients with peripheral vestibular vertigo. Of the 1898 patients included in the original efficacy population, 1076 were from countries where betahistine plus piracetam dual therapy was prescribed to >1 patient; 114 of these 1076 patients (11%) received the dual therapy and 567 (53%) were treated with betahistine monotherapy; these patients were selected for analysis. Efficacy was assessed using the Dizziness Handicap Inventory (DHI) total and subscale scores. Propensity-score matching was used to correct potential differences in patient baseline characteristics between treatment groups. In addition, a subgroup analysis evaluated 103 patients treated with betahistine because of insufficient efficacy with their existing treatment. In the propensity-score matched, total-population evaluation, improvements in the DHI total and subscale scores were numerically greater in the betahistine plus piracetam group (n = 88) versus the betahistine group (n = 89) (DHI total, -42.9 vs. -37.6, respectively; DHI physical, -12.1 vs. -10.4; DHI emotional, -13.5 vs. -13.2) and statistically significant for the DHI functional score (-17.3 vs. -14.0, respectively, p = 0.01). The percentage of patients with no impairment at final visit was 27% with betahistine and 47% with betahistine plus piracetam; odds ratio: 2.3, 95% confidence interval: 1.3-2.4 (p = 0.007). Similar results were obtained in the subgroup analyses for patients whose current vertigo treatment was insufficient. The overall incidence of adverse events was low and similar in both groups, and there were no discontinuations due to drug-related adverse events. By using propensity-score matching, which controls for potential heterogeneity in patient baseline characteristics and small patient numbers, the results of this analysis suggest that combined betahistine and piracetam may be more effective than betahistine alone in patients with peripheral vestibular vertigo.
Honaker, Julie A; Criter, Robin E; Patterson, Jessie N; Jones, Sherri M
2015-07-01
Vestibular dysfunction may lead to decreased visual acuity with head movements, which may impede athletic performance and result in injury. The purpose of this study was to test the hypothesis that athletes with history of concussion would have differences in gaze stabilization test (GST) as compared with those without a history of concussion. Cross-sectional, descriptive. University Athletic Medicine Facility. Fifteen collegiate football players with a history of concussion, 25 collegiate football players without a history of concussion. Participants completed the dizziness handicap inventory (DHI), static visual acuity, perception time test, active yaw plane GST, stability evaluation test (SET), and a bedside oculomotor examination. Independent samples t test was used to compare GST, SET, and DHI scores per group, with Bonferroni-adjusted alpha at P < 0.01. Receiver operating characteristic curve analysis and area under the curve (AUC) were used to assess the clinical performance of the GST and SET. Athletes with previous concussion had a larger GST asymmetry score [mean (M) = 12.40, SD = 9.09] than those without concussion (M = 4.92, SD = 4.67; t (18.70) = -2.955, P = 0.008, 95% CI, -12.79 to -2.18, d = -1.37). Clinical performance of the GST (AUC = 0.77) was better than the SET (AUC = 0.61). Results suggest peripheral vestibular or vestibular-visual interaction deficits in collegiate athletes with a history of concussion. The results support further research on the use of GST for sport-related concussion evaluation and monitoring. Inclusion of objective vestibular tests in the concussion protocol may reveal the presence of peripheral vestibular or visual-vestibular deficits. Therefore, the GST may add an important perspective on the effects of concussion.
Publications of the Space Physiology and Countermeasures Program, Neuroscience Discipline: 1980-1990
NASA Technical Reports Server (NTRS)
Dickson, Katherine J.; Wallace-Robinson, Janice; Powers, Janet V.; Hess, Elizabeth
1992-01-01
A 10-year cumulative bibliography of publications resulting from research supported by the neuroscience discipline of the space physiology and countermeasures program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are space motion sickness; vestibular performance, posture, and motor coordination; vestibular physiology; central and peripheral nervous system physiology; and general performance and methodologies. General physiology references are also included.
Cozma, Romică Sebastian; Dima-Cozma, Lucia Corina; Rădulescu, Luminiţa Mihaela; Hera, Maria Cristina; Mârţu, Cristian; Olariu, Raluca; Cobzeanu, Bogdan Mihail; Bitere, Oana Roxana; Cobzeanu, Mihail Dan
2018-01-01
Patients with hearing loss who underwent cochlear implantation can present symptomatic or asymptomatic vestibular damages earlier or later after the surgery. The vestibular permanent lesions could be acute, produced by surgical trauma or could be progressive due to local morphological changes made by the presence of the portelectrode in the inner ear (fibrosis related, ossification, basilar membrane distortion, endolymphatic hydrops). Besides histopathological findings in inner ear of cochlear implanted patients, the vestibular permanent damages could be found by assessment of clinical vestibular status. This study reports the sensorial vestibular functional findings for adults in cochlear implanted ears related to the electrode insertion type (cochleostomy or round window approach) and comparing to non-implanted deaf ears. A total of 20 adult patients with 32 cochlear implanted ears (12 patients with binaural cochlear implant and eight with monoaural) were selected for postoperatory vestibular examination by cervical and ocular vestibular myogenic potentials and vestibular caloric tests. The same tests were made for a control group of 22 non-implanted deaf ears. Functional testing results were reported related to the electrode insertion approach. For the cochleostomy group, we found different deficits: in 40% for saccular function, 44% for utricular function, and 12% horizontal canal dysfunction. In round window group, the deficit was present in 14.29% for saccular function, 28.57% for utricular function, and 28.58% for horizontal canal. In 46.88% of implanted ears, the vestibular function was completely preserved on all tested sensors. In conclusion, the vestibular functional status after inner ear surgery presents sensorial damages in 53.12% ears compare with the vestibular dysfunction existing in 50% of deaf non-operated ears. Round window insertion allows for better conservation of the vestibular function.
Utility of the hyperventilation test in the evaluation of the dizzy patient.
Califano, Luigi; Mazzone, Salvatore; Salafia, Francesca
2013-10-01
The aim of the review is to value the incidence, patterns and temporal characteristics of hyperventilation-induced nystagmus (HVIN) in patients suffering from vestibular diseases, as well as its contribution to the differential diagnosis between vestibular neuritis and schwannoma of the eighth cranial nerve and its behavior in some central vestibular diseases. The hyperventilation test seems to be more useful than other bedside tests in detecting schwannoma of the eighth cranial nerve in the case of sudden monolateral hypacusia. The presence of an excitatory pattern of HVIN in vestibular schwannoma that has undergone to stereotactic surgery reveals that this therapy produces demyelinization in neural fibers. The hyperventilation test is easy to perform, well tolerated and able to reveal latent vestibular asymmetries; it acts both at peripheral and central vestibular levels through metabolic mechanisms or, more rarely, through changes in cerebrospinal fluid pressure. It can provide patterns of oculomotor responses suggesting the execution of gadolinium-enhanced MRI, upon the suspicion of schwannoma of the eighth cranial nerve or of a central disease. In our opinion, the presence of HVIN always needs to be viewed within the more general context of a complete examination of auditory and vestibular systems.
NASA Technical Reports Server (NTRS)
Purcell, I. M.; Perachio, A. A.
1997-01-01
Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation areas of efferent terminal fields display a trend from smallest to largest for the central, peripheral, and planum types, respectively. Neurons that innervate the central zone of the crista do not extend into the peripheral or planum regions. Conversely, those neurons with terminal fields in the peripheral or planum regions do not innervate the central zone of the sensory neuroepithelium. The central zone of the crista is innervated preferentially by efferent neurons with cell bodies located in the ipsilateral group e. The peripheral and planum zones of the crista are innervated preferentially by efferent neurons with cell bodies located in the contralateral group e. A model incorporating our anatomic observations is presented describing an ipsilateral closed-loop feedback between ipsilateral efferent neurons and the periphery and an open-loop feed-forward innervation from contralateral efferent neurons. A possible role for the vestibular efferent neurons in the modulation of semicircular canal afferent response dynamics is proposed.
Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns
Thompson, Lara A.; Haburcakova, Csilla; Lewis, Richard F.
2016-01-01
In our study, we examined postural stability during head turns for two rhesus monkeys: one, single animal study contrasted normal and mild bilateral vestibular ablation and a second animal study contrasted severe bilateral vestibular ablation with and without prosthetic stimulation. The monkeys freely stood, unrestrained on a balance platform and made voluntary head turns between visual targets. To quantify each animals’ posture, motions of the head and trunk, as well as torque about the body’s center-of-mass, were measured. In the mildly ablated animal, we observed less foretrunk sway in comparison to the normal state. When the canal prosthesis provided electric stimulation to the severely ablated animal, it showed a decrease in trunk sway during head turns. Because the rhesus monkey with severe bilateral vestibular loss exhibited a decrease in trunk sway when receiving vestibular prosthetic stimulation, we propose that the prosthetic electrical stimulation partially restored head velocity information. Our results provide an indication that a semicircular canal prosthesis may be an effective way to improve postural stability in patients with severe peripheral vestibular dysfunction. PMID:27405997
Ontogeny of vestibular compound action potentials in the domestic chicken
NASA Technical Reports Server (NTRS)
Jones, S. M.; Jones, T. A.
2000-01-01
Compound action potentials of the vestibular nerve were measured from the surface of the scalp in 148 chickens (Gallus domesticus). Ages ranged from incubation day 18 (E18) to 22 days posthatch (P22). Responses were elicited using linear acceleration cranial pulses. Response thresholds decreased at an average rate of -0.45 dB/day. The decrease was best fit by an exponential model with half-maturity time constant of 5.1 days and asymptote of approximately -25.9 dB re:1.0 g/ms. Mean threshold approached within 3 dB of the asymptote by ages P6-P9. Similarly, response latencies decreased exponentially to within 3% of mature values at ages beyond P9. The half-maturity time constant for peripheral response peak latencies P1, N1, and P2 was comparable to thresholds and ranged from approximately 4.6 to 6.2 days, whereas central peaks (N2, P3, and N3) ranged from 2.9 to 3.4 days. Latency-intensity slopes for P1, N1, and P2 tended to decrease with age, reaching mature values within approximately 100 hours of hatching. Amplitudes increased as a function of age with average growth rates for response peaks ranging from 0.04 to 0.09 microV/day. There was no obvious asymptote to the growth of amplitudes over the ages studied. Amplitude-intensity slopes also increased modestly with age. The results show that gravity receptors are responsive to transient cranial stimuli as early as E19 in the chicken embryo. The functional response of gravity receptors continues to develop for many days after all major morphological structures are in place. Distinct maturational processes can be identified in central and peripheral neural relays. Functional improvements during maturation may result from refinements in the receptor epithelia, improvements in central and peripheral synaptic transmission, increased neural myelination, as well as changes in the mechanical coupling between the cranium and receptor organ.
Ontogeny of Vestibular Compound Action Potentials in the Domestic Chicken
M. Jones, Sherri
2000-01-01
Compound action potentials of the vestibular nerve were measured from the surface of the scalp in 148 chickens (Gallus domesticus). Ages ranged from incubation day 18 (E18) to 22 days posthatch (P22). Responses were elicited using linear acceleration cranial pulses. Response thresholds decreased at an average rate of –0.45 dB/day. The decrease was best fit by an exponential model with half-maturity time constant of 5.1 days and asymptote of approximately –25.9 dB re:1.0 g/ms. Mean threshold approached within 3 dB of the asymptote by ages P6–P9. Similarly, response latencies decreased exponentially to within 3% of mature values at ages beyond P9. The half-maturity time constant for peripheral response peak latencies P1, N1, and P2 was comparable to thresholds and ranged from approximately 4.6 to 6.2 days, whereas central peaks (N2, P3, and N3) ranged from 2.9 to 3.4 days. Latency-intensity slopes for P1, N1, and P2 tended to decrease with age, reaching mature values within approximately 100 hours of hatching. Amplitudes increased as a function of age with average growth rates for response peaks ranging from 0.04 to 0.09 μV/day. There was no obvious asymptote to the growth of amplitudes over the ages studied. Amplitude-intensity slopes also increased modestly with age. The results show that gravity receptors are responsive to transient cranial stimuli as early as E19 in the chicken embryo. The functional response of gravity receptors continues to develop for many days after all major morphological structures are in place. Distinct maturational processes can be identified in central and peripheral neural relays. Functional improvements during maturation may result from refinements in the receptor epithelia, improvements in central and peripheral synaptic transmission, increased neural myelination, as well as changes in the mechanical coupling between the cranium and receptor organ. PMID:11545229
Epidemiology of balance symptoms and disorders in the community: a systematic review.
Murdin, Louisa; Schilder, Anne G M
2015-03-01
Balance disorders presenting with symptoms of dizziness or vertigo may have significant impact on quality of life and are a recognized risk factor for falls. The objective of this review was to systematically synthesize the published literature on the epidemiology of balance symptoms and disorders in the adult community population. A search was carried out across PubMed, Medline, and Cochrane databases to identify suitable studies. Studies were eligible for inclusion if they contained data on the epidemiology of symptoms of balance disorders (dizziness and vertigo) or balance disorders sampled from community-based adult populations. Data were collected on prevalence and incidence of balance symptoms and on specific balance disorders. A validated risk-of-bias assessment was carried out. Twenty eligible studies were identified. The lifetime prevalence estimates of significant dizziness ranged between 17 and 30%, and for vertigo between 3 and 10%. Published point prevalence data exist for Ménière's disease (0.12-0.5%) and for vestibular migraine (0.98%). For benign paroxysmal positional vertigo, 1-year incidence estimates range from 0.06 to 0.6%. There are no community-based studies on the prevalence or incidence of chronic uncompensated peripheral vestibular disorders or vestibular neuritis. Symptoms of dizziness and vertigo are common in the adult population, and data give a coherent picture of community epidemiology. These data can inform rational service planning and much-needed clinical trials in this field. There are insufficient data on specific balance disorders, especially peripheral vestibular disorders such as vestibular neuritis and its long-term sequelae.
Dizziness, migrainous vertigo and psychiatric disorders.
Teggi, R; Caldirola, D; Colombo, B; Perna, G; Comi, G; Bellodi, L; Bussi, M
2010-03-01
This study sought to establish the prevalence of vestibular disorders, migraine and definite migrainous vertigo in patients with psychiatric disorders who were referred for treatment of dizziness, without a lifetime history of vertigo. Retrospective study. Out-patients in a university hospital. Fifty-two dizzy patients with panic disorders and agoraphobia, 30 with panic disorders without agoraphobia, and 20 with depressive disorders underwent otoneurological screening with bithermal caloric stimulation. The prevalence of migraine and migrainous vertigo was assessed. The level of dizziness was evaluated using the Dizziness Handicap Inventory. Dizzy patients with panic disorders and agoraphobia had a significantly p = 0.05 regarding the prevalence of peripheral vestibular abnormalities in the group of subjects with PD and agoraphobia and in those with depressive disorders. Migraine was equally represented in the three groups, but panic disorder patients had a higher prevalence of migrainous vertigo definite migrainous vertigo. Almost all patients with a peripheral vestibular disorder had a final diagnosis of definite migrainous vertigo according to Neuhauser criteria. These patients had higher Dizziness Handicap Inventory scores. The Dizziness Handicap Inventory total score was higher in the subgroup of patients with panic disorders with agoraphobia also presenting unilateral reduced caloric responses or definite migrainous vertigo, compared with the subgroup of remaining subjects with panic disorders with agoraphobia (p < 0.001). Our data support the hypothesis that, in patients with panic disorders (and especially those with additional agoraphobia), dizziness may be linked to malfunction of the vestibular system. However, the data are not inconsistent with the hypothesis that migrainous vertigo is the most common pathophysiological mechanism for vestibular disorders.
Clinical applications of correlational vestibular autorotation test.
Hsieh, Li-Chun; Lin, Te-Ming; Chang, Yu-Min; Kuo, Terry B J; Lee, Gho-She
2015-06-01
The correlational vestibular autorotation test (VAT) system has the advantages of good test-retest reliability and calibrations of absolute degrees of eye movement are unnecessary when acquiring a cross correlation coefficient (CCC). The approach is able to efficiently detect peripheral vestibulopathies. A VAT has some drawbacks including poor test-retest reliability and slippage of sensor. This study aimed to develop a correlational VAT system and to evaluate the reliability and applicability of this system. Twenty healthy participants and 10 vertiginous patients were enrolled. Vertical and horizontal autorotations from 0 to 3 Hz with either closed or open eyes were performed. A small sensor and a wireless transmission technique were used to acquire the electro-ocular graph and head velocity signals. The two signals were analyzed using CCCs to assess the functioning of the vestibular ocular reflex (VOR). The results showed a significantly greater CCC for open-eye versus closed-eye of head autorotations. The CCCs also increased significantly with head rotational frequencies. Moreover, the CCCs significantly correlated with the VOR gains at autorotation frequencies ≥1.0 Hz. The test-retest reliability was good (intraclass correlation coefficients ≥0.85). The vertiginous participants had significantly lower individual CCCs and overall average CCC than age- and-gender matched controls.
Home-Based Computer Gaming in Vestibular Rehabilitation of Gaze and Balance Impairment.
Szturm, Tony; Reimer, Karen M; Hochman, Jordan
2015-06-01
Disease or damage of the vestibular sense organs cause a range of distressing symptoms and functional problems that could include loss of balance, gaze instability, disorientation, and dizziness. A novel computer-based rehabilitation system with therapeutic gaming application has been developed. This method allows different gaze and head movement exercises to be coupled to a wide range of inexpensive, commercial computer games. It can be used in standing, and thus graded balance demands using a sponge pad can be incorporated into the program. A case series pre- and postintervention study was conducted of nine adults diagnosed with peripheral vestibular dysfunction who received a 12-week home rehabilitation program. The feasibility and usability of the home computer-based therapeutic program were established. Study findings revealed that using head rotation to interact with computer games, when coupled to demanding balance conditions, resulted in significant improvements in standing balance, dynamic visual acuity, gaze control, and walking performance. Perception of dizziness as measured by the Dizziness Handicap Inventory also decreased significantly. These preliminary findings provide support that a low-cost home game-based exercise program is well suited to train standing balance and gaze control (with active and passive head motion).
Vestibulo-ocular and vestibulospinal function before and after cochlear implant surgery
NASA Technical Reports Server (NTRS)
Black, F. O.; Lilly, D. J.; Peterka, R. J.; Fowler, L. P.; Simmons, F. B.
1987-01-01
Vestibular function in cochlear implant candidates varies from normal to total absence of function. In patients with intact vestibular function preoperatively, invasion of the otic capsule places residual vestibular function at risk. Speech-processing strategies that result in large amplitude electrical transients or strategies that employ high amplitude broad frequency carrier signals have the potential for disrupting vestibular function. Five patients were tested with and without electrical stimulation via cochlear electrodes. Two patients experienced subjective vestibular effects that were quickly resolved. No long-term vestibular effects were noted for the two types of second generation cochlear implants evaluated. Histopathological findings from another patient, who had electrically generated vestibular reflex responses to intramodiolar electrodes, indicated that responses elicited were a function of several variables including electrode location, stimulus intensity, stimulus amplitude, and stimulus frequency. Differential auditory, vestibulocolic, and vestibulospinal reflexes were demonstrated from the same electrode as a function of stimulus amplitude, frequency, and duration.
Altered vestibular function in fetal and newborn rats gestated in space
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Alberts, J. R.
1997-01-01
Researchers evaluated vestibular development and function in rat pups flown during gestation on the NASA-NIH R1 and R2 missions. Fetal and postnatal vestibular function were examined. Altered vestibular-mediated responses in the experimental fetal pups are attributed to either direct effect of gravity on the vestibular system or indirect effects of microgravity transduced through the mother. The postnatal tests confirmed the hypothesis that the vestibular system continually adapts and responds to tonic stimulation.
Scheltinga, Alja; Honegger, Flurin; Timmermans, Dionne P H; Allum, John H J
2016-01-01
An acute unilateral peripheral vestibular loss (aUVL) initially causes severe gaze and balance control problems. However, vestibulo-ocular reflexes (VOR) and balance control are nearly normal 3 months later as a result of peripheral recovery and/or central compensation. As pre-existing vestibular sensory loss is assumed to be greater in the healthy elderly, this study investigated whether improvements in VOR and balance function over time after aUVL are different for the elderly than for the young. Thirty aUVL patients divided into three age-groups were studied (8 age range 23-35, 10 with range 43-58, and 12 with range 60-74 years). To measure VOR function eye movements were recorded during caloric irrigation, rotating chair (ROT), and head impulse tests. Balance control during stance and gait was recorded as lower trunk angular velocity in the pitch and roll planes. Measurements were taken at deficit onset, and 3, 6, and 13 weeks later. There was one difference in VOR improvements over time between the age-groups: Low acceleration ROT responses were less at onset in the elderly group. Deficit side VOR responses and asymmetries in each group improved to within ranges of healthy controls at 13 weeks. Trunk sway of the elderly was greater for stance and gait at onset when compared to healthy age-matched controls and the young and greater than that of the young and controls during gait tasks at 13 weeks. The sway of the young was not different from controls at either time point. Balance control for the elderly improved slower than for the young. These results indicate that VOR improvement after an aUVL does not differ with age, except for low accelerations. Recovery rates are different between age-groups for balance control tests. Balance control in the elderly is more abnormal at aUVL onset for stance and gait tasks with the gait abnormalities remaining after 13 weeks. Thus, we conclude that balance control in the elderly is more affected by the UVL than for the young, and the young overcome balance deficits more rapidly. These differences with age should be taken into account when planning rehabilitation.
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2014-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older. PMID:24474907
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2013-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.
Physiological principles of vestibular function on earth and in space
NASA Technical Reports Server (NTRS)
Minor, L. B.
1998-01-01
Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.
Distribution and time course of hair cell regeneration in the pigeon utricle
NASA Technical Reports Server (NTRS)
Dye, B. J.; Frank, T. C.; Newlands, S. D.; Dickman, J. D.
1999-01-01
Vestibular and cochlear regeneration following ototoxic insult from aminoglycoside antibiotics has been well documented, particularly in birds. In the present study, intraotic application of a 2 mg streptomycin paste was used to achieve complete vestibular hair cell destruction in pigeons (Columba livia) while preserving regenerative ability. Scanning electron microscopy was used to quantify hair cell density longitudinally during regeneration in three different utricular macula locations, including the striola, central and peripheral regions. The utricular epithelium was void of stereocilia (indicating hair cell loss) at 4 days after intraotic treatment with streptomycin. At 2 weeks the stereocilia began to appear randomly and mostly in an immature form. However, when present most kinocilia were polarized toward the developing striola. Initially, regeneration occurred more rapidly in the central and peripheral regions of the utricle as compared to the striola. As regeneration proceeded from 2 to 12 weeks, hair cell density in the striola region equaled the density noted in the central and peripheral regions. At 24 weeks, hair cell density of the central and peripheral regions was equal to normal values, however the striola region had a slightly greater hair cell density than that observed for normal animals.
Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus
NASA Technical Reports Server (NTRS)
Baird, Richard A.; Schuff, N. R.
1994-01-01
Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely contacted Type B and Type C hair cells, particularly on the outer rows of the medial striola. Afferents supplying more central striolar regions innervated fewer Type B and larger numbers of Type E and Type F hair cells. Striolar afferents with thin parent axons largely supplied Type E hair cells with bulbed kniocilia in the innermost striolar rows.
Clinical and neurophysiological risk factors for falls in patients with bilateral vestibulopathy.
Schniepp, Roman; Schlick, Cornelia; Schenkel, Fabian; Pradhan, Cauchy; Jahn, Klaus; Brandt, Thomas; Wuehr, Max
2017-02-01
Patients with bilateral vestibular failure (BVF) exhibit imbalance when standing and walking that is linked to a higher fall risk. The purpose of this study was to identify risk factors for falls in BVF. We therefore systematically investigated the interrelationship of clinical and demographic characteristics, gait impairments, and the fall frequency of these patients. Clinical and demographic characteristics as well as quantitative measures of gait performance on a pressure-sensitive gait carpet were collected from 55 patients with different etiologies of BVF. Clinical and demographic data as well as spatiotemporal gait characteristics were used for ANOVA testing and a logistic regression model with categorized fall events as dependent variables. The impairment of peripheral vestibular function, duration of disease, and the overall gait status were not associated with the history of falls in patients with BVF. In contrast, the most predictive factors for falls in BVF were an increase in temporal gait variability, especially at slow walking speeds (p < 0.001; OR = 1.3), and the presence of a concomitant peripheral neuropathy (p < 0.045; OR = 3.6). BVF patients with a high risk of falling exhibit specific gait alterations in a speed-dependent manner. In particular, increased gait fluctuations during slow walking are most predictive for an increased fall risk. The presence of a concomitant peripheral neuropathy further critically impairs postural stability in these patients. Clinical assessment of both these aspects is therefore important to identify those patients at a particularly high fall risk and to initiate preventive procedures early.
Zhang, Ru; Zhang, Yi-Bo; Dai, Chun-Fu; Steyger, Peter S.
2013-01-01
Background and objective Transtympanic administration of gentamicin is effective for treating patients with intractable vertigo. This study explored the spatial and temporal distribution of gentamicin in vestibular end-organs after transtympanic administration. Methods Thirty guinea pigs were transtympanically injected with gentamicin conjugated to Texas Red (GTTR) and their vestibular end-organs examined after various survival periods. Another 9 guinea pigs received GTTR at different doses. Nine animals received Texas Red only and served as controls. We used confocal microscopy to determine the cellular distribution of GTTR in semicircular canal cristae, as well as the utricular and saccular maculae. Results The most intense GTTR labeling was present in the saccule compared to other vestibular end-organs. GTTR fluorescence was detected predominantly in type I hair cells, type II hair cells and transitional cells after a single transtympanic dose of GTTR (0.1 mg/ml, 0.05 ml), while only weak fluorescence was observed in non-sensory cells such as supporting cells, dark cells and lumenal epithelial cells. Transitional cells displayed intense GTTR fluorescence in the supra-nuclear regions 24 h after transtympanic injection that was retained for at least 4 weeks. A decreasing spatial gradient of GTTR fluorescence was observed sensory epithelial regions containing central type I to peripheral type I and then type II hair cells in the crista ampullaris, and from striolar to extra-striolar hair cells within the vestibular macula. GTTR fluorescence extended from being restricted to the apical cytoplasm at lower doses to the entire cell body of type I hair cells with increasing dose. GTTR fluorescence reached peak intensities for individual regions of interest within the cristae and maculae between 3 and 7 days after transtympanic injection. Conclusion The saccular uptake of GTTR is greater than other vestibular end-organs after transtympanic injection in the semicircular canals. PMID:23380663
van der Wouden, Johannes C; Bosmans, Judith E; Smalbrugge, Martin; van Diest, Willianne; Essery, Rosie; Yardley, Lucy; van der Horst, Henriëtte E; Maarsingh, Otto R
2017-01-01
Introduction Dizziness is a common symptom in general practice with a high prevalence among older adults. The most common cause of dizziness in general practice is peripheral vestibular disease. Vestibular rehabilitation (VR) is a safe and effective treatment for peripheral vestibular disease that entails specific exercises to maximise the central nervous system compensation for the effects of vestibular pathology. An internet-based VR intervention has recently been shown to be safe and effective. Online interventions are low cost and easily accessible, but prone to attrition and non-adherence. A combination of online and face-to-face therapy, known as blended care, may balance these advantages and disadvantages. Methods and analysis A single-blind, three-arm, randomised controlled trial among patients aged 50 years and over presenting with dizziness of vestibular origin in general practice will be performed. In this study, we will compare the clinical and cost-effectiveness of stand-alone internet-based VR and internet-based VR with physiotherapeutic support (‘blended care’) with usual care during 6 months of follow-up. We will use a translated Dutch version of a British online VR intervention. Randomisation will be stratified by dizziness severity. The primary outcome measure is the Vertigo Symptoms Scale—Short Form. Intention-to-treat analysis will be performed, adjusting for confounders. The economic evaluation will be conducted from a societal perspective. We will perform an additional analysis on the data to identify predictors of successful treatment in the same population to develop a clinical decision rule for general practitioners. Ethics and dissemination The ethical committee of the VU University Medical Center approved ethics and dissemination of the study protocol. The insights and results of this study will be widely disseminated through international peer-reviewed journals and conference presentations. Trial registration number Pre-results, NTR5712. PMID:28110290
Yavorcik, K. J.; Reighard, D. A.; Misra, S. P.; Cotter, L. A.; Cass, S. P.; Wilson, T. D.
2009-01-01
Considerable data show that the vestibular system contributes to blood pressure regulation. Prior studies reported that lesions that eliminate inputs from the inner ears attenuate the vasoconstriction that ordinarily occurs in the hindlimbs of conscious cats during head-up rotations. These data led to the hypothesis that labyrinthine-deficient animals would experience considerable lower body blood pooling during head-up postural alterations. The present study tested this hypothesis by comparing blood flow though the femoral artery and vein of conscious cats during 20–60° head-up tilts from the prone position before and after removal of vestibular inputs. In vestibular-intact animals, venous return from the hindlimb dropped considerably at the onset of head-up tilts and, at 5 s after the initiation of 60° rotations, was 66% lower than when the animals were prone. However, after the animals were maintained in the head-up position for another 15 s, venous return was just 33% lower than before the tilt commenced. At the same time point, arterial inflow to the limb had decreased 32% from baseline, such that the decrease in blood flow out of the limb due to the force of gravity was precisely matched by a reduction in blood reaching the limb. After vestibular lesions, the decline in femoral artery blood flow that ordinarily occurs during head-up tilts was attenuated, such that more blood flowed into the leg. Contrary to expectations, in most animals, venous return was facilitated, such that no more blood accumulated in the hindlimb than when labyrinthine signals were present. These data show that peripheral blood pooling is unlikely to account for the fluctuations in blood pressure that can occur during postural changes of animals lacking inputs from the inner ear. Instead, alterations in total peripheral resistance following vestibular dysfunction could affect the regulation of blood pressure. PMID:19793952
Association between vestibular function and motor performance in hearing-impaired children.
Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg
2014-12-01
The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p < 0.001 for balance beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.
Gómez-Alvarez, Fatima B; Jáuregui-Renaud, Kathrine
2011-02-01
We undertook this study to assess the correlation between the results of simple tests of spatial orientation and the occurrence of common psychological symptoms during the first 3 months after an acute, unilateral, peripheral, vestibular lesion. Ten vestibular patients were selected and accepted to participate in the study. During a 3-month follow-up, we recorded the static visual vertical (VV), the estimation error of reorientation in the yaw plane and the responses to a standardized questionnaire of balance symptoms, the Dizziness Handicap Inventory (DHI), the depersonalization/derealization inventory by Cox and Swinson (DD), the Dissociative Experiences Scale (DES), the 12-item General Health Questionnaire (GHQ-12), the Zung Instrument for Anxiety Disorders and the Hamilton Depression Rating Scale. At week 1, all patients showed a VV >2° and failed to reorient themselves effectively. They reported several balance symptoms and handicap as well as DD symptoms, including attention/concentration difficulties; 80% of the patients had a Hamilton score ≥8. At this time the balance symptom score correlated with the DHI. After 3 months, all scores decreased. Multiple regression analysis of the differences from baseline showed that the DD score difference was related to the difference on the balance score, the reorientation error and the DHI score (p <0.01). No other linear relationships were observed (p >0.5). During the acute phase of a unilateral, peripheral, vestibular lesion, patients may show poor spatial orientation concurrent with DD symptoms including attention/concentration difficulties, and somatic depression symptoms. After vestibular rehabilitation, DD symptoms decrease as the spatial orientation improves, even if somatic symptoms of depression persist. Copyright © 2011 IMSS. Published by Elsevier Inc. All rights reserved.
Halmagyi, G. M.; Chen, Luke; MacDougall, Hamish G.; Weber, Konrad P.; McGarvie, Leigh A.; Curthoys, Ian S.
2017-01-01
In 1988, we introduced impulsive testing of semicircular canal (SCC) function measured with scleral search coils and showed that it could accurately and reliably detect impaired function even of a single lateral canal. Later we showed that it was also possible to test individual vertical canal function in peripheral and also in central vestibular disorders and proposed a physiological mechanism for why this might be so. For the next 20 years, between 1988 and 2008, impulsive testing of individual SCC function could only be accurately done by a few aficionados with the time and money to support scleral search-coil systems—an expensive, complicated and cumbersome, semi-invasive technique that never made the transition from the research lab to the dizzy clinic. Then, in 2009 and 2013, we introduced a video method of testing function of each of the six canals individually. Since 2009, the method has been taken up by most dizzy clinics around the world, with now close to 100 refereed articles in PubMed. In many dizzy clinics around the world, video Head Impulse Testing has supplanted caloric testing as the initial and in some cases the final test of choice in patients with suspected vestibular disorders. Here, we consider seven current, interesting, and controversial aspects of video Head Impulse Testing: (1) introduction to the test; (2) the progress from the head impulse protocol (HIMPs) to the new variant—suppression head impulse protocol (SHIMPs); (3) the physiological basis for head impulse testing; (4) practical aspects and potential pitfalls of video head impulse testing; (5) problems of vestibulo-ocular reflex gain calculations; (6) head impulse testing in central vestibular disorders; and (7) to stay right up-to-date—new clinical disease patterns emerging from video head impulse testing. With thanks and appreciation we dedicate this article to our friend, colleague, and mentor, Dr Bernard Cohen of Mount Sinai Medical School, New York, who since his first article 55 years ago on compensatory eye movements induced by vertical SCC stimulation has become one of the giants of the vestibular world. PMID:28649224
Halmagyi, G M; Chen, Luke; MacDougall, Hamish G; Weber, Konrad P; McGarvie, Leigh A; Curthoys, Ian S
2017-01-01
In 1988, we introduced impulsive testing of semicircular canal (SCC) function measured with scleral search coils and showed that it could accurately and reliably detect impaired function even of a single lateral canal. Later we showed that it was also possible to test individual vertical canal function in peripheral and also in central vestibular disorders and proposed a physiological mechanism for why this might be so. For the next 20 years, between 1988 and 2008, impulsive testing of individual SCC function could only be accurately done by a few aficionados with the time and money to support scleral search-coil systems-an expensive, complicated and cumbersome, semi-invasive technique that never made the transition from the research lab to the dizzy clinic. Then, in 2009 and 2013, we introduced a video method of testing function of each of the six canals individually. Since 2009, the method has been taken up by most dizzy clinics around the world, with now close to 100 refereed articles in PubMed. In many dizzy clinics around the world, video Head Impulse Testing has supplanted caloric testing as the initial and in some cases the final test of choice in patients with suspected vestibular disorders. Here, we consider seven current, interesting, and controversial aspects of video Head Impulse Testing: (1) introduction to the test; (2) the progress from the head impulse protocol (HIMPs) to the new variant-suppression head impulse protocol (SHIMPs); (3) the physiological basis for head impulse testing; (4) practical aspects and potential pitfalls of video head impulse testing; (5) problems of vestibulo-ocular reflex gain calculations; (6) head impulse testing in central vestibular disorders; and (7) to stay right up-to-date-new clinical disease patterns emerging from video head impulse testing. With thanks and appreciation we dedicate this article to our friend, colleague, and mentor, Dr Bernard Cohen of Mount Sinai Medical School, New York, who since his first article 55 years ago on compensatory eye movements induced by vertical SCC stimulation has become one of the giants of the vestibular world.
Ochi, Kentaro; Ohashi, Toru; Watanabe, Shoji
2003-02-01
The incidence of inferior vestibular nerve disorders in patients suffering from unilateral vestibular neuritis and the recovery of these disorders were evaluated by monitoring the vestibular-evoked myogenic potential (VEMP). Eight patients ranged from 21 to 73 years that suffered from unilateral vestibular neuritis underwent VEMP and caloric testing. Abnormal VEMP was observed in two of the eight patients with unilateral vestibular neuritis. Two patients were diagnosed as having an inferior vestibular nerve disorder. One of these patients showed recovery of the inferior vestibular nerve function as assessed by the VEMP. Disorders of the inferior vestibular nerve function and their recovery was confirmed by our current results. The time course of recoveries of the superior and inferior vestibular nerve systems were similar in the two patients.
Lee, Hyun Jung; Choi-Kwon, Smi
2016-10-01
In this study an examination was done of the effect of self-efficacy promoting vestibular rehabilitation (S-VR) on dizziness, exercise selfefficacy, adherence to vestibular rehabilitation (VR), subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness in patients with vestibular hypofunction. This was a randomized controlled study. Data were collected 3 times at baseline, 4 and 8 weeks after beginning the intervention. Outcome measures were level of dizziness, exercise self-efficacy, and level of adherence to VR. Subjective and objective vestibular function, vestibular compensation and the recurrence of dizziness were also obtained. Data were analyzed using Windows SPSS 21.0 program. After 4 weeks of S-VR, there was no difference between the groups for dizziness, subjective and objective vestibular functions. However, exercise self-efficacy and adherence to VR were higher in the experimental group than in the control group. After 8 weeks of S-VR, dizziness (p=.018) exercise self-efficacy (p<.001), adherence to VR (p<.001), total-dizziness handicap inventory (DHI) (p=.012), vision analysis ratio (p=.046) in the experimental group differ significantly from that of the control group. The number of patients with recurring dizziness were higher in the control group than in the experimental group (p<.001). The results indicate that continuous 8 weeks of S-VR is effective in reducing dizziness, and improving exercise self-efficacy, subjective vestibular function and adherence to VR. Objective vestibular function and vestibular compensation were also improved in the experimental group at the end of 8 weeks of S-VR.
To develop behavioral tests of vestibular functioning in the Wistar rat
NASA Technical Reports Server (NTRS)
Nielson, H. C.
1980-01-01
Two tests of vestibular functioning in the rat were developed. The first test was the water maze. In the water maze the rat does not have the normal proprioceptive feedback from its limbs to help it maintain its orientation, and must rely primarily on the sensory input from its visual and vestibular systems. By altering lighting conditions and visual cues the vestibular functioning without visual cues was assessed. Whether there was visual compensation for some vestibular dysfunction was determined. The second test measured vestibular functioning of the rat's behavior on a parallel swing. In this test the rat's postural adjustments while swinging on the swing with the otoliths being stimulated were assessed. Less success was achieved in developing the parallel swing as a test of vestibular functioning than with the water maze. The major problem was incorrect initial assumptions of what the rat's probable behavior on the parallel swing would be.
Hitier, Martin; Sato, Go; Zhang, Yan-Feng; Besnard, Stephane; Smith, Paul F
2018-06-11
Several studies have demonstrated that electrical activation of the peripheral vestibular system can evoke field potential, multi-unit neuronal activity and acetylcholine release in the hippocampus (HPC). However, no study to date has employed the immediate early gene protein, c-Fos, to investigate the distribution of activation of cells in the HPC following electrical stimulation of the vestibular system. We found that vestibular stimulation increased the number of animals expressing c-Fos in the dorsal HPC compared to sham control rats (P ≤ 0.02), but not in the ventral HPC. c-Fos was also expressed in an increased number of animals in the dorsal dentate gyrus (DG) compared to sham control rats (P ≤ 0.0001), and to a lesser extent in the ventral DG (P ≤ 0.006). The results of this study show that activation of the vestibular system results in a differential increase in the expression of c-Fos across different regions of the HPC. Copyright © 2018 Elsevier B.V. All rights reserved.
Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne
2014-11-01
Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.
Adaptive plasticity in vestibular influences on cardiovascular control
NASA Technical Reports Server (NTRS)
Yates, B. J.; Holmes, M. J.; Jian, B. J.
2000-01-01
Data collected in both human subjects and animal models indicate that the vestibular system influences the control of blood pressure. In animals, peripheral vestibular lesions diminish the capacity to rapidly and accurately make cardiovascular adjustments to changes in posture. Thus, one role of vestibulo-cardiovascular influences is to elicit changes in blood distribution in the body so that stable blood pressure is maintained during movement. However, deficits in correcting blood pressure following vestibular lesions diminish over time, and are less severe when non-labyrinthine sensory cues regarding body position in space are provided. These observations show that pathways that mediate vestibulo-sympathetic reflexes can be subject to plastic changes. This review considers the adaptive plasticity in cardiovascular responses elicited by the central vestibular system. Recent data indicate that the posterior cerebellar vermis may play an important role in adaptation of these responses, such that ablation of the posterior vermis impairs recovery of orthostatic tolerance following subsequent vestibular lesions. Furthermore, recent experiments suggest that non-labyrinthine inputs to the central vestibular system may be important in controlling blood pressure during movement, particularly following vestibular dysfunction. A number of sensory inputs appear to be integrated to produce cardiovascular adjustments during changes in posture. Although loss of any one of these inputs does not induce lability in blood pressure, it is likely that maximal blood pressure stability is achieved by the integration of a variety of sensory cues signaling body position in space.
Cognitive Rehabilitation in Bilateral Vestibular Patients: A Computational Perspective.
Ellis, Andrew W; Schöne, Corina G; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W
2018-01-01
There is evidence that vestibular sensory processing affects, and is affected by, higher cognitive processes. This is highly relevant from a clinical perspective, where there is evidence for cognitive impairments in patients with peripheral vestibular deficits. The vestibular system performs complex probabilistic computations, and we claim that understanding these is important for investigating interactions between vestibular processing and cognition. Furthermore, this will aid our understanding of patients' self-motion perception and will provide useful information for clinical interventions. We propose that cognitive training is a promising way to alleviate the debilitating symptoms of patients with complete bilateral vestibular loss (BVP), who often fail to show improvement when relying solely on conventional treatment methods. We present a probabilistic model capable of processing vestibular sensory data during both passive and active self-motion. Crucially, in our model, knowledge from multiple sources, including higher-level cognition, can be used to predict head motion. This is the entry point for cognitive interventions. Despite the loss of sensory input, the processing circuitry in BVP patients is still intact, and they can still perceive self-motion when the movement is self-generated. We provide computer simulations illustrating self-motion perception of BVP patients. Cognitive training may lead to more accurate and confident predictions, which result in decreased weighting of sensory input, and thus improved self-motion perception. Using our model, we show the possible impact of cognitive interventions to help vestibular rehabilitation in patients with BVP.
Kirsch, V; Keeser, D; Hergenroeder, T; Erat, O; Ertl-Wagner, B; Brandt, T; Dieterich, M
2016-04-01
Structural and functional interconnections of the bilateral central vestibular network have not yet been completely delineated. This includes both ipsilateral and contralateral pathways and crossing sites on the way from the vestibular nuclei via the thalamic relay stations to multiple "vestibular cortex" areas. This study investigated "vestibular" connectivity in the living human brain in between the vestibular nuclei and the parieto-insular vestibular cortex (PIVC) by combined structural and functional connectivity mapping using diffusion tensor imaging and functional connectivity magnetic resonance imaging in 24 healthy right-handed volunteers. We observed a congruent functional and structural link between the vestibular nuclei and the ipsilateral and contralateral PIVC. Five separate and distinct vestibular pathways were identified: three run ipsilaterally, while the two others cross either in the pons or the midbrain. Two of the ipsilateral projections run through the posterolateral or paramedian thalamic subnuclei, while the third bypasses the thalamus to reach the inferior part of the insular cortex directly. Both contralateral pathways travel through the posterolateral thalamus. At the cortical level, the PIVC regions of both hemispheres with a right hemispherical dominance are interconnected transcallosally through the antero-caudal splenium. The above-described bilateral vestibular circuitry in its entirety takes the form of a structure of a rope ladder extending from the brainstem to the cortex with three crossings in the brainstem (vestibular nuclei, pons, midbrain), none at thalamic level and a fourth cortical crossing through the splenium of the corpus callosum.
Leveque, M; Seidermann, L; Tran, H; Langagne, T; Ulmer, E; Chays, A
2010-06-01
Vestibular neurectomy is considered the reference treatment of incapacitating vertigo accompanying Meniere disease, with an efficiency rate of 85-95% in most literature reports. The aim of this study is to evaluate if vestibular neurectomy can provide a complete vestibular deafferentation by investigating complete vestibular function after surgery. Prospective study. Twenty-four patients suffering from incapacitated Meniere vertigo crisis beneficiated from a vestibular neurectomy by retrosigmoid approach. The average time between surgery and vestibular evaluation was 1 year. We performed (i) kinetic test, (ii) caloric test and (iii) vibration-induced nystagmus (VIN) at 30, 60 and 100Hz under videonystagmography recording, (iv) vestibular evoked myogenic potentials (VEMP), (v) video head impulsed test (VHIT) for each semicircular canals and (vi) an evaluation of visual vertical and horizontal subjective (VVS and HVS). On clinical evaluation, all the patients except one had never experienced any recurrence of vertigo crisis after surgery. The 24 patients would definitely undergo the surgery again. On vestibular evaluation, on the operated side, all patients showed a total areflexia at caloric test; 23 patients had no VEMP response; 23 patients had abolished canals response to VHIT. All the patients had VVS and HVS deviated towards the operated side; 23 patients had a high velocity VIN from 30 to 60Hz. This study proves that vestibular neurectomy can provide a complete vestibular deafferentation. We discuss this vestibular evaluation protocol and the main difficulties encounter during surgery, which could lead to partial nerve section and partial relief, and explain residual vestibular function after vestibular neurectomy. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Vestibular ontogeny: Measuring the influence of the dynamic environment
NASA Technical Reports Server (NTRS)
Jones, Timothy A.; Devries, Sherri M.; Dubois, Linda M.; Nelson, Rick C.
1993-01-01
In comparison to other special senses, we are only meagerly informed about the development of vestibular function and the mechanisms that may operate to control or influence the course of vestibular ontogeny. Perhaps one contributing factor to this disparity is the difficulty of evaluating vestibular sense organs directly and noninvasively. The present report describes a recently developed direct noninvasive vestibular function test that can be used to address many basic questions about the developing vestibular system. More particularly, the test can be used to examine the effects of the dynamic environment (e.g. gravitational field and vibration) on vestibular ontogeny.
One-year vestibular and balance outcomes of Oklahoma City bombing survivors.
Van Campen, L E; Dennis, J M; King, S B; Hanlin, R C; Velderman, A M
1999-10-01
This multisite investigation assessed subjective, behavioral, and objective balance function in 30 blast survivors. Subjects with vertigo, dizziness, or imbalance were screened (n = 6) or evaluated (n = 27) during 1 year. Tests included a questionnaire, electronystagmography (ENG), and computerized dynamic posturography (CDP). Ninety-seven percent of subjects were located inside a building during the blast, and 63 percent of subjects experienced dysequilibrium within 48 hours. Forty-three percent of symptoms could not be attributed to head injury. Sixty percent of subjects had abnormal ENG and/or CDP; ENG abnormalities mostly were peripheral or nonlocalizing, whereas CDP patterns were "vestibular," "surface dependent," and "physiologically inconsistent." At 1-year postblast, 55 percent of initially abnormal CDP results were normal, and 72 percent of subjects said symptoms were unchanged or occurred intermittently. A serial, test battery approach is recommended to assess symptoms. Blast-related dysequilibrium had clinically significant manifestations and should be considered a valid component of aural blast injury.
Peripheral generators of the vestibular evoked potentials (VsEPs) in the chick.
Weisleder, P; Jones, T A; Rubel, E W
1990-10-01
Electrophysiological activity in response to linear acceleration stimuli was recorded from young chickens by means of subcutaneous electrodes. This investigation had 2 purposes: (1) to establish the vestibular origin of the potentials; and (2) to investigate the contribution of each vestibular labyrinth to the response. The stimuli consisted of pulses of linear acceleration delivered by a mechanical vibrator (shaker). In the first set of experiments vestibular evoked potentials (VsEPs) were recorded prior to and 24 h after bilateral cochlea removal. In the second set of experiments responses were recorded before and after unilateral or bilateral intralabyrinthine injections of tetrodotoxin (TTX). Different groups of subjects were used for each experimental condition. The general morphology of the VsEPs was maintained after bilateral cochlea removal. Absolute latency of wave P2, the most prominent component of the response, was not significantly affected by the manipulation. Unilateral intralabyrinthine TTX injections consistently prolonged the latency and reduced the amplitude of wave P2. Following binaural TTX injections we were unable to elicit responses at the acceleration levels used in this study. The results from these experiments suggest that: (1) the activity recorded in response to linear acceleration stimuli is vestibular in origin; (2) when recorded from intact animals the evoked response is composed of activity from both vestibular systems; and (3) TTX consistently blocks the activity of the vestibular portion of the VIIIth cranial nerve.
Fagerson, M H; Barmack, N H
1995-06-01
1. Because the nucleus reticularis gigantocellularis (NRGc) receives a substantial descending projection from the caudal vestibular nuclei, we used extracellular single-unit recording combined with natural vestibular stimulation to examine the possible peripheral origins of the vestibularly modulated activity of caudal NRGc neurons located within 500 microns of the midline. Chloralose-urethan anesthetized rabbits were stimulated with an exponential "step" and/or static head-tilt stimulus, as well as sinusoidal rotation about the longitudinal or interaural axes providing various combinations of roll or pitch, respectively. Recording sites were reconstructed from electrolytic lesions confirmed histologically. 2. More than 85% of the 151 neurons, in the medial aspect of the caudal NRGc, responded to vertical vestibular stimulation. Ninety-six percent of these responded to rotation onto the contralateral side (beta responses). Only a few also responded to horizontal stimulation. Seventy-eight percent of the neurons that responded to vestibular stimulation responded during static roll-tilt. One-half of these neurons also responded transiently to the change in head position during exponential "step" stimulation, suggesting input mediated by otolith and semicircular canal receptors or tonic-phasic otolith neurons. 3. Seventy-five percent of the responsive neurons had a "null plane." The planes of stimulation resulting in maximal responses, for cells that responded to static stimulation, were distributed throughout 150 degrees in both roll and pitch quadrants. Five of these cells responded only transiently during exponential "step" stimulation and responded maximally when stimulated in the plane of one of the vertical semicircular canals. 4. The phase of the response of the 25% of medial NRGc neurons that lacked "null planes" gradually shifted approximately 180 degrees during sinusoidal vestibular stimulation as the plane of stimulation was shifted about the vertical axis. These neurons likely received convergent input with differing spatial and temporal properties. 5. The activity of neurons in the medial aspect of the caudal NRGc of rabbits was modulated by both otolithic macular and vertical semicircular canal receptor stimulation. This vestibular information may be important for controlling the intensity of the muscle activity in muscles such as neck muscles where the load on the muscle is affected by the position of the head with respect to gravity. Some of these neurons may also shift muscle function from an agonist to an antagonist as the direction of head tilt changes.
A vestibular phenotype for Waardenburg syndrome?
NASA Technical Reports Server (NTRS)
Black, F. O.; Pesznecker, S. C.; Allen, K.; Gianna, C.
2001-01-01
OBJECTIVE: To investigate vestibular abnormalities in subjects with Waardenburg syndrome. STUDY DESIGN: Retrospective record review. SETTING: Tertiary referral neurotology clinic. SUBJECTS: Twenty-two adult white subjects with clinical diagnosis of Waardenburg syndrome (10 type I and 12 type II). INTERVENTIONS: Evaluation for Waardenburg phenotype, history of vestibular and auditory symptoms, tests of vestibular and auditory function. MAIN OUTCOME MEASURES: Results of phenotyping, results of vestibular and auditory symptom review (history), results of vestibular and auditory function testing. RESULTS: Seventeen subjects were women, and 5 were men. Their ages ranged from 21 to 58 years (mean, 38 years). Sixteen of the 22 subjects sought treatment for vertigo, dizziness, or imbalance. For subjects with vestibular symptoms, the results of vestibuloocular tests (calorics, vestibular autorotation, and/or pseudorandom rotation) were abnormal in 77%, and the results of vestibulospinal function tests (computerized dynamic posturography, EquiTest) were abnormal in 57%, but there were no specific patterns of abnormality. Six had objective sensorineural hearing loss. Thirteen had an elevated summating/action potential (>0.40) on electrocochleography. All subjects except those with severe hearing loss (n = 3) had normal auditory brainstem response results. CONCLUSION: Patients with Waardenburg syndrome may experience primarily vestibular symptoms without hearing loss. Electrocochleography and vestibular function tests appear to be the most sensitive measures of otologic abnormalities in such patients.
Video Head Impulse Testing (vHIT) and the Assessment of Horizontal Semicircular Canal Function.
Riska, Kristal M; Murnane, Owen; Akin, Faith W; Hall, Courtney
2015-05-01
Vestibular function (specifically, horizontal semicircular canal function) can be assessed across a broad frequency range using several different techniques. The head impulse test is a qualitative test of horizontal semicircular canal function that can be completed at bedside. Recently, a new instrument (video head impulse test [vHIT]) has been developed to provide an objective assessment to the clinical test. Questions persist regarding how this test may be used in the overall vestibular test battery. The purpose of this case report is to describe vestibular test results (vHIT, rotational testing, vestibular evoked myogenic potentials, and balance and gait performance) in an individual with a 100% unilateral caloric weakness who was asymptomatic for dizziness, vertigo or imbalance. Comprehensive assessment was completed to evaluate vestibular function. Caloric irrigations, rotary chair testing, vHIT, and vestibular evoked myogenic potentials were completed. A 100% left-sided unilateral caloric weakness was observed in an asymptomatic individual. vHIT produced normal gain with covert saccades. This case demonstrates the clinical usefulness of vHIT as a diagnostic tool and indicator of vestibular compensation and functional status. American Academy of Audiology.
Model of human dynamic orientation. Ph.D. Thesis; [associated with vestibular stimuli
NASA Technical Reports Server (NTRS)
Ormsby, C. C.
1974-01-01
The dynamics associated with the perception of orientation were modelled for near-threshold and suprathreshold vestibular stimuli. A model of the information available at the peripheral sensors which was consistent with available neurophysiologic data was developed and served as the basis for the models of the perceptual responses. The central processor was assumed to utilize the information from the peripheral sensors in an optimal (minimum mean square error) manner to produce the perceptual estimates of dynamic orientation. This assumption, coupled with the models of sensory information, determined the form of the model for the central processor. The problem of integrating information from the semi-circular canals and the otoliths to predict the perceptual response to motions which stimulated both organs was studied. A model was developed which was shown to be useful in predicting the perceptual response to multi-sensory stimuli.
Bigelow, Robin T; Agrawal, Yuri
2015-01-01
A growing body of literature suggests the inner ear vestibular system has a substantial impact on cognitive function. The strongest evidence exists in connecting vestibular function to the cognitive domain of visuospatial ability, which includes spatial memory, navigation, mental rotation, and mental representation of three-dimensional space. Substantial evidence also exists suggesting the vestibular system has an impact on attention and cognitive processing ability. The cognitive domains of memory and executive function are also implicated in a number of studies. We will review the current literature, discuss possible causal links between vestibular dysfunction and cognitive performance, and suggest areas of future research.
Vivas, Esther X; Carlson, Matthew L; Neff, Brian A; Shepard, Neil T; McCracken, D Jay; Sweeney, Alex D; Olson, Jeffrey J
2018-02-01
Does intraoperative facial nerve monitoring during vestibular schwannoma surgery lead to better long-term facial nerve function? This recommendation applies to adult patients undergoing vestibular schwannoma surgery regardless of tumor characteristics. Level 3: It is recommended that intraoperative facial nerve monitoring be routinely utilized during vestibular schwannoma surgery to improve long-term facial nerve function. Can intraoperative facial nerve monitoring be used to accurately predict favorable long-term facial nerve function after vestibular schwannoma surgery? This recommendation applies to adult patients undergoing vestibular schwannoma surgery. Level 3: Intraoperative facial nerve can be used to accurately predict favorable long-term facial nerve function after vestibular schwannoma surgery. Specifically, the presence of favorable testing reliably portends a good long-term facial nerve outcome. However, the absence of favorable testing in the setting of an anatomically intact facial nerve does not reliably predict poor long-term function and therefore cannot be used to direct decision-making regarding the need for early reinnervation procedures. Does an anatomically intact facial nerve with poor electromyogram (EMG) electrical responses during intraoperative testing reliably predict poor long-term facial nerve function? This recommendation applies to adult patients undergoing vestibular schwannoma surgery. Level 3: Poor intraoperative EMG electrical response of the facial nerve should not be used as a reliable predictor of poor long-term facial nerve function. Should intraoperative eighth cranial nerve monitoring be used during vestibular schwannoma surgery? This recommendation applies to adult patients undergoing vestibular schwannoma surgery with measurable preoperative hearing levels and tumors smaller than 1.5 cm. Level 3: Intraoperative eighth cranial nerve monitoring should be used during vestibular schwannoma surgery when hearing preservation is attempted. Is direct monitoring of the eighth cranial nerve superior to the use of far-field auditory brain stem responses? This recommendation applies to adult patients undergoing vestibular schwannoma surgery with measurable preoperative hearing levels and tumors smaller than 1.5 cm. Level 3: There is insufficient evidence to make a definitive recommendation. The full guideline can be found at: https://www.cns.org/guidelines/guidelines-manage-ment-patients-vestibular-schwannoma/chapter_4. Copyright © 2017 by the Congress of Neurological Surgeons
Comparative Transduction Mechanisms of Vestibular Otolith Hair Cells
NASA Technical Reports Server (NTRS)
Baird, Richard A.
1994-01-01
Hair cells in the bullfrog vestibular otolith organs regenerate following aminoglycoside ototoxicity. Hair cells in these organs are differentially sensitive to gentamicin, with saccular hair cells and hair cells in the utricular striola being damaged at lower gentamicin concentrations than hair cells in the utricular extrastriola. Regenerating hair cells in these organs have short hair bundles and can be classified into a number of phenotypes using the same morphological criteria used to identify their mature counterparts. Our studies suggest that some supporting cells can convert, or transdifferentiate,into hair cells without an intervening cell division. By stimulating these processes in humans, clinicians may be able to alleviate human deafness and peripheral vestibular disorders by regenerating and replacing lost hair cells. In vivo and in vitro studies were done on cell proliferation and hair cell regeneration.
Aging of vestibular function evaluated using correlational vestibular autorotation test
Hsieh, Li-Chun; Lin, Hung-Ching; Lee, Guo-She
2014-01-01
Background Imbalance from degeneration of vestibular end organs is a common problem in the elderly. However, the decline of vestibular function with aging was revealed in few vestibular function tests such as vestibular autorotation test (VAT). In the current VAT, there are drawbacks of poor test–retest reliability, slippage of the sensor at high-speed rotations, and limited data about the effect of aging. We developed a correlational-VAT (cVAT) system that included a small, light sensor (less than 20 g) with wireless data transmission technique to evaluate the aging of vestibular function. Material and methods We enrolled 53 healthy participants aged between 25 and 75 years and divided them into five age groups. The test conditions were vertical and horizontal head autorotations of frequencies from 0 to 3 Hz with closed eyes or open eyes. The cross-correlation coefficient (CCC) between eye velocity and head velocity was obtained for the head autorotations between 1 Hz and 3 Hz. The mean of the CCCs was used to represent the vestibular function. Results Age was significantly and negatively correlated with the mean CCC for all test conditions, including horizontal or vertical autorotations with open eyes or closed eyes (P<0.05). The mean CCC with open eyes declined significantly at 55–65 years old and the mean CCC with closed eyes declined significantly at 65–75 years old. Conclusion Vestibular function evaluated using mean CCC revealed a decline with age, and the function of visual-vestibulo-ocular reflex declined 10 years earlier than the function of vestibulo-ocular reflex. PMID:25214774
Flores, A; Manilla, S; Huidobro, N; De la Torre-Valdovinos, B; Kristeva, R; Mendez-Balbuena, I; Galindo, F; Treviño, M; Manjarrez, E
2016-05-13
The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception
NASA Technical Reports Server (NTRS)
Wolgemuth, Debra J.
2005-01-01
The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.
[Inferior vestibular neuritis: diagnosis using VEMP].
Walther, L E; Repik, I
2012-02-01
Vestibular evoked myogenic potentials (VEMP) are a new method to establish the functional status of the otolith organs. The sacculocollic reflex of the cervical VEMP to air conduction (AC) reflects predominantly saccular function due to saccular afferents to the inferior vestibular nerve. We describe a case of inferior vestibular neuritis as a rare differential diagnosis of vestibular neuritis. Clinical signs were a normal caloric response, unilaterally absent AC cVEMPs and bilaterally preserved ocular VEMPs (AC oVEMPs).
Short- and long-latency auditory evoked potentials in individuals with vestibular dysfunction.
Santos Filha, Valdete Alves Valentins Dos; Bruckmann, Mirtes; Garcia, Michele Vargas
2018-01-01
Purpose Evaluate the auditory pathway at the brainstem and cortical levels in individuals with peripheral vestibular dysfunction. Methods The study sample was composed 19 individuals aged 20-80 years that presented exam results suggestive of Peripheral Vestibular Disorder (PVD) or Vestibular Dysfunction (VD). Participants underwent evaluation of the auditory pathway through Brainstem Auditory Evoked Potentials (BAEP) (short latency) and P1, N1, P2, N2, and P300 cortical potentials (long latency). Results Nine individuals presented diagnosis of VD and 10 participants were diagnosed with PVD. The overall average of the long latency potentials of the participants was within the normal range, whereas an increased mean was observed in the short latency of waves III and V of the left ear, as well as in the I - III interpeak interval of both ears. Association of the auditory potentials with VD and PVD showed statistically significant correlation only in the III - V interpeak interval of the right ear for short latency. Comparison between the long and short latencies in the groups showed differences between VD and PVD, but without statistical significance. Conclusion No statistically significant correlation was observed between VD/PVD and the auditory evoked potentials; however, for the long latency potentials, individuals with VD presented higher latency in P1, N1, P2, and N2, where as participants with PVD showed higher latency in P300. In the short latency potentials, there was an increase in the absolute latencies in the VD group and in the interpeak intervals in the PVD group.
Băjenaru, Ovidiu; Roceanu, Adina Maria; Albu, Silviu; Zainea, Viorel; Pascu, Alexandru; Georgescu, Mădălina Gabriela; Cozma, Sebastian; Mărceanu, Luigi; Mureşanu, Dafin Fior
2014-01-01
Background and methods An efficacy population of 245 patients with vertigo of peripheral vestibular origin was recruited in Romania as part of a 3-month multinational, post-marketing surveillance study of open-label betahistine 48 mg/day (OSVaLD). Endpoints were changes in the Dizziness Handicap Index (primary endpoint), Medical Outcome Study Short-Form 36 (SF-36v2®), and the Hospital Anxiety and Depression Scale. Results During treatment, the total Dizziness Handicap Index score improved by 41 points (on a 100-point scale). Statistically significant improvements of 12–14 points were recorded in all three domains of the Dizziness Handicap Index scale (P<0.0001). Betahistine therapy was also accompanied by progressive improvements in mean Hospital Anxiety and Depression anxiety and depression scores (P<0.0001) and significant improvements in both the physical and mental component summary of the SF-36v2 (P<0.0001). Betahistine was well tolerated, with only one suspected adverse drug reaction recorded in the Romanian safety population (n=259). Conclusion Betahistine 48 mg/day was associated with improvements in multiple measures of health-related quality of life and had a good tolerability profile in these Romanian patients with recurrent peripheral vestibular vertigo. PMID:25506241
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.
Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis
Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies. PMID:26556560
Current concepts and future approaches to vestibular rehabilitation.
Tjernström, Fredrik; Zur, Oz; Jahn, Klaus
2016-04-01
Over the last decades methods of vestibular rehabilitation to enhance adaptation to vestibular loss, habituation to changing sensory conditions, and sensory reweighting in the compensation process have been developed. However, the use of these techniques still depends to a large part on the educational background of the therapist. Individualized assessment of deficits and specific therapeutic programs for different disorders are sparse. Currently, vestibular rehabilitation is often used in an unspecific way in dizzy patients irrespective of the clinical findings. When predicting the future of vestibular rehabilitation, it is tempting to foretell advances in technology for assessment and treatment only, but the current intense exchange between clinicians and basic scientists also predicts advances in truly understanding the complex interactions between the peripheral senses and central adaptation mechanisms. More research is needed to develop reliable techniques to measure sensory dependence and to learn how this knowledge can be best used--by playing off the patient's sensory strength or working on the weakness. To be able using the emerging concepts, the neuro-otological community must strive to educate physicians, physiotherapists and nurses to perform the correct examinations for assessment of individual deficits and to look for factors that might impede rehabilitation.
Vestibular system: the many facets of a multimodal sense.
Angelaki, Dora E; Cullen, Kathleen E
2008-01-01
Elegant sensory structures in the inner ear have evolved to measure head motion. These vestibular receptors consist of highly conserved semicircular canals and otolith organs. Unlike other senses, vestibular information in the central nervous system becomes immediately multisensory and multimodal. There is no overt, readily recognizable conscious sensation from these organs, yet vestibular signals contribute to a surprising range of brain functions, from the most automatic reflexes to spatial perception and motor coordination. Critical to these diverse, multimodal functions are multiple computationally intriguing levels of processing. For example, the need for multisensory integration necessitates vestibular representations in multiple reference frames. Proprioceptive-vestibular interactions, coupled with corollary discharge of a motor plan, allow the brain to distinguish actively generated from passive head movements. Finally, nonlinear interactions between otolith and canal signals allow the vestibular system to function as an inertial sensor and contribute critically to both navigation and spatial orientation.
Oculo-vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness.
Cevette, Michael J; Stepanek, Jan; Cocco, Daniela; Galea, Anna M; Pradhan, Gaurav N; Wagner, Linsey S; Oakley, Sarah R; Smith, Benn E; Zapala, David A; Brookler, Kenneth H
2012-06-01
Despite improvement in the computational capabilities of visual displays in flight simulators, intersensory visual-vestibular conflict remains the leading cause of simulator sickness (SS). By using galvanic vestibular stimulation (GVS), the vestibular system can be synchronized with a moving visual field in order to lessen the mismatch of sensory inputs thought to result in SS. A multisite electrode array was used to deliver combinations of GVS in 21 normal subjects. Optimal electrode combinations were identified and used to establish GVS dose-response predictions for the perception of roll, pitch, and yaw. Based on these data, an algorithm was then implemented in flight simulator hardware in order to synchronize visual and GVS-induced vestibular sensations (oculo-vestibular-recoupled or OVR simulation). Subjects were then randomly exposed to flight simulation either with or without OVR simulation. A self-report SS checklist was administered to all subjects after each session. An overall SS score was calculated for each category of symptoms for both groups. The analysis of GVS stimulation data yielded six unique combinations of electrode positions inducing motion perceptions in the three rotational axes. This provided the algorithm used for OVR simulation. The overall SS scores for gastrointestinal, central, and peripheral categories were 17%, 22.4%, and 20% for the Control group and 6.3%, 20%, and 8% for the OVR group, respectively. When virtual head signals produced by GVS are synchronized to the speed and direction of a moving visual field, manifestations of induced SS in a cockpit flight simulator are significantly reduced.
Disability and rehabilitation in the dizzy patient.
Cohen, Helen S
2006-02-01
This review focuses on prospective studies of vertigo and balance therapy in the past 3 years, including advances in vertigo-habituation exercises for adults, pediatric intervention, and virtual reality techniques, and, in more depth, the literature pertinent to driving motor vehicles. Increased support has been generated for the efficacy of a minimal, home-based vertigo-habituation program for adults with peripheral vestibular disorders. Vestibular rehabilitation has been shown to be associated with improvements in independence and dynamic visual acuity. Community-based vestibular rehabilitation has been shown to be efficacious for selected patients, after careful screening, when trained personnel provide intervention. Vestibular rehabilitation has been incorporated into the rehabilitation program for head-injured military personnel who will be returned to duty, and multifactorial balance rehabilitation has been shown to be useful for children with hearing and balance impairments. Virtual reality techniques have made significant advances, so immersive environments have potential for rehabilitation for patients with vestibular disorders and for developing training regimens for astronauts to ameliorate some effects of exposure to microgravity. Driving skill, in general, is affected by use of benzodiazepines. For many patients with vestibular impairments driving is a particularly problematic activity of daily living. Progress has been made in studies of acute care, community-based, and pediatric vestibular rehabilitation. Work on simulator-based paradigms has moved toward readiness for implementation. Studies of driving have provided some insight into the problems of these patients. More work remains to be done on all of these problems.
Zhou, Guangwei; Gopen, Quinton
2011-01-01
To explore the characteristics of vestibular evoked myogenic potential (VEMP) in children with enlarged vestibular aqueduct (EVA) and to determine the diagnostic value of VEMP testing for this particular inner ear structural anomaly. Retrospective cohort study in a pediatric tertiary care facility. A total of 25 pediatric cases (37 ears) of EVA were identified with complete records, including otologic evaluation, CT scan of the temporal bone, and audiologic assessment. Results of audiometry, tympanometry, and VEMP testing were analyzed. Hearing loss was found in 97% (36/37) of the ears with EVA. Airbone gaps (conductive components) were found in all hearing losses with normal middle ear pressure and mobility. Abnormally low threshold VEMP responses were found in 92% (34/37) of the ears with EVA. VEMP responses were absent unilaterally in three EVA patients who had vestibular complaints. No clear correlation was found between the size of EVA and the audiologic findings. The presence of airbone gaps in children with EVA was found without apparent middle ear pathology. Characteristics of VEMP in EVA were lower thresholds and higher amplitudes despite of the presence of airbone gaps. The abnormally low threshold VEMP responses suggested a "third" window effect in the pathologic condition of EVA. Unilateral absence of VEMP may implicate peripheral vestibular impairment. The findings from our study are helpful in clinical evaluation of young children who usually give limited and ambiguous input regarding their hearing and vestibular problems.
Barona-de-Guzmán, Rafael; Krstulovic-Roa, Claudio; Donderis-Malea, Elena; Barona-Lleó, Luz
2018-03-08
The emotional evaluation of the causes of vertigo is made using the clinical records and several subjective questionnaires. The aim of the present study is to evaluate the emotional response objectively, in normal subjects, during an induced vertigo crisis. A caloric vestibular test with cold water was performed on 30 healthy subjects. The following physiological parameters were monitored during the 60seconds prior to and the 60seconds after the stimulation: Skin Conductivity, Peripheral Pulse Volume, Body Temperature, Muscle Contraction, Heart Rate, and Respiratory Rate. The maximum angular speed of the nystagmus slow phase at each stimulation was assessed. Skin conductance presented a statistically significant increase during the vertigo crisis in relation to the prior period while the peripheral pulse volume presented a statistically significant decrease. There was no relationship between the slow phase of the provoked nystagmus angular speed and skin conductance and peripheral pulse volume changes. The decrease in peripheral pulse volume was significantly higher in the second vertigo crisis. Skin conductance and peripheral pulse volume changed significantly during a vertigo crisis. There was no relation between the provoked vertiginous crisis intensity and the changes produced in those variables. The stress generated by the caloric stimulation is higher in the second crisis, when the subject has experience of the vertigo caused by the stimulation. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
The function of BDNF in the adult auditory system.
Singer, Wibke; Panford-Walsh, Rama; Knipper, Marlies
2014-01-01
The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.
McGibbon, Chris A; Krebs, David E; Parker, Stephen W; Scarborough, Donna M; Wayne, Peter M; Wolf, Steven L
2005-01-01
Background Vestibular rehabilitation (VR) is a well-accepted exercise program intended to remedy balance impairment caused by damage to the peripheral vestibular system. Alternative therapies, such as Tai Chi (TC), have recently gained popularity as a treatment for balance impairment. Although VR and TC can benefit people with vestibulopathy, the degree to which gait improvements may be related to neuromuscular adaptations of the lower extremities for the two different therapies are unknown. Methods We examined the relationship between lower extremity neuromuscular function and trunk control in 36 older adults with vestibulopathy, randomized to 10 weeks of either VR or TC exercise. Time-distance measures (gait speed, step length, stance duration and step width), lower extremity sagittal plane mechanical energy expenditures (MEE), and trunk sagittal and frontal plane kinematics (peak and range of linear and angular velocity), were measured. Results Although gait time-distance measures were improved in both groups following treatment, no significant between-groups differences were observed for the MEE and trunk kinematic measures. Significant within groups changes, however, were observed. The TC group significantly increased ankle MEE contribution and decreased hip MEE contribution to total leg MEE, while no significant changes were found within the VR group. The TC group exhibited a positive relationship between change in leg MEE and change in trunk velocity peak and range, while the VR group exhibited a negative relationship. Conclusion Gait function improved in both groups consistent with expectations of the interventions. Differences in each group's response to therapy appear to suggest that improved gait function may be due to different neuromuscular adaptations resulting from the different interventions. The TC group's improvements were associated with reorganized lower extremity neuromuscular patterns, which appear to promote a faster gait and reduced excessive hip compensation. The VR group's improvements, however, were not the result of lower extremity neuromuscular pattern changes. Lower-extremity MEE increases corresponded to attenuated forward trunk linear and angular movement in the VR group, suggesting better control of upper body motion to minimize loss of balance. These data support a growing body of evidence that Tai Chi may be a valuable complementary treatment for vestibular disorders. PMID:15717934
Experimental and clinical study of EHF treatment of vascular-vestibular dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mal`tsev, A.E.; Abakarov, A.T.; Istomin, V.S.
1994-07-01
The authors present the results of a study of the effectiveness of EHF radiation on the cerebral hemodynamics, bioelectrical activity of the cerebral cortex, and functional state of the vestibular analyzer in chronic studies of cats using a model of vascular-vestibular dysfunction. The clinical part of the work reflects the results of studies of the functional state of cerebral blood circulation and the vestibular analyzer during the EHF treatment of angiovertebrogenic vestibular dysfunction in a background of initial manifestations of cerebral blood supply deficiency (angiodistonic variant).
Kerber, Kevin A.; Morgenstern, Lewis B.; Meurer, William J.; McLaughlin, Thomas; Hall, Pamela A.; Forman, Jane; Fendrick, A. Mark; Newman-Toker, David E.
2011-01-01
Objectives Dizziness is a common presenting complaint to the emergency department (ED), and emergency physicians (EPs) consider these presentations a priority for decision support. Assessing for nystagmus and defining its features are important steps for any acute dizziness decision algorithm. The authors sought to describe nystagmus documentation in routine ED care to determine if nystagmus assessments might be an important target in decision support efforts. Methods Medical records from ED visits for dizziness were captured as part of a surveillance study embedded within an ongoing population-based cohort study. Visits with documentation of a nystagmus assessment were reviewed and coded for presence or absence of nystagmus, ability to draw a meaningful inference from the description, and coherence with the final EP diagnosis when a peripheral vestibular diagnosis was made. Results Of 1,091 visits for dizziness, 887 (81.3%) documented a nystagmus assessment. Nystagmus was present in 185 out of 887 (20.9%) visits. When nystagmus was present, no further characteristics were recorded in 48 of the 185 visits (26%). The documentation of nystagmus (including all descriptors recorded) enabled a meaningful inference about the localization or cause in only 10 of the 185 (5.4%) visits. The nystagmus description conflicted with the EP diagnosis in 113 (80.7%) of the 140 visits that received a peripheral vestibular diagnosis. Conclusions Nystagmus assessments are frequently documented in acute dizziness presentations, but details do not generally enable a meaningful inference. Recorded descriptions usually conflict with the diagnosis when a peripheral vestibular diagnosis is rendered. Nystagmus assessments might be an important target in developing decision support for dizziness presentations. PMID:21676060
Perez Fornos, Angelica; Guinand, Nils; van de Berg, Raymond; Stokroos, Robert; Micera, Silvestro; Kingma, Herman; Pelizzone, Marco; Guyot, Jean-Philippe
2014-01-01
The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently, there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the vestibulo-ocular reflex (VOR), the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss. PMID:24808890
Newman-Toker, David E; Curthoys, Ian S; Halmagyi, G Michael
2015-10-01
Patients who present to the emergency department with symptoms of acute vertigo or dizziness are frequently misdiagnosed. Missed opportunities to promptly treat dangerous strokes can result in poor clinical outcomes. Inappropriate testing and incorrect treatments for those with benign peripheral vestibular disorders leads to patient harm and unnecessary costs. Over the past decade, novel bedside approaches to diagnose patients with the acute vestibular syndrome have been developed and refined. A battery of three bedside tests of ocular motor physiology known as "HINTS" (head impulse, nystagmus, test of skew) has been shown to identify acute strokes more accurately than even magnetic resonance imaging with diffusion-weighted imaging (MRI-DWI) when applied in the early acute period by eye-movement specialists. Recent advances in lightweight, high-speed video-oculography (VOG) technology have made possible a future in which HINTS might be applied by nonspecialists in frontline care settings using portable VOG. Use of technology to measure eye movements (VOG-HINTS) to diagnose stroke in the acute vestibular syndrome is analogous to the use of electrocardiography (ECG) to diagnose myocardial infarction in acute chest pain. This "eye ECG" approach could transform care for patients with acute vertigo and dizziness around the world. In the United States alone, successful implementation would likely result in improved quality of emergency care for hundreds of thousands of peripheral vestibular patients and tens of thousands of stroke patients, as well as an estimated national health care savings of roughly $1 billion per year. In this article, the authors review the origins of the HINTS approach, empiric evidence and pathophysiologic principles supporting its use, and possible uses for the eye ECG in teleconsultation, teaching, and triage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Correlation between caloric and ocular vestibular evoked myogenic potential test results.
Huang, Chi-Hsuan; Wang, Shou-Jen; Young, Yi-Ho
2012-02-01
The ocular vestibular evoked myogenic potential (o-VEMP) test results correlate significantly with caloric test results for patients with acoustic neuroma (AN), but not for patients with Meniere's disease (MD), indicating that the o-VEMP test may replace the caloric test for evaluating the vestibular nerve from which the AN arises. Conversely, the caloric, o-VEMP, and cervical VEMP (c-VEMP) tests should be performed to map lesion sites in the vestibular labyrinth. This study performed caloric, o-VEMP, and c-VEMP tests on patients with central and peripheral vestibular disorders to investigate their relationships. In all, 66 patients comprising 16 with unilateral AN and 50 with unilateral definite MD were enrolled. All patients underwent caloric, o-VEMP, and c-VEMP tests. In the AN group, the caloric test identified canal paresis and caloric areflexia in 10 ears, while the o-VEMP and c-VEMP tests identified abnormal (absent or delayed) responses in 12 and 11 ears, respectively. A significant correlation existed between caloric and o-VEMP test results, but not between caloric and c-VEMP test results, or between o-VEMP and c-VEMP test results. For the MD group, abnormal caloric, o-VEMP, and c-VEMP test results were obtained for 24%, 44%, and 38% of hydropic ears, respectively. No correlation existed between any two test results.
Regeneration of hair cells in the mammalian vestibular system.
Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei
2016-06-01
Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.
A Low-Power ASIC Signal Processor for a Vestibular Prosthesis.
Töreyin, Hakan; Bhatti, Pamela T
2016-06-01
A low-power ASIC signal processor for a vestibular prosthesis (VP) is reported. Fabricated with TI 0.35 μm CMOS technology and designed to interface with implanted inertial sensors, the digitally assisted analog signal processor operates extensively in the CMOS subthreshold region. During its operation the ASIC encodes head motion signals captured by the inertial sensors as electrical pulses ultimately targeted for in-vivo stimulation of vestibular nerve fibers. To achieve this, the ASIC implements a coordinate system transformation to correct for misalignment between natural sensors and implanted inertial sensors. It also mimics the frequency response characteristics and frequency encoding mappings of angular and linear head motions observed at the peripheral sense organs, semicircular canals and otolith. Overall the design occupies an area of 6.22 mm (2) and consumes 1.24 mW when supplied with ± 1.6 V.
A Low-Power ASIC Signal Processor for a Vestibular Prosthesis
Töreyin, Hakan; Bhatti, Pamela T.
2017-01-01
A low-power ASIC signal processor for a vestibular prosthesis (VP) is reported. Fabricated with TI 0.35 μm CMOS technology and designed to interface with implanted inertial sensors, the digitally assisted analog signal processor operates extensively in the CMOS subthreshold region. During its operation the ASIC encodes head motion signals captured by the inertial sensors as electrical pulses ultimately targeted for in-vivo stimulation of vestibular nerve fibers. To achieve this, the ASIC implements a coordinate system transformation to correct for misalignment between natural sensors and implanted inertial sensors. It also mimics the frequency response characteristics and frequency encoding mappings of angular and linear head motions observed at the peripheral sense organs, semicircular canals and otolith. Overall the design occupies an area of 6.22 mm2 and consumes 1.24 mW when supplied with ± 1.6 V. PMID:26800546
NASA Technical Reports Server (NTRS)
Berthoz, A.; Pavard, B.; Young, L. R.
1975-01-01
The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.
Consequences and assessment of human vestibular failure: implications for postural control.
Colebatch, James G
2002-01-01
Labyrinthine afferents respond to both angular velocity (semicircular canals) and linear acceleration (otoliths), including gravity. Given their response to gravity, the otoliths are likely to have an important role in the postural functions of the vestibular apparatus. Unilateral vestibular ablation has dramatic effects on posture in many animals, but less so in primates. Nevertheless, bilateral vestibular lesions lead to disabling symptoms in man related to disturbed ocular and postural control and impaired perception of slopes and accelerations. While seimicircular canal function can be assessed through its effects on vestibular ocular reflexes, assessment of otolith function in man has traditionally been much more difficult. Recent definition of a short latency vestibulocollic reflex, activated by sound and appearing to arise from the saccule, shows promise as a new method of non-invasive assessment of otolith function.
38 CFR Appendix B to Part 4 - Numerical Index of Disabilities
Code of Federal Regulations, 2011 CFR
2011-07-01
... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...
38 CFR Appendix B to Part 4 - Numerical Index of Disabilities
Code of Federal Regulations, 2010 CFR
2010-07-01
... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...
38 CFR Appendix B to Part 4 - Numerical Index of Disabilities
Code of Federal Regulations, 2012 CFR
2012-07-01
... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...
38 CFR Appendix B to Part 4 - Numerical Index of Disabilities
Code of Federal Regulations, 2014 CFR
2014-07-01
... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...
38 CFR Appendix B to Part 4 - Numerical Index of Disabilities
Code of Federal Regulations, 2013 CFR
2013-07-01
... Diagnostic Code No. THE MUSCULOSKELETAL SYSTEM Acute, Subacute, or Chronic Diseases 5000 Osteomyelitis, acute... Intervertebral disc syndrome. Hip and Thigh 5250 Hip, ankylosis. 5251 Thigh, limitation of extension. 5252 Thigh.... 6204 Peripheral vestibular disorders. 6205 Meniere's syndrome. 6207 Loss of auricle. 6208 Malignant...
Lacour, Michel; Bernard-Demanze, Laurence
2015-01-01
This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or “à la carte” VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life. PMID:25610424
A critical period for functional vestibular development in zebrafish
NASA Technical Reports Server (NTRS)
Moorman, Stephen J.; Cordova, Rodolfo; Davies, Sarah A.
2002-01-01
We have determined a critical period for vestibular development in zebrafish by using a bioreactor designed by NASA to simulate microgravity for cells in culture. A critical period is defined as the briefest period of time during development when stimulus deprivation results in long lasting or permanent sensory deficits. Zebrafish eggs were collected within 3 hours of being laid and fertilized. In experiment 1, eggs were placed in the bioreactor at 3, 24, 30, 36, 48, or 72 hours postfertilization (hPF) and maintained in the bioreactor until 96 hPF. In experiment 2, eggs were placed in the bioreactor immediately after they were collected and maintained in the bioreactor until 24, 36, 48, 60, 66, 72, or 96 hPF. Beginning at 96 hPF, all larvae had their vestibulo-ocular reflexes (VOR) evaluated once each day for 5 days. Only larvae that hatched from eggs that were placed in the bioreactor before 30 hPF in experiment 1 or removed from the bioreactor later than 66 hPF in experiment 2 had VOR deficits that persisted for at least 5 days. These data suggest a critical period for vestibular development in the zebrafish that begins before 30 hPF and ends after 66 hPF. To confirm this, zebrafish eggs were placed in the bioreactor at 24 hPF and removed at 72 hPF. VORs were evaluated in these larvae once each day for 5 days beginning at 96 hPF. These larvae had VOR deficits that persisted for at least 5 days. In addition, larvae that had been maintained in the bioreactor from 24 to 66 hPF or from 30 to 72 hPF, had only temporary VOR deficits. In a final experiment, zebrafish eggs were placed in the bioreactor at 3 hPF and removed at 96 hPF but the bioreactor was turned off from 24 hPF to 72 hPF. These larvae had normal VORs when they were removed from the bioreactor at 96 hPF. Taken as a whole, these data support the idea that there is a critical period for functional maturation of the zebrafish vestibular system. The developmental period identified includes the timeframe during which the vestibular primary afferent neurons are born, innervate their central and peripheral targets, and remodel their central projections. Copyright 2002 Wiley-Liss, Inc.
Balatková, Zuzana; Chovanec, Martin; Čakrt, Ondřej; Hrubá, Silvie; Jeřábek, Jaroslav; Zvěřina, Eduard; Profant, Oliver; Fík, Zdeněk; Komarc, Martin; Kluh, Jan; Černý, Rudolf
2016-01-01
Surgical removal of vestibular schwannoma causes acute vestibular symptoms, including postoperative vertigo and oscillopsia due to nystagmus. In general, the dominant symptom postoperatively is vertigo. Preoperative chemical vestibular ablation can reduce vestibular symptoms postoperatively. We used 1.0 mL of 40 mg/mL nonbuffered gentamicin in three intratympanic installations over 2 days, 2 months preoperatively in 10 patients. Reduction of vestibular function was measured by the head impulse test and the caloric test. Reduction of vestibular function was found in all gentamicin patient groups. After gentamicin vestibular ablation, patients underwent home vestibular exercising for two months. The control group consisted of 10 patients who underwent only home vestibular training two months preoperatively. Postoperative rates of recovery and vertigo in both groups were evaluated with the Glasgow Benefit Inventory (GBI), the Glasgow Health Status Inventory (GHSI), and the Dizziness Handicap Inventory questionnaires, as well as survey of visual symptoms by specific questionnaire developed by us. There were no statistically significant differences between both groups with regard to the results of questionnaires. Patients who received preoperative gentamicin were more resilient to optokinetic and optic flow stimulation (p < 0.05). This trial is registered with clinical study registration number NCT02963896. PMID:28053986
Čada, Zdeněk; Balatková, Zuzana; Chovanec, Martin; Čakrt, Ondřej; Hrubá, Silvie; Jeřábek, Jaroslav; Zvěřina, Eduard; Profant, Oliver; Fík, Zdeněk; Komarc, Martin; Betka, Jan; Kluh, Jan; Černý, Rudolf
2016-01-01
Surgical removal of vestibular schwannoma causes acute vestibular symptoms, including postoperative vertigo and oscillopsia due to nystagmus. In general, the dominant symptom postoperatively is vertigo. Preoperative chemical vestibular ablation can reduce vestibular symptoms postoperatively. We used 1.0 mL of 40 mg/mL nonbuffered gentamicin in three intratympanic installations over 2 days, 2 months preoperatively in 10 patients. Reduction of vestibular function was measured by the head impulse test and the caloric test. Reduction of vestibular function was found in all gentamicin patient groups. After gentamicin vestibular ablation, patients underwent home vestibular exercising for two months. The control group consisted of 10 patients who underwent only home vestibular training two months preoperatively. Postoperative rates of recovery and vertigo in both groups were evaluated with the Glasgow Benefit Inventory (GBI), the Glasgow Health Status Inventory (GHSI), and the Dizziness Handicap Inventory questionnaires, as well as survey of visual symptoms by specific questionnaire developed by us. There were no statistically significant differences between both groups with regard to the results of questionnaires. Patients who received preoperative gentamicin were more resilient to optokinetic and optic flow stimulation ( p < 0.05). This trial is registered with clinical study registration number NCT02963896.
Effects of Saccular Function on Recovery of Subjective Dizziness After Vestibular Rehabilitation.
Jeong, Junhui; Jung, Jinsei; Lee, Jeon Mi; Suh, Michelle J; Kwak, Sang Hyun; Kim, Sung Huhn
2017-08-01
We attempted to investigate whether the integrity of saccular function influences the severity of subjective dizziness after vestibular rehabilitation in vestibular neuritis. Retrospective analysis. Tertiary referral center. Forty-six patients with acute unilateral vestibular neuritis were included. Diagnostic, therapeutic, and rehabilitative. All the patients completed vestibular rehabilitation therapy until their computerized dynamic posturography and rotary chair test results were significantly improved. The rehabilitation patients were classified into the normal to mild subjective dizziness and moderate to severe subjective dizziness groups according to the dizziness handicap inventory score (cutoff of 40). Differences between the two groups were analyzed. After rehabilitation, 32.6% of the patients still complained of moderate to severe dizziness. Age, sex distribution, the presence of comorbidities, caloric weakness, pre- and postrehabilitation gain values in rotary chair test, postrehabilitation composite scores in posturography, and the duration of rehabilitation were not significantly different between the two groups. However, initial dizziness handicap inventory (DHI) score and composite score in dynamic posturography were worse and the proportion of patients with absent cervical vestibular-evoked myogenic potential in the moderate to severe group was much higher (93.3% vs. 35.5%, p < 0.001). After multiple regression analysis of those factors, initial DHI score and absent cervical vestibular-evoked myogenic potential response were identified as being associated with higher postrehabilitation DHI score. Saccular dysfunction in acute vestibular neuritis can contribute to persistent subjective dizziness, even after the objective parameters of vestibular function tests have been improved by vestibular rehabilitation.
NASA Technical Reports Server (NTRS)
Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Peters, B.; Cohen, H.;
2015-01-01
Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). The goal of this project was to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection.
Normal and abnormal human vestibular ocular function
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Black, F. O.
1986-01-01
The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.
An update on acquired nystagmus.
Rucker, Janet C
2008-01-01
Proper evaluation and treatment of acquired nystagmus requires accurate characterization of nystagmus type and visual effects. This review addresses important historical and examination features of nystagmus and current concepts of pathogenesis and treatment of gaze-evoked nystagmus, nystagmus due to vision loss, acquired pendular nystagmus, peripheral and central vestibular nystagmus, and periodic alternating nystagmus.
Getting Ahead of Oneself: Anticipation and the Vestibulo-ocular Reflex (VOR)
King, W. Michael
2014-01-01
Compensatory counter-rotations of the eyes provoked by head turns are commonly attributed to the vestibulo-ocular reflex (VOR). A recent study in guinea pigs demonstrates, however, that this assumption is not always valid. During voluntary head turns, guinea pigs make highly accurate compensatory eye movements that occur with zero or even negative latencies with respect to the onset of the provoking head movements. Furthermore, the anticipatory eye movements occur in animals with bilateral peripheral vestibular lesions, thus confirming that they have an extra vestibular origin. This discovery suggests the possibility that anticipatory responses might also occur in other species including humans and non-human primates, but have been overlooked and mistakenly identified as being produced by the VOR. This review will compare primate and guinea pig vestibular physiology in light of these new findings. A unified model of vestibular and cerebellar pathways will be presented that is consistent with current data in primates and guinea pigs. The model is capable of accurately simulating compensatory eye movements to active head turns (anticipatory responses) and to passive head perturbations (VOR induced eye movements) in guinea pigs and in human subjects who use coordinated eye and head movements to shift gaze direction in space. Anticipatory responses provide new evidence and opportunities to study the role of extra vestibular signals in motor control and sensory-motor transformations. Exercises that employ voluntary head turns are frequently used to improve visual stability in patients with vestibular hypofunction. Thus, a deeper understanding of the origin and physiology of anticipatory responses could suggest new translational approaches to rehabilitative training of patients with bilateral vestibular loss. PMID:23370320
Massot, Corentin; Chacron, Maurice J.
2011-01-01
Understanding how sensory neurons transmit information about relevant stimuli remains a major goal in neuroscience. Of particular relevance are the roles of neural variability and spike timing in neural coding. Peripheral vestibular afferents display differential variability that is correlated with the importance of spike timing; regular afferents display little variability and use a timing code to transmit information about sensory input. Irregular afferents, conversely, display greater variability and instead use a rate code. We studied how central neurons within the vestibular nuclei integrate information from both afferent classes by recording from a group of neurons termed vestibular only (VO) that are known to make contributions to vestibulospinal reflexes and project to higher-order centers. We found that, although individual central neurons had sensitivities that were greater than or equal to those of individual afferents, they transmitted less information. In addition, their velocity detection thresholds were significantly greater than those of individual afferents. This is because VO neurons display greater variability, which is detrimental to information transmission and signal detection. Combining activities from multiple VO neurons increased information transmission. However, the information rates were still much lower than those of equivalent afferent populations. Furthermore, combining responses from multiple VO neurons led to lower velocity detection threshold values approaching those measured from behavior (∼2.5 vs. 0.5–1°/s). Our results suggest that the detailed time course of vestibular stimuli encoded by afferents is not transmitted by VO neurons. Instead, they suggest that higher vestibular pathways must integrate information from central vestibular neuron populations to give rise to behaviorally observed detection thresholds. PMID:21307329
Luebke, Anne E; Holt, Joseph C; Jordan, Paivi M; Wong, Yi Shan; Caldwell, Jillian S; Cullen, Kathleen E
2014-07-30
The neuroactive peptide calcitonin-gene related peptide (CGRP) is known to act at efferent synapses and their targets in hair cell organs, including the cochlea and lateral line. CGRP is also expressed in vestibular efferent neurons as well as a number of central vestibular neurons. Although CGRP-null (-/-) mice demonstrate a significant reduction in cochlear nerve sound-evoked activity compared with wild-type mice, it is unknown whether and how the loss of CGRP influence vestibular system function. Vestibular function was assessed by quantifying the vestibulo-ocular reflex (VOR) in alert mice. The loss of CGRP in (-/-) mice was associated with a reduction of the VOR gain of ≈50% without a concomitant change in phase. Using immunohistochemistry, we confirmed that, although CGRP staining was absent in the vestibular end-organs of null (-/-) mice, cholinergic staining appeared normal, suggesting that the overall gross development of vestibular efferent innervation was unaltered. We further confirmed that the observed deficit in vestibular function of null (-/-) mice was not the result of nontargeted effects at the level of the extraocular motor neurons and/or their innervation of extraocular muscles. Analysis of the relationship between vestibular quick phase amplitude and peak velocity revealed that extraocular motor function was unchanged, and immunohistochemistry revealed no abnormalities in motor endplates. Together, our findings show that the neurotransmitter CGRP plays a key role in ensuring VOR efficacy. Copyright © 2014 the authors 0270-6474/14/3410453-06$15.00/0.
Giza, Elżbieta Gabriela; Płonek, Marta; Nicpoń, Józef Marian; Wrzosek, Marcin Adam
2016-05-21
Peripheral neuropathy is the most common neurological manifestation of canine hypothyroidism. Data concerning electrodiagnostic studies in hypothyroid associated polyneuropathy in dogs are very limited and usually lack a reevaluation after hormone replacement therapy. The objective of this study was to perform a detailed, retrospective analysis of electromyographic (EMG), motor nerve conduction velocity (MNCV), F-wave and brainstem auditory evoked response (BAER) findings in 24 dogs with presumptive primary hypothyroidism and polyneuropathy with a comparison of the results before and after initiation of levothyroxine treatment with the assessment of the clinical outcome. The results obtained from hypothyroid dogs showed a significant reduction in MNCV at a proximal-distal and middle-distal stimulation, decreased amplitudes of compound muscle action potentials (CMAP), an increased CMAP duration and a prolonged distal latency prior to treatment. Fifty percent of the dogs had an increased F-wave latency. A normal BAER recording was found in 78 % of the hypothyroid patients without vestibular impairment. Bilaterally increased peak V latencies and increased interpeak I-V latencies were found in the remaining individuals. Dogs with concurrent vestibular impairment had ipsilaterally increased peak latencies with normal interpeak latencies and decreased amplitudes of wave I and II. A comparison of the findings before and after 2 months of treatment revealed a decrease in the pathological activity on EMG, an improvement of proximal, middle and distal CMAP amplitudes and an increase in the proximal-distal conduction velocity in all dogs. F-wave latency improved in 38 % of dogs. The BAER reexamination revealed a persistent prolongation of peak I, II, III and V latencies and decreased wave I amplitude on the affected side in all dogs manifesting vestibular signs. Conversely, in dogs without vestibular signs, the peak V and interpeak I-V latencies decreased to normal values after a given time of the treatment. The results indicate a demyelinating and axonal pattern of polyneuropathy in dogs with suspected hypothyroidism. Most of the patients without vestibular signs showed neither peripheral nor central auditory pathway impairment, concurrent to the generalized neuropathy. The follow-up examination showed a very good clinical outcome and only partial improvement in electrophysiological assessment.
Lotfi, Younes; Rezazadeh, Nima; Moossavi, Abdollah; Haghgoo, Hojjat Allah; Rostami, Reza; Bakhshi, Enayatollah; Badfar, Faride; Moghadam, Sedigheh Farokhi; Sadeghi-Firoozabadi, Vahid; Khodabandelou, Yousef
2017-12-01
Balance function has been reported to be worse in ADHD children than in their normal peers. The present study hypothesized that an improvement in balance could result in better cognitive performance in children with ADHD and concurrent vestibular impairment. This study was designed to evaluate the effects of comprehensive vestibular rehabilitation therapy on the cognitive performance of children with combined ADHD and concurrent vestibular impairment. Subject were 54 children with combined ADHD. Those with severe vestibular impairment (n=33) were randomly assigned to two groups that were matched for age. A rehabilitation program comprising overall balance and gate, postural stability, and eye movement exercises was assigned to the intervention group. Subjects in the control group received no intervention for the same time period. Intervention was administered twice weekly for 12 weeks. Choice reaction time (CRT) and spatial working memory (SWM) subtypes of the Cambridge Neuropsychological Test Automated Battery (CANTAB) were completed pre- and post-intervention to determine the effects of vestibular rehabilitation on the cognitive performance of the subjects with ADHD and concurrent vestibular impairment. ANCOVA was used to compare the test results of the intervention and control group post-test. The percentage of correct trial scores for the CRT achieved by the intervention group post-test increased significantly compared to those of the control group (p=0.029). The CRT mean latency scores were significantly prolonged in the intervention group following intervention (p=0.007) compared to the control group. No significant change was found in spatial functioning of the subjects with ADHD following 12 weeks of intervention (p>0.05). The study highlights the effect of vestibular rehabilitation on the cognitive performance of children with combined ADHD and concurrent vestibular disorder. The findings indicate that attention can be affected by early vestibular rehabilitation, which is a basic program for improving memory function in such children. Appropriate vestibular rehabilitation programs based on the type of vestibular impairment of children can improve their cognitive ability to some extent in children with ADHD and concurrent vestibular impairment (p>0.05). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aust, G.; Hordinsky, J. R.; Schmelzer, B.
1980-11-01
Vestibular disturbances in connection with space flight were reported by a majority of participating astronauts and cosmonauts. These include motion sickness symptoms in the first few days of the space flight, as well as standing, gait and orientation disturbances after the return to Earth.The Aerospace Medical Community has been trying to select those people that are particularly adapted to the above stresses or that can be further adapted through training programs. As the circle of selectees extends to women, the problem arises as to whether differences between men and women exist under the conditions of space flight.In seeking answers to this question we studied a group of 42 women and 44 men, who were further subdivided according to their subjective motion sickness sensitivity, as determined by a questionnaire. Using this material, 26 men and 22 women were designated as motion sickness resistant, and 18 men and 20 women were designated as nonresistant.The vestibular test battery given these test subjects consisted of caloric, rotatory, optokinetic, vestibulo-spinal and vestibulo-vegetative testing.Because of the mixed orthostatic and vestibular problems seen after space flights, we also studied the response of the vestibular apparatus during peripheral blood pooling as induced by lower body negative pressure.The collected historical and test data are analyzed in this paper with emphasis on the relationship to motion sickness tendency.
Adaptations of the vestibular system to short and long-term exposures to altered gravity
NASA Astrophysics Data System (ADS)
Bruce, L.
Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis. Different types of stimulation affect Purkinje cells in particular locations of the vestibulo-cerebellum. This system allows us to study how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments. Supported by NASA grant NAG2-1353.
Schmidt, Lena; Artinger, Frank; Stumpf, Oliver; Kerkhoff, Georg
2013-04-01
The human brain is organized asymmetrically in two hemispheres with different functional specializations. Left- and right-handers differ in many functional capacities and their anatomical representations. Right-handers often show a stronger functional lateralization than left-handers, the latter showing a more bilateral, symmetrical brain organization. Recent functional imaging evidence shows a different lateralization of the cortical vestibular system towards the side of the preferred hand in left- vs. right-handers as well. Since the vestibular system is involved in somatosensory processing and the coding of body position, vestibular stimulation should affect such capacities differentially in left- vs. right-handers. In the present, sham-stimulation-controlled study we explored this hypothesis by studying the effects of galvanic vestibular stimulation (GVS) on proprioception in both forearms in left- and right-handers. Horizontal arm position sense (APS) was measured with an opto-electronic device. Second, the polarity-specific online- and after-effects of subsensory, bipolar GVS on APS were investigated in different sessions separately for both forearms. At baseline, both groups did not differ in their unsigned errors for both arms. However, right-handers showed significant directional errors in APS of both arms towards their own body. Right-cathodal/left-anodal GVS, resulting in right vestibular cortex activation, significantly deteriorated left APS in right-handers, but had no detectable effect on APS in left-handers in either arm. These findings are compatible with a right-hemisphere dominance for vestibular functions in right-handers and a differential vestibular organization in left-handers that compensates for the disturbing effects of GVS on APS. Moreover, our results show superior arm proprioception in left-handers in both forearms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Visual Vestibular Interaction in the Dynamic Visual Acuity Test during Voluntary Head Rotation
NASA Technical Reports Server (NTRS)
Lee, Moo Hoon; Durnford, Simon; Crowley, John; Rupert, Angus
1996-01-01
Although intact vestibular function is essential in maintaining spatial orientation, no good screening tests of vestibular function are available to the aviation community. High frequency voluntary head rotation was selected as a vestibular stimulus to isolate the vestibulo-ocular reflex (VOR) from visual influence. A dynamic visual acuity test that incorporates voluntary head rotation was evaluated as a potential vestibular function screening tool. Twenty-seven normal subjects performed voluntary sinusoidal head rotation at frequencies from 0.7-4.0 Hz under three different visual conditions: visually-enhanced VOR, normal VOR, and visually suppressed VOR. Standardized Baily-Lovie chart letters were presented on a computer monitor in front of the subject, who then was asked to read the letters while rotating his head horizontally. The electro-oculogram and dynamic visual acuity score were recorded and analyzed. There were no significant differences in gain or phase shift among three visual conditions in the frequency range of 2.8 to 4.0 Hz. The dynamic visual acuity score shifted less than 0.3 logMAR at frequencies under 2.0 Hz. The dynamic visual acuity test at frequencies a round 2.0 Hz can be recommended for evaluating vestibular function.
Panichi, R; Faralli, M; Bruni, R; Kiriakarely, A; Occhigrossi, C; Ferraresi, A; Bronstein, A M; Pettorossi, V E
2017-11-01
Self-motion perception was studied in patients with unilateral vestibular lesions (UVL) due to acute vestibular neuritis at 1 wk and 4, 8, and 12 mo after the acute episode. We assessed vestibularly mediated self-motion perception by measuring the error in reproducing the position of a remembered visual target at the end of four cycles of asymmetric whole-body rotation. The oscillatory stimulus consists of a slow (0.09 Hz) and a fast (0.38 Hz) half cycle. A large error was present in UVL patients when the slow half cycle was delivered toward the lesion side, but minimal toward the healthy side. This asymmetry diminished over time, but it remained abnormally large at 12 mo. In contrast, vestibulo-ocular reflex responses showed a large direction-dependent error only initially, then they normalized. Normalization also occurred for conventional reflex vestibular measures (caloric tests, subjective visual vertical, and head shaking nystagmus) and for perceptual function during symmetric rotation. Vestibular-related handicap, measured with the Dizziness Handicap Inventory (DHI) at 12 mo correlated with self-motion perception asymmetry but not with abnormalities in vestibulo-ocular function. We conclude that 1 ) a persistent self-motion perceptual bias is revealed by asymmetric rotation in UVLs despite vestibulo-ocular function becoming symmetric over time, 2 ) this dissociation is caused by differential perceptual-reflex adaptation to high- and low-frequency rotations when these are combined as with our asymmetric stimulus, 3 ) the findings imply differential central compensation for vestibuloperceptual and vestibulo-ocular reflex functions, and 4 ) self-motion perception disruption may mediate long-term vestibular-related handicap in UVL patients. NEW & NOTEWORTHY A novel vestibular stimulus, combining asymmetric slow and fast sinusoidal half cycles, revealed persistent vestibuloperceptual dysfunction in unilateral vestibular lesion (UVL) patients. The compensation of motion perception after UVL was slower than that of vestibulo-ocular reflex. Perceptual but not vestibulo-ocular reflex deficits correlated with dizziness-related handicap. Copyright © 2017 the American Physiological Society.
[Cultural adaptation of 2 questionnaires for health measurement in patients with vertigo].
Pérez, N; Garmendia, I; Martín, E; García-Tapia, R
2000-10-01
To perform a transcultural adaptation form English to Spanish of two common questionnaires of handicap assessment in vestibular disorders. Prospective study. 337 patients seen for non-acute dizziness from peripheral or central origin in a tertiary referral setting. Dizziness Handicap Inventory test and UCLA-Dizziness Questionnaire after transcultural adaptation following the method of translation-backtranslation, expert assessment and statistical validation. The results after cultural adaptation and reliability assessment provide a firm basis to demonstrate the close relation of the Spanish and English version in all the items and their meaning. This adapted questionnaires can be used to assess vestibular disability with no loss of metric values of the original version.
Zebrafish pax5 regulates development of the utricular macula and vestibular function.
Kwak, Su-Jin; Vemaraju, Shruti; Moorman, Stephen J; Zeddies, David; Popper, Arthur N; Riley, Bruce B
2006-11-01
The zebrafish otic vesicle initially forms with only two sensory epithelia, the utricular and saccular maculae, which primarily mediate vestibular and auditory function, respectively. Here, we test the role of pax5, which is preferentially expressed in the utricular macula. Morpholino knockdown of pax5 disrupts vestibular function but not hearing. Neurons of the statoacoustic ganglion (SAG) develop normally. Utricular hair cells appear to form normally but a variable number subsequently undergo apoptosis and are extruded from the otic vesicle. Dendrites of the SAG persist in the utricle but become disorganized after hair cell loss. Hair cells in the saccule develop and survive normally. Otic expression of pax5 requires pax2a and fgf3, mutations in which cause vestibular defects, albeit by distinct mechanisms. Thus, pax5 works in conjunction with fgf3 and pax2a to establish and/or maintain the utricular macula and is essential for vestibular function. (c) 2006 Wiley-Liss, Inc.
Bittar, Roseli Saraiva Moreira; Sato, Eduardo Setsuo; Ribeiro, Douglas Jósimo Silva; Tsuji, Robinson Koji
Cochlear implants are undeniably an effective method for the recovery of hearing function in patients with hearing loss. To describe the preoperative vestibular assessment protocol in subjects who will be submitted to cochlear implants. Our institutional protocol provides the vestibular diagnosis through six simple tests: Romberg and Fukuda tests, assessment for spontaneous nystagmus, Head Impulse Test, evaluation for Head Shaking Nystagmus and caloric test. 21 patients were evaluated with a mean age of 42.75±14.38 years. Only 28% of the sample had all normal test results. The presence of asymmetric vestibular information was documented through the caloric test in 32% of the sample and spontaneous nystagmus was an important clue for the diagnosis. Bilateral vestibular areflexia was present in four subjects, unilateral arreflexia in three and bilateral hyporeflexia in two. The Head Impulse Test was a significant indicator for the diagnosis of areflexia in the tested ear (p=0.0001). The sensitized Romberg test using a foam pad was able to diagnose severe vestibular function impairment (p=0.003). The six clinical tests were able to identify the presence or absence of vestibular function and function asymmetry between the ears of the same individual. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Conrad, Julian; Boegle, Rainer; Ertl, Matthias; Brandt, Thomas; Dieterich, Marianne
2018-01-01
Vestibular signals are involved in higher cortical functions like spatial orientation and its disorders. Vestibular dysfunction contributes, for example, to spatial neglect which can be transiently improved by caloric stimulation. The exact roles and mechanisms of the vestibular and visual systems for the recovery of neglect are not yet known. Resting-state functional connectivity (fc) magnetic resonance imaging was recorded in a patient with hemispatial neglect during the acute phase and after recovery 6 months later following a right middle cerebral artery infarction before and after caloric vestibular stimulation. Seeds in the vestibular [parietal operculum (OP2)], the parietal [posterior parietal cortex (PPC); 7A, hIP3], and the visual cortex (VC) were used for the analysis. During the acute stage after caloric stimulation the fc of the right OP2 to the left OP2, the anterior cingulum, and the para/hippocampus was increased bilaterally (i.e., the vestibular network), while the interhemispheric fc was reduced between homologous regions in the VC. After 6 months, similar fc increases in the vestibular network were found without stimulation. In addition, fc increases of the OP2 to the PPC and the VC were seen; interhemispherically this was true for both PPCs and for the right PPC to both VCs. Improvement of neglect after caloric stimulation in the acute phase was associated with increased fc of vestibular cortex areas in both hemispheres to the para-hippocampus and the dorsal anterior cingulum, but simultaneously with reduced interhemispheric VC connectivity. This disclosed a, to some extent, similar but also distinct short-term mechanism (vestibular stimulation) of an improvement of spatial orientation compared to the long-term recovery of neglect.
Singh, Niraj Kumar; Jha, Raghav Hira; Gargeshwari, Aditi; Kumar, Prawin
2018-01-01
Alteration in the process of bone remodelling is associated with falls and fractures due to increased bone fragility and altered calcium functioning. The auditory system consists of skeletal structures and is, therefore, prone to getting affected by altered bone remodelling. In addition, the vestibule consists of huge volumes of calcium (CaCO3) in the form of otoconia crystals and alteration in functioning calcium levels could, therefore, result in vestibular symptoms. Thus, the present study aimed at compiling information from various studies on assessment of auditory or vestibular systems in individuals with reduced bone mineral density (BMD). A total of 1977 articles were searched using various databases and 19 full-length articles which reported auditory and vestibular outcomes in persons with low BMD were reviewed. An intricate relationship between altered BMD and audio-vestibular function was evident from the studies; nonetheless, how one aspect of hearing or balance affects the other is not clear. Significant effect of reduced bone mineral density could probably be due to the metabolic changes at the level of cochlea, secondary to alterations in BMD. One could also conclude that sympathetic remodelling is associated with vestibular problems in individual; however, whether vestibular problems lead to altered BMD cannot be ascertained with confidence. The studies reviewed in the article provide an evidence of possible involvement of hearing and vestibular system abnormalities in individuals with reduced bone mineral density. Hence, the assessment protocol for these individuals must include hearing and balance evaluation as mandatory for planning appropriate management.
Otolith-Canal Convergence in Vestibular Nuclei Neurons
NASA Technical Reports Server (NTRS)
Dickman, J. David
1996-01-01
During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.
Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus.
Dieterich, Marianne; Kirsch, V; Brandt, T
2017-10-01
MRI diffusion tensor imaging tractography was performed on the bilateral vestibular brainstem pathways, which run from the vestibular nuclei via the paramedian and posterolateral thalamic subnuclei to the parieto-insular vestibular cortex. Twenty-one right-handed healthy subjects participated. Quantitative analysis revealed a rope-ladder-like system of vestibular pathways in the brainstem with crossings at pontine and mesencephalic levels. Three structural types of right-left fiber distributions could be delineated: (1) evenly distributed pathways at the lower pontine level from the vestibular nuclei to the pontine crossing, (2) a moderate, pontomesencephalic right-sided lateralization between the pontine and mesencephalic crossings, and (3) a further increase of the right-sided lateralization above the mesencephalic crossing leading to the thalamic vestibular subnuclei. The increasing lateralization along the brainstem was the result of an asymmetric number of pontine and mesencephalic crossing fibers which was higher for left-to-right crossings. The dominance of the right vestibular meso-diencephalic circuitry in right-handers corresponds to the right-hemispheric dominance of the vestibular cortical network. The structural asymmetry apparent in the upper brainstem might be interpreted in relation to the different functions of the vestibular system depending on their anatomical level: a symmetrical sensorimotor reflex control of eye, head, and body mediated by the lower brainstem; a lateralized right-sided upper brainstem-thalamic function as part of the dominant right-sided cortical/subcortical vestibular system that enables a global percept of body motion and orientation in space.
Vestibular Restoration and Adaptation in Vestibular Neuritis and Ramsay Hunt Syndrome With Vertigo.
Martin-Sanz, Eduardo; Rueda, Almudena; Esteban-Sanchez, Jonathan; Yanes, Joaquin; Rey-Martinez, Jorge; Sanz-Fernandez, Ricardo
2017-08-01
To evaluate vestibular restoration and the evolution of the compensatory saccades in acute severe inflammatory vestibular nerve paralysis, including vestibular neuritis and Ramsay Hunt syndrome with vertigo. Prospective. Tertiary referral center. Vestibular neuritis (n = 18) and Ramsay Hunt syndrome patients with vertigo (n = 13) were enrolled. After treatment with oral corticosteroids, patients were followed up for 6 months. Functional recovery of the facial nerve was scored according to the House-Brackman grading system. Caloric and video head impulse tests were performed in every patient at the time of enrolment. Subsequently, successive video head impulse test (vHIT) exploration was performed at the 1, 3, and 6-month follow-up. Eighteen patients with vestibular neuritis and 13 with Ramsay Hunt syndrome and associated vertigo were included. Vestibular function was significantly worse in patients with Ramsay Hunt syndrome than in those with vestibular neuritis. Similar compensatory saccades velocity and latency values were observed in both groups, in both the caloric and initial vHIT tests. Successive vHIT results showed a significantly higher vestibulo-ocular reflex gain recovery in vestibular neuritis patients than in Ramsay Hunt syndrome patients. A significantly faster reduction in the latency, velocity, and organization of the compensatory saccades was observed in neuritis than in Ramsay Hunt syndrome patients. In addition to the recovery of the vestibulo-ocular reflex, the reduction of latency, velocity and the organization of compensatory saccades play a role in vestibular compensation.
Vestibular vertigo is associated with abnormal sleep duration.
Albathi, Monirah; Agrawal, Yuri
2017-01-01
Several small studies in animals and humans have suggested a relationship between vestibular function and sleep. In this study, we evaluate the association between vestibular vertigo and sleep duration in a large, representative sample of US adults. We used data from the National Health Interview Survey, which administered a Balance Supplement in 2008 in a sample of 20,950 adult respondents. We evaluated the cross-sectional association between vestibular vertigo (based on a well-validated definition) and sleep duration (defined as short <6 hours, normal 6-8 hours, and long >8 hours). We performed multiple and multinomial logistic regression analyses to estimate the odds ratio and relative risk ratio (RRR) of impaired sleep duration compared to normal sleep duration associated with vestibular vertigo. Analyses were adjusted for demographic, lifestyle and health behavior characteristics as well as relevant comorbid conditions. Thirty percent of individuals with vestibular vertigo reported abnormal sleep duration (15.5% short duration and 14.8% long duration). In adjusted analyses, individuals with vestibular vertigo had a 1.75 (95% CI 1.45-2.11) RRR of having short sleep duration compared to individuals without vestibular vertigo, and a 1.55 (95% CI 1.26-1.91) RRR of having long sleep duration compared to individuals without vestibular vertigo. This study presents epidemiologic evidence to support the association between vestibular function and sleep duration. Individuals with vestibular vertigo had a higher RRR for abnormally short or long sleep duration. Further work is needed to evaluate the causal direction(s) of this association.
Agrawal, Yuri; Carey, John P; Della Santina, Charles C; Schubert, Michael C; Minor, Lloyd B
2009-05-25
Balance dysfunction can be debilitating and can lead to catastrophic outcomes such as falls. The inner ear vestibular system is an important contributor to balance control. However, to our knowledge, the prevalence of vestibular dysfunction in the United States and the magnitude of the increased risk of falling associated with vestibular dysfunction have never been estimated. The objective of this study was to determine the prevalence of vestibular dysfunction among US adults, evaluate differences by sociodemographic characteristics, and estimate the association between vestibular dysfunction and risk of falls. We included data from the 2001-2004 National Health and Nutrition Examination Surveys, which were cross-sectional surveys of US adults aged 40 years and older (n = 5086). The main outcome measure was vestibular function as measured by the modified Romberg Test of Standing Balance on Firm and Compliant Support Surfaces. From 2001 through 2004, 35.4% of US adults aged 40 years and older (69 million Americans) had vestibular dysfunction. Odds of vestibular dysfunction increased significantly with age, were 40.3% lower in individuals with more than a high school education, and were 70.0% higher among people with diabetes mellitus. Participants with vestibular dysfunction who were clinically symptomatic (ie, reported dizziness) had a 12-fold increase in the odds of falling. Vestibular dysfunction, as measured by a simple postural metric, is common among US adults. Vestibular dysfunction significantly increases the likelihood of falls, which are among the most morbid and costly health conditions affecting older individuals. These data suggest the importance of diagnosing, treating, and potentially screening for vestibular deficits to reduce the burden of fall-related injuries and deaths in the United States.
NASA Technical Reports Server (NTRS)
Jones, T. A.; Fermin, C.; Hester, P. Y.; Vellinger, J.
1993-01-01
Does space flight change gravity receptor development? The present study measured vestibular form and function in birds flown as embryos for 5 days in earth orbit (STS-29). No major changes in vestibular gross morphology were found. Vestibular response mean amplitudes and latencies were unaffected by space flight. However, the results of measuring vestibular thresholds were mixed and abnormal responses in 3 of the 8 flight animals raise important questions.
Vestibular evoked myogenic potentials (VEMPs) in central neurological disorders.
Venhovens, J; Meulstee, J; Verhagen, W I M
2016-01-01
Several types of acoustic stimulation (i.e. tone bursts or clicks), bone-conducted vibration, forehead taps, and galvanic stimulation elicit myogenic potentials. These can be recorded in cervical and ocular muscles, the so called vestibular evoked myogenic potentials (VEMPs). The cervical VEMP (cVEMP) resembles the vestibulo-collic reflex and the responses can be recorded from the ipsilateral sternocleidomastoid muscle. The ocular VEMP resembles the vestibulo-ocular reflex and can be recorded from extra-ocular muscles by a surface electrode beneath the contralateral infraorbital margin. Initially, the literature concerning VEMPs was limited to peripheral vestibular disorders, however, the field of VEMP testing is rapidly expanding, with an increasing focus on central neurological disorders. The current literature concerning VEMP abnormalities in central neurological disorders is critically reviewed, especially regarding the methodological aspects in relation to quality as well as the clinical interpretation of the VEMP results. Suggestions for further research are proposed as well as some clinically useful indications. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Superficial neurofibromas in the setting of schwannomatosis: nosologic implications.
Rodriguez, Fausto J; Scheithauer, Bernd W; George, David; Midha, Rajiv; MacCollin, Mia; Stemmer-Rachamimov, Anat O
2011-05-01
First described in the past decade, schwannomatosis is a syndrome distinct from neurofibromatosis 2 (NF2). It is characterized by the development of multiple schwannomas, sparing the vestibular division of cranial nerve VIII, and may also predispose to develop meningiomas. We report two female patients, a 27 and a 44 years old who developed multiple peripheral schwannomas, but without involvement of the vestibular nerves, satisfying clinical criteria for schwannomatosis. Lack of vestibular nerve involvement was confirmed with MRI using an internal auditory canal protocol with 3 mm thick slices in both patients after age 30. Both patients developed a small neurofibroma in axillary subcutaneous tissues and a diffuse cutaneous neurofibroma of the left buttock, respectively. This report highlights that superficial neurofibromas may arise in the setting of schwannomatosis, which may have implications for the diagnostic criteria of this unique syndrome. In particular, the presence of a cutaneous neurofibroma in a patient with multiple schwannomas should not lead to a diagnosis of NF2.
Superficial neurofibromas in the setting of schwannomatosis: nosologic implications
Scheithauer, Bernd W.; George, David; Midha, Rajiv; MacCollin, Mia; Stemmer-Rachamimov, Anat O.
2015-01-01
First described in the past decade, schwannomatosis is a syndrome distinct from neurofibromatosis 2 (NF2). It is characterized by the development of multiple schwannomas, sparing the vestibular division of cranial nerve VIII, and may also predispose to develop meningiomas. We report two female patients, a 27 and a 44 years old who developed multiple peripheral schwannomas, but without involvement of the vestibular nerves, satisfying clinical criteria for schwannomatosis. Lack of vestibular nerve involvement was confirmed with MRI using an internal auditory canal protocol with 3 mm thick slices in both patients after age 30. Both patients developed a small neurofibroma in axillary subcutaneous tissues and a diffuse cutaneous neurofibroma of the left buttock, respectively. This report highlights that superficial neurofibromas may arise in the setting of schwannomatosis, which may have implications for the diagnostic criteria of this unique syndrome. In particular, the presence of a cutaneous neurofibroma in a patient with multiple schwannomas should not lead to a diagnosis of NF2. PMID:21191601
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
All 139 research papers published under this ten-year program are listed. Experimental work was carried out at the Ames Research Center involving man's sensitivity to rotational acceleration, and psychophysical functioning of the semicircular canals; vestibular-visual interactions and effects of other sensory systems were studied in flight simulator environments. Experiments also dealt with the neurophysiological vestibular functions of animals, and flight management investigations of man-vehicle interactions.
Hyperventilation-induced nystagmus in a large series of vestibular patients.
Califano, L; Melillo, M G; Vassallo, A; Mazzone, S
2011-02-01
The Hyperventilation Test is widely used in the "bed-side examination" of vestibular patients. It can either activate a latent nystagmus in central or peripheral vestibular diseases or it can interact with a spontaneous nystagmus, by reducing it or increasing it. Aims of this study were to determine the incidence, patterns and temporal characteristics of Hyperventilation-induced nystagmus in patients suffering from vestibular diseases, as well as its contribution to the differential diagnosis between vestibular neuritis and neuroma of the 8(th) cranial nerve, and its behaviour in some central vestibular diseases. The present study includes 1202 patients featuring, at vestibular examination, at least one sign of vestibular system disorders or patients diagnosed with a "Migraine-related vertigo" or "Chronic subjective dizziness". The overall incidence of Hyperventilation-induced nystagmus was 21.9%. It was detected more frequently in retrocochlear vestibular diseases rather than in end-organ vestibular diseases: 5.3% in Paroxysmal Positional Vertigo, 37.1% in Menière's disease, 37.6% in compensated vestibular neuritis, 77.2% in acute vestibular neuritis and 91.7% in neuroma of the 8(th) cranial nerve. In acute vestibular neuritis, three HVIN patterns were observed: Paretic pattern: temporary enhancement of the spontaneous nystagmus; Excitatory pattern: temporary inhibition of the spontaneous nystagmus; Strong excitatory pattern: temporary inversion of the spontaneous nystagmus. Excitatory patterns proved to be time-dependent in that they disappeared and were replaced by the paretic pattern over a period of maximum 18 days since the beginning of the disorder. In acoustic neuroma, Hyperventilation-induced nystagmus was frequently observed (91.7%), either in the form of an excitatory pattern (fast phases towards the affected site) or in the form of a paretic pattern (fast phases towards the healthy side). The direction of the nystagmus is only partially related to tumour size, whereas other mechanisms, such as demyelination or a break in nerve fibres, might have an important role in triggering the situation. Hyperventilation-induced nystagmus has frequently been detected in cases of demyelinating diseases and in cerebellar diseases: in multiple sclerosis, hyperventilation inhibits a central type of spontaneous nystagmus or evokes nystagmus in 75% of patients; in cerebellar diseases, hyperventilation evokes or enhances a central spontaneous nystagmus in 72.7% of patients. In conclusion the Hyperventilation Test can provide patterns of oculomotor responses that indicate a diagnostic investigation through cerebral magnetic resonance imaging enhanced by gadolinium, upon suspicion of neuroma of the 8(th) cranial nerve or of a central disease. In our opinion, however, Hyperventilation-induced nystagmus always needs to be viewed within the more general context of a complete examination of the vestibular and acoustic system.
Ebrahimi, Amir Abbas; Jamshidi, Ali Ashraf; Movallali, Guita; Rahgozar, Mehdi; Haghgoo, Hojjat Allah
2017-11-01
The purpose of this study was to determine the effect of vestibular rehabilitation therapy program on the sensory organization of deaf children with bilateral vestibular dysfunction. This cross-sectional and analytic study was conducted on 24 students between the age of 7 and 12 years (6 girls and 18 boys) with the profound sensorineural hearing loss (PTA>90 dB). They were assessed through the balance subtest in Bruininks-Oseretsky test of motor proficiency (BOTMP). For children which the total score of the balance subtest was 3 standard deviation lower than their peers with typical development, vestibular function testing was completed pre-intervention. Posturography Sensory organization testing (SOT) was completed pre- and post-intervention with SPS (Synapsys, Marseille, France). Children with bilateral vestibular impairment were randomly assigned to either the exercise or control group. Exercise intervention consisted of compensatory training, emphasizing enhancement of visual and somatosensory function, and balance training. The exercise group entered in vestibular rehabilitation therapy program for 8 weeks. The children initially participating in the control group were provided the exercise intervention following the post-test. Based on the results there was significant difference in condition 5 and 6, areas of limits of stability (LOS), vestibular ratio and global score in posturography at the end of the intervention, but there was no significant difference in the control group in posturography (P<0.05). The results indicated that testing of vestibular, and postural control function, as well as intervention for deficiencies identified, should be included in deaf children rehabilitation program.
Pérez-Garrigues, H; Kuessner, D; Benecke, H
2007-11-01
OSVaLD (Observational Study in patients suffering from recurrent peripheral vestibular Vertigo to Assess the effect of betahistine 48 mg/day on quality of Life and Dizziness symptoms) is a 3-month, open-label, multi-national post-marketing surveillance study of betahistine 48 mg/day in the management of patients with vertigo of less than 5 years in duration. The aim of the study is to examine the burden of disease associated with vertigo, as determined by scores on the Dizziness Handicap Inventory (DHI), Short Form-36 (SF-36) questionnaire and the Hospital Anxiety and Depression Scale (HADS). Changes in DHI, SF-36 and HADS scores between baseline and 3 months are used to assess the therapeutic effects of betahistine. Participants (n = 2037) have been recruited from 13 countries in four continents (North and South America, Asia and Europe), representing a wide range of cultural and linguistic traditions. Approximately two-thirds of the patients are women. Sixty per cent of patients have diagnoses of peripheral vestibular vertigo of unknown pathology or benign paroxysmal positional vertigo; 13% have a diagnosis of Ménière's disease. All three of the instruments used characterize this as a population with extensive vertigo-attributable morbidity at baseline. The mean DHI score of the population is 63.7 +/- 15.7 (DHI scale: 0 = no handicap; 100 = major self-perceived handicap), SF-36 scores in all domains are below the population average for the USA and the HADS indicated that > 50% of patients exhibit symptoms of anxiety or depression or both, including 9% who have severe manifestations of either or both conditions. This report describes the design and implementation of OSVaLD and presents baseline demographic and clinical features of the patients. Full results of the study, anticipated in 2007, will provide more details about the manifestations of vertigo in routine practice and the response to betahistine.
Fluoxetine for vestibular dysfunction and anxiety: a prospective pilot study.
Simon, Naomi M; Parker, Stephen W; Wernick-Robinson, Mara; Oppenheimer, Julia E; Hoge, Elizabeth A; Worthington, John J; Korbly, Nicole B; Pollack, Mark H
2005-01-01
Anxiety states and disorders amplify the symptoms and impairment associated with vestibular dysfunction. Five patients with inner ear vestibular dysfunction and anxiety were prospectively treated with fluoxetine, 20-60 mg/day, and received an extensive battery of assessments at baseline and after 12 weeks of treatment. Fluoxetine led to significant or near significant reductions in anxiety measures and in impairment due to dizziness; improvements in clinical balance function and vestibular function were less clear. The data add to the literature suggesting a role for selective serotonin reuptake inhibitors in the treatment of dizziness and anxiety.
Evaluation of Vestibular Functions in Patients with Vogt-Koyanagi-Harada Disease.
Fujiwara, Keishi; Morita, Shinya; Hoshino, Kimiko; Fukuda, Atsushi; Nakamaru, Yuji; Homma, Akihiro
2017-01-01
Vogt-Koyanagi-Harada (VKH) disease is an idiopathic, multisystem autoimmune disorder characterized by bilateral, diffuse granulomatous uveitis associated with neurological, audiovestibular, and dermatological manifestations. The purpose of this study is to investigate vestibular functions in patients with VKH disease. A total of 43 patients with VKH disease in Hokkaido University Hospital were enrolled in this study. Subjective symptoms such as dizziness or vertigo and the results of various vestibular examinations including nystagmus testing, caloric testing, and vestibular-evoked myogenic potential (VEMP) testing were investigated. Eight of 42 patients (19.0%) complained of subjective vestibular symptoms. On the other hand, 12 of 28 patients (42.9%) showed nystagmus, and 7 of 15 patients (46.7%) showed unilateral or bilateral weakness in the caloric test. VEMP testing was performed for 16 patients. Seven (43.8%) and 8 (50.0%) patients were evaluated as abnormal in cervical VEMP and ocular VEMP testing, respectively. The rate of detection of nystagmus was significantly higher than that of subjective symptoms. As vestibular dysfunction in patients with VKH disease cannot be detected through history taking alone, nystagmus testing, caloric testing, and VEMP testing should be performed to evaluate vestibular functions associated with VKH disease. It is considered that abnormal VEMP findings are associated with otolith organ dysfunction. © 2017 S. Karger AG, Basel.
The video ocular counter-roll (vOCR): a clinical test to detect loss of otolith-ocular function
Otero-Millan, Jorge; Treviño, Carolina; Winnick, Ariel; Zee, David S.; Carey, John P.; Kheradmand, Amir
2017-01-01
Conclusion vOCR can detect loss of otolith-ocular function without specifying the side of vestibular loss. Since vOCR is measured with a simple head tilt maneuver, it can be potentially used as a bedside clinical test in combination with video head impulse test. Objective Video-oculography (VOG) goggles are being integrated into the bedside assessment of patients with vestibular disorders. Lacking, however, is a method to evaluate otolith function. This study validated a VOG test for loss of otolith function. Methods VOG was used to measure ocular counter-roll (vOCR) in 12 healthy controls, 14 patients with unilateral vestibular loss (UVL), and six patients with bilateral vestibular loss (BVL) with a static lateral head tilt of 30°. The results were compared with vestibular evoked myogenic potentials (VEMP), a widely-used laboratory test of otolith function. Results The average vOCR for healthy controls (4.6°) was significantly different from UVL (2.7°) and BVL (1.6°) patients (p < 0.0001). The vOCR and VEMP measurements were correlated across subjects, especially the click and tap oVEMPs (click oVEMP R = 0.45, tap oVEMP R = 0.51; p < 0.0003). The receiver operator characteristic (ROC) analysis showed that vOCR and VEMPs detected loss of otolith function equally well. The best threshold for vOCR to detect vestibular loss was at 3°. The vOCR values from the side of vestibular loss and the healthy side were not different in UVL patients (2.53° vs 2.8°; p = 0.59). PMID:28084887
Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles
NASA Technical Reports Server (NTRS)
Lowery, Mary Sue
1998-01-01
Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.
Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight
NASA Technical Reports Server (NTRS)
Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar;
2017-01-01
Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural resources are required to process vestibular input.
Zhao, X; Jones, S M; Yamoah, E N; Lundberg, Y Wang
2008-04-22
Our sense of gravitation and linear acceleration is mediated by stimulation of vestibular hair cells through displacement of otoconia in the utricle and saccule (the gravity receptor organ). We recently showed that otoconin-90 (Oc90) deletion led to formation of giant otoconia. In the present study, we determined the extent to which the giant otoconia affected balance and gravity receptor sensory input and compared the findings with other otoconia mutants. We employed a wide spectrum of balance behavioral tests, including reaching and air-righting reflexes, gait, swimming, beam-crossing, rotorod latencies, and a direct measure of gravity receptor input, vestibular evoked potentials (VsEPs). All tests on homozygous adult mutants consistently ranked the order of imbalance as (from worst to best) Nox3(het)
CALIFANO, L.; MELILLO, M.G.; VASSALLO, A.; MAZZONE, S.
2011-01-01
SUMMARY The Hyperventilation Test is widely used in the "bed-side examination" of vestibular patients. It can either activate a latent nystagmus in central or peripheral vestibular diseases or it can interact with a spontaneous nystagmus, by reducing it or increasing it. Aims of this study were to determine the incidence, patterns and temporal characteristics of Hyperventilation-induced nystagmus in patients suffering from vestibular diseases, as well as its contribution to the differential diagnosis between vestibular neuritis and neuroma of the 8th cranial nerve, and its behaviour in some central vestibular diseases. The present study includes 1202 patients featuring, at vestibular examination, at least one sign of vestibular system disorders or patients diagnosed with a "Migraine-related vertigo" or "Chronic subjective dizziness". The overall incidence of Hyperventilation-induced nystagmus was 21.9%. It was detected more frequently in retrocochlear vestibular diseases rather than in end-organ vestibular diseases: 5.3% in Paroxysmal Positional Vertigo, 37.1% in Menière's disease, 37.6% in compensated vestibular neuritis, 77.2% in acute vestibular neuritis and 91.7% in neuroma of the 8th cranial nerve. In acute vestibular neuritis, three HVIN patterns were observed: Paretic pattern: temporary enhancement of the spontaneous nystagmus; Excitatory pattern: temporary inhibition of the spontaneous nystagmus; Strong excitatory pattern: temporary inversion of the spontaneous nystagmus. Excitatory patterns proved to be time-dependent in that they disappeared and were replaced by the paretic pattern over a period of maximum 18 days since the beginning of the disorder. In acoustic neuroma, Hyperventilation-induced nystagmus was frequently observed (91.7%), either in the form of an excitatory pattern (fast phases towards the affected site) or in the form of a paretic pattern (fast phases towards the healthy side). The direction of the nystagmus is only partially related to tumour size, whereas other mechanisms, such as demyelination or a break in nerve fibres, might have an important role in triggering the situation. Hyperventilation-induced nystagmus has frequently been detected in cases of demyelinating diseases and in cerebellar diseases: in multiple sclerosis, hyperventilation inhibits a central type of spontaneous nystagmus or evokes nystagmus in 75% of patients; in cerebellar diseases, hyperventilation evokes or enhances a central spontaneous nystagmus in 72.7% of patients. In conclusion the Hyperventilation Test can provide patterns of oculomotor responses that indicate a diagnostic investigation through cerebral magnetic resonance imaging enhanced by gadolinium, upon suspicion of neuroma of the 8th cranial nerve or of a central disease. In our opinion, however, Hyperventilation-induced nystagmus always needs to be viewed within the more general context of a complete examination of the vestibular and acoustic system. PMID:21808459
Skorić, Magdalena Krbot; Adamec, Ivan; Pavičić, Tin; Pavlović, Ivan; Ruška, Berislav; Crnošija, Luka; Habek, Mario
2017-05-01
The aim of this study was to compare vestibular evoked myogenic potentials (VEMP) and video head impulse test (vHIT) results in patients presenting with vertigo and dizziness. We retrospectively analyzed data of all patients with the chief complaint of vertigo, dizziness, or imbalance that underwent VEMP and vHIT from January 2015 to January 2016. A total of 117 patients (73 females, mean age 53.92±16.76) fulfilled inclusion criteria: group 1 included patients with the final diagnosis of vestibular neuritis (VN) (N=31 (16 right and 15 left VN)), group 2 included patients with the final diagnosis of vertigo of central origin (N=23) and group 3 included patients with the final diagnosis of unspecified dizziness (N=63). There was significant correlation between oVEMP asymmetry and asymmetry of the lateral canals 60ms gains on vHIT (r=0.225, p=0.026). Significant correlation between oVEMP and vHIT asymmetry was present in VN patients (r=0.749, p<0.001), while no correlation was found in the groups 2 and 3. oVEMP and vHIT lateral canals asymmetries were significantly greater in patients with vestibular neuritis. Furthermore, positive correlations of oVEMP amplitudes with 60ms gain of the lateral semicircular canal and slope of the anterior semicircular canal on vHIT, and cVEMP with slope of the posterior semicircular canal on the vHIT were found. These changes were significantly more pronounced in patients with vestibular neuritis. In conclusion, VEMPs and vHIT data should be used complementarily; asymmetry on both tests strongly supports peripheral vestibular system involvement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Retinoic acid deficiency impairs the vestibular function.
Romand, Raymond; Krezel, Wojciech; Beraneck, Mathieu; Cammas, Laura; Fraulob, Valérie; Messaddeq, Nadia; Kessler, Pascal; Hashino, Eri; Dollé, Pascal
2013-03-27
The retinaldehyde dehydrogenase 3 (Raldh3) gene encodes a major retinoic acid synthesizing enzyme and is highly expressed in the inner ear during embryogenesis. We found that mice deficient in Raldh3 bear severe impairment in vestibular functions. These mutant mice exhibited spontaneous circling/tilted behaviors and performed poorly in several vestibular-motor function tests. In addition, video-oculography revealed a complete loss of the maculo-ocular reflex and a significant reduction in the horizontal angular vestibulo-ocular reflex, indicating that detection of both linear acceleration and angular rotation were compromised in the mutants. Consistent with these behavioral and functional deficiencies, morphological anomalies, characterized by a smaller vestibular organ with thinner semicircular canals and a significant reduction in the number of otoconia in the saccule and the utricle, were consistently observed in the Raldh3 mutants. The loss of otoconia in the mutants may be attributed, at least in part, to significantly reduced expression of Otop1, which encodes a protein known to be involved in calcium regulation in the otolithic organs. Our data thus reveal a previously unrecognized role of Raldh3 in structural and functional development of the vestibular end organs.
Monsanto, Rafael da Costa; Schachern, Patricia; Paparella, Michael M; Cureoglu, Sebahattin; Penido, Norma de Oliveira
2017-08-01
Our study aimed to evaluate pathologic changes in the cochlear (inner and outer hair cells and stria vascularis) and vestibular (vestibular hair cells, dark, and transitional cells) sensorial elements in temporal bones from donors who had otitis media. We studied 40 temporal bones from such donors, which were categorized in serous otitis media (SOM), serous-purulent otitis media (SPOM), mucoid/mucoid-purulent otitis media (MOM/MPOM), and chronic otitis media (COM); control group comprised 10 nondiseased temporal bones. We found significant loss of inner and outer cochlear hair cells in the basal turn of the SPOM, MOM/MPOM and COM groups; significant loss of vestibular hair cells was observed in the MOM/MPOM and COM groups. All otitis media groups had smaller mean area of the stria vascularis in the basal turn of the cochlea when compared to controls. In conclusion, our study demonstrated more severe pathologic changes in the later stages of the continuum of otitis media (MOM/MPOM and COM). Those changes seem to progress from the basal turn of the cochlea (stria vascularis, then inner and outer hair cells) to the middle turn of the cochlea and to the saccule and utricle in the MOM/MPOM and COM stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Ictal EEG/fMRI study of vertiginous seizures.
Morano, Alessandra; Carnì, Marco; Casciato, Sara; Vaudano, Anna Elisabetta; Fattouch, Jinane; Fanella, Martina; Albini, Mariarita; Basili, Luca Manfredi; Lucignani, Giulia; Scapeccia, Marco; Tomassi, Regina; Di Castro, Elisabetta; Colonnese, Claudio; Giallonardo, Anna Teresa; Di Bonaventura, Carlo
2017-03-01
Vertigo and dizziness are extremely common complaints, related to either peripheral or central nervous system disorders. Among the latter, epilepsy has to be taken into consideration: indeed, vertigo may be part of the initial aura of a focal epileptic seizure in association with other signs/symptoms, or represent the only ictal manifestation, a rare phenomenon known as "vertiginous" or "vestibular" seizure. These ictal symptoms are usually related to a discharge arising from/involving temporal or parietal areas, which are supposed to be a crucial component of the so-called "vestibular cortex". In this paper, we describe three patients suffering from drug-resistant focal epilepsy, symptomatic of malformations of cortical development or perinatal hypoxic/ischemic lesions located in the posterior regions, who presented clusters of vertiginous seizures. The high recurrence rate of such events, recorded during video-EEG monitoring sessions, offered the opportunity to perform an ictal EEG/fMRI study to identify seizure-related hemodynamic changes. The ictal EEG/fMRI revealed the main activation clusters in the temporo-parieto-occipital regions, which are widely recognized to be involved in the processing of vestibular information. Interestingly, ictal deactivation was also detected in the ipsilateral cerebellar hemisphere, suggesting the ictal involvement of cortical-subcortical structures known to be part of the vestibular integration network. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Black, F. O.; Brackmann, D. E.; Hitselberger, W. E.; Purdy, J.
1995-01-01
The outcome of acoustic neuroma (vestibular schwannoma) surgery continues to improve rapidly. Advances can be attributed to several fields, but the most important contributions have arisen from the identification of the genes responsible for the dominant inheritance of neurofibromatosis types 1 (NF1) and 2 (NF2) and the development of magnetic resonance imaging with gadolinium enhancement for the early anatomic confirmation of the pathognomonic, bilateral vestibular schwannomas in NF2. These advances enable early diagnosis and treatment when the tumors are small in virtually all subjects at risk for NF2. The authors suggest that advising young NF2 patients to wait until complications develop, especially hearing loss, before diagnosing and operating for bilateral eighth nerve schwannomas may not always be in the best interest of the patient. To the authors' knowledge, this is the first reported case of preservation of both auditory and vestibular function in a patient after bilateral vestibular schwannoma excision.
Guerra Jiménez, Gloria; Mazón Gutiérrez, Ángel; Marco de Lucas, Enrique; Valle San Román, Natalia; Martín Laez, Rubén; Morales Angulo, Carmelo
2015-01-01
Chiari malformation is an alteration of the base of the skull with herniation through the foramen magnum of the brain stem and cerebellum. Although the most common presentation is occipital headache, the association of audio-vestibular symptoms is not rare. The aim of our study was to describe audio-vestibular signs and symptoms in Chiari malformation type i (CM-I). We performed a retrospective observational study of patients referred to our unit during the last 5 years. We also carried out a literature review of audio-vestibular signs and symptoms in this disease. There were 9 patients (2 males and 7 females), with an average age of 42.8 years. Five patients presented a Ménière-like syndrome; 2 cases, a recurrent vertigo with peripheral features; one patient showed a sudden hearing loss; and one case suffered a sensorineural hearing loss with early childhood onset. The most common audio-vestibular symptom indicated in the literature in patients with CM-I is unsteadiness (49%), followed by dizziness (18%), nystagmus (15%) and hearing loss (15%). Nystagmus is frequently horizontal (74%) or down-beating (18%). Other audio-vestibular signs and symptoms are tinnitus (11%), aural fullness (10%) and hyperacusis (1%). Occipital headache that increases with Valsalva manoeuvres and hand paresthesias are very suggestive symptoms. The appearance of audio-vestibular manifestations in CM-I makes it common to refer these patients to neurotologists. Unsteadiness, vertiginous syndromes and sensorineural hearing loss are frequent. Nystagmus, especially horizontal and down-beating, is not rare. It is important for neurotologists to familiarise themselves with CM-I symptoms to be able to consider it in differential diagnosis. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Kim, Chul-Ho; Jang, Min-Uk; Choi, Hui-Chul; Sohn, Jong-Hee
2015-01-01
Many studies have identified various vestibular symptoms and laboratory abnormalities in migraineurs. Although the vestibular tests may be abnormal, the changes may exist without vestibular symptoms. To date, vestibular-evoked myogenic potential (VEMP) has been the easiest and simplest test for measuring vestibular function in clinical practice. Cervical VEMP (cVEMP) represents a vestibulo-collic reflex, whereas ocular VEMP (oVEMP) reflects a vestibulo-ocular pathway. Therefore, we determined whether ocular and rectified cervical VEMPs differed in patients with migraine or tension type headache (TTH) and compared the results to controls with no accompanying vestibular symptoms. The present study included 38 females with migraine without aura, 30 with episodic TTH, and 50 healthy controls without vestibular symptoms. oVEMP and cVEMP using a blood pressure manometer were recorded during a headache-free period. From the VEMP graphs, latency and amplitude parameters were analyzed, especially following EMG rectification in cVEMP. With respect to oVEMP, the migraine group exhibited significantly longer mean latencies of bilateral n1 and left p1 than the other groups (p < 0.05). Amplitudes of n1-p1 were lower than in other groups, but the difference did not reach statistical significance. In regards to cVEMP, p13 and n23 latencies and amplitudes after rectification did not differ significantly among groups. An abnormal interictal oVEMP profile was associated with subclinical vestibular dysfunction in migraineurs, suggesting pathology within the vestibulo-ocular reflex. oVEMP is a more reliable measure than cVEMP to evaluate vestibular function in migraineurs, although results from the two tests in patients with migraine are complementary.
Therapeutic Effects of Caloric Stimulation and Optokinetic Stimulation on Hemispatial Neglect
Moon, SY; Lee, BH
2006-01-01
Hemispatial neglect refers to a cognitive disorder in which patients with unilateral brain injury cannot recognize or respond to stimuli located in the contralesional hemispace. Hemispatial neglect in stroke patients is an important predictor for poor functional outcome. Therefore, there is a need for effective treatment for this condition. A number of interventions for hemispatial neglect have been proposed, although an approach resulting in persistent improvement is not available. Of these interventions, our review is focused on caloric stimulation and optokinetic stimulation. These lateralized or direction-specific stimulations of peripheral sensory systems can temporarily improve hemispatial neglect. According to recent functional MRI and PET studies, this improvement might result from the partial (re)activation of a distributed, multisensory vestibular network in the lesioned hemisphere, which is a part of a system that codes ego-centered space. However, much remain unknown regarding exact signal timing and directional selectivity of the network. PMID:20396481
NASA Technical Reports Server (NTRS)
Leigh, R. J.; Thurston, S. E.; Sharpe, J. A.; Ranalli, P. J.; Hamid, M. A.
1987-01-01
The effects of deficient labyrinthine function on smooth visual tracking with the eyes and head were investigated, using ten patients with bilateral peripheral vestibular disease and ten normal controls. Active, combined eye-head tracking (EHT) was significantly better in patients than smooth pursuit with the eyes alone, whereas normal subjects pursued equally well in both cases. Compensatory eye movements during active head rotation in darkness were always less in patients than in normal subjects. These data were used to examine current hypotheses that postulate central cancellation of the vestibulo-ocular reflex (VOR) during EHT. A model that proposes summation of an integral smooth pursuit command and VOR/compensatory eye movements is consistent with the findings. Observation of passive EHT (visual fixation of a head-fixed target during en bloc rotation) appears to indicate that in this mode parametric gain changes contribute to modulation of the VOR.
Cyclin D1 expression and facial function outcome after vestibular schwannoma surgery.
Lassaletta, Luis; Del Rio, Laura; Torres-Martin, Miguel; Rey, Juan A; Patrón, Mercedes; Madero, Rosario; Roda, Jose Maria; Gavilan, Javier
2011-01-01
The proto-oncogen cyclin D1 has been implicated in the development and behavior of vestibular schwannoma. This study evaluates the association between cyclin D1 expression and other known prognostic factors in facial function outcome 1 year after vestibular schwannoma surgery. Sixty-four patients undergoing surgery for vestibular schwannoma were studied. Immunohistochemistry analysis was performed with anticyclin D1 in all cases. Cyclin D1 expression, as well as other demographic, clinical, radiologic, and intraoperative data, was correlated with 1-year postoperative facial function. Good 1-year facial function (Grades 1-2) was achieved in 73% of cases. Cyclin D1 expression was found in 67% of the tumors. Positive cyclin D1 staining was more frequent in patients with Grades 1 to 2 (75%) than in those with Grades 3 to 6 (25%). Other significant variables were tumor volume and facial nerve stimulation after tumor resection. The area under the receiver operating characteristics curve increased when adding cyclin D1 expression to the multivariate model. Cyclin D1 expression is associated to facial outcome after vestibular schwannoma surgery. The prognostic value of cyclin D1 expression is independent of tumor size and facial nerve stimulation at the end of surgery.
State Anxiety Subjective Imbalance and Handicap in Vestibular Schwannoma.
Saman, Yougan; Mclellan, Lucie; Mckenna, Laurence; Dutia, Mayank B; Obholzer, Rupert; Libby, Gerald; Gleeson, Michael; Bamiou, Doris-Eva
2016-01-01
Evidence is emerging for a significant clinical and neuroanatomical relationship between balance and anxiety. Research has suggested a potentially priming effect with anxiety symptoms predicting a worsening of balance function in patients with underlying balance dysfunction. We propose to show that a vestibular stimulus is responsible for an increase in state anxiety, and there is a relationship between increased state anxiety and worsening balance function. (1) To quantify state anxiety following a vestibular stimulus in patients with a chronic vestibular deficit. (2) To determine if state anxiety during a vestibular stimulus would correlate with the severity of chronic balance symptoms and handicap. Two separate cohorts of vestibular schwannoma (VS) patients underwent vestibular tests (electronystagmography, cervical and ocular vestibular evoked myogenic potentials, and caloric responses) and questionnaire assessments [vertigo handicap questionnaire (VHQ), vertigo symptom scale (VSS), and state-trait anxiety inventory (STAIY)]. Fifteen post-resection VS patients, with complete unilateral vestibular deafferentation, were assessed at a minimum of 6 months after surgery in Experiment 1 (Aim 1). Forty-five patients with VS in situ formed the cohort for Experiment 2 (Aim 2). Experiment 1: VS subjects (N = 15) with a complete post-resection unilateral vestibular deafferentation completed a state anxiety questionnaire before caloric assessment and again afterward with the point of maximal vertigo as the reference (Aim 1). Experiment 2: state anxiety measured at the point of maximal vertigo following a caloric assessment was compared between two groups of patients with VS in situ presenting with balance symptoms (Group 1, N = 26) and without balance symptoms (Group 2, N = 11) (Aim 2). The presence of balance symptoms was defined as having a positive score on the VSS-VER. In Experiment 1, a significant difference (p < 0.01) was found when comparing STAIY at baseline and at the peak of the subjective vertiginous response in post-resection patients with a unilateral vestibular deafferentation. In Experiment 2, VS in situ patients with balance symptoms had significantly worse state anxiety at the peak vertiginous response than patients without balance symptoms (p < 0.001), as did patients with a balance-related handicap (p < 0.001). Anxiety symptoms during a vestibular stimulus may contribute to a priming effect that could explain worsening balance function.
Vestibular function assessment using the NIH Toolbox
Schubert, Michael C.; Whitney, Susan L.; Roberts, Dale; Redfern, Mark S.; Musolino, Mark C.; Roche, Jennica L.; Steed, Daniel P.; Corbin, Bree; Lin, Chia-Cheng; Marchetti, Greg F.; Beaumont, Jennifer; Carey, John P.; Shepard, Neil P.; Jacobson, Gary P.; Wrisley, Diane M.; Hoffman, Howard J.; Furman, Gabriel; Slotkin, Jerry
2013-01-01
Objective: Development of an easy to administer, low-cost test of vestibular function. Methods: Members of the NIH Toolbox Sensory Domain Vestibular, Vision, and Motor subdomain teams collaborated to identify 2 tests: 1) Dynamic Visual Acuity (DVA), and 2) the Balance Accelerometry Measure (BAM). Extensive work was completed to identify and develop appropriate software and hardware. More than 300 subjects between the ages of 3 and 85 years, with and without vestibular dysfunction, were recruited and tested. Currently accepted gold standard measures of static visual acuity, vestibular function, dynamic visual acuity, and balance were performed to determine validity. Repeat testing was performed to examine reliability. Results: The DVA and BAM tests are affordable and appropriate for use for individuals 3 through 85 years of age. The DVA had fair to good reliability (0.41–0.94) and sensitivity and specificity (50%–73%), depending on age and optotype chosen. The BAM test was moderately correlated with center of pressure (r = 0.42–0.48) and dynamic posturography (r = −0.48), depending on age and test condition. Both tests differentiated those with and without vestibular impairment and the young from the old. Each test was reliable. Conclusion: The newly created DVA test provides a valid measure of visual acuity with the head still and moving quickly. The novel BAM is a valid measure of balance. Both tests are sensitive to age-related changes and are able to screen for impairment of the vestibular system. PMID:23479540
Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition
Meng, Hui; Blázquez, Pablo M; Dickman, J David; Angelaki, Dora E
2014-01-01
Abstract A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways. PMID:24127616
Gait ataxia in humans: vestibular and cerebellar control of dynamic stability.
Schniepp, Roman; Möhwald, Ken; Wuehr, Max
2017-10-01
During human locomotion, vestibular feedback control is fundamental for maintaining dynamic stability and adapting the gait pattern to external circumstances. Within the supraspinal locomotor network, the cerebellum represents the key site for the integration of vestibular feedback information. The cerebellum is further important for the fine-tuning and coordination of limb movements during walking. The aim of this review article is to highlight the shared structural and functional sensorimotor principles in vestibular and cerebellar locomotion control. Vestibular feedback for the maintenance of dynamic stability is integrated into the locomotor pattern via midline, caudal cerebellar structures (vermis, flocculonodular lobe). Hemispheric regions of the cerebellum facilitate feed-forward control of multi-joint coordination and higher locomotor functions. Characteristic features of the gait disorder in patients with vestibular deficits or cerebellar ataxia are increased levels of spatiotemporal gait variability in the fore-aft and the medio-lateral gait dimension. In the fore-aft dimension, pathologic increases of gait fluctuations critically depend on the locomotion speed and predominantly manifest during slow walking velocities. This feature is associated with an increased risk of falls in both patients with vestibular hypofunction as well as patients with cerebellar ataxia. Pharmacological approaches for the treatment of vestibular or cerebellar gait ataxia are currently not available. However, new promising options are currently tested in randomized, controlled trials (fampridine/FACEG; acetyl-DL-leucine/ALCAT).
Recognizing schwannomatosis and distinguishing it from neurofibromatosis type 1 or 2.
Westhout, Franklin D; Mathews, Marlon; Paré, Laura S; Armstrong, William B; Tully, Patricia; Linskey, Mark E
2007-06-01
Schwannomatosis has become a newly recognized classification of neurofibromatosis. Although the genetic loci are on chromosome 22, it lacks the classic bilateral vestibular schwannomas as seen in NF-2. We present the surgical treatment of 4 patients with schwannomatosis, including a brother and sister. Case 1 presented with multiple progressively enlarging peripheral nerve sheath tumors. Case 4 presented with a trigeminal schwannoma and a vagal nerve schwannoma. Three of 4 patients had spinal intradural, extramedullary nerve sheath tumors. Surgery in all was multistaged and consisted of spinal laminectomies, site-specific explorations, and microsurgical tumor dissection and resection, with intraoperative neurophysiologic monitoring (including somatosensory-evoked and motor-evoked potentials, upper extremity electromyography and intraoperative nerve action potential monitoring, as appropriate). Intraoperatively the schwannomas had cystic and solid features and in all surgical cases the tumors arose from discrete fascicles of sensory nerve roots or sensory peripheral nerve branches. None of the patients experienced neurologic worsening as a result of their resections. Pathologic analysis of specimens from all cases demonstrated schwannoma. Not all patients with multiple schwannomas of cranial nerve, spinal nerve root, or peripheral nerve origin have NF-1 or NF-2. In schwannomatosis, these lesions are present in the absence of cutaneous stigmata, neurofibromas, vestibular schwannomas, or parenchymal brain tumors. Schwannomas in schwannomatosis can be large, cystic, and multiple. However, the predominant nerve involvement seems to be sensory and discrete fascicular in origin, facilitating microsurgical resection with minimal deficit.
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient's motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction.
Chiarovano, Elodie; Darlington, Cynthia; Vidal, Pierre-Paul; Lamas, Georges; de Waele, Catherine
2014-01-01
Objectives To investigate the clinical utility of VEMPs in patients suffering from unilateral vestibular schwannoma (VS) and to determine the optimal stimulation parameter (air conducted sound, bone conducted vibration) for evaluating the function of the vestibular nerve. Methods Data were obtained in 63 patients with non-operated VS, and 20 patients operated on VS. Vestibular function was assessed by caloric, cervical and ocular VEMP testing. 37/63 patients with conclusive ACS ocular VEMPs responses were studied separately. Results In the 63 non-operated VS patients, cVEMPs were abnormal in 65.1% of patients in response to AC STB and in 49.2% of patients to AC clicks. In the 37/63 patients with positive responses from the unaffected side, oVEMPs were abnormal in 75.7% of patients with ACS, in 67.6% with AFz and in 56.8% with mastoid BCV stimulation. In 16% of the patients, VEMPs were the only abnormal test (normal caloric and normal hearing). Among the 26 patients who did not show oVEMP responses on either side with ACS, oVEMPs responses could be obtained with AFz (50%) and with mastoid stimulation (89%). Conclusions The VEMP test demonstrated significant clinical value as it yielded the only abnormal test results in some patients suffering from a unilateral vestibular schwannoma. For oVEMPs, we suggest that ACS stimulation should be the initial test. In patients who responded to ACS and who had normal responses, BCV was not required. In patients with abnormal responses on the affected side using ACS, BCV at AFz should be used to confirm abnormal function of the superior vestibular nerve. In patients who exhibited no responses on either side to ACS, BCV was the only approach allowing assessment of the function of the superior vestibular nerve. We favor using AFz stimulation first because it is easier to perform in clinical practice than mastoid stimulation. PMID:25137289
Casani, Augusto; Nuti, Daniele; Franceschini, Stefano Sellari; Gaudini, Elisa; Dallan, Iacopo
2005-12-01
To determine the effects of transtympanic injections, with a mixture composed of gentamicin and fibrin tissue adhesive (FTA), on vestibular function of patients with intractable unilateral Menière's disease. This was an open, prospective study. The study was performed at 2 tertiary referral centers. Twenty-six patients affected by "definite" unilateral Menière's disease, unresponsive to medical therapy for at least 6 months, were enrolled. A buffered gentamicin solution mixed with FTA was injected in the middle ear until the development of bedside vestibular hypofunction signs and/or caloric weakness in the treated ear. Vestibular function was evaluated by 3 bedside vestibular tests (observation of spontaneous nystagmus, head shaking test, and head thrust test) and by a caloric test. Tests were performed on days 10 and 30 after completion of treatment. Tests were also performed 3, 6, and 12 months from completion of the gentamicin-FTA protocol. The effects of treatment were also assessed in terms of hearing levels, control of vertigo, and disability status. In 22 of the 26 patients, only 1 gentamicin-FTA injection was necessary to obtain 1 or more signs indicating a reduction of the vestibular function in the treated ear. Four patients needed another treatment because of the persistence of their incapacitating symptoms during the follow-up. Four patients needed more than 1 injection to obtain a vestibular hypofunction. None of the patients who received 1 or 2 injections presented hearing loss in direct temporal relationship to the treatment. A mixture of gentamicin and fibrin glue makes it possible to considerably reduce the number of administrations in patients with intractable unilateral Menière's disease. Spontaneous nystagmus, post head shaking nystagmus, and a head thrust sign are the clinical signs that indicate onset or progression of unilateral vestibular hypofunction. These signs were obtained with only 1 injection in 81% of patients.
Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.
Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph
2014-01-01
Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These changes in the resting brain are robust and task-independent as they were found in the absence of sensory stimulation and without a region-related a priori hypothesis. Therefore they may indicate a fundamental disease-related change in the resting brain. They may account for the patients' persistent deficits in visuo-spatial attention, spatial orientation and unsteadiness. The relation of increasing connectivity in the inferior parietal lobe, specifically SMG, to improvement of VOR during active head movements reflects cortical plasticity in BVF and may play a clinical role in vestibular rehabilitation.
ERIC Educational Resources Information Center
Carmona, Joseph E.; Holland, Alissa K.; Harrison, David W.
2009-01-01
Throughout history, vestibular and emotional dysregulation have often manifested together in clinical settings, with little consideration that they may have a common basis. Regarding vestibular mechanisms, the role of brainstem and cerebellar structures has been emphasized in the neurological literature, whereas emotion processing in the cerebral…
Physical Therapy Principles in Rehabilitation
Sparto, Patrick J.
2016-01-01
The use of vestibular rehabilitation for persons with balance and vestibular disorders is used to improve function and decrease dizziness symptoms. Principles of a vestibular rehabilitation program are described including common exercises and outcome measures used to report change. A review of negative and positive predictive factors related to recovery is also provided. PMID:22027077
Sympathetic Arousal to a Vestibular Stressor in High and Low Hostile Men
ERIC Educational Resources Information Center
Carmona, Joseph E.; Holland, Alissa K.; Stratton, Harrison J.; Harrison, David W.
2008-01-01
The aim of the present experiment was to extend the literature on hostility and a cerebral systems based model of sympathetic arousal to a vestibular-based stress. Several authors have concluded that autonomic stress reactivity in high hostile individuals must be interpersonally based, whereas healthy vestibular system functioning does not depend…
NASA Technical Reports Server (NTRS)
Kornilova, L. N.; Naumov, I. A.; Azarov, K. A.; Sagalovitch, S. V.; Reschke, Millard F.; Kozlovskaya, I. B.
2007-01-01
The vestibular function and tracking eye movements were investigated in 12 Russian crew members of ISS missions on days 1(2), 4(5-6), and 8(9-10) after prolonged exposure to microgravity (126 to 195 days). The spontaneous oculomotor activity, static torsional otolith-cervico-ocular reflex, dynamic vestibulo-cervico-ocular responses, vestibular reactivity, tracking eye movements, and gaze-holding were studied using videooculography (VOG) and electrooculography (EOG) for parallel eye movement recording. On post-flight days 1-2 (R+1-2) some cosmonauts demonstrated: - an increased spontaneous oculomotor activity (floating eye movements, spontaneous nystagmus of the typical and atypical form, square wave jerks, gaze nystagmus) with the head held in the vertical position; - suppressed otolith function (absent or reduced by one half amplitude of torsional compensatory eye counter-rolling) with the head inclined statically right- or leftward by 300; - increased vestibular reactivity (lowered threshold and increased intensity of the vestibular nystagmus) during head turns around the longitudinal body axis at 0.125 Hz; - a significant change in the accuracy, velocity, and temporal characteristics of the eye tracking. The pattern, depth, dynamics, and velocity of the vestibular function and tracking eye movements recovery varied with individual participants in the investigation. However, there were also regular responses during readaptation to the normal gravity: - suppression of the otolith function was typically accompanied by an exaggerated vestibular reactivity; - the structure of visual tracking (the accuracy of fixational eye rotations, smooth tracking, and gaze-holding) was disturbed (the appearance of correcting saccades, the transition of smooth tracking to saccadic tracking) only in those cosmonauts who, in parallel to an increased reactivity of the vestibular input, also had central changes in the oculomotor system (spontaneous nystagmus, gaze nystagmus).
Putz, Florian; Müller, Jan; Wimmer, Caterina; Goerig, Nicole; Knippen, Stefan; Iro, Heinrich; Grundtner, Philipp; Eyüpoglu, Ilker; Rössler, Karl; Semrau, Sabine; Fietkau, Rainer; Lettmaier, Sebastian
2017-03-01
The aim of this publication is to present long-term data on functional outcomes and tumor control in a cohort of 107 patients treated with stereotactic radiotherapy (RT) for vestibular schwannoma. Included were 107 patients with vestibular schwannoma (primary or recurrent following resection) treated with stereotactic RT (either fractioned or single-dose radiosurgery) between October 2002 and December 2013. Local control and functional outcomes were determined. Analysis of hearing preservation was limited to a subgroup of patients with complete audiometric data collected before treatment and during follow-up. Vestibular function test (FVT) results could be analyzed in a subset of patients and were compared to patient-reported dizziness. After a mean follow-up of 46.3 months, actuarial local control for the whole cohort was 100% after 2, 97.6% after 5, and 94.1% after 10 years. In patients with primary RT, serviceable hearing was preserved in 72%. Predictors for preservation of serviceable hearing in multivariate analysis were time of follow-up (odds ratio, OR = 0.93 per month; p = 0.021) and pre-RT tumor size (Koos stage I-IIa vs. IIb-IV; OR = 0.15; p = 0.031). Worsening of FVT results was recorded in 17.6% (N = 3). Profound discrepancy of patient-reported dizziness and FVT results was observed after RT. In patients with primary RT, worsening of facial nerve function occurred in 1.7% (N = 1). Stereotactic RT of vestibular schwannoma provides good functional outcomes and high control rates. Dependence of hearing preservation on time of follow-up and initial tumor stage has to be considered.
[Functional anatomy of the cochlear nerve and the central auditory system].
Simon, E; Perrot, X; Mertens, P
2009-04-01
The auditory pathways are a system of afferent fibers (through the cochlear nerve) and efferent fibers (through the vestibular nerve), which are not limited to a simple information transmitting system but create a veritable integration of the sound stimulus at the different levels, by analyzing its three fundamental elements: frequency (pitch), intensity, and spatial localization of the sound source. From the cochlea to the primary auditory cortex, the auditory fibers are organized anatomically in relation to the characteristic frequency of the sound signal that they transmit (tonotopy). Coding the intensity of the sound signal is based on temporal recruitment (the number of action potentials) and spatial recruitment (the number of inner hair cells recruited near the cell of the frequency that is characteristic of the stimulus). Because of binaural hearing, commissural pathways at each level of the auditory system and integration of the phase shift and the difference in intensity between signals coming from both ears, spatial localization of the sound source is possible. Finally, through the efferent fibers in the vestibular nerve, higher centers exercise control over the activity of the cochlea and adjust the peripheral hearing organ to external sound conditions, thus protecting the auditory system or increasing sensitivity by the attention given to the signal.
Albera, Roberto; Ciuffolotti, Roberto; Di Cicco, Maurizio; De Benedittis, Giuseppe; Grazioli, Irene; Melzi, Gabriella; Mira, Eugenio; Pallestrini, Eugenio; Passali, Desiderio; Serra, Agostino; Vicini, Claudio
2003-06-01
The aim of this double-blind, randomized, multicenter study was to compare the efficacy of betahistine dihydrochloride (BH) and flunarizine (FL) using the Dizziness Handicap Inventory (DHI), a validated self-assessment questionnaire that has not previously been used in a clinical trial to evaluate antivertigo drugs. Patients with recurrent vertigo of peripheral vestibular origin and who were severely handicapped by vertigo were randomized to an 8-week course of treatment with oral BH 48 mg daily or oral FL 10 mg daily. The efficacy endpoints were the total DHI score and the physical, functional and emotional subscores. Fifty-two patients completed the study. After 8 weeks of treatment the mean total DHI score and the physical subscore were significantly lower in the BH group compared to the FL group (7.5 and 3.6 points, respectively). The mean total DHI score as well as the three subscores decreased significantly after 4 and 8 weeks in both treatment groups. This study showed that at 8 weeks BH is significantly more effective than FL in terms of improving the total DHI score and the physical subscore. It was also established that the DHI is a useful and reliable method for evaluating the efficacy of antivertigo drugs.
The functional head impulse test: preliminary data.
Corallo, Giulia; Versino, Maurizio; Mandalà, Marco; Colnaghi, Silvia; Ramat, Stefano
2018-06-04
The functional head impulse test is a new test of vestibular function based on the ability to recognize the orientation of a Landolt C optotype that briefly appears on a computer screen during passive head impulses imposed by the examiner over a range of head accelerations. Here, we compare its results with those of the video head impulse test on a population of vestibular neuritis patients recorded acutely and after 3 months from symptoms onset. The preliminary results presented here show that while both tests are able to identify the affected labyrinth and to show a recovery of vestibular functionality at 3 months, the two tests are not redundant, but complementary.
Evidence for vestibular regulation of autonomic functions in a mouse genetic model
NASA Technical Reports Server (NTRS)
Murakami, Dean M.; Erkman, Linda; Hermanson, Ola; Rosenfeld, Michael G.; Fuller, Charles A.
2002-01-01
Physiological responses to changes in the gravitational field and body position, as well as symptoms of patients with anxiety-related disorders, have indicated an interrelationship between vestibular function and stress responses. However, the relative significance of cochlear and vestibular information in autonomic regulation remains unresolved because of the difficulties in distinguishing the relative contributions of other proprioceptive and interoceptive inputs, including vagal and somatic information. To investigate the role of cochlear and vestibular function in central and physiological responses, we have examined the effects of increased gravity in wild-type mice and mice lacking the POU homeodomain transcription factor Brn-3.1 (Brn-3bPou4f3). The only known phenotype of the Brn-3.1(-/-) mouse is related to hearing and balance functions, owing to the failure of cochlear and vestibular hair cells to differentiate properly. Here, we show that normal physiological responses to increased gravity (2G exposure), such as a dramatic drop in body temperature and concomitant circadian adjustment, were completely absent in Brn-3.1(-/-) mice. In line with the lack of autonomic responses, the massive increase in neuronal activity after 2G exposure normally detected in wild-type mice was virtually abolished in Brn-3.1(-/-) mice. Our results suggest that cochlear and vestibular hair cells are the primary regulators of autonomic responses to altered gravity and provide genetic evidence that these cells are sufficient to alter neural activity in regions involved in autonomic and neuroendocrine control.
Schwannomatosis Involving Peripheral Nerves: A Case Report
Kim, Dong Hun; Park, Sung-Tae; Shin, Ji Hoon
2006-01-01
Schwannomatosis or neurilemmomatosis has been used to describe patients with multiple nonvestibular schwannomas with no other stigmata of neurofibromatosis type-2 (NF-2). In our case, schwannomatosis, multiple schwannomas were present in a 21-yr-old woman with no stigmata or family history of NF-1 or NF-2. She had no evidence of vestibular schwannoma or other intracranial tumors. Multiple peripheral tumors were found in the carotid space of the neck, and soft tissue of posterior shoulder, lower back, ankle and middle mediastinum. All of those tumors were completely limited to the right side of the body. All surgically removed tumor specimens in this patient proved to be schwannomas. PMID:17179704
Kikuchi, T; Adams, J C; Paul, D L; Kimura, R S
1994-09-01
The distribution of gap junctions within the vestibular labyrinth was investigated using immunohistochemistry and transmission electron microscopy. Connexin26-like immunoreactivity was observed among supporting cells in each vestibular sensory epithelium. Reaction product was also present in the transitional epithelium of each vestibular endorgan and in the planum semilunatum of crista ampullaris. No connexin26-like immunoreactivity was observed among thin wall epithelial cells or among vestibular dark cells. In addition, fibrocytes within vestibular connective tissue were positively immunostained. Reaction product was also detected in the melanocyte area just beneath dark cells. Ultrastructural observations indicated that a gap junction network of vestibular supporting cells extends to the transitional epithelium and planum semilunatum and forms an isolated epithelial cell gap junction system in each vestibular endorgan. In contrast, no gap junctions were found among wall epithelial cells or among dark cells. Fibrocytes and melanocytes were coupled by gap junctions and belong to the connective tissue cell gap junction system, which is continuous throughout the vestibular system and the cochlea. The possible functional significance of these gap junction systems is discussed.
Wang, Linjie; Cao, Yi; Tan, Cheng; Zhao, Qi; He, Siyang; Niu, Dongbin; Tang, Guohua; Zou, Peng; Xing, Lei
2017-01-01
Explore the different vestibular physiologic response retention patterns after Coriolis acceleration training in student pilots and extend the results for use with Chinese astronauts in the future. Twelve healthy control male subjects were screened from males familiar with vestibular training and who physically resembled the astronauts. Fourteen student pilots were selected from 23 participants by rotational vestibular function tests. All subjects were exposed to five-day continuous or intermittent Coriolis acceleration training. Subjective motion sickness (MS) symptom scores, electrocardiography, electrogastrography (EGG), post-rotatory nystagmus and renin-angiotensin system responses were measured before, during and after rotational vestibular function tests at different times after vestibular training. Subjects could tolerate 10 min or 15 min of vestibular with mild MS symptoms. Retention of vestibular autonomic responses (retention of MS symptom scores, heart rate variability, power density of EGG, variations in levels of arginine vasopressin) were approximately 1 week for control subjects and approximately 5 weeks for student pilots. Decreases in slow-phase velocity of post-rotatory nystagmus were maintained for 14 weeks for control subjects and 9 weeks for student pilots. Retention of the vestibulo-autonomic reaction after vestibular training was different for control subjects and student pilots. All parameters related to autonomic responses could be maintained at low levels after vestibular training for approximately 1 week for control subjects and approximately 5 weeks for student pilots. Uncoupling patterns between post-rotatory nystagmus and the vestibulo-autonomic reaction may be helpful in the design of clinical rehabilitation plans for balance-disorder patients and for exploration of artificial gravity in future space missions.
Enhancing vestibular function in the elderly with imperceptible electrical stimulation.
Serrador, Jorge M; Deegan, Brian M; Geraghty, Maria C; Wood, Scott J
2018-01-10
Age-related loss of vestibular function can result in decrements in gaze stabilization and increased fall risk in the elderly. This study was designed to see if low levels of electrical stochastic noise applied transcutaneously to the vestibular system can improve a gaze stabilization reflex in young and elderly subject groups. Ocular counter-rolling (OCR) using a video-based technique was obtained in 16 subjects during low frequency passive roll tilts. Consistent with previous studies, there was a significant reduction in OCR gains in the elderly compared to the young group. Imperceptible stochastic noise significantly increased OCR in the elderly (Mean 23%, CI: 17-35%). Increases in OCR gain were greatest for those with lowest baseline gain and were negligible in those with normal gain. Since stimulation was effective at low levels undetectable to subjects, stochastic noise may provide a new treatment alternative to enhance vestibular function, specifically otolith-ocular reflexes, in the elderly or patient populations with reduced otolith-ocular function.
On the Origin of the 1,000 Hz Peak in the Spectrum of the Human Tympanic Electrical Noise
Pardo-Jadue, Javiera; Dragicevic, Constantino D.; Bowen, Macarena; Delano, Paul H.
2017-01-01
The spectral analysis of the spontaneous activity recorded with an electrode positioned near the round window of the guinea pig cochlea shows a broad energy peak between 800 and 1,000 Hz. This spontaneous electric activity is called round window noise or ensemble background activity. In guinea pigs, the proposed origin of this peak is the random sum of the extracellular field potentials generated by action potentials of auditory nerve neurons. In this study, we used a non-invasive method to record the tympanic electric noise (TEN) in humans by means of a tympanic wick electrode. We recorded a total of 24 volunteers, under silent conditions or in response to stimuli of different modalities, including auditory, vestibular, and motor activity. Our results show a reliable peak of spontaneous activity at ~1,000 Hz in all studied subjects. In addition, we found stimulus-driven responses with broad-band noise that in most subjects produced an increase in the magnitude of the energy band around 1,000 Hz (between 650 and 1,200 Hz). Our results with the vestibular stimulation were not conclusive, as we found responses with all caloric stimuli, including 37°C. No responses were observed with motor tasks, like eye movements or blinking. We demonstrate the feasibility of recording neural activity from the electric noise of the tympanic membrane with a non-invasive method. From our results, we suggest that the 1,000 Hz component of the TEN has a mixed origin including peripheral and central auditory pathways. This research opens up the possibility of future clinical non-invasive techniques for the functional study of auditory and vestibular nerves in humans. PMID:28744193
On the Origin of the 1,000 Hz Peak in the Spectrum of the Human Tympanic Electrical Noise.
Pardo-Jadue, Javiera; Dragicevic, Constantino D; Bowen, Macarena; Delano, Paul H
2017-01-01
The spectral analysis of the spontaneous activity recorded with an electrode positioned near the round window of the guinea pig cochlea shows a broad energy peak between 800 and 1,000 Hz. This spontaneous electric activity is called round window noise or ensemble background activity. In guinea pigs, the proposed origin of this peak is the random sum of the extracellular field potentials generated by action potentials of auditory nerve neurons. In this study, we used a non-invasive method to record the tympanic electric noise (TEN) in humans by means of a tympanic wick electrode. We recorded a total of 24 volunteers, under silent conditions or in response to stimuli of different modalities, including auditory, vestibular, and motor activity. Our results show a reliable peak of spontaneous activity at ~1,000 Hz in all studied subjects. In addition, we found stimulus-driven responses with broad-band noise that in most subjects produced an increase in the magnitude of the energy band around 1,000 Hz (between 650 and 1,200 Hz). Our results with the vestibular stimulation were not conclusive, as we found responses with all caloric stimuli, including 37°C. No responses were observed with motor tasks, like eye movements or blinking. We demonstrate the feasibility of recording neural activity from the electric noise of the tympanic membrane with a non-invasive method. From our results, we suggest that the 1,000 Hz component of the TEN has a mixed origin including peripheral and central auditory pathways. This research opens up the possibility of future clinical non-invasive techniques for the functional study of auditory and vestibular nerves in humans.
Grassi, S; Pettorossi, V E
2001-08-01
The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular potentiation. Finally the fifth part suggests the possible functional significance of different action times of the two retrograde messengers and metabotropic glutamate receptors, which are involved in mediating the presynaptic mechanism sustaining vestibular long-term potentiation.
Pathologic Changes of the Peripheral Vestibular System Secondary to Chronic Otitis Media.
da Costa Monsanto, Rafael; Erdil, Mehmet; Pauna, Henrique F; Kwon, Geeyoun; Schachern, Patricia A; Tsuprun, Vladimir; Paparella, Michael M; Cureoglu, Sebahattin
2016-09-01
To evaluate the histopathologic changes of dark, transitional, and hair cells of the vestibular system in human temporal bones from patients with chronic otitis media. Comparative human temporal bone study. Otopathology laboratory. To compare the density of vestibular dark, transitional, and hair cells in temporal bones with and without chronic otitis media, we used differential interference contrast microscopy. In the chronic otitis media group (as compared with the age-matched control group), the density of type I and type II hair cells was significantly decreased in the lateral semicircular canal, saccule, and utricle (P < .05). The density of type I cells was also significantly decreased in the chronic otitis media group in the posterior semicircular canal (P = .005), but that of type II cells was not (P = .168). The mean number of dark cells was significantly decreased in the chronic otitis media group in the lateral semicircular canal (P = .014) and in the posterior semicircular canal (P = .002). We observed no statistically significant difference in the density of transitional cells between the 2 groups (P > .1). The findings of our study suggest that the decrease in the number of vestibular sensory cells and dark cells could be the cause of the clinical symptoms of imbalance of some patients with chronic otitis media. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Güler, Sibel; Bir, Levent Sinan; Akdag, Beyza; Ardıc, Fusun
2012-01-01
The aim of this study was to determine balance problems and severity and ratio of postural instability of newly diagnosed, early stage Parkinson's patients who did not receive any antiparkinson treatment before, to evaluate fall risk clinically and posturographically and to examine the effects of pramipexole on these signs and symptoms. Detailed posturographic assessments which involved central vestibular, visual, peripheric vestibular somatosensory field tests were applied to both patient and control subjects and fall risk was determined. There was not statistically significant difference between patients and control subjects before and after drug therapy in the assesment of fall risk in posturography and there was not any improvement with drug usage in the patient group. However, in the analysis of subsystems separately, only the involvement in central vestibular field was more severe and could appear at all positions in Parkinson's patients comparing with the control group, and pramipexole was partially effective in improving this disorder. Central vestibular field is the subsystem that should be examined with first priority. Posturography is relatively reliable in defining fall risk and postural instability ratio in Parkinson's disease. But it should be considered that clinical assessment tools can be more sensitive in the evaluation of balance and postural disorders and in the follow-up of the response to drug therapy.
Church, M W; Kaltenbach, J A
1997-05-01
Fetal alcohol syndrome (FAS) is characterized in part by mental impairment, as well as craniofacial and ocular anomalies. These conditions are traditionally associated with childhood hearing disorders, because they all have a common embryonic origin in malformations of the first and second branchial arches, and have similar critical periods of vulnerability to toxic insult. A review of human and animal research indicates that there are four types of hearing disorders associated with FAS. These are: (1) a developmental delay in auditory maturation, (2) sensorineural hearing loss, (3) intermittent conductive hearing loss due to recurrent serous otitis media, and (4) central hearing loss. The auditory and vestibular systems share the same peripheral apparatuses (the inner ear and eighth cranial nerve) and are embryologically and structurally similar. Consequently, vestibular disorders in FAS children might be expected. The evidence for vestibular dysfunction in FAS is ambiguous, however. Like other syndromes associated with craniofacial anomalies, hearing disorders, and mental impairment, FAS is also characterized by a high prevalence of speech and language pathology. Hearing disorders are a form of sensory deprivation. If present during early childhood, they can result in permanent hearing, language, and mental impairment. Early identification and intervention to treat hearing, language, and speech disorders could therefore result in improved outcome for the FAS child. Specific recommendations are made for intervention and future research.
Allum, John H J; Cleworth, T; Honegger, Flurin
2016-07-01
We investigated how response asymmetries and deficit side response amplitudes for head accelerations used clinically to test the vestibular ocular reflex (VOR) are correlated with caloric canal paresis (CP) values. 30 patients were examined at onset of an acute unilateral peripheral vestibular deficit (aUPVD) and 3, 6, and 13 weeks later with three different VOR tests: caloric, rotating chair (ROT), and video head impulse tests (vHIT). Response changes over time were fitted with an exponential decay model and compared with using linear regression analysis. Recovery times (to within 10% of steady state) were similar for vHIT-asymmetry and CP (>10 weeks) but shorter for ROT asymmetry (<4 weeks). Regressions with CP were similar (vHIT asymmetry, R = 0.68, ROT, R = 0.62). Responses to the deficit side were also equally well correlated with CP values (R = 0.71). Specificity for vHIT and 20 degrees/s ROT deficit side responses was 100% in comparison to CP values, sensitivity was 74% for vHIT, 75% for ROT. A decrease in normal side responses occurred for ROT but not for vHIT at 3 weeks. Normal side responses were weekly correlated with CP for ROT (R = 0.49) but not for vHIT (R = 0.17). These results indicate that vHIT deficit side VOR gains are slightly better correlated with CP values than ROT, probably because of similar recovery time courses of vHIT and caloric responses and the lack of normal side vHIT changes. However, specificity and sensitivity is the same for vHIT and ROT tests.
The NUP98 Gene as a Potential Modifier of NF2 Associated Tumors
2017-06-01
limited to observation, surgical removal, and stereotactic radiation [ 1 ]. However, surgery may not be possible if the tumor is inaccessible or when...there are too many tumors. Radiation treatment may cause malignant transformation and/or growth acceleration of benign tumor cells. In addition...genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas
NASA Technical Reports Server (NTRS)
Nam, M. H.; Winters, J. M.; Stark, L.
1981-01-01
Voluntary active head rotations produced vestibulo-ocular reflex eye movements (VOR) with the subject viewing a fixation target. When this target jumped, the size of the refixation saccades were a function of the ongoing initial velocity of the eye. Saccades made against the VOR were larger in magnitude. Simulation of a reciprocally innervated model eye movement provided results comparable to the experimental data. Most of the experimental effect appeared to be due to linear summation for saccades of 5 and 10 degree magnitude. For small saccades of 2.5 degrees, peripheral nonlinear interaction of state variables in the neuromuscular plant also played a role as proven by comparable behavior in the simulated model with known controller signals.
Vestibular animal models: contributions to understanding physiology and disease.
Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E
2016-04-01
Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more "exotic" species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Abstract Background: Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient’s motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. Objective: To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. Methods: 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Results: Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. Conclusions: ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction. PMID:26410207
[Squirrel monkey--an ideal primate (correction of prmate) model of space physiology].
Matsunami, K
1997-06-01
Investigation of the vestibulo-ocular system of the squirrel monkey was reviewed in consideration of space motion sickness (SMS), or which is recently more often termed as space adaptation syndrome (SAS). Since the first launching of the space satellite, Sputnik [correction of Sputonik] in October 1957, many experiments were carried out in biological and medical fields. A various kind of creatures were used as experimental models from protozoa to human beings. Rats and monkeys are most favorite animals, particularly the non-human primate seems to be the one, because of its phylogenetic relatives akin to the human beings. Chimpanzees, rhesus monkeys, pig tailed-monkeys, red-faced monkeys and squirrel monkeys have been used mostly in American space experiments. Russian used rhesus monkeys. Among these, however, the squirrel monkey has an advantage of the small size of the body, ranging from 600- l000g in adult. This small size as a primate is very advantageous in experiments conducted in a narrow room of the space satellite or shuttle because of its space-saving. The squirrel monkey has another advantage to rear easily as is demonstrated to keep it as a pet. Accordingly, this petit animal provides us a good animal model in biological and medical experiments in space craft. The size of the brain of the squirrel monkey is extraordinary large relative to the body size, which is even superior to that of the human beings. This is partly owed to enlargement of the occipito-temporal cortices, which are forced to well develop for processing a huge amount of audio-visual information indispensable to the arboreal habitant to survive in tropical forest. The vestibular system of the squirrel monkey seems to be the most superior as well, when judged from it relative size of the vestibular nuclear complex. Balancing on swinging twigs or jumping from tree to tree developed the capability of this equilibrium system. Fernandez, Goldberg and his collaborators used the squirrel monkey to elucidate functions of the peripheral vestibular system. A transfer function was proposed to explain the behaviors of regular and irregular unit activity of vestibular nerve fibers. The physiologic characteristics of the second order vestibular neuron was investigated in combination of electrophysiological and micro-morphological way, with using WGA-HRP methods, in relation to somato-motor and eye movements. Interconnections between vestibular neurons and cerebellum, interstitial nucleus of Cajal, oculomotor nuclear complex, superior colliculus and cervical spinal cord were elucidated. In physiological field of the vestibular system, the vestibulo-ocular reflex is well studied and results obtained from the squirrel monkey experiments were reviewed. The squirrel monkey, particularly the Bolivian, is a unique animal in that it is vulnerable to motion sickness induced by visual-motion stimulation with phase mismatch of the two stimuli. Experimental results of labyrinthectomy or bilateral ablation of the maculae staticae led to the conclusion that both semicircular and otolith organs are involved in the genesis of space motion sickness. On the other hand, destruction of the area postrema, acknowledged as the vomiting center to chemical stimulants, produced controversial results. However, it must be pointed out that the a human subject underwent to resection of the area postrema, became insensitive to administration of apomorphine, a well known chemical stimulant of vomiting. Finally the experiments in space revealed the presence of at least two origins of caloric nystagmus, that is, attributable to convection and non-convection current of the endolymphatic fluid.
Provoked Vestibulodynia: Does Pain Intensity Correlate With Sexual Dysfunction and Dissatisfaction?
Aerts, Leen; Bergeron, Sophie; Pukall, Caroline F; Khalifé, Samir
2016-06-01
Provoked vestibulodynia (PVD) is suspected to be the most frequent cause of vulvodynia in premenopausal women. Previous research has been inconclusive as to whether higher vulvovaginal pain ratings are associated with lower sexual function and satisfaction in women with PVD. Whether pain intensity correlates with sexual impairment is an important question given its implications for treatment recommendations. To examine the associations among self-reported and objective pain measurements, sexual function, and sexual satisfaction in a large combined clinical and community sample of premenopausal women diagnosed with PVD. Ninety-eight women with PVD underwent a cotton-swab test, a vestibular friction pain measurement, and a vestibular pressure-pain threshold measurement. In addition to sociodemographics, participants completed measurements of pain, sexual function, and sexual satisfaction. Self-report measurements were the pain numerical rating scale (0-10), the McGill-Melzack Pain Questionnaire, the Female Sexual Function Index, and the Global Measure of Sexual Satisfaction. Objective measurements were pain during a cotton-swab test, pain during a vestibular friction procedure, and the vestibular pressure-pain threshold measurement. Age and relationship duration were significantly correlated with the Female Sexual Function Index total score (r = -0.31, P < .01; and r = -0.22, P < .05, respectively). When controlling for age, intercourse-related pain intensity, pain during the cotton-swab test, pain during vestibular friction, the vestibular pressure-pain threshold, and the McGill-Melzack Pain Questionnaire sensory and affective subscale scores were not significantly associated with sexual function and satisfaction in women with PVD. The findings show that in women with PVD, self-report and objective pain ratings are not associated with sexual function and satisfaction. The results support the biopsychosocial nature of PVD and underscore the importance of a patient-focused multidisciplinary treatment approach for PVD. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Vestibular rehabilitation outcomes in the elderly with chronic vestibular dysfunction.
Bayat, Arash; Pourbakht, Akram; Saki, Nader; Zainun, Zuraida; Nikakhlagh, Soheila; Mirmomeni, Golshan
2012-11-01
Chronic vestibular dysfunction is a frustrating problem in the elderly and can have a tremendous impact on their life, but only a few studies are available. Vestibular rehabilitation therapy (VRT) is an important therapeutic option for the neuro-otologist in treating patients with significant balance deficits. The purpose of this study was to assess the effect of vestibular rehabilitation on dizziness in elderly patients with chronic vestibular dysfunction. A total of 33 patients older than 60 years with chronic vestibular dysfunction were studied. Clinical and objective vestibular tests including videonystagmography (VNG) and dizziness handicap inventory (DHI) were carried out at their first visit, 2 weeks, and 8 weeks post-VRT. The VRT exercises were performed according to Cawthorne and Cooksey protocols. Oculomotor assessments were within normal limits in all patients. Nineteen patients (57.57%) showed abnormal canal paralysis on caloric testing which at follow-up sessions; CP values were decreased remarkably after VRT exercises. We found a significant improvement between pre-VRT and post-VRT total DHI scores (P < 0.001). This improvement was most prominent in functional subscore. Our study demonstrated that VRT is an effective therapeutic method for elderly patients with chronic vestibular dysfunction.
Development and regeneration of vestibular hair cells in mammals.
Burns, Joseph C; Stone, Jennifer S
2017-05-01
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened. Copyright © 2016 Elsevier Ltd. All rights reserved.
Likhachev, S A; Mar'enko, I P
2015-01-01
The objective of the present study was to elucidate specific features of etiology and pathophysiology of recurring chronic vestibular dysfunction. It included 90 patients with this pathology of whom 24 (26.6%) presented with vascular compression of the vestibulocochlear nerve diagnosed by means of high-field MRI. This method revealed the high frequency of positionally-dependent vestibular dysfunction associated with neurovascular interactions. Analysis of the state of vestibular dysfunction during the attack-free periods demonstrated the signs of latent vestibular dysfunction in 20 (83.3%) patients. The results of the study provide additional information on the prevalence of vascular compression of the vestibulocochlear nerve in the patients presenting with recurrent chronic dizziness; moreover, they make it possible to evaluate the state of vestibular function and develop the new diagnostic criteria for vestibular paroxismia.
Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vignaux, G.; Univ Caen, Caen, F-14000; Chabbert, C.
Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, themore » oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.« less
21 CFR 874.1800 - Air or water caloric stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... vestibular function testing of a patient's body balance system. The vestibular stimulation of the...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in...
FRIDMAN, GENE Y.; DELLA SANTINA, CHARLES C.
2014-01-01
This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation–inhibition asymmetry, and adapting laboratory MVP prototypes into devices appropriate for use in clinical trials. PMID:23044664
[Peripheral vertigo versus central vertigo. Application of the HINTS protocol].
Batuecas-Caletrío, Ángel; Yáñez-González, Raquel; Sánchez-Blanco, Carmen; González-Sánchez, Enrique; Benito, José; Gómez, José Carlos; Santa Cruz-Ruiz, Santiago
2014-10-16
One of the most important dilemmas concerning vertigo in emergency departments is its differential diagnosis. There are highly sensitive warning signs in the examination that can put us on the path towards finding ourselves before a case of central vertigo. To determine how effective the application of the HINTS protocol is in the diagnosis of cerebrovascular accidents that mimics peripheral vertigo. We conducted a descriptive observation-based study on patients admitted to hospital with a diagnosis of acute vestibular syndrome in the emergency department. All the patients were monitored on a day-to-day basis until their symptoms improved, with information about nystagmus, the oculocephalic manoeuvre and the skew test. The results from the magnetic resonance imaging study were compared with the alteration of any of those three signs during the time the patient was hospitalised. Altogether 91 patients were examined, with a mean age of 55.8 years. A cerebrovascular accident was observed in eight cases. Of these (mean age: 71 years), in seven of them there were alterations in some of the HINTS signs, and in one case the study was normal (sensitivity: 0.88; specificity: 0.96). All of them had some vascular risk factor. Faced with a patient who visits the emergency department with an acute vestibular syndrome, a suitably directed examination is essential to be able to establish the differential diagnosis between peripheral and central pathology, since some cerebrovascular accidents can present with the appearance of acute vertigo. Applying a protocol like HINTS makes it possible to suspect the central pathology with a high degree of sensitivity and specificity.
Morera, Constantino; Pérez, Herminio; Pérez, Nicolás; Soto, Andrés
2008-02-01
There are many different vertigo classifications and different denominations are frequently used for the same clinical processes. The Otoneurology Committee of the Spanish Society for Otorhinolaryngology and Head and Neck Pathology proposes an eminently practical classification of peripheral vertigo to facilitate a common terminology that can be easily used by the general ENT practitioners. The methodology used has been by consensus within our Society and especially among the most outstanding work groups in the area of otoneurology in Spain. Initially vertigo is divided into single-episode vertigo and recurring attacks of vertigo, and these are then sub-divided into 2 groups, depending on whether or not hearing loss is present. Acute vertigo without hearing loss corresponds to vestibular neuritis and if it is associated with hearing loss, it is due to labyrinthitis of different aetiologies and cochleo-vestibular neuritis. Recurrent vertigos without hearing loss are classified as induced, either by posture (BPPV) or pressure (perilymphatic fistula), or as spontaneous, including migraine-associated vertigo, metabolic vertigo, childhood paroxysmal vertigo and vertigo of vascular causes (AITs, vertebral-basilar failure). Finally, recurrent vertigo with hearing loss includes Ménière's disease and others such as vertigo-migraine (with hearing loss), autoimmune pathology of the inner ear, syphilitic infection, and perilymphatic fistula (with hearing loss).
He, Yu-Bo; Yu, Chun-Jiang; Ji, Hong-Ming; Qu, Yan-Ming; Chen, Ning
2016-01-01
Background: Determining the nerve of origin for vestibular schwannoma (VS), as a method for predicting hearing prognosis, has not been systematically considered. The vestibular test can be used to investigate the function of the superior vestibular nerve (SVN) and the inferior vestibular nerve (IVN). This study aimed to preoperatively distinguish the nerve of origin for VS patients using the vestibular test, and determine if this correlated with hearing preservation. Methods: A total of 106 patients with unilateral VS were enrolled in this study prospectively. Each patient received a caloric test, vestibular-evoked myogenic potential (VEMP) test, and cochlear nerve function test (hearing) before the operation and 1 week, 3, and 6 months, postoperatively. All patients underwent surgical removal of the VS using the suboccipital approach. During the operation, the nerve of tumor origin (SVN or IVN) was identified by the surgeon. Tumor size was measured by preoperative magnetic resonance imaging. Results: The nerve of tumor origin could not be unequivocally identified in 38 patients (38/106, 35.80%). These patients were not subsequently evaluated. In 26 patients (nine females, seventeen males), tumors arose from the SVN and in 42 patients (18 females, 24 males), tumors arose from the IVN. Comparing with the nerve of origins (SVN and IVN) of tumors, the results of the caloric tests and VEMP tests were significantly different in tumors originating from the SVN and the IVN in our study. Hearing was preserved in 16 of 26 patients (61.54%) with SVN-originating tumors, whereas hearing was preserved in only seven of 42 patients (16.67%) with IVN-originating tumors. Conclusions: Our data suggest that caloric and VEMP tests might help to identify whether VS tumors originate from the SVN or IVN. These tests could also be used to evaluate the residual function of the nerves after surgery. Using this information, we might better predict the preservation of hearing for patients. PMID:26996474
[Diagnosis and treatment of the most frequent vestibular syndromes].
Kanashiro, Aline Mizuta Kozoroski; Pereira, Cristiana Borges; Melo, Antonio Carlos de Paiva; Scaff, Milberto
2005-03-01
The aims of this study were to identify the most common vestibular syndromes in a dizziness unit, and to observe their clinical aspects and response to treatment. Five hundred and fifteen patients were studied retrospectively in two institutions. Aspects of anamnesis, physical examination and the response to treatment were evaluated. The most frequent syndromes were: benign paroxysmal positioning vertigo (VPPB) (28.5%), phobic postural vertigo (11.5%), central vertigo (10.1%), vestibular neuritis (9.7%), Meniere disease (8.5%), and migraine (6.4%). A good response to treatment was observed in most patients with migraine (78.8%), VPPB (64%), vestibular neuritis (62%), Meniere disease (54.5%) and vestibular paroxismia (54.5%). On the other hand, patients with downbeat nystagmus and bilateral vestibulopathy had poor response (52.6% and 42.8%, respectively). The diagnosis of these most frequent vestibular syndromes were established through anamnesis and physical examination (with specific clinical tests for evaluation of the vestibular function). The correct diagnosis and adequate treatment are important since these syndromes may have a good prognosis.
Koganemaru, Satoko; Goto, Fumiyuki; Arai, Miki; Toshikuni, Keitaro; Hosoya, Makoto; Wakabayashi, Takeshi; Yamamoto, Nobuko; Minami, Shujiro; Ikeda, Satoshi; Ikoma, Katsunori; Mima, Tatsuya
Vestibular rehabilitation is useful to alleviate chronic dizziness in patients with vestibular dysfunction. It aims to induce neuronal plasticity in the central nervous system (especially in the cerebellum) to promote vestibular compensation. Transcranial cerebellar direct current stimulation (tcDCS) reportedly enhances cerebellar function. We investigated whether vestibular rehabilitation partially combined with tcDCS is superior to the use of rehabilitation alone for the alleviation of dizziness. Patients with chronic dizziness due to vestibular dysfunction received rehabilitation concurrently with either 20-min tcDCS or sham stimulation for 5 days. Pre- and post-intervention (at 1 month) dizziness handicap inventory (DHI) scores and psychometric and motor parameters were compared. Sixteen patients completed the study. DHI scores in the tcDCS group showed significant improvement over those in the sham group (Mann-Whitney U test, p = 0.033). Vestibular rehabilitation partially combined with tcDCS appears to be a promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.
Todt, Ingo; Basta, Dietmar; Ernst, Arne
2008-01-01
To investigate the impact of different cochleostomy techniques on vestibular receptor integrity and vertigo after cochlear implantation. Retrospective cohort study. A total of 62 patients (17 to 84 years of age) underwent implantation via an anterior or round window insertion approach. Two groups of cochlear implant patients were compared with respect to their pre- and postoperative vestibular function and the occurrence of postoperative vertigo. The data were related to the different cochleostomy techniques. The patients were tested by a questionnaire (dizziness handicap inventory, DIH), caloric irrigation (vestibulo-ocular reflex, VOR) for the function of the lateral SCC and by vestibular evoked myogenic potential (VEMP) recordings for saccular function. Significant differences of postoperative VEMP responses (50% vs 13%) and electromystagmography (ENG) results (42.9% vs 9.4%) were found with respect to the 2 different insertion techniques. The number of patients with vertigo after the surgery as evidenced by DHI (23% vs 12.5%) was significantly different. The used round window approach for electrode insertion should be preferred to decrease the risk of loss of vestibular function and the occurrence of vertigo.
de Vries, Maurits; van der Mey, Andel G L; Hogendoorn, Pancras C W
2015-08-01
Provide an overview of the literature on vestibular schwannoma biology with special attention to tumor behavior and targeted therapy. Vestibular schwannomas are benign tumors originating from the eighth cranial nerve and arise due to inactivation of the NF2 gene and its product merlin. Unraveling the biology of these tumors helps to clarify their growth pattern and is essential in identifying therapeutic targets. PubMed search for English-language articles on vestibular schwannoma biology from 1994 to 2014. Activation of merlin and its role in cell signaling seem as key aspects of vestibular schwannoma biology. Merlin is regulated by proteins such as CD44, Rac, and myosin phosphatase-targeting subunit 1. The tumor-suppressive functions of merlin are related to receptor tyrosine kinases, such as the platelet-derived growth factor receptor and vascular endothelial growth factor receptor. Merlin mediates the Hippo pathway and acts within the nucleus by binding E3 ubiquiting ligase CRL4. Angiogenesis is an important mechanism responsible for the progression of these tumors and is affected by processes such as hypoxia and inflammation. Inhibiting angiogenesis by targeting vascular endothelial growth factor receptor seems to be the most successful pharmacologic strategy, but additional therapeutic options are emerging. Over the years, the knowledge on vestibular schwannoma biology has significantly increased. Future research should focus on identifying new therapeutic targets by investigating vestibular schwannoma (epi)genetics, merlin function, and tumor behavior. Besides identifying novel targets, testing new combinations of existing treatment strategies can further improve vestibular schwannoma therapy.
Changes in the Vestibular System with Age: An Abstracted Bibliography,
1981-04-30
group." COMMENT: Similar to other articles in this series, showing significant loss of afferents (and possibly efferents) in the vestibular nerve. k...marked dependence of postural stability on vision . In them, the disturbing optokinetic stimulus leads to a marked ipsilateral postural deviation or...SUBJECTS (Number-age): N/A EXPERIMENTAL PROCEDURES: Review FINDINGS: 1. No mention of vestibular functioning. 2. Review sections on vision , audition
Clinical benefits to vestibular rehabilitation in multiple sclerosis. Report of 4 cases.
Zeigelboim, Bianca; Liberalesso, Paulo; Jurkiewicz, Ari; Klagenberg, Karlin
2010-01-01
Balance difficulties are common among multiple sclerosis patients. To evaluate the effectiveness of the Cawthorne and Cooksey protocol of vestibular rehabilitation (VR) exercises in reducing the physical, functional and emotional impact of multiple sclerosis among individuals who complained of vertigo. Four patients with remittent-recurrent multiple sclerosis underwent an interview, otorhinolaryngological and vestibular evaluation, VR exercises and the Dizziness Handicap Inventory pre- and post-intervention. There was significant improvement in the physical, functional and emotional aspects of the DHI after the completion of the VR. The VR exercises appeared useful in reducing subjective complaints of the study participants.
Tjernström, Fredrik; Fransson, Per-Anders; Kahlon, Babar; Karlberg, Mikael; Lindberg, Sven; Siesjö, Peter; Magnusson, Måns
2018-01-01
To evaluate post-surgical postural stability when treating patients with remaining vestibular function with intratympanic gentamicin (PREHAB) prior to schwannoma surgery. 44 consecutive patients with some form remaining vestibular function scheduled for vestibular schwannoma surgery. 20 were medically deafferented with intratympanic gentamicin before surgery and 24 were not. Both groups were of the same age, had the same tumor size, same type of surgery, and same perioperative sensory rehabilitation (training exercises), and no surgical complications. Postural stability measured as energy expenditure while standing on a force platform during vibratory stimulation of the calf muscles, performed prior to surgery (or gentamicin treatment) and 6 months after surgery. Patients pretreated with gentamicin had significantly better postural stability at the time for follow-up (p < 0.05) and displayed a better adaptive capacity when faced with a postural challenge (p < 0.01). They were also able to use vision more efficiently to control their stability (p < 0.05). By separating the sensory loss (through intratympanic gentamicin, that ablates the remaining vestibular function) from the intracranial surgical trauma, the postural control system benefited from a better short-term (adaptation) and long-term (habituation) recovery, when experiencing a postural challenge or resolving a sensory conflict. The benefits could be attributed to; active and continuous motor learning as the vestibular function slowly attenuates; no concomitant central nervous dysfunction due to effects from neurosurgery, thus allowing time for a separate unimpeded recovery process with more limited challenges and objectives; and the initiation and certain progression of sensory reweighting processes allowed prior to surgery. In contrast, worse compensation could be due to; immobilization from nausea after surgery, harmful amount of stress and cognitive dysfunction from the combination of surgical and sensory trauma and an abrupt vestibular deafferentation and its consequences on sensory reweighting.
Pierchała, Katarzyna; Lachowska, Magdalena; Morawski, Krzysztof; Niemczyk, Kazimierz
2014-01-01
The purpose was to assess learning and rehabilitation effect and their influence on Sensory Organization Test results in young and elderly patients with peripheral, central and mixed vestibular pathology. 26 patients with different vestibular system deficits participated in this study. Rehabilitation was held five days a week, for two weeks. To assess learning effect, SOT was administered to each patient twice and compared: 1) on the day preceding the beginning of rehabilitation (SOT1), and 2) on the first day of rehabilitation (SOT2). To evaluate rehabilitation effect, results of SOT2 were compared to SOT3 (administered on the last day of rehabilitation). Learning effect showed similar improvement in CS in all groups but young. Rehabilitation caused further improvement in CS in all groups but central pathology. This improvement was similar between those groups. There was no significant difference found between learning and rehabilitation effect in CS. The results of our study indicate that none of the groups achieved significant benefit from rehabilitation based on sensory conflicts that would overcome the learning effect. However, the lack of significant advantage of rehabilitation over learning does not mean that it does not exist.
Translabyrinthine surgery for disabling vertigo in vestibular schwannoma patients.
Godefroy, W P; Hastan, D; van der Mey, A G L
2007-06-01
To determine the impact of translabyrinthine surgery on the quality of life in vestibular schwannoma patients with rotatory vertigo. Prospective study in 18 vestibular schwannoma patients. The study was conducted in a multispecialty tertiary care clinic. All 18 patients had a unilateral intracanalicular vestibular schwannoma, without serviceable hearing in the affected ear and severely handicapped by attacks of rotatory vertigo and constant dizziness. Despite an initial conservative treatment, extensive vestibular rehabilitation exercises, translabyrinthine surgery was performed because of the disabling character of the vertigo, which considerably continued to affect the patients' quality of life. Preoperative and postoperative quality of life using the Short Form 36 Health Survey (Short Form-36) scores and Dizziness Handicap Inventory (DHI) scores. A total of 17 patients (94%) completed the questionnaire preoperatively and 3 and 12 months postoperatively. All Short Form-36 scales of the studied patients scored significantly lower when compared with the healthy Dutch control sample (P < 0.05). There was a significant improvement of DHI total scores and Short Form-36 scales on physical and social functioning, role-physical functioning, role-emotional functioning, mental health and general health at 12 months after surgery when compared with preoperative scores (P < 0.05). Vestibular schwannoma patients with disabling vertigo, experience significant reduced quality of life when compared with a healthy Dutch population. Translabyrinthine tumour removal significantly improved the patients' quality of life. Surgical treatment should be considered in patients with small- or medium-sized tumours and persisting disabling vertigo resulting in a poor quality of life.
Role of vestibular information in initiation of rapid postural responses
NASA Technical Reports Server (NTRS)
Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)
1998-01-01
Patients with bilateral vestibular loss have difficulty maintaining balance without stepping when standing in tandem, on compliant surfaces, across narrow beams, or on one foot, especially with eyes closed. Normal individuals (with no sensory impairment) maintain balance in these tasks by employing quick, active hip rotation (a "hip strategy"). The absence of a hip strategy in vestibular patients responding to translations of a short support surface has previously been taken as evidence that the use of hip strategy requires an intact vestibular system. However, many tasks requiring hip strategy alter one or a combination of important system characteristics, such as initial state of the body (tandem stance), dynamics (compliant surfaces), or biomechanical limits of stability (narrow beams). Therefore, the balance deficit in these tasks may result from a failure to account for these support surface alterations when planning and executing sensorimotor responses. In this study, we tested the hypothesis that vestibular information is critical to trigger a hip strategy even on an unaltered support surface, which imposes no changes on the system characteristics. We recorded the postural responses of vestibular patients and control subjects with eyes closed to rearward support surface translations of varying velocity, in erect stance on a firm, flat surface. Subjects were instructed to maintain balance without stepping, if possible. Faster translation velocities (25 cm/s or more) produced a consistent pattern of early hip torque (first 400 ms) in control subjects (i.e., a hip strategy). Most of the patients with bilateral vestibular loss responded to the same translation velocities with similar torques. Contrary to our hypothesis, we conclude that vestibular function is not necessary to trigger a hip strategy. We postulate, therefore, that the balance deficit previously observed in vestibular patients during postural tasks that elicit a hip strategy may have been due to the sensorimotor consequences of the system alterations imposed by the postural tasks used in those studies. Preliminary results from two younger patients who lost vestibular function as infants indicate that age, duration of vestibular loss, and/or the timing of the loss may also be factors that can influence the use of hip strategy as a rapid postural response.
[Vertigo and dizziness in the emergency room].
Zwergal, A; Möhwald, K; Dieterich, M
2017-06-01
Vertigo and dizziness are among the most common chief complaints in the emergency department. Etiologies can be categorized into three subgroups: neurootological (vestibular), medical (especially cardiovascular, metabolic), and psychiatric disorders. The diagnostic approach in the emergency department is based on a systematic analysis of case history (type, time course of symptoms, modulating factors, associated symptoms), clinical examination of the vestibular, ocular motor, and cerebellar systems (head impulse test, nystagmus, skew deviation, positioning maneuver, test of gait and stance), as well as a basal monitoring (vital signs, 12-lead ECG, blood tests). For differentiation of peripheral and central etiologies in acute vestibular syndrome, the HINTS exam (head impulse test, nystagmus, test of skew) and examination of smooth pursuit and saccades should be applied. Nonselective use of neuroimaging is not indicated due to a low diagnostic yield. Cranial imaging should be done in the following constellations: (1) detection of focal neurological or central ocular motor and vestibular signs on clinical exam, (2) acute abasia with only minor ocular motor signs, (3) presence of various cardiovascular risk factors, (4) headache of unknown quality as an accompanying symptom. Besides the symptomatic therapy of vertigo and dizziness with antiemetics or analgesics, further diagnostic differentiation is urgent to guide proper treatment. Examples are the acute therapy in cerebral ischemia, the execution of positioning maneuvers in benign paroxysmal positional vertigo, the use of corticosteroids in acute unilateral vestibulopathy, as well as the readjustment of metabolic homeostasis in medical disorders.
The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.
Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas
2014-07-01
The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.
Magliulo, Giuseppe; Gagliardi, Silvia; Ciniglio Appiani, Mario; Iannella, Giannicola; Re, Massimo
2014-03-01
The aim of this study was to evaluate prospectively, in a group of patients affected by vestibular neurolabyrinthitis (VN), a diagnostic protocol including cervical vestibular evoked myogenic potentials (C-VEMPs), ocular vestibular evoked myogenic potentials (O-VEMPs), and the video head impulse test (vHIT). The diagnosis of VN was based on the patient's clinical history, an absence of associated auditory or neurologic symptoms, and a neuro-otological examination with an evaluation of lateral semicircular canal function by use of the Fitzgerald-Hallpike caloric vestibular test and the ice test. In our series, 55% of the cases were superior and inferior VN, 40% were superior VN, and 5% were inferior VN. These cases, however, comprised different degrees of vestibular involvement, as the individual vestibular end organs have different prognoses. Four patients had only deficits of the horizontal and superior semicircular canals or their ampullary nerves. The implementation of C-VEMPs, O-VEMPs, and the vHIT in a vestibular diagnostic protocol has made it possible to observe patients with ampullary VN in a way that has not been feasible with other types of vestibular examinations. The age of the patient seems to have some impact on recovery from VN. When recovery occurs in the utricular and saccular nerves first and in the ampullary nerves subsequently, it may be reasonable to expect a more favorable outcome.
The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans
Alsalman, Ola; Ost, Jan; Vanspauwen, Robby; Blaivie, Catherine; De Ridder, Dirk; Vanneste, Sven
2016-01-01
Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo episodes. This suggests that these patients have a neural signature or trait that makes them prone to developing chronic balance problems. PMID:27089185
The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans.
Alsalman, Ola; Ost, Jan; Vanspauwen, Robby; Blaivie, Catherine; De Ridder, Dirk; Vanneste, Sven
2016-01-01
Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo episodes. This suggests that these patients have a neural signature or trait that makes them prone to developing chronic balance problems.
Ozeki, Hidenori; Iwasaki, Shinichi; Ushio, Munetaka; Takeuchi, Naonobu; Murofushi, Toshihisa
2006-01-01
Ramsay Hunt syndrome (RHS) is characterized by vestibulocochlear dysfunction in addition to facial paralysis and auricular vesicles. The present study investigated the lesion site of vestibular dysfunction in a group of 10 RHS patients. Caloric testing, vestibular evoked myogenic potentials by click sound (cVEMP) and by galvanic stimulation (gVEMP) were used to assess the function of the lateral semicircular canal, saccule, and their afferents. The results of caloric testing (all 10 cases showed canal paresis) mean the existence of lesion sites in lateral semicircular canal and/or superior vestibular nerve (SVN). Abnormal cVEMPs in 7 patients mean the existence of lesions in saccule and/or inferior vestibular nerve (IVN). Four of the 6 patients with absent cVEMP also underwent gVEMP. The results of gVEMP (2 absent and 2 normal) mean that the former 2 have lesions of the vestibular nerve, and the latter 2 have only saccular lesions concerning the pathway of VEMPs. Thus, our study suggested that lesion sites of vestibular symptoms in RHS could be in the vestibular nerve and/or labyrinth, and in SVN and/or IVN. In other words, in the light of vestibular symptoms, there is the diversity of lesion sites.
Taylor, Ruth R.; Jagger, Daniel J.; Saeed, Shakeel R.; Axon, Patrick; Donnelly, Neil; Tysome, James; Moffatt, David; Irving, Richard; Monksfield, Peter; Coulson, Chris; Freeman, Simon R.; Lloyd, Simon K.; Forge, Andrew
2015-01-01
Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We demonstrate the viability of the tissue and labeling with specific markers of hair cell function and of ion homeostasis in the epithelium. Samples obtained from the oldest patients revealed a significant loss of hair cells across the tissue surface, but we found immature hair bundles present in epithelia harvested from patients >60 years of age. These results suggest that the environment of the human vestibular sensory epithelium could be responsive to stimulation of developmental pathways to enhance hair cell regeneration, as has been demonstrated successfully in the vestibular organs of adult mice. PMID:25818177
Taylor, Ruth R; Jagger, Daniel J; Saeed, Shakeel R; Axon, Patrick; Donnelly, Neil; Tysome, James; Moffatt, David; Irving, Richard; Monksfield, Peter; Coulson, Chris; Freeman, Simon R; Lloyd, Simon K; Forge, Andrew
2015-06-01
Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We demonstrate the viability of the tissue and labeling with specific markers of hair cell function and of ion homeostasis in the epithelium. Samples obtained from the oldest patients revealed a significant loss of hair cells across the tissue surface, but we found immature hair bundles present in epithelia harvested from patients >60 years of age. These results suggest that the environment of the human vestibular sensory epithelium could be responsive to stimulation of developmental pathways to enhance hair cell regeneration, as has been demonstrated successfully in the vestibular organs of adult mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Complex vestibular macular anatomical relationships need a synthetic approach
NASA Technical Reports Server (NTRS)
Ross, M. D.
2001-01-01
Mammalian vestibular maculae are anatomically organized for complex parallel processing of linear acceleration information. Anatomical findings in rat maculae are provided in order to underscore this complexity, which is little understood functionally. This report emphasizes that a synthetic approach is critical to understanding how maculae function and the kind of information they conduct to the brain.
Vestibular involvement in adults with HIV/AIDS.
Heinze, Barbara M; Vinck, Bart M; Hofmeyr, Louis M; Swanepoel, De Wet
2014-04-01
HIV/AIDS is responsible for widespread clinical manifestations involving the head, and neck. The prevalence and nature of vestibular involvement is still largely unknown. This study, aimed to describe and compare the occurrence and nature of vestibular involvement among a group of, adults infected with HIV compared to a control group. It also aimed to compare the vestibular function, of symptomatic and asymptomatic HIV positive adults who receive antiretroviral (ARV) therapies to, subjects not receiving ARV. A cross-sectional study was conducted on 53 adults (29 male, 24 female, aged 23-49 years, mean=38.5, SD=4.4) infected with HIV, compared to a control group of 38 HIV negative adults (18, male, 20 female, aged 20-49 years, mean=36.9, SD=8.2). A structured interview probed the subjective, perception of vestibular symptoms. Medical records were reviewed for CD4+ cell counts and the use of, ARV medication. An otologic assessment and a comprehensive vestibular assessment (bedside, assessments, vestibular evoked myogenic potentials, ocular motor and positional tests and bithermal, caloric irrigation) were conducted. Vestibular involvement occurred in 79.2% of subjects with HIV in all categories of disease, progression, compared to 18.4% in those without HIV. Vestibular involvement increased from 18.9% in CDC category 1 to 30.2% in category 2. Vestibular involvement was 30.1% in category 3. There were, vestibular involvement in 35.9% of symptomatic HIV positive subjects, and 41.5% in asymptomatic, HIV positive subjects. There was no significant difference in the occurrence of vestibular involvement, in subjects receiving ARV therapies compared to those not receiving ARV therapies (p=.914; chi-square, test). The odds ratio indicates that individuals with HIV have a 16.61 times higher risk of developing, vestibular involvement during their lifetime of living with the disease and that it may occur despite, being asymptomatic. Vestibular involvement was significantly more common in subjects with HIV. Primary health care providers could screen HIV positive patients to ascertain if there are symptoms of vestibular involvement. If there are any, then they may consider further vestibular assessments and subsequent vestibular rehabilitation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Vertigo with sudden hearing loss: audio-vestibular characteristics.
Pogson, Jacob M; Taylor, Rachael L; Young, Allison S; McGarvie, Leigh A; Flanagan, Sean; Halmagyi, G Michael; Welgampola, Miriam S
2016-10-01
Acute vertigo with sudden sensorineural hearing loss (SSNHL) is a rare clinical emergency. Here, we report the audio-vestibular test profiles of 27 subjects who presented with these symptoms. The vestibular test battery consisted of a three-dimensional video head impulse test (vHIT) of semicircular canal function and recording ocular and cervical vestibular-evoked myogenic potentials (oVEMP, cVEMP) to test otolith dysfunction. Unlike vestibular neuritis, where the horizontal and anterior canals with utricular function are more frequently impaired, 74 % of subjects with vertigo and SSNHL demonstrated impairment of the posterior canal gain (0.45 ± 0.20). Only 41 % showed impairment of the horizontal canal gains (0.78 ± 0.27) and 30 % of the anterior canal gains (0.79 ± 0.26), while 38 % of oVEMPs [asymmetry ratio (AR) = 41.0 ± 41.3 %] and 33 % of cVEMPs (AR = 47.3 ± 41.2 %) were significantly asymmetrical. Twenty-three subjects were diagnosed with labyrinthitis/labyrinthine infarction in the absence of evidence for an underlying pathology. Four subjects had a definitive diagnosis [Ramsay Hunt Syndrome, vestibular schwannoma, anterior inferior cerebellar artery (AICA) infarction, and traction injury]. Ischemia involving the common-cochlear or vestibulo-cochlear branches of the labyrinthine artery could be the simplest explanation for vertigo with SSNHL. Audio-vestibular tests did not provide easy separation between ischaemic and non-ischaemic causes of vertigo with SSNHL.
Decline in semicircular canal and otolith function with age
Agrawal, Yuri; Zuniga, M. Geraldine; Davalos-Bichara, Marcela; Schubert, Michael C.; Walston, Jeremy D.; Hughes, Jennifer; Carey, John P.
2012-01-01
Objective To characterize the physiologic nature of the vestibular dysfunction that occurs with the normative aging process. Study design Cross-sectional study. Setting Tertiary care academic medical center. Patients Fifty individuals age 70 and above. Interventions Head thrust dynamic visual acuity testing (htDVA) and cervical and ocular vestibular-evoked myogenic potential (VEMP) testing. Main Outcome Measures Semicircular canal function measured by htDVA in each of the three semicircular canal planes, and saccular and utricular function measured by cVEMP and oVEMP testing, respectively. Results We observed significant declines in semicircular canal function in each of the canal planes as well as otolith function associated with aging. We found that individuals with impaired horizontal and superior semicircular canal function were likely to also have concomitant deficits in utricular but not saccular function. Overall, we noted that the prevalence of semicircular canal dysfunction was highest followed by saccular then utricular impairment, although we did observe individuals with isolated otolith deficits. Conclusions These data suggest an overall decline in semicircular canal as well as otolith function associated with aging, although the magnitude of impairment was greater for the semicircular canals than the otoliths in this elderly population. A better understanding of the specific vestibular deficits that occur with aging can inform the development of rational screening, vestibular rehabilitation and fall risk reduction strategies in older individuals. PMID:22699991
An approach to vertigo in general practice.
Dommaraju, Sindhu; Perera, Eshini
2016-04-01
Dizziness is a common and very distressing presentation in general practice. In more than half of these cases, the dizziness is due to vertigo, which is the illusion of movement of the body or its surroundings. It can have central or peripheral causes, and determining the cause can be difficult. The aim of this article is to provide a clear framework for approaching patients who present with vertigo. A suggested approach to the assessment of vertigo is outlined. The causes of vertigo may be central (involving the brainstem or cerebellum) or peripheral (involving the inner ear). A careful history and physical examination can distinguish between these causes. The most common causes of vertigo seen in primary care are benign paroxysmal positional vertigo (BPPV), vestibular neuronitis (VN) and Ménière's disease. These peripheral causes of vertigo are benign, and treatment involves reassurance and management of symptoms.
Fife, Terry D.; Robb, Michael J. A.; Steenerson, Kristen K.; Saha, Kamala C.
2018-01-01
We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel. PMID:29867750
Fife, Terry D; Robb, Michael J A; Steenerson, Kristen K; Saha, Kamala C
2018-01-01
We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3-5 years' duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n -hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.
Schwannomatosis: a new member of neurofibromatosis family.
Chen, Shan-lin; Liu, Chang; Liu, Bo; Yi, Chuan-jun; Wang, Zhi-xin; Rong, Yan-bo; Zhu, Jin; Ding, Yi; Tian, Guang-lei
2013-07-01
Schwannomatosis is a recently recognized peripheral nerve polyneoplasm with clinical characteristics and a genetic background that differ from those of neurofibromatosis 2 (NF2). The diagnostic and treatment criteria of this rare disorder are herein discussed. The data of 180 patients who underwent operations for benign schwannomas from 2003 to 2012 in our center were reviewed. Eight of them were classified as schwannomatosis according to the diagnostic criteria suggested by MacCollin. The demographic characteristics were documented and compared between the two groups of patients. The patients' clinical presentations, imaging characteristics, histological features, and treatment results were retrospectively investigated and summarized. Of the 180 cases of benign schwannomas we reviewed this time, eight patients presented with schwannomatosis (4.44%). The mean age of the two groups was not significantly different (40.0 vs. 44.7 years, t = 0.88, P = 0.378). However, schwannnomatosis seems to more generally occur in females (75% vs. 48% were females, P = 0.162), although the difference was not statistically significant. The initial main symptom was pain. The neurological examination was otherwise normal. Magnetic resonance imaging (MRI) revealed multiple discrete, well-defined round, or oval lesions distributed along the course of the peripheral nerves in the extremities with low-to-intermediate signal intensity on T1-weighted images and high-signal intensity on T2-weighted images. Vestibular schwannomas were excluded in four patients by cranial MRI. The lesions in all patients were resected and were pathologically proven to be schwannomas. The average follow-up period was 26 months. Six individuals obtained a good result without symptoms or function loss. Schwannomatosis is characterized by the development of multiple schwannomas without evidence of the vestibular tumors that are diagnostic for NF2. It commonly occurs in middle-aged females. It has similar demographic features to solitary benign schwannoma. Surgical resection always results in a good outcome.
Gaboyard-Niay, Sophie; Travo, Cécile; Saleur, Aurélie; Broussy, Audrey; Brugeaud, Aurore; Chabbert, Christian
2016-10-01
Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. © 2016. Published by The Company of Biologists Ltd.
Schwannomatosis on a single foot: a case report.
Min, Hak-Jin; Kim, Ki Chun; Jun, Sung Han; Lee, Young Gun
2015-06-01
Schwannomatosis has been recently recognized as the third major type of neurofibromatosis. It causes multiple schwannomas without the vestibular tumors that are diagnostic of neurofibromatosis type 2. Schwannoma is rarely found in the foot, and it is still rarer to find multiple schawannomas in a single peripheral nerve on the foot. In this article, we describe a case of schwannomatosis case on a single foot. Case report, Level IV. © 2014 The Author(s).
Cervical Vestibular-Evoked Myogenic Potentials: Norms and Protocols
Isaradisaikul, Suwicha; Navacharoen, Niramon; Hanprasertpong, Charuk; Kangsanarak, Jaran
2012-01-01
Vestibular-evoked myogenic potential (VEMP) testing is a vestibular function test used for evaluating saccular and inferior vestibular nerve function. Parameters of VEMP testing include VEMP threshold, latencies of p1 and n1, and p1-n1 interamplitude. Less commonly used parameters were p1-n1 interlatency, interaural difference of p1 and n1 latency, and interaural amplitude difference (IAD) ratio. This paper recommends using air-conducted 500 Hz tone burst auditory stimulation presented monoaurally via an inserted ear phone while the subject is turning his head to the contralateral side in the sitting position and recording the responses from the ipsilateral sternocleidomastoid muscle. Normative values of VEMP responses in 50 normal audiovestibular volunteers were presented. VEMP testing protocols and normative values in other literature were reviewed and compared. The study is beneficial to clinicians as a reference guide to set up VEMP testing and interpretation of the VEMP responses. PMID:22577386
Piker, Erin G; Jacobson, Gary P; McCaslin, Devin L; Grantham, Sarah L
2008-04-01
Factors such as anxiety, depression, somatic awareness, autonomic symptoms, and differences in coping strategies are known to affect dizziness handicap. We studied these factors in 63 consecutive "dizzy" patients. This sample was subgrouped into normals and patients with benign paroxysmal positional vertigo, compensated and uncompensated unilateral peripheral vestibular system impairment, or abnormal vestibular evoked myogenic potential as a single significant diagnostic finding. Results showed that (1) anxiety and depression occur with greater frequency in dizzy patients than in the normal population; (2) the magnitude of anxiety, depression, somatization, and autonomic symptoms does not differ significantly in subgroups of patients; (3) women tended to report greater handicap and somatic/autonomic symptoms; and (4) Dizziness Handicap Inventory total scores were correlated with patients' complaints of somatic/autonomic symptoms, anxiety, depression, and coping strategies. These findings suggest that self-reported measures represent unique pieces of information important for the management of dizzy patients.
Acute vestibular syndrome: clinical head impulse test versus video head impulse test.
Celebisoy, Nese
2018-03-05
HINTS battery involving head impulse test (HIT), nystagmus, and test of skew is the critical bedside examination to differentiate acute unilateral peripheral vestibulopathy from posterior circulation stroke (PCS) in acute vestibular syndrome (AVS). The highest sensitivity component of the battery has been reported to be the horizontal HIT, whereas skew deviation is defined as the most specific but non-sensitive sign for PCS. Video-oculography-based HIT (vHIT) may have an additional power in making the differentiation. If vHIT is undertaken, then both gain and gain asymmetry should be taken into account as anterior inferior cerebellar artery (AICA) strokes are at risk of being misclassified based on VOR gain alone. Further refinement in video technology, increased operator proficiency and incorporation with saccade analysis will increase the sensitivity of vHIT for PCS diagnosis. For the time being, clinical examination seems adequate in frontline diagnostic evaluation of AVS.
Neuronal plasticity: adaptation and readaptation to the environment of space
NASA Technical Reports Server (NTRS)
Correia, M. J.
1998-01-01
While there have been few documented permanent neurological changes resulting from space travel, there is a growing literature which suggests that neural plasticity sometimes occurs within peripheral and central vestibular pathways during and following spaceflight. This plasticity probably has adaptive value within the context of the space environment, but it can be maladaptive upon return to the terrestrial environment. Fortunately, the maladaptive responses resulting from neuronal plasticity diminish following return to earth. However, the literature suggests that the longer the space travel, the more difficult the readaptation. With the possibility of extended space voyages and extended stays on board the international space station, it seems worthwhile to review examples of plastic vestibular responses and changes in the underlying neural substrates. Studies and facilities needed for space station investigation of plastic changes in the neural substrates are suggested. Copyright 1998 Elsevier Science B.V.
Visual and vestibular induced eye movements in verbal children and adults with autism
Furman, Joseph M.; Osorio, Maria Joana; Minshew, Nancy J.
2016-01-01
This study investigated several types of eye movements that rely on the function of brainstem-cerebellar pathways specifically (vestibular-ocular reflexes) or on widely distributed pathways of the brain (horizontal pursuit and saccade eye movements). Although eye movements that rely on higher brain regions have been studies fairly extensively in autism, eye movements dependent on brainstem and cerebellum have not. This study involved 79 individuals with autism and 62 typical controls aged 5 to 52 years with IQ scores above 70. No differences between the autism and control groups were present on the measures of vestibular ocular reflexes, or on saccade velocity or accuracy. The autism group was significantly slower to initiate saccades, which was most prominent in the 8-18 year old age range. These findings provide the most substantial evidence to date of the functional integrity of brainstem and cerebellar pathways in autism, suggesting that the histopathological abnormalities described in these structures may not be associated with intrinsic dysfunction but rather reflect developmental alterations related to forebrain cortical systems formation. The increase in saccade latency adds to the substantial evidence of altered function and maturation of cortical systems in autism. Objective This study assessed the functionality of vestibular, pursuit and saccade circuitry in autism across a wide age range. Methods Subjects were 79 individuals with autism (AUT) and 62 controls (CON) aged 5 to 52 years with IQ scores > 70. For vestibular testing, earth-vertical axis rotation was performed in darkness and in a lighted visual surround with a fixation target. Ocular motor testing included assessment of horizontal saccades and horizontal smooth pursuit. Results No between-group differences were found in vestibular reflexes or in mean saccade velocity or accuracy. Saccade latency was increased in the AUT group with significant age-related effects in the 8-18 year old subgroups. There was a trend toward decreased pursuit gain without age effects. Conclusions Normal vestibular-induced eye movements and normal saccade accuracy and velocity provide the most substantial evidence to date of the functional integrity of brainstem and cerebellar pathways in autism, suggesting that the histopathological abnormalities described in these structures may not be associated with intrinsic dysfunction but rather reflect developmental alterations related to forebrain cortical systems formation. Increased saccade latency with age effects adds to the extensive existing evidence of altered function and maturation of cortical systems in autism. PMID:25846907
Maternal susceptibility to nausea and vomiting of pregnancy: is the vestibular system involved?
NASA Technical Reports Server (NTRS)
Black, F. Owen
2002-01-01
Nausea and vomiting of pregnancy shares many characteristics with motion sickness, a vestibular dependent phenomenon. A number of physiologic changes that occur in normal pregnancy are also known to accompany nausea and vomiting in patients with motion sickness and certain vestibular disorders. This chapter summarizes some shared features of both phenomena. The unmasking of subclinical vestibular disorders may account for some cases of hyperemesis gravidarum. Hormonal effects on neurotransmitter function may also play a role in nausea and vomiting of pregnancy and in some vestibular disorders; however, the specific neural mechanisms of nausea and vomiting have not been identified. Until the neurochemical processes underlying these phenomena are understood, prevention and management will remain in the domain of astute, but so far limited, clinical observation.
Correlation of Fos expression and circling asymmetry during gerbil vestibular compensation
NASA Technical Reports Server (NTRS)
Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.
1999-01-01
Vestibular compensation is a central nervous system process resulting in recovery of functional movement and control following a unilateral vestibular lesion. Small pressure injections of phosphorothioate 20mer oligonucleotides were used to probe the role of the Fos transcription protein during vestibular compensation in the gerbil brainstem. During isoflurane gas anesthesia, antisense probes against the c-fos mRNA sequence were injected into the medial vestibular and prepositus nuclei unilaterally prior to a unilateral surgical labyrinthectomy. Anionic dyes, which did not interact with the oligonucleotides, were used to mark the injection site and help determine the extent of diffusion. The antiFos oligonucleotide injections reduced Fos expression at the injection site in neurons which normally express Fos after the lesion, and also affected circling behavior induced by hemilabyrinthectomy. With both ipsilateral and contralateral medial vestibular and prepositus nuclei injections, less ipsilateral and more contralateral circling was noted in animals injected with antiFos injections as compared to non-injected controls. The degree of change in these behaviors was dependent upon the side of the injection. Histologically, antiFos injections reduced the number of Fos immunolabeled neurons around the injection site, and increased Fos expression contralaterally. The correlation of the number of neurons with Fos expression to turning behavior was stronger for contralateral versus ipsilateral turns, and for neurons in the caudal and ipsilateral sub-regions of the medial vestibular and prepositus nuclei. The results are discussed in terms of neuronal firing activity versus translational activity based on the asymmetrical expression of the Fos inducible transcription factor in the medial vestibular and prepositus nuclei. Although ubiquitous in the brain, transcription factors like Fos can serve localized and specific roles in sensory-specific adaptive stimuli. Antisense injections can be an effective procedure for localized intervention into complex physiological functions, e.g. vestibular compensation. Copyright 1999 Elsevier Science B.V.
Where is straight ahead to a patient with unilateral vestibular loss?
Saj, Arnaud; Honoré, Jacques; Bernard-Demanze, Laurence; Devèze, Arnaud; Magnan, Jacques; Borel, Liliane
2013-05-01
The vestibular system is classically associated with postural control, oculomotor reflexes and self-motion perception. The patients with vestibular loss are primarily concerned with balance and gait problems including head and trunk tilt and walking trajectory deviation to the lesioned side. These long-lasting postural and locomotor biases are thought to originate from changes in spatial perception of self. Indeed, we show here that vestibular cues are necessary for an accurate representation of body orientation. Patients with right (RVN; n=11) or left vestibular neurotomy (LVN; 9) as a treatment for Menière's disease were compared with 10 healthy controls. The subjective straight ahead (SSA) was investigated using a method disentangling lateral shift and tilt components of error. In the horizontal plane, subjects were required to align a rod with their body midline. In the frontal plane, they were asked to align the rod with the midline of head or trunk. The analysis of SSA clearly showed distinct results according to the side of the lesion. The LVN patients had a contralesional lateral shift of SSA. In addition, they showed an ipsilesional tilt, more severe for the head than for the trunk. By contrast, in RVN patients, the representation of the body midline was fairly accurate in both the horizontal and frontal planes and did not differ from that of control subjects. The present study shows deviations in body orientation representation after unilateral vestibular loss. Deviations are observed in the horizontal as well as in the frontal planes. Interestingly, only patients with left vestibular loss were concerned with these changes in perception of self-orientation in space. These data support the hypothesis of an asymmetric vestibular function in healthy subjects and confirm the similarity of functional disorders in patients with vestibular deficits or spatial neglect. For the first time, this similarity is found at the level of body representation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nelson, M Dawn; Akin, Faith W; Riska, Kristal M; Andresen, Kimberly; Mondelli, Stephanie Stamps
2016-02-01
The past decade has yielded changes in the education and training of audiologists and technological advancements that have become widely available for clinical balance function testing. It is unclear if recent advancements in vestibular instrumentation or the transition to an AuD degree have affected audiologists' vestibular clinical practice or opinions. The purpose of this study was to examine predominant opinions and practices for vestibular assessment (VA) and vestibular rehabilitation (VR) over the past decade and between master's- and AuD-level audiologists. A 31-question survey was administered to audiologists via U.S. mail in 2003 (N = 7,500) and electronically in 2014 (N = 9,984) with a response rate of 12% and 10%, respectively. There was an increase in the number of audiologists providing vestibular services in the past decade. Most respondents agreed that audiologists were the most qualified professionals to conduct VA. Less than half of the surveyed audiologists felt that graduate training was adequate for VA. AuD-level audiologists were more satisfied with graduate training and felt more comfortable performing VA compared to master's-level audiologists. Few respondents agreed that audiologists were the most qualified professionals to conduct VR or that graduate training prepared them to conduct VR. The basic vestibular test battery was unchanged across surveys and included: calorics, smooth pursuit, saccades, search for spontaneous, positional, gaze and optokinetic nystagmus, Dix-Hallpike, case history, and hearing evaluation. There was a trend toward greater use of air (versus water) calorics, videonystagmography (versus electronystagmography), and additional tests of vestibular and balance function. VA is a growing specialty area in the field of audiology. Better training opportunities are needed to increase audiologists' knowledge and skills for providing vestibular services. The basic tests performed during VA have remained relatively unchanged over the past 10 yr. American Academy of Audiology.
Choi, Ji Eun; Kim, Yi-Kyung; Cho, Young Sang; Lee, Kieun; Park, Hyun Woo; Yoon, Sung Hoon; Kim, Hyung-Jin; Chung, Won-Ho
2017-01-01
The purpose of this study was to prove the hypothesis that caloric response in Ménière's disease (MD) is reduced by hydropic expansion of the vestibular labyrinth, not by vestibular hypofunction, by evaluating the correlation morphologically using an intravenous Gadolinium (IV-Gd) inner ear MRI. In study I, the prevalence of abnormal video Head Impulse Test (vHIT) results among the patients with definite unilateral MD (n = 24) and vestibular neuritis (VN) (n = 22) were investigated. All patients showed abnormal canal paresis (CP) (> 26%) on caloric tests. The prevalence of abnormal vHIT in patients with abnormal CP was significantly lower in MD patients (12.5%) than that in VN patients (81.8%) (p < 0.001). In study II, morphological correlation between caloric tests and vestibular hydrops level was evaluated in unilateral MD patients (n = 16) who had normal vHIT results. Eleven patients (61%) had abnormal CP. After taking the images of IV-Gd inner ear MRI, the vestibular hydrops ratio (endolymph volume/total lymph volume = %VH) was measured. In addition, the relative vestibular hydrops ratio (%RVH = (%VHaffected ear-%VHunaffected ear) / (%VHaffected ear + %VHunaffected ear)) was calculated. Each ratio (%VH and %RVH) was compared with average peak slow phase velocity (PSPV) and CP, respectively. In the MD patients, %VH of the affected ear correlated significantly with mean PSPV on the same side (rs = -0.569, p = 0.024), while %RVH correlated significantly with CP (rs = 0.602, p = 0.014). In most MD patients (87.5%) compared to VN patients, vHIT results were normal even though the caloric function was reduced. In addition, the reduced caloric function with normal vHIT was related to the severity of the vestibular hydrops measured by the IV-Gd inner ear MRI. These findings concluded that the abnormal caloric tests with normal vHIT in MD indicated severe endolymphatic hydrops rather than vestibular hypofunction.
FAR and NEAR Target Dynamic Visual Acuity: A Functional Assessment of Canal and Otolith Performance
NASA Technical Reports Server (NTRS)
Peters, Brian T.; Brady, Rachel A.; Landsness, Eric C.; Black, F. Owen; Bloomberg, Jacob J.
2004-01-01
Upon their return to earth, astronauts experience the effects of vestibular adaptation to microgravity. The postflight changes in vestibular information processing can affect postural and locomotor stability and may lead to oscillopsia during activities of daily living. However, it is likely that time spent in microgravity affects canal and otolith function differently. As a result, the isolated rotational stimuli used in traditional tests of canal function may fail to identify vestibular deficits after spaceflight. Also, the functional consequences of deficits that are identified often remain unknown. In a gaze control task, the relative contributions of the canal and otolith organs are modulated with viewing distance. The ability to stabilize gaze during a perturbation, on visual targets placed at different distances from the head may therefore provide independent insight into the function of this systems. Our goal was to develop a functional measure of gaze control that can also offer independent information about the function of the canal and otolith organs.
Symptoms Associated with Vestibular Impairment in Veterans with Posttraumatic Stress Disorder
2016-01-01
Posttraumatic stress disorder (PTSD) is a chronic and disabling, anxiety disorder resulting from exposure to life threatening events such as a serious accident, abuse or combat (DSM IV definition). Among veterans with PTSD, a common complaint is dizziness, disorientation and/or postural imbalance in environments such as grocery stores and shopping malls. The etiology of these symptoms in PTSD is poorly understood and some attribute them to anxiety or traumatic brain injury. There is a possibility that an impaired vestibular system may contribute to these symptoms since, symptoms of an impaired vestibular system include dizziness, disorientation and postural imbalance. To our knowledge, this is the first report to describe the nature of vestibular related symptoms in veterans with and without PTSD. We measured PTSD symptoms using the Posttraumatic Stress Disorder Checklist (PCL-C) and compared it to responses on vestibular function scales including the Dizziness Handicap Inventory (DHI), the Vertigo Symptom Scale Short Form (VSS-SF), the Chambless Mobility Inventory (CMI), and the Neurobehavioral Scale Inventory (NSI) in order to identify vestibular-related symptoms. Our findings indicate that veterans with worse PTSD symptoms report increased vestibular related symptoms. Additionally veterans with PTSD reported 3 times more dizziness related handicap than veterans without PTSD. Veterans with increased avoidance reported more vertigo and dizziness related handicap than those with PTSD and reduced avoidance. We describe possible contributing factors to increased reports of vestibular symptoms in PTSD, namely, anxiety, a vestibular component as well as an interactive effect of anxiety and vestibular impairment. We also present some preliminary analyses regarding the contribution of TBI. This data suggests possible evidence for vestibular symptom reporting in veterans with PTSD, which may be explained by possible underlying vestibular impairment, worthy of further exploration. PMID:28033352
Handler, Michael; Schier, Peter P; Fritscher, Karl D; Raudaschl, Patrik; Johnson Chacko, Lejo; Glueckert, Rudolf; Saba, Rami; Schubert, Rainer; Baumgarten, Daniel; Baumgartner, Christian
2017-01-01
Our sense of balance and spatial orientation strongly depends on the correct functionality of our vestibular system. Vestibular dysfunction can lead to blurred vision and impaired balance and spatial orientation, causing a significant decrease in quality of life. Recent studies have shown that vestibular implants offer a possible treatment for patients with vestibular dysfunction. The close proximity of the vestibular nerve bundles, the facial nerve and the cochlear nerve poses a major challenge to targeted stimulation of the vestibular system. Modeling the electrical stimulation of the vestibular system allows for an efficient analysis of stimulation scenarios previous to time and cost intensive in vivo experiments. Current models are based on animal data or CAD models of human anatomy. In this work, a (semi-)automatic modular workflow is presented for the stepwise transformation of segmented vestibular anatomy data of human vestibular specimens to an electrical model and subsequently analyzed. The steps of this workflow include (i) the transformation of labeled datasets to a tetrahedra mesh, (ii) nerve fiber anisotropy and fiber computation as a basis for neuron models, (iii) inclusion of arbitrary electrode designs, (iv) simulation of quasistationary potential distributions, and (v) analysis of stimulus waveforms on the stimulation outcome. Results obtained by the workflow based on human datasets and the average shape of a statistical model revealed a high qualitative agreement and a quantitatively comparable range compared to data from literature, respectively. Based on our workflow, a detailed analysis of intra- and extra-labyrinthine electrode configurations with various stimulation waveforms and electrode designs can be performed on patient specific anatomy, making this framework a valuable tool for current optimization questions concerning vestibular implants in humans.
Postural Compensation for Unilateral Vestibular Loss
Peterka, Robert J.; Statler, Kennyn D.; Wrisley, Diane M.; Horak, Fay B.
2011-01-01
Postural control of upright stance was investigated in well-compensated, unilateral vestibular loss (UVL) subjects compared to age-matched control subjects. The goal was to determine how sensory weighting for postural control in UVL subjects differed from control subjects, and how sensory weighting related to UVL subjects’ functional compensation, as assessed by standardized balance and dizziness questionnaires. Postural control mechanisms were identified using a model-based interpretation of medial–lateral center-of-mass body-sway evoked by support-surface rotational stimuli during eyes-closed stance. The surface-tilt stimuli consisted of continuous pseudorandom rotations presented at four different amplitudes. Parameters of a feedback control model were obtained that accounted for each subject’s sway response to the surface-tilt stimuli. Sensory weighting factors quantified the relative contributions to stance control of vestibular sensory information, signaling body-sway relative to earth-vertical, and proprioceptive information, signaling body-sway relative to the surface. Results showed that UVL subjects made significantly greater use of proprioceptive, and therefore less use of vestibular, orientation information on all tests. There was relatively little overlap in the distributions of sensory weights measured in UVL and control subjects, although UVL subjects varied widely in the amount they could use their remaining vestibular function. Increased reliance on proprioceptive information by UVL subjects was associated with their balance being more disturbed by the surface-tilt perturbations than control subjects, thus indicating a deficiency of balance control even in well-compensated UVL subjects. Furthermore, there was some tendency for UVL subjects who were less able to utilize remaining vestibular information to also indicate worse functional compensation on questionnaires. PMID:21922014
Lee, Jeon Mi; Kim, Mi Joo; Kim, Jin Won; Shim, Dae Bo; Kim, Jinna; Kim, Sung Huhn
2017-07-01
To investigate the clinical significance of vibration-induced nystagmus (VIN) in unilateral vestibular asymmetry and vestibular schwannoma. Thirteen patients with vestibular schwannoma underwent the VIN test, in which stimulation was applied to the mastoid processes and sternocleidomastoid (SCM) muscles on the ipsilateral and contralateral sides of lesions. Preoperative VIN was measured, and changes in VIN were followed up for 6months after tumor removal. Significance of VIN was determined by evaluation of its sensitivity, correlation with vestibular function tests and tumor volume, and postoperative changes. The overall pre and postoperative sensitivities of VIN were 92.3% and 100%, respectively, considering stimulation at all four sites. Maximum slow-phase velocity (MSPV) of VIN was linearly correlated with caloric weakness and tumor volume, especially when stimulation was applied to the SCM muscle. Postoperative MSPV of VIN exhibited stronger linear correlation with postoperative changes in canal paresis value and inverse correlation with tumor size upon stimulation of the ipsilateral SCM muscle than upon stimulation of other sites. During the 6-month follow-up period, persistence of VIN without changes in MSPV was observed even after vestibular compensation. Evoking VIN by stimulation of the mastoid processes and SCM muscles is effective for detecting vestibular asymmetry. It could also help determine the degree of vestibular asymmetry and volume of vestibular schwannoma if stimulation is applied to the SCM muscle. The results of this study could provide clues for the basic application of VIN in patients with vestibular loss and vestibular schwannoma. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
van Dinther, J J S; Van Rompaey, V; Somers, T; Zarowski, A; Offeciers, F E
2011-01-01
To assess the prognostic significance of pre-operative electrophysiological tests for facial nerve outcome in vestibular schwannoma surgery. Retrospective study design in a tertiary referral neurology unit. We studied a total of 123 patients with unilateral vestibular schwannoma who underwent microsurgical removal of the lesion. Nine patients were excluded because they had clinically abnormal pre-operative facial function. Pre-operative electrophysiological facial nerve function testing (EPhT) was performed. Short-term (1 month) and long-term (1 year) post-operative clinical facial nerve function were assessed. When pre-operative facial nerve function, evaluated by EPhT, was normal, the outcome from clinical follow-up at 1-month post-operatively was excellent in 78% (i.e. HB I-II) of patients, moderate in 11% (i.e. HB III-IV), and bad in 11% (i.e. HB V-VI). After 1 year, 86% had excellent outcomes, 13% had moderate outcomes, and 1% had bad outcomes. Of all patients with normal clinical facial nerve function, 22% had an abnormal EPhT result and 78% had a normal result. No statistically significant differences could be observed in short-term and long-term post-operative facial function between the groups. In this study, electrophysiological tests were not able to predict facial nerve outcome after vestibular schwannoma surgery. Tumour size remains the best pre-operative prognostic indicator of facial nerve function outcome, i.e. a better outcome in smaller lesions.
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott
2011-01-01
Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.
Gaal, Botond; Jóhannesson, Einar Örn; Dattani, Amit; Magyar, Agnes; Wéber, Ildikó; Matesz, Clara
2015-09-01
We have previously found that unilateral labyrinthectomy is accompanied by modification of hyaluronan and chondroitin sulfate proteoglycan staining in the lateral vestibular nucleus of rats and the time course of subsequent reorganization of extracellular matrix assembly correlates to the restoration of impaired vestibular function. The tenascin-R has repelling effect on pathfinding during axonal growth/regrowth, and thus inhibits neural circuit repair. By using immunohistochemical method, we studied the modification of tenascin-R expression in the superior, medial, lateral, and descending vestibular nuclei of the rat following unilateral labyrinthectomy. On postoperative day 1, tenascin-R reaction in the perineuronal nets disappeared on the side of labyrinthectomy in the superior, lateral, medial, and rostral part of the descending vestibular nuclei. On survival day 3, the staining intensity of tenascin-R reaction in perineuronal nets recovered on the operated side of the medial vestibular nucleus, whereas it was restored by the time of postoperative day 7 in the superior, lateral and rostral part of the descending vestibular nuclei. The staining intensity of tenascin-R reaction remained unchanged in the caudal part of the descending vestibular nucleus bilaterally. Regional differences in the modification of tenascin-R expression presented here may be associated with different roles of individual vestibular nuclei in the compensatory processes. The decreased expression of the tenascin-R may suggest the extracellular facilitation of plastic modifications in the vestibular neural circuit after lesion of the labyrinthine receptors.
Study of adaptation to altered gravity through systems analysis of motor control.
Fox, R A; Daunton, N G; Corcoran, M L
1998-01-01
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.
Study of adaptation to altered gravity through systems analysis of motor control
NASA Astrophysics Data System (ADS)
Fox, R. A.; Daunton, N. G.; Corcoran, M. L.
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.
Hsu, Su-Yi; Fang, Te-Yung; Yeh, Shih-Ching; Su, Mu-Chun; Wang, Pa-Chun; Wang, Victoria Y
2017-08-01
The purpose of this study was to evaluate a three-dimensional, virtual reality system for vestibular rehabilitation in patients with intractable Ménière's disease and chronic vestibular dysfunction. We included 70 patients (36 for study, 34 as control) with a chronic imbalance problem caused by uncompensated Ménière's disease. The virtual reality vestibular rehabilitation comprised four training tasks (modified Cawthorne-Cooksey exercises: eye, head, extension, and coordination exercises) performed in six training sessions (in 4 weeks). Measurements of the task scores and balance parameters obtained at the baseline and after final training sessions were compared. A significant improvement was observed in extension and coordination scores. Patients in the early stages of Ménière's disease had a significantly greater improvement in the center of gravity sway and trajectory excursion in the mediolateral direction than did patients in the late stages of Ménière's disease. Mild functional disability attributable to Ménière's disease was a predictor of improvement in the statokinesigram and maximum trajectory excursion in the anteroposterior direction after rehabilitation. The control group showed no significant improvement in almost all parameters. Virtual reality vestibular rehabilitation may be useful in patients with Ménière's disease, particular those in the early stages or having mild functional disability. Implication for rehabilitation Chronic imbalance caused by uncompensated Ménière's disease is an indication for vestibular rehabilitation. The interactive virtual reality video game, when integrated into vestibular rehabilitation exercise protocol, may assist patients who have mild disability Ménière's disease and who cannot benefit from treatment with drugs or surgery. The initial data from this study support the applicability of three-dimensional virtual reality technology in vestibular rehabilitation programs. The technology gives professionals a new tool to guide patients for vestibular rehabilitation exercises through three-dimensional virtual reality video game playing. The virtual reality vestibular exercise game can provide patients a step-wise, interactive, dynamic, three-dimensional, and interesting rehabilitation environment.
Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.
Georgi, Justin A; Sipla, Justin S; Forster, Catherine A
2013-01-01
Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.
Turning Semicircular Canal Function on Its Head: Dinosaurs and a Novel Vestibular Analysis
Georgi, Justin A.; Sipla, Justin S.; Forster, Catherine A.
2013-01-01
Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function. PMID:23516495
Surgical management of vestibular schwannoma: attempted preservation of hearing and facial function.
Youssef, T F; Matter, A; Ahmed, M R
2013-05-01
Vestibular schwannomas are benign tumours which usually originate from the vestibular portion of the VIIIth cranial nerve. Treatment options include observation with serial imaging, stereotactic radiation and microsurgical removal. The goal of surgery was complete eradication of tumour with preservation of hearing and facial nerve function. A retrospective review was undertaken of 24 cases of vestibular schwannoma jointly operated upon by a team of neurosurgeons and otologists at the Suez Canal University Hospital, with assessment of VIIth and VIIIth cranial nerve function, tumour size, and extent of growth. All surgery utilised a retromastoid, suboccipital approach. Complete tumour removal was achieved in 19 patients. Anatomical preservation of the facial nerve was possible in 66.6 per cent of patients. Pre-operative, useful hearing was present in four patients, and preserved in 80 per cent. Cerebrospinal fluid leakage was diagnosed in two (8.3 per cent) patients, who responded to conservative therapy. The retromastoid, suboccipital surgical approach to the skull base can be safely and successfully achieved using a microsurgical technique, with minimal or no damage to neurovascular structures, even for large tumours.
Research on biophysical evaluation of the human vestibular system
NASA Technical Reports Server (NTRS)
Young, L. R.
1974-01-01
The human vestibular function was studied by the combined approach of advanced measurement and mathematical modelling. Fundamental measurements of some physical properties of endolymph and perilymph, combined with nystagmus measurements and fluid mechanical analysis of semicircular canal function furthered the theory of canal mechanical response to angular acceleration, caloric stimulation and relating linear acceleration. The effects of adaptation seen at low frequency angular stimulation were studied and modelled to remove some shortcomings of the torsion pendulum models. Otolith function was also studied experimentally and analytically, leading to a new set of models for subjective orientation. Applications to special problems of space, including the case of rotating spacecraft were investigated and the interaction of visual and vestibular cues and their relation to proprioceptive information was explored relative to postural control.
Vestibular receptors contribute to cortical auditory evoked potentials.
Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G
2014-03-01
Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Sensory processing in the vestibular nuclei during active head movements
NASA Technical Reports Server (NTRS)
Gdowski, G. T.; Boyle, R.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)
2000-01-01
Many secondary vestibular neurons are sensitive to head on trunk rotation during reflex-induced and voluntary head movements. During passive whole body rotation the interaction of head on trunk signals related to the vestibulo-collic reflex with vestibular signals increases the rotational gain of many secondary vestibular neurons, including many that project to the spinal cord. In some units, the sensitivity to head on trunk and vestibular input is matched and the resulting interaction produces an output that is related to the trunk velocity in space. In other units the head on trunk inputs are stronger and the resulting interaction produces an output that is larger during the reflex. During voluntary head movements, inputs related to head on trunk movement combine destructively with vestibular signals, and often cancel the sensory reafferent consequences of self-generated movements. Cancellation of sensory vestibular signals was observed in all of the antidromically identified secondary vestibulospinal units, even though many of these units were not significantly affected by reflexive head on trunk movements. The results imply that the inputs to vestibular neurons related to head on trunk rotation during reflexive and voluntary movements arise from different sources. We suggest that the relative strength of reflexive head on trunk input to different vestibular neurons might reflect the different functional roles they have in controlling the posture of the neck and body.
Clinical and Demographic Features of Vertigo: Findings from the REVERT Registry
Agus, Sam; Benecke, Heike; Thum, Cornelia; Strupp, Michael
2013-01-01
Introduction: Despite being a common disease, data on vertigo management in a real-world setting are scarce. Aims: To provide information on the vertigo and its management in a real-world setting. Methods: Data were collected from 4,294 patients with vertigo in 13 countries over 28 months via a multi-national, non-interventional observational study (the so-called REVERT registry). Data included medical history and details of anti-vertigo therapy. “Clinical global impression” (CGI) of severity (CGI-S) was assessed at baseline (V1) and then at 6 months follow-up (V2) along with CGI change (CGI-C). All variables were analyzed descriptively. Results: The majority of patients were female, >40 years of age, and almost half had co-morbid cardio-vascular disease. Diagnoses were split into four categories: 37.2% “other vertigo of peripheral vestibular origin,” 26.9% benign paroxysmal positional vertigo (BPPV), 20.5% “peripheral vestibular vertigo of unknown origin,” and 15.4% Ménière’s disease (MD). Betahistine was the most commonly prescribed therapy prior to and after enrollment, and was followed by piracetam, ginkgo biloba, and diuretics. MD had the highest proportion of betahistine treated patients. Almost half of patients were “moderately ill” at V1 based on CGI-S. At V2, patient distribution moved toward “less severe illness” (91.0% improved). The greatest improvements were in the more severely ill, and those with BPPV or “other vertigo of peripheral origin.” Conclusion: There was a reduction in illness severity over the course of the study, some of which is likely to be due to pharmacological intervention. Further studies are needed to confirm these results. PMID:23675366
Indovina, Iole; Riccelli, Roberta; Staab, Jeffrey P; Lacquaniti, Francesco; Passamonti, Luca
2014-11-01
Strong links between anxiety, space-motion perception, and vestibular symptoms have been recognized for decades. These connections may extend to anxiety-related personality traits. Psychophysical studies showed that high trait anxiety affected postural control and visual scanning strategies under stress. Neuroticism and introversion were identified as risk factors for chronic subjective dizziness (CSD), a common psychosomatic syndrome. This study examined possible relationships between personality traits and activity in brain vestibular networks for the first time using functional magnetic resonance imaging (fMRI). Twenty-six right-handed healthy individuals underwent fMRI during sound-evoked vestibular stimulation. Regional brain activity and functional connectivity measures were correlated with personality traits of the Five Factor Model (neuroticism, extraversion-introversion, openness, agreeableness, consciousness). Neuroticism correlated positively with activity in the pons, vestibulo-cerebellum, and para-striate cortex, and negatively with activity in the supra-marginal gyrus. Neuroticism also correlated positively with connectivity between pons and amygdala, vestibulo-cerebellum and amygdala, inferior frontal gyrus and supra-marginal gyrus, and inferior frontal gyrus and para-striate cortex. Introversion correlated positively with amygdala activity and negatively with connectivity between amygdala and inferior frontal gyrus. Neuroticism and introversion correlated with activity and connectivity in cortical and subcortical vestibular, visual, and anxiety systems during vestibular stimulation. These personality-related changes in brain activity may represent neural correlates of threat sensitivity in posture and gaze control mechanisms in normal individuals. They also may reflect risk factors for anxiety-related morbidity in patients with vestibular disorders, including previously observed associations of neuroticism and introversion with CSD. Copyright © 2014 Elsevier Inc. All rights reserved.
Vestibular dysfunction in the adult CBA/CaJ mouse after lead and cadmium treatment
Klimpel, Katarina E. M.; Lee, Min Young; King, W. Michael; Raphael, Yehoash; Schacht, Jochen; Neitzel, Richard L.
2017-01-01
OBJECTIVES The vestibular system allows the perception of position and motion and its dysfunction presents as motion impairment, vertigo and balance abnormalities, leading to debilitating psychological discomfort and difficulty performing daily tasks. Although declines and deficits in vestibular function have been noted in rats exposed to lead (Pb) and in humans exposed to Pb and cadmium (Cd), no studies have directly examined the pathological and pathophysiological effects upon the vestibular apparatus of the inner ear. METHODS Eighteen young adult mice were exposed through their drinking water (3 mM Pb, 300 μM Cd, or a control treatment) for 10 weeks. Before and after treatment, they underwent a vestibular assessment, consisting of a rotarod performance test and a novel head stability test to measure the vestibulocolic reflex. At the conclusion of the study, the utricles were analyzed immunohistologically for condition of hair cells and nerve fibers. RESULTS Increased levels of Pb exposure correlated with decreased head stability in space; no significant decline in performance on rotarod test was found. No damage to the hair cells or the nerve fibers of the utricle was observed in histology. CONCLUSIONS The young adult CBA/CaJ mouse is able to tolerate occupationally-relevant Pb and Cd exposure well, but the correlation between Pb exposure and reduced head stability suggests that Pb exposure causes a decline in vestibular function. PMID:27257108
O'Keeffe, Mary G; Thorne, Peter R; Housley, Gary D; Robson, Simon C; Vlajkovic, Srdjan M
2012-01-01
A complex extracellular nucleotide signalling system acting on P2 receptors is involved in regulation of cochlear function in the mammalian inner ear. Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) are ectonucleotidases that regulate P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from the CD39/ENTPD family (NTPDase1-8) are expressed in the adult rat cochlea, but their expression and distribution in the vestibular end organ is unknown. This report demonstrates selective expression of NTPDase6 by rat vestibular hair cells. Hair cells transducing both angular acceleration (crista ampullaris) and static head position (maculae of the utricle and saccule) exhibited strong immunolabelling with a bias towards the sensory pole and in particular, the hair cell bundle. NTPDase6 is an intracellular enzyme that can be released in a soluble form from cell cultures and shows an enzymatic preference for nucleoside 5'-diphosphates, such as guanosine 5'-diphosphate (GDP) and uridine 5'-diphosphate (UDP). The main function of NTPDase6 may be the regulation of nucleotide levels in cellular organelles by regulating the conversion of nucleotides to nucleosides. NTPDase6 immunolocalisation in the vestibular end organ could be linked to the regulation of P2 receptor signalling and sensory transduction, including maintenance of vestibular hair bundles.
Vestibular (dys)function in children with sensorineural hearing loss: a systematic review.
Verbecque, Evi; Marijnissen, Tessa; De Belder, Niels; Van Rompaey, Vincent; Boudewyns, An; Van de Heyning, Paul; Vereeck, Luc; Hallemans, Ann
2017-06-01
The objective of this study is to provide an overview of the prevalence of vestibular dysfunction in children with SNHL classified according to the applied test and its corresponding sensitivity and specificity. Data were gathered using a systematic search query including reference screening. Pubmed, Web of Science and Embase were searched. Strategy and reporting of this review was based on the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines. Methodological quality was assessed with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. All studies, regardless the applied vestibular test, showed that vestibular function differs significantly between children with hearing loss and normal hearing (p < 0.05). Compared with caloric testing, the sensitivity of the Rotational Chair Test (RCT) varies between 61 and 80% and specificity between 21 and 80%, whereas this was, respectively, 71-100% and 30-100% for collic Vestibular Evoked Myogenic Potentials (cVEMP). Compared with RCT, the sensitivity was 88-100% and the specificity was 69-100% for the Dynamic Visual Acuity test, respectively, 67-100% and 71-100% for the (video) Head Impulse Test and 83% and 86% for the ocular VEMP. Currently, due to methodological shortcoming, evidence on sensitivity and specificity of vestibular tests is unknown to moderate. Future research should focus on adequate sample sizes (subgroups >30).
Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst
NASA Technical Reports Server (NTRS)
Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.
2016-01-01
The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked myogenic potentials, indicated by eye muscle responses. We further assessed subjects' postural control and its correlation with vestibular cortical activity. Our results provide the first evidence of using skull taps to elicit vestibular activity inside the MRI scanner. By conducting conjunction analyses we showed that skull taps elicit the same activation pattern as auditory tone bursts (superior temporal gyrus), and both modes of stimulation activate previously identified vestibular cortical regions. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects. This further supports that the skull tap could replace auditory tone burst stimulation in clinical interventions and basic science research. Moreover, we observed that greater vestibular activation is associated with better balance control. We showed that not only the quality of balance (indicated by the amount of body sway) but also the ability to maintain balance for a longer time (indicated by the balance time) was associated with individuals' vestibular cortical excitability. Our findings support an association between vestibular cortical activity and individual differences in balance. In sum, we found that the skull tap stimulation results in activation of canonical vestibular cortex, suggesting an equally valid, but more tolerable stimulation method compared to auditory tone bursts. This is of high importance in longitudinal vestibular assessments, in which minimizing aversive effects may contribute to higher protocol adherence.
Vestibular responses to loud dance music: a physiological basis of the "rock and roll threshold"?
Todd, N P; Cody, F W
2000-01-01
In this paper new evidence is provided to indicate that vestibular responses may be obtained from loud dance music for intensities above 90 dB(A) SPL (Impulse-weighted). In a sample of ten subjects acoustically evoked EMG were obtained from the sternocleidomastoid muscle in response to a sample of techno music typical of that which may be experienced in a dance club. Previous research has shown that this response is vestibularly mediated since it can be obtained in subjects with loss of cochlear function, but is absent in subjects with loss of vestibular function (Colebatch et al. [J. Neurol. Neurosurg. Psychiatr. 57, 190-197 (1994)]. Given that pleasurable sensations of self-motion are widely sought after by more normal means of vestibular stimulation, it is suggested that acoustically evoked sensations of self-motion may account for the compulsion to exposure to loud music. Given further the similarity between the thresholds found, and the intensities and frequency distributions that are typical in rock concerts and dance clubs, it is also suggested that this response may be a physiological basis for the minimum loudness necessary for rock and dance music to work-the "rock and roll threshold".
Development of vestibular afferent projections into the hindbrain and their central targets
NASA Technical Reports Server (NTRS)
Maklad, Adel; Fritzsch, Bernd
2003-01-01
In contrast to most other sensory systems, hardly anything is known about the neuroanatomical development of central projections of primary vestibular neurons and how their second order target neurons develop. Recent data suggest that afferent projections may develop not unlike other sensory systems, forming first the overall projection by molecular means followed by an as yet unspecified phase of activity mediated refinement. The latter aspect has not been tested critically and most molecules that guide the initial projection are unknown.The molecular and topological origin of the vestibular and cochlear nucleus neurons is also only partially understood. Auditory and vestibular nuclei form from several rhombomeres and a given rhombomere can contribute to two or more auditory or vestibular nuclei. Rhombomere compartments develop as functional subdivisions from a single column that extends from the hindbrain to the spinal cord. Suggestions are provided for the molecular origin of these columns but data on specific mutants testing these proposals are not yet available. Overall, the functional significance of both overlapping and segregated projections are not yet fully experimentally explored in mammals. Such lack of details of the adult organization compromises future developmental analysis.
False-Positive Head-Impulse Test in Cerebellar Ataxia
Kremmyda, Olympia; Kirchner, Hanni; Glasauer, Stefan; Brandt, Thomas; Jahn, Klaus; Strupp, Michael
2012-01-01
The objective of this study was to compare the findings of the bedside head-impulse test (HIT), passive head rotation gain, and caloric irrigation in patients with cerebellar ataxia (CA). In 16 patients with CA and bilaterally pathological bedside HIT, vestibuloocular reflex (VOR) gains were measured during HIT and passive head rotation by scleral search coil technique. Eight of the patients had pathologically reduced caloric responsiveness, while the other eight had normal caloric responses. Those with normal calorics showed a slightly reduced HIT gain (mean ± SD: 0.73 ± 0.15). In those with pathological calorics, gains 80 and 100 ms after the HIT as well as the passive rotation VOR gains were significantly lower. The corrective saccade after head turn occurred earlier in patients with pathological calorics (111 ± 62 ms after onset of the HIT) than in those with normal calorics (191 ± 17 ms, p = 0.0064). We identified two groups of patients with CA: those with an isolated moderate HIT deficit only, probably due to floccular dysfunction, and those with combined HIT, passive rotation, and caloric deficit, probably due to a peripheral vestibular deficit. From a clinical point of view, these results show that the bedside HIT alone can be false-positive for establishing a diagnosis of a bilateral peripheral vestibular deficit in patients with CA. PMID:23162531
Schlicksup, Michael D; Van Winkle, Thomas J; Holt, David E
2009-10-01
To determine the prevalence of nonneoplastic middle ear disease among cats undergoing necropsy and the prevalence of clinical abnormalities in cats in which nonneoplastic middle ear disease was identified. Retrospective case series. 59 cats that underwent necropsy between January 1991 and August 2007. Medical records were searched to identify cats in which nonneoplastic middle ear disease was identified at necropsy. For cats included in the study, data that were recorded included signalment, initial complaint, whether the cat had any clinical signs of middle or external ear disease, whether the cat had upper respiratory tract disease, necropsy diagnosis, gross appearance of the bullae, and reason for euthanasia. Signs of middle ear disease that were considered included unilateral peripheral vestibular disease without motor deficits, Horner syndrome, and facial nerve paralysis. Of the 3,442 cats that underwent necropsy during the study period, 59 (1.7%) had nonneoplastic middle ear disease. Six of the 59 (10%) cats, including 1 cat that was affected bilaterally, had clinical signs of middle ear disease. Of these, 5 had signs of unilateral peripheral vestibular disease, and 1 had Horner syndrome. Results suggested that most cats with nonneoplastic middle ear disease did not have associated clinical signs. Findings may be of clinical relevance for cats in which middle ear disease is identified as an incidental finding during computed tomography or magnetic resonance imaging for unrelated diseases.
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.;
2014-01-01
Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after gravitational transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" - immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance to enhance information transfer by improving the brain's ability to detect vestibular signals (Vestibular Stochastic Resonance, VSR) especially when combined with balance training exercises such as sensorimotor adaptability (SA) training for rapid improvement in functional skill, for standing and mobility. This countermeasure to improve detection of vestibular signals is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation). To determine efficacy of vestibular stimulation on physiological and perceptual responses during otolith-canal conflicts and dynamic perturbations we have conducted a series of studies: We have shown that imperceptible binaural bipolar electrical stimulation of the vestibular system across the mastoids enhances balance performance in the mediolateral (ML) plane while standing on an unstable surface. We have followed up on the previous study showing VSR stimulation improved balance performance in both ML and anteroposterior planes while stimulating in the ML axis only. We have shown the efficacy of VSR stimulations on enhancing physiological and perceptual responses of whole-body orientation during low frequency perturbations (0.1 Hz) on the ocular motor system using a variable radius centrifuge on both physiological (using eye movements) and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). These results indicate that VSR can improve performance in sensory conflict scenarios like that experienced during space flight. We have showed the efficacy of VSR stimulation to improve balance and locomotor control on subjects exposed to continuous, sinusoidal lateral motion of the support surface while walking on a treadmill while viewing perceptually matched linear optic flow. We have shown the safety of short term continuous use of up to 4 hours of VSR stimulation and its efficacy in improving balance and locomotor function in Parkinson's Disease patients. This technique for improving vestibular signal detection may thus provide additional information to improve strategic abilities. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increased utilization of vestibular information and therefore serve to optimize and personalize the SA countermeasure prescription. This forms the basis of its usefulness both as a training modality and further help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight.
Sparrer, Ingo; Duong Dinh, Thien An; Ilgner, Justus; Westhofen, Martin
2013-03-01
The Nintendo® Wii Balance Board is a cost-effective and user-friendly alternative to other popular frequently used systems that aid vestibular compensation, particularly in elderly patients. In addition, further treatment in the home environment is possible. This cohort study was designed to investigate the impact of the Nintendo® Wii Balance Board as a visual compensation device after acute vestibular neuritis. Subjects were randomly assigned to one of two treatment groups. Group A (n = 37) performed customized exercises with the Nintendo® Wii Balance Board. Group B (n = 34) performed only two elected exercises as a control group for comparison of the results. Both groups underwent additive therapy with steroids (intravenous) in decreasing doses (250 mg decreasing to 25 mg over 10 days). The Sensory Organization Test (SOT), Dizziness Handicap Inventory (DHI), Vertigo Symptom Scale (VSS), and Tinneti questionnaire were evaluated immediately before treatment (baseline), at the end of treatment, i.e. at day 5, and after 10 weeks. The early use of a visual feedback system in the context of the balance training supports the central nervous vestibular compensation after peripheral labyrinthine disorders. Patients in group B (without training) required a longer in-patient stay (average 2.4 days, SD 0.4) compared with patients following early Wii rehabilitation. The absence of nystagmus under Frenzel's goggles in group A was observed 2.1 days (SD 0.5) earlier than in group B. Group A showed significantly better results in the SOT, DHI, VSS, and Tinneti questionnaire at all time points measured (p < 0.05).
Changes in the inner ear structures in cystic fibrosis patients.
Pauna, Henrique F; Monsanto, Rafael C; Kurata, Natsuko; Paparella, Michael M; Cureoglu, Sebahattin
2017-01-01
Although prolonged use of antibiotics is very common in cystic fibrosis (CF) patients, no studies have assessed the changes in both cochlear and peripheral vestibular systems in this population. We used human temporal bones to analyze the density of vestibular dark, transitional, and hair cells in specimens from CF patients who were exposed to several types of antibiotics, as compared with specimens from an age-matched control group with no history of ear disease or antibiotic use. Additionally, we analyzed the changes in the elements of the cochlea (hair cells, spiral ganglion neurons, and the area of the stria vascularis). Data was gathered using differential interference contrast microscopy and light microscopy. In the CF group, 83% of patients were exposed to some ototoxic drugs, such as aminoglycosides. As compared with the control group, the density of both type I and type II vestibular hair cells was significantly lower in all structures analyzed; the number of dark cells was significantly lower in the lateral and posterior semicircular canals. We noted a trend toward a lower number of both inner and outer cochlear hair cells at all turns of the cochlea. The number of spiral ganglion neurons in Rosenthal's canal at the apical turn of the cochlea was significantly lower; furthermore, the area of the stria vascularis at the apical turn of the cochlea was significantly smaller. Deterioration of cochlear and vestibular structures in CF patients might be related to their exposure to ototoxic antibiotics. Well-designed case-control studies are necessary to rule out the effect of CF itself. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Changes in the Inner Ear Structures in Cystic Fibrosis Patients
Pauna, Henrique F.; Monsanto, Rafael C.; Kurata, Natsuko; Paparella, Michael M.; Cureoglu, Sebahattin
2016-01-01
Objective Although prolonged use of antibiotics is very common in cystic fibrosis (CF) patients, no studies have assessed the changes in both cochlear and peripheral vestibular systems in this population. Methods We used human temporal bones to analyze the density of vestibular dark, transitional, and hair cells in specimens from CF patients who were exposed to several types of antibiotics, as compared with specimens from an age-matched control group with no history of ear disease or antibiotic use. Additionally, we analyzed the changes in the elements of the cochlea (hair cells, spiral ganglion neurons, and the area of the stria vascularis). Data was gathered using differential interference contrast microscopy and light microscopy. Results In the CF group, 83% of patients were exposed to some ototoxic drugs, such as aminoglycosides. As compared with the control group, the density of both type I and type II vestibular hair cells was significantly lower in all structures analyzed; the number of dark cells was significantly lower in the lateral and posterior semicircular canals. We noted a trend toward a lower number of both inner and outer cochlear hair cells at all turns of the cochlea. The number of spiral ganglion neurons in Rosenthal’s canal at the apical turn of the cochlea was significantly lower; furthermore, the area of the stria vascularis at the apical turn of the cochlea was significantly smaller. Conclusions Deterioration of cochlear and vestibular structures in CF patients might be related to their exposure to ototoxic antibiotics. Well-designed case-control studies are necessary to rule out the effect of CF itself. PMID:28012509
Video head impulse test: a review of the literature.
Alhabib, Salman F; Saliba, Issam
2017-03-01
Video head impulse test (vHIT) is a new testing which able to identify the overt and covert saccades and study the gain of vestibulo-ocular reflex (VOR) of each semicircular canal. The aim of this study is to review the clinical use of vHIT in patients with vestibular disorders in different diseases. PubMed and Cochrane databases were searched for all articles that defined vHIT, compared vHIT with another clinical test, and studied the efficacy of vHIT as diagnostic tools with vestibular disease. 37 articles about vHIT were reviewed. All articles studied the vHIT in English and French languages up to May 2015 were included in the review. Editorial articles or short comments, conference abstracts, animal studies, and language restriction were excluded from the review. Four systems were used in the literature to do the vHIT. vHIT is physiological quick test, which studied the VOR at high frequency of each semicircular canal by calculating the duration ratio between the head impulse and gaze deviation. vHIT is more sensitive than clinical head impulse test (cHIT), especially in patient with isolated covert saccades. vHIT test is diagnostic of vestibular weakness by gain reduction and the appearance of overt and covert saccades. If the vHIT is normal, then caloric test is mandatory to rule out a peripheral origin of vertigo. It is recommended to test each semicircular canal, as isolated vertical canal weakness was identified in the literature. More investigation would be required to determine the evolution of the VOR gain with the progression of the vestibular disease.
Yi, Chong; Wenping, Xiang; Hui, Xue; Xin, He; Xiue, Li; Jun, Zhang; Shangyong, Geng
2016-06-01
Vestibular paroxysmia (VP) is a rare episodic peripheral vestibular disorder that can cause acute short attacks of vertigo. This study aimed to compare the efficacy and acceptability of carbamazepine (CBZ), CBZ plus betahistine mesilate tablets (BMT) and oxcarbazepine (OXC) plus BMT in treating VP within 12 weeks. A retrospective analysis of data from 196 VP patients treated in our hospital was conducted. There were 73 patients receiving CBZ, 65 patients receiving CBZ+BMT and 58 patients receiving OXC+BMT. The frequency of vertigo, vertigo duration, vertigo score, response rate (RR) and side effects were compared between groups to assess efficacy and acceptability at the end of 12(th) week. After 12 weeks' treatment, the CBZ+BMT group had a greater reduction in the frequency of vertigo, vertigo duration and vertigo score than the other two groups. The RR was highest in the CBZ+BMT group, second in the OXC+BMT group and lowest in the CBZ group. The incidence of side-effects was highest in the CBZ group, second in the CBZ+BMT group and lowest in the OXC+BMT group. Two patients in the CBZ group were withdrawn. These results indicated that using BMT as an augmentation for CBZ or OXC might be a good choice in treating VP.
Use of betahistine in the treatment of peripheral vertigo.
Ramos Alcocer, Rubén; Ledezma Rodríguez, José Gregorio; Navas Romero, Antonio; Cardenas Nuñez, José Luis; Rodríguez Montoya, Vicente; Deschamps, Jose Junior; Liviac Ticse, Jorge Anibal
2015-01-01
Clinical studies and meta-analyses demonstrated that betahistine is effective and safe in the treatment of Ménière's disease, BPPV (benign paroxysmal positional vertigo), vestibular neuronitis, and other types of peripheral vertigo. The goal of this paper is to review the pharmacological profile of betahistine and the evidence for its effectiveness and safety in the treatment of peripheral vertigo. Selection criteria for the publications on betahistine included randomized clinical trials that evaluated the effectiveness and safety of betahistine vs placebo or active control in the treatment of peripheral vertigo. Recent meta-analyses were also included. Databases searched included PubMed, the Cochrane Ear, Nose and Throat Disorders Group Trials Register, and ICTRP. The review also presents an update on the mechanisms of action, pharmacodynamics, and pharmacokinetics of betahistine. Efficacy and safety of betahistine has been demonstrated in numerous clinical trials. The precise mechanism of action of betahistine is still not completely understood, but the clinical experience demonstrated the benefit of betahistine in different types of peripheral vertigo. In more than 40 years of clinical use, betahistine has shown an excellent safety profile with the usual dose range from 8-48 mg daily. According to clinical studies, betahistine 48 mg daily during 3 months is an effective and safe option for the treatment of peripheral vertigo.
Dyscalculia and vestibular function.
Smith, P F
2012-10-01
A few studies in humans suggest that changes in stimulation of the balance organs of the inner ear (the 'vestibular system') can disrupt numerical cognition, resulting in 'dyscalculia', the inability to manipulate numbers. Many studies have also demonstrated that patients with vestibular dysfunction exhibit deficits in spatial memory. It is suggested that there may be a connection between spatial memory deficits resulting from vestibular dysfunction and the occurrence of dyscalculia, given the evidence that numerosity is coupled to the processing of spatial information (e.g., the 'spatial numerical association of response codes ('SNARC') effect'). The evidence supporting this hypothesis is summarised and potential experiments to test it are proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Yakovleva, I. Y.; Kornilova, L. N.; Tarasov, I. K.; Alekseyev, V. N.
1980-01-01
The effect of the set of space flight factors caused a change in the activity of the vestibular apparatus and the spatial perception function. More significant and longer shifts were observed during expeditions of great duration. The detected disorders (increase in reactivity of the otolithic apparatus, decrease in sensitivity of the cupula receptor, deterioration in the perception accuracy, etc.) had a definite tendency to be restored. The primary damage to the otolithic reflex (changes were found in practically all the subjects) is probably caused by the specific effect of zero gravitation, and apparently, may be one of the trigger mechanisms for discrepancy in the activity of the sensory systems, disorders in the correcting function of the cerebellum, and central vestibular formations.
Adaptations of the vestibular system to short and long-term exposures to altered gravity
NASA Astrophysics Data System (ADS)
Bruce, L. L.
2003-10-01
Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.
Vestibular influences on autonomic cardiovascular control in humans
NASA Technical Reports Server (NTRS)
Biaggioni, I.; Costa, F.; Kaufmann, H.; Robertson, D. (Principal Investigator)
1998-01-01
There is substantial evidence that anatomical connections exist between vestibular and autonomic nuclei. Animal studies have shown functional interactions between the vestibular and autonomic systems. The nature of these interactions, however, is complex and has not been fully defined. Vestibular stimulation has been consistently found to reduce blood pressure in animals. Given the potential interaction between vestibular and autonomic pathways this finding could be explained by a reduction in sympathetic activity. However, rather than sympathetic inhibition, vestibular stimulation has consistently been shown to increase sympathetic outflow in cardiac and splanchnic vascular beds in most experimental models. Several clinical observations suggest that a link between vestibular and autonomic systems may also exist in humans. However, direct evidence for vestibular/autonomic interactions in humans is sparse. Motion sickness has been found to induce forearm vasodilation and reduce baroreflex gain, and head down neck flexion induces transient forearm and calf vasoconstriction. On the other hand, studies using optokinetic stimulation have found either very small, variable, or inconsistent changes in heart rate and blood pressure, despite substantial symptoms of motion sickness. Furthermore, caloric stimulation severe enough to produce nystagmus, dizziness, and nausea had no effect on sympathetic nerve activity measured directly with microneurography. No effect was observed on heart rate, blood pressure, or plasma norepinephrine. Several factors may explain the apparent discordance of these results, but more research is needed before we can define the potential importance of vestibular input to cardiovascular regulation and orthostatic tolerance in humans.
Vestibular pathways involved in cognition
Hitier, Martin; Besnard, Stephane; Smith, Paul F.
2014-01-01
Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projection areas”, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: (1) the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; (2) the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of head direction; (3) the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and (4) a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex), which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition. PMID:25100954
Astronaut Owen Garriott - Test Subject - Human Vestibular Function Experiment
1973-08-09
S73-34171 (9 Aug. 1973) --- Scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, serves as test subject for the Skylab ?Human Vestibular Function? M131 Experiment, as seen in this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station in Earth orbit. The objectives of the Skylab M131 experiment are to obtain data pertinent to establishing the validity of measurements of specific behavioral/physiological responses influenced by vestibular activity under one-g and zero-g conditions; to determine man?s adaptability to unusual vestibular conditions and predict habitability of future spacecraft conditions involving reduced gravity and Coriollis forces; and to measure the accuracy and variability in man?s judgment of spatial coordinates based on atypical gravity receptor cues and inadequate visual cures. Dr. Garriott is seated in the experiment?s litter chair which can rotate the test subject at predetermined rotational velocity or programmed acceleration/decelerational profile. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Levashov, M. M.; Kislyakov, V. A. (Editor)
1985-01-01
Various aspects of nystagmometry are studied, primarily those in which the study of hystagmus serves as a means to learn about the vestibular apparatus. Along with exhaustive published material, the monograph presents data from many years of research on the physioloigical mechanisms of nystagmus, the features of nystagmus when vestibular stimulation is combined with optokinetic, the pole of vertibular afferentation asymmetry in the asymmetry of reactions to optokinetic stimulus, a nystagmometric approach to studying the hydrodynamic interaction among semicircular canals, as well as several other questions. A great deal of attention is given to methods of recording nystagmus, calibrating nystagmograms, quantitative evaluation of nystagmographic material, new nystagmometric characteristics and diagnostic techniques. A diagnostic model is proposed which makes it possible to obtain important information on the condition of the vestibular system from results of vestibular testing.
NASA Technical Reports Server (NTRS)
Henley, C.; Igarashi, M.
1993-01-01
Polyamine synthesis increases in response to injurious stimuli including axotomy and denervation. Reduced eye nystagmus and head-deviation have been observed in unilateral labyrinthectomized (UL) guinea pigs treated with an inhibitor of polyamine synthesis, alpha-difluoromethylornithine (DFMO). We quantified polyamines in the lateral vestibular nuclei (LVN) of control and UL squirrel monkeys during the phase of vestibular compensation (VC) and performed an experiment to determine if DFMO reduces nystagmus previously observed in the guinea pig. Polyamines were detected in the LVN of control and UL squirrel monkeys. Putrescine and spermidine increased in the ipsilateral LVN 3 days after UL with no change in the contralateral LVN. No left-right differences were noted in the 5-day post-UL monkey. DFMO reduced nystagmus in a UL squirrel monkey. These findings suggest that polyamines are important in vestibular function and may contribute to nystagmus observed in VC.
Differential effects of Cdh23(753A) on auditory and vestibular functional aging in C57BL/6J mice.
Mock, Bruce E; Vijayakumar, Sarath; Pierce, Jessica; Jones, Timothy A; Jones, Sherri M
2016-07-01
The C57BL/6J (B6) mouse strain carries a cadherin 23 mutation (Cdh23(753A), also known as Ahl), which affects inner ear structures and results in age-related hearing loss. The B6.CAST strain harbors the wild type Cdh23 gene, and hence, the influence of Ahl is absent. The purpose of the present study was to characterize the effect of age and gender on gravity receptor function in B6 and B6.CAST strains and to compare functional aging between auditory and vestibular modalities. Auditory sensitivity declined at significantly faster rates than gravity receptor sensitivity for both strains. Indeed, vestibular functional aging was minimal for both strains. The comparatively smaller loss of macular versus cochlear sensitivity in both the B6 and B6.CAST strains suggests that the contribution of Ahl to the aging of the vestibular system is minimal, and thus very different than its influence on aging of the auditory system. Alternatively, there exist unidentified genes or gene modifiers that serve to slow the degeneration of gravity receptor structures and maintain gravity receptor sensitivity into advanced age. Copyright © 2016 Elsevier Inc. All rights reserved.
Della Santina, Charles C.; Migliaccio, Americo A.; Hayden, Russell; Melvin, Thuy-Anh; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan S.; Dai, Chenkai; Carey, John P.; Minor, Lloyd B.; Anderson, Iee-Ching; Park, HongJu; Lyford-Pike, Sofia; Tang, Shan
2012-01-01
Bilateral loss of vestibular sensation can disable individuals whose vestibular hair cells are injured by ototoxic medications, infection, Ménière’s disease or other insults to the labyrinth including surgical trauma during cochlear implantation. Without input to vestibulo-ocular and vestibulo-spinal reflexes that normally stabilize the eyes and body, affected patients suffer blurred vision during head movement, postural instability, and chronic disequilibrium. While individuals with some residual sensation often compensate for their loss through rehabilitation exercises, those who fail to do so are left with no adequate treatment options. An implantable neuroelectronic vestibular prosthesis that emulates the normal labyrinth by sensing head movement and modulating activity on appropriate branches of the vestibular nerve could significantly improve quality of life for these otherwise chronically dizzy patients. This brief review describes the impact and current management of bilateral loss of vestibular sensation, animal studies supporting the feasibility of prosthetic vestibular stimulation, and a vestibular prosthesis designed to restore sensation of head rotation in all directions. Similar to a cochlear implant in concept and size, the Johns Hopkins Multichannel Vestibular Prosthesis (MVP) includes miniature gyroscopes to sense head rotation, a microcontroller to process inputs and control stimulus timing, and current sources switched between pairs of electrodes implanted within the vestibular labyrinth. In rodents and rhesus monkeys rendered bilaterally vestibular-deficient via treatment with gentamicin and/or plugging of semicircular canals, the MVP partially restores the vestibulo-ocular reflex for head rotations about any axis of rotation in 3-dimensional space. Our efforts now focus on addressing issues prerequisite to human implantation, including refinement of electrode designs and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimization of stimulus protocols, and reduction of device size and power consumption. PMID:21756683
NACCI, A.; FERRAZZI, M.; BERRETTINI, S.; PANICUCCI, E.; MATTEUCCI, J.; BRUSCHINI, L.; URSINO, F.; FATTORI, B.
2011-01-01
SUMMARY Vertigo and postural instability following whiplash and/or minor head injuries is very frequent. According to some authors, post-whiplash vertigo cannot be caused by real injury to vestibular structures; other authors maintain that vestibular damage is possible even in the case of isolated whiplash, with vascular or post-traumatic involvement. Furthermore, many of the balance disorders reported after trauma can be justified by post-traumatic modification to the cervical proprioceptive input, with consequent damage to the vestibular spinal reflex. The aim of this study was to evaluate the vestibular condition and postural status in a group of patients (Group A, n = 90) affected with balance disorders following whiplash, and in a second group (Group B, n = 20) with balance disorders after minor head injury associated with whiplash. Both groups were submitted to videonystagmography (VNG) and stabilometric investigation (open eyes – O E, closed eyes – CE, closed eyes with head retroflexed – CER) within 15 days of their injuries and repeated within 10 days after conclusion of cervical physiotherapy treatment. The VNG tests revealed vestibulopathy in 19% of cases in Group A (11% peripheral, 5% central, 3% in an undefined site) and in 60% of subjects in Group B (50% peripheral, 10% central). At the follow-up examination, all cases of non-compensated labyrinth deficit showed signs of compensation, while there were two cases (2%) in Group A and one case (5%) in Group B of PPV. As far as the altered posturographic recordings are concerned, while there was no specific pattern in the two groups, they were clearly pathologic, especially during CER. Both in OE and in CE there was an increase in the surface values and in those pertaining to shifting of the gravity centre on the sagittal plane, which was even more evident during CER. In Group A, the pre-post-physiotherapy comparison of CER results showed that there was a statistically significant improvement in the majority of the parameters after treatment. Moreover, in Group B there was frequent lateral shifting of the centre of gravity that was probably linked with the high percentage of labyrinth deficits. The comparison between the first and second stabilometric examinations was statistically significant only in those parameters referring to gravity centre shifting on the frontal plane, which was probably due to the progressive improvement in the associated vestibulopathy rather than to the physiotherapy treatment performed for the cervical damage. Hence, our study confirms that only in a minority of cases can whiplash cause central or peripheral vestibulopathy, and that this is more probable after minor head injury associated with whiplash. In addition, our data confirm that static stabilometry is fundamental for assessing postural deficits following a cervical proprioceptive disorder. In these cases, in fact, analysis of the different parameters and the indices referring to cervical interference not only permits evaluation of altered postural performance, but also detects and quantifies destabilisation activity within the cervical proprioceptive component. PMID:22323849
Wilhelmsen, Kjersti; Kvåle, Alice
2014-07-01
Persistent dizziness and balance problems have been reported in some patients with unilateral vestibular pathology. The purpose of this case series was to address the examination and treatment of musculoskeletal dysfunction in patients with unilateral vestibular hypofunction. The musculoskeletal system was evaluated with the Global Physiotherapy Examination, dynamic balance was measured during walking with triaxial accelerometers positioned on the lower and upper trunk, and symptoms and functional limitations were assessed with standardized self-report measures. The 4 included patients had symptoms of severe dizziness that had lasted more than 1 year after the onset of vestibular dysfunction and a moderate level of perceived disability. Musculoskeletal abnormalities typically included postural misalignment, restricted abdominal respiration, restricted trunk movements, and tense muscles of the upper trunk and neck. The patients attended a modified vestibular rehabilitation program consisting of body awareness exercises addressing posture, movements, and respiration. After the intervention, self-reported symptoms and perceived disability improved. Improvements in mobility and positive physical changes were found in the upper trunk and respiratory movements. The attenuation of mediolateral accelerations (ie, body oscillations) in the upper trunk changed; a relatively more stable upper trunk and a concomitantly more flexible lower trunk were identified during walking in 3 patients. The recovery process may be influenced by self-inflicted rigid body movements and behavior strategies that prevent compensation. Addressing physical dysfunction and enhancing body awareness directly and dizziness indirectly may help patients with unilateral vestibular hypofunction break a self-sustaining cycle of dizziness and musculoskeletal problems. Considering the body as a functional unit and including both musculoskeletal and vestibular systems in examination and treatment may be important. © 2014 American Physical Therapy Association.
Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance
NASA Technical Reports Server (NTRS)
Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar
2011-01-01
Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a significant impact on development of vestibular SR delivery systems to aid recovery of function in astronauts after long-duration spaceflight or in people with balance disorders.
Translabyrinthine vestibular neurectomy and simultaneous cochlear implant for Ménière's disease.
Canzi, Pietro; Manfrin, Marco; Perotti, Marco; Aprile, Federico; Quaglieri, Silvia; Rebecchi, Elisabetta; Locatelli, Giulia; Benazzo, Marco
2017-01-01
Surgical management of Ménière's disease (MD) is recommended in case of medical and intratympanic treatment failures. Translabyrinthine vestibular nerve section has been considered the gold standard for denervation procedures in order to control vertigo attacks, although at the cost of sacrificing residual hearing. To the best of our knowledge, no work has been published with regard to a group of patients submitted to translabyrinthine vestibular neurectomy and simultaneous cochlear implant for MD. The aim of the present study was to assess the effectiveness of translabyrinthine vestibular nerve section and simultaneous cochlear implant in a prospective study. All adult patients (over 18 years of age) with a diagnosis of intractable unilateral definite MD and useless residual hearing function were enrolled after medical and intratympanic treatment failures. Pre- and postoperative otoneurological evaluation concerned: frequency of vertigo attacks, head impulse test and caloric testing, pure tone average and speech perception audiometry in quiet conditions, tinnitus handicap inventory test, functional level scale and rate of vertigo control, dizziness handicap inventory test, and MD patient-oriented severity index. At least 6 months of follow-up were needed to be enrolled in the study. Four patients were included in the study. Translabyrinthine vestibular nerve section and simultaneous cochlear implant seemed to considerably improve the disabling effects of MD, achieving a good control of vestibular symptoms (mean pre/postoperative vertigo attacks per month: 16.5/0), resolving hearing loss (mean pre/postoperative pure tone average in the affected ear: 86.2/32.5 dB), improving the tinnitus (mean pre/postoperative tinnitus handicap inventory test: 77.2/6), and finally increasing the overall quality-of-life parameters. In our preliminary report, translabyrinthine vestibular nerve section and simultaneous cochlear implant showed encouraging results in order to definitively control both vestibular and cochlear symptoms during the same therapeutic procedure.
Amali, Amin; Mahdi, Parvane; Karimi Yazdi, Alireza; Khorsandi Ashtiyani, Mohammad Taghi; Yazdani, Nasrin; Vakili, Varasteh; Pourbakht, Akram
2014-01-01
Vestibular involvements have long been observed in otosclerotic patients. Among vestibular structures saccule has the closest anatomical proximity to the sclerotic foci, so it is the most prone vestibular structure to be affected during the otosclerosis process. The aim of this study was to investigate the saccular function in patients suffering from otosclerosis, by means of Vestibular Evoked Myogenic Potential (VEMP). The material consisted of 30 otosclerosis patients and 20 control subjects. All participants underwent audiometric and VEMP testing. Analysis of tests results revealed that the mean values of Air-Conducted Pure Tone Average (AC-PTA) and Bone-Conducted Pure Tone Average (BC-PTA) in patients were 45.28 ± 15.57 and 19.68 ± 10.91, respectively and calculated 4 frequencies Air Bone Gap (ABG) was 25.64 ± 9.95. The VEMP response was absent in 14 (28.57%) otosclerotic ears. A statistically significant increase in latency of the p13 was found in the affected ears (P=0.004), differences in n23 latency did not reach a statistically significant level (P=0.112). Disparities in amplitude of p13-n23 in between two study groups was statistically meaningful (P=0.009), indicating that the patients with otosclerosis had lower amplitudes. This study tends to suggest that due to the direct biotoxic effect of the materials released from the otosclerosis foci on saccular receptors, there might be a possibility of vestibular dysfunction in otosclerotic patients.
Welgampola, Miriam S; Carey, John P
2010-08-01
The advent of cervical vestibular evoked myogenic potentials (CVEMPs) marked a milestone in clinical vestibular testing because they provided a simple means of assessing human otolith function. The availability of air-conducted (AC) sound and bone-conducted vibration (BCV) to evoke CVEMPs and development of a new technique of recording ocular vestibular-evoked myogenic potentials (OVEMPs) have increased the complexity of this simple test, yet extended its diagnostic capabilities. Here we highlight the evidence-based assumptions that guide interpretation of AC sound- and BCV-evoked VEMPs and the gaps in VEMP research thus far. Copyright (c) 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.
Requena, Teresa; Gallego-Martinez, Alvaro; Lopez-Escamez, Jose A
2018-01-01
Background : Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods : We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results : Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" ( p = 4.37 × 10 -8 ) and "RhoGDI Signaling" ( p = 3.31 × 10 -8 ). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" ( p = 8.71 × 10 -6 ), "Signaling by Rho Family GTPases" ( p = 1.20 × 10 -5 ) and "Calcium Signaling" ( p = 1.20 × 10 -5 ). Among the top ranked networks, the most biologically significant network contained the "auditory and vestibular system development and function" terms. We also found 108 genes showing tonotopic gene expression in the cochlear ENHCs. Conclusions : We have predicted the main pathways and molecular networks for ENHCs in the organ of Corti and vestibular neuroepithelium. These pathways will facilitate the design of molecular maps to select novel candidate genes for hearing or vestibular loss to conduct functional studies.
2003-02-01
servcice warfighters (Training devices and protocols, Onboard equipment, Cognitive and sensorimotor aids, Visual and auditory symbology, Peripheral visual...vestibular stimulation causing a decrease in cerebral blood pressure with the consequent reduction in G-tolerance and increased likelihood of ALOC or GLOC...tactile stimulators (e.g. one providing a sensation of movement) or of displays with a more complex coding (e.g. by increase in the number of tactors, or
NASA Technical Reports Server (NTRS)
Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Cohen, H.; Bloomberg, J.J.;
2015-01-01
Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface [1]. This technique to improve detection of vestibular signals uses a stimulus delivery system that provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for sensorimotor adaptability (SA) training applications customized to each crewmember. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds [2]. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s long sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. Comparison of threshold of motion detection obtained from joystick data versus body sway suggests that perceptual thresholds were significantly lower. In the balance task, subjects stood on an unstable surface and had to maintain balance, and the stimulation was administered from 20-400% of subjects' vestibular threshold. Optimal stimulation amplitude was determined at which the balance performance was best compared to control (no stimulation). Preliminary results show that, in general, using stimulation amplitudes at 40-60% of perceptual motion threshold significantly improved the balance performance. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increasing utilization of vestibular information and therefore will help us to optimize and personalize a SA countermeasure prescription. This combination may help to significantly reduce the number of days required to recover functional performance to preflight levels after long-duration spaceflight.
Bigelow, Robin T; Semenov, Yevgeniy R; du Lac, Sascha; Hoffman, Howard J; Agrawal, Yuri
2016-04-01
Patients with vestibular disease have been observed to have concomitant cognitive and psychiatric dysfunction. We evaluated the association between vestibular vertigo, cognitive impairment and psychiatric conditions in a nationally representative sample of US adults. We performed a cross-sectional analysis using the 2008 National Health Interview Survey (NHIS), which included a Balance and Dizziness Supplement, and questions about cognitive function and psychiatric comorbidity. We evaluated the association between vestibular vertigo, cognitive impairment (memory loss, difficulty concentrating, confusion) and psychiatric diagnoses (depression, anxiety and panic disorder). We observed an 8.4% 1-year prevalence of vestibular vertigo among US adults. In adjusted analyses, individuals with vestibular vertigo had an eightfold increased odds of 'serious difficulty concentrating or remembering' (OR 8.3, 95% CI 4.8 to 14.6) and a fourfold increased odds of activity limitation due to difficulty remembering or confusion (OR 3.9, 95% CI 3.1 to 5.0) relative to the rest of the US adults. Individuals with vestibular vertigo also had a threefold increased odds of depression (OR 3.4, 95% CI 2.9 to 3.9), anxiety (OR 3.2, 95% CI 2.8 to 3.6) and panic disorder (OR 3.4, 95% CI 2.9 to 4.0). Our findings indicate that vestibular impairment is associated with increased risk of cognitive and psychiatric comorbidity. The vestibular system is anatomically connected with widespread regions of the cerebral cortex, hippocampus and amygdala. Loss of vestibular inputs may lead to impairment of these cognitive and affective circuits. Further longitudinal research is required to determine if these associations are causal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Astronauts Conrad and Kerwin - Human Vestibular Function Experiment - JSC
1973-01-01
S73-20678 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at Johnson Space Center. Scientist-astronaut Joseph P. Kerwin, science pilot of the mission, goes over a checklist. The two men are in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. Photo credit: NASA
In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library
Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul
2005-01-01
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642
Optimal Stimulus Amplitude for Vestibular Stochastic Stimulation to Improve Sensorimotor Function
NASA Technical Reports Server (NTRS)
Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Cohen, H.; Bloomberg, J. J.;
2014-01-01
Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface. This technique to improve detection of vestibular signals uses a stimulus delivery system that is wearable or portable and provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for SR training applications customized to each crewmember. Customizing stimulus intensity can maximize treatment effects. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. First we determined the percent time during stimulation periods for which perception of motion (activity above a pre-defined threshold) was reported using the joystick, and body sway (two standard deviation of the noise level in the baseline measurement) was detected by the sensors. The percentage time at each stimulation level for motion detection was normalized with respect to the largest value and a logistic regression curve fit was applied to these data. The threshold was defined at the 50% probability of motion detection. Comparison of threshold of motion detection obtained from joystick data versus body sway suggests that perceptual thresholds were significantly lower, and were not impacted by system noise. Further, in order to determine optimal stimulation amplitude to improve balance, two sets of experiments were carried out. In the first set of experiments, all subjects received the same level of stimuli and the intensity of optimal performance was projected back on subjects' vestibular threshold curve. In the second set of experiments, on different subjects, stimulation was administered from 20-400% of subjects' vestibular threshold obtained from joystick data. Preliminary results of our study show that, in general, using stimulation amplitudes at 40-60% of perceptual motion threshold improved balance performance significantly compared to control (no stimulation). The amplitude of vestibular stimulation that improved balance function was predominantly in the range of +/- 100 to +/- 400 micro A. We hypothesize that VSR stimulation will act synergistically with sensorimotor adaptability (SA) training to improve adaptability by increasing utilization of vestibular information and therefore will help us to optimize and personalize a SA countermeasure prescription. This combination will help to significantly reduce the number of days required to recover functional performance to preflight levels after long-duration spaceflight.
Zhou, Guangwei; Brodsky, Jacob R
2015-06-01
To conduct objective assessment of children with balance and vestibular complaints following sports-related concussions and identify the underlying deficits by analyzing laboratory test outcomes. Case series with chart review. Pediatric tertiary care facility. Medical records were reviewed of 42 pediatric patients with balance and/or vestibular complaints following sports-related concussions who underwent comprehensive laboratory testing on their balance and vestibular function. Patients' characteristics were summarized and results analyzed. More than 90% of the children with protracted dizziness or imbalance following sports-related concussion had at least 1 abnormal finding from the comprehensive balance and vestibular evaluation. The most frequent deficit was found in dynamic visual acuity test, followed by Sensory Organization Test and rotational test. Patient's balance problem associated with concussion seemed to be primarily instigated by vestibular dysfunction. Furthermore, semicircular canal dysfunction was involved more often than dysfunction of otolith organs. Yet, <10% of the children experienced a hearing loss following sports-related concussion. Vestibular impairment is common among children with protracted dizziness or imbalance following sports-related concussion. Our study demonstrated that proper and thorough evaluation is imperative to identify these underlying deficits and laboratory tests were helpful in the diagnosis and recommendation of following rehabilitations. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
The role of the vestibular system in manual target localization
NASA Technical Reports Server (NTRS)
Barry, Susan R.; Mueller, S. Alyssa
1995-01-01
Astronauts experience perceptual and sensory-motor disturbances during spaceflight and immediately after return to the 1-g environment of Earth. During spaceflight, sensory information from the eyes, limbs and vestibular organs is reinterpreted by the central nervous system so that astronauts can produce appropriate body movements in microgravity. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. One set of internal cues that may assist in the manual localization of objects is information from the vestibular system. This system contributes to our sense of the body's position in space by providing information on head position and movement and the orientation of the body with respect to gravity. Research on the vestibular system has concentrated on its role in oculo-motor control. Little is known about the role that vestibular information plays in manual motor control, such as reaching and pointing movements. Since central interpretation of vestibular information is altered in microgravity, it is important to determine its role in this process. This summer, we determined the importance of vestibular information in a subject's ability to point accurately toward a target in extrapersonal space. Subjects were passively rotated across the earth-vertical axis and then asked to point back to a previously-seen target. In the first paradigm, the subjects used both visual and vestibular cues for the pointing response, while, in the second paradigm, subjects used only vestibular information. Subjects were able to point with 85 percent accuracy to a target using vestibular information alone. We infer from this result that vestibular input plays a role in the spatial programming of manual responses.
Using the Physical Examination to Diagnose Patients with Acute Dizziness and Vertigo.
Edlow, Jonathan A; Newman-Toker, David
2016-04-01
Emergency department (ED) patients who present with acute dizziness or vertigo can be challenging to diagnose. Roughly half have general medical disorders that are usually apparent from the context, associated symptoms, or initial laboratory tests. The rest include a mix of common inner ear disorders and uncommon neurologic ones, particularly vertebrobasilar strokes or posterior fossa mass lesions. In these latter cases, misdiagnosis can lead to serious adverse consequences for patients. Our aim was to assist emergency physicians to use the physical examination effectively to make a specific diagnosis in patients with acute dizziness or vertigo. Recent evidence indicates that the physical examination can help physicians accurately discriminate between benign inner ear conditions and dangerous central ones, enabling correct management of peripheral vestibular disease and avoiding dangerous misdiagnoses of central ones. Patients with the acute vestibular syndrome mostly have vestibular neuritis, but some have stroke. Data suggest that focused eye movement examinations, at least when performed by specialists, are more sensitive for detecting early stroke than brain imaging, including diffusion-weighted magnetic resonance imaging. Patients with the triggered episodic vestibular syndrome mostly have benign paroxysmal positional vertigo (BPPV), but some have posterior fossa mass lesions. Specific positional tests to provoke nystagmus can confirm a BPPV diagnosis at the bedside, enabling immediate curative therapy, or indicate the need for imaging. Emergency physicians can effectively use the physical examination to make a specific diagnosis in patients with acute dizziness or vertigo. They must understand the limitations of brain imaging. This may reduce misdiagnosis of serious central causes of dizziness, including posterior circulation stroke and posterior fossa mass lesions, and improve resource utilization. Copyright © 2016 Elsevier Inc. All rights reserved.
Caltabiano, Rosario; Magro, Gaetano; Polizzi, Agata; Praticò, Andrea Domenico; Ortensi, Andrea; D'Orazi, Valerio; Panunzi, Andrea; Milone, Pietro; Maiolino, Luigi; Nicita, Francesco; Capone, Gabriele Lorenzo; Sestini, Roberta; Paganini, Irene; Muglia, Mariella; Cavallaro, Sebastiano; Lanzafame, Salvatore; Papi, Laura; Ruggieri, Martino
2017-06-01
The INI1/SMARCB1 gene protein product has been implicated in the direct pathogenesis of schwannomas from patients with one form of schwannomatosis [SWNTS1; MIM # 162091] showing a mosaic pattern of loss of protein expression by immunohistochemistry [93% in familial vs. 55% in sporadic cases]. To verify whether such INI1/SMARCB1 mosaic pattern could be extended to all schwannomas arising in the sporadic and familial schwannomatoses [i.e. to SMARCB1-related (SWNTS1) or LZTR1-related (SWNTS2) schwannomatosis or to SMARCB1/LZTR1-negative schwannomatosis] and whether it could be involved in classical NF2 or solitary peripheral schwannomas METHODS: We blindly analysed schwannoma samples obtained from a total of 22 patients including (a) 2 patients (2 males; aged 38 and 55 years) affected by non-familial SMARCB1-associated schwannomatosis (SWTNS1); (b) 1 patient (1 female; aged 33 years) affected by familial schwannomatosis (SWTNS1/ SMARCB1 germ line mutations); (c) 5 patients (3 males, 2 females; aged 33 to 35 years) affected by non-familial (sporadic) LZTR1-associated schwannomatosis (SWNTS2); (d) 3 patients (3 males; aged 35 to 47 years) affected by familial schwannomatosis (SWTNS2/ LZTR1 germ line mutations); (e) 2 patients (1 male, 1 female; aged 63 and 49 years, respectively) affected by non-familial schwannomatosis (SWTNS, negative for SMARCB1, LZTR1 and NF2 gene mutations); (f) 4 patients (3 males, 1 females; aged 15 to 24 years) affected by classical NF2 (NF2: harbouring NF2 germ line mutations; and (g) 5 patients (3 males, 2 females; aged 33 to 68 years) who had solitary schwannomas. [follow-up = 15-30 years; negative for constitutional/somatic mutation analysis for the SMARCB1, LZTR1 and NF2 genes] were (blindly) analyzed. The INI1/SMARCB1 immunostaining pattern was regarded as (1) diffuse positive nuclear staining [= retained expression] or (2) mosaic pattern [mixed positive/negative nuclei = loss of expression in a subset of tumour cells]. All solitary peripheral schwannomas and NF2-associated vestibular schwannomas showed diffuse nuclear INI1/SMARCB1 staining in 97-100% of neoplastic cells; schwannomas obtained from all cases of non-familial and familial schwannomatosis and NF2-associated non-vestibular schwannomas showed a mosaic pattern ranging from 10 to 70% of INI1/SMARCB1-positive expression. We did not record a complete lack of nuclear staining. The present data suggests that (a) mosaic loss of immunohistochemical INI1/SMARCB1 expression, despite the interlesional variability, is a reliable marker of schwannomatosis regardless of the involved gene and it might help in the differential diagnosis of schwannomatosis vs. solitary schwannomas and (b) INI1/SMARCB1 expression is not useful in the differential with mosaic NF2, since NF2-associated peripheral schwannomas show the same immunohistochemical pattern.
Usher syndrome type III can mimic other types of Usher syndrome.
Pennings, Ronald J E; Fields, Randall R; Huygen, Patrick L M; Deutman, August F; Kimberling, William J; Cremers, Cor W R J
2003-06-01
Clinical and genetic characteristics are presented of 2 patients from a Dutch Usher syndrome type III family who have a new homozygous USH3 gene mutation: 149-152delCAGG + insTGTCCAAT. One individual (IV:1) is profoundly hearing impaired and has normal vestibular function and retinitis punctata albescens (RPA). The other individual is also profoundly hearing impaired, but has well-developed speech, vestibular areflexia, and retinitis pigmentosa sine pigmento (RPSP). These findings suggest that Usher syndrome type III can be clinically misdiagnosed as either Usher type I or II; that Usher syndrome patients who are profoundly hearing impaired and have normal vestibular function should be tested for USH3 mutations; and that RPA and RPSP can occur as fundoscopic manifestations of pigmentary retinopathy in Usher syndrome.
Vestibular Function Measurement Devices
Miles, Richard D.; Zapala, David A.
2015-01-01
Vestibular function laboratories utilize a multitude of diagnostic instruments to evaluate a dizzy patient. Caloric irrigators, oculomotor stimuli, and rotational chairs produce a stimulus whose accuracy is required for the patient response to be accurate. Careful attention to everything from cleanliness of equipment to threshold adjustments determine on a daily basis if patient data are going to be correct and useful. Instrumentation specifications that change with time such as speed and temperature must periodically be checked using calibrated instruments. PMID:27516710
Pasqualetti, Massimo; Díaz, Carmen; Renaud, Jean-Sébastien; Rijli, Filippo M; Glover, Joel C
2007-09-05
As a step toward generating a fate map of identified neuron populations in the mammalian hindbrain, we assessed the contributions of individual rhombomeres to the vestibular nuclear complex, a major sensorimotor area that spans the entire rhombencephalon. Transgenic mice harboring either the lacZ or the enhanced green fluorescent protein reporter genes under the transcriptional control of rhombomere-specific Hoxa2 enhancer elements were used to visualize rhombomere-derived domains. We labeled functionally identifiable vestibular projection neuron groups retrogradely with conjugated dextran-amines at successive embryonic stages and obtained developmental fate maps through direct comparison with the rhombomere-derived domains in the same embryos. The fate maps show that each vestibular neuron group derives from a unique rostrocaudal domain that is relatively stable developmentally, suggesting that anteroposterior migration is not a major contributor to the rostrocaudal patterning of the vestibular system. Most of the groups are multisegmental in origin, and each rhombomere is fated to give rise to two or more vestibular projection neuron types, in a complex pattern that is not segmentally iterated. Comparison with studies in the chicken embryo shows that the rostrocaudal patterning of identified vestibular projection neuron groups is generally well conserved between avians and mammalians but that significant species-specific differences exist in the rostrocaudal limits of particular groups. This mammalian hindbrain fate map can be used as the basis for targeting genetic manipulation to specific subpopulations of vestibular projection neurons.
Prediction of Balance Compensation After Vestibular Schwannoma Surgery.
Parietti-Winkler, Cécile; Lion, Alexis; Frère, Julien; Perrin, Philippe P; Beurton, Renaud; Gauchard, Gérome C
2016-06-01
Background Balance compensation after vestibular schwannoma (VS) surgery is under the influence of specific preoperative patient and tumor characteristics. Objective To prospectively identify potential prognostic factors for balance recovery, we compared the respective influence of these preoperative characteristics on balance compensation after VS surgery. Methods In 50 patients scheduled for VS surgical ablation, we measured postural control before surgery (BS), 8 (AS8) days after, and 90 (AS90) days after surgery. Based on factors found previously in the literature, we evaluated age, body mass index and preoperative physical activity (PA), tumor grade, vestibular status, and preference for visual cues to control balance as potential prognostic factors using stepwise multiple regression models. Results An asymmetric vestibular function was the sole significant explanatory factor for impaired balance performance BS, whereas the preoperative PA alone significantly contributed to higher performance at AS8. An evaluation of patients' balance recovery over time showed that PA and vestibular status were the 2 significant predictive factors for short-term postural compensation (BS to AS8), whereas none of these preoperative factors was significantly predictive for medium-term postoperative postural recovery (AS8 to AS90). Conclusions We identified specific preoperative patient and vestibular function characteristics that may predict postoperative balance recovery after VS surgery. Better preoperative characterization of these factors in each patient could inform more personalized presurgical and postsurgical management, leading to a better, more rapid balance recovery, earlier return to normal daily activities and work, improved quality of life, and reduced medical and societal costs. © The Author(s) 2015.
Role of orientation reference selection in motion sickness, supplement 2S
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1987-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals. The conceptual basis of the present proposal hinges on the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with benign paroxysmal positional vertigo (BPPV) syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans. The overall objectives are to determine: if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects; if abnormal vertical canal-otolith function is the source of abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and if it can be quantified by vestibular and oculomotor reflex measurements; and quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability.
Health‐related quality of life and economic burden of vestibular loss in older adults
Agrawal, Yuri; Semenov, Yevgeniy R.
2017-01-01
Objectives Vestibular loss is a debilitating condition, and despite its high prevalence in older adults, the quality of life (QoL) burden of vestibular loss in older individuals has not been well‐studied. This report quantifies the impact on overall QoL and identifies domains of health most affected. We hypothesize vestibular loss will be associated with impairment in diverse domains of health‐related QoL. Study Design Prospective, case‐control study. Methods A convenience sample of 27 patients age ≥60 years with vestibular physiologic loss was recruited from an academic neurotology clinic. The patients did not have any identifiable cause of their vestibular loss other than aging. The convenience sample was compared to an age‐matched cross‐sectional sample of the general US population (n = 1266). The main outcome was QoL measured by the Ontario Health Utilities Index Mark III (HUI3). Results Compared to the general population, patients with vestibular loss had significantly lower overall unadjusted HUI3 scores (−0.32, p < 0.001). Multivariate regression analysis showed vestibular loss was significantly associated with poorer performance in vision (−0.11 p < 0.0001), speech (−0.15, p < 0.0001), dexterity (−0.13, p < 0.0001), and emotion (−0.07, p = 0.0065). Adjusted aggregate HUI3 was also significantly lower for vestibular loss (−0.15, p = 0.0105). These QoL decrements resulted in an average loss of 1.30 Quality‐Adjusted Life Years (QALYs). When using a $50,000/QALY willingness‐to‐pay threshold, vestibular loss was associated with a $64,929 lifetime economic burden per affected older adult, resulting in a total lifetime societal burden of $227 billion for the US population ≥60 years of age. Conclusions Loss of vestibular function with aging significantly decreases quality of life across multiple domains of well‐being. These QoL reductions are responsible for heavy societal economic burdens of vestibular loss, which reveal potential benefits of prompt diagnosis and treatment of this condition. Level of Evidence 3 PMID:29492463
NASA Technical Reports Server (NTRS)
Lackner, J. R.; DiZio, P.; Jeka, J.; Horak, F.; Krebs, D.; Rabin, E.
1999-01-01
Contact of the hand with a stationary surface attenuates postural sway in normal individuals even when the level of force applied is mechanically inadequate to dampen body motion. We studied whether subjects without vestibular function would be able to substitute contact cues from the hand for their lost labyrinthine function and be able to balance as well as normal subjects in the dark without finger contact. We also studied the relative contribution of sight of the test chamber to the two groups. Subjects attempted to maintain a tandem Romberg stance for 25 s under three levels of fingertip contact: no contact; light-touch contact, up to 1 N (approximately 100 g) force; and unrestricted contact force. Both eyes open and eyes closed conditions were evaluated. Without contact, none of the vestibular loss subjects could stand for more than a few seconds in the dark without falling; all the normals could. The vestibular loss subjects were significantly more stable in the dark with light touch of the index finger than the normal subjects in the dark without touch. They also swayed less in the dark with light touch than when permitted sight of the test chamber without touch, and less with sight and touch than just sight. The normal subjects swayed less in the dark with touch than without, and less with sight and touch than sight alone. These findings show that during quiet stance light touch of the index finger with a stationary surface can be as effective or even more so than vestibular function for minimizing postural sway.
Sleep and vestibular adaptation: implications for function in microgravity
NASA Technical Reports Server (NTRS)
Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.
1998-01-01
Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.
Feng, B; Jiang, S; Yang, W; Han, D; Zhang, S
2001-02-01
To define the effects of acute infrasound exposure on vestibular and auditory functions and the ultrastructural changes of inner ear in guinea pigs. The animals involved in the study were exposed to 8 Hz infrasound at 135dB SPL for 90 minutes in a reverberant chamber. The sinusoidal pendular test (SPT), auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) were respectively detected pre-exposure and at 0(within 2 hrs), 2 and 5 day after exposure. The ultrastructures of the inner ear were observed by scanning electron microscopy. The slow-phase velocity and the frequency of the vestibular nystagmus elicited by sinusoidal pendular test (SPT) declined slightly following infrasound exposure, but the changes were not significant (P > 0.05). No differences in the ABR thresholds, the latencies and the interval peak latencies of I, III, V waves were found between the normal and the experimental groups, and among experimental groups. The amplitudes of DPOAE at any frequency declined remarkably in all experimental groups. The ultrastructures of the inner ear were damaged to different extent. Infrasound could transiently depress the excitability of the vestibular end-organs, decrease the function of OHC in the organ of Corti and cause damage to the inner ear of guinea pigs.
Dilda, Valentina; Morris, Tiffany R; Yungher, Don A; MacDougall, Hamish G; Moore, Steven T
2014-01-01
Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure). This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated) vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS) and natural vestibular state for up to 6 months.
NASA Astrophysics Data System (ADS)
Fuller, Charles; Ringgold, Kristyn
The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.
Fife, Terry D; Colebatch, James G; Kerber, Kevin A; Brantberg, Krister; Strupp, Michael; Lee, Hyung; Walker, Mark F; Ashman, Eric; Fletcher, Jeffrey; Callaghan, Brian; Gloss, David S
2017-11-28
To systematically review the evidence and make recommendations with regard to diagnostic utility of cervical and ocular vestibular evoked myogenic potentials (cVEMP and oVEMP, respectively). Four questions were asked: Does cVEMP accurately identify superior canal dehiscence syndrome (SCDS)? Does oVEMP accurately identify SCDS? For suspected vestibular symptoms, does cVEMP/oVEMP accurately identify vestibular dysfunction related to the saccule/utricle? For vestibular symptoms, does cVEMP/oVEMP accurately and substantively aid diagnosis of any specific vestibular disorder besides SCDS? The guideline panel identified and classified relevant published studies (January 1980-December 2016) according to the 2004 American Academy of Neurology process. Level C positive: Clinicians may use cVEMP stimulus threshold values to distinguish SCDS from controls (2 Class III studies) (sensitivity 86%-91%, specificity 90%-96%). Corrected cVEMP amplitude may be used to distinguish SCDS from controls (2 Class III studies) (sensitivity 100%, specificity 93%). Clinicians may use oVEMP amplitude to distinguish SCDS from normal controls (3 Class III studies) (sensitivity 77%-100%, specificity 98%-100%). oVEMP threshold may be used to aid in distinguishing SCDS from controls (3 Class III studies) (sensitivity 70%-100%, specificity 77%-100%). Level U: Evidence is insufficient to determine whether cVEMP and oVEMP can accurately identify vestibular function specifically related to the saccule/utricle, or whether cVEMP or oVEMP is useful in diagnosing vestibular neuritis or Ménière disease. Level C negative: It has not been demonstrated that cVEMP substantively aids in diagnosing benign paroxysmal positional vertigo, or that cVEMP or oVEMP aids in diagnosing/managing vestibular migraine. © 2017 American Academy of Neurology.
Visualization of newt aragonitic otoconial matrices using transmission electron microscopy
NASA Technical Reports Server (NTRS)
Steyger, P. S.; Wiederhold, M. L.
1995-01-01
Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. These protein matrices are thought to originate from the supporting or hair cells in the macula during development. Previous studies of mammalian calcitic, barrel-shaped otoconia revealed an organized protein matrix consisting of a thin peripheral layer, a well-defined organic core and a flocculent matrix inbetween. No studies have reported the microscopic organization of the aragonitic otoconial matrix, despite its protein characterization. Pote et al. (1993b) used densitometric methods and inferred that prismatic (aragonitic) otoconia have a peripheral protein distribution, compared to that described for the barrel-shaped, calcitic otoconia of birds, mammals, and the amphibian utricle. By using tannic acid as a negative stain, we observed three kinds of organic matrices in preparations of fixed, decalcified saccular otoconia from the adult newt: (1) fusiform shapes with a homogenous electron-dense matrix; (2) singular and multiple strands of matrix; and (3) more significantly, prismatic shapes outlined by a peripheral organic matrix. These prismatic shapes remain following removal of the gelatinous matrix, revealing an internal array of organic matter. We conclude that prismatic otoconia have a largely peripheral otoconial matrix, as inferred by densitometry.
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Reschke, Millard F.; Clement, Gilles R.; Mulavara, Ajitkumar P.; Taylor, Laura C..
2015-01-01
Control of vehicles and other complex systems is a high-level integrative function of the central nervous system (CNS). It requires well-functioning subsystem performance, including good visual acuity, eye-hand coordination, spatial and geographic orientation perception, and cognitive function. Evidence from space flight research demonstrates that the function of each of these subsystems is altered by removing gravity, a fundamental orientation reference, which is sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, posture, navigation, and coordination of movements. The available evidence also shows that the degree of alteration of each subsystem depends on a number of crew- and mission-related factors. There is only limited operational evidence that these alterations cause functional impacts on mission-critical vehicle (or complex system) control capabilities. Furthermore, while much of the operational performance data collected during space flight has not been available for independent analysis, those that have been reviewed are somewhat equivocal owing to uncontrolled (and/or unmeasured) environmental and/or engineering factors. Whether this can be improved by further analysis of previously inaccessible operational data or by development of new operational research protocols remains to be seen. The true operational risks will be estimable only after we have filled the knowledge gaps and when we can accurately assess integrated performance in off-nominal operational settings (Paloski et al. 2008). Thus, our current understanding of the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight is limited primarily to extrapolation of scientific research findings, and, since there are limited ground-based analogs of the sensorimotor and vestibular changes associated with space flight, observation of their functional impacts is limited to studies performed in the space flight environment. Fortunately, many sensorimotor and vestibular experiments have been performed during and/or after space flight missions since 1959 (Reschke et al. 2007). While not all of these experiments were directly relevant to the question of vehicle/complex system control, most provide insight into changes in aspects of sensorimotor control that might bear on the physiological subsystems underlying this high-level integrated function.
Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrado, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob
2010-01-01
Stochastic resonance (SR) is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Studies have shown that imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the amplitude characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standard balance task of standing on a block of foam with their eyes closed. Bipolar stochastic electrical stimulation was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process behind the ears. Amplitude of the signals varied in the range of 0-700 microamperes. Balance performance was measured using a force plate under the foam block, and inertial motion sensors were placed on the torso and head. Balance performance with stimulation was significantly greater (10%-25%) than with no stimulation. The signal amplitude at which performance was maximized was in the range of 100-300 microamperes. Optimization of the amplitude of the stochastic signals for maximizing balance performance will have a significant impact on development of vestibular SR as a unique system to aid recovery of function in astronauts after long-duration space flight or in patients with balance disorders.
Radziej, Katharina; Schmid, Gabriele; Dinkel, Andreas; Zwergal, Andreas; Lahmann, Claas
2015-08-01
. A relationship has frequently been found between a history of traumatization and the existence of somatoform symptoms. The objective of this study was to examine whether this relationship is also observed for functional, i.e. medically not sufficiently explained, vestibular symptoms (FVS). We tested whether patients with FVS and organically explained vestibular symptoms (OVS) differ with regard to frequencies of previous traumatic experiences and posttraumatic stress symptoms. We also explored whether the impact of previous trauma was associated with characteristics of vestibular symptoms and handicap. . Patients with a diagnosis of OVS (N=185) or FVS (N=158) completed questionnaires about potentially traumatizing experiences (e.g., Childhood Trauma Questionnaire, Impact of Events Scale) and vertigo-related symptoms and handicap (Vertigo Symptom Scale, Vertigo Handicap Questionnaire). . We found no differences between the two patient groups with regard to number or impact of traumatic life events. However, regression analyses across groups revealed that, regardless of their diagnosis, prior traumatic experiences and the presence of posttraumatic stress symptoms including avoidance and intrusion predicted to some extent higher overall balance symptoms and autonomic symptoms of vertigo-related anxiety. . Exposure to trauma and symptoms of posttraumatic stress can contribute to symptom severity and handicap experienced by patients with vestibular symptoms irrespective of their original cause, most likely serving as predisposing, modulating or perpetuating factors. Copyright © 2015 Elsevier Inc. All rights reserved.
A systems concept of the vestibular organs
NASA Technical Reports Server (NTRS)
Mayne, R.
1974-01-01
A comprehensive model of vestibular organ function is presented. The model is based on an analogy with the inertial guidance systems used in navigation. Three distinct operations are investigated: angular motion sensing, linear motion sensing, and computation. These operations correspond to the semicircular canals, the otoliths, and central processing respectively. It is especially important for both an inertial guidance system and the vestibular organs to distinguish between attitude with respect to the vertical on the one hand, and linear velocity and displacement on the other. The model is applied to various experimental situations and found to be corroborated by them.
NASA Technical Reports Server (NTRS)
Usachev, V. V.; Shinkarevskaya, I. P.
1973-01-01
Functional changes in systemic and cerebral hemodynamics were studied with respect to vestibular stresses. The main types of responses, differing qualitatively with respect to the tolerance of test subjects to low accelerations (particularly to Coriolis accelerations), were established. This is of practical importance in the selection of aircraft and space pilots. The data presented sheds light on the physiological mechanisms of adaptation and disturbed compensation during vestibular stimulation. Further studies in this important field of aerospace medicine are outlined.
Vestibular-related neuroscience and manned space flight
NASA Technical Reports Server (NTRS)
Igarashi, Makoto
1988-01-01
The effects of weightlessness on the human vestibular system are examined, reviewing the results of recent investigations. The functional, neurophysiological, and neurochemical changes which occur during adaptation to weightlessness are discussed; theoretical models proposed to explain the underlying mechanism are outlined; and particular attention is given to the author's experiments on squirrel monkeys. There, good correlations were found between (1) the recovery of locomotor balance function in the acute compensation phase after unilateral labyrinthectomy and (2) the bilateral imbalance in the optical density of GABA-like immunoreactivity.
NASA Technical Reports Server (NTRS)
Mori, R. L.; Bergsman, A. E.; Holmes, M. J.; Yates, B. J.
2001-01-01
Changes in posture can affect the resting length of respiratory muscles, requiring alterations in the activity of these muscles if ventilation is to be unaffected. Recent studies have shown that the vestibular system contributes to altering respiratory muscle activity during movement and changes in posture. Furthermore, anatomical studies have demonstrated that many bulbospinal neurons in the medial medullary reticular formation (MRF) provide inputs to phrenic and abdominal motoneurons; because this region of the reticular formation receives substantial vestibular and other movement-related input, it seems likely that medial medullary reticulospinal neurons could adjust the activity of respiratory motoneurons during postural alterations. The objective of the present study was to determine whether functional lesions of the MRF affect inspiratory and expiratory muscle responses to activation of the vestibular system. Lidocaine or muscimol injections into the MRF produced a large increase in diaphragm and abdominal muscle responses to vestibular stimulation. These vestibulo-respiratory responses were eliminated following subsequent chemical blockade of descending pathways in the lateral medulla. However, inactivation of pathways coursing through the lateral medulla eliminated excitatory, but not inhibitory, components of vestibulo-respiratory responses. The simplest explanation for these data is that MRF neurons that receive input from the vestibular nuclei make inhibitory connections with diaphragm and abdominal motoneurons, whereas a pathway that courses laterally in the caudal medulla provides excitatory vestibular inputs to these motoneurons.
Sensory-Motor Adaptation to Space Flight: Human Balance Control and Artificial Gravity
NASA Technical Reports Server (NTRS)
Paloski, William H.
2004-01-01
Gravity, which is sensed directly by the otolith organs and indirectly by proprioceptors and exteroceptors, provides the CNS a fundamental reference for estimating spatial orientation and coordinating movements in the terrestrial environment. The sustained absence of gravity during orbital space flight creates a unique environment that cannot be reproduced on Earth. Loss of this fundamental CNS reference upon insertion into orbit triggers neuro-adaptive processes that optimize performance for the microgravity environment, while its reintroduction upon return to Earth triggers neuro-adaptive processes that return performance to terrestrial norms. Five pioneering symposia on The Role of the Vestibular Organs in the Exploration of Space were convened between 1965 and 1970. These innovative meetings brought together the top physicians, physiologists, and engineers in the vestibular field to discuss and debate the challenges associated with human vestibular system adaptation to the then novel environment of space flight. These highly successful symposia addressed the perplexing problem of how to understand and ameliorate the adverse physiological effects on humans resulting from the reduction of gravitational stimulation of the vestibular receptors in space. The series resumed in 2002 with the Sixth Symposium, which focused on the microgravity environment as an essential tool for the study of fundamental vestibular functions. The three day meeting included presentations on historical perspectives, vestibular neurobiology, neurophysiology, neuroanatomy, neurotransmitter systems, theoretical considerations, spatial orientation, psychophysics, motor integration, adaptation, autonomic function, space motion sickness, clinical issues, countermeasures, and rehabilitation. Scientists and clinicians entered into lively exchanges on how to design and perform mutually productive research and countermeasure development projects in the future. The problems posed by long duration missions dominated these discussions and were driven by the paucity of data available. These issues along with more specific recommendations arising from the above discussions will be addressed an upcoming issue of the Journal of Vestibular Research.
Visual and proprioceptive interaction in patients with bilateral vestibular loss☆
Cutfield, Nicholas J.; Scott, Gregory; Waldman, Adam D.; Sharp, David J.; Bronstein, Adolfo M.
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. PMID:25061564
Visual and proprioceptive interaction in patients with bilateral vestibular loss.
Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients.
Vestibular Stimulation and Development of the Small Premature Infant.
ERIC Educational Resources Information Center
Neal, Mary V.
This study was designed to explore the effects of vestibular stimulation on the developmental behavior, respiratory functioning, weight and length gains, and morbidity and mortality rates of premature infants. A total of 20 infants participated in this study in 4 groups of 5 infants each. Group A infants were placed in a motorized hammock within…
Functional Brain Activation in Response to a Clinical Vestibular Test Correlates with Balance
Noohi, Fatemeh; Kinnaird, Catherine; DeDios, Yiri; Kofman, Igor S.; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael
2017-01-01
The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: Skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex [saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)], or an ocular muscle response [utricle-mediated ocular VEMP (oVEMP)]. Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered skull taps would elicit a similar pattern of brain activity as shown in previous studies. Our results provide the first evidence of using pneumatically powered skull taps to elicit vestibular activity inside the MRI scanner. A conjunction analysis revealed that skull taps elicit overlapping activation with auditory tone bursts in the canonical vestibular cortical regions. Further, our postural control assessments revealed that greater amplitude of brain activation in response to vestibular stimulation was associated with better balance control for both techniques. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects, highlighting the utility of this approach for future clinical and basic science research. PMID:28344549
Macaque Parieto-Insular Vestibular Cortex: Responses to self-motion and optic flow
Chen, Aihua; DeAngelis, Gregory C.; Angelaki, Dora E.
2011-01-01
The parieto-insular vestibular cortex (PIVC) is thought to contain an important representation of vestibular information. Here we describe responses of macaque PIVC neurons to three-dimensional (3D) vestibular and optic flow stimulation. We found robust vestibular responses to both translational and rotational stimuli in the retroinsular (Ri) and adjacent secondary somatosensory (S2) cortices. PIVC neurons did not respond to optic flow stimulation, and vestibular responses were similar in darkness and during visual fixation. Cells in the upper bank and tip of the lateral sulcus (Ri and S2) responded to sinusoidal vestibular stimuli with modulation at the first harmonic frequency, and were directionally tuned. Cells in the lower bank of the lateral sulcus (mostly Ri) often modulated at the second harmonic frequency, and showed either bimodal spatial tuning or no tuning at all. All directions of 3D motion were represented in PIVC, with direction preferences distributed roughly uniformly for translation, but showing a preference for roll rotation. Spatio-temporal profiles of responses to translation revealed that half of PIVC cells followed the linear velocity profile of the stimulus, one-quarter carried signals related to linear acceleration (in the form of two peaks of direction selectivity separated in time), and a few neurons followed the derivative of linear acceleration (jerk). In contrast, mainly velocity-coding cells were found in response to rotation. Thus, PIVC comprises a large functional region in macaque areas Ri and S2, with robust responses to 3D rotation and translation, but is unlikely to play a significant role in visual/vestibular integration for self-motion perception. PMID:20181599
Wylie, Douglas R; Pakan, Janelle M P; Huynh, Hang; Graham, David J; Iwaniuk, Andrew N
2012-05-01
Zebrin II (aldolase C) is expressed in a subset of Purkinje cells in the mammalian and avian cerebella such that there is a characteristic parasagittal organization of zebrin-immunopositive stripes alternating with zebrin-immunonegative stripes. Zebrin is expressed not only in the soma and dendrites of Purkinje cells but also in their axonal terminals. Here we describe the distribution of zebrin immunoreactivity in both the vestibular and the cerebellar nuclei of pigeons (Columba livia) and hummingbirds (Calypte anna, Selasphorus rufus). In the medial cerebellar nucleus, zebrin-positive labeling was particularly heavy in the “shell,” whereas the “core” was zebrin negative. In the lateral cerebellar nucleus, labeling was not as heavy, but a positive shell and negative core were also observed. In the vestibular nuclear complex, zebrin-positive terminal labeling was heavy in the dorsolateral vestibular nucleus and the lateral margin of the superior vestibular nucleus. The central and medial regions of the superior nucleus were generally zebrin negative. Labeling was moderate to heavy in the medial vestibular nucleus, particulary the rostral half of the parvocellular subnucleus. A moderate amount of zebrin-positive labeling was present in the descending vestibular nucleus: this was heaviest laterally, and the central region was generally zebrin negative. Zebrin-positive terminals were also observed in the the cerebellovestibular process, prepositus hypoglossi, and lateral tangential nucleus. We discuss our findings in light of similar studies in rats and with respect to the corticonuclear projections to the cerebellar nuclei and the functional connections of the vestibulocerebellum with the vestibular nuclei. Copyright © 2011 Wiley Periodicals, Inc.
Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg
2014-01-01
Vertigo and imbalance are often underestimated in the pediatric population, due to limited communication abilities, atypical symptoms, and relatively quick adaptation and compensation in children. Moreover, examination and interpretation of vestibular tests are very challenging, because of difficulties with cooperation and maintenance of alertness, and because of the sometimes nauseatic reactions. Therefore, it is of great importance for each vestibular laboratory to implement a child-friendly test protocol with age-appropriate normative data. Because of the often masked appearance of vestibular problems in young children, the vestibular organ should be routinely examined in high-risk pediatric groups, such as children with a hearing impairment. Purposes of the present study were (1) to determine age-appropriate normative data for two child-friendly vestibular laboratory techniques (rotatory and collic vestibular evoked myogenic potential [cVEMP] test) in a group of children without auditory or vestibular complaints, and (2) to examine vestibular function in a group of children presenting with bilateral hearing impairment. Forty-eight typically developing children (mean age 8 years 0 months; range: 4 years 1 month to 12 years 11 months) without any auditory or vestibular complaints as well as 39 children (mean age 7 years 8 months; range: 3 years 8 months to 12 years 10 months) with a bilateral sensorineural hearing loss were included in this study. All children underwent three sinusoidal rotations (0.01, 0.05, and 0.1 Hz at 50 degrees/s) and bilateral cVEMP testing. No significant age differences were found for the rotatory test, whereas a significant increase of N1 latency and a significant threshold decrease was noticeable for the cVEMP, resulting in age-appropriate normative data. Hearing-impaired children demonstrated significantly lower gain values at the 0.01 Hz rotation and a larger percentage of absent cVEMP responses compared with normal-hearing children. Seventy-four percent of hearing-impaired children showed some type of vestibular abnormality when examined with a combination of rotatory and cVEMP testing, in contrast to an abnormality rate of 60% with cVEMP and a rate of 49% with rotatory testing alone. The observed pediatric age correlations underscore the necessity of age-appropriate normative data to guarantee accurate interpretation of test results. The high percentages of abnormal vestibular test results in hearing-impaired children emphasize the importance of vestibular assessment in these children because the integrity of the vestibular system is a critical factor for motor and psychological development.
Analysis of nystagmus response to a pseudorandom velocity input
NASA Technical Reports Server (NTRS)
Lessard, C. S.
1986-01-01
Space motion sickness was not reported during the first Apollo missions; however, since Apollo 8 through the current Shuttle and Skylab missions, approximately 50% of the crewmembers have experienced instances of space motion sickness. Space motion sickness, renamed space adaptation syndrome, occurs primarily during the initial period of a mission until habilation takes place. One of NASA's efforts to resolve the space adaptation syndrome is to model the individual's vestibular response for basis knowledge and as a possible predictor of an individual's susceptibility to the disorder. This report describes a method to analyse the vestibular system when subjected to a pseudorandom angular velocity input. A sum of sinusoids (pseudorandom) input lends itself to analysis by linear frequency methods. Resultant horizontal ocular movements were digitized, filtered and transformed into the frequency domain. Programs were developed and evaluated to obtain the (1) auto spectra of input stimulus and resultant ocular resonse, (2) cross spectra, (3) the estimated vestibular-ocular system transfer function gain and phase, and (4) coherence function between stimulus and response functions.
Diagnostics and therapy of vestibular schwannomas – an interdisciplinary challenge
Rosahl, Steffen; Bohr, Christopher; Lell, Michael; Hamm, Klaus; Iro, Heinrich
2017-01-01
Vestibular schwannomas (VS) expand slowly in the internal auditory canal, in the cerebellopontine angle, inside the cochlear and the labyrinth. Larger tumors can displace and compress the brainstem. With an annual incidence of 1:100,000 vestibular schwannoma represent 6–7% of all intracranial tumors. In the cerebellopontine angle they are by far the most neoplasm with 90% of all lesions located in this region. Magnetic resonance imaging (MRI), audiometry, and vestibular diagnostics are the mainstays of the clinical workup for patients harboring tumors. The first part of this paper delivers an overview of tumor stages, the most common grading scales for facial nerve function and hearing as well as a short introduction to the examination of vestibular function. Upholding or improving quality of life is the central concern in counseling and treating a patient with vestibular schwannoma. Preservation of neuronal function is essential and the management options – watchful waiting, microsurgery and stereotactic radiation – should be custom-tailored to the individual situation of the patient. Continuing interdisciplinary exchange is important to monitor treatment quality and to improve treatment results. Recently, several articles and reviews have been published on the topic of vestibular schwannoma. On the occasion of the 88th annual meeting of the German Society of Oto-Rhino-Laryngology, Head and Neck surgery a special volume of the journal “HNO” will be printed. Hence this presentation has been designed to deviate from the traditional standard which commonly consists of a pure literature review. The current paper was conceptually woven around a series of interdisciplinary cases that outline examples for every stage of the disease that show characteristic results for management options to date. Systematic clinical decision pathways have been deduced from our experience and from results reported in the literature. These pathways are graphically outlined after the case presentations. Important criteria for decision making are size and growth rate of the tumor, hearing of the patient and the probability of total tumor resection with preservation of hearing and facial nerve function, age and comorbidity of the patient, best possible control of vertigo and tinnitus and last but not least the patient’s preference and choice. In addition to this, the experience and the results of a given center with each treatment modality will figure in the decision making process. We will discuss findings that are reported in the literature regarding facial nerve function, hearing, vertigo, tinnitus, and headache and reflect on recent studies on their influence on the patient’s quality of life. Vertigo plays an essential role in this framework since it is an independent predictor of quality of life and a patient’s dependence on social welfare. Pathognomonic bilateral vestibular schwannomas that occur in patients suffering from neurofibromatosis typ-2 (NF2) differ from spontaneous unilateral tumors in their biologic behavior. Treatment of neurofibromatosis type-2 patients requires a multidisciplinary team, especially because of the multitude of separate intracranial and spinal lesions. Off-label chemotherapy with Bevacizumab can stabilize tumor size of vestibular schwannomas and even improve hearing over longer periods of time. Hearing rehabilitation in NF2 patients can be achieved with cochlear and auditory brainstem implants. PMID:29279723
Hitier, Martin; Hamon, Michèle; Denise, Pierre; Lacoudre, Julien; Thenint, Marie-Aude; Mallet, Jean-François; Moreau, Sylvain; Quarck, Gaëlle
2015-01-01
Introduction Despite its high incidence and severe morbidity, the physiopathogenesis of adolescent idiopathic scoliosis (AIS) is still unknown. Here, we looked for early anomalies in AIS which are likely to be the cause of spinal deformity and could also be targeted by early treatments. We focused on the vestibular system, which is suspected of acting in AIS pathogenesis and which exhibits an end organ with size and shape fixed before birth. We hypothesize that, in adolescents with idiopathic scoliosis, vestibular morphological anomalies were already present at birth and could possibly have caused other abnormalities. Materials and Methods The vestibular organ of 18 adolescents with AIS and 9 controls were evaluated with MRI in a prospective case controlled study. We studied lateral semicircular canal orientation and the three semicircular canal positions relative to the midline. Lateral semicircular canal function was also evaluated by vestibulonystagmography after bithermal caloric stimulation. Results The left lateral semicircular canal was more vertical and further from the midline in AIS (p = 0.01) and these two parameters were highly correlated (r = -0.6; p = 0.02). These morphological anomalies were associated with functional anomalies in AIS (lower excitability, higher canal paresis), but were not significantly different from controls (p>0.05). Conclusion Adolescents with idiopathic scoliosis exhibit morphological vestibular asymmetry, probably determined well before birth. Since the vestibular system influences the vestibulospinal pathway, the hypothalamus, and the cerebellum, this indicates that the vestibular system is a possible cause of later morphological, hormonal and neurosensory anomalies observed in AIS. Moreover, the simple lateral SCC MRI measurement demonstrated here could be used for early detection of AIS, selection of children for close follow-up, and initiation of preventive treatment before spinal deformity occurs. PMID:26186348
2012-01-01
Background Murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, presents typically as ascending paralysis. However, in mice in which interferon-gamma (IFNγ) signaling is disrupted by genetic deletion, limb paralysis is accompanied by atypical deficits, including head tilt, postural imbalance, and circling, consistent with cerebellar/vestibular dysfunction. This was previously attributed to intense cerebellar and brainstem infiltration by peripheral immune cells and formation of neutrophil-rich foci within the CNS. However, the exact mechanism by which IFNγ signaling prohibits the development of vestibular deficits, and whether the distribution and composition of inflammatory foci within the CNS affects the course of atypical EAE remains elusive. Methods We induced EAE in IFNγ-/- mice and bone marrow chimeric mice in which IFNγR is not expressed in the CNS but is intact in the periphery (IFNγRCNSKO) and vice versa (IFNγRperiKO). Blood-brain barrier permeability was determined by Evans blue intravenous administration at disease onset. Populations of immune cell subsets in the periphery and the CNS were quantified by flow cytometry. CNS tissues isolated at various time points after EAE induction, were analyzed by immunohistochemistry for composition of inflammatory foci and patterns of axonal degeneration. Results Incidence and severity of atypical EAE were more pronounced in IFNγRCNSKO as compared to IFNγRperiKO mice. Contrary to what we anticipated, cerebella/brainstems of IFNγRCNSKO mice were only minimally infiltrated, while the same areas of IFNγRperiKO mice were extensively populated by peripheral immune cells. Furthermore, the CNS of IFNγRperiKO mice was characterized by persistent neutrophil-rich foci as compared to IFNγRCNSKO. Immunohistochemical analysis of the CNS of IFNγ-/- and IFNγR chimeric mice revealed that IFNγ protective actions are exerted through microglial STAT1. Conclusions Alterations in distribution and composition of CNS inflammatory foci are not sufficient for the onset of atypical EAE. IFNγ dictates the course of neuroinflammatory disorders mainly through actions exerted within the CNS. This study provides strong evidence that link microglial STAT1 inactivation to vestibular dysfunction. PMID:22248039
Kremmyda, Olympia; Hüfner, Katharina; Flanagin, Virginia L.; Hamilton, Derek A.; Linn, Jennifer; Strupp, Michael; Jahn, Klaus; Brandt, Thomas
2016-01-01
Bilateral vestibulopathy (BVP) is defined as the impairment or loss of function of either the labyrinths or the eighth nerves. Patients with total BVP due to bilateral vestibular nerve section exhibit difficulties in spatial memory and navigation and show a loss of hippocampal volume. In clinical practice, most patients do not have a complete loss of function but rather an asymmetrical residual functioning of the vestibular system. The purpose of the current study was to investigate navigational ability and hippocampal atrophy in BVP patients with residual vestibular function. Fifteen patients with BVP and a group of age- and gender- matched healthy controls were examined. Self-reported questionnaires on spatial anxiety and wayfinding were used to assess the applied strategy of wayfinding and quality of life. Spatial memory and navigation were tested directly using a virtual Morris Water Maze Task. The hippocampal volume of these two groups was evaluated by voxel-based morphometry. In the patients, the questionnaire showed a higher spatial anxiety and the Morris Water Maze Task a delayed spatial learning performance. MRI revealed a significant decrease in the gray matter mid-hippocampal volume (Left: p = 0.006, Z = 4.58, Right: p < 0.001, Z = 3.63) and posterior parahippocampal volume (Right: p = 0.005, Z = 4.65, Left: p < 0.001, Z = 3.87) compared to those of healthy controls. In addition, a decrease in hippocampal formation volume correlated with a more dominant route-finding strategy. Our current findings demonstrate that even partial bilateral vestibular loss leads to anatomical and functional changes in the hippocampal formation and objective and subjective behavioral deficits. PMID:27065838
Riccelli, Roberta; Indovina, Iole; Staab, Jeffrey P; Nigro, Salvatore; Augimeri, Antonio; Lacquaniti, Francesco; Passamonti, Luca
2017-02-01
Different lines of research suggest that anxiety-related personality traits may influence the visual and vestibular control of balance, although the brain mechanisms underlying this effect remain unclear. To our knowledge, this is the first functional magnetic resonance imaging (fMRI) study that investigates how individual differences in neuroticism and introversion, two key personality traits linked to anxiety, modulate brain regional responses and functional connectivity patterns during a fMRI task simulating self-motion. Twenty-four healthy individuals with variable levels of neuroticism and introversion underwent fMRI while performing a virtual reality rollercoaster task that included two main types of trials: (1) trials simulating downward or upward self-motion (vertical motion), and (2) trials simulating self-motion in horizontal planes (horizontal motion). Regional brain activity and functional connectivity patterns when comparing vertical versus horizontal motion trials were correlated with personality traits of the Five Factor Model (i.e., neuroticism, extraversion-introversion, openness, agreeableness, and conscientiousness). When comparing vertical to horizontal motion trials, we found a positive correlation between neuroticism scores and regional activity in the left parieto-insular vestibular cortex (PIVC). For the same contrast, increased functional connectivity between the left PIVC and right amygdala was also detected as a function of higher neuroticism scores. Together, these findings provide new evidence that individual differences in personality traits linked to anxiety are significantly associated with changes in the activity and functional connectivity patterns within visuo-vestibular and anxiety-related systems during simulated vertical self-motion. Hum Brain Mapp 38:715-726, 2017. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Güven, Hayat; Bayır, Omer; Aytaç, Emrah; Ozdek, Ali; Comoğlu, Selim Selçuk; Korkmaz, Hakan
2014-02-01
Vestibular-evoked myogenic potentials (VEMP), short-latency electromyographic responses elicited by acoustic stimuli, evaluate the function of vestibulocollic reflex and may give information about brainstem function. The aim of the present study is to evaluate the potential contribution of VEMP to the diagnosis of multiple sclerosis (MS). Fifty patients with MS and 30 healthy control subjects were included in this study. The frequency of VEMP p1-n1 and n2-p2 waves; mean p1, n1, n2, and p2 latency; and mean p1-n1 and n2-p2 amplitude were determined. The relation between clinical and imaging findings and VEMP parameters was evaluated. The p1-n1 and n2-p2 waves were more frequently absent in MS than in control subjects [p1-n1 wave absent: MS, 25 (25 %) ears; control, 6 (10 %) ears; P ≤ 0.02] [n2-p2 wave absent: MS, 44 (44 %) ears; control, 7 (12 %) ears; P ≤ 0.001]. The mean p1-n1 amplitude was lower in MS than in control subjects (MS, 19.1 ± 7.2 μV; control, 23.3 ± 7.4 μV; P ≤ 0.002). A total of 24/50 (48 %) MS patients had VEMP abnormalities (absent responses and/or prolonged latencies). VEMP abnormalities were more frequent in patients with than without vestibular symptoms (P ≤ 0.02) and with brainstem functional system score (FSS) ≥ 1 than FSS = 0 (P ≤ 0.02). In patients with MS, absence of p1-n1 wave was more frequent in patients with than without vestibular symptoms [absence of p1-n1 wave: vestibular symptoms, 9 (45 %) ears; no vestibular symptoms, 16 (20 %) ears; P ≤ 0.03] and patients with Expanded Disability Status Scale (EDSS) score ≥ 5.5 [absence of p1-n1 wave: EDSS ≥ 5.5, 7 (70 %) ears; EDSS <5.5, 18 (20 %) ears; P ≤ 0.001]. Abnormal VEMP may be noted in MS patients, especially those with vestibular symptoms and greater disability. The VEMP test may complement other studies for diagnosis and follow-up of patients with MS.
Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy
Rosengren, Sally M.; Welgampola, Miriam S.; Taylor, Rachael L.
2018-01-01
Bilateral vestibulopathy (BVP) is a chronic condition in which patients have a reduction or absence of vestibular function in both ears. BVP is characterized by bilateral reduction of horizontal canal responses; however, there is increasing evidence that otolith function can also be affected. Cervical and ocular vestibular-evoked myogenic potentials (cVEMPs/oVEMPs) are relatively new tests of otolith function that can be used to test the saccule and utricle of both ears independently. Studies to date show that cVEMPs and oVEMPs are often small or absent in BVP but are in the normal range in a significant proportion of patients. The variability in otolith function is partly due to the heterogeneous nature of BVP but is also due to false negative and positive responses that occur because of the large range of normal VEMP amplitudes. Due to their variability, VEMPs are not part of the diagnosis of BVP; however, they are helpful complementary tests that can provide information about the extent of disease within the labyrinth. This article is a review of the use of VEMPs in BVP, summarizing the available data on VEMP abnormalities in patients and discussing the limitations of VEMPs in diagnosing bilateral loss of otolith function. PMID:29719527
Clinical classification and neuro-vestibular evaluation in chronic dizziness.
Oh, Sun-Young; Kim, Do-Hyung; Yang, Tae-Ho; Shin, Byoung-Soo; Jeong, Seul-Ki
2015-01-01
This study attempts to clarify the clinical characteristics of chronic dizziness and its relationships with specific vestibular, oculomotor, autonomic and psychiatric dysfunctions. 73 Patients with idiopathic chronic dizziness were recruited and classified based on history taking and clinical examination into the following four clinical subgroups; vestibular migraine (VM), dysautonomia, psychogenic, and unspecified groups. They were also evaluated using oculomotor, otolithic and autonomic function tests, and psychologic investigation. Patients in the VM group showed a high proportion of abnormality on smooth pursuit and otolithic function testing compared to the other groups. The dysautonomia group revealed significant abnormalities in sympathetic and cardiovagal autonomic function, while the psychogenic group had a high frequency of abnormality in sympathetic autonomic testing and in Beck's anxiety inventory scale. The unspecified group showed abnormalities on saccade, smooth pursuit and autonomic function testing. Clinical classification of patients with chronic dizziness was relevant and they showed a correlation with disease-specific abnormal results in oculomotor, otolithic, autonomic function and psychology testing. Appropriate diagnostic investigation based on precise clinical diagnosis of chronic dizziness reduces the need for extensive laboratory testing, neuroimaging, and other low-yield tests. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Horowitz, Seth S; Cheney, Cheryl A; Simmons, James A
2004-01-01
The big brown bat (Eptesicus fuscus) is an aerial-feeding insectivorous species that relies on echolocation to avoid obstacles and to detect flying insects. Spatial perception in the dark using echolocation challenges the vestibular system to function without substantial visual input for orientation. IR thermal video recordings show the complexity of bat flights in the field and suggest a highly dynamic role for the vestibular system in orientation and flight control. To examine this role, we carried out laboratory studies of flight behavior under illuminated and dark conditions in both static and rotating obstacle tests while administering heavy water (D2O) to impair vestibular inputs. Eptesicus carried out complex maneuvers through both fixed arrays of wires and a rotating obstacle array using both vision and echolocation, or when guided by echolocation alone. When treated with D2O in combination with lack of visual cues, bats showed considerable decrements in performance. These data indicate that big brown bats use both vision and echolocation to provide spatial registration for head position information generated by the vestibular system.
Vestibular rehabilitation using video gaming in adults with dizziness: a pilot study.
Phillips, J S; Fitzgerald, J; Phillis, D; Underwood, A; Nunney, I; Bath, A
2018-03-01
To determine the effectiveness of vestibular rehabilitation using the Wii Fit balance platform, in adults with dizziness. A single-site prospective clinical trial was conducted in a university hospital in the UK. Forty patients with dizziness, who would normally be candidates for vestibular rehabilitation, were identified and considered as potential participants. Participants were randomised into either the treatment group (the Wii Fit group) or the control group (standard customised vestibular rehabilitation protocol). Participants were assessed over a 16-week period using several balance and quality of life questionnaires. Both exercise regimes resulted in a reduction of dizziness and an improvement in quality of life scores over time, but no statistically significant difference between the two interventions was identified. This pilot study demonstrated that use of the Wii Fit balance platform resulted in a statistically significant improvement in balance function and quality of life. Furthermore, outcomes were comparable to a similar group of individuals following a standard customised vestibular rehabilitation protocol. The study provides useful information to inform the design and execution of a larger clinical trial.
Influence of Caloric Vestibular Stimulation on Body Experience in Healthy Humans
Schönherr, Andreas; May, Christian Albrecht
2016-01-01
The vestibular system has more connections with and influence on higher cortical centers than previously thought. These interactions with higher cortical centers and the phenomena that they elicit require a structural intact cerebral cortex. To date, little is known about the role and influence of the vestibular system on one’s body experience. In this study we show that caloric vestibular stimulation (CVS) in healthy participants has an effect on the perceptive component of one’s body experience. After CVS all participants showed a statistically significant difference of thigh width estimation. In contrast to previous studies, which demonstrated an influence of CVS on higher cortical centers with an intact cerebral cortex both the cognitive and affective component of body experience were not effected by the CVS. Our results demonstrate the influence of the vestibular system on body perception and emphasize its role in modulating different perceptive-qualities which contributes to our body experience. We found that CVS has a limited influence on one’s conscious state, thought process and higher cortical functions. PMID:27013995
Vertigo and dizziness in children.
Jahn, Klaus; Langhagen, Thyra; Heinen, Florian
2015-02-01
Vertigo and dizziness occur with considerable frequency in childhood and adolescence. Most causes are benign and treatable. This review aims to make physicians more alert to the frequent causes of dizziness in the young. Epidemiological data confirm that migraine-related syndromes are the most common cause of vertigo in children. Vestibular migraine and benign paroxysmal vertigo have now been defined by the International Classification of Headache Disorders. About half of the adolescents with vertigo and dizziness show psychiatric comorbidity and somatization. Vestibular paroxysmia has been described as a new entity in children that can be treated with low doses of carbamazepine. To assess vestibular deficits, video head impulses (for the semicircular canals) and vestibular-evoked myogenic potentials (for the otoliths) are increasingly being used. Pediatricians and neuro-otologists should be aware of the full spectrum of causes of vertigo and dizziness in children and adolescents. Vestibular function can reliably be tested nowadays. Although treatment for the common migraine-related syndromes can be done in analogy to the treatment of migraine in general, specific approaches are required for somatoform vertigo, the most frequent diagnosis in adolescent girls.
Virtual head rotation reveals a process of route reconstruction from human vestibular signals
Day, Brian L; Fitzpatrick, Richard C
2005-01-01
The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. PMID:16002439
Badaracco, Carlo; Labini, Francesca Sylos; Meli, Annalisa; De Angelis, Ezio; Tufarelli, Davide
2007-09-01
To evaluate the efficiency of the rehabilitative protocols in patients with labyrinthine hypofunction, focusing on computerized dynamic visual acuity test (DVAt) and Gaze stabilization test (GST) specifically evaluating the vestibulo-oculomotor reflex (VOR) changes due to vestibular rehabilitation. Consecutive sample study. Day hospital in Ears, Nose, and Throat Rehabilitation Unit. Thirty-two patients with chronic dizziness with a mean age of 60.74 years. Patients performed one cycle of 12 daily rehabilitation sessions (2 h each) consisting of exercises aimed at improving VOR gain. The rehabilitation program included substitutional and/or habitudinal exercises, exercises on a stability platform, and exercises on a moving footpath with rehabilitative software. Dizziness Handicap Inventory and Activities-specific Balance Confidence Scale. Computerized dynamic posturography, computerized DVAt, and GST. The patients significantly improved in all the tests. Vestibular rehabilitation improved the quality of life by reducing the handicap index and improving the ability in everyday tasks. The recovery of the vestibular-ocular reflex and vestibular-spinal reflex efficiency was objectively proven by instrumental testing. The DVAt and the GST allow to objectively quantify the fixation ability at higher frequencies and speeds (main VOR function). Moreover, these new parameters permit to completely evaluate vestibular rehabilitation outcomes, adding new information to the generally used tests that only assess vestibulospinal reflex.
Cellular target of streptomycin in the internal ear.
Meza, G; López, I; Paredes, M A; Peñaloza, Y; Poblano, A
1989-01-01
The cellular target of streptomycin (STP) was investigated by analyzing the activity of glutamate decarboxylase (GAD) or choline acetyltransferase (ChAT) enzymes of synthesis of GABA and acetylcholine (Ach), respectively, [supposedly located in hair cells (GAD) or efferent terminals (ChAT)] in control and in 50 day-STP-treated colored guinea pig vestibular homogenates. Vestibular and auditory function were assessed by measuring postrotatory nystagmus response (PNR) and auditory brainstem evoked potentials (ABP). Morphological changes were followed by light and electron microscopy. STP-treated animals exhibited a GAD decrease of 83.6% with respect to controls whereas ChAT did not suffer any change. Assessment of PNR and ABP showed that STP affected only the former since animals lost it between the 20th and the 30th day of treatment, whereas ABP was not modified. Morphological experiments detected vestibular hair cell deterioration as the only cell type affected by STP. These results confirm the predilection of STP to affect vestibular function by damage to hair cells and show that this effect can be followed by measurement of GAD and ChAT in the vestibule as markers for hair cells and efferent terminals, respectively.
Vestibular evoked myogenic potential (VEMP) with galvanic stimulation in normal subjects.
Cunha, Luciana Cristina Matos; Labanca, Ludimila; Tavares, Maurício Campelo; Gonçalves, Denise Utsch
2014-01-01
The vestibular evoked myogenic potential (VEMP) generated by galvanic vestibular stimulation (GVS) is related to the vestibulo-spinal pathway. The response recorded from soleus muscle is biphasic with onset of short latency (SL) component around 60 ms and medium latency (ML) component around 100 ms. The first component reflects otolith function (sacule and utricle) and the last deals with semicircular canals. To describe VEMP generated by GVS. In this cross-sectional clinical study, VEMP was generated by 2 mA/400 ms binaural GVS, frequency of 5-6 ms that was recorded from soleus muscles of 13 healthy adults, mean age 56 years. The subjects remained standing, head turned contralateral to the GVS applied to the mastoid. Thirty GVS were applied to the mastoid in the position cathode right anode left, followed by 30 in inverted position. SL and ML were measured. SL and ML components were recorded from both legs of all participants and were similar. The average of SL component was 54 ms and of ML was 112 ms. The components SL and ML of the VEMP response in soleus were reproducible and are useful measures of vestibular-spinal function.
Glucocorticoids improve acute dizziness symptoms following acute unilateral vestibulopathy.
Batuecas-Caletrío, Angel; Yañez-Gonzalez, Raquel; Sanchez-Blanco, Carmen; Pérez, Pedro Blanco; González-Sanchez, Enrique; Sanchez, Luis Alberto Guardado; Kaski, Diego
2015-11-01
Acute unilateral vestibulopathy (AUV) is characterized by acute vertigo, nausea, and imbalance without neurological deficits or auditory symptomatology. Here, we explore the effect of glucocorticoid treatment on the degree of canal paresis in patients with AUV, and critically, establish its relationship with dizziness symptom recovery. We recruited consecutive patients who were retrospectively assigned to one of the two groups according to whether they received glucocorticoid treatment (n = 32) or not (n = 44). All patients underwent pure-tone audiometry, bithermal caloric testing, MRI brain imaging, and were asked to complete a dizziness handicap inventory on admission to hospital and just prior to hospital discharge. In the treatment group, the canal paresis at discharge was significantly lower than in the control group (mean ± SD % 38.04 ± 21.57 versus 82.79 ± 21.51, p < 0.001). We also observed a significant reduction in the intensity of nystagmus in patients receiving glucocorticoid treatment compared to the non-treatment group (p = 0.03). DHI test score was significantly lower at discharge in the treatment group (mean ± SD % 23.15 ± 12.40 versus 64.07 ± 12.87, p < 0.001), as was the length of hospital stay (2.18 ± 1.5 days versus 3.6 ± 1.7 days, p = 0.002). Glucocorticoid treatment leads to acute symptomatic improvement, with a reduced hospital stay and reduction in the intensity of acute nystagmus. Our findings suggest that glucocorticoids may accelerate vestibular compensation via a restoration of peripheral vestibular function, and therefore has important clinical implications for the treatment of AUV.
NASA Technical Reports Server (NTRS)
Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.
2003-01-01
The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.
Vestibular Deficits Following Youth Concussion
Corwin, Daniel J.; Wiebe, Douglas J.; Zonfrillo, Mark R.; Grady, Matthew F.; Robinson, Roni L.; Goodman, Arlene M.; Master, Christina L.
2015-01-01
Objective To characterize the prevalence and recovery of pediatric patients with concussion who manifest clinical vestibular deficits, and to describe the correlation of these deficits with neurocognitive function, based on computerized neurocognitive testing, in a sample of pediatric patients with concussion. Methods This was a retrospective cohort study of patients age 5–18 years old with concussion referred to a tertiary pediatric hospital-affiliated sports medicine clinic from 7/1/2010–12/31/2011. A random sample of all eligible patient visits was obtained, and all related visits for those patients were reviewed. Results 247 patients were chosen from 3740 eligible visits for detailed review and abstraction. 81% showed a vestibular abnormality on initial clinical exam. Those patients with vestibular signs on initial exam took a significantly longer time to return to school (median 59 days vs. 6 days, p=0.001) or to be fully cleared (median 106 days vs. 29 days, p=0.001). They additionally scored more poorly on initial computerized neurocognitive testing, and took longer for neurocognitive deficits to recover. Those patients with three or more prior concussions had a higher prevalence of vestibular deficits and took longer for those deficits to resolve. Conclusion Vestibular deficits in children and adolescents with a history of concussion are highly prevalent. These deficits appear to be associated with extended recovery times and poorer performance on neurocognitive testing. Further studies evaluating the effectiveness of vestibular therapy on improving such deficits are warranted. PMID:25748568
BRN 3.1 Knockouts Affect the Vestibular, Autonomic, and Circadian Rhythm Responses to 2G Exposure
NASA Technical Reports Server (NTRS)
Murakami, D. M.; Erkman, L.; Rosenfeld, M. G.; Fuller, C. A.
1999-01-01
Our previous studies have demonstrated that 2G exposure via centrifugation significantly attenuated the daily mean and circadian rhythm amplitude of rat body temperature (Tb), heart rate, and activity (Act). In addition, 2G exposure activates neural responses in several vestibular, autonomic, and circadian nuclei. Although we have characterized the effect of 2G on an animal's physiological, neuronal, and behavioral responses, it will be important to understand the underlying neural and physiological mechanisms that mediate those responses. For example, the vestibular responses, proprioceptive feedback, or fluid shifts may be the critical factors that mediate the responses to 2G. As a first step to understand the relative importance of these different response pathways to altered gravitational fields, this study examined the contribution of the vestibular system by utilizing an animal model from molecular biology. Brain 3.1 (Bm 3.1) is a POU domain homeobox gene involved in the normal development of the vestibular and auditory system. Brn 3.1 deletion results in a loss of hair cells in the otoliths, semicircular canals, and cochlea. As a result mice with a Brn 3.1 deletion do not have a functioning vestibular or auditory system. The BRN 3.1 knockout mouse could be a very useful animal model for isolating the role of the vestibular system in mediating the physiological responses to 2G exposure. Therefore, this study compared the effect of 2G exposure via centrifugation between Brn 3.1 knockout (KO) versus Wildtype (W) mice.
Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations.
Lenggenhager, Bigna; Lopez, Christophe; Blanke, Olaf
2008-01-01
The vestibular system analyses angular and linear accelerations of the head that are important information for perceiving the location of one's own body in space. Vestibular stimulation and in particular galvanic vestibular stimulation (GVS) that allow a systematic modification of vestibular signals has so far mainly been used to investigate vestibular influence on sensori-motor integration in eye movements and postural control. Comparatively, only a few behavioural and imaging studies have investigated how cognition of space and body may depend on vestibular processing. This study was designed to differentiate the influence of left versus right anodal GVS compared to sham stimulation on object-based versus egocentric mental transformations. While GVS was applied, subjects made left-right judgments about pictures of a plant or a human body presented at different orientations in the roll plane. All subjects reported illusory sensations of body self-motion and/or visual field motion during GVS. Response times in the mental transformation task were increased during right but not left anodal GVS for the more difficult stimuli and the larger angles of rotation. Post-hoc analyses suggested that the interfering effect of right anodal GVS was only present in subjects who reported having imagined turning themselves to solve the mental transformation task (egocentric transformation) as compared to those subjects having imagined turning the picture in space (object-based mental transformation). We suggest that this effect relies on shared functional and cortical mechanisms in the posterior parietal cortex associated with both right anodal GVS and mental imagery.
Karkishchenko, N N; Dimitriadi, N A; Molchanovskiĭ, V V
1986-01-01
Healthy volunteers with a low vestibular tolerance were exposed to Coriolis acceleration. Potassium orotate, pyracetame and riboxine were used as prophylactic measures against disorders in the function of the vestibular apparatus and higher compartments of the higher nervous system. The central nervous function was assessed with respect to the spectral power of electroencephalograms, short-term memory and mental performance. Potassium orotate given at a dose of 40 mg/kg body weight/day during 12-14 days as well as pyracetame given at a dose of 30 mg/kg body weight/day during 3 or 7 days increased significantly statokinetic tolerance and produced a protective effect on the central nervous function against Coriolis acceleration.
Medial vestibular connections with the hypocretin (orexin) system
NASA Technical Reports Server (NTRS)
Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.
2005-01-01
The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.
Misdiagnosis of acute peripheral vestibulopathy in central nervous ischemic infarction.
Braun, Eva Maria; Tomazic, Peter Valentin; Ropposch, Thorsten; Nemetz, Ulrike; Lackner, Andreas; Walch, Christian
2011-12-01
Vertigo is a very common symptom at otorhinolaryngology (ENT), neurological, and emergency units, but often, it is difficult to distinguish between vertigo of peripheral and central origin. We conducted a retrospective analysis of a hospital database, including all patients admitted to the ENT University Hospital Graz after neurological examination, with a diagnosis of peripheral vestibular vertigo and subsequent diagnosis of central nervous infarction as the actual cause for the vertigo. Twelve patients were included in this study. All patients with acute spinning vertigo after a thorough neurological examination and with uneventful computed tomographic scans were referred to our ENT department. Nine of them presented with horizontal nystagmus. Only 1 woman experienced additional hearing loss. The mean diagnostic delay to the definite diagnosis of a central infarction through magnetic resonance imaging was 4 days (SD, 2.3 d). A careful otologic and neurological examination, including the head impulse test and caloric testing, is mandatory. Because ischemic events cannot be diagnosed in computed tomographic scans at an early stage, we strongly recommend to perform cranial magnetic resonance imaging within 48 hours from admission if vertigo has not improved under conservative treatment.
Vestibular evoked myogenic potential (Vemp): evaluation of responses in normal subjects.
Felipe, Lilian; Santos, Marco Aurélio Rocha; Gonçalves, Denise Utsch
2008-01-01
the Vestibular Evoked Myogenic Potential (Vemp) is formed by myogenic neurophysiologic responses activated by high-intensity sound stimulation. The response is registered through surface electromyography of the cervical muscles during muscle contraction. The acoustic stimuli activate the saccular macula, the vestibular inferior nerve and the pathways related to the vestibule-spinal descendant nerves. to describe Vemp parameters in a normal population. thirty adults, 13 men and 17 women with no otoneurological complaints were selected. The stimuli were 200 tone burst, with a frequency of 1Hz and intensity of 118 dB Na, band-pass filter ranging from 10Hz to 1500Hz. The first potential biphasic P13-N23 wave was analyzed. no significant difference was observed between the sides of stimulation in terms of latency and amplitude. However, a statistically significant difference was found for amplitude between genders. Vemp demonstrated to be a reliable instrument in the clinical assessment of the vestibular function.
Cerebellar re-encoding of self-generated head movements
Dugué, Guillaume P; Tihy, Matthieu; Gourévitch, Boris; Léna, Clément
2017-01-01
Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head movements in the rat caudal cerebellar vermis, an area essential for graviceptive functions. We found that, contrarily to peripheral vestibular inputs, most Purkinje cells exhibited a mixed sensitivity to head rotational and gravitational information and were differentially modulated by active and passive movements. In a subpopulation of cells, this mixed sensitivity underlay a tuning to rotations about an axis defined relative to gravity. Therefore, we show that the caudal vermis hosts a re-encoded, gravitationally polarized representation of self-generated head kinematics in freely moving rats. DOI: http://dx.doi.org/10.7554/eLife.26179.001 PMID:28608779
Vestibular rehabilitation ameliorates chronic dizziness through the SIRT1 axis
Kao, Chung-Lan; Tsai, Kun-Ling; Cheng, Yuan-Yang; Kuo, Chia-Hua; Lee, Shin-Da; Chan, Rai-Chi
2014-01-01
Dizziness is a common clinical symptom frequently referred to general neurologists and practitioners. Exercise intervention, in the form of vestibular rehabilitation, is known as an effective clinical management for dizziness. This intervention is reported to have a functional role in correcting dizziness, improving gaze stability, retraining balance and gait, and enhancing physical fitness. Dizziness is known to be highly related to inflammation and oxidative stress. SIRT1 is a major molecule for the regulation of inflammation and mitigation of oxidative stress in chronic diseases such as atherosclerosis and chronic obstructive pulmonary disease. However, the bio-molecular roles of SIRT1 involved in the pathogenesis of dizziness are still largely unclear. In this study, a total of 30 subjects were recruited (15 patients with chronic dizziness, and 15 age/gender matched non-dizzy control subjects). The dizzy subjects group received 18 sessions of 30-min vestibular training. We found that the mRNA and protein expression levels of SIRT1 in the blood samples of chronic dizzy patients were repressed compared with those of healthy controls. After vestibular training, the dizzy patients had significant symptomatic improvements. The SIRT1 expression and its downstream genes (PPAR-γ and PGC-1α) were upregulated after vestibular exercises in dizzy subjects. Notably, the catalytic activity of SIRT1, NADPH and antioxidant enzyme activities were also activated in dizzy patients after vestibular training. Furthermore, vestibular exercise training reduced oxidative events and p53 expression in patients with dizziness. This study demonstrated that vestibular exercise training improved dizziness symptoms, and mechanisms for alleviation of chronic dizziness may partly involve the activation of the SIRT1 axis and the repression of redox status. PMID:24624081
Dai, Chenkai; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan; Melvin, Thuy-Anh; Cullen, Kathleen E.; Della Santina, Charles C.
2012-01-01
By sensing three-dimensional (3D) head rotation and electrically stimulating the three ampullary branches of a vestibular nerve to encode head angular velocity, a multichannel vestibular prosthesis (MVP) can restore vestibular sensation to individuals disabled by loss of vestibular hair cell function. However, current spread to afferent fibers innervating non-targeted canals and otolith endorgans can distort the vestibular nerve activation pattern, causing misalignment between the perceived and actual axis of head rotation. We hypothesized that over time, central neural mechanisms can adapt to correct this misalignment. To test this, we rendered five chinchillas vestibular-deficient via bilateral gentamicin treatment and unilaterally implanted them with a head mounted MVP. Comparison of 3D angular vestibulo-ocular reflex (aVOR) responses during 2 Hz, 50°/s peak horizontal sinusoidal head rotations in darkness on the first, third and seventh days of continual MVP use revealed that eye responses about the intended axis remained stable (at about 70% of the normal gain) while misalignment improved significantly by the end of one week of prosthetic stimulation. A comparable time course of improvement was also observed for head rotations about the other two semicircular canal axes and at every stimulus frequency examined (0.2–5 Hz). In addition, the extent of disconjugacy between the two eyes progressively improved during the same time window. These results indicate that the central nervous system rapidly adapts to multichannel prosthetic vestibular stimulation to markedly improve 3D aVOR alignment within the first week after activation. Similar adaptive improvements are likely to occur in other species, including humans. PMID:21374081
Tighilet, Brahim; Péricat, David; Frelat, Alais; Cazals, Yves; Rastoldo, Guillaume; Boyer, Florent; Dumas, Olivier
2017-01-01
Vestibular disorders, by inducing significant posturo-locomotor and cognitive disorders, can significantly impair the most basic tasks of everyday life. Their precise diagnosis is essential to implement appropriate therapeutic countermeasures. Monitoring their evolution is also very important to validate or, on the contrary, to adapt the undertaken therapeutic actions. To date, the diagnosis methods of posturo-locomotor impairments are restricted to examinations that most often lack sensitivity and precision. In the present work we studied the alterations of the dynamic weight distribution in a rodent model of sudden and complete unilateral vestibular loss. We used a system of force sensors connected to a data analysis system to quantify in real time and in an automated way the weight bearing of the animal on the ground. We show here that sudden, unilateral, complete and permanent loss of the vestibular inputs causes a severe alteration of the dynamic ground weight distribution of vestibulo lesioned rodents. Characteristics of alterations in the dynamic weight distribution vary over time and follow the sequence of appearance and disappearance of the various symptoms that compose the vestibular syndrome. This study reveals for the first time that dynamic weight bearing is a very sensitive parameter for evaluating posturo-locomotor function impairment. Associated with more classical vestibular examinations, this paradigm can considerably enrich the methods for assessing and monitoring vestibular disorders. Systematic application of this type of evaluation to the dizzy or unstable patient could improve the detection of vestibular deficits and allow predicting better their impact on posture and walk. Thus it could also allow a better follow-up of the therapeutic approaches for rehabilitating gait and balance. PMID:29112981
Vision and Vestibular System Dysfunction Predicts Prolonged Concussion Recovery in Children.
Master, Christina L; Master, Stephen R; Wiebe, Douglas J; Storey, Eileen P; Lockyer, Julia E; Podolak, Olivia E; Grady, Matthew F
2018-03-01
Up to one-third of children with concussion have prolonged symptoms lasting beyond 4 weeks. Vision and vestibular dysfunction is common after concussion. It is unknown whether such dysfunction predicts prolonged recovery. We sought to determine which vision or vestibular problems predict prolonged recovery in children. A retrospective cohort of pediatric patients with concussion. A subspecialty pediatric concussion program. Four hundred thirty-two patient records were abstracted. Presence of vision or vestibular dysfunction upon presentation to the subspecialty concussion program. The main outcome of interest was time to clinical recovery, defined by discharge from clinical follow-up, including resolution of acute symptoms, resumption of normal physical and cognitive activity, and normalization of physical examination findings to functional levels. Study subjects were 5 to 18 years (median = 14). A total of 378 of 432 subjects (88%) presented with vision or vestibular problems. A history of motion sickness was associated with vestibular dysfunction. Younger age, public insurance, and presence of headache were associated with later presentation for subspecialty concussion care. Vision and vestibular problems were associated within distinct clusters. Provocable symptoms with vestibulo-ocular reflex (VOR) and smooth pursuits and abnormal balance and accommodative amplitude (AA) predicted prolonged recovery time. Vision and vestibular problems predict prolonged concussion recovery in children. A history of motion sickness may be an important premorbid factor. Public insurance status may represent problems with disparities in access to concussion care. Vision assessments in concussion must include smooth pursuits, saccades, near point of convergence (NPC), and accommodative amplitude (AA). A comprehensive, multidomain assessment is essential to predict prolonged recovery time and enable active intervention with specific school accommodations and targeted rehabilitation.
Tighilet, Brahim; Péricat, David; Frelat, Alais; Cazals, Yves; Rastoldo, Guillaume; Boyer, Florent; Dumas, Olivier; Chabbert, Christian
2017-01-01
Vestibular disorders, by inducing significant posturo-locomotor and cognitive disorders, can significantly impair the most basic tasks of everyday life. Their precise diagnosis is essential to implement appropriate therapeutic countermeasures. Monitoring their evolution is also very important to validate or, on the contrary, to adapt the undertaken therapeutic actions. To date, the diagnosis methods of posturo-locomotor impairments are restricted to examinations that most often lack sensitivity and precision. In the present work we studied the alterations of the dynamic weight distribution in a rodent model of sudden and complete unilateral vestibular loss. We used a system of force sensors connected to a data analysis system to quantify in real time and in an automated way the weight bearing of the animal on the ground. We show here that sudden, unilateral, complete and permanent loss of the vestibular inputs causes a severe alteration of the dynamic ground weight distribution of vestibulo lesioned rodents. Characteristics of alterations in the dynamic weight distribution vary over time and follow the sequence of appearance and disappearance of the various symptoms that compose the vestibular syndrome. This study reveals for the first time that dynamic weight bearing is a very sensitive parameter for evaluating posturo-locomotor function impairment. Associated with more classical vestibular examinations, this paradigm can considerably enrich the methods for assessing and monitoring vestibular disorders. Systematic application of this type of evaluation to the dizzy or unstable patient could improve the detection of vestibular deficits and allow predicting better their impact on posture and walk. Thus it could also allow a better follow-up of the therapeutic approaches for rehabilitating gait and balance.
Procedures for restoring vestibular disorders
Walther, Leif Erik
2005-01-01
This paper will discuss therapeutic possibilities for disorders of the vestibular organs and the neurons involved, which confront ENT clinicians in everyday practice. Treatment of such disorders can be tackled either symptomatically or causally. The possible strategies for restoring the body's vestibular sense, visual function and co-ordination include medication, as well as physical and surgical procedures. Prophylactic or preventive measures are possible in some disorders which involve vertigo (bilateral vestibulopathy, kinetosis, height vertigo, vestibular disorders when diving (Tables 1 (Tab. 1) and 2 (Tab. 2)). Glucocorticoid and training therapy encourage the compensation of unilateral vestibular loss. In the case of a bilateral vestibular loss, it is important to treat the underlying disease (e.g. Cogan's disease). Although balance training does improve the patient's sense of balance, it will not restore it completely. In the case of Meniere's disease, there are a number of medications available to either treat bouts or to act as a prophylactic (e.g. dimenhydrinate or betahistine). In addition, there are non-ablative (sacculotomy) as well as ablative surgical procedures (e.g. labyrinthectomy, neurectomy of the vestibular nerve). In everyday practice, it has become common to proceed with low risk therapies initially. The physical treatment of mild postural vertigo can be carried out quickly and easily in outpatients (repositioning or liberatory maneuvers). In very rare cases it may be necessary to carry out a semicircular canal occlusion. Isolated disturbances of the otolith function or an involvement of the otolith can be found in roughly 50% of labyrinth disturbances. A specific surgical procedure to selectively block the otolith organs is currently being studied. When an external perilymph fistula involving loss of perilymph is suspected, an exploratory tympanotomy involving also the round and oval window niches must be carried out. A traumatic rupture of the round window membrane can, for example, also be caused by an implosive inner ear barotrauma during the decompression phase of diving. Dehiscence of the anterior semicircular canal, a relatively rare disorder, can be treated conservatively (avoiding stimuli which cause dizziness), by non-ablative „resurfacing" or by „plugging" the semicircular canal. A perilymph fistula can cause a Tullio-phenomenon resulting from a traumatic dislocation or hypermobility of the stapes, which can be surgically corrected. Vestibular disorders can also result from otosurgical therapy. When balance disorders persist following stapedectomy it is necessary to carry out a revision operation in order to either exclude a perilymph fistula or shorten the piston. Surgically reducing the size of open mastoid cavities (using for example porous hydroxylapatite or cartilage) can result in a reduction of vertiginous symptoms while nursing or during exposure to ambient air. Vestibular disturbances can occur both before and after vestibular nerve surgery (acoustic neuroma). Initially, good vestibular compensation can be expected after surgically removing the acoustic neuroma. An aberrant regeneration of nerve fibers of the vestibulocochlear nerve has been suggested as a cause for secondary worsening. Episodes of vertigo can be caused by an irritation of the vestibular nerve (vascular loop). Neurovascular decompression is generally regarded as the best surgical therapy. In the elderly, vestibular disturbances can severely limit quality of life and are often aggravated by multiple comorbidities. Antivertiginous drugs (e.g. dimenhydrinate) in combination with movement training can significantly reduce symptoms. Administering antivertiginous drugs over varying periods of time (e.g. transdermal scopolamine application via patches) as well as kinetosis training can be used as both prophylactically and as a therapy for kinetosis. Exposure training should be used as a prophylactic for height vertigo. PMID:22073053
Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst
NASA Technical Reports Server (NTRS)
Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael
2014-01-01
The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked activation, indicated by eye muscle response. Our preliminary analyses showed that the skull tap elicited activation in medial frontal gyrus, superior temporal gyrus, postcentral gyrus, transverse temporal gyrus, anterior cingulate, and putamen. The auditory tone bursts elicited activation in medial frontal gyrus, superior temporal gyrus, superior frontal gyrus, precentral gyrus, inferior and superior parietal lobules. In line with our hypothesis, skull taps elicited a pattern of cortical activity closely similar to one elicited by auditory tone bursts. Further analysis will determine the extent to which the skull taps can replace the auditory tone stimulation in clinical and basic science vestibular assessments.
Development of the Persian version of the Vertigo Symptom Scale: Validity and reliability
Kamalvand, Atefeh; Ghahraman, Mansoureh Adel; Jalaie, Shohreh
2017-01-01
Background: Vertigo Symptom Scale (VSS) is a proper instrument for assessing the patient status, clarifying the symptoms, and examining the relative impact of the vertigo and anxiety on reported handicap. Our aim is the translation and cross-cultural adaptation of the VSS into Persian language (VSS-P) and investigating its validity and reliability in patients with peripheral vestibular disorders. Materials and Methods: VSS was translated into Persian. Cross-cultural adaptation was carried out on 101 patients with peripheral vestibular disorders and 34 participants with no history of vertigo. They completed the Persian versions of VSS, dizziness handicap inventory (DHI), and Beck anxiety inventory (BAI). Internal, discriminant, and convergent validities, internal consistency, and test-retest reliability were determined. Results: The VSS-P showed good face validity. Internal validity was confirmed and demonstrated the presence of two vertigo (VSS-VER) and autonomic-anxiety (VSS-AA) subscales. Significant difference between the median scores for patient and healthy groups was reported in discriminate validity (P <0.001). Convergent validity revealed high correlation between both BAI and DHI with VSS-P. There was a high test-retest reliability; with intraclass correlation coefficient of 0.89, 0.86, and 0.91 for VSS-AA, VER, and VSS-P, respectively. The internal consistency was good with Cronbach's alpha 0.90 for VER subscale, 0.86 for VSS-AA subscale, and 0.92 for the overall VSS-P. Conclusion: The Persian version of the VSS could be used clinically as a valid and reliable tool. Thus, it is a key instrument to focus on the symptoms associated with dizziness. PMID:28616045
Development of the Persian version of the Vertigo Symptom Scale: Validity and reliability.
Kamalvand, Atefeh; Ghahraman, Mansoureh Adel; Jalaie, Shohreh
2017-01-01
Vertigo Symptom Scale (VSS) is a proper instrument for assessing the patient status, clarifying the symptoms, and examining the relative impact of the vertigo and anxiety on reported handicap. Our aim is the translation and cross-cultural adaptation of the VSS into Persian language (VSS-P) and investigating its validity and reliability in patients with peripheral vestibular disorders. VSS was translated into Persian. Cross-cultural adaptation was carried out on 101 patients with peripheral vestibular disorders and 34 participants with no history of vertigo. They completed the Persian versions of VSS, dizziness handicap inventory (DHI), and Beck anxiety inventory (BAI). Internal, discriminant, and convergent validities, internal consistency, and test-retest reliability were determined. The VSS-P showed good face validity. Internal validity was confirmed and demonstrated the presence of two vertigo (VSS-VER) and autonomic-anxiety (VSS-AA) subscales. Significant difference between the median scores for patient and healthy groups was reported in discriminate validity ( P <0.001). Convergent validity revealed high correlation between both BAI and DHI with VSS-P. There was a high test-retest reliability; with intraclass correlation coefficient of 0.89, 0.86, and 0.91 for VSS-AA, VER, and VSS-P, respectively. The internal consistency was good with Cronbach's alpha 0.90 for VER subscale, 0.86 for VSS-AA subscale, and 0.92 for the overall VSS-P. The Persian version of the VSS could be used clinically as a valid and reliable tool. Thus, it is a key instrument to focus on the symptoms associated with dizziness.
Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E; Chacron, Maurice J
2017-01-01
There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (< 2 Hz) and more sharply for high (>2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.
NASA Technical Reports Server (NTRS)
Hosman, R. J. A. W.; Vandervaart, J. C.
1984-01-01
An experiment to investigate visual roll attitude and roll rate perception is described. The experiment was also designed to assess the improvements of perception due to cockpit motion. After the onset of the motion, subjects were to make accurate and quick estimates of the final magnitude of the roll angle step response by pressing the appropriate button of a keyboard device. The differing time-histories of roll angle, roll rate and roll acceleration caused by a step response stimulate the different perception processes related the central visual field, peripheral visual field and vestibular organs in different, yet exactly known ways. Experiments with either of the visual displays or cockpit motion and some combinations of these were run to asses the roles of the different perception processes. Results show that the differences in response time are much more pronounced than the differences in perception accuracy.
Ventral and dorsal streams processing visual motion perception (FDG-PET study)
2012-01-01
Background Earlier functional imaging studies on visually induced self-motion perception (vection) disclosed a bilateral network of activations within primary and secondary visual cortex areas which was combined with signal decreases, i.e., deactivations, in multisensory vestibular cortex areas. This finding led to the concept of a reciprocal inhibitory interaction between the visual and vestibular systems. In order to define areas involved in special aspects of self-motion perception such as intensity and duration of the perceived circular vection (CV) or the amount of head tilt, correlation analyses of the regional cerebral glucose metabolism, rCGM (measured by fluorodeoxyglucose positron-emission tomography, FDG-PET) and these perceptual covariates were performed in 14 healthy volunteers. For analyses of the visual-vestibular interaction, the CV data were compared to a random dot motion stimulation condition (not inducing vection) and a control group at rest (no stimulation at all). Results Group subtraction analyses showed that the visual-vestibular interaction was modified during CV, i.e., the activations within the cerebellar vermis and parieto-occipital areas were enhanced. The correlation analysis between the rCGM and the intensity of visually induced vection, experienced as body tilt, showed a relationship for areas of the multisensory vestibular cortical network (inferior parietal lobule bilaterally, anterior cingulate gyrus), the medial parieto-occipital cortex, the frontal eye fields and the cerebellar vermis. The “earlier” multisensory vestibular areas like the parieto-insular vestibular cortex and the superior temporal gyrus did not appear in the latter analysis. The duration of perceived vection after stimulus stop was positively correlated with rCGM in medial temporal lobe areas bilaterally, which included the (para-)hippocampus, known to be involved in various aspects of memory processing. The amount of head tilt was found to be positively correlated with the rCGM of bilateral basal ganglia regions responsible for the control of motor function of the head. Conclusions Our data gave further insights into subfunctions within the complex cortical network involved in the processing of visual-vestibular interaction during CV. Specific areas of this cortical network could be attributed to the ventral stream (“what” pathway) responsible for the duration after stimulus stop and to the dorsal stream (“where/how” pathway) responsible for intensity aspects. PMID:22800430
Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance
2016-02-01
for evidence - based criteria for assessing the performance of military personnel after neurosensory (including vestibular) injury. This report...be a compromise between the rifle handling behaviours required of a Soldier and the functional motor coordination activities that are known to be...Some researchers estimate that approximately 90 percent of acute mTBI patients and 80 percent of chronic mTBI patients exhibit evidence of vestibular
McKeehan, Nicholas
2017-01-01
Attention-deficit/hyperactivity disorder (ADHD) and anxiety-related disorders occur at rates 2–3 times higher in deaf compared with hearing children. Potential explanations for these elevated rates and the heterogeneity of behavioral disorders associated with deafness have usually focused on socio-environmental rather than biological effects. Children with the 22q11.2 deletion or duplication syndromes often display hearing loss and behavioral disorders, including ADHD and anxiety-related disorders. Here, we show that mouse mutants with either a gain or loss of function of the T-Box transcription factor gene, Tbx1, which lies within the 22q11.2 region and is responsible for most of the syndromic defects, exhibit inner ear defects and hyperactivity. Furthermore, we show that (1) inner ear dysfunction due to the tissue-specific loss of Tbx1 or Slc12a2, which encodes a sodium-potassium-chloride cotransporter and is also necessary for inner ear function, causes hyperactivity; (2) vestibular rather than auditory failure causes hyperactivity; and (3) the severity rather than the age of onset of vestibular dysfunction differentiates whether hyperactivity or anxiety co-occurs with inner ear dysfunction. Together, these findings highlight a biological link between inner ear dysfunction and behavioral disorders and how sensory abnormalities can contribute to the etiology of disorders traditionally considered of cerebral origin. SIGNIFICANCE STATEMENT This study examines the biological rather than socio-environmental reasons why hyperactivity and anxiety disorders occur at higher rates in deaf individuals. Using conditional genetic approaches in mice, the authors show that (1) inner ear dysfunction due to either Tbx1 or Slc12a2 mutations cause hyperactivity; (2) it is vestibular dysfunction, which frequently co-occurs with deafness but often remains undiagnosed, rather than auditory dysfunction that causes hyperactivity and anxiety-related symptoms; and (3) the severity of vestibular dysfunction can predict whether hyperactivity or anxiety coexist with inner ear dysfunction. These findings suggest a need to evaluate vestibular function in hearing impaired individuals, especially those who exhibit hyperactive and anxiety-related symptoms. PMID:28438970
Antoine, Michelle W; Vijayakumar, Sarath; McKeehan, Nicholas; Jones, Sherri M; Hébert, Jean M
2017-05-17
Attention-deficit/hyperactivity disorder (ADHD) and anxiety-related disorders occur at rates 2-3 times higher in deaf compared with hearing children. Potential explanations for these elevated rates and the heterogeneity of behavioral disorders associated with deafness have usually focused on socio-environmental rather than biological effects. Children with the 22q11.2 deletion or duplication syndromes often display hearing loss and behavioral disorders, including ADHD and anxiety-related disorders. Here, we show that mouse mutants with either a gain or loss of function of the T-Box transcription factor gene, Tbx1 , which lies within the 22q11.2 region and is responsible for most of the syndromic defects, exhibit inner ear defects and hyperactivity. Furthermore, we show that (1) inner ear dysfunction due to the tissue-specific loss of Tbx1 or Slc12a2 , which encodes a sodium-potassium-chloride cotransporter and is also necessary for inner ear function, causes hyperactivity; (2) vestibular rather than auditory failure causes hyperactivity; and (3) the severity rather than the age of onset of vestibular dysfunction differentiates whether hyperactivity or anxiety co-occurs with inner ear dysfunction. Together, these findings highlight a biological link between inner ear dysfunction and behavioral disorders and how sensory abnormalities can contribute to the etiology of disorders traditionally considered of cerebral origin. SIGNIFICANCE STATEMENT This study examines the biological rather than socio-environmental reasons why hyperactivity and anxiety disorders occur at higher rates in deaf individuals. Using conditional genetic approaches in mice, the authors show that (1) inner ear dysfunction due to either Tbx1 or Slc12a2 mutations cause hyperactivity; (2) it is vestibular dysfunction, which frequently co-occurs with deafness but often remains undiagnosed, rather than auditory dysfunction that causes hyperactivity and anxiety-related symptoms; and (3) the severity of vestibular dysfunction can predict whether hyperactivity or anxiety coexist with inner ear dysfunction. These findings suggest a need to evaluate vestibular function in hearing impaired individuals, especially those who exhibit hyperactive and anxiety-related symptoms. Copyright © 2017 the authors 0270-6474/17/375144-11$15.00/0.
Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.
NASA Astrophysics Data System (ADS)
Denise, Pr Pierre
As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in term of gravity during space flight, and because of the plasticity of the brain, it might be possible that their inputs be progressively interpreted as resulting from translational move-ment with no gravity related activation. Therefore, on return to Earth the effect of the otoliths on cardiovascular regulation might be temporarily lost leading to orthostatic intolerance.
Neurovestibular and Sensorimotor Studies in Space and Earth Benefits
NASA Technical Reports Server (NTRS)
Clement, Gilles; Reschke, Millard; Wood, Scott
2005-01-01
This review summarizes what has been learned from studies of human neurovestibular system in weightless conditions, including balance and locomotion, gaze control, vestibular-autonomic function and spatial orientation, and gives some examples of the potential Earth benefits of this research. Results show that when astronauts and cosmonauts return from space flight, both the peripheral and central neural processes are physiologically and functionally altered. There are clear distinctions between the virtually immediate adaptive compensations to weightlessness and those that require longer periods of time to adapt. However, little is known to date about the adaptation of sensory-motor functions to long-duration space missions in weightlessness and to the transitions between various reduced gravitational levels, such as on the Moon and Mars. Results from neurovestibular research in space have substantially enhanced our understanding of the mechanisms and characteristics of postural, gaze, and spatial orientation deficits, analogous to clinical cases of labyrinthine-defective function. Also, space neurosciences research has participated in the development and application of significant new technologies, such as video recording and processing of three-dimensional eye movements and posture, hardware for the unencumbered measurement of head and body movement, and procedures for investigating otolith function on Earth. In particular, devices such as centrifugation or off-vertical axis rotation could enhance clinical neurological testing because it provides linear acceleration which specifically stimulates the otolith organs in a frequency range close to natural head and body movement.
Neurovestibular and sensorimotor studies in space and Earth benefits.
Clément, Gilles; Reschke, Millard; Wood, Scott
2005-08-01
This review summarizes what has been learned from studies of human neurovestibular system in weightless conditions, including balance and locomotion, gaze control, vestibular-autonomic function and spatial orientation, and gives some examples of the potential Earth benefits of this research. Results show that when astronauts and cosmonauts return from space flight both the peripheral and central neural processes are physiologically and functionally altered. There are clear distinctions between the virtually immediate adaptive compensations to weightlessness and those that require longer periods of time to adapt. However, little is known to date about the adaptation of sensory-motor functions to long-duration space missions in weightlessness and to the transitions between various reduced gravitational levels, such as on the Moon and Mars. Results from neurovestibular research in space have substantially enhanced our understanding of the mechanisms and characteristics of postural, gaze, and spatial orientation deficits, analogous to clinical cases of labyrinthine-defective function. Also, space neurosciences research has participated in the development and application of significant new technologies, such as video recording and processing of three-dimensional eye movements and posture, hardware for the unencumbered measurement of head and body movement, and procedures for investigating otolith function on Earth. In particular, devices such as centrifugation or off-vertical axis rotation could enhance clinical neurological testing because it provides linear acceleration which specifically stimulates the otolith organs in a frequency range close to natural head and body movement.
Yamanaka, Toshiaki; Him, Aydin; Cameron, Susan A; Dutia, Mayank B
2000-01-01
The inhibitory effects of the GABAA agonist muscimol and the GABAB agonist baclofen on tonically active medial vestibular nucleus (MVN) neurones were recorded in slices of the rat dorsal brainstem in vitro, to determine whether any changes occurred in the functional efficacy of GABAergic inhibition in these cells during the initial rapid stage of ‘vestibular compensation’, the behavioural recovery that takes place after unilateral labyrinthectomy (UL). These experiments were carried out in preparations where the midline was cut, severing all commissural connections between the two vestibular nuclei. Slices of the MVN were prepared from normal animals and animals that had been unilaterally labyrinthectomised 4 h earlier. The mean in vitro discharge rate of MVN neurones in the rostral region of the ipsi-lesional nucleus after UL was significantly higher than that in control slices, confirming our earlier reports of an increase in intrinsic excitability of these cells in the early stage of vestibular compensation. The in vitro discharge rates of caudal ipsi-lesional MVN cells, and rostral and caudal contra-lesional MVN cells, were not different from controls. Muscimol and baclofen caused reversible, dose-related inhibition of the tonic discharge rate of MVN cells in control slices. In slices prepared from UL animals, MVN cells in the rostral region of the ipsi-lesional nucleus showed a marked downregulation of their response to both muscimol and baclofen, seen as a rightward shift and a decrease in slope of the dose-response relationships for the two agonists. In the contra-lesional nucleus, there was a small but significant upregulation of the responsiveness of both rostral and caudal MVN cells to baclofen, and a marked upregulation of the responsiveness of caudal MVN cells to muscimol. In slices from animals that had undergone bilateral labyrinthectomy 4 h earlier, the downregulation of the functional efficacy of GABA receptors in the rostral MVN cells did not occur. The changes in GABA receptor efficacy after UL are therefore not due to the vestibular de-afferentation itself, but are instead due to the imbalance in excitability of the vestibular nuclei of the lesioned and intact sides, and the enhanced commissural inhibition of the ipsi-lesional MVN cells that follows UL. The downregulation of GABA receptor efficacy in the ipsi-lesional MVN neurones is functionally compensatory, in that their response to commissural and cerebellar inhibitory drive will be significantly reduced after UL. Their intrinsic membrane conductances, and their remaining excitatory synaptic inputs, will consequently be more effective in causing depolarisation and the restoration of resting activity. Simultaneously the upregulation of GABAergic efficacy in the contra-lesional MVN will tend to reduce the hyperactivity on the contralateral side. These adaptive changes therefore represent a plausible cellular mechanism for the recovery of resting discharge in the ipsi-lesional MVN neurones, and the ‘re-balancing’ of the excitability of the vestibular neurones of the lesioned and intact sides, as occurs after UL in vivo. We propose that the adaptive regulation of the functional efficacy of GABA receptors in the MVN neurones may be an important cellular mechanism for the ‘homeostasis of bilateral excitability’ of the vestibular nuclei of the two sides. PMID:10699085
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1988-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals used to control upright posture. In particular, there is one class of subjects with a vestibular disorder known as benign paroxysmal positional vertigo (BPPV) who often are particularly sensitive to inaccurate visual information. That is, they will use visual sensory information for the control of their posture even when that visual information is inaccurate and is in conflict with accurate proprioceptive and vestibular sensory signals. BPPV has been associated with disorders of both posterior semicircular canal function and possibly otolith function. The present proposal hopes to take advantage of the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with the BPPV syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives of this proposal are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans.
Representation of visual gravitational motion in the human vestibular cortex.
Indovina, Iole; Maffei, Vincenzo; Bosco, Gianfranco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco
2005-04-15
How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain.
Short latency vestibular evoked potentials in the Japanese quail (Coturnix coturnix japonica)
NASA Technical Reports Server (NTRS)
Jones, S. M.; Jones, T. A.; Shukla, R.
1997-01-01
Short-latency vestibular-evoked potentials to pulsed linear acceleration were characterized in the quail. Responses occurred within 8 ms following the onset of stimuli and were composed of a series of positive and negative peaks. The latencies and amplitudes of the first four peaks were quantitatively characterized. Mean latencies at 1.0 g ms-1 ranged from 1265 +/- 208 microseconds (P1, N = 18) to 4802 +/- 441 microseconds (N4, N = 13). Amplitudes ranged from 3.72 +/- 1.51 microV (P1/N1, N = 18) to 1.49 +/- 0.77 microV (P3/N3, N = 16). Latency-intensity (LI) slopes ranged from -38.7 +/- 7.3 microseconds dB-1 (P1, N = 18) to -71.6 +/- 21.9 microseconds dB-1 (N3, N = 15) and amplitude-intensity (AI) slopes ranged from 0.20 +/- 0.08 microV dB-1 (P1/N1, N = 18) to 0.07 +/- 0.04 microV dB-1 (P3/N3, N = 11). The mean response threshold across all animals was -21.83 +/- 3.34 dB re: 1.0 g ms-1 (N = 18). Responses remained after cochlear extirpation showing that they could not depend critically on cochlear activity. Responses were eliminated by destruction of the vestibular end organs, thus showing that responses depended critically and specifically on the vestibular system. The results demonstrate that the responses are vestibular and the findings provide a scientific basis for using vestibular responses to evaluate vestibular function through ontogeny and senescence in the quail.
Magnetic vestibular stimulation modulates default mode network fluctuations.
Boegle, Rainer; Stephan, Thomas; Ertl, Matthias; Glasauer, Stefan; Dieterich, Marianne
2016-02-15
Strong magnetic fields (>1 Tesla) can cause dizziness and it was recently shown that healthy subjects (resting in total darkness) developed a persistent nystagmus even when remaining completely motionless within a MR tomograph. Consequently, it was speculated that this magnetic vestibular stimulation (MVS) might influence fMRI results, as nystagmus is indicative of an imbalance in the vestibular system, potentially influencing other systems via multisensory vestibular interactions. The objective of our study was to investigate whether MVS does indeed modulate BOLD signal fluctuations. We recorded eye movements, as well as, resting-state fMRI of 30 volunteers in darkness at 1.5 T and 3.0 T to answer the question whether MVS modulated parts of the default mode resting-state network (DMN) in accordance with the Lorentz-force model for MVS, while distinguishing this from the known signal increase due to field strength related imaging effects. Our results showed that modulation of the default mode network occurred mainly in areas associated with vestibular and ocular motor function, and was in accordance with the Lorentz-force model, i.e., double than the expected signal scaling due to field strength alone. We discuss the implications of our findings for the interpretation of studies using resting-state fMRI, especially those concerning vestibular research. We conclude that MVS needs to be considered in vestibular research to avoid biased results, but it might also offer the possibility of manipulating network dynamics and may thus help in studying the brain as a dynamical system. Copyright © 2015 Elsevier Inc. All rights reserved.
Otolith-Canal Convergence In Vestibular Nuclei Neurons
NASA Technical Reports Server (NTRS)
Dickman, J. David; Si, Xiao-Hong
2002-01-01
The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.
Effect of low level laser (LLL) on cochlear and vestibular inner ear including tinnitus
NASA Astrophysics Data System (ADS)
Rhee, Chung-Ku; Lim, Eun-Seok; Kim, Young-Saeng; Chung, Yong-Won; Jung, Jae-Yun; Chung, Phil-Sang
2006-02-01
Objectives: 1. To investigate preventive effect of LLL on gentamicin-induced vestibular ototoxicity. 2. To evaluate the effectiveness of lower level laser (LLL) in the treatment of tinnitus. Methods: 1. Twenty guinea pigs were divided into control and laser groups. Vestibular ototoxicity was induced by intratympanic injection of gentamicin into left ear. LLL was irradiated into left ear canal of animals in laser group. Vestibular function of the animals was evaluated with vertical and off-vertical axis rotation testing. 2. Forty patients with tinnitus were treated with ginkgo biloba orally and randomly divided into control and laser groups. The 20 patients of laser group received 80.4 J/cm2 of 830 nm laser, 3 times per week for 4 weeks, via transmeatal irradiation. Tinnitus was evaluated by visual analogue scale (VAS) and tinnitus handicap inventory (THI). Results: 1. Preventive effect of LLL to gentamicin induced vestibular ototoxicity was demonstrated by preventing reduction of gain in slow harmonic acceleration test and modulation in the off-vertical axis rotation test. 2. Eleven of 20 laser group patients have shown significant improvement in VAS and THI compared to those of the control group. Conclusions: 1. LLL therapy may have preventive effect to vestibular ototoxicity. 2. LLL therapy in combination with ginkgo biloba seems to be worth trying on patients with tinnitus.
Effects of Weightlessness on Vestibular Development: Summary of Research on NIH.R1
NASA Technical Reports Server (NTRS)
Fritzsch, Bernd; Bruce, L. L.
1998-01-01
In our original application we proposed to investigate the effects of gravity on the formation of connections between the gravity receptors of the ear and the brain in rat pups raised in space beginning at an age before these connections are made until near the time of birth, when they are to some extent functional. We used the neuronal tracer, Dil, which could be applied to tissue obtained immediately after landing of the space shuttle, thus minimizing changes due to the earth's gravity. We hoped to determine whether the vestibular system develops in two phases, as do other sensory systems (such as the visual system). In these other systems the first phase of development is controlled genetically and the second phase is controlled by environmental stimulation. Our data collected strongly supports the idea that the vestibular system has these same two phases of development. The tissue obtained from the NIH.R1 experiment was of exceptionally high quality for our analysis. Therefore, we expanded our investigation into the ultrastructural effects of microgravity on vestibular development. For the sake of clarity we will subdivide our summary into two categories: (1) analysis of the branching pattern of axons between the vestibular nerve and the gravistatic receptors of the ear in flight and control animals, and (2) analysis of the branching pattern of axons between the vestibular nerve and the brain in flight and control animals.
NASA Technical Reports Server (NTRS)
Goel, R.; Rosenberg, M. J.; De Dios, Y. E.; Cohen, H. S.; Bloomberg, J. J.; Mulavara, A. P.
2016-01-01
Sensorimotor changes such as posture and gait instabilities can affect the functional performance of astronauts after gravitational transitions. Sensorimotor Adaptability (SA) training can help alleviate decrements on exposure to novel sensorimotor environments based on the concept of 'learning to learn' by exposure to varying sensory challenges during posture and locomotion tasks (Bloomberg 2015). Supra-threshold Stochastic Vestibular Stimulation (SVS) can be used to provide one of many challenges by disrupting vestibular inputs. In this scenario, the central nervous system can be trained to utilize veridical information from other sensory inputs, such as vision and somatosensory inputs, for posture and locomotion control. The minimum amplitude of SVS to simulate the effect of deterioration in vestibular inputs for preflight training or for evaluating vestibular contribution in functional tests in general, however, has not yet been identified. Few studies (MacDougall 2006; Dilda 2014) have used arbitrary but fixed maximum current amplitudes from 3 to 5 mA in the medio-lateral (ML) direction to disrupt balance function in healthy adults. Giving this high level of current amplitude to all the individuals has a risk of invoking side effects such as nausea and discomfort. The goal of this study was to determine the minimum SVS level that yields an equivalently degraded balance performance. Thirteen subjects stood on a compliant foam surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in the ML direction. Duration of time they could stand on the foam surface was also measured. The minimum SVS dosage was defined to be that level which significantly degraded balance performance such that any further increase in stimulation level did not lead to further balance degradation. The minimum SVS level was determined by performing linear fits on the performance variable at different stimulation levels. Results from the balance task suggest that there are inter-individual differences and the minimum SVS amplitude was found to be in the range of 1 mA to 2.5 mA across subjects. SVS resulted in an average decrement of balance task performance in the range of 62%-73% across different measured variables at the minimum SVS amplitude in comparison to the control trial (no stimulus). Training using supra-threshold SVS stimulation is one of the sensory challenges used for preflight SA training designed to improve adaptability to novel gravitational environments. Inter-individual differences in response to SVS can help customize the SA training paradigms using minimal dosage required. Another application of using SVS is to simulate acute deterioration of vestibular sensory inputs in the evaluation of tests for assessing vestibular function.
Loss of otolith function with age is associated with increased postural sway measures.
Serrador, Jorge M; Lipsitz, Lewis A; Gopalakrishnan, Gosala S; Black, F Owen; Wood, Scott J
2009-11-06
Loss of balance and increased fall risk is a common problem associated with aging. Changes in vestibular function occur with aging but the contribution of reduced vestibular otolith function to fall risk remains unknown. We examined a population of 151 healthy individuals (aged 21-93) for both balance (sway measures) and ocular counter-rolling (OCR) function. We assessed balance function with eyes open and closed on a firm surface, eyes open and closed on a foam surface and OCR during +/-20 degree roll tilt at 0.005 Hz. Subjects demonstrated a significant age-related reduction in OCR and increase in postural sway. The effect of age on OCR was greater in females than males. The reduction in OCR was strongly correlated with the mediolateral measures of sway with eyes closed. This correlation was also present in the elderly group alone, suggesting that aging alone does not account for this effect. OCR decreased linearly with age and at a greater rate in females than males. This loss of vestibular otolith-ocular function is associated with increased mediolateral measures of sway which have been shown to be related to increased risk of falls. These data suggest a role for loss of otolith function in contributing to fall risk in the elderly. Further prospective, longitudinal studies are necessary to confirm these findings.
Multiple Lower Extremity Mononeuropathies by Segmental Schwannomatosis: A Case Report
Kwon, Na Yeon; Oh, Hyun-Mi
2015-01-01
Schwannoma is an encapsulated nerve sheath tumor that is distinct from neurofibromatosis. It is defined as the occurrence of multiple schwannomas without any bilateral vestibular schwannomas. A 46-year-old man with multiple schwannomas involving peripheral nerves of the ipsilateral lower extremity presented with neurologic symptoms. Electrodiagnostic studies revealed multiple mononeuropathies involving the left sciatic, common peroneal, tibial, femoral and superior gluteal nerves. Histologic findings confirmed the diagnosis of schwannoma. We reported this rare case of segmental schwannomatosis that presented with neurologic symptoms including motor weakness, which was confirmed as multiple mononeuropathies by electrodiagnostic studies. PMID:26605183
Multiple Lower Extremity Mononeuropathies by Segmental Schwannomatosis: A Case Report.
Kwon, Na Yeon; Oh, Hyun-Mi; Ko, Young Jin
2015-10-01
Schwannoma is an encapsulated nerve sheath tumor that is distinct from neurofibromatosis. It is defined as the occurrence of multiple schwannomas without any bilateral vestibular schwannomas. A 46-year-old man with multiple schwannomas involving peripheral nerves of the ipsilateral lower extremity presented with neurologic symptoms. Electrodiagnostic studies revealed multiple mononeuropathies involving the left sciatic, common peroneal, tibial, femoral and superior gluteal nerves. Histologic findings confirmed the diagnosis of schwannoma. We reported this rare case of segmental schwannomatosis that presented with neurologic symptoms including motor weakness, which was confirmed as multiple mononeuropathies by electrodiagnostic studies.
Are Covert Saccade Functionally Relevant in Vestibular Hypofunction?
Hermann, R; Pelisson, D; Dumas, O; Urquizar, Ch; Truy, E; Tilikete, C
2018-06-01
The vestibulo-ocular reflex maintains gaze stabilization during angular or linear head accelerations, allowing adequate dynamic visual acuity. In case of bilateral vestibular hypofunction, patients use saccades to compensate for the reduced vestibulo-ocular reflex function, with covert saccades occurring even during the head displacement. In this study, we questioned whether covert saccades help maintain dynamic visual acuity, and evaluated which characteristic of these saccades are the most relevant to improve visual function. We prospectively included 18 patients with chronic bilateral vestibular hypofunction. Subjects underwent evaluation of dynamic visual acuity in the horizontal plane as well as video recording of their head and eye positions during horizontal head impulse tests in both directions (36 ears tested). Frequency, latency, consistency of covert saccade initiation, and gain of covert saccades as well as residual vestibulo-ocular reflex gain were calculated. We found no correlation between residual vestibulo-ocular reflex gain and dynamic visual acuity. Dynamic visual acuity performance was however positively correlated with the frequency and gain of covert saccades and negatively correlated with covert saccade latency. There was no correlation between consistency of covert saccade initiation and dynamic visual acuity. Even though gaze stabilization in space during covert saccades might be of very short duration, these refixation saccades seem to improve vision in patients with bilateral vestibular hypofunction during angular head impulses. These findings emphasize the need for specific rehabilitation technics that favor the triggering of covert saccades. The physiological origin of covert saccades is discussed.
Bojados, Mickael; Jamon, Marc
2014-05-01
Adult male mice C57Bl6/J were exposed to gravity levels between 1G and 4G during three weeks, and the long-term consequences on muscular, vestibular, emotional, and cognitive abilities were evaluated at the functional level to test the hypothesis of a continuum in the response to the increasing gravitational force. In agreement with the hypothesis, the growth of body mass slowed down in relation with the gravity level during the centrifugation, and weight recovery was inversely proportional. On the other hand, the long-term consequences on muscular, vestibular, emotional, and cognitive abilities did not fit the hypothesis of a continuum in the response to the gravity level. The hypergravity acted as endurance training on muscle force until 3G, then became deleterious at 4G. The vestibular reactions were not affected until 4G. Persistent emotional reactions appeared at 3G, and particularly 4G. The mice centrifuged at 3G and 4G showed an impaired spatial learning, probably in relation with the increased level of anxiety, but a greater difficulty was also observed in mice exposed at 2G, suggesting another cause for the impairment of spatial memory. The long-term response to the hypergravity was shown to depend on both the level of gravity and the duration of exposition, with different importance depending on the function considered. Copyright © 2014 Elsevier B.V. All rights reserved.
Vestibular functions and sleep in space experiments. [using rhesus and owl monkeys
NASA Technical Reports Server (NTRS)
Perachio, A. A.
1977-01-01
Physical indices of sleep were continuously monitored in an owl monkey living in a chamber continuously rotating at a constant angular velocity. The electrophysiological data obtained from chronically implanted electrodes was analyzed to determine the chronic effects of vestibular stimulation on sleep and wakefulness cycles. The interaction of linear and angular acceleration on the vestibulo-ocular reflex was investigated in three rhesus monkeys at various angular accelerations.
Effect of Vestibular Impairment on Cerebral Blood Flow Response to Dynamic Roll Tilt
NASA Technical Reports Server (NTRS)
Serrador, J. M.; Black, F. O.; Schlgel, Todd T.; Lipsitz, L. A.; Wood, S. J.
2008-01-01
Change to upright posture results in reductions in cerebral perfusion pressure due to hydrostatic pressure changes related to gravity. Since vestibular organs, specifically the otoliths, provide information on position relative to gravity, vestibular inputs may assist in adaptation to the upright posture. The goal of this study was to examine the effect of direct vestibular stimulation on cerebral blood flow (CBF). To examine the role of otolith inputs we screened 165 subjects for vestibular function and classified subjects as either normal or impaired based on ocular torsion. Ocular torsion, an indication of otolith function, was assessed during sinusoidal roll tilt of 20 degrees at 0.01 Hz (100 sec per cycle). Subjects with torsion one SD below the mean were classified as impaired while subjects one SD above the mean were considered normal. During one session subjects were placed in a chair that was sinusoidally rotated 25 degrees in the roll plane at five frequencies: 0.25 & 0.125 Hz for 80 sec, 0.0625 Hz for 160 sec and 0.03125 Hz and 0.015625 Hz for 320 sec. During testing, CBF (transcranial Doppler), blood pressure (Finapres), and end tidal CO2 (Puritan Bennet) were measured continuously. Ocular torsion was assessed from infrared images of the eyes. All rotations were done in the dark with subjects fixated on a red LED directly at the center of rotation. In the normal group, dynamic tilt resulted in significant changes in both blood pressure and cerebral blood flow velocity that was related to the frequency of stimulus. In contrast the impaired group did not show similar patterns. As expected normal subjects demonstrated significant ocular torsion that was related to stimulus frequency while impaired subjects had minimal changes. These data suggest that vestibular inputs have direct effects on cerebral blood flow regulation during dynamic tilt. Supported by NASA.
NASA Technical Reports Server (NTRS)
Dimitri, P. S.; Wall, C. 3rd; Oas, J. G.; Rauch, S. D.
2001-01-01
Meniere's disease (MD) and migraine associated dizziness (MAD) are two disorders that can have similar symptomatologies, but differ vastly in treatment. Vestibular testing is sometimes used to help differentiate between these disorders, but the inefficiency of a human interpreter analyzing a multitude of variables independently decreases its utility. Our hypothesis was that we could objectively discriminate between patients with MD and those with MAD using select variables from the vestibular test battery. Sinusoidal harmonic acceleration test variables were reduced to three vestibulo-ocular reflex physiologic parameters: gain, time constant, and asymmetry. A combination of these parameters plus a measurement of reduced vestibular response from caloric testing allowed us to achieve a joint classification rate of 91%, independent quadratic classification algorithm. Data from posturography were not useful for this type of differentiation. Overall, our classification function can be used as an unbiased assistant to discriminate between MD and MAD and gave us insight into the pathophysiologic differences between the two disorders.
Wu, Xianmin; Cai, Jing; Li, Xiaofei; Li, He; Li, Jianfeng; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin
2017-06-15
Cisplatin is an anticancer drug that causes the impairment of inner ear function as side effects, including hearing loss and balance dysfunction. The purpose of this study was to investigate the effects of allicin against cisplatin-induced vestibular dysfunction in mice and to make clear the mechanism underlying the protective effects of allicin on oto-vestibulotoxicity. Mice intraperitoneally injected with cisplatin exhibited vestibular dysfunction in swimming test, which agreed with impairment in vestibule. However, these impairments were significantly prevented by pre-treatment with allicin. Allicin markedly reduced cisplatin-activated expression of cleaved-caspase-3 in hair cells and vascular layer cells of utricule, saccule and ampulla, but also decreased AIF nuclear translocation of hair cells in utricule, saccule and ampulla. These results showed that allicin played an effective role in protecting vestibular dysfunction induced by cisplatin via inhibiting caspase-dependent and caspase-independent apoptotic pathways. Therefore, allicin may be useful in preventing oto-vestibulotoxicity mediated by cisplatin. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Clark, T. K.; Peters, B.; Gadd, N. E.; De Dios, Y. E.; Wood, S.; Bloomberg, J. J.; Mulavara, A. P.
2016-01-01
Introduction: During space exploration missions astronauts are exposed to a series of novel sensorimotor environments, requiring sensorimotor adaptation. Until adaptation is complete, sensorimotor decrements occur, affecting critical tasks such as piloted landing or docking. Of particularly interest are locomotion tasks such as emergency vehicle egress or extra-vehicular activity. While nearly all astronauts eventually adapt sufficiently, it appears there are substantial individual differences in how quickly and effectively this adaptation occurs. These individual differences in capacity for sensorimotor adaptation are poorly understood. Broadly, we aim to identify measures that may serve as pre-flight predictors of and individual's adaptation capacity to spaceflight-induced sensorimotor changes. As a first step, since spaceflight is thought to involve a reinterpretation of graviceptor cues (e.g. otolith cues from the vestibular system) we investigate the relationships between various measures of vestibular function in humans. Methods: In a set of 15 ground-based control subjects, we quantified individual differences in vestibular function using three measures: 1) ocular vestibular evoked myogenic potential (oVEMP), 2) computerized dynamic posturography and 3) vestibular perceptual thresholds. oVEMP responses are elicited using a mechanical stimuli approach. Computerized dynamic posturography was used to quantify Sensory Organization Tests (SOTs), including SOT5M which involved performing pitching head movements while balancing on a sway-reference support surface with eyes closed. We implemented a vestibular perceptual threshold task using the tilt capabilities of the Tilt-Translation Sled (TTS) at JSC. On each trial, the subject was passively roll-tilted left ear down or right ear down in the dark and verbally provided a forced-choice response regarding which direction they felt tilted. The motion profile was a single-cycle sinusoid of angular acceleration with a duration of 5 seconds (frequency of 0.2 Hz), which was selected as it requires sensory integration of otolith and semicircular canal cues. Stimuli direction was randomized and magnitude was determined using an adaptive sampling procedure. One hundred trials were provided and each subject's responses were fit with a psychometric curve to estimate the subject's threshold. Results: Roll tilt perceptual thresholds at 0.2 Hz ranged from 0.5 degrees to 1.82 degrees across the 15 subjects (geometric mean of 1.04 degrees), consistent with previous studies. The inter-individual variability in thresholds may be able to help explain individual differences observed in sensorimotor adaptation to spaceflight. Analysis is ongoing for the oVEMPS and computerized dynamic posturography to identify relationships between the various vestibular measures. Discussion: Predicting individual differences in sensorimotor adaptation is critical both for the development of personalized countermeasures and mission planning. Here we aim to develop a basis of vestibular tests and parameters which may serve as predictors of individual differences in sensorimotor adaptability through studying the relationship between these measures.
[Vestibular compensation studies]. [Vestibular Compensation and Morphological Studies
NASA Technical Reports Server (NTRS)
Perachio, Adrian A. (Principal Investigator)
1996-01-01
The following topics are reported: neurophysiological studies on MVN neurons during vestibular compensation; effects of spinal cord lesions on VNC neurons during compensation; a closed-loop vestibular compensation model for horizontally canal-related MVN neurons; spatiotemporal convergence in VNC neurons; contributions of irregularly firing vestibular afferents to linear and angular VOR's; application to flight studies; metabolic measures in vestibular neurons; immediate early gene expression following vestibular stimulation; morphological studies on primary afferents, central vestibular pathways, vestibular efferent projection to the vestibular end organs, and three-dimensional morphometry and imaging.
2017-05-24
iss051e049152 (5/24/2017) --- ESA astronaut Thomas Pesquet performs the commissioning of the Gravitational References for Sensimotor Performance (GRASP) experiment, to better understand how the central nervous system (CNS) integrates information from different sensations. The data collected could help researchers better understand the workings of the human vestibular system and how it connects to the other sensory organs. This research hopes to shed light on how to best treat the loss of vestibular function on Earth.
2017-05-24
iss051e049147 (5/24/2017) --- ESA astronaut Thomas Pesquet performs the commissioning of the Gravitational References for Sensimotor Performance (GRASP) experiment, to better understand how the central nervous system (CNS) integrates information from different sensations. The data collected could help researchers better understand the workings of the human vestibular system and how it connects to the other sensory organs. This research hopes to shed light on how to best treat the loss of vestibular function on Earth.
NASA Technical Reports Server (NTRS)
Kuzmina, G. I.
1980-01-01
The effects of caloric and electric stimulation of the vestibular receptors on the EMG activity of limb muslces in anesthetized cats during cold induced shivering involved flexor muscles alone. Both types of stimulation suppressed bioelectrical activity more effectively in the ipsilateral muscles. The suppression of shivering activity seems to be due to the increased inhibitory effect of descending labyrinth pathways on the function of flexor motoneurons.
Experiment M131. Human vestibular function
NASA Technical Reports Server (NTRS)
Graybiel, A.; Miller, E. F., II; Homick, J. L.
1977-01-01
The lower susceptibility to vestibular stimulation aloft, compared with that on ground under experimental conditions, is attributed to a precondition, namely, either there is no need to adapt, or, as exemplified by the Skylab 3 pilot, adaptation to weightlessness is achieved. Findings in some of the astronauts emphasize the distinction between two categories of vestibular side effects: immediate reflex phenomena (illusions, sensations of turning, etc.), and delayed epiphenomena that include the constellation of symptoms and syndromes comprising motion sickness. The drug combinations 1-scopolamine and d-amphetamine and promethazine hydrochloride and ephedrine sulfate are effective in prevention and treatment of motion sickness. It is concluded that prevention of motion sickness in any stressful motion environment involves selection, adaptation, and the use of drugs.
Effects of microgravity on vestibular development and function in rats: genetics and environment
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Fritzsch, B.; Alberts, J. R.; Bruce, L. L.
2000-01-01
Our anatomical and behavioral studies of embryonic rats that developed in microgravity suggest that the vestibular sensory system, like the visual system, has genetically mediated processes of development that establish crude connections between the periphery and the brain. Environmental stimuli also regulate connection formation including terminal branch formation and fine-tuning of synaptic contacts. Axons of vestibular sensory neurons from gravistatic as well as linear acceleration receptors reach their targets in both microgravity and normal gravity, suggesting that this is a genetically regulated component of development. However, microgravity exposure delays the development of terminal branches and synapses in gravistatic but not linear acceleration-sensitive neurons and also produces behavioral changes. These latter changes reflect environmentally controlled processes of development.
Sadeghi, Soroush G.; Minor, Lloyd B.
2011-01-01
Plasticity in neuronal responses is necessary for compensation following brain lesions and adaptation to new conditions and motor learning. In a previous study, we showed that compensatory changes in the vestibuloocular reflex (VOR) following unilateral vestibular loss were characterized by dynamic reweighting of inputs from vestibular and extravestibular modalities at the level of single neurons that constitute the first central stage of VOR signal processing. Here, we studied another class of neurons, i.e., the vestibular-only neurons, in the vestibular nuclei that mediate vestibulospinal reflexes and provide information for higher brain areas. We investigated changes in the relative contribution of vestibular, neck proprioceptive, and efference copy signals in the response of these neurons during compensation after contralateral vestibular loss in Macaca mulata monkeys. We show that the time course of recovery of vestibular sensitivity of neurons corresponds with that of lower extremity muscle and tendon reflexes reported in previous studies. More important, we found that information from neck proprioceptors, which did not influence neuronal responses before the lesion, were unmasked after lesion. Such inputs influenced the early stages of the compensation process evidenced by faster and more substantial recovery of the resting discharge in proprioceptive-sensitive neurons. Interestingly, unlike our previous study of VOR interneurons, the improvement in the sensitivity of the two groups of neurons did not show any difference in the early or late stages after lesion. Finally, neuronal responses during active head movements were not different before and after lesion and were attenuated relative to passive movements over the course of recovery, similar to that observed in control conditions. Comparison of compensatory changes observed in the vestibuloocular and vestibulospinal pathways provides evidence for similarities and differences between the two classes of neurons that mediate these pathways at the functional and cellular levels. PMID:21148096
Sadeghi, Soroush G; Minor, Lloyd B; Cullen, Kathleen E
2011-02-01
Plasticity in neuronal responses is necessary for compensation following brain lesions and adaptation to new conditions and motor learning. In a previous study, we showed that compensatory changes in the vestibuloocular reflex (VOR) following unilateral vestibular loss were characterized by dynamic reweighting of inputs from vestibular and extravestibular modalities at the level of single neurons that constitute the first central stage of VOR signal processing. Here, we studied another class of neurons, i.e., the vestibular-only neurons, in the vestibular nuclei that mediate vestibulospinal reflexes and provide information for higher brain areas. We investigated changes in the relative contribution of vestibular, neck proprioceptive, and efference copy signals in the response of these neurons during compensation after contralateral vestibular loss in Macaca mulata monkeys. We show that the time course of recovery of vestibular sensitivity of neurons corresponds with that of lower extremity muscle and tendon reflexes reported in previous studies. More important, we found that information from neck proprioceptors, which did not influence neuronal responses before the lesion, were unmasked after lesion. Such inputs influenced the early stages of the compensation process evidenced by faster and more substantial recovery of the resting discharge in proprioceptive-sensitive neurons. Interestingly, unlike our previous study of VOR interneurons, the improvement in the sensitivity of the two groups of neurons did not show any difference in the early or late stages after lesion. Finally, neuronal responses during active head movements were not different before and after lesion and were attenuated relative to passive movements over the course of recovery, similar to that observed in control conditions. Comparison of compensatory changes observed in the vestibuloocular and vestibulospinal pathways provides evidence for similarities and differences between the two classes of neurons that mediate these pathways at the functional and cellular levels.