Design and Verification of a Shape Memory Polymer Peripheral Occlusion Device
Landsman, Todd L.; Bush, Ruth L.; Glowczwski, Alan; Horn, John; Jessen, Staci L.; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R.; Hasan, Sayyeda M.; Nash, Daniel; Clubb, Fred J.; Maitland, Duncan J.
2017-01-01
Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. PMID:27419615
Design and verification of a shape memory polymer peripheral occlusion device.
Landsman, Todd L; Bush, Ruth L; Glowczwski, Alan; Horn, John; Jessen, Staci L; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R; Hasan, Sayyeda M; Nash, Daniel; Clubb, Fred J; Maitland, Duncan J
2016-10-01
Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.
2011-04-01
NavyFOAM has been developed using an open-source CFD software tool-kit ( OpenFOAM ) that draws heavily upon object-oriented programming. The...numerical methods and the physical models in the original version of OpenFOAM have been upgraded in an effort to improve accuracy and robustness of...computational fluid dynamics OpenFOAM , Object Oriented Programming (OOP) (CFD), NavyFOAM, 16. SECURITY CLASSIFICATION OF: a. REPORT UNCLASSIFIED b
da Rocha, Ricardo Fagundes; De Bastiani, Marco Antônio; Klamt, Fábio
2014-11-01
Atherosclerosis is a pro-inflammatory process intrinsically related to systemic redox impairments. Macrophages play a major role on disease development. The specific involvement of classically activated, M1 (pro-inflammatory), or the alternatively activated, M2 (anti-inflammatory), on plaque formation and disease progression are still not established. Thus, based on meta-data analysis of public micro-array datasets, we compared differential gene expression levels of the human antioxidant genes (HAG) and M1/M2 genes between early and advanced human atherosclerotic plaques, and among peripheric macrophages (with or without foam cells induction by oxidized low density lipoprotein, oxLDL) from healthy and atherosclerotic subjects. Two independent datasets, GSE28829 and GSE9874, were selected from gene expression omnibus (http://www.ncbi.nlm.nih.gov/geo/) repository. Functional interactions were obtained with STRING (http://string-db.org/) and Medusa (http://coot.embl.de/medusa/). Statistical analysis was performed with ViaComplex(®) (http://lief.if.ufrgs.br/pub/biosoftwares/viacomplex/) and gene score enrichment analysis (http://www.broadinstitute.org/gsea/index.jsp). Bootstrap analysis demonstrated that the activity (expression) of HAG and M1 gene sets were significantly increased in advance compared to early atherosclerotic plaque. Increased expressions of HAG, M1, and M2 gene sets were found in peripheric macrophages from atherosclerotic subjects compared to peripheric macrophages from healthy subjects, while only M1 gene set was increased in foam cells from atherosclerotic subjects compared to foam cells from healthy subjects. However, M1 gene set was decreased in foam cells from healthy subjects compared to peripheric macrophages from healthy subjects, while no differences were found in foam cells from atherosclerotic subjects compared to peripheric macrophages from atherosclerotic subjects. Our data suggest that, different to cancer, in atherosclerosis there is no M1 or M2 polarization of macrophages. Actually, M1 and M2 phenotype are equally induced, what is an important aspect to better understand the disease progression, and can help to develop new therapeutic approaches.
46 CFR 34.17-5 - Quantity of foam required-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Quantity of foam required-T/ALL. 34.17-5 Section 34.17-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-5 Quantity of foam required—T/ALL. (a) Area protected. (1) For machinery...
46 CFR 34.17-5 - Quantity of foam required-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Quantity of foam required-T/ALL. 34.17-5 Section 34.17-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-5 Quantity of foam required—T/ALL. (a) Area protected. (1) For machinery...
46 CFR 34.17-5 - Quantity of foam required-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Quantity of foam required-T/ALL. 34.17-5 Section 34.17-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-5 Quantity of foam required—T/ALL. (a) Area protected. (1) For machinery...
46 CFR 34.17-5 - Quantity of foam required-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Quantity of foam required-T/ALL. 34.17-5 Section 34.17-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-5 Quantity of foam required—T/ALL. (a) Area protected. (1) For machinery...
46 CFR 34.17-5 - Quantity of foam required-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Quantity of foam required-T/ALL. 34.17-5 Section 34.17-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-5 Quantity of foam required—T/ALL. (a) Area protected. (1) For machinery...
46 CFR 34.20-5 - Quantity of foam required-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Quantity of foam required-T/ALL. 34.20-5 Section 34.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-5 Quantity of foam required—T/ALL. (a) Area protected. Systems of this type are designed...
46 CFR 34.17-10 - Controls-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-10 Controls—T/ALL. (a) The foam agent, its container, measuring devices, and other items peculiar to the system shall be of an approved type. (b) The foam-producing material...
46 CFR 34.17-10 - Controls-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-10 Controls—T/ALL. (a) The foam agent, its container, measuring devices, and other items peculiar to the system shall be of an approved type. (b) The foam-producing material...
46 CFR 34.20-1 - Application-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-1 Application—T/ALL. (a) Where a deck foam system is installed, the provisions of this... foam systems by this subpart must have systems that are designed and installed in accordance with...
46 CFR 34.20-10 - Controls-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-10 Controls—T/ALL. (a) The foam agent, its container, measuring devices, and other items peculiar to this system shall be of an approved type. (b) The foam agent container and the main controls...
46 CFR 34.20-1 - Application-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-1 Application—T/ALL. (a) Where a deck foam system is installed, the provisions of this... foam systems by this subpart must have systems that are designed and installed in accordance with...
46 CFR 34.20-10 - Controls-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-10 Controls—T/ALL. (a) The foam agent, its container, measuring devices, and other items peculiar to this system shall be of an approved type. (b) The foam agent container and the main controls...
Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.
Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun
2015-12-01
Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.
46 CFR 34.20-20 - Discharge outlets-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System... least one mounted foam appliance shall be provided for each station that is required in § 34.20-15(c... at the two foam stations having the most hose outlets. Hand-held appliances shall be stowed in a well...
46 CFR 26.30-1 - Approved unicellular plastic foam work vests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under the...
46 CFR 34.20-20 - Discharge outlets-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System... least one mounted foam appliance shall be provided for each station that is required in § 34.20-15(c... at the two foam stations having the most hose outlets. Hand-held appliances shall be stowed in a well...
46 CFR 26.30-1 - Approved unicellular plastic foam work vests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under the...
46 CFR 26.30-1 - Approved unicellular plastic foam work vests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under the...
46 CFR 26.30-1 - Approved unicellular plastic foam work vests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under the...
46 CFR 26.30-1 - Approved unicellular plastic foam work vests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under the...
NASA Technical Reports Server (NTRS)
Yost, V. H.
1997-01-01
During a walkdown of the Space Transportation System (STS) orbiter for the 82nd Space Shuttle flight (STS-82), technicians found several safety cables for bolts with missing or loose ferrules. Typically, two or three bolts are secured with a cable which passes through one of the holes in the head of each bolt and a ferrule is crimped on each end of the cable to prevent it from coming out of the holes. The purpose of the cable is to prevent bolts from rotating should they become untightened. Other bolts are secured with either a locking cable or wire which is covered with RTV and foam. The RTV and foam would have to be removed to inspect for missing or loose ferrules. To determine whether this was necessary, vibration and torque test fixtures and tests were made to determine whether or not bolts with missing or loose ferrules would unloosen. These tests showed they would not, and the RTV and foam was not removed.
Anson, Eric; Bigelow, Robin T.; Swenor, Bonnielin; Deshpande, Nandini; Studenski, Stephanie; Jeka, John J.; Agrawal, Yuri
2017-01-01
Postural sway increases with age and peripheral sensory disease. Whether, peripheral sensory function is related to postural sway independent of age in healthy adults is unclear. Here, we investigated the relationship between tests of visual function (VISFIELD), vestibular function (CANAL or OTOLITH), proprioceptive function (PROP), and age, with center of mass sway area (COM) measured with eyes open then closed on firm and then a foam surface. A cross-sectional sample of 366 community dwelling healthy adults from the Baltimore Longitudinal Study of Aging was tested. Multiple linear regressions examined the association between COM and VISFIELD, PROP, CANAL, and OTOLITH separately and in multi-sensory models controlling for age and gender. PROP dominated sensory prediction of sway across most balance conditions (β's = 0.09–0.19, p's < 0.001), except on foam eyes closed where CANAL function loss was the only significant sensory predictor of sway (β = 2.12, p < 0.016). Age was not a consistent predictor of sway. This suggests loss of peripheral sensory function explains much of the age-associated increase in sway. PMID:28676758
Holding Cargo in Place With Foam
NASA Technical Reports Server (NTRS)
Fisher, T. T.
1985-01-01
Foam fills entire container to protect cargo from shock and vibration. Originally developed for stowing space debris and spent satellites in Space Shuttle for return to Earth, encapsulation concept suitable for preparing shipments carried by truck, boat, or airplane. Equipment automatically injects polyurethane foam into its interior to hold cargo securely in place. Container of rectangular or other cross section built to match shape of vehicle used.
Review of the MDF-LSA 100 Spray Decontamination System
2011-12-01
decontamination technology. In October 2000, SNL received funding from the U.S. Department of Energy’s and National Nuclear Security Administration’s...UNCLASSIFIED DSTO-GD-0662 The MDF-LSA 200 is supplied or created as a foam, liquid or aerosol. The foam can be sprayed from handheld canisters . When the foam...DSTO Publications Repository http://dspace.dsto.defence.gov.au/dspace/ 14. RELEASE AUTHORITY Chief, Human Protection and Performance
46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL. 35.40-10 Section 35.40-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB...
46 CFR 56.01-10 - Plan approval.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Fire extinguishing systems including fire main and sprinkler piping, inert gas and foam. (vi) Bilge and..., I-L, and II-L systems. (ii) All Class II firemain, foam, sprinkler, bilge and ballast, vent sounding... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES...
46 CFR 56.01-10 - Plan approval.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Fire extinguishing systems including fire main and sprinkler piping, inert gas and foam. (vi) Bilge and..., I-L, and II-L systems. (ii) All Class II firemain, foam, sprinkler, bilge and ballast, vent sounding... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES...
46 CFR 56.01-10 - Plan approval.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Fire extinguishing systems including fire main and sprinkler piping, inert gas and foam. (vi) Bilge and..., I-L, and II-L systems. (ii) All Class II firemain, foam, sprinkler, bilge and ballast, vent sounding... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES...
46 CFR 56.01-10 - Plan approval.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Fire extinguishing systems including fire main and sprinkler piping, inert gas and foam. (vi) Bilge and..., I-L, and II-L systems. (ii) All Class II firemain, foam, sprinkler, bilge and ballast, vent sounding... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES...
Foams for barriers and nonlethal weapons
NASA Astrophysics Data System (ADS)
Rand, Peter B.
1997-01-01
Our times demand better solutions to conflict resolution than simply shooting someone. Because of this, police and military interest in non-lethal concepts is high. Already in use are pepper sprays, bean-bag guns, flash-bang grenades, and rubber bullets. At Sandia we got a head start on non- lethal weapon concepts. Protection of nuclear materials required systems that went way beyond the traditional back vault. Dispensable deterrents were used to allow a graduated response to a threat. Sticky foams and stabilized aqueous foams were developed to provide access delay. Foams won out for security systems simply because you could get a large volume from a small container. For polymeric foams the expansion ratio is thirty to fifty to one. In aqueous foams expansion ratios of one thousand to ne are easily obtained. Recent development work on sticky foams has included a changeover to environmentally friendly solvents, foams with very low toxicity, and the development of non-flammable silicone resin based foams. High expansion aqueous foams are useful visual and aural obscurants. Our recent aqueous foam development has concentrated on using very low toxicity foaming agents combined with oleoresin capsicum irritant to provide a safe but highly irritating foam.
Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests
2017-09-01
AFCEC-CO-TY-TR-2018-0001 CONVERTING HANGAR HIGH EXPANSION FOAM SYSTEMS TO PREVENT COCKPIT DAMAGE: FULL-SCALE VALIDATION TESTS Gerard G...REPORT NUMBER(S) 12. DISTRIBUTION/ AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT b...09-2017 Final Test Report May 2017 Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests N00173-15-D
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Application. 76.17-1 Section 76.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-1 Application. (a) Where a foam extinguishing system is installed, the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Application. 76.17-1 Section 76.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-1 Application. (a) Where a foam extinguishing system is installed, the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Application. 95.17-1 Section 95.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-1 Application. (a) Where a foam extinguishing system...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Application. 95.17-1 Section 95.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-1 Application. (a) Where a foam extinguishing system...
46 CFR 108.477 - Fire hydrants.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Fire hydrants. 108.477 Section 108.477 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.477 Fire hydrants. (a) If a fixed foam...
46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5 Section 160.010-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Buoyant Apparatus for Merchant...
46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5 Section 160.010-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Buoyant Apparatus for Merchant...
Polyurethane Foam Pack Outdoor Storage Test
1987-10-01
formed between the polyurthane foam and the plywood. No nails "re used to secure the top. It was impossible to tell If the pack was completely filled...Ulm. rILE: toury AD-A 187 729 - N T. ;I[ POLYURIET!AN FOAM PACK OUTDOOR STORAGE TEST I OCTOBU 1987 DTIC &%ELECTEi NOV 3 0197 * 1’• Thomas M...U.S. ARMY TANK-AUTOMOTIVE COMMANDRESEARCH, DEVELOPMENT & ENGINEERING CENTERWarren, Michigan 48397-5000 REPRODUCTION QUALITY NOTICE This document is the
46 CFR 34.17-1 - Application-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Application-T/ALL. 34.17-1 Section 34.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-1 Application—T/ALL. (a) Where a fixed foam extinguishing system is...
46 CFR 34.17-1 - Application-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Application-T/ALL. 34.17-1 Section 34.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-1 Application—T/ALL. (a) Where a fixed foam extinguishing system is...
Flush-mounting technique for composite beams
NASA Technical Reports Server (NTRS)
Harman, T. C.; Kay, B. F.
1980-01-01
Procedure permits mounting of heavy parts to surface of composite beams without appreciably weakening beam web. Web is split and held apart in region where attachment is to be made by lightweight precast foam filler. Bolt hole penetrates foam rather than web, and is secured by barrelnut in transverse bushing through web.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...
46 CFR 167.45-50 - Foam smothering system requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 167.45-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-50 Foam smothering... deep in not more than 3 minutes. The arrangement of piping shall be such as to give a uniform...
46 CFR 167.45-50 - Foam smothering system requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 167.45-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-50 Foam smothering... deep in not more than 3 minutes. The arrangement of piping shall be such as to give a uniform...
46 CFR 167.45-50 - Foam smothering system requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 167.45-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-50 Foam smothering... deep in not more than 3 minutes. The arrangement of piping shall be such as to give a uniform...
46 CFR 167.45-50 - Foam smothering system requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 167.45-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-50 Foam smothering... deep in not more than 3 minutes. The arrangement of piping shall be such as to give a uniform...
46 CFR 167.45-50 - Foam smothering system requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 167.45-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-50 Foam smothering... deep in not more than 3 minutes. The arrangement of piping shall be such as to give a uniform...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...
Evaluation of 95 gpm Inductors for Aqueous Film Forming Foam,
1984-04-30
AQUEOUS FILM FORMING FOAM BACKGROUND/INTRODUCTION Early History The use of Aqueous Film Forming Foam ( AFFF ...vadIdniybybok46141 SECURITY CLASSIFICATION~ OF THIS PAGE 11. TITL (Include Secuit Cuaif~los) EVALUATION 0F795 GPM INDUCTORS FOR AQUEOUS FILM FORMING ...AD-A141 242 EVALUATION OF 95 GPM INDUCORG SEOR AQUEOUS FIL FORMING 1/GAM U) HUGHES ASSOCI A F S NC KEN S INO ON M0AD A14 24 RN GIE ETAL 3 00PR
46 CFR 34.20-15 - Piping-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details... in § 34.20-5(b), to any portion of the open deck of the cargo area through the use of the mounted and... at each foam station. For enclosed spaces, application of at least 1.6 gallons per minute water rate...
46 CFR 34.20-15 - Piping-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details... in § 34.20-5(b), to any portion of the open deck of the cargo area through the use of the mounted and... at each foam station. For enclosed spaces, application of at least 1.6 gallons per minute water rate...
46 CFR 34.20-15 - Piping-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details... in § 34.20-5(b), to any portion of the open deck of the cargo area through the use of the mounted and... at each foam station. For enclosed spaces, application of at least 1.6 gallons per minute water rate...
46 CFR 34.20-15 - Piping-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details... in § 34.20-5(b), to any portion of the open deck of the cargo area through the use of the mounted and... at each foam station. For enclosed spaces, application of at least 1.6 gallons per minute water rate...
Clark, R; Filinson, R
1991-01-01
This study examines the determinants of spending on social security programs. We draw predictions from industrialism and dependency theories for the explanation of social security programs. The explanations are tested with data on seventy-five nations, representative of core, semipheripheral and peripheral nations. Industrialization variables such as the percentage of older adults and economic productivity have strong effects in models involving all nations, as does multinational corporate (MNC) penetration in extraction, particularly when region is controlled; such penetration is negatively associated with spending on social security. We then look at industrialism and dependency effects for peripheral and non-core nations alone. The effects of all industrialization variables, except economic productivity, appear insignificant for peripheral nations, while the effects of region and multinational corporate penetration in extractive and agricultural industries appears significant. Models involving all non-core nations (peripheral and semi-peripheral) look more like models for all nations than for peripheral nations alone.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... information, like anyone's Social Security number, date of birth, driver's license number or other state.... This matter involves respondent's marketing and sale of memory foam mattresses. According to the FTC's... marketing of VOC-free mattresses. It prohibits respondent from making zero-VOC claims unless the VOC...
Casting of 3-dimensional footwear prints in snow with foam blocks.
Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel
2016-06-01
Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2011-01-01
Background Negative pressure wound therapy (NPWT) has remarkable effects on the healing of poststernotomy mediastinitis. Foam is presently the material of choice for NPWT in this indication. There is now increasing interest in using gauze, as this has proven successful in the treatment of peripheral wounds. It is important to determine the effects of NPWT using gauze on heart pumping function before it can be used for deep sternotomy wounds. The aim was to examine the effects of NPWT when using gauze and foam on the heart pumping function during the treatment of a sternotomy wound. Methods Eight pigs underwent median sternotomy followed by NPWT at -40, -70, -120 and -160 mmHg, using foam or gauze. The heart frequency, cardiac output, mean systemic arterial pressure, mean pulmonary artery pressure, central venous pressure and left atrial pressure were recorded. Results Cardiac output was not affected by NPWT using gauze or foam. Heart frequency decreased during NPWT when using foam, but not gauze. Treatment with foam also lowered the central venous pressure and the left atrial pressure, while gauze had no such effects. Mean systemic arterial pressure, mean pulmonary artery pressure and systemic vascular resistance were not affected by NPWT. Similar haemodynamic effects were observed at all levels of negative pressure studied. Conclusions NPWT using foam results in decreased heart frequency and lower right and left atrial filling pressures. The use of gauze in NPWT did not affect the haemodynamic parameters studied. Gauze may thus provide an alternative to foam for NPWT of sternotomy wounds. PMID:21232105
A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.
Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P
2000-04-01
Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft axonal regeneration compared with autografts (n = 6). At 6 weeks, axonal regeneration was observed in the midconduit region of all five channels in each experimental animal. The cross-sectional area comprising axons relative to the open conduit cross sectional area (mean 26.3%, SD 10. 1%) compared favorably with autografts (mean 23.8%, SD 3.6%). Our methodology can be used to create polymer foam conduits containing longitudinally aligned channels, to introduce Schwann cells into them, and to implant them into surgically created neural defects. These conduits provide an environment permissive to axonal regeneration. Furthermore, this polymer foam-processing method and unique channeled architecture allows the introduction of neurotrophic factors into the conduit in a controlled fashion. Deposition of different factors into distinct regions within the conduit may be possible to promote more precisely guided neural regeneration.
NASA Technical Reports Server (NTRS)
Harvey, James A.; Butler, John M.; Chartoff, Richard P.
1989-01-01
Report describes search for polyisocyanurate/polyurethane foam insulation with superior characteristics. Discusses chemistry of current formulations. Tests of formulations, of individual ingredients and or alternative new formulations described. Search revealed commercially available formulations exhibiting increased thermal stability at temperatures up to 600 degree C, pours readily before curing, presents good appearance after curing, and remains securely bonded to aluminum at cryogenic temperatures. Total of 42 different formulations investigated, 10 found to meet requirements.
The role of fixation and bone quality on the mechanical stability of tibial knee components.
Lee, R W; Volz, R G; Sheridan, D C
1991-12-01
Tibial component loosening remains one of the major causes of failure of cemented and noncemented total knee arthroplasties. In this study, the authors identified the role of implant design, method of fixation, and bone density as it related to implant stability. The physical properties of "good" and "bad" bone were simulated using a "good" and "bad" foam model of the proximal tibia, fabricated in the laboratory from DARO RF-100 foam. A generic tibial component permitting various fixation designs was implanted into "good" and "bad" variable density foam tibial models in both cemented and noncemented modes. The mechanical stability of the implants was determined using a Materials Testing Machine by the application of an eccentrically applied cyclic load. The micromotion (subsidence and lift-off) of the tibial implants was recorded using two Linear Variable Differential Transformers. Statistically significant differences in implant stability were recorded as a function of fixation method. The most rigid implant fixation was achieved using four peripherally placed, 6.5-mm cancellous screws. The addition of a central stem added stability only in the case of "poor" quality foam. The mechanical stability of noncemented implants related directly to the density of the foam. Implant stability was greatly enhanced in "poor" quality foam by the use of cement. The method of implant fixation and bone density are critical determinants to tibial implant stability.
Borgquist, Ola; Gustafsson, Lotta; Ingemansson, Richard; Malmsjö, Malin
2010-06-01
Negative pressure wound therapy (NPWT) results in 2 types of tissue deformation, macrodeformation (ie, wound contraction) and microdeformation (ie, the interaction of tissue and dressing on a microscopic level). These effects have been delineated for one type of wound filler, foam, but not for gauze. The mechanical deformation initiates a signaling cascade which ultimately leads to wound healing. The aim of the present study was to examine the effect of gauze and foam on macro- and microdeformation during treatment with negative pressure. An in vivo porcine peripheral wound model was used. NPWT was applied for 72 hours at 0, -75, and -125 mm Hg, using either foam or gauze as wound filler. The mechanical effects of NPWT were examined by measuring the wound surface area reduction and by histologic analysis of the wound bed tissue. Similar degrees of wound contraction (macrodeformation) were seen during NPWT regardless if foam or gauze was used. After negative pressure had been discontinued, the wound stayed contracted. There was no difference in wound contraction between -75 and -125 mm Hg. Biopsies of the wound bed revealed a repeating pattern of wound surface undulations and small tissue blebs ("tissue mushrooms") were pulled into the pores of the foam dressing and the spaces between the threads in the gauze dressing (microdeformation). This pattern was obvious in wounds treated both with foam and gauze, at atmospheric pressure (0 mm Hg) as well as at subatmospheric pressures (-75 and -125 mm Hg). The degrees of micro- and macrodeformation of the wound bed are similar after NPWT regardless if foam or gauze is used as wound filler.
Lin, Tung-Liang; Sheen, Huey-Min; Chung, Chin-Teng; Yang, Sai-Wei; Lin, Shih-Yi; Luo, Hong-Ji; Chen, Chung-Yu; Chan, I-Cheng; Shih, Hsu-Sheng; Sheu, Wayne Huey-Herng
2013-07-29
Removable plug insoles appear to be beneficial for patients with diabetic neuropathic feet to offload local plantar pressure. However, quantitative evidence of pressure reduction by means of plug removal is limited. The value of additional insole accessories, such as arch additions, has not been tested. The purpose of this study was to evaluate the effect of removing plugs from foam based insoles, and subsequently adding extra arch support, on plantar pressures. In-shoe plantar pressure measurements were performed on 26 patients with diabetic neuropathic feet at a baseline condition, in order to identify the forefoot region with the highest mean peak pressure (MPP). This was defined as the region of interest (ROI) for plug removal.The primary outcome was measurement of MPP using the pedar® system in the baseline and another three insole conditions (pre-plug removal, post-plug removal, and post-plug removal plus arch support). Among the 26 ROIs, a significant reduction in MPP (32.3%, P<0.001) was found after removing the insole plugs. With an arch support added, the pressure was further reduced (9.5%, P<0.001). There were no significant differences in MPP at non-ROIs between pre- and post-plug removal conditions. These findings suggest that forefoot plantar pressure can be reduced by removing plugs and adding arch support to foam-based insoles. This style of insole may therefore be clinically useful in managing patients with diabetic peripheral neuropathy.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Fingertip touch improves postural stability in patients with peripheral neuropathy.
Dickstein, R; Shupert, C L; Horak, F B
2001-12-01
The purpose of this work was to determine whether fingertip touch on a stable surface could improve postural stability during stance in subjects with somatosensory loss in the feet from diabetic peripheral neuropathy. The contribution of fingertip touch to postural stability was determined by comparing postural sway in three touch conditions (light, heavy and none) in eight patients and eight healthy control subjects who stood on two surfaces (firm or foam) with eyes open or closed. In the light touch condition, fingertip touch provided only somatosensory information because subjects exerted less than 1 N of force with their fingertip to a force plate, mounted on a vertical support. In the heavy touch condition, mechanical support was available because subjects transmitted as much force to the force plate as they wished. In the no touch condition, subjects held the right forefinger above the force plate. Antero-posterior (AP) and medio-lateral (ML) root mean square (RMS) of center of pressure (CoP) sway and trunk velocity were larger in subjects with somatosensory loss than in control subjects, especially when standing on the foam surface. The effects of light and heavy touch were similar in the somatosensory loss and control groups. Fingertip somatosensory input through light touch attenuated both AP and ML trunk velocity as much as heavy touch. Light touch also reduced CoP sway compared to no touch, although the decrease in CoP sway was less effective than with heavy touch, particularly on the foam surface. The forces that were applied to the touch plate during light touch preceded movements of the CoP, lending support to the suggestion of a feedforward mechanism in which fingertip inputs trigger the activation of postural muscles for controlling body sway. These results have clinical implications for understanding how patients with peripheral neuropathy may benefit from a cane for postural stability in stance.
Or, Matan; Van Goethem, Bart; Kitshoff, Adriaan; Koenraadt, Annika; Schwarzkopf, Ilona; Bosmans, Tim; de Rooster, Hilde
2017-04-01
To report the use of negative pressure wound therapy (NPWT) with polyvinyl alcohol (PVA) foam to bolster full-thickness mesh skin grafts in dogs. Retrospective case series. Client-owned dogs (n = 8). Full-thickness mesh skin graft was directly covered with PVA foam. NPWT was maintained for 5 days (in 1 or 2 cycles). Grafts were evaluated on days 2, 5, 10, 15, and 30 for graft appearance and graft take, granulation tissue formation, and complications. Firm attachment of the graft to the recipient bed was accomplished in 7 dogs with granulation tissue quickly filling the mesh holes, and graft take considered excellent. One dog had bandage complications after cessation of the NPWT, causing partial graft loss. The PVA foam did not adhere to the graft or damage the surrounding skin. The application of NPWT with a PVA foam after full-thickness mesh skin grafting in dogs provides an effective method for securing skin grafts, with good graft acceptance. PVA foam can be used as a primary dressing for skin grafts, obviating the need for other interposing materials to protect the graft and the surrounding skin. © 2017 The American College of Veterinary Surgeons.
Reactive decomposition of low density PMDI foam subject to shock compression
NASA Astrophysics Data System (ADS)
Alexander, Scott; Reinhart, William; Brundage, Aaron; Peterson, David
Low density polymethylene diisocyanate (PMDI) foam with a density of 5.4 pounds per cubic foot (0.087 g/cc) was tested to determine the equation of state properties under shock compression over the pressure range of 0.58 - 3.4 GPa. This pressure range encompasses a region approximately 1.0-1.2 GPa within which the foam undergoes reactive decomposition resulting in significant volume expansion of approximately three times the volume prior to reaction. This volume expansion has a significant effect on the high pressure equation of state. Previous work on similar foam was conducted only up to the region where volume expansion occurs and extrapolation of that data to higher pressure results in a significant error. It is now clear that new models are required to account for the reactive decomposition of this class of foam. The results of plate impact tests will be presented and discussed including details of the unique challenges associated with shock compression of low density foams. Sandia National Labs is a multi-program lab managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Secure videoconferencing equipment switching system and method
Hansen, Michael E [Livermore, CA
2009-01-13
A switching system and method are provided to facilitate use of videoconference facilities over a plurality of security levels. The system includes a switch coupled to a plurality of codecs and communication networks. Audio/Visual peripheral components are connected to the switch. The switch couples control and data signals between the Audio/Visual peripheral components and one but nor both of the plurality of codecs. The switch additionally couples communication networks of the appropriate security level to each of the codecs. In this manner, a videoconferencing facility is provided for use on both secure and non-secure networks.
Materials Applications for Non-Lethal: Aqueous Foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
GOOLSBY,TOMMY D.; SCOTT,STEVEN H.
High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam formore » correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.« less
3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.
Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae
2017-07-12
Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.
Aqueous foam as a less-than-lethal technology for prison applications
NASA Astrophysics Data System (ADS)
Goolsby, Tommy D.
1997-01-01
High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In late 1994, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objective were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.
Barber, F Alan
2013-09-01
To compare the load-to-failure pullout strength of bone-patellar tendon-bone (BPTB) allografts in human cadaver tibias and rigid polyurethane foam blocks. Twenty BPTB allografts were trimmed creating 25 mm × 10 mm × 10 mm tibial plugs. Ten-millimeter tunnels were drilled in 10 human cadaver tibias and 10 rigid polyurethane foam blocks. The BPTB anterior cruciate ligament allografts were inserted into these tunnels and secured with metal interference screws, with placement of 10 of each type in each material. After preloading (10 N), cyclic loading (500 cycles, 10 to 150 N at 200 mm/min) and load-to-failure testing (200 mm/min) were performed. The endpoints were ultimate failure load, cyclic loading elongation, and failure mode. No difference in ultimate failure load existed between grafts inserted into rigid polyurethane foam blocks (705 N) and those in cadaver tibias (669 N) (P = .69). The mean rigid polyurethane foam block elongation (0.211 mm) was less than that in tibial bone (0.470 mm) (P = .038), with a smaller standard deviation (0.07 mm for foam) than tibial bone (0.34 mm). All BPTB grafts successfully completed 500 cycles. The rigid polyurethane foam block showed less variation in test results than human cadaver tibias. Rigid polyurethane foam blocks provide an acceptable substitute for human cadaver bone tibia for biomechanical testing of BPTB allografts and offer near-equivalent results. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Modeling of Compositional Effects of Foam Assisted CO2 Storage Processes
NASA Astrophysics Data System (ADS)
Naderi Beni, A.; Varavei, A.; Farajzadeh, R.; Delshad, M.
2012-12-01
Foaming of carbon dioxide (CO2, e.g. from fossil-fuel power plants) has been proposed as a possible strategy to resolve the limitations of direct disposal of CO2 into (saline) aquifers. Such limitations include gravity segregation that may damage the caprock and aquifer rock property alteration as a result of geochemical interactions. Foam may also block the CO2 leakage paths, resulting in an overall storage security enhancement. In this regard, specific aspects of composition and type of gas (N2 vs. CO2) may affect the foaming properties of gas-surfactant systems. The aim of this study is to determine these effects on the foaming properties of gas-surfactant solutions. To this end, we study the physics of foam assisted CO2 storage by modeling coreflood experiments. Different options such as simplified population balance foam model and a table-look-up approach were used to couple the fluid flow and mass transport equations in a reservoir simulator. Both laboratory and numerical results show that three regions along the flow direction can be distinguished: (i) an upstream region characterized by low liquid saturation, (ii) a region downstream of the foam front where the liquid saturation is still unchanged with a value of one and (iii) a frontal region characterized by a mixing of flowing foam and liquid, exhibiting fine fingering effects. It is also shown that the extent of the fingering behavior caused by the rock heterogeneity depends on foam strength. Additionally, permeation of gas through foam films is a strong function of water salinity and appears to have significant impact on foam in CO2 storage. It further turns out that the amount of dissolved CO2 in brine can be considerable and, therefore, the effect of water solubility cannot be neglected in simulation studies. In summary, the differences in the foaming behavior of nitrogen and carbon dioxide can be explained by the differences in their physical properties of solubility in water, interfacial tension, pH effect, and wettability. Among which solubility seems to be the most critical one because (1) the amount of available CO2 for foaming will be lower due to its higher dissolution compared to N2 at similar conditions and (2) it significantly affects gas permeability coefficient and thus the foam stability.
Mechanisms of foam cell formation in atherosclerosis.
Chistiakov, Dimitry A; Melnichenko, Alexandra A; Myasoedova, Veronika A; Grechko, Andrey V; Orekhov, Alexander N
2017-11-01
Low-density lipoprotein (LDL) and cholesterol homeostasis in the peripheral blood is maintained by specialized cells, such as macrophages. Macrophages express a variety of scavenger receptors (SR) that interact with lipoproteins, including SR-A1, CD36, and lectin-like oxLDL receptor-1 (LOX-1). These cells also have several cholesterol transporters, including ATP-binding cassette transporter ABCA1, ABCG1, and SR-BI, that are involved in reverse cholesterol transport. Lipids internalized by phagocytosis are transported to late endosomes/lysosomes, where lysosomal acid lipase (LAL) digests cholesteryl esters releasing free cholesterol. Free cholesterol in turn is processed by acetyl-CoA acetyltransferase (ACAT1), an enzyme that transforms cholesterol to cholesteryl esters. The endoplasmic reticulum serves as a depot for maintaining newly synthesized cholesteryl esters that can be processed by neutral cholesterol ester hydrolase (NCEH), which generates free cholesterol that can exit via cholesterol transporters. In atherosclerosis, pro-inflammatory stimuli upregulate expression of scavenger receptors, especially LOX-1, and downregulate expression of cholesterol transporters. ACAT1 is also increased, while NCEH expression is reduced. This results in deposition of free and esterified cholesterol in macrophages and generation of foam cells. Moreover, other cell types, such as endothelial (ECs) and vascular smooth muscle cells (VSMCs), can also become foam cells. In this review, we discuss known pathways of foam cell formation in atherosclerosis.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Marking. 164.013-7 Section 164.013-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Marking. 164.013-7 Section 164.013-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern...
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Preservers, Unicellular Plastic Foam, Adult and Child, for... persons weighing over 90 pounds); or (2) Child (for persons weighing less than 90 pounds). (b) In letters...
Red blood cells play a role in reverse cholesterol transport.
Hung, Kimberly T; Berisha, Stela Z; Ritchey, Brian M; Santore, Jennifer; Smith, Jonathan D
2012-06-01
Reverse cholesterol transport (RCT) involves the removal of cholesterol from peripheral tissue for excretion in the feces. Here, we determined whether red blood cells (RBCs) can contribute to RCT. We performed a series of studies in apolipoprotein AI-deficient mice where the high-density lipoprotein-mediated pathway of RCT is greatly diminished. RBCs carried a higher fraction of whole blood cholesterol than plasma in apolipoprotein AI-deficient mice, and as least as much of the labeled cholesterol derived from injected foam cells appeared in RBCs compared with plasma. To determine whether RBCs mediate RCT to the fecal compartment, we measured RCT in anemic and control apolipoprotein AI-deficient mice and found that anemia decreased RCT to the feces by over 35% after correcting for fecal mass. Transfusion of [(3)H]cholesterol-labeled RBCs led to robust delivery of the labeled cholesterol to the feces in apolipoprotein AI-deficient hosts. In wild-type mice, the majority of the blood cholesterol mass, as well as [(3)H]cholesterol derived from the injected foam cells, was found in plasma, and anemia did not significantly alter RCT to the feces after correction for fecal mass. The RBC cholesterol pool is dynamic and facilitates RCT of peripheral cholesterol to the feces, particularly in the low high-density lipoprotein state.
46 CFR 164.013-5 - Acceptance tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Acceptance tests. 164.013-5 Section 164.013-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern...
46 CFR 164.013-5 - Acceptance tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Acceptance tests. 164.013-5 Section 164.013-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern...
46 CFR 160.055-2 - Type and model.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Preservers, Unicellular Plastic Foam, Adult and Child, for...) Model 66, child (for persons weighing less than 90 pounds); or (b) Standard, bib type, cloth covered; (1...
46 CFR 160.060-9 - Recognized laboratory.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam...
46 CFR 160.052-9 - Recognized laboratory.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...
46 CFR 160.052-9 - Recognized laboratory.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...
46 CFR 160.060-9 - Recognized laboratory.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam...
46 CFR 160.060-9 - Recognized laboratory.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam...
46 CFR 160.060-9 - Recognized laboratory.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam...
46 CFR 160.052-9 - Recognized laboratory.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...
46 CFR 160.052-9 - Recognized laboratory.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Marking. 160.049-6 Section 160.049-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-6...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Marking. 160.049-6 Section 160.049-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-6...
46 CFR 164.013-2 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Incorporation by reference. 164.013-2 Section 164.013-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Marking. 160.053-5 Section 160.053-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Work Vests, Unicellular Plastic Foam § 160.053-5 Marking. (a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Marking. 160.053-5 Section 160.053-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Work Vests, Unicellular Plastic Foam § 160.053-5 Marking. (a...
46 CFR 164.013-2 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Incorporation by reference. 164.013-2 Section 164.013-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Marking. 160.049-6 Section 160.049-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-6...
PV module mounting method and mounting assembly
Lenox, Carl J.S.; Johnson, Kurt M.
2013-04-23
A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.
46 CFR 160.049-8 - Recognized laboratory.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 160.049-8 Section 160.049-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-8...
46 CFR 160.049-8 - Recognized laboratory.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.049-8 Section 160.049-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-8...
33 CFR 149.405 - How are fire extinguishers classified?
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Firefighting and...) Portable and semi-portable extinguishers on a manned deepwater port must be classified using the Coast...-size Foam liters(gallons) Carbon dioxidekilograms (pounds) Dry chemical kilograms(pounds) A-II 9.5 (2.5...
46 CFR 160.049-8 - Recognized laboratory.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Recognized laboratory. 160.049-8 Section 160.049-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-8...
Matsumura, Hajime; Imai, Ryutaro; Ahmatjan, Niyaz; Ida, Yukiko; Gondo, Masahide; Shibata, Dai; Wanatabe, Katsueki
2014-02-01
In recent years, adhesive wound dressings have been increasingly applied postoperatively because of their ease of use as they can be kept in place without having to cut and apply surgical tapes and they can cover a wound securely. However, if a wound dressing strongly adheres to the wound, a large amount of stratum corneum is removed from the newly formed epithelium or healthy periwound skin. Various types of adhesives are used on adhesive wound dressings and the extent of skin damage depends on how much an adhesive sticks to the wound or skin surface. We quantitatively determined and compared the amount of stratum corneum removed by eight different wound dressings including polyurethane foam using acrylic adhesive, silicone-based adhesive dressing, composite hydrocolloid and self-adhesive polyurethane foam in healthy volunteers. The results showed that wound dressings with silicone adhesive and self-adhesive polyurethane foam removed less stratum corneum, whereas composite hydrocolloid and polyurethane foam using acrylic adhesive removed more stratum corneum. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...
46 CFR 160.049-2 - Types and sizes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Types and sizes. 160.049-2 Section 160.049-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-2...
46 CFR 160.053-6 - Procedure for approval.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Procedure for approval. 160.053-6 Section 160.053-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Work Vests, Unicellular Plastic Foam § 160.053-6 Procedure for...
46 CFR 160.053-4 - Inspections and tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Inspections and tests. 160.053-4 Section 160.053-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Work Vests, Unicellular Plastic Foam § 160.053-4 Inspections and...
46 CFR 160.049-5 - Inspections and tests. 1
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Inspections and tests. 1 160.049-5 Section 160.049-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-5...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...
46 CFR 76.17-20 - Discharge outlets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Discharge outlets. 76.17-20 Section 76.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-20 Discharge outlets. (a) Discharge outlets shall be of an...
46 CFR 95.17-20 - Discharge outlets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Discharge outlets. 95.17-20 Section 95.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-20 Discharge outlets. (a) Discharge outlets shall be...
46 CFR 95.17-20 - Discharge outlets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Discharge outlets. 95.17-20 Section 95.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-20 Discharge outlets. (a) Discharge outlets shall be...
46 CFR 160.053-4 - Inspections and tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Inspections and tests. 160.053-4 Section 160.053-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Work Vests, Unicellular Plastic Foam § 160.053-4 Inspections and...
46 CFR 160.049-5 - Inspections and tests. 1
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Inspections and tests. 1 160.049-5 Section 160.049-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-5...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...
46 CFR 160.053-6 - Procedure for approval.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Procedure for approval. 160.053-6 Section 160.053-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Work Vests, Unicellular Plastic Foam § 160.053-6 Procedure for...
46 CFR 76.17-20 - Discharge outlets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Discharge outlets. 76.17-20 Section 76.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-20 Discharge outlets. (a) Discharge outlets shall be of an...
46 CFR 160.049-2 - Types and sizes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Types and sizes. 160.049-2 Section 160.049-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-2...
46 CFR 160.049-2 - Types and sizes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Types and sizes. 160.049-2 Section 160.049-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-2...
The Impact of Stress on Tumor Growth; the Significance of Peripheral Corticotropin Releasing Factor
2009-05-01
peripheral CRF on breast cancer . Aim of our studies was to determine the impact of peripheral CRF on breast tumor growth and propose a novel potential... breast cancer growth and metastasis. 15. SUBJECT TERMS Stress, Corticotropin Releasing Factor, Wnt, 4T1 mammary epithelial cells 16. SECURITY...13 4 Introduction Aim of the grant proposal was to investigate the role of peripheral CRF on breast cancer cell growth and
46 CFR 34.17-15 - Piping-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Piping-T/ALL. 34.17-15 Section 34.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-15 Piping—T/ALL. (a) All piping, valves, and fittings shall meet the applicable...
46 CFR 34.17-20 - Discharge outlets-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Discharge outlets-T/ALL. 34.17-20 Section 34.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-20 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...
46 CFR 34.17-20 - Discharge outlets-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Discharge outlets-T/ALL. 34.17-20 Section 34.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-20 Discharge outlets—T/ALL. (a) Discharge outlets shall be of an approved...
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam, Adult and Child § 160... and 115 pounds for a child size for 10 minutes at ambient temperatures without breaking or distorting...
46 CFR 160.055-9 - Procedure for approval-standard and nonstandard life preservers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Procedure for approval-standard and nonstandard life preservers. 160.055-9 Section 160.055-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED..., Unicellular Plastic Foam, Adult and Child, for Merchant Vessels § 160.055-9 Procedure for approval—standard...
78 FR 46952 - Relief-Mart, Inc.; Analysis of Proposed Consent Order To Aid Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... information, like anyone's Social Security number, date of birth, driver's license number or other state... involves respondent's marketing and sale of memory foam mattresses. According to the FTC's complaint... marketing of VOC-free mattresses. It prohibits respondent from making zero-VOC claims unless the VOC...
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians secure protective material around the base of the nose cone of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians secure protective material around Atlantis' external tank. The preparations are for future repair work of the hail damage that happened Feb. 27. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
Firearm suppressor having enhanced thermal management for rapid heat dissipation
Moss, William C.; Anderson, Andrew T.
2014-08-19
A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.
Dual tasking and balance in those with central and peripheral vision loss.
Kotecha, Aachal; Chopra, Reena; Fahy, Rachel T A; Rubin, Gary S
2013-08-09
To investigate the effects of a secondary task on standing balance in patients with glaucoma or AMD compared with age-similar control subjects. Twelve AMD, 12 glaucoma, and 12 control participants underwent posturography under two standing conditions (eyes open on a firm or foam-rubber surface) and two tasks: quiet standing and undertaking a mental arithmetic task. Center of foot-pressure average displacement (root mean square [RMS]; in millimeters) was calculated. The mean (SD) age of the participants in each group was as follows: controls 66.2 (6.4) years, glaucoma 69.2 (4.3) years, and AMD 72.2 (5.3) years. There were significant differences in RMS between controls and AMD patients when undertaking the mental arithmetic task standing on the firm surface (mean difference [SE]: 2.8 [0.8] mm, P = 0.005). There were significant differences between controls and AMD patients when undertaking the mental arithmetic task on the foam surface, with the difference between controls and glaucoma patients approaching significance (mean difference [SE]: control versus AMD = 3.1 [0.9] mm, P = 0.005; control versus glaucoma = 2.2 [0.9] mm, P = 0.06). Postural instability increases with the addition of a secondary task in older persons, which may put them at greater risk of falls. Patients with central losses exhibit greater instability with the addition of a secondary task, particularly during somatosensory perturbations. The negative effects of secondary tasks on balance control in those with peripheral visual losses become more apparent under somatosensory perturbations.
Evaluation and Systems Integration of Physical Security Barrier Systems
1991-05-30
INVESTIGATED 1 (31)/ RESPONSE/DETERRENT SYSTEMS 2 BONICH, R./ BELVOIR RD&E/ - 3 1473 4 01-01-82 5 - 6 BARRIER RESPONSE SYSTEMS (I.E. FOAM, SOUND, LIGHT, NITINOL ...NONMAGNETIC NITONOL ALLOYS 2 BUCHLER, W. 3 33-216 4 -- /--/-- 5- 6 NITINOL ALLOY ’MEMORY METAL’ (PACKAGE OF PAPERS) 1 (52)/ A PROCEDURE TO INTEGRATE
Technical Report for the Demonstration of Wide Area ...
Report The U.S. Environmental Protection Agency in collaboration with the Department of Homeland Security conducted the “Wide-Area Urban Radiological Contaminant, Mitigation, and Cleanup Technology Demonstration” in Columbus, Ohio on June 22-25, 2015. Five wide-area radiological decontamination technologies (including strippable coatings, gels, and chemical foam technologies) were demonstrated on an urban building.
46 CFR 34.20-90 - Installations contracted for prior to January 1, 1970-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Installations contracted for prior to January 1, 1970-T/ALL. 34.20-90 Section 34.20-90 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-90 Installations contracted for prior to January 1...
46 CFR 34.20-3 - Cargo area definition-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo area definition-T/ALL. 34.20-3 Section 34.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-3 Cargo area definition—T/ALL. (a) For the purpose of this subpart, the term cargo area is...
46 CFR 34.20-90 - Installations contracted for prior to January 1, 1970-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Installations contracted for prior to January 1, 1970-T/ALL. 34.20-90 Section 34.20-90 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-90 Installations contracted for prior to January 1...
46 CFR 34.20-3 - Cargo area definition-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo area definition-T/ALL. 34.20-3 Section 34.20-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details § 34.20-3 Cargo area definition—T/ALL. (a) For the purpose of this subpart, the term cargo area is...
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam, Adult and Child § 160.052-3a... must be attached to a support and bear 150 pounds for an adult size and 115 pounds for a child size for...
Proton probing of a relativistic laser interaction with near-critical plasma
NASA Astrophysics Data System (ADS)
Willingale, Louise; Zulick, C.; Thomas, A. G. R.; Maksimchuk, A.; Krushelnick, K.; Nilson, P. M.; Stoeckl, C.; Sangster, T. C.; Nazarov, W.
2014-10-01
The Omega EP laser (1000 J in 10 ps pulses) was used to investigate a relativistic intensity laser interaction with near-critical density plasma using a transverse proton beam to diagnose the large electromagnetic fields generated. A very low density foam target mounted in a washer provided the near-critical density conditions. The fields from a scaled, two-dimensional particle-in-cell simulation were inputed into a particle-tracking code to create simulated proton probe images. This allows us to understand the origins of the complex features in the experimental images, including a rapidly expanding sheath field, evidence for ponderomotive channeling and fields at the foam-washer interface. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0002028.
Heat insulating device for low temperature liquefied gas storage tank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, T.; Nishimoto, T.; Sawada, K.
1978-05-02
Hitachi Shipbuilding and Engineering Co., Ltd.'s insulation method for spherical LNG containers solves various problems associated with insulating a sphere's three-dimensional curved surface; equalizing the thickness of the insulation, insulating the junctions between insulation blocks, and preventing seawater or LNG from penetrating the insulation barrier in the event of a rupture in the tank and ship's hull. The design incorporates a number of blocks or plates of rigid foam-insulating material bonded to the outer wall; seats for receiving pressing jigs for the bonding operation are secured to the outer wall in the joints between the insulating blocks. The joints aremore » filled with soft synthetic foam (embedding the seats), a moistureproof layer covers the insulating blocks and joints, and a waterproof material covers the moistureproof layer.« less
Standing balance tests for screening people with vestibular impairments.
Cohen, Helen S; Mulavara, Ajitkumar P; Peters, Brian T; Sangi-Haghpeykar, Haleh; Bloomberg, Jacob J
2014-02-01
To improve the test standards for a version of the Romberg test and to determine whether measuring kinematic variables improved its utility for screening. Healthy controls and patients with benign paroxysmal positional vertigo, postoperative acoustic neuroma resection, and chronic peripheral unilateral weakness were compared. Subjects wore Bluetooth-enabled inertial motion units while standing on the floor or medium-density, compliant foam, with eyes open or closed, with head still or moving in pitch or yaw. Dependent measures were time to perform each test condition, number of head movements made, and kinematic variables. Patients and controls did not differ significantly with eyes open or with eyes closed while on the floor. With eyes closed, on foam, some significant differences were found between patients and controls, especially for subjects older than 59 years. Head movement conditions were more challenging than with the head still. Significantly fewer patients than controls could make enough head movements to obtain kinematic measures. Kinematics indicated that lateral balance control is significantly reduced in these patients compared to controls. Receiver operator characteristics and sensitivity/specificity analyses showed moderately good differences with older subjects. Tests on foam with eyes closed, with head still or moving, may be useful as part of a screening battery for vestibular impairments, especially for older people. 3b. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Food Insecurity and Peripheral Arterial Disease in Older Adult Populations.
Redmond, M L; Dong, F; Goetz, J; Jacobson, L T; Collins, T C
2016-01-01
Food insecurity, defined as the limited or uncertain availability of nutritious and safe foods, is a complex phenomenon and is linked to poor nutrition and diet-sensitive chronic diseases. Dietary patterns that include saturated fats and meat products are potential risk factors for the progression of peripheral arterial disease (PAD). This study explored whether there is a relationship between food insecurity and PAD among a national sample of older adults. We conducted a cross-sectional data analysis using data from the 1999-2004 National Health and Nutrition Examination Survey (NHANES). Food security was assessed using the US Household Food Security Survey Module. Bivariate analyses were conducted using the Rao-Scott Chi-square test to examine associations between PAD and sociodemographic variables. Multivariable generalized logistic regression was employed to assess the effect of food security on the presence of PAD, with adjustment for respondent's socio demographic characteristics. A total of 2,027 adults with PAD were included (Ankle Brachial Index (ABI) score ≤ 0.90).We excluded participants less than 60 years of age. Compared to older adults who are food secure, those who are food insecure have an increased risk for PAD. Food insecurity is associated with peripheral arterial disease among older adults (adults adjusted odds ratio, 1.50 [95% CI 1.11-2.03). Older adults with peripheral arterial disease are experiencing food insecurity. While nutrition and PAD are not well-defined, previous literature indicates there is a connection between food insecurity and diet-sensitive chronic diseases (diabetes and hypertension) which are risk factors for PAD. Food insecurity should be taken into consideration when treating older adults with PAD to help decrease poor health outcomes that are linked to an insufficient amount of nutritious foods.
Terahertz Lasers Reveal Information for 3D Images
NASA Technical Reports Server (NTRS)
2013-01-01
After taking off her shoes and jacket, she places them in a bin. She then takes her laptop out of its case and places it in a separate bin. As the items move through the x-ray machine, the woman waits for a sign from security personnel to pass through the metal detector. Today, she was lucky; she did not encounter any delays. The man behind her, however, was asked to step inside a large circular tube, raise his hands above his head, and have his whole body scanned. If you have ever witnessed a full-body scan at the airport, you may have witnessed terahertz imaging. Terahertz wavelengths are located between microwave and infrared on the electromagnetic spectrum. When exposed to these wavelengths, certain materials such as clothing, thin metal, sheet rock, and insulation become transparent. At airports, terahertz radiation can illuminate guns, knives, or explosives hidden underneath a passenger s clothing. At NASA s Kennedy Space Center, terahertz wavelengths have assisted in the inspection of materials like insulating foam on the external tanks of the now-retired space shuttle. "The foam we used on the external tank was a little denser than Styrofoam, but not much," says Robert Youngquist, a physicist at Kennedy. The problem, he explains, was that "we lost a space shuttle by having a chunk of foam fall off from the external fuel tank and hit the orbiter." To uncover any potential defects in the foam covering, such as voids or air pockets, that could keep the material from staying in place, NASA employed terahertz imaging to see through the foam. For many years, the technique ensured the integrity of the material on the external tanks.
Lightweight Energy Absorbers for Blast Containers
NASA Technical Reports Server (NTRS)
Balles, Donald L.; Ingram, Thomas M.; Novak, Howard L.; Schricker, Albert F.
2003-01-01
Kinetic-energy-absorbing liners made of aluminum foam have been developed to replace solid lead liners in blast containers on the aft skirt of the solid rocket booster of the space shuttle. The blast containers are used to safely trap the debris from small explosions that are initiated at liftoff to sever frangible nuts on hold-down studs that secure the spacecraft to a mobile launch platform until liftoff.
Comprehensive Shuttle Foam Debris Reduction Strategies
NASA Technical Reports Server (NTRS)
Semmes, Edmund B.
2007-01-01
The Columbia Accident Investigation Board (CAIB) was clear in its assessment of the loss of the Space Shuttle Columbia on February 3, 2003. Foam liberated from the External Tank (ET) impacting the brittle wing leading edge (WLE) of the orbiter causing the vehicle to disintegrate upon re-entry. Naturally, the CAB pointed out numerous issues affecting this exact outcome in hopes of correcting systems of systems failures any one of which might have altered the outcome. However, Discovery s recent return to flight (RTF) illustrates the primacy of erosion of foam and the risk of future undesirable outcomes. It is obvious that the original RTF focused approach to this problem was not equal to a comprehensive foam debris reduction activity consistent with the high national value of the Space Shuttle assets. The root cause is really very simple when looking at the spray-on foam insulation for the entire ET as part of the structure (e.g., actual stresses > materials allowable) rather than as some sort of sizehime limited ablator. This step is paramount to accepting the CAB recommendation of eliminating debris or in meeting any level of requirements due to the fundamental processes ensuring structural materials maintain their integrity. Significant effort has been expended to identify root cause of the foam debris In-Flight Anomaly (FA) of STS-114. Absent verifiable location specific data pre-launch (T-0) and in-flight, only a most probable cause can be identified. Indeed, the literature researched corroborates NASNTM-2004-2 13238 disturbing description of ill defined materials characterization, variable supplier constituents and foam processing irregularities. Also, foam is sensitive to age and the exposed environment making baseline comparisons difficult without event driven data. Conventional engineering processes account for such naturally occurring variability by always maintaining positive margins. Success in a negative margin range is not consistently achieved. Looking at the ET S spray-on foam insulation as part of the structural system (e.g., glass half full mentality) will create an environment where ET debris levels as low as reasonably achievable (ALARA) can be realized. ALARA is a NASA requirements philosophy deployed for the complex, mission altering radiation exposure requirements for life safety of astronauts. In the Shuttle s case, reasonableness is established by exhaustive engineering rigor, allowable debris size/quantity, technology maturity and programmatic constraints. A more robust urethane foam thermal protection system (TPS) will enhance the hctionality of the new Ares I Crew Launch Vehicle (CLV) Upper Stage. This paper will outline the strategy for a comprehensive effort to reduce ET foam debris and outline steps leading to an improved foam TPS. The NASA must remain committed to such an approach no matter what becomes of the next flight s actual debris field lest we fall back into a false sense of security. This commitment along with full implementation of all the other CAB recommendations such as orbiter hardening will significantly improve the Shuttle system, the engineering workforce, future capabilities & alternate policy offramps, national human resource protection, high value national asset protection and increase the level of service to the overall NASA mission.
ERIC Educational Resources Information Center
Clark, Roger; Filinson, Rachel
1991-01-01
Examined determinants of spending on social security programs, using data from 75 nations representative of core, semiperipheral, and peripheral nations. Industrialization variables had strong effects in models involving all nations, as did multinational corporate penetration in extraction, particularly when region was controlled; such penetration…
Huang, Juan; Hung, Li-Fang; Smith, Earl L.
2012-01-01
This study aimed to investigate the changes in ocular shape and relative peripheral refraction during the recovery from myopia produced by form deprivation (FD) and hyperopic defocus. FD was imposed in 6 monkeys by securing a diffuser lens over one eye; hyperopic defocus was produced in another 6 monkeys by fitting one eye with -3D spectacle. When unrestricted vision was re-established, the treated eyes recovered from the vision-induced central and peripheral refractive errors. The recovery of peripheral refractive errors was associated with corresponding changes in the shape of the posterior globe. The results suggest that vision can actively regulate ocular shape and the development of central and peripheral refractions in infant primates. PMID:23026012
2011-12-01
management system. This paper describes recent development of salt hydrate-based TES composites at the Air Force Research Laboratory. Salt hydrates are...composites. 15. SUBJECT TERMS thermal energy storage, composite, salt hydrate, graphic foam 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...part of a thermal management system. This paper describes recent development of salt hydrate-based TES composites at the Air Force Research
FP-180 Water Motor AFFF Proportioner First Article Procedure and Evaluation
1989-07-20
concentrates. The first fluorocarbon-based Aqueous Film Forming Foam ( AFFF ) concentrate fully suitable for use with ocean water was FC -195, which had a...Fil E W Y. . Naval Research Laboratory Washington, DC 20375-500 NRL Memorandum Report 6507 FP-180 Water Motor AFFF Proportioner First Article...NUMBERS PROGRAM :PROJECT TASK WORK UNIT ELEMENT NO NO NO ACCESSION NO 11 TITLE (Include Security Classification) FP-180 Water Motor AFFF Proportioner
The Design and Construction of a Shiplaunched VTOL Unmanned Air Vehicle
1990-06-01
Heppenheimer , T. A ., "The Light Stuff: Burt Rutan Transforms Aircraft Design," High Technolonv. pp. 29-35, December 1986. 16. Alexander, J., Foam...AD-A238 053III 1111 II IIII II OII~ NAVAL POSTGRADUATE SCHOOL Monterey, California OTIC J UL 1 1 1991 THESIS THE DESIGN AND CONSTRUCTION OF A ...8217 € (Include Security Classification) THE DESIGN AND CONSTRUCTION OF A SHIPLAUNCHED VTOL UNMANNED AIR VEHICLE 12. PERSONAL AUTHOR(S) Blanchette, Bryan M
Tuncel, Umut; Turan, Aydin; Markoc, Fatma; Erkorkmaz, Unal; Elmas, Cigdem; Kostakoglu, Naci
2014-03-01
Since the introduction of negative pressure wound therapy (NPWT), the physiological effects of various interface dressing materials have been studied. The purpose of this experimental study was to compare the use of loofah sponge to standard polyurethane foam or a cotton gauze sponge. Three wounds, each measuring 3 cm x 3 cm, were created by full-thickness skin excision on the dorsal sides of 24 New Zealand adult white rabbits. The rabbits were randomly divided into four groups of six rabbits each. In group 1 (control), conventional saline-moistened gauze dressing was provided and changed at daily intervals. The remaining groups were provided NPWT dressings at -125 mm Hg continuous pressure. This dressing was changed every 3 days for 9 days; group 2 was provided polyurethane foam, group 3 had conventional saline-soaked antimicrobial gauze, and group 4 had loofah sponge. Wound area measurements and histological findings (inflammation, granulation tissue, neovascularization, and reepithelialization) were analyzed on days 3, 6, and 9. Wound area measurements at these intervals were significantly different between the control group and study groups (P<0.05). Granulation and neovascularization scores were also significantly different between the control and treatment groups at day 3 (P=0.002). No differences in any of the healing variables studied were observed between the other three dressing materials. According to scanning electron microscopy analysis of the three interface materials, the mean pore size diameter of foam and gauze interface materials was 415.80±217.58 μm and 912.33±116.88 μm, respectively. The pore architecture of foam was much more regular than that of gauze. The average pore size diameter of loofah sponge was 736.83±23.01 μm; pores were hierarchically located--ie, the smaller ones were usually peripheral and larger ones werecentral. For this study, the central part of loofah sponge was discarded to achieve a more homogenous structure of interface material. Loofah sponge study results were similar to those using gauze or foam, but the purchase price of loofah sponge is lower than that of currently available interface dressings. More experimental, randomized controlled studies are needed to confirm these results.
The Diplomacy of the Jaguar: French Airpower in Postcolonial African Conflicts
2009-03-01
turned back. Lorell, Airpower in Peripheral Conflict, 46. 32. Ibid., 48. 33. Ibid., 49. 34. Martel, Histoire Militaire de la France, 563. 35. Lorell...Airpower in Peripheral Conflict, 50. 36. Martel, Histoire Militaire de la France, 563. 37. Chipman, French Military Policy and African Security, 9. 38...Pro- longed Wars: A Post-Nuclear Challenge. Maxwell AFB, AL: Air University Press, March 2005. 39 Martel, André, ed. Histoire Militaire de la France
2007-03-09
KENNEDY SPACE CENTER, FLA. -- In Highbay 1 inside the Vehicle Assembly Building, workers secure scaffolding around the external tank to prepare it for repairs. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117. Photo credit: NASA/Jim Grossmann
Fixture For Drilling And Tapping A Curved Workpiece
NASA Technical Reports Server (NTRS)
Espinosa, P. S.; Lockyer, R. T.
1992-01-01
Simple fixture guides drilling and tapping of holes in prescribed locations and orientations on workpiece having curved surface. Tool conceived for use in reworking complexly curved helicopter blades made of composite materials. Fixture is block of rigid foam with epoxy filler, custom-fitted to surface contour, containing bushings and sleeves at drilling and tapping sites. Bushings changed, so taps and drills of various sizes accommodated. In use, fixture secured to surface by hold-down bolts extending through sleeves and into threads in substrate.
Insights on Flow Behavior of Foam in Unsaturated Porous Media during Soil Flushing.
Zhao, Yong S; Su, Yan; Lian, Jing R; Wang, He F; Li, Lu L; Qin, Chuan Y
2016-11-01
One-dimensional column and two-dimensional tank experiments were carried out to determine (1) the physics of foam flow and propagation of foaming gas, foaming liquid, and foam; (2) the pressure distribution along foam flow and the effect of media permeability, foam flow rate and foam quality on foam injection pressure; and (3) the migration and distribution property of foam flow in homogeneous and heterogeneous sediments. The results demonstrated that: (1) gas and liquid front were formed ahead of the foam flow front, the transport speed order is foaming gas > foaming liquid > foam flowing; (2) injection pressure mainly comes from the resistance to bubble migration. Effect of media permeability on foam injection pressure mainly depends on the physics and behavior of foam flow; (3) foam has a stronger capacity of lateral spreading, besides, foam flow was uniformly distributed across the foam-occupied region, regardless of the heterogeneity of porous media.
Targeting Epigenetic Mechanisms in Pain due to Trauma and Traumatic Brain Injury(TBI)
2016-10-01
particularly likely to involve TBI, peripheral trauma or both. Disability due to pain and other causes is very high amongst such patients. We have no...Chemokine, Disability , Analgesia, Spinal Cord 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 15 19a. NAME OF...are particularly likely to involve TBI, peripheral trauma or both. Disability due to pain and other causes is very high amongst such patients. We have
Online shopping interface components: relative importance as peripheral and central cues.
Warden, Clyde A; Wu, Wann-Yih; Tsai, Dungchun
2006-06-01
The Elaboration Likelihood Model (ELM) uses central (more thoughtful) and peripheral (less thoughtful) routes of persuasion to maximize communication effectiveness. This research implements ELM to investigate the relative importance of different aspects of the user experience in online shopping. Of all the issues surrounding online shopping, convenience, access to information, and trust were found to be the most important. These were implemented in an online conjoint shopping task. Respondents were found to use the central route of the ELM on marketing messages that involved issues of minimizing travel, information access, and assurances of system security. Users employed the peripheral ELM route when considering usability, price comparison, and personal information protection. A descriptive model of Web-based marketing components, their roles in the central and peripheral routes, and their relative importance to online consumer segments was developed.
Current applications of foams formed from mixed surfactant-polymer solutions.
Bureiko, Andrei; Trybala, Anna; Kovalchuk, Nina; Starov, Victor
2015-08-01
Foams cannot be generated without the use of special foaming agents, as pure liquids do not foam. The most common foaming agents are surfactants, however often for foam stability one active agent is not enough, it is necessary to add other component to increase foam lifetime. Foams on everyday use are mostly made from mixture of different components. Properly chosen combinations of two active ingredients lead to a faster foam formation and increased foam stability. During the last decade polymers (mainly polyelectrolytes and proteins) have become frequently used additives to foaming solutions. Mixtures of surfactants and polymers often demonstrate different foaming properties in comparison to surfactant only or polymer only solutions. The nature of surfactant-polymer interactions is complicated and prediction of resulting foaming properties of such formulations is not straightforward. Properties and foaming of surfactant-polymer mixtures are discussed as well as current applications of foams and foaming agents as foams are widely used in cosmetics, pharmaceutics, medicine and the food industry. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Jin-song; Cao, Pin-lu; Yin, Kun
2015-07-01
Environmental, economical and efficient antifoaming technology is the basis for achievement of foam drilling fluid recycling. The present study designed a novel two-stage laval mechanical foam breaker that primarily uses vacuum generated by Coanda effect and Laval principle to break foam. Numerical simulation results showed that the value and distribution of negative pressure of two-stage laval foam breaker were larger than that of the normal foam breaker. Experimental results showed that foam-breaking efficiency of two-stage laval foam breaker was higher than that of normal foam breaker, when gas-to-liquid ratio and liquid flow rate changed. The foam-breaking efficiency of normal foam breaker decreased rapidly with increasing foam stability, whereas the two-stage laval foam breaker remained unchanged. Foam base fluid would be recycled using two-stage laval foam breaker, which would reduce the foam drilling cost sharply and waste disposals that adverse by affect the environment.
Combe, Alexander L; Ang, Justin K; Bamforth, Charles W
2013-07-01
The foam stability of beer is dependent on the presence of foam-stabilizing polypeptides derived from the cereals from which it is made. It has long been argued that there is a tendency to boost the foam-stabilizing capabilities of these polypeptides at the heating stages involved in the production of the grist materials. The present study started with the intent to confirm whether these changes occurred and to assess the extent to which different cereal products differed in their foam-stabilizing tendencies. Cereal products differ enormously in their foam-stabilizing capabilities. Heavily roasted grains, notably black malt and roast barley, do have superior foaming properties. However, certain specialty malts, notably crystal malts, display inferior foam performance. The observed foaming pattern is a balance between their content of foam-positive and foam-negative components. Products such as pale malt do contain foam-negative materials but have a net balance in favour of foam-stabilizing entities. By contrast, wheat malt and especially black malt have a heavy preponderance of foam-positive components. Crystal malt displays the converse behaviour: it contains low-molecular-weight foam-negative species. Several of the cereal products appear to contain higher-molecular-weight foam inhibitors, but it appears that they are merely species that are of inherently inferior foam-stabilizing capability to the foaming polypeptides from egg white that were employed to probe the system. The foam-damaging species derived from crystal malt carried through to beers brewed from them. Intense heating in the production of cereal products does lead to enhanced foam performance in extracts of those products. However, not all speciality malts display superior foam performance, through their development of foam-negative species of lower molecular weight. © 2013 Society of Chemical Industry.
Coons, David A; Barber, F Alan; Herbert, Morley A
2006-11-01
This study evaluated the strength and suture-tendon interface security of different suture configurations from triple-suture-loaded anchors. A juvenile bovine infraspinatus tendon was detached and repaired by use of 4 different suture combinations from 2 suture anchors: 3 simple sutures in each anchor (ThreeVo anchor; Linvatec, Largo, FL); 2 peripheral simple stitches and 1 central horizontal mattress suture passed deeper into the tendon, creating a larger footprint (bigfoot-print anchor); 2 peripheral simple stitches with 1 central horizontal mattress stitch passed through the same holes as the simple sutures (stitch-of-Burns); and 2 simple stitches (TwoVo anchor; Linvatec). The constructs were cyclically loaded between 10 N and 180 N for 3,500 cycles and then destructively tested. The number of cycles required to create a 5-mm gap and a 10-mm gap and the ultimate load to failure and failure mode were recorded. The ThreeVo anchor was strongest and most resistant to cyclic loading (P < .01). The TwoVo anchor was least resistant to cyclic loading. The stitch-of-Burns anchor was more resistant to cyclic loading than both the bigfoot-print anchor and the TwoVo anchor (P < .03). The ThreeVo, stitch-of-Burns, and TwoVo anchors were stronger than the bigfoot-print anchor (P < .05). Three simple sutures in an anchor hold better than two simple sutures. Three simple sutures provide superior suture-tendon security than combinations of one mattress and two simple stitches subjected to cyclic loading. A central mattress stitch placed more medially than two peripheral simple stitches (bigfoot-print anchor) configured to enlarge the tendon-suture footprint was not as resistant to cyclic loading or destructive testing as three simple stitches (ThreeVo anchor). Placing a central mattress stitch more medially than 2 peripheral simple stitches to enlarge the tendon-suture footprint was not as resistant to cyclic loading or destructive testing as 3 simple stitches.
A Comprehensive Repository of Normal and Tumor Human Breast Tissues and Cells
1999-07-01
mother was reported to have had cancer of the uterine cervix at the age of 22. Both maternal grandparents had died of colon cancer in their sixties...1 mutation). The repository also includes breast epithelial and stromal cell strains derived from non cancerous breast tissue as well as peripheral...tissue banks. 14. SUBJECT TERMS Breast Cancer 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE
Kim, Ijung; Nole, Michael; Jang, Sunghyun; ...
2017-01-31
Here in this paper, we report a new way of storing CO 2 in a highly porous hydrate structure, stabilized by silica nanoparticles (NPs). Such a porous CO 2 hydrate structure was generated either by cooling down NP-stabilized CO 2-in-seawater foams, or by gently mixing CO 2 and seawater that contains silica NPs under CO 2 hydrate-generating conditions. With the highly porous structure, enhanced desalination was also achievable when the partial meltdown of CO 2 hydrate was allowed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ijung; Nole, Michael; Jang, Sunghyun
Here in this paper, we report a new way of storing CO 2 in a highly porous hydrate structure, stabilized by silica nanoparticles (NPs). Such a porous CO 2 hydrate structure was generated either by cooling down NP-stabilized CO 2-in-seawater foams, or by gently mixing CO 2 and seawater that contains silica NPs under CO 2 hydrate-generating conditions. With the highly porous structure, enhanced desalination was also achievable when the partial meltdown of CO 2 hydrate was allowed.
NASA Astrophysics Data System (ADS)
Sahu, Sritam Swapnadarshi; Gandhi, Indu Siva Ranjani; Khwairakpam, Selija
2018-06-01
Foam concrete finds application in many areas, generally as a function of its relatively lightweight and its beneficial properties in terms of reduction in dead load on structure, excellent thermal insulation and contribution to energy conservation. For production of foam concrete with desired properties, stable and good quality foam is the key requirement. It is to be noted that the selection of surfactant and foam production parameters play a vital role in the properties of foam which in turn affects the properties of foam concrete. However, the literature available on the influence of characteristics of foaming agent and foam on the properties of foam concrete are rather limited. Hence, a more systematic research is needed in this direction. The focus of this work is to provide a review on characteristics of surfactant (foaming agent) and foam for use in foam concrete production.
NASA Astrophysics Data System (ADS)
Sahu, Sritam Swapnadarshi; Gandhi, Indu Siva Ranjani; Khwairakpam, Selija
2018-02-01
Foam concrete finds application in many areas, generally as a function of its relatively lightweight and its beneficial properties in terms of reduction in dead load on structure, excellent thermal insulation and contribution to energy conservation. For production of foam concrete with desired properties, stable and good quality foam is the key requirement. It is to be noted that the selection of surfactant and foam production parameters play a vital role in the properties of foam which in turn affects the properties of foam concrete. However, the literature available on the influence of characteristics of foaming agent and foam on the properties of foam concrete are rather limited. Hence, a more systematic research is needed in this direction. The focus of this work is to provide a review on characteristics of surfactant (foaming agent) and foam for use in foam concrete production.
Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.
Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R
2017-08-21
Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.
NASA Astrophysics Data System (ADS)
Izadi, M.; Kam, S.
2017-12-01
Scope: Numerous laboratory and field tests revealed that foam can effectively control gas mobility and improve sweep efficiency in enhanced-oil-recovery and subsurface-remediation processes, if correctly designed. The objective of this study is to answer (i) how mechanistic foam model parameters can be determined by fitting lab experiments in a step-by-step manner; (ii) how different levels of mobilization pressure gradient for foam generation affects the fundamentals of foam propagation; and (iii) how foam propagation distance can be estimated in the subsurface. This study for the first time shows why, and by how much, supercritical CO2 foams are advantaged over other types of foams such as N2 foam. Methods: First of all, by borrowing experimental data existing in the literature, this study shows how to capture mechanistic foam model parameters. The model, then, is applied to a wide range of mobilization pressure gradient to represent different types of foams that have been applied in the field (Note that supercritical CO2 foams exhibit much lower mobilization pressure compared to other types of foams (N2, steam, air, etc.). Finally, the model and parameters are used to evaluate different types of foam injection scenarios in order to predict how far foams can propagate with what properties in the field condition. Results and Conclusions: The results show that (i) the presence of three different foam states (strong, weak, intermediate) as well as two different strong-foam flow regimes (high-quality and low-quality regimes) plays a key role in model fit and field-scale propagation prediction and (ii) the importance of complex non-Newtonian foam rheology should not be underestimated. More specifically, this study finds that (i) supercritical CO2 foams can propagate a few hundreds of feet easily, which is a few orders of magnitude higher than other foams such as N2 foams; (ii) for dry foams (or, strong foams in the high-quality regime), the higher gas fractions the less foams travel, while for wet foams (or, strong foams in the low-quality regime) the distance is not sensitive to gas fraction; and (iii) the higher injection rates (or pressures), the farther foams propagate (this effect is much more pronounced for dry foams).
The Evaluation of Foam Performance and Flooding Efficiency
NASA Astrophysics Data System (ADS)
Keliang, Wang; Yuhao, Chen; Gang, Wang; Gen, Li
2017-12-01
ROSS-Miles and spinning drop interfacial tensionmeter are used to select suitable foam system through foam composite index (FCI) and interfacial tension (IT). The selected foam system are taken to conduct further test. The further tests are evaluating the foam system resistance to adsorption with multi-round core flooding dynamic adsorption test and evaluating the performance of foam system with four kinds of different transport distance, quantitatively analyzing the foam system effective distance after dynamic adsorption. The result shows that the foaming ability and the mobilizing ability of the foam system decrease with the increase of the round of dynamic adsorption. As the transport distance increases, the foaming ability and the mobilizing ability of the foam system decrease. This result further reveals the flooding characteristics of nitrogen foam flooding, which provides a reference for the implementation of nitrogen foam flooding technology.
Rickard, Claire M; Marsh, Nicole M; Webster, Joan; Gavin, Nicole C; Chan, Raymond J; McCarthy, Alexandra L; Mollee, Peter; Ullman, Amanda J; Kleidon, Tricia; Chopra, Vineet; Zhang, Li; McGrail, Matthew R; Larsen, Emily; Choudhury, Md Abu; Keogh, Samantha; Alexandrou, Evan; McMillan, David J; Mervin, Merehau Cindy; Paterson, David L; Cooke, Marie; Ray-Barruel, Gillian; Castillo, Maria Isabel; Hallahan, Andrew; Corley, Amanda; Geoffrey Playford, E
2017-06-15
Around 30% of peripherally inserted central catheters (PICCs) fail from vascular, infectious or mechanical complications. Patients with cancer are at highest risk, and this increases morbidity, mortality and costs. Effective PICC dressing and securement may prevent PICC failure; however, no large randomised controlled trial (RCT) has compared alternative approaches. We designed this RCT to assess the clinical and cost-effectiveness of dressing and securements to prevent PICC failure. Pragmatic, multicentre, 2×2 factorial, superiority RCT of (1) dressings (chlorhexidine gluconate disc (CHG) vs no disc) and (2) securements (integrated securement dressing (ISD) vs securement device (SED)). A qualitative evaluation using a knowledge translation framework is included. Recruitment of 1240 patients will occur over 3 years with allocation concealment until randomisation by a centralised service. For the dressing hypothesis, we hypothesise CHG discs will reduce catheter-associated bloodstream infection (CABSI) compared with no CHG disc. For the securement hypothesis, we hypothesise that ISD will reduce composite PICC failure (infection (CABSI/local infection), occlusion, dislodgement or thrombosis), compared with SED. types of PICC failure; safety; costs; dressing/securement failure; dwell time; microbial colonisation; reversible PICC complications and consumer acceptability. Relative incidence rates of CABSI and PICC failure/100 devices and/1000 PICC days (with 95% CIs) will summarise treatment impact. Kaplan-Meier survival curves (and log rank Mantel-Haenszel test) will compare outcomes over time. Secondary end points will be compared between groups using parametric/non-parametric techniques; p values <0.05 will be considered to be statistically significant. Ethical approval from Queensland Health (HREC/15/QRCH/241) and Griffith University (Ref. No. 2016/063). Results will be published. Trial registration number is: ACTRN12616000315415. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Organic pollutant loading and biodegradability of firefighting foam
NASA Astrophysics Data System (ADS)
Zhang, Xian-Zhong; Bao, Zhi-ming; Hu, Cheng; Li-Shuai, Jing; Chen, Yang
2017-11-01
Firefighting foam has been widely used as the high-performance extinguishing agent in extinguishing the liquid poor fire. It was concerned for its environmental impacts due to its massive usage. In this study, the organic loading level and the biodegradability of 18 firefighting foams commonly used in China were evaluated and compared. The COD and TOC of firefighting foam concentrates are extremely high. Furthermore, those of foam solutions are also much higher than regular wastewater. The COD/TOC ratio of synthetic foams are higher than protein foams. The 28-day biodegradation rates of 18 firefighting foams are all over 60%, indicating that they are all ready biodegradable. Protein foams (P, FP and FFFP) have the higher organic loading and lower 28-day biodegradation rates compared to the synthetic foams (Class A foam, AFFF and S). The short and long-term impact of protein foams on the environment are larger than synthetic foams.
46 CFR 160.010-4 - General requirements for buoyant apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... light twine. (h) Each peripheral body type buoyant apparatus without a net or platform on the inside... pigmented in a dark color. A typical method of securing lifelines and pendants to straps of webbing is shown...
46 CFR 160.010-4 - General requirements for buoyant apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... light twine. (h) Each peripheral body type buoyant apparatus without a net or platform on the inside... pigmented in a dark color. A typical method of securing lifelines and pendants to straps of webbing is shown...
46 CFR 160.010-4 - General requirements for buoyant apparatus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... light twine. (h) Each peripheral body type buoyant apparatus without a net or platform on the inside... pigmented in a dark color. A typical method of securing lifelines and pendants to straps of webbing is shown...
Description of a Simple Method of Stoma Protection During Prone Positioning.
Mackert, Gina A; Reid, Christopher M; Dobke, Marek K; Tenenhaus, Mayer
2016-06-01
Surgeries conducted with the patient in the prone position are frequent and can be lengthy. Abdominal stomas and su- prapubic catheters require protection for the complete duration of the procedure to avoid complications such as stomal ischemia, bleeding, or mucocutaneous separation. Standard protection strategies such as pillows and wedges can eas- ily fail. In the course of managing several patients who had sustained ostomy complications following surgery in a prone position, a simple method of stoma protection was devised. Instead of discarding the foam headrest typically used dur- ing induction by anesthesia staff, this device is placed with its central recess over the stoma and secured to the patient's abdominal wall with gentle tape just before turning the patient into a prone position. This method, used in more than 80 patients, has been found to effectively relieve pressure, and no complications have been observed. The foam shape also enables unobstructed drainage of fluids, facilitating collection and preventing leakage and contamination of the surgical field. Because the device is widely used by anesthesia, it is readily available and does not add any extra cost.
A review of aqueous foam in microscale.
Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal; Nguyen, Anh V
2018-06-01
In recent years, significant progress has been achieved in the study of aqueous foams. Having said this, a better understanding of foam physics requires a deeper and profound study of foam elements. This paper reviews the studies in the microscale of aqueous foams. The elements of aqueous foams are interior Plateau borders, exterior Plateau borders, nodes, and films. Furthermore, these elements' contribution to the drainage of foam and hydraulic resistance are studied. The Marangoni phenomena that can happen in aqueous foams are listed as Marangoni recirculation in the transition region, Marangoni-driven flow from Plateau border towards the film in the foam fractionation process, and Marangoni flow caused by exposure of foam containing photosurfactants under UV. Then, the flow analysis of combined elements of foam such as PB-film along with Marangoni flow and PB-node are studied. Next, we contrast the behavior of foams in different conditions. These various conditions can be perturbation in the foam structure caused by injected water droplets or waves or using a non-Newtonian fluid to make the foam. Further review is about the effect of oil droplets and particles on the characteristics of foam such as drainage, stability and interfacial mobility. Copyright © 2018 Elsevier B.V. All rights reserved.
Innovative test method for the estimation of the foaming tendency of substrates for biogas plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, Lucie, E-mail: lucie.moeller@ufz.de; Eismann, Frank, E-mail: info@antoc.de; Wißmann, Daniel, E-mail: d.s.wissmann@gmx.de
2015-07-15
Graphical abstract: Display Omitted - Highlights: • Foaming in biogas plants depends on the interactions between substrate and digestate. • Foaming tests enable the evaluation of substrate foaming tendency in biogas plants. • Leipzig foam tester enables foaming tests of substrates prior to use. - Abstract: Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor.more » The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes.« less
Development of Defoamers for Confinenment Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D M; Mitchell, A R
Aqueous foam concentrate (AFC) 380 foam was developed by Sandia National Laboratory as a blast mitigation foam for unexploded ordnance (UXO) and its ''engineered foam structure'' is reported to be able to ''envelop chemical or biological aerosols'' [1]. It is similar to commercial fire-fighting foams, consisting mostly of water with small amounts of two alcohols, an ether and surfactant. It also contains xanthan gum, probably, to strengthen the foam film and delay drainage. The concentrate is normally diluted in a 6:94 ratio with water for foaming applications. The diluted solution is normally foamed with air to an expansion factor ofmore » about 100 (density 0.01 g/cc), which is called ''dry'' foam. Higher density foam (0.18 > {rho} > 0.03 g/cc) was discovered which had quite different characteristics from ''dry'' foam and was called ''wet'' foam. Some characterization of these foams has also been carried out, but the major effort described in this document is the evaluation, at the small and medium scale, of chemical, mechanical and thermal approaches to defoaming AFC 380 foam. Several chemical approaches to defoaming were evaluated including oxidation and precipitation of the xanthan, use of commercial oil-emulsion or suspension defoamers, pH modification, and cation exchange with the surfactant. Of these the commercial defoamers were most effective. Two mechanical approaches to defoaming were evaluated: pressure and foam rupture with very fine particles. Pressure and vacuum techniques were considered too difficult for field applications but high surface area silica particles worked very well on dry foam. Finally simple thermal techniques were evaluated. An order-disorder transition occurs in xanthan solutions at about 60 C, which may be responsible for the effectiveness of hot air as a defoamer. During defoaming of 55 gallons of foam with hot air, after about 70% of the AFC 380 foam had been defoamed, the effectiveness of hot air was dramatically reduced. Approximately 15 gal of residual foam containing mostly small bubbles was resistant to further defoaming by methods that had been effective on the original, dry foam. In this paper the residual foam is referred to as ''wet'' and the original foam is referred to as ''dry''. Methods for generating ''wet'' foam in small to moderate quantities for defoaming experiments have been developed. Methods for defoaming wet foam are currently under study.« less
Urban environment and health: food security.
Galal, Osman; Corroon, Meghan; Tirado, Cristina
2010-07-01
The authors examine the impact of urbanization on food security and human health in the Middle East. Within-urban-population disparities in food security represent one of the most dramatic indicators of economic and health disparities. These disparities are reflected in a double burden of health outcomes: increasing levels of chronic disease as well as growing numbers of undernourished among the urban poor. These require further comprehensive solutions. Some of the factors leading to food insecurity are an overdependence on purchased food commodities, lack of sufficient livelihoods, rapid reductions in peripheral agricultural land, and adverse impacts of climate change. The Food and Agriculture Organization of the United Nations (FAO) Food Security Framework is used to examine and compare 2 cities in the Middle East: Amman, Jordan, and Manama, Bahrain.
40 CFR 63.8830 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication... chemical substance that is applied for the purpose of bonding foam to foam, foam to fabric, or foam to any... means the process of bonding flexible foam to one or more layers of material by heating the foam surface...
40 CFR 63.8830 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication... chemical substance that is applied for the purpose of bonding foam to foam, foam to fabric, or foam to any... means the process of bonding flexible foam to one or more layers of material by heating the foam surface...
40 CFR 63.8830 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication... chemical substance that is applied for the purpose of bonding foam to foam, foam to fabric, or foam to any... means the process of bonding flexible foam to one or more layers of material by heating the foam surface...
40 CFR 63.8830 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication... chemical substance that is applied for the purpose of bonding foam to foam, foam to fabric, or foam to any... means the process of bonding flexible foam to one or more layers of material by heating the foam surface...
40 CFR 63.8830 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication... chemical substance that is applied for the purpose of bonding foam to foam, foam to fabric, or foam to any... means the process of bonding flexible foam to one or more layers of material by heating the foam surface...
Maruta, Michito; Matsuya, Shigeki; Nakamura, Seiji; Ishikawa, Kunio
2011-01-01
Carbonate apatite (CO(3)Ap) foam may be an ideal bone substitute as it is sidelined to cancellous bone with respect to its chemical composition and structure. However, CO(3)Ap foam fabricated using α-tricalcium phosphate foam showed limited mechanical strength. In the present study, feasibility of the fabrication of calcite which could be a precursor of CO(3)Ap was studied. Calcite foam was successfully fabricated by the so-called "ceramic foam" method using calcium hydroxide coated polyurethane foam under CO(2)+O(2) atmosphere. Then the calcite foam was immersed in Na(2)HPO(4) aqueous solution for phase transformation based on dissolution-precipitation reaction. When CaO-free calcite foam was immersed in Na(2)HPO(4) solution, low-crystalline CO(3)Ap foam with 93-96% porosity and fully interconnected porous structure was fabricated. The compressive strength of the foam was 25.6 ± 6 kPa. In light of these results, we concluded that the properties of the precursor foam were key factors for the fabrication of CO(3)Ap foams.
Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus
Jody, Bassam; Daniels, Edward; Libera, Joseph A.
1999-01-01
A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam.
Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus
Jody, B.; Daniels, E.; Libera, J.A.
1999-03-16
A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam. 4 figs.
Lacherez, Philippe; Wood, Joanne M; Anstey, Kaarin J; Lord, Stephen R
2014-02-01
To establish whether sensorimotor function and balance are associated with on-road driving performance in older adults. The performance of 270 community-living adults aged 70-88 years recruited via the electoral roll was measured on a battery of peripheral sensation, strength, flexibility, reaction time, and balance tests and on a standardized measure of on-road driving performance. Forty-seven participants (17.4%) were classified as unsafe based on their driving assessment. Unsafe driving was associated with reduced peripheral sensation, lower limb weakness, reduced neck range of motion, slow reaction time, and poor balance in univariate analyses. Multivariate logistic regression analysis identified poor vibration sensitivity, reduced quadriceps strength, and increased sway on a foam surface with eyes closed as significant and independent risk factors for unsafe driving. These variables classified participants into safe and unsafe drivers with a sensitivity of 74% and specificity of 70%. A number of sensorimotor and balance measures were associated with driver safety and the multivariate model comprising measures of sensation, strength, and balance was highly predictive of unsafe driving in this sample. These findings highlight important determinants of driver safety and may assist in developing efficacious driver safety strategies for older drivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, M.L.; Carroll, H.A.
1986-07-01
The handbook describes basic types of foams that may be used to control vapor hazards from spilled volatile chemicals. It provides a table to be used by spill-response personnel to choose an appropriate foam based on the type of chemical spill. Six general types of foams, surfactant (syndet) foams, aqueous film forming foams (AFFF), alcohol type or polar solvent type foams (ATF), and special foams such as Hazmat NF no. 1 which was developed especially for alkaline spills. The handbook provides the basis for spill responders to evaluate and select a foam for vapor control by using the test methodsmore » presented or by considering manufacturers specifications for foam-expansion ratios and quarter drainage times. The responder is encouraged to maximize the effectiveness of a foam by trying different nozzles, distances of applications, and thicknesses of the foam layers.« less
Forming foam structures with carbon foam substrates
Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.
2012-11-06
The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.
Technological parameters influence on the non-autoclaved foam concrete characteristics
NASA Astrophysics Data System (ADS)
Bartenjeva, Ekaterina; Mashkin, Nikolay
2017-01-01
Foam concretes are used as effective heat-insulating materials. The porous structure of foam concrete provides good insulating and strength properties that make them possible to be used as heat-insulating structural materials. Optimal structure of non-autoclaved foam concrete depends on both technological factors and properties of technical foam. In this connection, the possibility to manufacture heat-insulation structural foam concrete on a high-speed cavity plant with the usage of protein and synthetic foamers was estimated. This experiment was carried out using mathematical planning method, and in this case mathematical models were developed that demonstrated the dependence of operating performance of foam concrete on foaming and rotation speed of laboratory plant. The following material properties were selected for the investigation: average density, compressive strength, bending strength and thermal conductivity. The influence of laboratory equipment technological parameters on technical foam strength and foam stability coefficient in the cement paste was investigated, physical and mechanical properties of non-autoclaved foam concrete were defined based on investigated foam. As a result of investigation, foam concrete samples were developed with performance parameters ensuring their use in production. The mathematical data gathered demonstrated the dependence of foam concrete performance on the technological regime.
Role of foam drainage in producing protein aggregates in foam fractionation.
Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao
2017-10-01
It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.
Long, Xuwei; Shen, Chong; He, Ni; Zhang, Guoliang; Meng, Qin
2017-01-01
In this study, a stop valve was used as a foam breaker for dealing with the massive overflowing foam in rhamnolipid fermentation. As found, a stop valve at its tiny opening could break over 90% of the extremely stable rhamnolipid foam into enriched liquid when foam flows through the sharp gap in valve. The efficient foam-control by the stop valve considerably improved the rhamnolipid fermentation and significantly enhanced the rhamnolipid productivity by 83% compared to the regular fermentation. This efficient foam breaking was mainly achieved by a high shear rate in combination with fast separation of air from the collapsed foam. Altogether, the stop valve possessed a great activity in breaking rhamnolipid foam, and the involving mechanism holds the potential for developing efficient foam breakers for industrial rhamnolipid fermentation. Copyright © 2016. Published by Elsevier Ltd.
ZrP nanoplates based fire-fighting foams stabilizer
NASA Astrophysics Data System (ADS)
Zhang, Lecheng; Cheng, Zhengdong; Li, Hai
2015-03-01
Firefighting foam, as a significant innovation in fire protection, greatly facilitates extinguishments for liquid pool fire. Recently, with developments in LNG industry, high-expansion firefighting foams are also used for extinguishing LNG fire or mitigating LNG leakage. Foam stabilizer, an ingredient in fire-fighting foam, stabilizes foam bubbles and maintains desired foam volume. Conventional foam stabilizers are organic molecules. In this work, we developed a inorganic based ZrP (Zr(HPO4)2 .H2O, Zirconium phosphate) plates functionalized as firefighting foam stabilizer, improving firefighting foam performance under harsh conditions. Several tests were conducted to illustrate performance. The mechanism for the foam stabilization is also proposed. Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA. Mary Kay O'Connor Process Safety Center, Texas A&M University, College Station, TX, 77843-3122
Foam, Foam-resin composite and method of making a foam-resin composite
NASA Technical Reports Server (NTRS)
MacArthur, Doug E. (Inventor); Cranston, John A. (Inventor)
1995-01-01
This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.
Exploratory development of foams from liquid crystal polymers
NASA Technical Reports Server (NTRS)
Chung, T. S.
1985-01-01
Two types of liquid crystal polymer (LCP) compositions were studied and evaluated as structural foam materials. One is a copolymer of 6-hydroxy-2-naphthoic acid, terephthalic acid, and p-acetoxyacetanilide (designed HNA/TA/AAA), and the other is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (designated HBA/HNA). Experimental results showed that the extruded HNA/TA/AA foams have better mechanical quality and appearance than HBA/HNA foams. Heat treatment improved foam tensile strength and break elongation, but reduced their modulus. The injection molding results indicated that nitrogen foaming agents with a low-pressure process gave better void distribution in the injection molded LCP foams than those made by the conventional injection-molding machine and chemical blowing agents. However, in comparing LCP foams with other conventional plastic foams, HBA/HNA foams have better mechanical properties than foamed ABS and PS, but are comparable to PBT and inferior to polycarbonate foams, especially in heat-deflection temperature and impact resistance energy. These deficiencies are due to LCP molecules not having been fully oriented during the Union-Carbide low-pressure foaming process.
Espresso coffee foam delays cooling of the liquid phase.
Arii, Yasuhiro; Nishizawa, Kaho
2017-04-01
Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.
Generation of sclerosant foams by mechanical methods increases the foam temperature.
Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh
2017-08-01
Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.
Infiltrated carbon foam composites
NASA Technical Reports Server (NTRS)
Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)
2012-01-01
An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.
Foam property tests to evaluate the potential for longwall shield dust control.
Reed, W R; Beck, T W; Zheng, Y; Klima, S; Driscoll, J
2018-01-01
Tests were conducted to determine properties of four foam agents for their potential use in longwall mining dust control. Foam has been tried in underground mining in the past for dust control and is currently being reconsidered for use in underground coal longwall operations in order to help those operations comply with the Mine Safety and Health Administration's lower coal mine respirable dust standard of 1.5 mg/m 3 . Foams were generated using two different methods. One method used compressed air and water pressure to generate foam, while the other method used low-pressure air generated by a blower and water pressure using a foam generator developed by the U.S. National Institute for Occupational Safety and Health. Foam property tests, consisting of a foam expansion ratio test and a water drainage test, were conducted to classify foams. Compressed-air-generated foams tended to have low expansion ratios, from 10 to 19, with high water drainage. Blower-air-generated foams had higher foam expansion ratios, from 30 to 60, with lower water drainage. Foams produced within these ranges of expansion ratios are stable and potentially suitable for dust control. The test results eliminated two foam agents for future testing because they had poor expansion ratios. The remaining two foam agents seem to have properties adequate for dust control. These material property tests can be used to classify foams for their potential use in longwall mining dust control.
Foam property tests to evaluate the potential for longwall shield dust control
Reed, W.R.; Beck, T.W.; Zheng, Y.; Klima, S.; Driscoll, J.
2018-01-01
Tests were conducted to determine properties of four foam agents for their potential use in longwall mining dust control. Foam has been tried in underground mining in the past for dust control and is currently being reconsidered for use in underground coal longwall operations in order to help those operations comply with the Mine Safety and Health Administration’s lower coal mine respirable dust standard of 1.5 mg/m3. Foams were generated using two different methods. One method used compressed air and water pressure to generate foam, while the other method used low-pressure air generated by a blower and water pressure using a foam generator developed by the U.S. National Institute for Occupational Safety and Health. Foam property tests, consisting of a foam expansion ratio test and a water drainage test, were conducted to classify foams. Compressed-air-generated foams tended to have low expansion ratios, from 10 to 19, with high water drainage. Blower-air-generated foams had higher foam expansion ratios, from 30 to 60, with lower water drainage. Foams produced within these ranges of expansion ratios are stable and potentially suitable for dust control. The test results eliminated two foam agents for future testing because they had poor expansion ratios. The remaining two foam agents seem to have properties adequate for dust control. These material property tests can be used to classify foams for their potential use in longwall mining dust control. PMID:29416179
Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption
NASA Astrophysics Data System (ADS)
Kim, Ji Hoon; Kim, Daeyong; Lee, Myoung-Gyu; Lee, Jong Kook
2016-09-01
The energy-absorbing characteristics of crash members in automotive collision play an important role in controlling the amount of damage to the passenger compartment. Aluminum foams have high strength-to-weight ratio and high deformability, thus good crashworthiness is expected while maintaining or even saving weights when foams are implemented in crash members. In order to investigate the effect of the open-cell aluminum foam fillers on impact performance and weight saving, a multiscale framework for evaluating the crashworthiness of aluminum foam-filled members is used. To circumvent the difficulties of mechanical tests on foams, a micromechanical model of the aluminum foam is constructed using the x-ray micro tomography and virtual tests are conducted for the micromechanical model to characterize the behavior of the foam. In the macroscale, the aluminum foam is represented by the crushable foam constitutive model, which is then incorporated into the impact test simulation of the foam-filled crash member. The multiscale foam-filled crash member model was validated for the high-speed impact test, which confirms that the material model characterized by the micromechanical approach represents the behavior of the open-cell foam under impact loading well. Finally, the crash member design for maximizing the energy absorption is discussed by investigating various designs from the foam-only structure to the hollow tube structure. It was found that the foam structure absorbs more energy than the hollow tube or foam-filled structure with the same weight.
In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams
Kovtun, Anna; Goeckelmann, Melanie J.; Niclas, Antje A.; Montufar, Edgar B.; Ginebra, Maria-Pau; Planell, Josep A.; Santin, Matteo; Ignatius, Anita
2015-01-01
Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. PMID:25448348
In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams.
Kovtun, Anna; Goeckelmann, Melanie J; Niclas, Antje A; Montufar, Edgar B; Ginebra, Maria-Pau; Planell, Josep A; Santin, Matteo; Ignatius, Anita
2015-01-01
Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. Copyright © 2014 Acta Materialia Inc. All rights reserved.
Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation
NASA Technical Reports Server (NTRS)
Hess, David M.
2013-01-01
The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam
Fan, Donglei; Li, Minggang; Qiu, Jian; Xing, Haiping; Jiang, Zhiwei; Tang, Tao
2018-05-31
Auxetic materials are a class of materials possessing negative Poisson's ratio. Here we establish a novel method for preparing auxetic foam from closed-cell polymer foam based on steam penetration and condensation (SPC) process. Using polyethylene (PE) closed-cell foam as an example, the resultant foams treated by SPC process present negative Poisson's ratio during stretching and compression testing. The effect of steam-treated temperature and time on the conversion efficiency of negative Poisson's ratio foam is investigated, and the mechanism of SPC method for forming re-entrant structure is discussed. The results indicate that the presence of enough steam within the cells is a critical factor for the negative Poisson's ratio conversion in the SPC process. The pressure difference caused by steam condensation is the driving force for the conversion from conventional closed-cell foam to the negative Poisson's ratio foam. Furthermore, the applicability of SPC process for fabricating auxetic foam is studied by replacing PE foam by polyvinyl chloride (PVC) foam with closed-cell structure or replacing water steam by ethanol steam. The results verify the universality of SPC process for fabricating auxetic foams from conventional foams with closed-cell structure. In addition, we explored potential application of the obtained auxetic foams by SPC process in the fabrication of shape memory polymer materials.
mdFoam+: Advanced molecular dynamics in OpenFOAM
NASA Astrophysics Data System (ADS)
Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.
2018-03-01
This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.
46 CFR 108.473 - Foam system components.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Foam system components. 108.473 Section 108.473 Shipping... EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.473 Foam system components. (a) Each foam agent, each tank for a foam agent, each discharge outlet, each control, and each valve for the...
46 CFR 108.473 - Foam system components.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Foam system components. 108.473 Section 108.473 Shipping... EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.473 Foam system components. (a) Each foam agent, each tank for a foam agent, each discharge outlet, each control, and each valve for the...
Initial Evaluation of Burn Characteristics of Phenolic Foam Runway Brake Arrestor Material
1993-12-01
foam immersed in a jet fuel fire when extinguished using 3-percent Aqueous Film Forming Foam ( AFFF ). Three pool...extinguishment time of phenolic foam immersed in a jet fuel fire, using 3-percent Aqueous Film Forming Foam ( AFFF ) extinguishing agent. The wind was negligible...percent Aqueous Film Forming Foam ( AFFF ) agent. This project is an initial assessment of the fire safety of phenolic foam
Electrostatic Safety with Explosion Suppressant Foams.
1983-03-01
the foam, and (2) sorption of alkylphenol type substances, present as oxidation inhibitors in the fuel, by the foam. It had been previously reported... alkylphenol type substances. The use of antistatic ingredients in the reticulated polyurethane foam was suggested as a means of minimizing static...foam with JP-4 are: o Removal of diethylhexyl phthalate from the foam. o Sorption of alkylphenol type compounds by the foam. Tne latter of these two
Impact of foamed matrix components on foamed concrete properties
NASA Astrophysics Data System (ADS)
Tarasenko, V. N.
2018-03-01
The improvement of the matrix foam structure by means of foam stabilizing additives is aimed at solving the technology-oriented problems as well as at the further improvement of physical and mechanical properties of cellular-concrete composites. The dry foam mineralization is the mainstream of this research. Adding the concrete densifiers, foam stabilizers and mineral powders reduces the drying shrinkage, which makes the foam concrete products technologically effective.
Foam-mat drying technology: A review.
Hardy, Z; Jideani, V A
2017-08-13
This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.
Application of an Elongated Kelvin Model to Space Shuttle Foams
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.
2009-01-01
The space shuttle foams are rigid closed-cell polyurethane foams. The two foams used most-extensively oil space shuttle external tank are BX-265 and NCFL4-124. Because of the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a nonisotropic mechanical behavior. A detailed microstructural characterization of the two foams is presented. Key features of the foam cells are described and the average cell dimensions in the two foams are summarized. Experimental studies are also conducted to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise). The measured elastic modulus, proportional limit stress, ultimate tensile strength, and Poisson's ratios are reported. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are summarized. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson's ratios are predicted for both foams and are compared with the experimental data. The predicted tensile strength ratio is in close agreement with the measured strength ratio for both BX-265 and NCFI24-124. The comparison between the predicted Poisson's ratios and the measured values is not as favorable.
Foam Transport in Porous Media - A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong
2009-11-11
Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can servemore » as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The transport of foam in porous media is complicated in that the number of lamellae present governs flow characteristics such as viscosity, relative permeability, fluid distribution, and interactions between fluids. Hence, foam is a non-Newtonian fluid. During transport, foam destruction and formation occur. The net result of the two processes determines the foam texture (i.e., bubble density). Some of the foam may be trapped during transport. According to the impacts of the aqueous and gas flow rates, foam flow generally has two regimes – weak and strong foam. There is also a minimum pressure gradient to initiate foam flow and a critical capillary for foam to be sustained. Similar to other fluids, the transport of foam is described by Darcy’s law with the exception that the foam viscosity is variable. Three major approaches to modeling foam transport in porous media are the empirical, semi-empirical, and mechanistic methods. Mechanistic approaches can be complete in principal but may be difficult to obtain reliable parameters, whereas empirical and semi-empirical approaches can be limited by the detail used to describe foam rheology and mobility. Mechanistic approaches include the bubble population-balance model, the network/percolation theory, the catastrophe theory, and the filtration theory. Among these methods, all were developed for modeling polyhedral foam with the exception that the method based on the filtration theory was for the ball foam (microfoam).« less
Advanced nondestructive techniques applied for the detection of discontinuities in aluminum foams
NASA Astrophysics Data System (ADS)
Katchadjian, Pablo; García, Alejandro; Brizuela, Jose; Camacho, Jorge; Chiné, Bruno; Mussi, Valerio; Britto, Ivan
2018-04-01
Metal foams are finding an increasing range of applications by their lightweight structure and physical, chemical and mechanical properties. Foams can be used to fill closed moulds for manufacturing structural foam parts of complex shape [1]; foam filled structures are expected to provide good mechanical properties and energy absorption capabilities. The complexity of the foaming process and the number of parameters to simultaneously control, demand a preliminary and hugely wide experimental activity to manufacture foamed components with a good quality. That is why there are many efforts to improve the structure of foams, in order to obtain a product with good properties. The problem is that even for seemingly identical foaming conditions, the effective foaming can vary significantly from one foaming trial to another. The variation of the foams often is related by structural imperfections, joining region (foam-foam or foam-wall mold) or difficulties in achieving a complete filling of the mould. That is, in a closed mold, the result of the mold filling and its structure or defects are not known a priori and can eventually vary significantly. These defects can cause a drastic deterioration of the mechanical properties [2] and lead to a low performance in its application. This work proposes the use of advanced nondestructive techniques for evaluating the foam distribution after filling the mold to improve the manufacturing process. To achieved this purpose ultrasonic technique (UT) and cone beam computed tomography (CT) were applied on plate and structures of different thicknesses filled with foam of different porosity. UT was carried out on transmission mode with low frequency air-coupled transducers [3], in focused and unfocused configurations.
Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass
NASA Astrophysics Data System (ADS)
Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.
2017-11-01
It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.
Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams
Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O’Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David DI
2015-01-01
Objective To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Methods Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Results Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Conclusion Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. PMID:26036246
Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.
Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O'Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David D I; Lewis, Andrew L
2016-05-01
To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-06-01
The objective of this study is to assess the effectiveness of air sprays and foam systems for dust control on longwall double-drum shearer faces. Laboratory testing has been conducted using foam systems and promising results have been obtained. Upon Bureau approval, underground testing will be scheduled to assess the effectiveness of foam systems under actual operating conditions. Laboratory testing of air sprays is being conducted at present. This report presents the results of the laboratory testing of foam systems. Specifically, the results obtained on the evaluation of selected foaming agents are presented, the feasibility investigation of flushing foam through themore » shearer-drum are demonstrated, and conceptual layout of the foam system on the shearer is discussed. The laboratory investigation of the selected foaming agents reveal that the Onyx Microfoam, Onyx Maprosyl and DeTer Microfoam foaming agents have higher expansion ratios compared to the others tested. Flushing foam through the shearer drum is entirely feasible and could be a viable technique for dust suppression on longwall faces.« less
Ocean foam generation and modeling
NASA Technical Reports Server (NTRS)
Porter, R. A.; Bechis, K. P.
1976-01-01
A laboratory investigation was conducted to determine the physical and microwave properties of ocean foam. Special foam generators were designed and fabricated, using porous glass sheets, known as glass frits, as the principal element. The glass frit was sealed into a water-tight vertical box, a few centimeters from the bottom. Compressed air, applied to the lower chamber, created ocean foam from sea water lying on the frit. Foam heights of 30 cm were readily achieved, with relatively low air pressures. Special photographic techniques and analytical procedures were employed to determine foam bubble size distributions. In addition, the percentage water content of ocean foam was determined with the aid of a particulate sampling procedure. A glass frit foam generator, with pore diameters in the range 70 - 100 micrometers, produced foam with bubble distributions very similar to those found on the surface of natural ocean foam patches.
NASA Astrophysics Data System (ADS)
Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.
2018-02-01
In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.
Tyring, Stephen; Bukhalo, Michael; Alonso-Llamazares, Javier; Olesen, Martin; Lowson, David; Yamauchi, Paul
2016-01-01
Objective: To evaluate the efficacy of fixed combination aerosol foam calcipotriene 0.005% (Cal) plus betamethasone dipropionate 0.064% (BD). Design: Patients were randomized (100:101:101) to receive Cal/BD foam, Cal foam, or BD foam once daily for four weeks. Setting: Twenty-eight United States centers. Participants: 302 patients (≥18 years) with Psoriasis vulgaris (plaque Psoriasis; ≥mild disease severity by physicians global assessment). Measurements: Treatment success of the body (“clear”/”almost clear” from baseline moderate/severe disease; “clear” from baseline mild disease). Involved scalp treatment success was an additional endpoint. Results: Most patients (76%) had moderate Psoriasis of the body (66% for scalp). At Week 4, 45 percent of Cal/BD foam patients achieved treatment success, significantly more than Cal foam (14.9%; OR 4.34 [95%CI 2.16,8.72] P<0.001) or BD foam (30.7%; 1.81 [1.00,3.26] P=0.047). Fifty-three percent of Cal/BD foam patients achieved treatment success of the scalp, significantly greater than Cal foam (35.6%; 1.91 [1.09,3.35] P=0.021), but not BD foam (47.5%; 1.24 [0.71,2.16] P=0.45). Mean modified Psoriasis area and severity index (population baseline 7.6) improved in all groups, with statistically significant differences in Week 4 Cal/BD foam score (2.37) versus Cal foam (4.39; mean difference -2.03 [-2.63][-1.43] P<0.001) and BD foam (3.37; -1.19 [-1.80][-0.59] P<0.001). Four (Cal/BD), 10 (Cal), and 8 (BD) adverse drug reactions were reported. Conclusion: Cal/BD foam was significantly more effective than Cal foam and BD foam in providing treatment success at Week 4 and effective on involved scalp. Trial registration: NCT01536938. PMID:27313822
NASA Astrophysics Data System (ADS)
Langevin, Dominique; Saint-Jalmes, Arnaud; Marze, Sébastien; Cox, Simon; Hutzler, Stefan; Drenckhan, Wiebke; Weaire, Denis; Caps, Hervé; Vandewalle, Nicolas; Adler, Micheàle; Pitois, Olivier; Rouyer, Florence; Cohen-Addad, Sylvie; Höhler, Reinhard; Ritacco, Hernan
2005-10-01
Foams and foaming pose important questions and problems to the chemical industry. As a material, foam is unusual in being a desired product while also being an unwanted byproduct within industry. Liquid foams are an essential part of gas/liquid contacting processes such as distillation and absorption, but over-production of foam in these processes can lead to downtime and loss of efficiency. Solid polymeric foams, such as polystyrene and polyurethane, find applications as insulation panels in the construction industry. Their combination of low weight and unique elastic/plastic properties make them ideal as packing and cushioning materials. Foams made with proteins are extensively used in the food industry. Despite the fact that foam science is a rapidly maturing field, critical aspects of foam physics and chemistry remain unclear. Several gaps in knowledge were identified to be tackled as the core of this MAP project. In addition, microgravity affords conditions for extending our understanding far beyond the possibilities offered by ground-based investigation. This MAP project addresses the challenges posed by the physics of foams under microgravity.
Foam relaxation in fractures and narrow channels
NASA Astrophysics Data System (ADS)
Lai, Ching-Yao; Rallabandi, Bhargav; Perazzo, Antonio; Stone, Howard A.
2017-11-01
Various applications, from foam manufacturing to hydraulic fracturing with foams, involve pressure-driven flow of foams in narrow channels. We report a combined experimental and theoretical study of this problem accounting for the compressible nature of the foam. In particular, in our experiments the foam is initially compressed in one channel and then upon flow into a second channel the compressed foam relaxes as it moves. A plug flow is observed in the tube and the pressure at the entrance of the tube is higher than the exit. We measure the volume collected at the exit of the tube, V, as a function of injection flow rate, tube length and diameter. Two scaling behaviors for V as a function of time are observed depending on whether foam compression is important or not. Our work may relate to foam fracturing, which saves water usage in hydraulic fracturing, more efficient enhanced oil recovery via foam injection, and various materials manufacturing processes involving pressure-driven flow foams.
Role of Temperature and SiCP Parameters in Stability and Quality of Al-Si-Mg/SiC Foams
NASA Astrophysics Data System (ADS)
Ravi Kumar, N. V.; Gokhale, Amol A.
2018-06-01
Composites of Al-Si-Mg (A356) alloy with silicon carbide particles were synthesized in-house and foamed by melt processing using titanium hydride as foaming agent. The effects of the SiCP size and content, and foaming temperature on the stability and quality of the foam were explored. It was observed that the foam stability depended on the foaming temperature alone but not on the particle size or volume percent within the studied ranges. Specifically, foam stability was poor at 670°C. Among the stable foams obtained at 640°C, cell soundness (absence of/low defects, and collapse) was seen to vary depending on the particle size and content; For example, for finer size, lower particle contents were sufficient to obtain sound cell structure. It is possible to determine a foaming process window based on material and process parameters for good expansion, foam stability, and cell structure.
NASA Astrophysics Data System (ADS)
Hangai, Yoshihiko; Matsushita, Hayato; Koyama, Shinji; Suzuki, Ryosuke; Matsubara, Masaaki
2017-07-01
A preliminary study of the reproducibility of aluminum foam was performed. Aluminum foam was fabricated by a sintering and dissolution process. It was found that aluminum foam containing a blowing agent can be fabricated without the decomposition of the blowing agent, namely, the densified aluminum foam can be used as a foamable precursor for refoaming. By heat treatment of the densified aluminum foam containing the blowing agent, pores were reproduced in the aluminum.
Synergistic effect of casein glycomacropeptide on sodium caseinate foaming properties.
Morales, R; Martinez, M J; Pilosof, A M R
2017-11-01
Several strategies to improve the interfacial properties and foaming properties of proteins may be developed; among them, the use of mixtures of biopolymers that exhibit synergistic interactions. The aim of the present work was to evaluate the effect of casein glycomacropeptide (CMP) on foaming and surface properties of sodium caseinate (NaCas) and to establish the role of protein interactions in the aqueous phase. To this end particles size, interfacial and foaming properties of CMP, NaCas and NaCas-CMP mixtures at pH 5.5 and 7 were determined. At both pH, the interaction between CMP and NaCas induced a decrease in the aggregation state of NaCas. Single CMP foams showed the highest and NaCas the lowest foam overrun (FO) and the mixture exhibited intermediate values. CMP foam quickly drained. The drainage profile of mixed foams was closer to NaCas foams; at pH 5.5, mixed foams drained even slower than NaCas foam, exhibiting a synergistic performance. Additionally, a strong synergism was observed on the collapse of mixed foams at pH 5.5. Finally, a model to explain the synergistic effect observed on foaming properties in CMP-NaCas mixtures has been proposed; the reduced aggregation state of NaCas in the presence of CMP, made it more efficient for foam stabilization. Copyright © 2017 Elsevier B.V. All rights reserved.
Crack Initiation and Growth in Rigid Polymeric Closed-Cell Foam Cryogenic Applications
NASA Technical Reports Server (NTRS)
Sayyah, Tarek; Steeve, Brian; Wells, Doug
2006-01-01
Cryogenic vessels, such as the Space Shuttle External Tank, are often insulated with closed-cell foam because of its low thermal conductivity. The coefficient of thermal expansion mismatch between the foam and metallic substrate places the foam under a biaxial tension gradient through the foam thickness. The total foam thickness affects the slope of the stress gradient and is considered a significant contributor to the initiation of subsurface cracks. Rigid polymeric foams are brittle in nature and any subsurface cracks tend to propagate a finite distance toward the surface. This presentation investigates the relationship between foam thickness and crack initiation and subsequent crack growth, using linear elastic fracture mechanics, in a rigid polymeric closed-cell foam through analysis and comparison with experimental results.
Advances of Researches on Improving the Stability of Foams by Nanoparticles
NASA Astrophysics Data System (ADS)
Wang, G.; Wang, K. L.; Lu, C. J.
2017-09-01
Recently, nano-tech made a change of traditional oil-gas exploration. Considering that foam fluid had a poor stability, investigators proposed to add nanoparticles to stabilize the foam fluid system. This paper described the mechanism of particles to improve the stability of the foam fluid in detail; and emphasized the synergistic effect between nanoparticles and surfactants and its effect on the foaming and foam stability of dispersions; and reviewed the latest applications of foam fluid that was stabilized by nanoparticle in enhancing oil-gas recovery, in which there are analysis that showed that the nanoparticles not only greatly increase the stability of the foam fluid, but also improve the efficiency of foam fluid; and lastly, forecasted the development of nanotechnology in petroleum areas.
Porous Media Approach for Modeling Closed Cell Foam
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Sullivan, Roy M.
2006-01-01
In order to minimize boil off of the liquid oxygen and liquid hydrogen and to prevent the formation of ice on its exterior surface, the Space Shuttle External Tank (ET) is insulated using various low-density, closed-cell polymeric foams. Improved analysis methods for these foam materials are needed to predict the foam structural response and to help identify the foam fracture behavior in order to help minimize foam shedding occurrences. This presentation describes a continuum based approach to modeling the foam thermo-mechanical behavior that accounts for the cellular nature of the material and explicitly addresses the effect of the internal cell gas pressure. A porous media approach is implemented in a finite element frame work to model the mechanical behavior of the closed cell foam. The ABAQUS general purpose finite element program is used to simulate the continuum behavior of the foam. The soil mechanics element is implemented to account for the cell internal pressure and its effect on the stress and strain fields. The pressure variation inside the closed cells is calculated using the ideal gas laws. The soil mechanics element is compatible with an orthotropic materials model to capture the different behavior between the rise and in-plane directions of the foam. The porous media approach is applied to model the foam thermal strain and calculate the foam effective coefficient of thermal expansion. The calculated foam coefficients of thermal expansion were able to simulate the measured thermal strain during heat up from cryogenic temperature to room temperature in vacuum. The porous media approach was applied to an insulated substrate with one inch foam and compared to a simple elastic solution without pore pressure. The porous media approach is also applied to model the foam mechanical behavior during subscale laboratory experiments. In this test, a foam layer sprayed on a metal substrate is subjected to a temperature variation while the metal substrate is stretched to simulate the structural response of the tank during operation. The thermal expansion mismatch between the foam and the metal substrate and the thermal gradient in the foam layer causes high tensile stresses near the metal/foam interface that can lead to delamination.
Berry, Tristan K; Yang, Xin; Foegeding, E Allen
2009-06-01
The effects of sucrose on the physical properties and thermal stability of foams prepared from 10% (w/v) protein solutions of whey protein isolate (WPI), egg white protein (EWP), and their combinations (WPI/EWP) were investigated in wet foams and angel food cakes. Incorporation of 12.8 (w/v) sucrose increased EWP foam stability (drainage 1/2 life) but had little effect on the stability of WPI and WPI/EWP foams. Increased stability was not due to viscosity alone. Sucrose increased interfacial elasticity (E ') of EWP and decreased E' of WPI and WPI/EWP combinations, suggesting that altered interfacial properties increased stability in EWP foams. Although 25% WPI/75% EWP cakes had similar volumes as EWP cakes, cakes containing WPI had larger air cells. Changes during heating showed that EWP foams had network formation starting at 45 degrees C, which was not observed in WPI and WPI/EWP foams. Moreover, in batters, which are foams with additional sugar and flour, a stable foam network was observed from 25 to 85 degrees C for batters made from EWP foams. Batters containing WPI or WPI/EWP mixtures showed signs of destabilization starting at 25 degrees C. These results show that sucrose greatly improved the stability of wet EWP foams and that EWP foams form network structures that remain stable during heating. In contrast, sucrose had minimal effects on stability of WPI and WPI/EWP wet foams, and batters containing these foams showed destabilization prior to heating. Therefore, destabilization processes occurring in the wet foams and during baking account for differences in angel food cake quality.
Hangai, Yoshihiko; Saito, Masaki; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2014-09-19
Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube.
Effects of yolk contamination, shearing, and heating on foaming properties of fresh egg white.
Wang, G; Wang, T
2009-03-01
A series of experiments were conducted to evaluate effects of yolk contamination, shearing, and thermal treatment on foaming properties of liquid egg white. Samples obtained from industrial processing were also evaluated. Whipping and purging methods were both used to assess their effectiveness and sensitivity in evaluating foaming. A concentration as low as 0.022% (as-is basis) of yolk contamination caused significant reductions in foaming capacity and foaming speed. The neutral lipid fraction of egg yolk caused the major detrimental effect on foaming, and phospholipids fraction did not give significant foaming reduction at a concentration as high as 0.1%. High-speed and short-time shearing caused no apparent damage but longer shearing time significantly impaired foaming. Heat-induced foaming change is a function of temperature and holding time. Foaming was significantly reduced at a temperature of 55 degrees C for 10 min, whereas it did not change up to 3 min at a heating temperature of 62 to 64 degrees C. Industrial processing steps (pumping, pipe transfer, and storage) did not produce negative effects on foaming of the final products and the controlled pasteurization was actually beneficial for good foaming performance. Therefore, yolk contamination of the egg white was the major factor in reducing foaming properties of the white protein.
NASA Astrophysics Data System (ADS)
Chuaponpat, N.; Areerat, S.
2017-11-01
This research studies the effects of foaming conditions by using liquid carbon dioxide (CO2) as a physical blowing agent on plasticized polyvinyl chloride (PVC) foam morphology. Foaming conditions were soaking time of 6, 10, and 12 h, foaming temperature of 70, 80, 90 °C for 5 s, at constant soaking temperature of -20 °C and pressure of 50 bar. Instantaneously increasing temperature was employed in this process for making foam structure. PVC foam samples were calculated percentage of shrinkage (Sh) by using density at before and after aging process at 30 °C for 12 h. When PVC samples were activated to form foam by using liquid CO2 as a physical blowing agent, it reveal bimodal foam structure with a thick bubble wall (10-20 μm). Bubble diameter of PVC foam at longer soaking time is in the range of 40-60 μm and its at shorter soaking time reveal a large bubble that is in the range of 80-120 μm. Foaming condition slightly affected to bubble density that was in the narrow range of 106-108 bubbles/cm3. PVC foam reveal reduction of density up to 65% when compare with PVC and Sh is less than 10%.
Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T.
2015-01-01
Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS. PMID:25560234
dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver
NASA Astrophysics Data System (ADS)
White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.
2018-03-01
dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.
Kung, Theodore A; Langhals, Nicholas B; Martin, David C; Johnson, Philip J; Cederna, Paul S; Urbanchek, Melanie G
2014-06-01
The regenerative peripheral nerve interface is an internal interface for signal transduction with external electronics of prosthetic limbs; it consists of an electrode and a unit of free muscle that is neurotized by a transected residual peripheral nerve. Adding a conductive polymer coating on electrodes improves electrode conductivity. This study examines regenerative peripheral nerve interface tissue viability and signal fidelity in the presence of an implanted electrode coated or uncoated with a conductive polymer. In a rat model, the extensor digitorum longus muscle was moved as a nonvascularized free tissue transfer and neurotized by the divided peroneal nerve. Either a stainless steel pad electrode (n = 8) or a pad electrode coated with poly(3,4-ethylenedioxythiophene) conductive polymer (PEDOT) (n = 8) was implanted on the muscle transfer and secured with an encircling acellular extracellular matrix. The contralateral muscle served as the control. The free muscle transfers were successfully revascularized and over time reinnervated as evidenced by serial insertional needle electromyography. Compound muscle action potentials were successfully transduced through the regenerative peripheral nerve interface. The conductive polymer coating on the implanted electrode resulted in increased recorded signal amplitude that was observed throughout the course of the study. Histologic examination confirmed axonal sprouting, elongation, and synaptogenesis within regenerative peripheral nerve interface regardless of electrode type. The regenerative peripheral nerve interface remains viable over seven months in the presence of an implanted electrode. Electrodes with and without conductive polymer reliably transduced signals from the regenerative peripheral nerve interface. Electrodes with a conductive polymer coating resulted in recording more of the regenerative peripheral nerve interface signal.
Pitch based foam with particulate
Klett, James W.
2001-01-01
A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.
Strain compatibility tests for sprayed foam cryogenic insulation
NASA Technical Reports Server (NTRS)
Hill, W. L.; Kimberlin, D. O.
1970-01-01
Mechanical stress applied to foam-coated aluminum alloy specimens maintained at cryogenic temperature simulates actual use conditions of the foam insulation. The testing reveals defects in the polyurethane foam or in the foam to metal bond.
Rigid closed-cell polyimide foams for aircraft applications and foam-in-place technology
NASA Technical Reports Server (NTRS)
Gagliani, J.; Straub, P.; Gagliani, J., Jr.
1983-01-01
Significant accomplishments generated are summarized. Testing of closed cell foams, which has resulted in the characterization of compositions which produce rigid foams for use in galley structure applications is reported. It is shown that the density, compressive strength and shear strength of the foams are directly related to the concentrations of the microballoons. The same properties are also directly related to the resin loading. Prototype samples of rigid closed cell foams meeting the requirements of the program were submitted. Investigation of the apparatus to produce polyimide foams using foam in place techniques, resulted in the selection of a spray gun apparatus, capable to deliver a mixture of microballoons and resin binder on substrates which cures to yield a closed cell foam. It is found that the adhesion of the foam on aluminum, titanium and steel substrates is satisfactory. It is concluded that the material meets the mechanical and thermal requirements of the program.
Fabrication of Aluminum Foams with Small Pore Size by Melt Foaming Method
NASA Astrophysics Data System (ADS)
Cheng, Ying; Li, Yanxiang; Chen, Xiang; Shi, Tong; Liu, Zhiyong; Wang, Ningzhen
2017-04-01
This article introduces an improvement to the fabrication of aluminum foams with small pore size by melt foaming method. Before added to the melt, the foaming agent (titanium hydride) was pretreated in two steps. It firstly went through the traditional pre-oxidation treatment, which delayed the decomposition of titanium hydride and made sure the dispersion stage was controllable. Then such pre-oxidized titanium hydride powder was mixed with copper powder in a planetary ball mill. This treatment can not only increase the number of foaming agent particles and make them easier to disperse in the melt, which helps to increase the number of pores, but also reduce the amount of hydrogen released in the foaming stage. Therefore, the pore size could be decreased. Using such a ball-milled foaming agent in melt foaming method, aluminum foams with small pore size (average size of 1.6 mm) were successfully fabricated.
Sun, Yange; Qi, Xiaoqing; Sun, Haoyang; Zhao, Hui; Li, Ying
2016-08-02
In this paper, the detailed behaviors of all the molecules, especially the interfacial array behaviors of surfactants and diffusion behaviors of gas molecules, in foam systems with different gases (N2, O2, and CO2) being used as foaming agents were investigated by combining molecular dynamics simulation and experimental approaches for the purpose of interpreting how the molecular behaviors effect the properties of the foam and find out the key factors which fundamentally determine the foam stability. Sodium dodecyl sulfate SDS was used as the foam stabilizer. The foam decay and the drainage process were determined by Foamscan. A texture analyzer (TA) was utilized to measure the stiffness and viscoelasticity of the foam films. The experimental results agreed very well with the simulation results by which how the different gas components affect the interfacial behaviors of surfactant molecules and thereby bring influence on foam properties was described.
Innovative test method for the estimation of the foaming tendency of substrates for biogas plants.
Moeller, Lucie; Eismann, Frank; Wißmann, Daniel; Nägele, Hans-Joachim; Zielonka, Simon; Müller, Roland A; Zehnsdorf, Andreas
2015-07-01
Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor. The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.
Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R
2012-11-15
The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
A decade ago, NASA's Ames Research Center developed a new foam material for protective padding of airplane seats. Now known as Temper Foam, the material has become one of the most widely-used spinoffs. Latest application is a line of Temper Foam cushioning produced by Edmont-Wilson, Coshocton, Ohio for office and medical furniture. The example pictured is the Classic Dental Stool, manufactured by Dentsply International, Inc., York, Pennsylvania, one of four models which use Edmont-Wilson Temper Foam. Temper Foam is an open-cell, flameresistant foam with unique qualities.
Foaming volume and foam stability
NASA Technical Reports Server (NTRS)
Ross, Sydney
1947-01-01
A method of measuring foaming volume is described and investigated to establish the critical factors in its operation. Data on foaming volumes and foam stabilities are given for a series of hydrocarbons and for a range of concentrations of aqueous ethylene-glycol solutions. It is shown that the amount of foam formed depends on the machinery of its production as well as on properties of the liquid, whereas the stability of the foam produced, within specified mechanical limitations, is primarily a function of the liquid.
Development of drilling foams for geothermal applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, W.J.; Remont, L.J.; Rehm, W.A.
The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.
Investigation of Shock Wave Attenuation in Porous Materials
2009-12-01
Foam ...... 38 Table 4. Summary of Material Characteristics of Polyurethane Foams ............ 40 Table 5. Summary of Experiment Results...polyurethane foam , he performed a simple symmetric impact simulation to investigate the material properties and wave propagation characteristics of the...describes the characteristics of the two foam materials studied in this research, namely the aluminum metal foam and rigid polyurethane foam , which
Indentability of conventional and negative Poisson's ratio foams
NASA Technical Reports Server (NTRS)
Lakes, R. S.; Elms, K.
1992-01-01
The indentation resistance of foams, both of conventional structure and of reentrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, reentrant foams had higher yield strength and lower stiffness than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for reentrant foam than conventional foam.
Pyrophoric metal-carbon foam composites and methods of making the same
Gash, Alexander E [Brentwood, CA; Satcher, Jr., Joe H.; Simpson, Randall L [Livermore, CA; Baumann, Theodore F [Discovery Bay, CA; Worsley, Marcus A [Belmont, CA
2012-05-08
A method for creating a pyrophoric material according to one embodiment includes thermally activating a carbon foam for creating micropores therein; contacting the activated carbon foam with a liquid solution comprising a metal salt for depositing metal ions in the carbon foam; and reducing the metal ions in the foam to metal particles. A pyrophoric material in yet another embodiment includes a pyrophoric metal-carbon foam composite comprising a carbon foam having micropores and mesopores and a surface area of greater than or equal to about 2000 m.sup.2/g, and metal particles in the pores of the carbon foam. Additional methods and materials are also disclosed.
Space Shuttle Stiffener Ring Foam Failure Analysis, a Non-Conventional Approach
NASA Technical Reports Server (NTRS)
Howard, Philip M.
2015-01-01
The Space Shuttle Program made use of the excellent properties of rigid polyurethane foam for cryogenic tank insulation and as structural protection on the solid rocket boosters. When foam applications de-bond, classical methods of failure analysis did not provide root cause of the failure of the foam. Realizing that foam is the ideal media to document and preserve its own mode of failure, thin sectioning was seen as a logical approach for foam failure analysis to observe the three dimensional morphology of the foam cells. The cell foam morphology provided a much greater understanding of the failure modes than previously achieved.
Bio-based Polymer Foam from Soyoil
NASA Astrophysics Data System (ADS)
Bonnaillie, Laetitia M.; Wool, Richard P.
2006-03-01
The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.
Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia
2018-04-01
The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.
Evaluation of dressings used with local anaesthetic cream and for peripheral venous cannulation.
Needham, Rowan; Strehle, Eugen-Matthias
2008-10-01
To compare four polyurethane dressings manufactured by two different companies for use in children. Seventy-eight dressings were applied to secure either local anaesthetic creams (n = 62) or intravenous cannulae (n = 16). Each dressing was evaluated for ease of application, security and ease of removal, using a simple scoring system. 84 per cent of Opsite flexigrid and 90 per cent of Tegaderm local anaesthetic cream dressings were rated as easy or very easy to apply. Opsite flexigrid was felt to be more secure, whereas Tegaderm was easier to remove. The Tegaderm cannula dressing was easier to apply than the iv3000 dressing. There was little difference between the two brands, including costs.
Application of an Elongated Kelvin Model to Space Shuttle Foams
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.
2008-01-01
Spray-on foam insulation is applied to the exterior of the Space Shuttle s External Tank to limit propellant boil-off and to prevent ice formation. The Space Shuttle foams are rigid closed-cell polyurethane foams. The two foams used most extensively on the Space Shuttle External Tank are BX-265 and NCFI24-124. Since the catastrophic loss of the Space Shuttle Columbia, numerous studies have been conducted to mitigate the likelihood and the severity of foam shedding during the Shuttle s ascent to space. Due to the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a non-isotropic mechanical behavior. In this paper, a detailed microstructural characterization of the two foams is presented. The key features of the foam cells are summarized and the average cell dimensions in the two foams are compared. Experimental studies to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise) are also reported. The measured elastic modulus, proportional limit stress, ultimate tensile stress and the Poisson s ratios for the two foams are compared. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are presented. The resulting equations show that the ratio of the elastic modulus in the rise direction to that in the perpendicular-to-rise direction as well as the ratio of the strengths in the two material directions is only a function of the microstructural dimensions. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson s ratios are predicted for both foams. The predicted tensile strength ratio is in close agreement with the measured strength ratios for both BX-265 and NCFI24-124. The comparison between the predicted Poisson s ratios and the measured values is not as favorable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verba, Circe; Montross, Scott; Spaulding, Richard
Geologic carbon storage (GCS) is a potentially viable strategy to reduce greenhouse emissions. Understanding the risks to engineered and geologic structures associated with GCS is an important first step towards developing practices for safe and effective storage. The widespread utilization of foamed cement in wells may mean that carbon dioxide (CO 2)/brine/foamed cement reactions may occur within these GCS sites. Characterizing the difference in alteration rates as well as the physical and mechanical impact of CO 2/brine/foamed cement is an important preliminary step to ensuring offshore and onshore GCS is a prudent anthropogenic CO 2 mitigation choice. In a typicalmore » oil and gas well, cement is placed in the annulus between the steel casing and formation rock for both zonal isolation and casing support. The cement must have sufficient strength to secure the casing in the hole and withstand the stress of drilling, perforating, and fracturing (e.g. API, 1997, 2010 Worldwide Cementing Practices). As such, measuring the mechanical and properties of cement is an important step in predicting cement behavior under applied downhole stresses (Nelson, 2006). Zonal isolation is the prevention of fluids migrating to different zones outside of the casing and is strongly impacted by the permeability of the wellbore cement (Nelson, 2006). Zonal isolation depends on both the mechanical behavior and permeability (a physical property) of the cement (Mueller and Eid, 2006; Nelson, 2006). Long-term integrity of cement depends on the mechanical properties of the cement sheath, such as Young’s Modulus (Griffith et al., 2004). The cement sheath’s ability to withstand the stresses from changes in pressure and temperature is predominantly determined by the mechanical properties, including Young’s modulus, Poisson’s ratio, and tensile strength. Any geochemical alteration may impact both the mechanical and physical properties of the cement, thus ultimately impacting the structural integrity of the wellbore. In this study, atmospheric foamed cements were generated using a neat cement and three foam qualities (volume of entrained gas in the cement) - 10%, 20%, and 30 % gas volume. The samples were immersed in a 0.25 M NaCl brine followed by the injection of supercritical CO 2 at 28.9 MPa and 50°C. Petrophysical properties were examined for representative samples using computed tomography (CT) and scanning electron microscopy (SEM). CT scanning of representative samples across the range of reacted cements revealed macroscopic changes in structure due to brine/CO 2/cement interactions. The high foam quality samples resulted in more CO 2-saturated brine infiltrating radially deeper into the cement and thus were more susceptible to alteration. After 56 days of exposure, the 30% foam quality sample had the most reaction resulting in an alteration depth of 8.35 ± 0.13 mm with a calculated 34.6 ± 0.2% reacted area and 5.76 ± 0.2% reacted pore space area. The neat sample on the other hand, had a reaction depth of 0.31 ± 0.13 mm with a calculated 0.15 ± 0.08% reacted area and 0.57 ± 0.05% reacted pore area. Physical measurements of the exposed samples were consistent with this degree of alteration having 47.02% porosity and the highest permeability of 0.041 mD. These results indicate that the greater surface area provided by the increase of pore space in the higher quality foam coupled with carbonate diffusion reactions enabled greater alteration.« less
Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam.
Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin
2018-05-04
The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg₂Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.
Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam
Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin
2018-01-01
The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process. PMID:29734700
Evaluation of a steady-state test of foam stability
NASA Astrophysics Data System (ADS)
Hutzler, Stefan; Lösch, Dörte; Carey, Enda; Weaire, Denis; Hloucha, Matthias; Stubenrauch, Cosima
2011-02-01
We have evaluated a steady-state test of foam stability, based on the steady-state height of a foam produced by a constant velocity of gas flow. This test is mentioned in the book by Bikerman [Foams, Springer, Berlin, 1973] and an elementary theory was developed for it by Verbist et al. [J. Phys. Condens. Matter 8 (1996) p. 3715]. For the study, we used an aqueous solution of the cationic surfactant dodecyl trimethylammonium bromide, C12TAB, at a concentration of two times the critical micelle concentration (2 cmc). During foam generation, bubbles collapse at the top of the column which, in turn, eventually counterbalances the rate of bubble production at the bottom. The resulting balance can be described mathematically by an appropriate solution of the foam drainage equation under specified boundary conditions. Our experimental findings are in agreement with the theoretical predictions of a diverging foam height at a critical gas velocity and a finite foam height in the limit of zero velocity. We identify a critical liquid fraction below which a foam is unstable as an important parameter for characterizing foam stability. Furthermore, we deduce an effective viscosity of the liquid which flows through the foam. Currently unexplained are two experimental observations, namely sudden changes of the steady-state foam height in experiments that run over several hours and a reduction in foam height once an overflow of the foam from the containing vessel has occurred.
Foaming Volume and Foam Stability
1947-02-01
for a series of hydrocarbons and for a range of concentrations of aqueous ethylene-glycol solutions. It is shown that the amount of foam formed depends...methodofmeasuringfoamingvolumeisdescribedandinvestigated to establishthecriticalfactorsin itsoperation.Dataon foaming ...zethatfoamstabll. # itymeasurementsshouldbe takenipcon@.n@ionwithmeasurementsof foam density.It iseasilyrecognizedthatinitialfoamdensities,asmeasured by
Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I
2015-08-01
Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of Syringe Volume on Foam Stability in Sclerotherapy for Varicose Vein Treatment.
Bai, Taoping; Jiang, Wentao; Fan, Yubo
2018-05-01
Despite the popularity of sclerotherapy for treating varicose veins, it still exhibits various problems, such as pulmonary embolism, deep-vein thrombosis, phlebitis, and visual disorders. To investigate syringe volume influence on foam stability, obtain the foam decay rule, and provide a reference for clinics. Five types of syringes are used to prepare foam at room temperature with various liquid-gas ratios. Foam decay process experiments were performed 5 times and recorded by video. The stability indices used include drainage time, half-life, bubble diameter, bubble surface density, and drainage rate. The 30 and 2-mL syringes, respectively, recorded the highest and lowest drainage speeds. Foam drainage time and half-life, differences varied between 15 and 70 seconds, and 20 and 100 seconds, respectively. Foam bubble diameters were distributed over 0.1 to 2.0 mm with roughly 200 to 700 bubbles per square centimeter. Increased syringe volume causes the bubble diameter to increase. Thus, foam dispersion increases and foam half-life decreases; hence, foam becomes unstable. It is, thus, better to use a small syringe several times to prepare foam in clinics using segmented injections.
Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam
Furuta, Yujiro; Oikawa, Noriko; Kurita, Rei
2016-01-01
Liquid foams are classified into a dry foam and a wet foam, empirically judging from the liquid fraction or the shape of the gas bubbles. It is known that physical properties such as elasticity and diffusion are different between the dry foam and the wet foam. Nevertheless, definitions of those states have been vague and the dry-wet transition of foams has not been clarified yet. Here we show that the dry-wet transition is closely related to rearrangement of the gas bubbles, by simultaneously analysing the shape change of the bubbles and that of the entire foam in two dimensional foam. In addition, we also find a new state in quite low liquid fraction, which is named “superdry foam”. Whereas the shape change of the bubbles strongly depends on the change of the liquid fraction in the superdry foam, the shape of the bubbles does not change with changing the liquid fraction in the dry foam. Our results elucidate the relationship between the transitions and the macroscopic mechanical properties. PMID:27874060
Nanoparticle-stabilized CO₂ foam for CO₂ EOR application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Lee, Robert; Yu, Jianjia
The purpose of this project was to develop nanoparticle-stabilized CO₂ foam for CO₂ -EOR application, in which nanoparticles instead of surfactants are used for stabilizing CO₂ foam to improve the CO₂ sweep efficiency and increase oil recovery. The studies included: (1) investigation of CO₂ foam generation nanoparticles, such as silica nanoparticles, and the effects of particle concentration and surface properties, CO₂/brine ratio, brine salinity, pressure, and temperature on foam generation and foam stability; (2) coreflooding tests to understand the nanoparticle-stabilized CO₂ foam for waterflooded residual oil recovery, which include: oil-free coreflooding experiments with nanoparticle-stabilized CO₂ foam to understand the transportationmore » of nanoparticles through the core; measurements of foam stability and CO₂ sweep efficiency under reservoir conditions to investigate temperature and pressure effects on the foam performance and oil recovery as well as the sweep efficiency in different core samples with different rock properties; and (3) long-term coreflooding experiments with the nanoparticle- stabilized CO₂ foam for residual oil recovery. Finally, the technical and economical feasibility of this technology was evaluated.« less
Method of casting pitch based foam
Klett, James W.
2002-01-01
A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.
Preparation and characterization of starch-based loose-fill packaging foams
NASA Astrophysics Data System (ADS)
Fang, Qi
Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant difference existed in water absorption characteristics between foams made of regular and waxy starches. Empirical models were developed to correlate foam water absorption characteristics with relative humidity and polymer content. The developed models fit the data well with relatively small standard errors and uniformly scattered residual plots. Foams with higher polymer content had better abrasion resistance than did foams with lower polymer content.
Synthesis and analysis of foam drainage agent for gas well in Jilin Oilfield
NASA Astrophysics Data System (ADS)
Qiao, Sanyuan; Liu, Qingwang; Fan, Zhenzhong; Wang, Jigang; Xu, Jianjun
2017-05-01
The gas well in Jilin oil field has the characteristics of large temperature variation range and high condensate oil content. So the foam drainage agent of the gas well in Jilin oil field needs to have the performance of oil resistance and less effected by temperature. In this paper, a main foaming agent named lauramidopropyl betaine (LAB) and two kinds of auxiliary foaming agent named sodium alcohol ether sulphate (AES) and lauramidopropylamine oxide (LAO). Through the evaluation of the static foaming capacity and dynamic liquid carrying capacity, the AES is more suitable for LAB. The foaming agent with 70% LAB and 30% AES has 138mm foam height with ROSS-Miles equipment; stirring foam volume can reach 480mL, the half-life of foam is 520s. When the ventilation volume is 8L/min the liquid carrying capacity of 10% of the condensate oil content reached 82g. When the foaming agent concentration is 2%, the liquid carrying capacity of 10% of the condensate oil content reached 75g. When the aeration rate reaches 8-10L/min, the liquid carrying capacity of foam drainage agent can reach the best. The foam drainage agent can retain the performance after 120°C aging for 12h, these performances above can satisfy the requirements for gas well foam drainage in Jilin Oil Field.
Hangai, Yoshihiko; Saito, Masaki; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2014-01-01
Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube. PMID:28788213
Coordinate Stimulation of Macrophages by Microparticles and TLR Ligands Induces Foam Cell Formation1
Keyel, Peter A; Tkacheva, Olga A.; Larregina, Adriana T.; Salter, Russell D
2012-01-01
Aberrant activation of macrophages in arterial walls by oxidized lipoproteins can lead to atherosclerosis. Oxidized lipoproteins convert macrophages to foam cells through lipid uptake and TLR signaling. To investigate the relative contributions of lipid uptake and TLR signaling in foam cell formation, we established an in vitro assay utilizing liposomes of defined lipid compositions. We found that TLRs signaling through Trif promoted foam cell formation by inducing both NF-KB signaling and Type I IFN production, whereas TLRs that do not induce IFN, like TLR2, did not enhance foam cell formation. Addition of IFNα to TLR2 activator promoted robust foam cell formation. TLR signaling further required PPARα, as inhibition of PPARα blocked foam cell formation. We then investigated the ability of endogenous microparticles (MP) to contribute to foam cell formation. We found that lipid containing MP promoted foam cell formation, which was enhanced by TLR stimulation or IFNα. These MP also stimulated foam cell formation in a human skin model. However, these MP suppressed TNFα production and T cell activation, showing that foam cell formation can occur by immunosuppressive microparticles. Taken together, the data reveal novel signaling requirements for foam cell formation and suggest that uptake of distinct types of MP in the context of activation of multiple distinct TLR can induce foam cell formation. PMID:23018455
Code of Federal Regulations, 2013 CFR
2013-07-01
... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All... for the purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed...
Code of Federal Regulations, 2011 CFR
2011-07-01
... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All terms used in... purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed physical...
Code of Federal Regulations, 2014 CFR
2014-07-01
... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All... for the purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All terms used in... purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed physical...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei-Yang
Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.
NASA Astrophysics Data System (ADS)
Sharudin, Rahida Wati; Ajib, Norshawalina Muhamad; Yusoff, Marina; Ahmad, Mohd Aizad
2017-12-01
Thermoplastic elastomer SEBS foams were prepared by using carbon dioxide (CO2) as a blowing agent and the process is classified as physical foaming method. During the foaming process, the diffusivity of CO2 need to be controlled since it is one of the parameter that will affect the final cellular structure of the foam. Conventionally, the rate of CO2 diffusion was measured experimentally by using a highly sensitive device called magnetic suspension balance (MSB). Besides, this expensive MSB machine is not easily available and measurement of CO2 diffusivity is quite complicated as well as time consuming process. Thus, to overcome these limitations, a computational method was introduced. Particle Swarm Optimization (PSO) is a part of Swarm Intelligence system which acts as a beneficial optimization tool where it can solve most of nonlinear complications. PSO model was developed for predicting the optimum foaming temperature and CO2 diffusion rate in SEBS foam. Results obtained by PSO model are compared with experimental results for CO2 diffusivity at various foaming temperature. It is shown that predicted optimum foaming temperature at 154.6 °C was not represented the best temperature for foaming as the cellular structure of SEBS foamed at corresponding temperature consisted pores with unstable dimension and the structure was not visibly perceived due to foam shrinkage. The predictions were not agreed well with experimental result when single parameter of CO2 diffusivity is considered in PSO model because it is not the only factor that affected the controllability of foam shrinkage. The modification on the PSO model by considering CO2 solubility and rigidity of SEBS as additional parameters needs to be done for obtaining the optimum temperature for SEBS foaming. Hence stable SEBS foam could be prepared.
Foaming in simulated radioactive waste.
Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C
2001-10-01
Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.
Transient foam flow in porous media with CAT Scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Dianbin; Brigham, W.E.
1992-03-01
Transient behavior is likely to dominate over most of the duration of a foam injection field project. Due to the lack of date, little is presently known about transient foam flow behavior. Foam flow does not follow established models such as the Buckley-Leverett theory, and no general predictive model has been derived. Therefore, both experimental data and a foam flow theory are needed. In this work, foam was injected at a constant mass rate into one-dimensional sandpacks of 1-in diameter and 24-in or 48-in length that had initially been saturate with distilled water. The system was placed in a catmore » Scanner. Data, obtained at room temperature and low pressure at various times, include both the pressure and saturation distributions. Pressure profiles showed that the pressure gradient is much greater behind the foam front than ahead of it. Moreover, the pressure gradients keep changing as the foam advances in the sandpack. This behavior differs from Buckley-Leverett theory. The CT scan results demonstrated gas channeling near the front, but eventually the foam block all these channels and sweeps the entire cross section after many pore volumes of injection. Three series of experiments were run: (1) surfactant adsorption measurements; (2) gas displacements of surfactant-laden solutions and (3) foam displacements. The first two series of experiments were made to provide the necessary parameters required to match the foam displacements. To this end, it was necessary to smooth the saturation history data, using a Langmuir-type formula. A theory was proposed based on the principles of the fractional flow curve construction method. This foam theory treats the foam as composed of infinitesimal slugs of gas of varying viscosities. The foam front has the lowest viscosity and foam at the injection end has the highest.« less
Star, Phoebe; Connor, David E; Parsi, Kurosh
2018-04-01
Scope Varithena® is a recently approved commercially available drug/delivery unit that produces foam using 1% polidocanol for the management of varicose veins. The purpose of this review is to examine the benefits of foam sclerotherapy, features of the ideal foam sclerosant and the strengths and limitations of Varithena® in the context of current foam sclerotherapy practices. Method Electronic databases including PubMed, Medline (Ovid) SP as well as trial registries and product information sheets were searched using the keywords, 'Varithena', 'Varisolve', 'polidocanol endovenous microfoam', 'polidocanol' and/or 'foam sclerotherapy/sclerosant'. Articles published prior to 20 September 2016 were identified. Results Foam sclerosants have effectively replaced liquid agents due to their physiochemical properties resulting in better clinical outcomes. Medical practitioners commonly prepare sclerosant foam at the bedside by agitating liquid sclerosant with a gas such as room air, using techniques as described by Tessari or the double syringe method. Such physician-compounded foams are highly operator dependent producing inconsistent foams of different gas/liquid compositions, bubble size, foam behaviour and varied safety profiles. Varithena® overcomes the variability and inconsistencies of physician-compounded foam. However, Varithena® has limited applications due to its fixed sclerosant type and concentration, cost and lack of worldwide availability. Clinical trials of Varithena® have demonstrated efficacy and safety outcomes equivalent or better than physician-compounded foam but only in comparison to placebo alone. Conclusion Varithena® is a promising step towards the creation of an ideal sclerosant foam. Further assessment in independent randomised controlled clinical trials is required to establish the advantages of Varithena® over and above the current best practice physician-compounded foam.
NASA Technical Reports Server (NTRS)
1975-01-01
The retention of granular catalyst in a metal foam matrix was demonstrated to greatly increase the life capability of hydrazine monopropellant reactors. Since nickel foam used in previous tests was found to become degraded after long-term exposure the cause of degradation was examined and metal foams of improved durability were developed. The most durable foam developed was a rhodium-coated nickel foam. An all-platinum foam was found to be incompatible in a hot ammonia (hydrazine) environment. It is recommended to scale up the manufacturing process for the improved foam to produce samples sufficiently large for space shuttle APU gas generator testing.
Space Shuttle Stiffener Ring Foam Failure, a Non-Conventional Approach
NASA Technical Reports Server (NTRS)
Howard, Philip M.
2007-01-01
The Space Shuttle makes use of the excellent properties of rigid polyurethane foam for cryogenic tank insulation and as structural protection on the solid rocket boosters. When foam applications debond, classical methods of analysis do not always provide root cause of the failure of the foam. Realizing that foam is the ideal media to document and preserve its own mode of failure, thin sectioning was seen as a logical approach for foam failure analysis. Thin sectioning in two directions, both horizontal and vertical to the application, was chosen to observe the three dimensional morphology of the foam cells. The cell foam morphology provided a much greater understanding of the failure modes than previously achieved.
NASA Astrophysics Data System (ADS)
Hossein Elahi, S.; Arabi Jeshvaghani, R.; Shahverdi, H. R.
2015-05-01
In this paper, the influence of calcium addition and melt stirring on the structure and foaming behavior of molten zinc was investigated. In this regard, zinc foam was produced by Alporas method (in which foam alloy melts and titanium hydride is used as a blowing agent). Optical microscopy and scanning electron microscopy were used to investigate the phase distribution and structure in the foams. Results showed that addition of calcium increased foamability and foam efficiency of the molten zinc. In contrast, stirring had no significant effect on the foaming behavior of the melt. Microstructural examinations indicated that improving the foaming behavior of molten zinc was attributed to the formation of CaZn13 intermetallic phase and ZnO particles in the foam structure, which increased viscosity and reduced drainage rate.
Electrical conductivity of quasi-two-dimensional foams.
Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina
2015-04-01
Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.
Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam.
Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji
2016-08-23
Carbonate apatite (CO₃Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO₃Ap foam for bone replacement, CO₃Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO₃Ap foam was 74 kPa whereas that of the gelatin-reinforced CO₃Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO₃Ap foam.
Improving the mechanical performance of wood fiber reinforced bio-based polyurethane foam
NASA Astrophysics Data System (ADS)
Chang, Li-Chi
Because of the environmental impact of fossil fuel consumption, soybean-based polyurethane (PU) foam has been developed as an alternative to be used as the core in structural insulated panels (SIPs). Wood fibers can be added to enhance the resistance of foam against bending and buckling in compression. The goal of this work is to study the effect of three modifications: fiber surface treatment, catalyst choice, and mixing method on the compression performance of wood fiber-reinforced PU foam. Foams were made with a free-rising process. The compression performance of the foams was measured and the foams were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray computed tomography (CT). The foam reinforced with alkali-treated fibers had improved compression performance. The foams made with various catalysts shared similar performance. The foam made using a mechanical stirrer contained well-dispersed fibers but the reinforcing capability of the fibers was reduced.
Numerical simulation of heat transfer in metal foams
NASA Astrophysics Data System (ADS)
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
NASA Astrophysics Data System (ADS)
Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2017-02-01
In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.
Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.
Alfaro, N; Cano, R; Fdz-Polanco, F
2014-10-01
Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Indentability of conventional and negative Poisson's ratio foams
NASA Technical Reports Server (NTRS)
Lakes, R. S.; Elms, K.
1992-01-01
The indentation resistance of foams, both of conventional structure and of re-entrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, re-entrant foams had higher yield strengths sigma(sub y) and lower stiffness E than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for re-entrant foam than conventional foam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Xiaoxia
Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors basedmore » on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.« less
Pore Size Control in Aluminium Foam by Standardizing Bubble Rise Velocity and Melt Viscosity
NASA Astrophysics Data System (ADS)
Avinash, G.; Harika, V.; Sandeepika, Ch; Gupta, N.
2018-03-01
In recent years, aluminium foams have found use in a wide range of applications. The properties of these foams, as good structural strength with light weight have made them as a promising structural material for aerospace industry. Foaming techniques (direct and indirect) are used to produce these foams. Direct foaming involves blowing of gas to create gas bubbles in the melt whereas indirect foaming technique uses blowing agents as metallic hydrides, which create hydrogen bubbles. Porosity and its distribution in foams directly affect its properties. This demands for more theoretical studies, to control such cellular structure and hence properties. In present work, we have studied the effect of gas bubble rise velocity and melt viscosity, on pore size and its distribution in aluminium foam. A 15 PPI aluminium foam, prepared using indirect foaming technique having porosity ~86 % was used for study. In order to obtain metal foam, the bubble must not escape from the melt and should get entrapped during solidification. Our calculations suggest that bubble rise velocity and melt viscosity are responsible for vertical displacement of bubble in the melt. It is observed that melt viscosity opposes bubble rise velocity and help the bubbles to stay in the melt, resulting in porous structure.
Elewski, Boni E; Vlahovic, Tracey C
2014-07-01
Econazole nitrate is a broad-spectrum topical antifungal with activity against a variety of dermatophytes and yeasts. A new topical dosage form, econazole nitrate topical foam 1%, utilizing patented Proderm Technology® has been developed for treatment of interdigital tinea pedis. To evaluate econazole nitrate foam 1% versus foam vehicle for treatment of interdigital tinea pedis. Two randomized, double-blind, parallel-group, vehicle-controlled, multicenter studies enrolled males and females ≥12 years old with a clinical diagnosis of interdigital tinea pedis and baseline fungal culture positive for a dermatophyte. Subjects applied econazole nitrate foam 1% (n=246) or foam vehicle (n=249) once daily for 4 weeks. The primary endpoint was proportion of subjects achieving a complete cure (negative KOH, negative fungal culture, complete resolution of all signs and symptoms) at 2 weeks post-treatment (Day 43). Secondary endpoints included mycologic cure (negative KOH and negative culture) and effective treatment (mycologic cure + no or mild erythema and/or scaling and all other signs and symptoms absent). The complete cure rate at Day 43 was 24.3% for econazole nitrate foam 1% vs 3.6% for foam vehicle. In addition, higher rates of mycologic cure (67.6% vs 16.9%) and effective treatment (48.6% vs 10.8%) were observed with econazole nitrate foam 1% versus the foam vehicle. There were few adverse events and only nasopharyngitis and headache were experienced by >1% of subjects. No serious adverse events were reported for econazole nitrate foam 1%. Econazole nitrate foam 1% exhibited superiority over foam vehicle for the primary and secondary endpoints with a high mycologic cure rate for all pathogens evaluated. Econazole nitrate foam 1% was safe and well tolerated with a safety profile comparable with the foam vehicle. Econazole nitrate foam 1% presents a novel alternative for the management of tinea pedis.
Experimental study on foam coverage on simulated longwall roof.
Reed, W R; Zheng, Y; Klima, S; Shahan, M R; Beck, T W
2017-01-01
Testing was conducted to determine the ability of foam to maintain roof coverage in a simulated longwall mining environment. Approximately 27 percent of respirable coal mine dust can be attributed to longwall shield movement, and developing controls for this dust source has been difficult. The application of foam is a possible dust control method for this source. Laboratory testing of two foam agents was conducted to determine the ability of the foam to adhere to a simulated longwall face roof surface. Two different foam generation methods were used: compressed air and blower air. Using a new imaging technology, image processing and analysis utilizing ImageJ software produced quantifiable results of foam roof coverage. For compressed air foam in 3.3 m/s (650 fpm) ventilation, 98 percent of agent A was intact while 95 percent of agent B was intact on the roof at three minutes after application. At 30 minutes after application, 94 percent of agent A was intact while only 20 percent of agent B remained. For blower air in 3.3 m/s (650 fpm) ventilation, the results were dependent upon nozzle type. Three different nozzles were tested. At 30 min after application, 74 to 92 percent of foam agent A remained, while 3 to 50 percent of foam agent B remained. Compressed air foam seems to remain intact for longer durations and is easier to apply than blower air foam. However, more water drained from the foam when using compressed air foam, which demonstrates that blower air foam retains more water at the roof surface. Agent A seemed to be the better performer as far as roof application is concerned. This testing demonstrates that roof application of foam is feasible and is able to withstand a typical face ventilation velocity, establishing this technique's potential for longwall shield dust control.
Experimental study on foam coverage on simulated longwall roof
Reed, W.R.; Zheng, Y.; Klima, S.; Shahan, M.R.; Beck, T.W.
2018-01-01
Testing was conducted to determine the ability of foam to maintain roof coverage in a simulated longwall mining environment. Approximately 27 percent of respirable coal mine dust can be attributed to longwall shield movement, and developing controls for this dust source has been difficult. The application of foam is a possible dust control method for this source. Laboratory testing of two foam agents was conducted to determine the ability of the foam to adhere to a simulated longwall face roof surface. Two different foam generation methods were used: compressed air and blower air. Using a new imaging technology, image processing and analysis utilizing ImageJ software produced quantifiable results of foam roof coverage. For compressed air foam in 3.3 m/s (650 fpm) ventilation, 98 percent of agent A was intact while 95 percent of agent B was intact on the roof at three minutes after application. At 30 minutes after application, 94 percent of agent A was intact while only 20 percent of agent B remained. For blower air in 3.3 m/s (650 fpm) ventilation, the results were dependent upon nozzle type. Three different nozzles were tested. At 30 min after application, 74 to 92 percent of foam agent A remained, while 3 to 50 percent of foam agent B remained. Compressed air foam seems to remain intact for longer durations and is easier to apply than blower air foam. However, more water drained from the foam when using compressed air foam, which demonstrates that blower air foam retains more water at the roof surface. Agent A seemed to be the better performer as far as roof application is concerned. This testing demonstrates that roof application of foam is feasible and is able to withstand a typical face ventilation velocity, establishing this technique’s potential for longwall shield dust control. PMID:29563765
Assessments of low emission asphalt mixtures produced using combinations of foaming agents
NASA Astrophysics Data System (ADS)
Mohd Hasan, Mohd Rosli
The asphalt foaming techniques have been used over the last couple of decades as an alternative to the traditional method of preparing asphalt mixtures. Based on positive feedback from the industry, this study was initiated to explore and evaluate the performance of the Warm Mix Asphalt (WMA) mixture produced through a foaming process using physical and chemical foaming agents, which are ethanol and sodium bicarbonate (NaHCO3), respectively. The success of this project may lead to new theories and provide an environmentally friendly technique to produce asphalt mixtures. This may advance the understanding of the foaming process and improve the performance of WMA to support sustainable development. Theoretically, ethanol can function in the same manner as water but requires less energy to foam due to its lower boiling point, 78°C. During the asphalt foaming process, numerous bubbles were generated by the vaporized ethanol, which significantly increased the volume of the asphalt binder, hence the coating potential of aggregates improves. The sodium bicarbonate was incorporated to enhance the quantity of bubbles and its stability. Therefore, understanding foaming agents, their solubility, chemical reactions, chemical function groups and rheological properties of the foamed binder are essential to help control the foam structure and final properties of the foamed WMA mixture. In order to understand the overall performance of newly developed foaming WMA, this material was evaluated for moisture susceptibility, rutting potential, and resistance to fracture and thermal cracking. The coatability, workability and compactability of foamed asphalt mixtures during production were also evaluated. Based on the results, it was found that the newly proposed foaming WMA has high potential to promote sustainable development by lowering the energy consumption and impacts on the environment. The ethanol is efficient in lowering the viscosity of asphalt binders, enhancing the workability, and having a higher expulsion rate from the foamed binder compared to water as a foaming agent. The addition of foaming agents to the asphalt binder has also lowered the activation energy of the asphalt binder, which has high potential in lowering the energy demand during production processes. The foamed WMA mixture prepared at 100°C was found to have behavior comparable with the control Hot Mix Asphalt (HMA) prepared at 155°C in terms of coatability, workability and compactability. Based on the mixture performance tests, the foamed WMA has a comparable or better performance than the HMA in terms of resistance to moisture damage, permanent deformation, fracture cracking and thermal cracking. The application of nano-hydrated lime is efficient in enhancing the aggregate coatability and improving the bearing capacity of asphalt pavement to lower the rutting potential and moisture susceptibility of foamed WMA mixtures. Limitations for each of the related parameters are also reported in this dissertation for the lab production of foamed WMA mixtures using ethanol and NaHCO 3 as foaming agents. The specified values were made based on the binder test, service characteristics and performance of foamed WMA mixtures in order to yield a comparable or better performance than the control HMA. Field validations should be carried out to understand the overall performance and durability of the proposed foaming WMA.
From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation
NASA Astrophysics Data System (ADS)
Hansen, Lee D.; McCarlie, V. Wallace
2004-11-01
Principles of physical chemistry and physical properties are used to describe foam formation. Foams are common in nature and in consumer products. The process of foam formation can be used to understand a wide variety of phenomena from exploding volcanoes to popping popcorn and making shoe soles.
40 CFR 428.110 - Applicability; description of the latex foam subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... latex foam subcategory. 428.110 Section 428.110 Protection of Environment ENVIRONMENTAL PROTECTION... Foam Subcategory § 428.110 Applicability; description of the latex foam subcategory. The provisions of... foam except for those discharges from textile plants subject to the provisions of part 410 of this...
Code of Federal Regulations, 2011 CFR
2011-04-01
... certification program for polystyrene foam insulation board. 200.947 Section 200.947 Housing and Urban... program for polystyrene foam insulation board. (a) Applicable standards. (1) All polystyrene foam... visit the manufacturer's facility to select a sample of each certified polystyrene foam insulation board...
40 CFR 428.110 - Applicability; description of the latex foam subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... latex foam subcategory. 428.110 Section 428.110 Protection of Environment ENVIRONMENTAL PROTECTION... Foam Subcategory § 428.110 Applicability; description of the latex foam subcategory. The provisions of... foam except for those discharges from textile plants subject to the provisions of part 410 of this...
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
Electrically conductive rigid polyurethane foam
Neet, T.E.; Spieker, D.A.
1983-12-08
A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.
Starch/fiber/poly(lactic acid) foam and compressed foam composites
USDA-ARS?s Scientific Manuscript database
Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
Electrically conductive rigid polyurethane foam
Neet, Thomas E.; Spieker, David A.
1985-03-19
A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
46 CFR 108.474 - Aqueous film forming foam systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...
40 CFR 63.8784 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam... flexible polyurethane foam fabrication. (b) The affected sources are defined in this section in paragraphs... to bond foam to foam at a flexible polyurethane foam fabrication plant site. (2) The flame lamination...
40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.
Code of Federal Regulations, 2013 CFR
2013-07-01
... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or... polyurethane foam process, with the following exception. Diisocyanates may be used to flush the mixhead and...
40 CFR 63.1301 - Standards for rebond foam production.
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1301 Standards for rebond foam production. Each owner or operator of a new or existing rebond foam... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Standards for rebond foam production...
40 CFR 63.8784 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam... flexible polyurethane foam fabrication. (b) The affected sources are defined in this section in paragraphs... to bond foam to foam at a flexible polyurethane foam fabrication plant site. (2) The flame lamination...
40 CFR 63.8784 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam... flexible polyurethane foam fabrication. (b) The affected sources are defined in this section in paragraphs... to bond foam to foam at a flexible polyurethane foam fabrication plant site. (2) The flame lamination...
40 CFR 63.1301 - Standards for rebond foam production.
Code of Federal Regulations, 2012 CFR
2012-07-01
... National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1301 Standards for rebond foam production. Each owner or operator of a new or existing rebond foam... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Standards for rebond foam production...
40 CFR 63.8784 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam... flexible polyurethane foam fabrication. (b) The affected sources are defined in this section in paragraphs... to bond foam to foam at a flexible polyurethane foam fabrication plant site. (2) The flame lamination...
40 CFR 63.1301 - Standards for rebond foam production.
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1301 Standards for rebond foam production. Each owner or operator of a new or existing rebond foam... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for rebond foam production...
40 CFR 63.8784 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible Polyurethane Foam... flexible polyurethane foam fabrication. (b) The affected sources are defined in this section in paragraphs... to bond foam to foam at a flexible polyurethane foam fabrication plant site. (2) The flame lamination...
40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.
Code of Federal Regulations, 2014 CFR
2014-07-01
... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or... polyurethane foam process, with the following exception. Diisocyanates may be used to flush the mixhead and...
Foamability and structure analysis of foams in Hele-Shaw cell
NASA Astrophysics Data System (ADS)
Caps, H.; Vandewalle, N.; Broze, G.; Zocchi, G.
2007-05-01
The authors have generated two-dimensional foams by imposing an intermittent drainage in a Hele-Shaw cell partially filled with a detergent/water mixture. The foam generation associated with this process is reproducible and depends on the surfactant molecules composing the solution. A kinetic model can be proposed for the foam evolution. The structure of the foam is also investigated: the average bubble side number and correlation functions are measured. Distinguishable behaviors are observed for different surfactant molecules. This way of producing a foam is thus adequate for applied foam structure characterizations and fundamental studies.
Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra
2015-06-02
Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.
Experimental Investigations of Space Shuttle BX-265 Foam
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Sullivan, Roy M.
2009-01-01
This report presents a variety of experimental studies on the polyurethane foam, BX-265. This foam is used as a close-out foam insulation on the space shuttle external tank. The purpose of this work is to provide a better understanding of the foam s behavior and to support advanced modeling efforts. The following experiments were performed: Thermal expansion was measured for various heating rates. The in situ expansion of foam cells was documented by heating the foam in a scanning electron microscope. Expansion mechanisms are described. Thermogravimetric analysis was performed at various heating rates and for various environments. The glass transition temperature was also measured. The effects of moisture on the foam were studied. Time-dependent effects were measured to give preliminary data on viscoelastoplastic properties.
Pressure-Induced Foaming of Metals
NASA Astrophysics Data System (ADS)
García-Moreno, Francisco; Mukherjee, Manas; Jiménez, Catalina; Banhart, John
2015-05-01
Pressure-induced foaming (PIF) of metals is a foaming technique in which blowing agent free compacted metal powders are foamed. The method consists of heating hot-compacted metallic precursors to above their melting temperature under gas overpressure and foaming them by pressure release. This study focuses on PIF of Al99.7 and AlSi7 alloys under both air or Ar and overpressures up to 9 bar. In situ x-ray radioscopy allows us to follow the foaming process and to perform quantitative analyses of expansion, foam morphology, and coalescence rate. Mass spectrometry helps to identify hydrogen as the foaming gas. Adsorbates on the former powder particles are found to be the primary gas source. Various advantages of this new method are identified and discussed.
NASA Astrophysics Data System (ADS)
Mączka, T.; Paściak, G.; Jarski, A.; Piątek, M.
2016-02-01
This paper presents the construction and basic performance parameters of the innovative tubular construction of high voltage composite insulator filled with the lightweight foamed electroinsulating material. The possibility of using of the commercially available expanding foams for preparing the lightweight foamed dielectric materials was analysed. The expanding foams of silicone RTV and compositions based on epoxy resin and LSR silicone were taken into account. The lightweight foamed dielectric materials were prepared according to the own foaming technology. In this work the experimental results on the use of the selected foams for the preparing of the lightweight filling materials to the tubular structure of composite insulator of 110 kV are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xi, E-mail: nano-sun@hotmail.com; Ruan Jianming; Chen Qiyuan
2009-06-03
A porous scaffold comprising a {beta}-tricalcium phosphate matrix and bioactive glass powders was fabricated by foaming method and the effects of surfactants as foaming agent on microstructure of scaffolds were investigated. Foaming capacity and foam stability of different surfactants in water firstly were carried out to evaluate their foam properties. The porous structure and pore size distribution of the scaffolds were systematically characterized by scanning electron microscopy (SEM) and an optical microscopy connected to an image analyzer. The results showed that the foam stability of surfactant has more remarkable influence on their microstructure such as pore shape, size and interconnectivitymore » than the foaming ability of one. Porous scaffolds fabricated using nonionic surfactant Tween 80 with large foam stability exhibited higher open and total porosities, and fully interconnected porous structure with a pore size of 750-850 {mu}m.« less
Biocompatibility of 17-4 PH stainless steel foam for implant applications.
Mutlu, Ilven; Oktay, Enver
2011-01-01
In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.
NASA Technical Reports Server (NTRS)
Winfree, William P.; Madaras, Eric I.
2005-01-01
The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.
Advanced Metal Foam Structures for Outer Space
NASA Technical Reports Server (NTRS)
Hanan, Jay; Johnson, William; Peker, Atakan
2005-01-01
A document discusses a proposal to use advanced materials especially bulk metallic glass (BMG) foams in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.
Pore-level mechanics of foam generation and coalescence in the presence of oil.
Almajid, Muhammad M; Kovscek, Anthony R
2016-07-01
The stability of foam in porous media is extremely important for realizing the advantages of foamed gas on gas mobility reduction. Foam texture (i.e., bubbles per volume of gas) achieved is dictated by foam generation and coalescence processes occurring at the pore-level. For foam injection to be widely applied during gas injection projects, we need to understand these pore-scale events that lead to foam stability/instability so that they are modeled accurately. Foam flow has been studied for decades, but most efforts focused on studying foam generation and coalescence in the absence of oil. Here, the extensive existing literature is reviewed and analyzed to identify open questions. Then, we use etched-silicon micromodels to observe foam generation and coalescence processes at the pore-level. Special emphasis is placed on foam coalescence in the presence of oil. For the first time, lamella pinch-off as described by Myers and Radke [40] is observed in porous media and documented. Additionally, a new mechanism coined "hindered generation" is found. Hindered generation refers to the role oil plays in preventing the successful formation of a lamella following snap-off near a pore throat. Copyright © 2015 Elsevier B.V. All rights reserved.
Deng, Quanhua; Li, Haiping; Sun, Haoyang; Sun, Yange; Li, Ying
2016-05-01
The foam properties, such as the foamability, foam stability, drainage, coalescence and bulk rheology, of aqueous solutions containing an eco-friendly exopolysaccharide (EPS) secreted by a deep-sea mesophilic bacterium, Wangia profunda SM-A87, and an anionic surfactant, sodium fatty alcohol polyoxyethylene ether sulfate (AES), were studied. Both the foamability and foam stability of the EPS/AES solutions are considerably higher than those of single AES solutions, even at very low AES concentrations, although pure EPS solutions cannot foam. The improved foamability and foam stability arise from the formation of the EPS/AES complex via hydrogen bonds at the interfaces. The synergism between the EPS and AES decreases the surface tension, increases the interfacial elasticity and water-carrying capacity, and suppresses the coalescence and collapse of the foams. The EPS/AES foams are more salt-resistant than the AES foams. This work provides not only a new eco-friendly foam with great potential for use in enhanced oil recovery and health-care products but also useful guidance for designing other environmentally friendly foam systems that exhibit high performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Foam-assisted delivery of nanoscale zero valent iron in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Yuanzhao; Liu, Bo; Shen, Xin
2013-09-01
Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through themore » unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.« less
Huang, Wenju; Dai, Kun; Zhai, Yue; Liu, Hu; Zhan, Pengfei; Gao, Jiachen; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu
2017-12-06
Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm -3 . Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.
NASA Astrophysics Data System (ADS)
Ries, S.; Spoerrer, A.; Altstaedt, V.
2014-05-01
Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.
Liquid foam templating - A route to tailor-made polymer foams.
Andrieux, Sébastien; Quell, Aggeliki; Stubenrauch, Cosima; Drenckhan, Wiebke
2018-06-01
Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It finishes with an outlook on future developments. Occasional references to non-polymeric foams are given if the analogy provides specific insight into a physical phenomenon. Copyright © 2018 Elsevier B.V. All rights reserved.
Fiber reinforced hybrid phenolic foam
NASA Astrophysics Data System (ADS)
Desai, Amit
Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of the chosen filler and matrix and also facilitating the design of materials with specific properties matched to end use. However, the studies for hybrid foams have been very limited because of problems related to fiber dispersion in matrix, non uniform mixing due to presence of more than one filler and partially cured foams. An effective approach to synthesize hybrid phenolic foam has been proposed and investigated here. Hybrid composite phenolic foams were reinforced with chopped glass and aramid fibers in varied proportions. On assessing mechanical properties in compression and shear several interesting facts surfaced but overall hybrid phenolic foams exhibited a more graceful failure, greater resistance to cracking and were significantly stiffer and stronger than foams with only glass and aramid fibers. The optimum fiber ratio for the reinforced hybrid phenolic foam system was found to be 1:1 ratio of glass to aramid fibers. Also, the properties of hybrid foam were found to deviate from rule of mixture (ROM) and thus the existing theories of fiber reinforcement fell short in explaining their complex behavior. In an attempt to describe and predict mechanical behavior of hybrid foams a statistical design tool using analysis of variance technique was employed. The utilization of a statistical model for predicting foam properties was found to be an appropriate tool that affords a global perspective of the influence of process variables such as fiber weight fraction, fiber length etc. on foam properties (elastic modulus and strength). Similar approach could be extended to study other fiber composite foam systems such as polyurethane, epoxy etc. and doing so will reduce the number of experimental iterations needed to optimize foam properties and identify critical process variables. Diffusivity, accelerated aging and flammability of hybrid foams were evaluated and the results indicate that hybrid foam surpassed several commercial foams and thus could fulfill the current needs for an insulation material which is low cost, has excellent fire properties and retains compressive stiffness even after aging.
NASA Technical Reports Server (NTRS)
Wingard, Doug
2006-01-01
During the Space Shuttle Columbia Accident Investigation, it was determined that a large chunk of polyurethane insulating foam (= 1.67 lbs) on the External Tank (ET) came loose during Columbia's ascent on 2-1-03. The foam piece struck some of the protective Reinforced Carbon-Carbon (RCC) panels on the leading edge of Columbia's left wing in the mid-wing area. This impact damaged Columbia to the extent that upon re-entry to Earth, superheGed air approaching 3,000 F caused the vehicle to break up, killing all seven astronauts on board. A paper after the Columbia Accident Investigation highlighted thermal analysis testing performed on External Tank TPS materials (1). These materials included BX-250 (now BX-265) rigid polyurethane foam and SLA-561 Super Lightweight Ablator (highly-filled silicone rubber). The large chunk of foam from Columbia originated fiom the left bipod ramp of the ET. The foam in this ramp area was hand-sprayed over the SLA material and various fittings, allowed to dry, and manually shaved into a ramp shape. In Return-to-Flight (RTF) efforts following Columbia, the decision was made to remove the foam in the bipod ramp areas. During RTF efforts, further thermal analysis testing was performed on BX-265 foam by DSC and DMA. Flat panels of foam about 2-in. thick were sprayed on ET tank material (aluminum alloys). The DSC testing showed that foam material very close to the metal substrate cured more slowly than bulk foam material. All of the foam used on the ET is considered fully cured about 21 days after it is sprayed. The RTF culminated in the successful launch of Space Shuttle Discovery on 7-26-05. Although the flight was a success, there was another serious incident of foam loss fiom the ET during Shuttle ascent. This time, a rather large chunk of BX-265 foam (= 0.9 lbs) came loose from the liquid hydrogen (LH2) PAL ramp, although the foam did not strike the Shuttle Orbiter containing the crew. DMA testing was performed on foam samples taken fiom a simulated PAL ramp panel. It was found that the smooth rind on the foam facing the cable tray did significantly affect the properties of foam at the PAL ramp surface. The smooth rind increased the storage modulus E' of the foam as much as 20- 40% over a temperature range of -145 to 95 C. Because of foam loss fiom the PAL ramp, future Shuttle flights were grounded indefinitely to allow further testing to better understand foam properties. The decision was also made to remove foam from the LH2 PAL, ramp. Other RTF efforts prior to the launch of Discovery included
Foam Experiment Hardware are Flown on Microgravity Rocket MAXUS 4
NASA Astrophysics Data System (ADS)
Lockowandt, C.; Löth, K.; Jansson, O.; Holm, P.; Lundin, M.; Schneider, H.; Larsson, B.
2002-01-01
The Foam module was developed by Swedish Space Corporation and was used for performing foam experiments on the sounding rocket MAXUS 4 launched from Esrange 29 April 2001. The development and launch of the module has been financed by ESA. Four different foam experiments were performed, two aqueous foams by Doctor Michele Adler from LPMDI, University of Marne la Vallée, Paris and two non aqueous foams by Doctor Bengt Kronberg from YKI, Institute for Surface Chemistry, Stockholm. The foam was generated in four separate foam systems and monitored in microgravity with CCD cameras. The purpose of the experiment was to generate and study the foam in microgravity. Due to loss of gravity there is no drainage in the foam and the reactions in the foam can be studied without drainage. Four solutions with various stabilities were investigated. The aqueous solutions contained water, SDS (Sodium Dodecyl Sulphate) and dodecanol. The organic solutions contained ethylene glycol a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB) and decanol. Carbon dioxide was used to generate the aqueous foam and nitrogen was used to generate the organic foam. The experiment system comprised four complete independent systems with injection unit, experiment chamber and gas system. The main part in the experiment system is the experiment chamber where the foam is generated and monitored. The chamber inner dimensions are 50x50x50 mm and it has front and back wall made of glass. The front window is used for monitoring the foam and the back window is used for back illumination. The front glass has etched crosses on the inside as reference points. In the bottom of the cell is a glass frit and at the top is a gas in/outlet. The foam was generated by injecting the experiment liquid in a glass frit in the bottom of the experiment chamber. Simultaneously gas was blown through the glass frit and a small amount of foam was generated. This procedure was performed at 10 bar. Then the pressure was lowered in the experiment chamber to approximately 0,1 bar to expand the foam to a dry foam that filled the experiment chamber. The foam was regenerated during flight by pressurise the cell and repeat the foam generation procedures. The module had 4 individual experiment chambers for the four different solutions. The four experiment chambers were controlled individually with individual experiment parameters and procedures. The gas system comprise on/off valves and adjustable valves to control the pressure and the gas flow and liquid flow during foam generation. The gas system can be divided in four sections, each section serving one experiment chamber. The sections are partly connected in two pairs with common inlet and outlet. The two pairs are supplied with a 1l gas bottle each filled to a pressure of 40 bar and a pressure regulator lowering the pressure from 40 bar to 10 bar. Two sections are connected to the same outlet. The gas outlets from the experiment chambers are connected to two symmetrical placed outlets on the outer structure with diffusers not to disturb the g-levels. The foam in each experiment chamber was monitored with one tomography camera and one overview camera (8 CCD cameras in total). The tomography camera is placed on a translation table which makes it possible to move it in the depth direction of the experiment chamber. The video signal from the 8 CCD cameras were stored onboard with two DV recorders. Two video signals were also transmitted to ground for real time evaluation and operation of the experiment. Which camera signal that was transmitted to ground could be selected with telecommands. With help of the tomography system it was possible to take sequences of images of the foam at different depths in the foam. This sequences of images are used for constructing a 3-D model of the foam after flight. The overview camera has a fixed position and a field of view that covers the total experiment chamber. This camera is used for monitoring the generation of foam and the overall behaviour of the foam. The experiment was performed successfully with foam generation in all 4 experiment chambers. Foam was also regenerated during flight with telecommands. The experiment data is under evaluation.
Milleret, Vincent; Bittermann, Anne Greet; Mayer, Dieter; Hall, Heike
2009-01-01
Many wounds heal slowly and are difficult to manage. Therefore Negative Pressure Wound Therapy (NPWT) was developed where polymer foams are applied and a defined negative pressure removes wound fluid, reduces bacterial burden and increases the formation of granulation tissue. Although NPWT is used successfully, its mechanisms are not well understood. In particular, different NPWT dressings were never compared. Here a poly-ester urethane Degrapol® (DP)-foam was produced and compared with commercially available dressings (polyurethane-based and polyvinyl-alcohol-based) in terms of apparent pore sizes, swelling and effective interconnectivity of foam pores. DP-foams contain relatively small interconnected pores; PU-foams showed large pore size and interconnectivity; whereas PVA-foams displayed heterogeneous and poorly interconnected pores. PVA-foams swelled by 40 %, whereas DP- and PU-foams remained almost without swelling. Effective interconnectivity was investigated by submitting fluorescent beads of 3, 20 and 45 μm diameter through the foams. DP- and PU-foams removed 70-90 % of all beads within 4 h, independent of the bead diameter or bead pre-adsorption with serum albumin. For PVA-foams albumin pre-adsorbed beads circulated longer, where 20 % of 3 μm and 10 % of 20 μm diameter beads circulated after 96 h. The studies indicate that efficient bead perfusion does not only depend on pore size and swelling capacity, but effective interconnectivity might also depend on chemical composition of the foam itself. In addition due to the efficient sieve-effect of the foams uptake of wound components in vivo might occur only for short time suggesting other mechanisms being decisive for success of NPWT.
NASA Astrophysics Data System (ADS)
Seo, Ja-Ye; Lee, Ki-Yong; Shim, Do-Sik
2018-01-01
This paper describes the fabrication of lightweight metal foams using the directed energy deposition (DED) method. DED is a highly flexible additive manufacturing process wherein a metal powder mixed with a foaming agent is sprayed while a high-power laser is used to simultaneously melt the powder mixture into layered metal foams. In this study, a mixture of a carbon steel material (P21 powder) and a widely used foaming agent, ZrH2, is used to fabricate metal foams. The effects of various process parameters, such as the laser power, powder feed rate, powder gas flow rate, and scanning speed, on the deposition characteristics (porosity, pore size, and pore distribution) are investigated. The synthesized metal foams exhibit porosities of 10% or lower, and a mean pore area of 7 × 105 μm2. It is observed that the degree of foaming increases in proportion to the laser power to a certain extent. The results also show that the powder feed rate has the most pronounced effect on the porosity of the metal foams, while the powder gas flow rate is the most suitable parameter for adjusting the size of the pores formed within the foams. Further, the scanning speed, which determines the amounts of energy and powder delivered, has a significant effect on the height of the deposits as well as on the properties of the foams. Thus, during the DED process for fabricating metal foams, the pore size and distribution and hence the foam porosity can be tailored by varying the individual process parameters. These findings should be useful as reference data for the design of processes for fabricating porous metallic materials that meet the specific requirements for specialized parts.
NASA Technical Reports Server (NTRS)
Goldstein, A. S.; Zhu, G.; Morris, G. E.; Meszlenyi, R. K.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)
1999-01-01
Poly(DL-lactic-co-glycolic acid) (PLGA) foams are an osteoconductive support that holds promise for the development of bone tissue in vitro and implantation into orthopedic defects. Because it is desirable that foams maintain their shape and size, we examined a variety of foams cultured in vitro with osteoblastic cells. Foams were prepared with different porosities and pore sizes by the method of solvent casting/porogen leaching using 80, 85, and 90 wt% NaCl sieved with particle sizes of 150-300 and 300-500 microm and characterized by mercury intrusion porosimetry. Foams seeded with cells were found to have volumes after 7 days in static culture that decreased with increasing porosity: the least porous exhibited no change in volume while the most porous foams decreased by 39 +/- 10%. In addition, a correlation was observed between decreasing foam volume after 7 days in culture and decreasing internal surface area of the foams prior to seeding. Furthermore, foams prepared with the 300-500 microm porogen had lower porosities, greater mean wall thicknesses between adjacent pores, and larger volumes after 7 days in culture than those prepared with the smaller porogen. Two culture conditions for maintaining cells, static and agitated (in a rotary vessel), were found to have similar influences on foam size, cell density, and osteoblastic function for 7 and 14 days in culture. Finally, we examined unseeded foams in aqueous solutions of pH 3.0, 5.0, and 7.4 and found no significant decrease in foam size with degradation. This study demonstrates that adherent osteoblastic cells may collapse very porous PLGA foams prepared by solvent casting/particulate leaching: a potentially undesirable property for repair of orthopedic defects.
Testing Microgravity Flight Hardware Concepts on the NASA KC-135
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.
2001-01-01
This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.
Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation.
Gordeyeva, Korneliya S; Fall, Andreas B; Hall, Stephen; Wicklein, Bernd; Bergström, Lennart
2016-06-15
Aggregation of dispersed rod-like particles like nanocellulose can improve the strength and rigidity of percolated networks but may also have a detrimental effect on the foamability. However, it should be possible to improve the strength of nanocellulose foams by multivalent ion-induced aggregation if the aggregation occurs after the foam has been formed. Lightweight and highly porous foams based on TEMPO-mediated oxidized cellulose nanofibrils (CNF) were formulated with the addition of a non-ionic surfactant, pluronic P123, and CaCO3 nanoparticles. Foam volume measurements show that addition of the non-ionic surfactant generates wet CNF/P123 foams with a high foamability. Foam bubble size studies show that delayed Ca-induced aggregation of CNF by gluconic acid-triggered dissolution of the CaCO3 nanoparticles significantly improves the long-term stability of the wet composite foams. Drying the Ca-reinforced foam at 60 °C results in a moderate shrinkage and electron microscopy and X-ray tomography studies show that the pores became slightly oblate after drying but the overall microstructure and pore/foam bubble size distribution is preserved after drying. The elastic modulus (0.9-1.4 MPa) of Ca-reinforced composite foams with a density of 9-15 kg/m(3) is significantly higher than commercially available polyurethane foams used for thermal insulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Sound velocity and absorption in a coarsening foam.
Mujica, Nicolás; Fauve, Stéphan
2002-08-01
We present experimental measurements of sound velocity and absorption in a commercial shaving foam. We observe that both quantities evolve with time as the foam coarsens increasing its mean bubble radius
46 CFR 179.240 - Foam flotation material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Foam flotation material. 179.240 Section 179.240... Requirements § 179.240 Foam flotation material. (a) Foam may only be installed as flotation material on a vessel when approved by the cognizant OCMI. (b) If foam is installed as flotation material on a vessel...
30 CFR 75.1101-5 - Installation of foam generator systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of foam generator systems. 75.1101...-5 Installation of foam generator systems. (a) Foam generator systems shall be located so as to discharge foam to the belt drive, belt takeup, electrical controls, gear reducing unit and the conveyor belt...
46 CFR 179.240 - Foam flotation material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Foam flotation material. 179.240 Section 179.240... Requirements § 179.240 Foam flotation material. (a) Foam may only be installed as flotation material on a vessel when approved by the cognizant OCMI. (b) If foam is installed as flotation material on a vessel...
Use of Microcellular Foam Particles for Encapsulation of Viscous fluids
USDA-ARS?s Scientific Manuscript database
A relatively new starch product with various novel applications is a porous microcellular foam [1,2]. The foam product is made by dehydrating a starch hydrogel in a solvent such as ethanol and then removing the solvent to form a foam product [1,2]. Starch microcellular foam has very small pores and ...
Flexible fire retardant polyisocyanate modified neoprene foam. [for thermal protective devices
NASA Technical Reports Server (NTRS)
Parker, J. A.; Riccitiello, S. R. (Inventor)
1973-01-01
Lightweight, fire resistant foams have been developed through the modification of conventional neoprene-isocyanate foams by the addition of an alkyl halide polymer. Extensive tests have shown that the modified/neoprene-isocyanate foams are much superior in heat protection properties than the foams heretofore employed both for ballistic and ablative purposes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...
Code of Federal Regulations, 2012 CFR
2012-07-01
... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...
Code of Federal Regulations, 2011 CFR
2011-07-01
... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...
An examination of the mechanisms for stable foam formation in activated sludge systems.
Petrovski, Steve; Dyson, Zoe A; Quill, Eben S; McIlroy, Simon J; Tillett, Daniel; Seviour, Robert J
2011-02-01
Screening pure cultures of 65 mycolic acid producing bacteria (Mycolata) isolated mainly from activated sludge with a laboratory based foaming test revealed that not all foamed under the conditions used. However, for most, the data were generally consistent with the flotation theory as an explanation for foaming. Thus a stable foam required three components, air bubbles, surfactants and hydrophobic cells. With non-hydrophobic cells, an unstable foam was generated, and in the absence of surfactants, cells formed a greasy surface scum. Addition of surfactant converted a scumming population into one forming a stable foam. The ability to generate a foam depended on a threshold cell number, which varied between individual isolates and reduced markedly in the presence of surfactant. Consequently, the concept of a universal threshold applicable to all foaming Mycolata is not supported by these data. The role of surfactants in foaming is poorly understood, but evidence is presented for the first time that surfactin synthesised by Bacillus subtilis may be important. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cross transfer acute effects of foam rolling with vibration on ankle dorsiflexion range of motion.
García-Gutiérrez, María Teresa; Guillén-Rogel, Paloma; Cochrane, Darryl J; Marín, Pedro J
2018-06-01
Foam roller is a device used as a massage intervention for rehabilitation and fitness performance. To examine the effects on the ankle dorsiflexion mobility of the foam roller as well as the combination of foam roller and vibration applied to the ankle plantarflexors muscles, and to observe the possible cross-effect. Thirty-eight undergraduate students participated in the study (19 males and 19 females). This study investigated. Three conditions (3 sets of 20 s) were performed in a randomized order (independent variables): 1) foam roller (Roller), 2) foam roller and vibration (Roller+VIB), and 3) no foam roller or vibration (Control). to determine whether of foam roller with or without vibration would benefit ankle dorsiflexion mobility. Ankle dorsiflexion ROM and plantar flexor were measured in both legs before and immediately after the treatment. A cross-effect was found in the non-stimulated leg. There was a significant effect on ankle mobility of Roller and Roller+VIB conditions (6% and 7%, p<0.001). Foam roller massage and vibration stimulus' foam roller massage increase ankle mobility producing a cross-effect.
Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam
Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji
2016-01-01
Carbonate apatite (CO3Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO3Ap foam for bone replacement, CO3Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO3Ap foam was 74 kPa whereas that of the gelatin-reinforced CO3Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO3Ap foam. PMID:28773832
Thermal conductivity and combustion properties of wheat gluten foams.
Blomfeldt, Thomas O J; Nilsson, Fritjof; Holgate, Tim; Xu, Jianxiao; Johansson, Eva; Hedenqvist, Mikael S
2012-03-01
Freeze-dried wheat gluten foams were evaluated with respect to their thermal and fire-retardant properties, which are important for insulation applications. The thermal properties were assessed by differential scanning calorimetry, the laser flash method and a hot plate method. The unplasticised foam showed a similar specific heat capacity, a lower thermal diffusivity and a slightly higher thermal conductivity than conventional rigid polystyrene and polyurethane insulation foams. Interestingly, the thermal conductivity was similar to that of closed cell polyethylene and glass-wool insulation materials. Cone calorimetry showed that, compared to a polyurethane foam, both unplasticised and glycerol-plasticised foams had a significantly longer time to ignition, a lower effective heat of combustion and a higher char content. Overall, the unplasticised foam showed better fire-proof properties than the plasticized foam. The UL 94 test revealed that the unplasticised foam did not drip (form droplets of low viscous material) and, although the burning times varied, self-extinguished after flame removal. To conclude both the insulation and fire-retardant properties were very promising for the wheat gluten foam. © 2012 American Chemical Society
Wang, Lijun; Zhang, Chun; Gong, Wei; Ji, Yubi; Qin, Shuhao; He, Li
2018-01-01
3D cross-linking networks are generated through chemical reactions between thermosetting epoxy resin and hardener during curing. The curing degree of epoxy material can be increased by increasing curing temperature and/or time. The epoxy material must then be fully cured through a postcuring process to optimize its material characteristics. Here, a limited-foaming method is introduced for the preparation of microcellular epoxy foams (Lim-foams) with improved cell morphology, high thermal expansion coefficient, and good compressive properties. Lim-foams exhibit a lower glass transition temperature (T g ) and curing degree than epoxy foams fabricated through free-foaming process (Fre-foams). Surprisingly, however, the T g of Lim-foams is unaffected by postcuring temperature and time. This phenomenon, which is related to high gas pressure in the bubbles, contradicts that indicated by the time-temperature-transformation cure diagram. High bubble pressure promotes the movement of molecular chains under heating at low temperature and simultaneously suppresses the etherification cross-linking reaction during post-curing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.
Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented intomore » SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.« less
NASA Astrophysics Data System (ADS)
Roch, A.; Huber, T.; Henning, F.; Elsner, P.
2014-05-01
Investigations on PP-LGF30 foam sandwiches have been carried out using different manufacturing processes: standard injection molding, MuCell® and LFT-D foam. Both chemical and physical blowing agents were applied. Precision mold opening (breathing mold technology) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. The experiments showed that, at a constant mass per unit area, integral foams have a significantly higher flexural rigidity than compact components, due to their greater area moment of inertia after foaming: with an increase of the wall thickness from 3.6 mm to 4.4 mm compared to compact construction, the flexural rigidity increased by 75 %. With a final wall thickness of 5.8 mm an increase of 300 % was measured. Compared to non-reinforced components that show significant embrittlement during foaming, the energy absorption capacity (impact strength) of LFT foam components remains almost constant.
Coarsening of firefighting foams containing fluorinated hydrocarbon surfactants
NASA Astrophysics Data System (ADS)
Kennedy, Matthew J.; Dougherty, John A.; Otto, Nicholas; Conroy, Michael W.; Williams, Bradley A.; Ananth, Ramagopal; Fleming, James W.
2013-03-01
Diffusion of gas between bubbles in foam causes growth of large bubbles at the expense of small bubbles and leads to increasing mean bubble size with time thereby affecting drainage. Experimental data shows that the effective diffusivity of nitrogen gas in aqueous film forming foam (AFFF), which is widely used in firefighting against burning liquids, is several times smaller than in 1% sodium dodecyl sulfate (SDS) foam based on time-series photographs of bubble size and weighing scale recordings of liquid drainage. Differences in foam structure arising from foam production might contribute to the apparent difference in the rates of coarsening. AFFF solution produces wetter foam with initially smaller bubbles than SDS solution due in part to the lower gas-liquid surface tension provided by the fluorosurfactants present in AFFF. Present method of foam production generates microbubble foam by high-speed co-injection of surfactant solution and gas into a tube of 3-mm diameter. These results contribute to our growing understanding of the coupling between foam liquid fraction, bubble size, surfactant chemistry, and coarsening. NRC Resident Research Associate at NRL
2014-01-01
The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams' properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen. PMID:24587721
Graphene oxide foams and their excellent adsorption ability for acetone gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yongqiang; School of Science, Tianjin University, Tianjin 300072; Zhang, Nana
2013-09-01
Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed thatmore » the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.« less
Patterns, Instabilities, Colors, and Flows in Vertical Foam Films
NASA Astrophysics Data System (ADS)
Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek
2015-03-01
Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.
Tailoring properties of reticulated vitreous carbon foams with tunable density
NASA Astrophysics Data System (ADS)
Smorygo, Oleg; Marukovich, Alexander; Mikutski, Vitali; Stathopoulos, Vassilis; Hryhoryeu, Siarhei; Sadykov, Vladislav
2016-06-01
Reticulated vitreous carbon (RVC) foams were manufactured by multiple replications of a polyurethane foam template structure using ethanolic solutions of phenolic resin. The aims were to create an algorithm of fine tuning the precursor foam density and ensure an open-cell reticulated porous structure in a wide density range. The precursor foams were pyrolyzed in inert atmospheres at 700°C, 1100°C and 2000°C, and RVC foams with fully open cells and tunable bulk densities within 0.09-0.42 g/cm3 were synthesized. The foams were characterized in terms of porous structure, carbon lattice parameters, mechanical properties, thermal conductivity, electric conductivity, and corrosive resistance. The reported manufacturing approach is suitable for designing the foam microstructure, including the strut design with a graded microstructure.
A combined NDE/FEA approach to evaluate the structural response of a metal foam
NASA Astrophysics Data System (ADS)
Ghosn, Louis J.; Abdul-Aziz, Ali; Raj, Sai V.; Rauser, Richard W.
2007-04-01
Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight metal foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans. The series of the 2D images are assembled to construct a high precision solid model capturing all the fine details within the metal foam as detected by the CT scanning technique. Moreover, a finite element analysis is then performed on as fabricated metal foam microstructures, to calculate the foam mechanical properties with the idealized theory. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile and compressive mechanical properties are deduced from the FEA model and compared with the theoretical values for three different foam densities. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.
2017-01-01
Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10–2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion. PMID:29093612
Hosseini-Nasab, S M; Zitha, P L J
2017-10-19
Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.
Application and future of solid foams
NASA Astrophysics Data System (ADS)
Bienvenu, Yves
2014-10-01
To conclude this series of chapters on solid foam materials, a review of industrial current applications and of mid-term market perspectives centred on manmade foams is given, making reference to natural cellular materials. Although the polymeric foam industrial development overwhelms the rest and finds applications on many market segments, more attention will be paid to the emerging market of inorganic-especially metallic-foams (and cellular materials) and their applications, present or upcoming. It is shown that the final applications of solid foams are primarily linked to transport and the present-day development of the different classes of solid foams is contrasted between functional applications and structural applications. xml:lang="fr"
A comparison of mechanical properties of some foams and honeycombs
NASA Technical Reports Server (NTRS)
Bhat, Balakrishna T.; Wang, T. G.
1990-01-01
A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.
Rigid zeolite containing polyurethane foams
Frost, Charles B.
1985-01-01
A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.
Rigid zeolite containing polyurethane foams
Frost, C.B.
1984-05-18
A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.
Improvement of stability of polidocanol foam for nonsurgical permanent contraception.
Guo, Jian Xin; Lucchesi, Lisa; Gregory, Kenton W
2015-08-01
Polidocanol foam (PF), used clinically as a venous sclerosant, has recently been studied as a safe and inexpensive means for permanent contraception. Delivering the sclerosant to the fallopian tubes as a foam rather than a liquid increases the surface areas and thus enhances the desired epithelial disrupting activity of the agent. However, the foam is inherently unstable and degrades with time. Therefore, increasing foam stability and thus duration of the agent exposure time could increase epithelial effect while allowing reduction in agent concentration and potential toxicity. We studied methods to improve foam properties that might improve safety and efficacy of PF for intrauterine application. Several types of microporous filters adapted to a syringe-based foaming device were used to study the effect of pore structures on the formation of PF. The foam drainage time and bubble size were characterized. The addition of benzalkonium chloride (BZK) to polidocanol was also investigated for its effects on foam characteristics. A syringe-based foaming device adapted with an inline filter produced smaller bubble PF with a longer foam drainage time. PF generated with a circular pore filter lasts longer than with a noncircular pore filter. The addition of 0.01% of BZK also improved the stability of PF. The stability of PF is affected by the pore characteristics of the filter used for foam generation and enhanced by the presence of a small amount of BZK. The improved foam, if shown to be efficacious in animal models of contraception, could lead to a safe, simple and inexpensive method alternative to surgical contraception. Copyright © 2015 Elsevier Inc. All rights reserved.
Comparison of sound absorbing performances of copper foam and iron foam with the same parameters
NASA Astrophysics Data System (ADS)
Yang, X. C.; Shen, X. M.; Xu, P. J.; Zhang, X. N.; Bai, P. F.; Peng, K.; Yin, Q.; Wang, D.
2018-01-01
Sound absorbing performances of the copper foam and the iron foam with the same parameters were investigated by the AWA6128A detector according to standing wave method. Two modes were investigated, which included the pure metal foam mode and the combination mode with the settled thickness of metal foam. In order to legibly compare the sound absorbing coefficients of the two metal foams, the detected sound frequency points were divided into the low frequency range (100 Hz ~ 1000 Hz), the middle frequency range (1000 Hz ~ 3200 Hz), and the high frequency range (3500 Hz ~ 6000 Hz). Sound absorbing performances of the two metal foams in the two modes were discussed within the three frequency ranges in detail. It would be calculated that the average sound absorbing coefficients of copper foam in the pure metal foam mode were 12.6%, 22.7%, 34.6%, 43.6%, 51.1%, and 56.2% when the thickness was 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. meanwhile, in the combination mode, the average sound absorbing coefficients of copper foam with the thickness of 10 mm were 30.6%, 34.8%, 36.3%, and 35.8% when the cavity was 5 mm, 10 mm, 15 mm, and 20 mm. In addition, those of iron foam in the pure metal foam mode were 13.4%, 20.1%, 34.4%, 43.1%, 49.6%, and 56.1%, and in the combination mode were 25.6%, 30.5%, 34.3%, and 33.4%.
Blending Novatein¯ thermoplastic protein with PLA for carbon dioxide assisted batch foaming
NASA Astrophysics Data System (ADS)
Walallavita, Anuradha; Verbeek, Casparus J. R.; Lay, Mark
2016-03-01
The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO2 expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO2 had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO2 ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.
Wiegand, Cornelia; Springer, Steffen; Abel, Martin; Wesarg, Falko; Ruth, Peter; Hipler, Uta-Christina
2013-01-01
Negative-pressure wound therapy (NPWT) is an advantageous treatment option in wound management to promote healing and reduce the risk of complications. NPWT is mainly carried out using open-cell polyurethane (PU) foams that stimulate granulation tissue formation. However, growth of wound bed tissue into foam material, leading to disruption of newly formed tissue upon dressing removal, has been observed. Consequently, it would be of clinical interest to preserve the positive effects of open-cell PU foams while avoiding cellular ingrowth. The study presented analyzed effects of NPWT using large-pored PU foam, fine-pored PU foam, and the combination of large-pored foam with drainage film on human dermal fibroblasts grown in a collagen matrix. The results showed no difference between the dressings in stimulating cellular migration during NPWT. However, when NPWT was applied using a large-pored PU foam, the fibroblasts continued to migrate into the dressing. This led to significant breaches in the cell layers upon removal of the samples after vacuum treatment. In contrast, cell migration stopped at the collagen matrix edge when fine-pored PU foam was used, as well as with the combination of PU foam and drainage film. In conclusion, placing a drainage film between collagen matrix and the large-pored PU foam dressing reduced the ingrowth of cells into the foam significantly. Moreover, positive effects on cellular migration were not affected, and the effect of the foam on tissue surface roughness in vitro was also reduced. © 2013 by the Wound Healing Society.
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
Le Goff, Anne; Quéré, David; Clanet, Christophe
2014-09-21
We study the motion of a solid sphere after its fast impact on a bath of liquid foam. We identify two regimes of deceleration. At short times, the velocity is still large and the foam behaves similar to a Newtonian fluid of constant viscosity. Then we measure a velocity threshold below which the sphere starts experiencing the foam's elasticity. We interpret this behavior using a visco-elasto-plastic model for foam rheology. Finally we discuss the possibility of stopping a projectile in the foam, and evaluate the capture efficiency.
Method of making a cyanate ester foam
Celina, Mathias C.; Giron, Nicholas Henry
2014-08-05
A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.
Fabrication of superhydrophobic film by microcellular plastic foaming method
NASA Astrophysics Data System (ADS)
Zhang, Zhen Xiu; Li, Ya Nan; Xia, Lin; Ma, Zhen Guo; Xin, Zhen Xiang; Kim, Jin Kuk
2014-08-01
To solve the complicated manufacturing operation and the usage of toxic solvent problems, a simple and novel method to fabricate superhydrophobic film by surface foaming method was introduced in this paper. The superhydrophobic property of the foamed material was obtained at a contact angle >150° and a rolling angle about 8°. The foamed material can instantly generate its superhydrophobicity via peeling process. The effects of blowing agent content, foaming time and peeling rate on the foam structure and superhydrophobicity were studied.
Anaerobic digestion foaming causes--a review.
Ganidi, Nafsika; Tyrrel, Sean; Cartmell, Elise
2009-12-01
Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming problem and to identify gaps in knowledge regarding the theory of foam formation in anaerobic digesters.
Temperature control transport system
Schabron, John F; Sorini-Wong, Susan S
2014-12-09
Embodiments of the inventive technology may involve the use of layered, insulated PCM assemblage that itself comprises: modular insulating foam material 8 that, upon establishment as part of the assemblage, defines inner foam material sides 9 and outer foam material sides 10; thin reflective material 11 established against (whether directly in contact with or not) at least either the inner foam material sides or the outer foam materials sides, and modular, enclosed PCM sections 12 established between the modular insulating foam material and the interior center.
Holographic study of non-affine deformation in copper foam with a negative Poisson's ratio of -0.8
NASA Technical Reports Server (NTRS)
Chen, C. P.; Lakes, R. S.
1993-01-01
While conventional foams have positive Poisson's ratios (become smaller in cross-section when stretched and larger when compressed), foam materials have recently been defined which possess 'reentrant' cellular architectures; in these, inwardly-protruding cell ribs are responsible for negative Poisson's ratio behavior, yielding greater resilience than conventional foams. Double-exposure holographic interferometry is presently used to examine the microdeformation of a reentrant copper foam. Attention is given to the nonaffine (inhomogeneous) deformation of this foam.
Stability and Decay Properties of Foam in Seawater.
1987-04-24
DECAY PROPERTIES OF FOAM IN SEAWATER FMRODUCTION Foam is formed by the entrainment of air in the form of small bubbles at and just beneath the...181 has examined how the size distributions of foam patches formed by wave action on a sandy beach vary with time. It was found that the mean diameter...typical foam patch was 25 seconds. Zheng et al [25] also measured the average lifetime of a foam layer formed at the surface by wave breaking on a
Investigation and Development of Air Foam Cushioning
1975-06-01
n.c..#arr and lafenrffr or »lock numb«) CUSHIONING MATERIALS PACKAGING MATERIILS POLYURETHANE FOAM CUSHIONING SOLUTIONS ( AQUEOUS ) POLYMERS FOAMING ...Mixer. This froth foam could be produced by pour-in-place method or could be made into pre- formed and cut ribbon DD, ET» M73 EDITION OF I NOV SI IS...hours« The foam did not recover after the weight was removed« Work on the foaming of polyvinyl alcohol solution with an Oakes Mixer produced a spongy
Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams
NASA Astrophysics Data System (ADS)
Combrzyński, Maciej; Mościcki, Leszek; Kwaśniewska, Anita; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Sołowiej, Bartosz; Gładyszewska, Bożena; Muszyński, Siemowit
2017-10-01
The aim of this work was to determine the water vapour sorption properties of thermoplastic starch filling foams processed by extrusion-cooking technique from various combinations of potato starch and two foaming agents: poly(vinyl) alcohol and Plastronfoam, in amount of 1, 2 and 3% each. Foams were processed with the single screw extruder-cooker at two different screw rotational speeds 100 and 130 r.p.m. The sorption isotherms of samples were determined and described using the Guggenheim-Anderson-de Boer model. Also, the kinetics of water vapour adsorption by foams, as a function of time, was measured and fitted with Peleg model. On the basis of the analysis the influence of the applied foaming agents, as well as the technological parameters of extrusion-cooking process in relation to water vapour adsorption by thermoplastic starch foams was demonstrated. There was no difference between the shapes of the isotherms for poly(vinyl) alcohol foams while for Plastronfoam foams a notable difference among foams extruded at 100 r.p.m. was observed in the regions of low and high humidity content. The analysis of the Guggenheim-Anderson-de Boer model parameters showed that the water molecules were less strongly bound with the foam surface when extruded at a lower screw speed.
Wall effects in Stokes experiment with a liquid foam
NASA Astrophysics Data System (ADS)
Gao, Haijing; Subramani, Hariprasad; Harris, Michael; Basaran, Osman
2011-11-01
Liquid foams are widely used in numerous applications ranging from the oil and gas industry to beauty, healthcare, and household products industries. A fundamental understanding of the relationships between the properties of liquid foams and their flow responses is, however, still in its infancy compared to that involving the fluid dynamics of simple fluids. In this talk, the flow of a dry liquid foam around a spherical bead, i.e. the Stokes problem for liquid foams, is studied experimentally. In contrast to previous work (cf. Cantat 2006), the focus of the present research is to probe the effect of a solid wall that is located a few bubble radii from the bead. The new experimental results show that the elastic modulus of dry liquid foams is directly proportional to the surface tension of the foaming agents and inversely proportional to the average bubble size in the foams, in agreement with previous theoretical and experimental studies. The experiments further show that the close proximity of the solid wall causes profound structural changes to the gas bubbles as the foam flows past the bead. A good understanding of these structural changes and how they can affect the elastic modulus of foams can be indispensable in formulating improved models for accurately describing the dynamical response of foams within the realm of continuum mechanics.
An approach for characterising cellular polymeric foam structures using computed tomography
NASA Astrophysics Data System (ADS)
Chen, Youming; Das, Raj; Battley, Mark
2018-02-01
Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.
An overview of polyurethane foams in higher specification foam mattresses.
Soppi, Esa; Lehtiö, Juha; Saarinen, Hannu
2015-02-01
Soft polyurethane foams exist in thousands of grades and constitute essential components of hospital mattresses. For pressure ulcer prevention, the ability of foams to control the immersion and envelopment of patients is essential. Higher specification foam mattresses (i.e., foam mattresses that relieve pressure via optimum patient immersion and envelopment while enabling patient position changes) are claimed to be more effective for preventing pressure ulcers than standard mattresses. Foam grade evaluations should include resiliency, density, hardness, indentation force/load deflection, progressive hardness, tensile strength, and elongation along with essential criteria for higher specification foam mattresses. Patient-specific requirements may include optimal control of patient immersion and envelopment. Mattress cover characteristics should include breathability, impermeability to fluids, and fire safety and not affect mattress function. Additional determinations such as hardness are assessed according to the guidelines of the American Society for Testing and Materials and the International Organization for Standardization. At this time, no single foam grade provides an optimal combination of the above key requirements, but the literature suggests a combination of at least 2 foams may create an optimal higher specification foam mattress for pressure ulcer prevention. Future research and the development of product specification accuracy standards are needed to help clinicians make evidence-based decisions about mattress use.
Injectable silk foams for the treatment of cervical insufficiency
NASA Astrophysics Data System (ADS)
Fournier, Eric P.
Preterm birth is the leading cause of neonatal mortality, resulting in over 4,000 deaths each year. A significant risk factor for preterm birth is cervical insufficiency, the weakening and subsequent deformation of cervical tissue. Cervical insufficiency is both detectable and treatable but current treatments are lacking. The most common approach requires multiple invasive procedures. This work investigates the injection of silk foams, a minimally-invasive method for supporting cervical tissue. Silk offers many advantages for use as a biomaterial including strength, versatility, and biocompatibility. Injectable silk foams will minimize patient discomfort while also providing more targeted and personalized treatment. A battery of mechanical testing was undertaken to determine silk foam response under physiologically relevant loading and environmental conditions. Mechanical testing was paired with analysis of foam morphology and structure that illustrated the effects of injection on pore geometry and size. Biological response to silk foams was evaluated using an in vitro degradation study and subcutaneous in vivo implantation in a mouse model. Results showed that foams exceeded the mechanical requirements for stiffening cervical tissue, although the current injection process limits foam size. Injection was shown to cause measurable but localized foam deformation. This work indicates that silk foams are a feasible treatment option for cervical insufficiency but challenges remain with foam delivery.
Mecozzi, Mauro; Pietroletti, Marco
2016-11-01
In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of electrostatic (hydrogen bonds) and nonpolar (van der Waals and π-π) interactions involving carbohydrate proteins and lipids present. The presence and relevance of these interactions agree with the supramolecular and surfactant characteristics of marine organic matter described in the scientific literature.
Foam as a Fire Suppressant: An Evaluation
Paul Schlobohm; Ron Rochna
1987-01-01
The ability of fire suppressant foams to improve ground-applied fire control efforts was evaluated. Foaming agents and foam-generating systems were examined. Performance evaluations were made for direct attack, indirect attack, and mop-up. Foam was determined to suppress and repel fire in situations where water did not. Cost comparisons of mop-up work showed straight...
46 CFR 170.245 - Foam flotation material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Foam flotation material. 170.245 Section 170.245... REQUIREMENTS FOR ALL INSPECTED VESSELS Special Installations § 170.245 Foam flotation material. (a) Installation of foam must be approved by the OCMI. (b) If foam is used to comply with § 171.070(d), § 171.095(c...
46 CFR 170.245 - Foam flotation material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Foam flotation material. 170.245 Section 170.245... REQUIREMENTS FOR ALL INSPECTED VESSELS Special Installations § 170.245 Foam flotation material. (a) Installation of foam must be approved by the OCMI. (b) If foam is used to comply with § 171.070(d), § 171.095(c...
46 CFR 95.17-5 - Quantity of foam required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Quantity of foam required. 95.17-5 Section 95.17-5... PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-5 Quantity of foam required. (a) Area... blanket of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall...
46 CFR 76.17-5 - Quantity of foam required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Quantity of foam required. 76.17-5 Section 76.17-5... EQUIPMENT Foam Extinguishing Systems, Details § 76.17-5 Quantity of foam required. (a) Area protected. (1... of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall be...
46 CFR 76.17-5 - Quantity of foam required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Quantity of foam required. 76.17-5 Section 76.17-5... EQUIPMENT Foam Extinguishing Systems, Details § 76.17-5 Quantity of foam required. (a) Area protected. (1... of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall be...
46 CFR 76.17-5 - Quantity of foam required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Quantity of foam required. 76.17-5 Section 76.17-5... EQUIPMENT Foam Extinguishing Systems, Details § 76.17-5 Quantity of foam required. (a) Area protected. (1... of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall be...
46 CFR 76.17-5 - Quantity of foam required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Quantity of foam required. 76.17-5 Section 76.17-5... EQUIPMENT Foam Extinguishing Systems, Details § 76.17-5 Quantity of foam required. (a) Area protected. (1... of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall be...
46 CFR 76.17-5 - Quantity of foam required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Quantity of foam required. 76.17-5 Section 76.17-5... EQUIPMENT Foam Extinguishing Systems, Details § 76.17-5 Quantity of foam required. (a) Area protected. (1... of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall be...
46 CFR 95.17-5 - Quantity of foam required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Quantity of foam required. 95.17-5 Section 95.17-5... PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-5 Quantity of foam required. (a) Area... blanket of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall...
46 CFR 95.17-5 - Quantity of foam required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Quantity of foam required. 95.17-5 Section 95.17-5... PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-5 Quantity of foam required. (a) Area... blanket of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall...
46 CFR 95.17-5 - Quantity of foam required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Quantity of foam required. 95.17-5 Section 95.17-5... PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-5 Quantity of foam required. (a) Area... blanket of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall...
46 CFR 95.17-5 - Quantity of foam required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Quantity of foam required. 95.17-5 Section 95.17-5... PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-5 Quantity of foam required. (a) Area... blanket of foam over the entire tank top or bilge of the space protected. The arrangement of piping shall...
46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced as...
46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced as...
46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced as...
NASA Astrophysics Data System (ADS)
Subekti, P.; Hambali, E.; Suryani, A.; Suryadarma, P.
2017-05-01
This study aims to analyze the potential aplication of of palm oil-based foaming agent as peat fires fighter in Indonesia. From literature review, it has been known that the foaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It is necessary to develop the production and application of foaming agent in Indonesia because peat fires occur almost every year that caused smoke haze. Potential raw material for the production of environmental friendly foaming agent as foam extinguishing for peat fires in Indonesia aong other is palm oil due to abundant availability, sustainable, and foam product easily degraded in the environment of the burnt areas. Production of foaming agent as fire-fighting in Indonesia is one alternative to reduce the time to control the fire and smog disaster impact. Application of palm oil as a raw material for fire-fighting is contribute to increase the value added and the development of palm oil downstream industry.
Polystyrene Foam Products Equation of State as a Function of Porosity and Fill Gas
NASA Astrophysics Data System (ADS)
Mulford, R. N.; Swift, D. C.
2009-12-01
An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O2-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO2 decomposes at high temperatures.
Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio
2017-08-01
Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .
Rheology of Foam Near the Order-Disorder Phase Transition
NASA Technical Reports Server (NTRS)
Holt, R. Glynn; McDaniel, J. Gregory
1999-01-01
Foams are extremely important in a variety of industrial applications. Foams are widely used in fire-fighting applications, and are especially effective in fighting flammable liquid fires. In fact the Fire Suppression System aboard the Space Shuttle utilizes cylinders of Halon foam, which, when fired, force a rapidly expanding foam into the convoluted spaces behind instrument panels. Foams are critical in the process of enhanced oil recovery, due to their surface-active and highly viscous nature. They are also used as drilling fluids in underpressurized geologic formations. They are used as transport agents, and as trapping agents. They are also used as separation agents, where ore refinement is accomplished by froth flotation of the typically lighter and hydrophobic contaminants. The goal of the proposed investigation is the determination of the mechanical and rheological properties of foams, utilizing the microgravity environment to explore foam rheology for foams which cannot exist, or only exist for a short time, in 1g.
Pitch-based carbon foam and composites and use thereof
Klett, James W.; Burchell, Timothy D.; Choudhury, Ashok
2006-07-04
A thermally conductive carbon foam is provided, normally having a thermal conductivity of at least 40 W/mK. The carbon foam usually has a specific thermal conductivity, defined as the thermal conductivity divided by the density, of at least about 75 Wcm.sup.3/m.degree. Kgm. The foam also has a high specific surface area, typically at least about 6,000 m.sup.2/m.sup.3. The foam is characterized by an x-ray diffraction pattern having "doublet" 100 and 101 peaks characterized by a relative peak split factor no greater than about 0.470. The foam is graphitic and exhibits substantially isotropic thermal conductivity. The foam comprises substantially ellipsoidal pores and the mean pore diameter of such pores is preferably no greater than about 340 microns. Other materials, such as phase change materials, can be impregnated in the pores in order to impart beneficial thermal properties to the foam. Heat exchange devices and evaporatively cooled heat sinks utilizing the foams are also disclosed.
Pitch-based carbon foam and composites and uses thereof
Klett, James W.; Burchell, Timothy D.; Choudhury, Ashok
2004-01-06
A thermally conductive carbon foam is provided, normally having a thermal conductivity of at least 40 W/m.multidot.K. The carbon foam usually has a specific thermal conductivity, defined as the thermal conductivity divided by the density, of at least about 75 W.multidot.cm.sup.3 /m.multidot..degree.K.multidot.gm. The foam also has a high specific surface area, typically at least about 6,000 m.sup.2 /m.sup.3. The foam is characterized by an x-ray diffraction pattern having "doublet" 100 and 101 peaks characterized by a relative peak split factor no greater than about 0.470. The foam is graphitic and exhibits substantially isotropic thermal conductivity. The foam comprises substantially ellipsoidal pores and the mean pore diameter of such pores is preferably no greater than about 340 microns. Other materials, such as phase change materials, can be impregnated in the pores in order to impart beneficial thermal properties to the foam. Heat exchange devices and evaporatively cooled heat sinks utilizing the foams are also disclosed.
Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures
Liu, Jiaan; Si, Fujian; Zhu, Xianyong; Liu, Yaohui; Zhang, Jiawei; Liu, Yan; Zhang, Chengchun
2017-01-01
Hybrid Ni/Al foams were fabricated by depositing electroless Ni–P (EN) coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation. PMID:28772456
Mechanical properties of palm oil based bio-polyurethane foam of free rise and various densities
NASA Astrophysics Data System (ADS)
Hilmi, Hazmi; Zainuddin, Firuz; Cheng, Teoh Siew; Lan, Du Ngoc Uy
2017-12-01
Bio-foam was produced from palm oil-based polyol (POBP) and methylene diphenyl diisocyanate (MDI) with weight ratio of 1:1. The effect of opened mould (as free rise) and closed mould (control expansion) was investigated. Different densities of bio-polyurethane foam (0.3, 0.4 and 0.5 g.cm-3) were prepared using the closed mould system. The effect of density on morphology and compressive properties of bio-foam was studied. Results showed that bio-foam prepared by closed mould method possessed homogeneous cell structure and cell size compared to bio-foam prepared by opened mould. In addition, bio-foam using closed mould system had higher compression strength (0.47 MPa) than that of bio-foam using opened mould system (0.13 MPa). With higher density and lesser porosity, the compressive modulus and compressive strength of bio foams will be higher. The increase in compressive properties is due to the decrease in the cells size, more homogeneous cell structure and reduction in porosity content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbertson, Robert D.; Patterson, Brian M.; Smith, Zachary
An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micromore » CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.« less
NMR of laser-polarized 129Xe in blood foam
NASA Technical Reports Server (NTRS)
Tseng, C. H.; Peled, S.; Nascimben, L.; Oteiza, E.; Walsworth, R. L.; Jolesz, F. A.
1997-01-01
Laser-polarized 129Xe dissolved in a foam preparation of fresh human blood was investigated. The NMR signal of 129Xe dissolved in blood was enhanced by creating a foam in which the dissolved 129Xe exchanged with a large reservoir of gaseous laser-polarized 129Xe. The dissolved 129Xe T1 in this system was found to be significantly shorter in oxygenated blood than in deoxygenated blood. The T1 of 129Xe dissolved in oxygenated blood foam was found to be approximately 21 (+/-5) s, and in deoxygenated blood foam to be greater than 40 s. To understand the oxygenation trend, T1 measurements were also made on plasma and hemoglobin foam preparations. The measurement technique using a foam gas-liquid exchange interface may also be useful for studying foam coarsening and other liquid physical properties.
High Temperature Structural Foam
NASA Technical Reports Server (NTRS)
Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.
1997-01-01
The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.
Watkins, Mike R; Oliver, Richard J
2017-07-01
Objectives The objectives were to examine the density, bubble size distribution and durability of sodium tetradecyl sulphate foam and the consistency of production of foam by a number of different operators using the Tessari method. Methods 1% and 3% sodium tetradecyl sulphate sclerosant foam was produced by an experienced operator and a group of inexperienced operators using either a 1:3 or 1:4 liquid:air ratio and the Tessari method. The foam density, bubble size distribution and foam durability were measured on freshly prepared foam from each operator. Results The foam density measurements were similar for each of the 1:3 preparations and for each of the 1:4 preparations but not affected by the sclerosant concentration. The bubble size for all preparations were very small immediately after preparation but progressively coalesced to become a micro-foam (<250 µm) after the first 30 s up until 2 min. Both the 1% and 3% solution foams developed liquid more rapidly when made in a 1:3 ratio (37 s) than in a 1:4 ratio (45 s) but all combinations took similar times to reach 0.4 ml liquid formation. For all the experiments, there was no statistical significant difference between operators. Conclusions The Tessari method of foam production for sodium tetradecyl sulphate sclerosant is consistent and reproducible even when made by inexperienced operators. The best quality foam with micro bubbles should be used within the first minute after production.
Patel, Purvi SD; Shepherd, Duncan ET; Hukins, David WL
2008-01-01
Background Polyurethane (PU) foam is widely used as a model for cancellous bone. The higher density foams are used as standard biomechanical test materials, but none of the low density PU foams are universally accepted as models for osteoporotic (OP) bone. The aim of this study was to determine whether low density PU foam might be suitable for mimicking human OP cancellous bone. Methods Quasi-static compression tests were performed on PU foam cylinders of different lengths (3.9 and 7.7 mm) and of different densities (0.09, 0.16 and 0.32 g.cm-3), to determine the Young's modulus, yield strength and energy absorbed to yield. Results Young's modulus values were 0.08–0.93 MPa for the 0.09 g.cm-3 foam and from 15.1–151.4 MPa for the 0.16 and 0.32 g.cm-3 foam. Yield strength values were 0.01–0.07 MPa for the 0.09 g.cm-3 foam and from 0.9–4.5 MPa for the 0.16 and 0.32 g.cm-3 foam. The energy absorbed to yield was found to be negligible for all foam cylinders. Conclusion Based on these results, it is concluded that 0.16 g.cm-3 PU foam may prove to be suitable as an OP cancellous bone model when fracture stress, but not energy dissipation, is of concern. PMID:18844988
Activated, coal-based carbon foam
Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw
2004-12-21
An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.
Thermal conductivity of rigid foam insulations for aerospace vehicles
NASA Astrophysics Data System (ADS)
Barrios, M.; Van Sciver, S. W.
2013-05-01
The present work describes measurements of the effective thermal conductivity of NCFI 24-124 foam, a spray-on foam insulation used formerly on the Space Shuttle external fuel tank. A novel apparatus to measure the effective thermal conductivity of rigid foam at temperatures ranging from 20 K to 300 K was developed and used to study three samples of NCFI 24-124 foam insulation. In preparation for measurement, the foam samples were either treated with a uniquely designed moisture absorption apparatus or different residual gases to study their impact on the effective thermal conductivity of the foam. The resulting data are compared to other measurements and mathematical models reported in the literature.
Measurement of Aqueous Foam Rheology by Acoustic Levitation
NASA Technical Reports Server (NTRS)
McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)
2000-01-01
An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.
Orbital foamed material extruder
NASA Technical Reports Server (NTRS)
Tucker, Dennis S. (Inventor)
2009-01-01
This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.
Cryogenic foam insulation for LH2 fueled subsonic transports
NASA Technical Reports Server (NTRS)
Sharpe, E. L.; Helenbrook, R. G.
1978-01-01
Shortages of petroleum-based aircraft fuels are foreseen before the end of the century. To cope with such shortages, NASA is developing a commercial aircraft which can operate on liquid hydrogen. Various foam insulators for LH2 storage are considered in terms of thermal performance and service life. Of the cryogenic foams considered (plain foam, foam with flame retardants and fiberglass reinforcement, and foam with vapor barriers), polyurethane foams were found to be the best. Tests consisted of heating a 5 cm layer of insulation around an aluminum tank containing LH2 to 316 K, and then cooling it to 266 K, while the inner surface was maintained at LH2 temperature (20 K).
Method for making one-container rigid foam
Aubert, James H.
2005-04-12
A method of making a one-container foam by dissolving a polymer in liquified gas at a pressure greater than the vapor pressure of the liquified gas and than rapidly decreasing the pressure within approximately 60 seconds to foam a foam. The foam can be rigid and also have adhesive properties. The liquified gas used is CF₃ l or mixtures thereof.
High Expansion Foam for Protecting Large Volume Mission Critical Shipboard Spaces
2009-01-01
aqueous film - forming foam ( AFFF ) sprinklers designed only to combat Class B two-dimensional pool fires.1 The...Validation Tests, Series 1 – An Evaluation of Aqueous Film Foaming Foam ( AFFF ) Suppression Systems for Protection of LHA(R) Well Deck and Vehicle... firefighting system design. NRL further recognized that employing a traditional high expansion foam generator would impact shipboard
NoFoam Unit Installation, Evaluation and Operations Manual
2003-03-10
Aqueous Film Forming Foam ( AFFF ) liquid concentrate in their fleet do not have the facilities...NoFoam Unit using AFRL vehicles and facilities. Currently, the majority of Fire Departments that use 3% Aqueous Film Forming Foam ( AFFF ) liquid...Departments that have ARFF vehicles that use 3% Aqueous Film Forming Foam ( AFFF ) liquid concentrate in their fleet do not have the facilities
Bajagain, Rishikesh; Lee, Sojin; Jeong, Seung-Woo
2018-09-01
This study investigated a persulfate-bioaugmentation serial foam spraying technique to remove total petroleum hydrocarbons (TPHs) present in diesel-contaminated unsaturated soil. Feeding of remedial agents by foam spraying increased the infiltration/unsaturated hydraulic conductivity of reagents into the unsaturated soil. Persulfate mixed with a surfactant solution infiltrated the soil faster than peroxide, resulting in relatively even soil moisture content. Persulfate had a higher soil infiltration tendency, which would facilitate its distribution over a wide soil area, thereby enhancing subsequent biodegradation efficiency. Nearly 80% of soil-TPHs were degraded by combined persulfate-bioaugmentation foam spraying, while bioaugmentation foam spraying alone removed 52%. TPH fraction analysis revealed that the removal rate for the biodegradation recalcitrant fraction (C 18 to C 22 ) in deeper soil regions was higher for persulfate-bioaugmentation serial foam application than for peroxide-bioaugmentation foam application. Persulfate-foam spraying may be superior to peroxide for TPH removal even at a low concentration (50 mN) because persulfate-foam is more permeable, persistent, and does not change soil pH in the subsurface. Although the number of soil microbes declines by oxidation pretreatment, bioaugmentation-foam alters the microbial population exponentially. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sticky foam as a less-than-lethal technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S.H.
1996-12-31
Sandia National Labs (SNL) in 1994 completed a project funded by the National Institute of Justice (NIJ) to determine the applicability of sticky foam for correctional applications. Sticky foam is an extremely tacky, tenacious material used to block, entangle, and impair individuals. The NIJ project developed a gun capable of firing multiple shots of sticky foam, tested the gun and sticky foam effectiveness on SNL volunteers acting out prison and law enforcement scenarios, and had the gun and sticky foam evaluated by correctional representatives. Based on the NIJ project work, SNL supported the Marine Corps Mission, Operation United Shield, withmore » sticky foam guns and supporting equipment to assist in the withdrawal of UN Peacekeepers from Somalia. Prior to the loan of the equipment, the Marines were given training in sticky foam characterization, toxicology, safety issues, cleanup and waste disposal, use limitations, use protocol and precautions, emergency facial clean-up, skin cleanup, gun filling, targeting and firing, and gun cleaning. The Marine Corps successfully used the sticky foam guns as part of that operation. This paper describes these recent developments of sticky foam for non-lethal uses and some of the lessons learned from scenario and application testing.« less
Yao, Xue; Yi, Ping; Zhao, Guang; Sun, Xin; Dai, Caili
2018-04-28
The dispersed particle gel (DPG) three-phase foam is a novel profile control and flooding system. The stability mechanism of the DPG three-phase foam was studied using an interfacial dilational rheology method. The results show that the elastic modulus of the DPG three-phase foam is up to 14 mN/m, which is much higher than the traditional foam. The increase in interface elasticity produces significantly positive effects on foam stability. Emphasis is given to the influences of frequency, temperature, pressure, and concentration on the viscoelasticity and interfacial adsorption of DPG particles, which change the modules of the foam interface and have a significant effect on foam stability. In addition, the microstructure of the DPG three-phase foam was observed. A viscoelastic shell is formed by the aggregation of the DPG particles on the interface. The irreversible adsorption gives the interface high elasticity and mechanical strength. The electrostatic repulsion between particles increases the spacing between bubbles. The combined effects of these factors give the interface higher mechanical strength, slow down the film drainage, effectively prevent gas permeation, and significantly improve the foam stability.
Yi, Ping; Zhao, Guang; Sun, Xin; Dai, Caili
2018-01-01
The dispersed particle gel (DPG) three-phase foam is a novel profile control and flooding system. The stability mechanism of the DPG three-phase foam was studied using an interfacial dilational rheology method. The results show that the elastic modulus of the DPG three-phase foam is up to 14 mN/m, which is much higher than the traditional foam. The increase in interface elasticity produces significantly positive effects on foam stability. Emphasis is given to the influences of frequency, temperature, pressure, and concentration on the viscoelasticity and interfacial adsorption of DPG particles, which change the modules of the foam interface and have a significant effect on foam stability. In addition, the microstructure of the DPG three-phase foam was observed. A viscoelastic shell is formed by the aggregation of the DPG particles on the interface. The irreversible adsorption gives the interface high elasticity and mechanical strength. The electrostatic repulsion between particles increases the spacing between bubbles. The combined effects of these factors give the interface higher mechanical strength, slow down the film drainage, effectively prevent gas permeation, and significantly improve the foam stability. PMID:29710805
NASA Astrophysics Data System (ADS)
Haryanto, Bode; Siswarni, M. Z.; Sianipar, Yosef C. H.; Sinaga, Tongam M. A.; Bestari, Imam
2017-05-01
The effect of negative charge SDS monomer on its foam capacity with the presence of contaminants was investigated in foam generator. Generally, surfactant with higher concentration has higher foam capacity. The higher concentration will increase the number of monomer then increase the micelles in liquid phase. Increasing the number of monomer with the negative charge is a potential to increase interaction with metal ion with positive charge in solution. The presence of inorganic compound as metal ion with positive charge and organic compound (colloid) as particle of coffee impacting to generate the foam lamella with monomer is evaluated. Foam dynamic capacity of only SDS with variation of CMC, 1 x; 2 x; 3 x have the height 7.5, 8.0 and 8.3 cm respectively with the different range time were investigated. The Height of foam dynamic capacity with the presence of 20 ppm Cd2+ ion contaminant was 8.0, 8.3 and 8.4 cm at the same CMC variation of SDS. The presence of metal ion contaminant within the foam was confirmed by AAS. The black coffee particles and oil as contaminant decreased the foam capacity significantly in comparing to metal ions.
Acoustic characterisation of liquid foams with an impedance tube.
Pierre, Juliette; Guillermic, Reine-Marie; Elias, Florence; Drenckhan, Wiebke; Leroy, Valentin
2013-10-01
Acoustic measurements provide convenient non-invasive means for the characterisation of materials. We show here for the first time how a commercial impedance tube can be used to provide accurate measurements of the velocity and attenuation of acoustic waves in liquid foams, as well as their effective "acoustic" density, over the 0.5-6kHz frequency range. We demonstrate this using two types of liquid foams: a commercial shaving foam and "home-made" foams with well-controlled physico-chemical and structural properties. The sound velocity in the latter foams is found to be independent of the bubble size distribution and is very well described by Wood's law. This implies that the impedance technique may be a convenient way to measure in situ the density of liquid foams. Important questions remain concerning the acoustic attenuation, which is found to be influenced in a currently unpredictible manner by the physico-chemical composition and the bubble size distribution of the characterised foams. We confirm differences in sound velocities in the two types of foams (having the same structural properties) which suggests that the physico-chemical composition of liquid foams has a non-negligible effect on their acoustic properties.
NASA Astrophysics Data System (ADS)
Hangai, Yoshihiko; Morita, Tomoaki; Koyama, Shinji; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2016-09-01
Functionally graded aluminum foam (FG Al foam) is a new class of Al foam in which the pore structure varies over the foam, resulting in corresponding variations in the mechanical properties of the foam. In this study, FG Al foam plates were fabricated by a friction powder sintering (FPS) process with a traversing tool that is based on a previously developed sintering and dissolution process. The variation of the mechanical properties was realized by setting the volume fraction φ of NaCl in the mixture to 60, 70, and 80%. Long FG Al foam plates were fabricated with a length equal to the tool traversing length with φ varying in the tool traversing direction. From x-ray computed tomography observation, it was shown that the density of the Al foam decreased with increasing φ. In contrast, almost uniform pore structures were obtained in each area. According to the results of compression tests on each area, the plateau stress and energy absorption tended to decrease with increasing φ. Therefore, it was shown that FG Al foam plates with varying mechanical properties can be fabricated by the FPS process with the traversing tool.
Structural assessment of metal foam using combined NDE and FEA
NASA Astrophysics Data System (ADS)
Ghosn, Louis J.; Abdul-Aziz, Ali; Young, Philippe G.; Rauser, Richard W.
2005-05-01
Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a high fidelity finite element analysis is conducted on as fabricated metal foam microstructures, to compare the calculated mechanical properties with the idealized theory. The high fidelity geometric models for the FEA are generated using series of 2D CT scans of the foam structure to reconstruct the 3D metal foam geometry. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile, compressive, and shear mechanical properties are deduced from the FEA model and compared with the theoretical values. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.
Optimization of process parameters for foam-mat drying of papaya pulp.
Kandasamy, Palani; Varadharaju, N; Kalemullah, S; Maladhi, D
2014-10-01
Experiments were carried out to optimize the process parameters for production of papaya powder using foam-mat drying. Papaya pulp was foamed by incorporating methyl cellulose (0.25, 0.5, 0.75 and 1 %, w/w), glycerol-mono-stearate (1, 2, 3 and 4 %, w/w) and egg white (5, 10, 15 and 20 %, w/w) as foaming agents. The maximum stable foam formation was 72, 90 and 125% at 0.75 % methyl cellulose, 3 % glycerol-mono-stearate and 15 % egg white respectively with 9°Brix pulp and whipping time of 20 min. The foamed pulp was dried at air temperature of 60, 65 and 70 °C with foam thickness of 2, 4, 6, 8 and 10 mm in a batch type cabinet dryer. The drying time required for foamed papaya pulp was lower than non-foamed pulp at all selected temperatures. Biochemical analysis results showed a significant reduction in ascorbic acid, β-carotene and total sugars in the foamed papaya dried product at higher foam thickness (6, 8 and 10 mm) and temperature (65 and 70 °C due to destruction at higher drying temperature and increasing time. There was no significant change in other biochemical constituents such as pH and acidity. The organoleptic and sensory evaluation of the quality attributes of papaya powder obtained from the pulp of 9°Brix added with 3 % glycerol-mono-stearate, whipped for 20 min and dried with a foam thickness of 4 mm at a temperature of 60 °C was found to be optimum to produce the foam-mat dried papaya powder.
Blending Novatein{sup ®} thermoplastic protein with PLA for carbon dioxide assisted batch foaming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walallavita, Anuradha, E-mail: asw15@students.waikato.ac.nz; Verbeek, Casparus J. R., E-mail: jverbeek@waikato.ac.nz; Lay, Mark, E-mail: mclay@waikato.ac.nz
2016-03-09
The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to othermore » thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO{sub 2} expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO{sub 2} had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO{sub 2} ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.« less
EMS providers do not use FOAM for education.
Bucher, Joshua; Donovan, Colleen; McCoy, Jonathan
2018-05-24
Free open access to medical education (FOAM, #FOAM) is the free availability of educational materials on various medicine topics. We hope to evaluate the use of social media and FOAM by emergency medical services (EMS) providers. We designed an online survey distributed to EMS providers with questions about demographics and social media/FOAM use by providers. The survey was sent to the American College of Emergency Physicians (ACEP) EMS Listserv of medical directors and was asked to be distributed to their respective agencies. The survey was designed to inquire about the providers' knowledge of FOAM and social media and their use of the above for EMS education. There were 169 respondents out of a total of 523 providers yielding a response rate of 32.3%. Fifty-three percent of respondents are paramedics, 37% are EMT-Basic trained, and the remainder (16%) were "other." The minority (20%) of respondents had heard of FOAM. However, 54% of respondents had heard of "free medical education online" regarding pertinent topics. Of the total respondents who used social media for education, 31% used Facebook and 23% used blogs and podcasts as resources for online education. Only 4% of respondents stated they produced FOAM content. Seventy-six percent of respondents said they were "interested" or "very interested" in using FOAM for medical education. If FOAM provided continuing medical education (CME), 83% of respondents would be interested in using it. Social media is not used frequently by EMS providers for the purposes of FOAM. There is interest within EMS providers to use FOAM for education, even if CME was not provided. FOAM can provide a novel area of education for EMS.
Investigation of foam flow in a 3D printed porous medium in the presence of oil.
Osei-Bonsu, Kofi; Grassia, Paul; Shokri, Nima
2017-03-15
Foams demonstrate great potential for displacing fluids in porous media which is applicable to a variety of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is due to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media. The presence of oil in porous media is detrimental to the stability of foams which can influence its success as a displacing fluid. In the present work, we have conducted a systematic series of experiments using a well-characterised porous medium manufactured by 3D printing technique to evaluate the influence of oil on the dynamics of foam displacement under different boundary conditions. The effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to heavy oil. Additionally, it was observed that the dynamics of oil entrapment was dictated by the stability of foam in the presence of oil. Furthermore, foams with high gas fraction appeared to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil dynamics during displacement revealed formation of a less stable front as the foam quality increased, leading to less oil recovery. This study extends the physical understanding of oil displacement by foam in porous media and provides new physical insights regarding the parameters influencing this process. Copyright © 2016. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sung Ho; Bazin, Nick; Shaw, Jessica I.
A robust, millimeter-sized low-density Cu foam with ~90% (v/v) porosity, ~30 nm thick walls, and ~1 μm diameter spherical pores is prepared by the slip-casting of metal-coated polymer core–shell particles followed by a thermal removal of the polymer. In this paper, we report our key findings that enable the development of the low-density Cu foams. First, we need to synthesize polystyrene (PS) particles coated with a very thin Cu layer (in the range of tens of nanometers). A simple reduction in the amount of Cu deposited onto the PS was not sufficient to form such a low-density Cu foams duemore » to issues related to foam collapse and densification upon the subsequent polymer removal step. Precise control over the morphology of the Cu coating on the particles is essential for the synthesis of a lower density of foams. Second, improving the dispersion of PS–Cu particles in a suspension used for the casting as well as careful optimization of a baking condition minimize the formation of irregular large voids, leading to Cu foams with a more uniform packing and a better connectivity of neighboring Cu hollow shells. Finally, we analyzed mechanical properties of the Cu foams with a depth-sensing indentation test. The uniform Cu foams show a significant improvement in mechanical properties (~1.5× modulus and ~3× hardness) compared to those of uncontrolled foam samples with a similar foam density but irregular large voids. As a result, higher surface areas and a good electric conductivity of the Cu foams present a great potential to future applications.« less
Kim, Sung Ho; Bazin, Nick; Shaw, Jessica I.; ...
2016-12-06
A robust, millimeter-sized low-density Cu foam with ~90% (v/v) porosity, ~30 nm thick walls, and ~1 μm diameter spherical pores is prepared by the slip-casting of metal-coated polymer core–shell particles followed by a thermal removal of the polymer. In this paper, we report our key findings that enable the development of the low-density Cu foams. First, we need to synthesize polystyrene (PS) particles coated with a very thin Cu layer (in the range of tens of nanometers). A simple reduction in the amount of Cu deposited onto the PS was not sufficient to form such a low-density Cu foams duemore » to issues related to foam collapse and densification upon the subsequent polymer removal step. Precise control over the morphology of the Cu coating on the particles is essential for the synthesis of a lower density of foams. Second, improving the dispersion of PS–Cu particles in a suspension used for the casting as well as careful optimization of a baking condition minimize the formation of irregular large voids, leading to Cu foams with a more uniform packing and a better connectivity of neighboring Cu hollow shells. Finally, we analyzed mechanical properties of the Cu foams with a depth-sensing indentation test. The uniform Cu foams show a significant improvement in mechanical properties (~1.5× modulus and ~3× hardness) compared to those of uncontrolled foam samples with a similar foam density but irregular large voids. As a result, higher surface areas and a good electric conductivity of the Cu foams present a great potential to future applications.« less
Derived virtual devices: a secure distributed file system mechanism
NASA Technical Reports Server (NTRS)
VanMeter, Rodney; Hotz, Steve; Finn, Gregory
1996-01-01
This paper presents the design of derived virtual devices (DVDs). DVDs are the mechanism used by the Netstation Project to provide secure shared access to network-attached peripherals distributed in an untrusted network environment. DVDs improve Input/Output efficiency by allowing user processes to perform I/O operations directly from devices without intermediate transfer through the controlling operating system kernel. The security enforced at the device through the DVD mechanism includes resource boundary checking, user authentication, and restricted operations, e.g., read-only access. To illustrate the application of DVDs, we present the interactions between a network-attached disk and a file system designed to exploit the DVD abstraction. We further discuss third-party transfer as a mechanism intended to provide for efficient data transfer in a typical NAP environment. We show how DVDs facilitate third-party transfer, and provide the security required in a more open network environment.
Structural applications of metal foams considering material and geometrical uncertainty
NASA Astrophysics Data System (ADS)
Moradi, Mohammadreza
Metal foam is a relatively new and potentially revolutionary material that allows for components to be replaced with elements capable of large energy dissipation, or components to be stiffened with elements which will generate significant supplementary energy dissipation when buckling occurs. Metal foams provide a means to explore reconfiguring steel structures to mitigate cross-section buckling in many cases and dramatically increase energy dissipation in all cases. The microstructure of metal foams consists of solid and void phases. These voids have random shape and size. Therefore, randomness ,which is introduced into metal foams during the manufacturing processes, creating more uncertainty in the behavior of metal foams compared to solid steel. Therefore, studying uncertainty in the performance metrics of structures which have metal foams is more crucial than for conventional structures. Therefore, in this study, structural application of metal foams considering material and geometrical uncertainty is presented. This study applies the Sobol' decomposition of a function of many random variables to different problem in structural mechanics. First, the Sobol' decomposition itself is reviewed and extended to cover the case in which the input random variables have Gaussian distribution. Then two examples are given for a polynomial function of 3 random variables and the collapse load of a two story frame. In the structural example, the Sobol' decomposition is used to decompose the variance of the response, the collapse load, into contributions from the individual input variables. This decomposition reveals the relative importance of the individual member yield stresses in determining the collapse load of the frame. In applying the Sobol' decomposition to this structural problem the following issues are addressed: calculation of the components of the Sobol' decomposition by Monte Carlo simulation; the effect of input distribution on the Sobol' decomposition; convergence of estimates of the Sobol' decomposition with sample size using various sampling schemes; the possibility of model reduction guided by the results of the Sobol' decomposition. For the rest of the study the different structural applications of metal foam is investigated. In the first application, it is shown that metal foams have the potential to serve as hysteric dampers in the braces of braced building frames. Using metal foams in the structural braces decreases different dynamic responses such as roof drift, base shear and maximum moment in the columns. Optimum metal foam strengths are different for different earthquakes. In order to use metal foam in the structural braces, metal foams need to have stable cyclic response which might be achievable for metal foams with high relative density. The second application is to improve strength and ductility of a steel tube by filling it with steel foam. Steel tube beams and columns are able to provide significant strength for structures. They have an efficient shape with large second moment of inertia which leads to light elements with high bending strength. Steel foams with high strength to weight ratio are used to fill the steel tube to improves its mechanical behavior. The linear eigenvalue and plastic collapse finite element (FE) analysis are performed on steel foam filled tube under pure compression and three point bending simulation. It is shown that foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior are investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve due to the change of the failure mode from local buckling to yielding. Moreover, the Sobol' decomposition is used to investigate uncertainty in the strength and ductility of the composite tube, including the sensitivity of the strength to input parameters such as the foam density, tube wall thickness, steel properties etc. Monte Carlo simulation is performed on aluminum foam filled tubes under three point bending conditions. The simulation method is nonlinear finite element analysis. Results show that the steel foam properties have a greater effect on ductility of the steel foam filled tube than its strength. Moreover, flexural strength is more sensitive to steel properties than to aluminum foam properties. Finally, the properties of hypothetical structural steel foam C-channels foamed are investigated via simulations. In thin-walled structural members, stability of the walls is the primary driver of structural limit states. Moreover, having a light weight is one of the main advantages of the thin-walled structural members. Therefore, thin-walled structural members made of steel foam exhibit improved strength while maintaining their low weight. Linear eigenvalue, finite strip method (FSM) and plastic collapse FE analysis is used to evaluate the strength and ductility of steel foam C-channels under uniform compression and bending. It is found that replacing steel walls of the C-channel with steel foam walls increases the local buckling resistance and decreases the global buckling resistance of the C-channel. By using the Sobol' decomposition, an optimum configuration for the variable density steel foam C-channel can be found. For high relative density, replacing solid steel of the lips and flange elements with steel foam increases the buckling strength. On the other hand, for low relative density replacing solid steel of the lips and flange elements with steel foam deceases the buckling strength. Moreover, it is shown that buckling strength of the steel foam C-channel is sensitive to the second order Sobol' indices. In summary, it is shown in this research that the metal foams have a great potential to improve different types of structural responses, and there are many promising application for metal foam in civil structures.
Hladikova, K; Ruzickova, I; Klucova, P; Wanner, J
2002-01-01
This paper examines how the physicochemical characteristics of the solids are related to foam formation and describes how the foaming potential of full-scale plants can be assessed. The relations among activated sludge and biological foam hydrophobicity, scum index, aeration tank cover and filamentous population are evaluated. Individual parameter comparison reveals the scumming intensity can be estimated only on the assumption that foams is already established. None of the above mentioned characteristics can be reliably used to predict the foaming episodes at wastewater treatment plants.
Low density, microcellular foams, preparation, and articles
Young, A.T.
1982-03-03
A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Convective Instabilities in Liquid Foams
NASA Technical Reports Server (NTRS)
Veretennikov, Igor; Glazier, James A.
2004-01-01
The main goal of this work is to better understand foam behavior both on the Earth and in microgravity conditions and to determine the relation between a foam's structure and wetness and its rheological properties. Our experiments focused on the effects of the bubble size distribution (BSD) on the foam behavior under gradual or stepwise in the liquid flow rate and on the onset of the convective instability. We were able to show experimentally, that the BSD affects foam rheology very strongly so any theory must take foam texture into account.
Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation
NASA Technical Reports Server (NTRS)
Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip
2006-01-01
This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.
Effect of the presence of oil on foam performance; A field simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, D.H.S.; Yang, Z.M.; Stone, T.W.
1992-05-01
This paper describes a field-scale sensitivity study of the effect of the presence of oil on foam performance in a steam-foam-drive process. The 2D field-scale simulation was based on a field pilot in the Karamay formation in Zin-Jiang, China. Numerical results showed that the detrimental effect of oil on the foam performance in field operations is significant. The success of a steam-foam process depended mainly on the ability of the foam to divert steam from the depleted zone.
Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de Los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore
2015-01-01
Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.
Physiological and behavioral responses of poultry exposed to gas-filled high expansion foam.
McKeegan, D E F; Reimert, H G M; Hindle, V A; Boulcott, P; Sparrey, J M; Wathes, C M; Demmers, T G M; Gerritzen, M A
2013-05-01
Disease control measures require poultry to be killed on farms to minimize the risk of disease being transmitted to other poultry and, in some cases, to protect public health. We assessed the welfare implications for poultry of the use of high-expansion gas-filled foam as a potentially humane, emergency killing method. In laboratory trials, broiler chickens, adult laying hens, ducks, and turkeys were exposed to air-, N2-, or CO2-filled high expansion foam (expansion ratio 300:1) under standardized conditions. Birds were equipped with sensors to measure cardiac and brain activity, and measurements of oxygen concentration in the foam were carried out. Initial behavioral responses to foam were not pronounced but included headshakes and brief bouts of wing flapping. Both N2- and CO2-filled foam rapidly induced ataxia/loss of posture and vigorous wing flapping in all species, characteristic of anoxic death. Immersion in air-filled, high expansion foam had little effect on physiology or behavior. Physiological responses to both N2- and CO2-filled foam were characterized by a pronounced bradyarrythymia and a series of consistent changes in the appearance of the electroencephalogram. These were used to determine an unequivocal time to loss of consciousness in relation to submersion. Mean time to loss of consciousness was 30 s in hens and 18 s in broilers exposed to N2-filled foam, and 16 s in broilers, 1 s in ducks, and 15 s in turkeys exposed to CO2-filled foam. Euthanasia achieved with anoxic foam was particularly rapid, which is explained by the very low oxygen concentrations (below 1%) inside the foam. Physiological observations and postmortem examination showed that the mode of action of high expansion, gas-filled foam is anoxia, not occlusion of the airway. These trials provide proof-of-principle that submersion in gas-filled, high expansion foam provides a rapid and highly effective method of euthanasia, which may have potential to provide humane emergency killing or routine depopulation.
Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore
2015-01-01
Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods. PMID:25859853
Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.
Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro
2015-10-23
Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately t H = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.
Foaming phenomenon in bench-scale anaerobic digesters.
Siebels, Amanda M; Long, Sharon C
2013-04-01
The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues.
Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding
Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro
2015-01-01
Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629
Utilization of fly ash and ultrafine GGBS for higher strength foam concrete
NASA Astrophysics Data System (ADS)
Gowri, R.; Anand, K. B.
2018-02-01
Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.
Zhang, Liying; Gurao, Manish; Yang, King H.; King, Albert I.
2011-01-01
Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou’s impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou’s impact device, has not been fully characterized. The foam used in Marmarou’s device was tested at seven strain rates ranging from quasi-static to dynamic (0.014 ~ 42.86 s−1) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114
Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I
2011-05-15
Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. Copyright © 2011 Elsevier B.V. All rights reserved.
Research on Foam Concrete Features by Replacing Cement with Industrial Waste Residues
NASA Astrophysics Data System (ADS)
Saynbaatar; Qiqige; Ma, Gangping; Fu, Jianhua; Wang, Jinghua
The influence on the performance of foam concrete made by replacing cement with some industrial waste residues was researched in this paper. The result shows that the 7d and 28d compressive strength of foam concrete increases firstly and then decreases with the increasing amount of industrial waste residue. The proper added range is 10%-20% for steel slag, blast furnace slag and coal ash, but, 8% for desulfurized fly ash. With the proper adding ratio, the compressive strength of foam concrete always increased comparing with the pure cement foam concrete. When adding 48% of the compound industrial waste residues, the 28d compressive strength of the foam concrete reached the 2.9MPa which could match the pure cement foam concrete. The results indicates that there is a synergistic effect among the compound industrial waste residue, and this effect is benefit to improving the compressive strength of foam concrete.
Synthesis of palm oil fatty acid as foaming agent for firefighting application
NASA Astrophysics Data System (ADS)
Rivai, M.; Hambali, E.; Suryani, A.; Fitria, R.; Firmansyah, S.; Pradesi, J.
2017-05-01
Many factors including natural factor, human carelessness, new land clearance or agricultural burning/act of vandalism and ground fire are suspected as the causes of forest fire. Foam, which cools the fire down, covers the burning material/fuel, and avoids contact between burning materials with oxygen, is an effective material used to fight large-scale fires. For this purpose, surfactant which can facilitate foam formation and inhibit the spread of smoke is required. This study was aimed at producing prototype product of foaming agent from palm oil and its formulation as a fire fighting material. Before the formulation stage, the foaming agent was resulted from saponification process of oleic, lauric, and palmitic acids by using NaOH and KOH alkaline. Foam stability was used as the main indicator of foaming agent. Results showed that potassium palmitate had the highest foam stability of 82% until the 3rd day. The best potassium palmitate concentration was 7%.
Multifunctional foaming agent to prepare aluminum foam with enhanced mechanical properties
NASA Astrophysics Data System (ADS)
Li, Xun; Liu, Ying; Ye, Jinwen; An, Xuguang; Ran, Huaying
2018-03-01
In this paper, CuSO4 was used as foaming agent to prepare close cell Aluminum foam(Al foam) at the temperature range of 680 °C ∼ 758 °C for the first time. The results show that CuSO4 has multifunctional such as, foaming, viscosity increasing, reinforcement in Al matrix, it has a wide decomposition temperature range of 641 °C ∼ 816 °C, its sustain-release time is 5.5 min at 758 °C. The compression stress and energy absorption of CuSO4-Al foam is 6.89 Mpa and 4.82 × 106 J m‑3(compression strain 50%), which are 77.12% and 99.17% higher than that of TiH2-Al foam at the same porosity(76% in porosity) due to the reinforcement in Al matrix and uniform pore dispersion.
Investigating acoustic-induced deformations in a foam using multiple light scattering.
Erpelding, M; Guillermic, R M; Dollet, B; Saint-Jalmes, A; Crassous, J
2010-08-01
We have studied the effect of an external acoustic wave on bubble displacements inside an aqueous foam. The signature of the acoustic-induced bubble displacements is found using a multiple light scattering technique, and occurs as a modulation on the photon correlation curve. Measurements for various sound frequencies and amplitudes are compared to analytical predictions and numerical simulations. These comparisons finally allow us to elucidate the nontrivial acoustic displacement profile inside the foam; in particular, we find that the acoustic wave creates a localized shear in the vicinity of the solid walls holding the foam, as a consequence of inertial contributions. This study of how bubbles "dance" inside a foam as a response to sound turns out to provide new insights on foam acoustics and sound transmission into a foam, foam deformation at high frequencies, and analysis of light scattering data in samples undergoing nonhomogeneous deformations.
Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC
2010-03-02
A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.
Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter.
Takesono, Satoshi; Onodera, Masayuki; Toda, Kiyoshi; Yoshida, Masanori; Yamagiwa, Kazuaki; Ohkawa, Akira
2006-03-01
This study examined a stirred-tank fermenter (STF) containing low-viscosity foaming liquids with an agitation impeller and foam-breaking impeller mounted on the same shaft. Results showed that the performance of the foam-breaking impeller can be improved by changing a conventional six-blade turbine impeller into a rod impeller as the agitation impeller. The volumetric oxygen-transfer coefficient, kLa, in the mechanical foam-control method (MFM) using a six-blade vaned disk as the foam-breaking impeller in the STF with the rod impeller was approximately five times greater than that of the chemical foam-control method (CFM) adding an anti-foaming agent in the STF with the six-blade turbine impeller. Application of the present method to the cultivation of Saccharomyces cerevisiae K-7 demonstrated that the cultivation time up to the maximum cell concentration was remarkably shorter than that achieved using a conventional CFM.
AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam
NASA Astrophysics Data System (ADS)
Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu
2018-04-01
Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead; Simoes, Conan R.; Venkatapathy, Ethiras (Technical Monitor)
2002-01-01
The current research is focused on processing ceramic foams that have potential as a thermal protection material. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies will be presented. The presentation will also focus on characterization of these foams in terms of mechanical and thermal properties. Foams processed using these approaches having bulk densities ranging from 0.15 to 0.9 g per cubic centimeter and a cell sizes from 5 to 500 micrometers. Compression strengths ranged from 2 to 7 MPa for these materials.
Foam Insulation for Cryogenic Flowlines
NASA Technical Reports Server (NTRS)
Sonju, T. R.; Carbone, R. L.; Oves, R. E.
1985-01-01
Welded stainless-steel vacuum jackets on cryogenic ducts replaced by plastic foam-insulation jackets that weigh 12 percent less. Foam insulation has 85 percent of insulating ability of stainless-steel jacketing enclosing vacuum of 10 microns of mercury. Foam insulation easier to install than vacuum jacket. Moreover, foam less sensitive to damage and requires minimal maintenance. Resists vibration and expected to have service life of at least 10 years.
46 CFR 35.40-10 - Steam, foam, or CO2 fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Steam, foam, or CO2 fire smothering apparatus-TB/ALL. 35... Posting and Marking Requirements-TB/ALL. § 35.40-10 Steam, foam, or CO2 fire smothering apparatus—TB/ALL. Steam, foam, or CO2 fire smothering apparatus shall be marked “STEAM FIRE APPARATUS” or “FOAM FIRE...
46 CFR 35.40-10 - Steam, foam, or CO2 fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Steam, foam, or CO2 fire smothering apparatus-TB/ALL. 35... Posting and Marking Requirements-TB/ALL. § 35.40-10 Steam, foam, or CO2 fire smothering apparatus—TB/ALL. Steam, foam, or CO2 fire smothering apparatus shall be marked “STEAM FIRE APPARATUS” or “FOAM FIRE...
Development of steel foam processing methods and characterization of metal foam
NASA Astrophysics Data System (ADS)
Park, Chanman
2000-10-01
Steel foam was synthesized by a powder metallurgical route, resulting in densities less than half that of steel. Process parameters for foam synthesis were investigated, and two standard powder formulations were selected consisting of Fe-2.5% C and 0.2 wt% foaming agent (either MgCO3 or SrCO3). Compression tests were performed on annealed and pre-annealed foam samples of different density to determine mechanical response and energy absorption behavior. The stress-strain response was strongly affected by annealing, which reduced the carbon content and converted much of the pearlitic structure to ferrite. Different powder blending methods and melting times were employed and the effects on the geometric structure of steel foam were examined. Dispersion of the foaming agent affected the pore size distribution of the expanded foams. With increasing melt time, pores coalesced, leading to the eventual collapse of the foam. Inserting interlayer membranes in the powder compacts inhibited coalescence of pores and produced foams with more uniform cell size and distribution. The closed-cell foam samples exhibited anisotropy in compression, a phenomenon that was caused primarily by the ellipsoidal cell shapes within the foam. Yield strengths were 3x higher in the transverse direction than in the longitudinal direction. Yield strength also showed a power-law dependence on relative density (n ≅ 1.8). Compressive strain was highly localized and occurred in discrete bands that extended transverse to the loading direction. The yield strength of foam samples showed stronger strain rate dependence at higher strain rates. The increased strain rate dependence was attributed to microinertial hardening. Energy absorption was also observed to increase with strain rate. Measurements of cell wall curvature showed that an increased mean curvature correlated with a reduced yield strength, and foam strengths generally fell below predictions of Gibson-Ashby theory. Morphological defects reduced yield strength and altered the dependence on density. Microstructural analysis was performed on a porous Mg and AZ31 Mg alloy synthesized by the GASAR process. The pore distribution depended on the distance from the chill end of ingots. TEM observations revealed apparent gas tracks neat the pores and ternary intermetallic phases in the alloy.
NASA Astrophysics Data System (ADS)
Kang, Yeon June
In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction normal to the face of foam layer play the principal role in determining the acoustical behavior of polyimide foam layers, although more satisfactory agreement between experimental measurements and theoretical predictions of transmission loss is obtained when the anisotropic properties are allowed in the model.
Stuntz, Robert; Clontz, Robert
2016-05-01
Emergency physicians are using free open access medical education (FOAM) resources at an increasing rate. The extent to which FOAM resources cover the breadth of emergency medicine core content is unknown. We hypothesize that the content of FOAM resources does not provide comprehensive or balanced coverage of the scope of knowledge necessary for emergency medicine providers. Our objective is to quantify emergency medicine core content covered by FOAM resources and identify the predominant FOAM topics. This is an institutional review board-approved, retrospective review of all English-language FOAM posts between July 1, 2013, and June 30, 2014, as aggregated on http://FOAMem.com. The topics of FOAM posts were compared with those of the emergency medicine core content, as defined by the American Board of Emergency Medicine's Model of the Clinical Practice of Emergency Medicine (MCPEM). Each FOAM post could cover more than 1 topic. Repeated posts and summaries were excluded. Review of the MCPEM yielded 915 total emergency medicine topics grouped into 20 sections. Review of 6,424 FOAM posts yielded 7,279 total topics and 654 unique topics, representing 71.5% coverage of the 915 topics outlined by the MCPEM. The procedures section was covered most often, representing 2,285 (31.4%) FOAM topics. The 4 sections with the least coverage were cutaneous disorders, hematologic disorders, nontraumatic musculoskeletal disorders, and obstetric and gynecologic disorders, each representing 0.6% of FOAM topics. Airway techniques; ECG interpretation; research, evidence-based medicine, and interpretation of the literature; resuscitation; and ultrasonography were the most overrepresented subsections, equaling 1,674 (23.0%) FOAM topics when combined. The data suggest an imbalanced and incomplete coverage of emergency medicine core content in FOAM. The study is limited by its retrospective design and use of a single referral Web site to obtain available FOAM resources. More comprehensive and balanced coverage of emergency medicine core content is needed if FOAM is to serve as a primary educational resource. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Foaming of E-Glass II (Report for G Plus Project for PPG)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Sang; Portch, Matthew P.; Matyas, Josef
2005-09-23
In a previous study, the effect of the furnace atmosphere on E glass foaming was investigated with the specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. The present study extended the previous study and focused on the effect of glass batch chemical composition on E-glass foaming. The present study also included reruns of foam tests performed in a previous study, which resulted in the same trend: the foaming extent increased nearly linearly with the heating rate and no foam was produced when CO2 + 55% H2O atmosphere was introduced at 300°C. It wasmore » shown that the lack of foaming in the test with CO2 + 55% H2O atmosphere introduced at 300°C was caused by a loss of sulfate at T <1250°C because of higher water content at the early stages of melting. The tests with new batches in the present study showed that replacing quicklime with limestone tend to decrease foaming, possibly caused by increased sulfate loss during early stages of melting in the batch with limestone. The batches where Na2SO4 was replaced with NaNO3, NaNO3 + CeO2, or CeO2, produced only very limited foaming regardless of the replacing components. As expected, the foaming extent increased as the sulfate content in the batch increased. The results of the present study suggest that foaming can be reduced by using limestone over quicklime and by decreasing the sulfate addition to a minimum required for refining.« less
Tong, Mingming; Cole, Katie; Brito-Parada, Pablo R; Neethling, Stephen; Cilliers, Jan J
2017-04-18
Pseudo-two-dimensional (2D) foams are commonly used in foam studies as it is experimentally easier to measure the bubble size distribution and other geometric and topological properties of these foams than it is for a 3D foam. Despite the widespread use of 2D foams in both simulation and experimental studies, many important geometric and topological relationships are still not well understood. Film size, for example, is a key parameter in the stability of bubbles and the overall structure of foams. The relationship between the size distribution of the films in a foam and that of the bubbles themselves is thus a key relationship in the modeling and simulation of unstable foams. This work uses structural simulation from Surface Evolver to statistically analyze this relationship and to ultimately formulate a relationship for the film size in 2D foams that is shown to be valid across a wide range of different bubble polydispersities. These results and other topological features are then validated using digital image analysis of experimental pseudo-2D foams produced in a vertical Hele-Shaw cell, which contains a monolayer of bubbles between two plates. From both the experimental and computational results, it is shown that there is a distribution of sizes that a film can adopt and that this distribution is very strongly dependent on the sizes of the two bubbles to which the film is attached, especially the smaller one, but that it is virtually independent of the underlying polydispersity of the foam.
Kongpatpanich, Kanokwan; Horike, Satoshi; Fujiwara, Yu-Ichi; Ogiwara, Naoki; Nishihara, Hirotomo; Kitagawa, Susumu
2015-09-14
Porous carbon material with a foam-like microstructure has been synthesized by direct carbonization of porous coordination polymer (PCP). In situ generation of foaming agents by chemical reactions of ligands in PCP during carbonization provides a simple way to create lightweight carbon material with a foam-like microstructure. Among several substituents investigated, the nitro group has been shown to be the key to obtain the unique foam-like microstructure, which is due to the fast kinetics of gas evolution during carbonization. Foam-like microstructural carbon materials showed higher pore volume and specific capacitance compared to a microporous carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polystyrene Foam EOS as a Function of Porosity and Fill Gas
NASA Astrophysics Data System (ADS)
Mulford, Roberta; Swift, Damian
2009-06-01
An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.
Data characterizing tensile behavior of cenosphere/HDPE syntactic foam.
Kumar, B R Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E; Gupta, Nikhil; Ramakrishna, Seeram
2016-03-01
The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites "Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine" (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model.
Solomon, James A; Tyring, Stephen; Staedtler, Gerald; Sand, Meike; Nkulikiyinka, Richard; Shakery, Kaweh
2016-09-01
Papulopustular rosacea (PPR) is characterized by centrofacial papules and pustules commonly associated with erythema. To compare investigator-reported efficacy outcomes for azelaic acid (AzA) foam 15% versus vehicle foam in PPR, a randomized, vehicle-controlled, double-blind phase 3 clinical trial was conducted at 48 US sites. Participants received AzA foam or vehicle foam for 12 weeks. Secondary efficacy outcomes included change in inflammatory lesion count (ILC), therapeutic response rate according to investigator global assessment (IGA), and change in erythema rating. This study was comprised of 961 participants with PPR. The results support the therapeutic superiority of AzA foam over vehicle foam.
Data characterizing tensile behavior of cenosphere/HDPE syntactic foam
Kumar, B.R. Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E.; Gupta, Nikhil; Ramakrishna, Seeram
2016-01-01
The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites “Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine” (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model. PMID:26937472
Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation
Jin, Wei; Liu, Jiaan; Wang, Zhili; Wang, Yonghua; Cao, Zheng; Liu, Yaohui; Zhu, Xianyong
2015-01-01
Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent. PMID:28793653
Jet-noise reduction through liquid-base foam injection.
NASA Technical Reports Server (NTRS)
Manson, L.; Burge, H. L.
1971-01-01
An experimental investigation has been made of the sound-absorbing properties of liquid-base foams and of their ability to reduce jet noise. Protein, detergent, and polymer foaming agents were used in water solutions. A method of foam generation was developed to permit systematic variation of the foam density. The investigation included measurements of sound-absorption coefficents for both plane normal incidence waves and diffuse sound fields. The intrinsic acoustic properties of foam, e.g., the characteristic impedance and the propagation constant, were also determined. The sound emitted by a 1-in.-diam cold nitrogen jet was measured for subsonic (300 m/sec) and supersonic (422 m/sec) jets, with and without foam injection. Noise reductions up to 10 PNdB were measured.
Digital Reconstruction of 3D Polydisperse Dry Foam
NASA Astrophysics Data System (ADS)
Chieco, A.; Feitosa, K.; Roth, A. E.; Korda, P. T.; Durian, D. J.
2012-02-01
Dry foam is a disordered packing of bubbles that distort into familiar polyhedral shapes. We have implemented a method that uses optical axial tomography to reconstruct the internal structure of a dry foam in three dimensions. The technique consists of taking a series of photographs of the dry foam against a uniformly illuminated background at successive angles. By summing the projections we create images of the foam cross section. Image analysis of the cross sections allows us to locate Plateau borders and vertices. The vertices are then connected according to Plateau's rules to reconstruct the internal structure of the foam. Using this technique we are able to visualize a large number of bubbles of real 3D foams and obtain statistics of faces and edges.
Mechanical Properties of 17-4PH Stainless Steel Foam Panels
NASA Technical Reports Server (NTRS)
Raj, S. V.; Ghosn, L. J.; Lerch, B. a.; Hebsur, M.; Cosgriff, L. M.; Fedor, J.
2007-01-01
Rectangular 17-4PH stainless steel sandwiched foam panels were fabricated using a commercial manufacturing technique by brazing two sheets to a foam core. Microstructural observations and ultrasonic nondestructive evaluation of the panels revealed large variations in the quality of the brazed areas from one panel to the next as well as within the same panel. Shear tests conducted on specimens machined from the panels exhibited failures either in the brazed region or in the foam core for the poorly brazed and well-brazed samples, respectively. Compression tests were conducted on the foam cores to evaluate their elastic and plastic deformation behavior. These data were compared with published data on polymeric and metallic foams, and with theoretical deformation models proposed for open cell foams.
Plastic Materials for Insulating Applications.
ERIC Educational Resources Information Center
Wang, S. F.; Grossman, S. J.
1987-01-01
Discusses the production and use of polymer materials as thermal insulators. Lists several materials that provide varying degrees of insulation. Describes the production of polymer foam and focuses on the major applications of polystyrene foam, polyurethane foam, and polyisocyanurate foam. (TW)
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-30
Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
Polystyrene foam products equation of state as a function of porosity and fill gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulford, Roberta N; Swift, Damian C
2009-01-01
An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO{sub 2}-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O{submore » 2}-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO{sub 2} decomposes at high temperatures.« less
The decolouration of methyl orange using aluminum foam, ultrasound and direct electric current
NASA Astrophysics Data System (ADS)
Liu, C. M.; Huang, X. Y.; Zhang, H. Y.; Dai, J. D.; Ning, C. C.
2018-01-01
The decolouration of methyl orange (MO) using aluminum (Al) foam, ultrasound and direct electric current (DC) is investigated. The decolouration rate (DR) of MO using only Al foam is low because there is a passivation oxide layer on the Al foam surface. Due to the low utilization of ultrasound in MO water solution medium, the DR of MO using only ultrasonic irradiation is also poor. The DR of MO is greatly increased when Al foam, ultrasonic irradiation and DC are used together. There is good synergistic effect between Al foam, ultrasound and DC in decolouration of MO. This enhancement of DR may be related to the cavitation, cleaning of Al foam surface and water electrolysis. Due to the surface charge on wire carrying stationary current, Al foam with DC acts like a serious anodes and cathodes and makes water electrolysis giving hydrogen gas to cleavage azo bond. The DC applied on Al foam is beneficial for reductive decolouration of MO. Our results show that DC is a new way for the reductive decolouration MO in water.
NASA Astrophysics Data System (ADS)
Haidar, S.; Ansary, S.; Rahman, A.
2016-02-01
Aluminium foams, produced by melting Aluminium alloy (LM6) containing blowing agent(s) and vigorous stirring. TiH2 is a known agent for this. As TiH2 begins to decompose into Ti and gaseous H2 when heated above about 465°C, large volumes of hydrogen gas are rapidly produced, creating bubbles that leads to a closed cell foam. A novel Strategy to enhance the mechanical properties of Al-MMC foams is discussed here, and it is demonstrated that titanium hydride (TiH2) in the form of 10-15 μm diameter particles can be pre-treated by selective oxidation to produce more uniform foams having better compressive properties (yield strength and energy absorption). It is found that the mechanical properties of the foams and the uniformity of cell size distribution is improved when the foam is blown with an optimized mixture of CaCO3 and pretreated TiH2. In order to define the relationship of mechanical properties with relative density of this material, correlations which uniquely defines the compressive behaviour of this modified Al- MMC foam has been developed.
Characterization of carbon nanofibre-reinforced polypropylene foams.
Antunes, M; Velasco, J I; Realinho, V; Arencón, D
2010-02-01
In this paper, carbon-nanofibre-reinforced polypropylene foams were prepared and characterized regarding their foaming behaviour, cellular structure and both thermo-mechanical as well as electrical properties. Polypropylene (PP) nanocomposites containing 5, 10 and 20 wt% of carbon nanofibres (CNF) and a chemical blowing agent were prepared by melt-mixing inside a twin-screw extruder and subsequently water-cooled and pelletized. The extruded nanocomposites were later foamed using a one-step compression-moulding process. The thermo-mechanical properties of the CNF-reinforced PP foams were studied, analyzing the influence of the carbon nanofibres on the cellular structure and subsequent thermo-mechanical behaviour of the foams. Carbon nanofibres not only seemed to act as nucleating agents, reducing the average cell size of the foams and increasing their cell density for similar expansion ratios, but also helped produce mechanically-improved foams, even reaching for the 20 wt% CNF-reinforced ones a specific modulus around 1.2 GPa x cm3/g for densities as low as 300 kg/m3. An increasingly higher electrical conductivity was assessed for both the solids as well as the foams with increasing the amount of carbon nanofibres.
Foam structure :from soap froth to solid foams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraynik, Andrew Michael
2003-01-01
The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less
NASA Astrophysics Data System (ADS)
Xin, Zhaopeng; Li, Weixin; Fang, Wei; He, Xuan; Zhao, Lei; Chen, Hui; Zhang, Wanqiu; Sun, Zhimin
2017-12-01
In this work, graphene aerogel/carbon foam is prepared by in situ inducing graphene aerogels in the pores of carbon foam. This novel hierarchical porous structure possesses a higher specific surface area as the introduction of graphene aerogels in carbon foam increases the proportion of micropores thus making it a superior candidate as electrodes for supercapacitors. The characterization and comparison of various properties of carbon foam and graphene aerogels/carbon foam have been investigated systematically. The result shows that specific surface area is up to 682.8 m2/g compared with initial carbon foam which increased about 55%, and the pore distribution curve shows more pore volume at 0.3 nm for F-CF/GA. It is demonstrated that the introduction of graphene aerogels not only increases the specific surface area, but also improves the conductivity, thus resulting in the reduction of the internal resistance and the improvement of the electrochemical performance. Consequently, graphene aerogel/carbon foam shows an excellent specific capacitance of 193.1 F/g at 1 A/g which is 72% higher than that of carbon foam acted as electrodes for supercapacitors.
Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich
NASA Astrophysics Data System (ADS)
Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.
2018-01-01
Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.
NASA Technical Reports Server (NTRS)
Finckenor, M. M.; Albyn, K. C.; Watts, E. W.
2006-01-01
Onorbit photos of the International Space Station (ISS) solar array blanket box foam pad assembly indicate degradation of the Kapton film covering the foam, leading to atomic oxygen (AO) exposure of the foam. The purpose of this test was to determine the magnitude of particulate generation caused by low-Earth orbital environment exposure of the foam and also by compression of the foam during solar array wing retraction. The polyimide foam used in the ISS solar array wing blanket box assembly is susceptible to significant AO erosion. The foam sample in this test lost one-third of its mass after exposure to the equivalent of 22 mo onorbit. Some particulate was generated by exposure to simulated orbital conditions and the simulated solar array retraction (compression test). However, onorbit, these particles would also be eroded by AO. The captured particles were generally <1 mm, and the particles shaken free of the sample had a maximum size of 4 mm. The foam sample maintained integrity after a compression load of 2.5 psi.
Industrial waste utilization for foam concrete
NASA Astrophysics Data System (ADS)
Krishnan, Gokul; Anand, K. B.
2018-02-01
Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.
Cell openness manipulation of low density polyurethane foam for efficient sound absorption
NASA Astrophysics Data System (ADS)
Hyuk Park, Ju; Suh Minn, Kyung; Rae Lee, Hyeong; Hyun Yang, Sei; Bin Yu, Cheng; Yeol Pak, Seong; Sung Oh, Chi; Seok Song, Young; June Kang, Yeon; Ryoun Youn, Jae
2017-10-01
Satisfactory sound absorption using a low mass density foam is an intriguing desire for achieving high fuel efficiency of vehicles. This issue has been dealt with a microcellular geometry manipulation. In this study, we demonstrate the relationship between cell openness of polyurethane (PU) foam and sound absorption behaviors, both theoretically and experimentally. The objective of this work is to mitigate a threshold of mass density by rendering a sound absorber which shows a satisfactory performance. The cell openness, which causes the best sound absorption performance in all cases considered, was estimated as 15% by numerical simulation. Cell openness of PU foam was experimentally manipulated into desired ranges by adjusting rheological properties in a foaming reaction. Microcellular structures of the fabricated PU foams were observed and sound absorption coefficients were measured using a B&K impedance tube. The fabricated PU foam with the best cell openness showed better sound absorption performance than the foam with double mass density. We envisage that this study can help the manufacture of low mass density sound absorbing foams more efficiently and economically.
NASA Astrophysics Data System (ADS)
Rapp, F.; Schneider, A.; Elsner, P.
2014-05-01
Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).
NASA Technical Reports Server (NTRS)
Stuckey, James M.
1996-01-01
The selection and quantification of four foams using a more environmentally friendly HCFC-141b blowing agent replacing foams that used the CFC-11 blowing agent for the external tank (ET) LWT has been addressed along with problems and solutions that were encountered during verification. The effort on two lower density spray foams for the ET SLWT are presented, but predicted weight savings were not encouraging. Suggestions for possible problem solving are included along with a new approach for selecting foams for qualification as back-up foams for the foams used on the ET LWT. We investigated three resins for use as thermally sprayed coatings for corrosion prevention on metal. The best coating was obtained with a thermoplastic polyimide resin. This coating has a good chance of meeting ET requirements. Possible third generation blowing agents have been shown usable in polyurethane spray and pour foams, and solubility in isocyannate foam components are acceptable. We considered aerogels as insulation materials on space vehicles, and suggested a liner for a liquid oxygen (LOX) composite tank.
Stress wave propagation and mitigation in two polymeric foams
NASA Astrophysics Data System (ADS)
Pradel, Pierre; Malaise, Frederic; Cadilhon, Baptiste; Quessada, Jean-Hugues; de Resseguier, Thibaut; Delhomme, Catherine; Le Blanc, Gael
2017-06-01
Polymeric foams are widely used in industry for thermal insulation or shock mitigation. This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (<10-6 s) stress pulses. Plate impact and electron beam irradiation experiments have been conducted to study the dynamic mechanical responses of both foams. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor followed by the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms. In the polyurethane foam, the pores are closed by elastic buckling of the matrix and damage of the structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. Two porous material models successfully represent the macroscopic response of these polymeric foams.