Science.gov

Sample records for permafrost sediment core

  1. Geochemical characteristics of organic compounds in a permafrost sediment core sample from northeast Siberia, Russia

    NASA Technical Reports Server (NTRS)

    Matsumoto, G. I.; Friedmann, E. I.; Gilichinsky, D. A.

    1995-01-01

    We studied total organic carbon (TOC), hydrocarbons and fatty acids in a permafrost sediment core sample (well 6-90, length 32.0 m, 1.5-2.5 Ma BP) from northeast Siberia (approximately 70 degrees N, 158 degrees E), Russia, to elucidate their geochemical features in relation to source organisms and paleoenvironmental conditions. Long-chain n-alkanes and n-alkanoic acids (>C19) were most predominant hydrocarbons and fatty acids, respectively, so organic matter in the sediment core was derived mainly from vascular plants and, to a much smaller extent, from bacteria. Low concentrations of unsaturated fatty acids revealed that organic matter in the sediment core was considerably degraded during and/or after sedimentation. The predominance of vascular plant components, the major ionic components of nonmarine sources, and geological data strongly implied that the sediment layers were formed in shallow lacustrine environments, such as swamp with large influences of tundra or forest-tundra vegetation. Also, no drastic changes in paleoenvironmental conditions for biological activity or geological events, such as sea transgressions or ice-sheet influences, occurred at the sampling site approximately 100 km from the coast of the East Siberian Sea during the late Pliocene an early Pleistocene periods.

  2. Geochemical characteristics of organic compounds in a permafrost sediment core sample from northeast Siberia, Russia.

    PubMed

    Matsumoto, G I; Friedmann, E I; Gilichinsky, D A

    1995-10-01

    We studied total organic carbon (TOC), hydrocarbons and fatty acids in a permafrost sediment core sample (well 6-90, length 32.0 m, 1.5-2.5 Ma BP) from northeast Siberia (approximately 70 degrees N, 158 degrees E), Russia, to elucidate their geochemical features in relation to source organisms and paleoenvironmental conditions. Long-chain n-alkanes and n-alkanoic acids (>C19) were most predominant hydrocarbons and fatty acids, respectively, so organic matter in the sediment core was derived mainly from vascular plants and, to a much smaller extent, from bacteria. Low concentrations of unsaturated fatty acids revealed that organic matter in the sediment core was considerably degraded during and/or after sedimentation. The predominance of vascular plant components, the major ionic components of nonmarine sources, and geological data strongly implied that the sediment layers were formed in shallow lacustrine environments, such as swamp with large influences of tundra or forest-tundra vegetation. Also, no drastic changes in paleoenvironmental conditions for biological activity or geological events, such as sea transgressions or ice-sheet influences, occurred at the sampling site approximately 100 km from the coast of the East Siberian Sea during the late Pliocene an early Pleistocene periods.

  3. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.

    PubMed

    Ding, Jinzhi; Li, Fei; Yang, Guibiao; Chen, Leiyi; Zhang, Beibei; Liu, Li; Fang, Kai; Qin, Shuqi; Chen, Yongliang; Peng, Yunfeng; Ji, Chengjun; He, Honglin; Smith, Pete; Yang, Yuanhe

    2016-08-01

    The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region.

  4. PNNL Researchers Collect Permafrost Cores in Alaska

    SciTech Connect

    2016-11-23

    Permafrost is ground that is frozen for two or more years. In the Arctic, discontinuous regions of this saturated admixture of soil and rock store a large fraction of the Earth’s carbon – about 1672 petagrams (1672 trillion kilograms). As temperatures increase in the Northern Hemisphere, a lot of that carbon may be released to the atmosphere, making permafrost an important factor to represent accurately in global climate models. At Pacific Northwest National Laboratory, a group led by James C. Stegen periodically extracts permafrost core samples from a site near Fairbanks, Alaska. Back at the lab in southeastern Washington State, they study the cores for levels of microbial activity, carbon fluxes, hydrologic patterns, and other factors that reveal the dynamics of this consequential layer of soil and rock.

  5. Aminostratigraphy of Organisms in Antarctic and Siberian Permafrost Cores

    NASA Technical Reports Server (NTRS)

    Brinton, K. L. F.; Tsapin, A. I.; McDonald, G. D.; Gilichinsky, D.

    1999-01-01

    Amino acid racemization dating (or aminostratigraphy) in Antarctic and Siberian permafrost core samples can be used to evaluate the age of organisms in frozen environments. The potential for subsurface permafrost on Mars makes terrestrial permafrost an important source of information regarding the preservation of both living organisms and their remains. Additional information is contained in the original extended abstract.

  6. Geomicrobial characterization of a 60 m long permafrost core from Svalbard

    NASA Astrophysics Data System (ADS)

    Fromreide, Siren; Tore Mørkved, Pål; Gilbert, Graham Lewis; Christiansen, Hanne H.; Reigstad, Laila

    2014-05-01

    In connection with a planned CO2 storage pilot project in the Arctic, a 60 m long permafrost core was drilled in Adventdalen, Svalbard. The on-shore drilling was performed through mainly marine and deltafront sediments, ending at the bedrock. The core has undergone detailed analyses of sedimentary stratigraphy, age, as well as the permafrost ice and carbon content at The University Centre in Svalbard (UNIS), and at the Center for Permafrost (CENPERM), Copenhagen. The main aim of the study presented here is to link the geochemical properties of the permafrost to the microbial community structure and its potential functions. As little is known about microbial life in permafrost at such depths this study will contribute to the understanding of these inaccessible ecosystems. A baseline geomicrobial description of 7 different depths in the 3 - 60 m interval of the permafrost core was done by culture independent methods such as 16S rRNA amplicon 454 pyrosequencing and functional and ribosomal gene quantifications. Additionally, geochemical analyses of the extracted pore water have been performed, as well as measurements of carbon content and major elements. The enumeration of the total prokaryotic community indicated similar numbers of bacteria and archaea down to approximately 50 m depth, while below this depth there was a dominance of archaeal cells. The bacterial 16S rRNA copy numbers ranged between 108 copies per gram sediment at 3 m depth to 104 copies per gram at the bedrock. Concerning the archaeal cells, the 16S rRNA copy numbers per gram sediment were in the range of 107 at the top of the core, ending at 105in the top of the bedrock. Detection and quantification of selected functional marker genes indicated high numbers of sulphate reducing bacteria at certain sediment depths, and a significant potential for microbial methanogenic activity throughout the core. Correlations studies between geochemical data and microbial community composition are currently ongoing.

  7. Contaminated Sediment Core Profiling

    EPA Science Inventory

    Evaluating the environmental risk of sites containing contaminated sediments often poses major challenges due in part to the absence of detailed information available for a given location. Sediment core profiling is often utilized during preliminary environmental investigations ...

  8. Methane in permafrost - Preliminary results from coring at Fairbanks, Alaska

    USGS Publications Warehouse

    Kvenvolden, K.A.; Lorenson, T.D.

    1993-01-01

    Permafrost has been suggested as a high-latitude source of methane (a greenhouse gas) during global warming. To begin to assess the magnitude of this source, we have examined the methane content of permafrost in samples from shallow cores (maximum depth, 9.5m) at three sites in Fairbanks, Alaska, where discontinuous permafrost is common. These cores sampled frozen loess, peat, and water (ice) below the active layer. Methane contents of permafrost range from <0.001 to 22.2mg/kg of sample. The highest methane content of 22.2mg/kg was found in association with peat at one site. Silty loess had high methane contents at each site of 6.56, 4.24, and 0.152mg/kg, respectively. Carbon isotopic compositions of the methane (??13C) ranged from -70.8 to -103.9 ???, and hydrogen isotopic compositions of the methane (??D) from -213 to -313 ???, indicating that the methane is microbial in origin. The methane concentrations were used in a one dimensional heat conduction model to predict the amount of methane that will be released from permafrost worldwide over the next 100 years, given two climate change scenarios. Our results indicate that at least 30 years will elapse before melting permafrost releases important amounts of methane; a maximum methane release rate will be about 25 to 30 Tg/yr, assuming that methane is generally distributed in shallow permafrost as observed in our samples.

  9. Challenges for coring deep permafrost on Earth and Mars.

    PubMed

    Pfiffner, S M; Onstott, T C; Ruskeeniemi, T; Talikka, M; Bakermans, C; McGown, D; Chan, E; Johnson, A; Phelps, T J; Le Puil, M; Difurio, S A; Pratt, L M; Stotler, R; Frape, S; Telling, J; Lollar, B Sherwood; Neill, I; Zerbin, B

    2008-06-01

    A scientific drilling expedition to the High Lake region of Nunavut, Canada, was recently completed with the goals of collecting samples and delineating gradients in salinity, gas composition, pH, pe, and microbial abundance in a 400 m thick permafrost zone and accessing the underlying pristine subpermafrost brine. With a triple-barrel wireline tool and the use of stringent quality assurance and quality control (QA/QC) protocols, 200 m of frozen, Archean, mafic volcanic rock was collected from the lower boundary that separates the permafrost layer and subpermafrost saline water. Hot water was used to remove cuttings and prevent the drill rods from freezing in place. No cryopegs were detected during penetration through the permafrost. Coring stopped at the 535 m depth, and the drill water was bailed from the hole while saline water replaced it. Within 24 hours, the borehole iced closed at 125 m depth due to vapor condensation from atmospheric moisture and, initially, warm water leaking through the casing, which blocked further access. Preliminary data suggest that the recovered cores contain viable anaerobic microorganisms that are not contaminants even though isotopic analyses of the saline borehole water suggests that it is a residue of the drilling brine used to remove the ice from the upper, older portion of the borehole. Any proposed coring mission to Mars that seeks to access subpermafrost brine will not only require borehole stability but also a means by which to generate substantial heating along the borehole string to prevent closure of the borehole from condensation of water vapor generated by drilling.

  10. Challenges for coring deep permafrost on earth and mars

    SciTech Connect

    Pfiffner, Susan Marie; Onstott, Tullis; Ruskeeniemi, T; Talikka, M; Bakermans, Corien; McGown, Daniel; Chan, E.; Johnson, Adam; Phelps, Tommy Joe; Le Puil, M; Difurio, Sarah A; Pratt, L.M.; Stotler, R; Frape, S; Telling, J; Lollar, Barbara Sherwood; Neill, I; Zerbin, B

    2008-01-01

    A scientific drilling expedition to the High Lake region of Nunavut, Canada, was recently completed with the goals of collecting samples and delineating gradients in salinity, gas composition, pH, pe, and microbial abundance in a 400 m thick permafrost zone and accessing the underlying pristine subpermafrost brine. With a triple-barrel wireline tool and the use of stringent quality assurance and quality control (QA/QC) protocols, 200 m of frozen, Archean, mafic volcanic rock was collected from the lower boundary that separates the permafrost layer and subpermafrost saline water. Hot water was used to remove cuttings and prevent the drill rods from freezing in place. No cryopegs were detected during penetration through the permafrost. Coring stopped at the 535 m depth, and the drill water was bailed from the hole while saline water replaced it. Within 24 hours, the borehole iced closed at 125 m depth due to vapor condensation from atmospheric moisture and, initially, warm water leaking through the casing, which blocked further access. Preliminary data suggest that the recovered cores contain viable anaerobic microorganisms that are not contaminants even though isotopic analyses of the saline borehole water suggests that it is a residue of the drilling brine used to remove the ice from the upper, older portion of the borehole. Any proposed coring mission to Mars that seeks to access subpermafrost brine will not only require borehole stability but also a means by which to generate substantial heating along the borehole string to prevent closure of the borehole from condensation of water vapor generated by drilling.

  11. Diversity and community structure of fungi through a permafrost core profile from the Qinghai-Tibet Plateau of China.

    PubMed

    Hu, Weigang; Zhang, Qi; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; An, Lizhe; Feng, Huyuan

    2014-12-01

    While a vast number of studies have addressed the prokaryotic diversity in permafrost, characterized by subzero temperatures, low water activity, and extremely low rates of nutrient and metabolite transfer, fungal patterns have received surprisingly limited attention. Here, the fungal diversity and community structure were investigated by culture-dependent technique combined with cloning-restriction fragment length polymorphism (RFLP) analysis of sediments in a 10-m-long permafrost core from the Qinghai-Tibet Plateau of China. A total of 62 fungal phylotypes related to 10 distinct classes representing three phyla were recovered from 5031 clones generated in 13 environmental gene libraries. A large proportion of the phylotypes (25/62) that were distantly related to described fungal species appeared to be novel diversity. Ascomycota was the predominant group of fungi, with respect to both clone and phylotype number. Our results suggested there was the existence of cosmopolitan psychrophilic or psychrotolerant fungi in permafrost sediments, the community composition of fungi varied with increasing depth, while these communities largely distributed according to core layers.

  12. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea.

    PubMed

    Koch, Katharina; Knoblauch, Christian; Wagner, Dirk

    2009-03-01

    The Siberian Laptev Sea shelf contains submarine permafrost, which was formed by flooding of terrestrial permafrost with ocean water during the Holocene sea level rise. This flooding resulted in a warming of the permafrost to temperatures close below 0 degrees C. The impact of these environmental changes on methanogenic communities and carbon dynamics in the permafrost was studied in a submarine permafrost core of the Siberian Laptev Sea shelf. Total organic carbon (TOC) content varied between 0.03% and 8.7% with highest values between 53 and 62 m depth below sea floor. In the same depth, maximum methane concentrations (284 nmol CH(4) g(-1)) and lowest carbon isotope values of methane (-72.2 per thousand VPDB) were measured, latter indicating microbial formation of methane under in situ conditions. The archaeal community structure was assessed by a nested polymerase chain reaction (PCR) amplification for DGGE, followed by sequencing of reamplified bands. Submarine permafrost samples showed a different archaeal community than the nearby terrestrial permafrost. Samples with high methane concentrations were dominated by sequences affiliated rather to the methylotrophic genera Methanosarcina and Methanococcoides as well as to uncultured archaea. The presented results give the first insights into the archaeal community in submarine permafrost and the first evidence for their activity at in situ conditions.

  13. Permafrost

    USGS Publications Warehouse

    Ray, Louis L.

    1993-01-01

    In 1577, on his second voyage to the New World in search of the Northwest Passage, Sir Martin Frobisher reported finding ground in the far north that was frozen to depths of "four or five fathoms, even in summer," and that the frozen condition "so combineth the stones together that scarcely instruments with great force can unknit them." This permanently frozen ground, now termed permafrost, underlies perhaps a fifth of the Earth's land surface. It occurs in Antarctica but is most extensive in the Northern Hemisphere. In the lands surrounding the Arctic Ocean, its maximum thickness has been reported in thousands of feet as much as 5,000 feet in Siberia and 2,000 feet in northern Alaska.

  14. Metagenomics Reveals Microbial Community Composition And Function With Depth In Arctic Permafrost Cores

    NASA Astrophysics Data System (ADS)

    Jansson, J.; Tas, N.; Wu, Y.; Ulrich, C.; Kneafsey, T. J.; Torn, M. S.; Hubbard, S. S.; Chakraborty, R.; Graham, D. E.; Wullschleger, S. D.

    2013-12-01

    The Arctic is one of the most climatically sensitive regions on Earth and current surveys show that permafrost degradation is widespread in arctic soils. Biogeochemical feedbacks of permafrost thaw are expected to be dominated by the release of currently stored carbon back into the atmosphere as CO2 and CH4. Understanding the dynamics of C release from permafrost requires assessment of microbial functions from different soil compartments. To this end, as part of the Next Generation Ecosystem Experiment in the Arctic, we collected two replicate permafrost cores (1m and 3m deep) from a transitional polygon near Barrow, AK. At this location, permafrost starts from 0.5m in depth and is characterized by variable ice content and higher pH than surface soils. Prior to sectioning, the cores were CT-scanned to determine the physical heterogeneity throughout the cores. In addition to detailed geochemical characterization, we used Illumina MiSeq technology to sequence 16SrRNA genes throughout the depths of the cores at 1 cm intervals. Selected depths were also chosen for metagenome sequencing of total DNA (including phylogenetic and functional genes) using the Illumina HiSeq platform. The 16S rRNA gene sequence data revealed that the microbial community composition and diversity changed dramatically with depth. The microbial diversity decreased sharply below the first few centimeters of the permafrost and then gradually increased in deeper layers. Based on the metagenome sequence data, the permafrost microbial communities were found to contain members with a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. The surface active layers had more representatives of Verrucomicrobia (potential methane oxidizers) whereas the deep permafrost layers were dominated by several different species of Actinobacteria. The latter are known to have a diverse metabolic capability and are able to adapt to stress by entering a dormant yet

  15. High permafrost ice contents in Holocene slope deposits as observed from shallow geophysics and a coring program in Pangnirtung, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Carbonneau, A.; Allard, M.; L'Hérault, E.; LeBlanc, A.

    2011-12-01

    A study of permafrost conditions was undertaken in the Hamlet of Pangnirtung, Nunavut, by the Geological Survey of Canada (GSC) and Université Laval's Centre d'études nordiques (CEN) to support decision makers in their community planning work. The methods used for this project were based on geophysical and geomorphological approaches, including permafrost cores drilled in surficial deposits and ground penetrating radar surveys using a GPR Pulse EKKO 100 extending to the complete community area and to its projected expansion sector. Laboratory analysis allowed a detailed characterization of permafrost in terms of water contents, salinity and grain size. Cryostratigraphic analysis was done via CT-Scan imagery of frozen cores using medical imaging softwares such as Osiris. This non destructive method allows a 3D imaging of the entire core in order to locate the amount of the excess ice, determine the volumetric ice content and also interpret the ice-formation processes that took place during freezing of the permafrost. Our new map of the permafrost conditions in Pangnirtung illustrates that the dominant mapping unit consist of ice-rich colluvial deposits. Aggradationnal ice formed syngenitically with slope sedimentation. Buried soils were found imbedded in this colluvial layer and demonstrates that colluviation associated with overland-flow during snowmelt occurred almost continuously since 7080 cal. BP. In the eastern sector of town, the 1 to 4 meters thick colluviums cover till and a network of ice wedges that were revealed as spaced hyperbolic reflectors on GPR profiles. The colluviums also cover ice-rich marine silt and bedrock in the western sector of the hamlet; marine shells found in a permafrost core yielded a radiocarbon date of 9553 cal. BP which provides a revised age for the local deglaciation and also a revised marine submergence limit. Among the applied methods, shallow drilling in coarse grained permafrost, core recovery and CT-Scan allowed the

  16. Sediments at the top of Earth's core.

    PubMed

    Buffett, B A; Garnero, E J; Jeanloz, R

    2000-11-17

    Unusual physical properties at the core-mantle boundary have been inferred from seismic and geodetic observations in recent years. We show how both types of observations can be explained by a layer of silicate sediments, which accumulate at the top of the core as Earth cools. Compaction of the sediments expels most of the liquid iron but leaves behind a small amount of core material, which is entrained in mantle convection and may account for the isotopic signatures of core material in some hot spot plumes. Extraction of light elements from the liquid core also enhances the vigor of convection in the core and may increase the power available to the geodynamo.

  17. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic.

    PubMed

    Steven, Blaire; Pollard, Wayne H; Greer, Charles W; Whyte, Lyle G

    2008-12-01

    Culture-dependent and culture-independent methods were used in an investigation of the microbial diversity in a permafrost/massive ground ice core from the Canadian high Arctic. Denaturing gradient gel electrophoresis as well as Bacteria and Archaea 16S rRNA gene clone libraries showed differences in the composition of the microbial communities in the distinct core horizons. Microbial diversity was similar in the active layer (surface) soil, permafrost table and permafrost horizons while the ground ice microbial community showed low diversity. Bacteria and Archaea sequences related to the Actinobacteria (54%) and Crenarchaeota (100%) respectively were predominant in the active layer while the majority of sequences in the permafrost were related to the Proteobacteria (57%) and Euryarchaeota (76%). The most abundant phyla in the ground ice clone libraries were the Firmicutes (59%) and Crenarchaeota (82%). Isolates from the permafrost were both less abundant and diverse than in the active layer soil, while no culturable cells were recovered from the ground ice. Mineralization of [1-(14)C] acetic acid and [2-(14)C] glucose was used to detect microbial activity in the different horizons in the core. Mineralization was detected at near ambient permafrost temperatures (-15 degrees C), indicating that permafrost may harbour an active microbial population, while the low microbial diversity, abundance and activity in ground ice suggests a less hospitable microbial habitat.

  18. Rates of landscape change in discontinuous permafrost terrain inferred from Goose Lake sediments, Scotty Creek Basin, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Cockburn, J.; Baltzer, J.; Quinton, W. L.

    2012-12-01

    Changes to the Taiga Plain regions of the world due to recent permafrost thaw and a general warming trend has significant impacts on hydrology, ecology and carbon sequestration in these regions. Furthermore, the rates of these changes may prove to be positive feedbacks within the cryosphere. The recent sedimentary record from Goose Lake, NWT (61° 18' N, 121° 18' W) reveals changes in lake and adjacent landscape productivity, likely coincident with degrading permafrost through the late Holocene and noticeable shifts within the last half of the 20th century. Using short-cores retrieved in August 2012, this study presents preliminary models of late Holocene landscape changes. Shifts in the rates of change are due to recent thaw as evidenced by the sedimentary record and supported through process work completed in the region. Goose Lake is situated in the Taiga Plains, approximately 50 km south of Fort Simpson, in the lower Liard River basin. This small, lake (~2.5 m deep, 200 ha) in the Scotty Creek watershed headwaters is primarily fed through small fens. The Scotty Creek basin has had over a decade of permafrost and peatland hydrological monitoring (i.e., Quinton et al., 2009). As well, the Scotty Creek basin is the location of ongoing peatland ecological and hydrological monitoring programs. The monitoring work suggests that there is a cycle of bog - fen - plateau (ice-rich) landscape changes and that perhaps the rate of these cycles may be increasing as permafrost degradation increases. The lake sediment work aims to estimate the rates of these cycles through the late Holocene and potentially link to larger scale models of change within the Taiga Plains. A shift in cycling would have substantial impacts on carbon storage, ecosystem diversity and potentially change the overall hydrology of this peatland area. If Goose Lake is indicative of other small lakes in the Taiga Plains, combined with the hydrological and ecological observations, this system will be a

  19. Mid-Wisconsin to Holocene permafrost and landscape dynamics based on a drained lake basin core from the northern Seward Peninsula, northwest Alaska

    USGS Publications Warehouse

    Lenz, Josefine; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey M. Walter; Bobrov, Anatoly; Wulf, Sabine; Wetterich, Sebastian

    2016-01-01

    Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyse a ~ 4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemical, geochronological, micropalaeontological (ostracoda, testate amoebae) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by the deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP and drained catastrophically in spring 2005. The present study emphasises that Arctic lake systems and periglacial landscapes are highly dynamic and that permafrost formation as well as degradation in central Beringia was controlled by regional to global climate patterns as well as by local disturbances.

  20. Biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Van Horn, D.; Sudman, Z.; McKnight, D. M.; Welch, K. A.; Lyons, W. B.

    2015-09-01

    Stream channels in the McMurdo Dry Valleys are typically wide, incised, and stable. At typical flows, streams occupy a fraction of the oversized channels, providing habitat for algal mats. In January 2012, we discovered substantial channel erosion and subsurface thermomechanical erosion undercutting banks of Crescent Stream. We sampled stream water along the impacted reach and compared concentrations of solutes to the long-term data from this stream (~20 years of monitoring). Thermokarst-impacted stream water demonstrated higher electrical conductivity, and concentrations of chloride, sulfate, sodium, suspended sediments, and nitrate than the long-term medians. These results suggest that this mode of lateral permafrost degradation may substantially impact stream solute loads and potentially fertilize stream and lake ecosystems. The potential for sediment to scour or bury stream algal mats is yet to be determined, though it may offset impacts of associated increased nutrient loads to streams.

  1. Viable Species of Flamella (Amoebozoa: Variosea) Isolated from Ancient Arctic Permafrost Sediments.

    PubMed

    Shmakova, Lyubov; Bondarenko, Natalya; Smirnov, Alexey

    2016-02-01

    Six viable strains of amoebae belonging to the genus Flamella (Amoebozoa, Variosea) were isolated from permafrost sediments sampled in the Russian Arctic region. Two of them are from late Pleistocene permafrost in North-East Siberia, and four--from Holocene and late Pleistocene in North-West Siberia. Light- and electron-microscopic study and molecular phylogeny show that these isolates represent two new species belonging to the genus Flamella. Both species are cyst-forming. This is a remarkable case of high resistance of protozoan cysts, allowing them to survive and recover an amoebae population after a very long, geologically significant period of rest; a "snapshot" of evolution in time. This study directly shows for the first time that amoeba cysts can be conserved not only for years and decades but for many thousand years and then recover, contributing to the formation of an active microbial community. We propose to name the new species as Flamella pleistocenica n.sp. and Flamella beringiania n.sp. Phylogenetic analysis shows that the genus Flamella is a robust and potentially species-rich group of Variosea.

  2. Stream biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, Michael N.; Van Horn, David; Sudman, Zachary; McKnight, Diane M.; Welch, Kathleene A.; Lyons, William B.

    2016-03-01

    Stream channels in the McMurdo Dry Valleys are characteristically wide, incised, and stable. At typical flows, streams occupy a fraction of the oversized channels, providing habitat for algal mats. In January 2012, we discovered substantial channel erosion and subsurface thermomechanical erosion undercutting banks of the Crescent Stream. We sampled stream water along the impacted reach and compared concentrations of solutes to the long-term data from this stream ( ˜ 20 years of monitoring). Thermokarst-impacted stream water demonstrated higher electrical conductivity, and concentrations of chloride, sulfate, sodium, and nitrate than the long-term medians. These results suggest that this mode of lateral permafrost degradation may substantially impact stream solute loads and potentially fertilize stream and lake ecosystems. The potential for sediment to scour or bury stream algal mats is yet to be determined, though it may offset impacts of associated increased nutrient loads to streams.

  3. Effect of Shallow Ponding on Warming and Thawing of Permafrost in Mineral-cored Palsas, Wolf Creek, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Lewkowicz, A. G.; Etzelmuller, B.; Smith, S.

    2011-12-01

    Few measurements exist of the effect of shallow water bodies on ground temperatures in the discontinuous permafrost zone. However, such ponds could become more common under climate warming and could affect rates of thaw of frozen ground and subsequent carbon release. To examine these effects, permafrost temperatures were monitored manually or continuously using temperature-loggers in six mineral-cored palsas (permafrost-cored mounds) located on a valley floor at treeline in the Wolf Creek basin near Whitehorse. The mounds were instrumented in 2004 in anticipation of water-level changes due to dam construction by beavers (Castor canadensis). Over this period beaver activity has raised water levels and created larger water bodies adjacent to all of the palsas, resulting in ground temperature increases and permafrost degradation. The ponds are shallow and some freeze to the bottom in winter, but their mean annual temperatures are higher than on adjacent exposed surfaces and they therefore warm the palsas laterally, eventually causing block collapse. A 7-year record of temperatures from a previously stable palsa, shows slight but progressive warming at the base of permafrost (at 7 m) since it was surrounded by water in 2009. Other palsas which were already degrading in 2001 are experiencing higher rates of warming and are rapidly settling beneath the water. Internal changes in unfrozen water contents within the palsas were revealed by differences between pairs of DC electrical resistivity profiles recorded in spring 2006 when most forms were stable, and repeated in spring 2011 when most were degrading. The rapidity of permafrost change when warmed by water illustrates the potential for drainage changes to dramatically increase heat flow through convection and hence to speed up rates of permafrost degradation.

  4. Impacts of Permafrost Degradation on Stream Geomorphology and Sediment Transport in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Sudman, Z. W.

    2015-12-01

    The McMurdo Dry Valleys (MDV) of Antarctica are a unique ice-free landscape that supports complex, microbially dominated ecosystems despite the harsh environment (<10 cm water equivalent/yr, -18°C mean air temperature). Recent observations suggest that this region is nearing a threshold of rapid landscape change. One such observation was the recent discovery of extensive thermokarst development (permafrost thaw features) along the banks of Crescent Stream in Taylor Valley. In 2012, a large stretch of the West Branch of Crescent Stream had significant bank failures, while the adjacent East Branch was unaffected. The objective of this study was to determine the rate of land surface change occurring on the stream bank, and the impacts of the sediment loading on the stream bed material. Three annually repeated terrestrial LiDAR scans were compared to determine the rates of ground surface change due to thermokarst degradation on the stream bank. The areal extent of the thermokarst was shown to be decreasing, however the average vertical erosion rate remained constant. Field measurements including, pebble counts, fine sediment counts, and sieve samples were collected and analyzed to determine the effects of the introduction of fine sediment on the stream bed material. The bed sediment of the thermokarst-impacted branch was consistently finer than the adjacent unaffected branch. The fine material introduced to the stream altered the bed material composition, which consequently increased the mobility of the of the bed material. These changes imposed on the stream have implications for stream morphology, endemic algal mat communities, and downstream aquatic systems.

  5. Near-shore submarine permafrost of the central Laptev Sea, East Siberia

    NASA Astrophysics Data System (ADS)

    Wetterich, S.; Overduin, P. P.; Günther, F.; Liebner, S.; Knoblauch, C.; Grigoriev, M.; Schirrmeister, L.; Hubberten, H. W.

    2015-12-01

    Coastal erosion and relative sea-level rise inundate terrestrial permafrost with seawater and create submarine permafrost. Once flooded, permafrost begins to warm under marine conditions, which can destabilize the sea floor. The timing of inundation can be inferred from the rate of coastline retreat and the distance from the shoreline. Coastline retreat rates are inversely related to the inclination of the upper surface of submarine ice-bonded permafrost. Submarine permafrost thaw is considered to be a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. A 52 m long core drilled from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Dissolved methane and sulfate concentrations are inversely related along the core with higher methane and lower sulfate contents in the ice-bonded submarine permafrost relative to the overlying unfrozen sediment. The observed profiles of sediment pore water sulfate concentrations, as well as methane concentrations and methane stable carbon isotope ratios, indicate that methane from ice-bonded permafrost is oxidized at or immediately following thaw. Anaerobic oxidation of methane in the unfrozen sediment column between ice-bonded permafrost and the seabed makes it unlikely that methane from thawing submarine permafrost could reach the seabed.

  6. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)

    NASA Astrophysics Data System (ADS)

    Hildegard Zimmermann, Heike; Raschke, Elena; Saskia Epp, Laura; Rosmarie Stoof-Leichsenring, Kathleen; Schwamborn, Georg; Schirrmeister, Lutz; Overduin, Pier Paul; Herzschuh, Ulrike

    2017-02-01

    Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.

  7. Ideas and perspectives: Holocene thermokarst sediments of the Yedoma permafrost region do not increase the northern peatland carbon pool

    NASA Astrophysics Data System (ADS)

    Hugelius, Gustaf; Kuhry, Peter; Tarnocai, Charles

    2016-04-01

    Permafrost deposits in the Beringian Yedoma region store large amounts of organic carbon (OC). Walter Anthony et al. (2014) describe a previously unrecognized pool of 159 Pg OC accumulated in Holocene thermokarst sediments deposited in Yedoma region alases (thermokarst depressions). They claim that these alas sediments increase the previously recognized circumpolar permafrost peat OC pool by 50 %. It is stated that previous integrated studies of the permafrost OC pool have failed to account for these deposits because the Northern Circumpolar Soil Carbon Database (NCSCD) is biased towards non-alas field sites and that the soil maps used in the NCSCD underestimate coverage of organic permafrost soils. Here we evaluate these statements against a brief literature review, existing data sets on Yedoma region soil OC storage and independent field-based and geospatial data sets of peat soil distribution in the Siberian Yedoma region. Our findings are summarized in three main points. Firstly, the sediments described by Walter Anthony et al. (2014) are primarily mineral lake sediments and do not match widely used international scientific definitions of peat or organic soils. They can therefore not be considered an addition to the circumpolar peat carbon pool. We also emphasize that a clear distinction between mineral and organic soil types is important since they show very different vulnerability trajectories under climate change. Secondly, independent field data and geospatial analyses show that the Siberian Yedoma region is dominated by mineral soils, not peatlands. Thus, there is no evidence to suggest any systematic bias in the NCSCD field data or maps. Thirdly, there is spatial overlap between these Holocene thermokarst sediments and previous estimates of permafrost soil and sediment OC stocks. These carbon stocks were already accounted for by previous studies and they do not significantly increase the known circumpolar OC pool. We suggest that these inaccurate

  8. Downstream patterns of suspended sediment transport in a High Arctic river influenced by permafrost disturbance and recent climate change

    NASA Astrophysics Data System (ADS)

    Favaro, Elena A.; Lamoureux, Scott F.

    2015-10-01

    Spatially and temporally variable suspended sediment transport from upstream sources was investigated in the West River (unofficial name) at the Cape Bounty Arctic Watershed Observatory (CBAWO) on Melville Island, Nunavut (74°55‧ N, 109°35‧ W), a river with nearly a decade of hydrological and sediment transport research in the Canadian Arctic and subject to recent permafrost disturbances, such as soil skin flows on slopes, massive ground ice melt in the channel, and substantial climate change. During the 2012 season, a survey was undertaken during the nival period to identify areas of the river where the flow was isolated from the channel bed by snow and where it progressively reached the bed. During the nival period, and throughout the rest of the season, suspended sediment transport data were collected from a primary outlet station and six upstream locations to identify the sources and sinks of sediment in the various reaches of the West River. An inferred sediment budget approach was used to identify the storage and release dynamics in each reach. Nival event-scale hysteresis and seasonal diurnal hysteresis patterns for 2012 were primarily anticlockwise, suggesting that sources of sediment were not readily available for transport during peak flows but became available as discharge waned. Analysis of diurnal hysteresis relationships for the years 2004-2012 (excluding 2011) signals a shift in daily sediment-discharge hysteresis from primarily clockwise to anticlockwise following an episode of permafrost disturbance and enhanced erosion in 2007. Consistent sediment storage in the upper catchment from this disturbance is interpreted to have contributed to the shift to anticlockwise daily hysteresis. Results provide insights into the fluvial and geomorphological response to changes in sediment availability in Arctic rivers and how these changes in turn affect sediment transport in these environments.

  9. Organic carbon and fine sediment production potential from decaying permafrost in a small watershed, Sheldrake River, Eastern coastal region of Hudson Bay

    NASA Astrophysics Data System (ADS)

    Jolivel, M.; Allard, M.

    2010-12-01

    Recent evaluations indicate that large amounts of organic carbon and fine sediment can be released in fluvial and coastal systems because of permafrost degradation, with impacts on ecosystems. In order to estimate the organic carbon and fine sediment potential production from a river basin, we have made a spatiotemporal comparison between 1957 aerial photographs and a 2009 GeoEye satellite image. A gauging station was installed near the river mouth and measurements of the extent and volume of permafrost degradation were made in the watershed where permafrost degradation is very active. The Sheldrake river watershed is located on the eastern coast of Hudson Bay near the Inuit community of Umiujaq, in the discontinuous permafrost zone. The tree line passes across the watershed. Permafrost mounds (palsas, lithalsas) and plateaus are the most abundant permafrost landforms in this area. They developed principally in east-west oriented valleys, in postglacial marine silts of the Tyrrell Sea. Signs of degradation are numerous. Lithalsas and palsas (with peat cover) weather out and collapse. Thermokarst ponds are replacing permafrost mounds and sometimes, eroded clay and peat are remobilized in the drainage network. Moreover, several retrogressive landslides, mudflows and gully erosion are active along the Sheldrake river banks. The first step consisted in mapping the 80 km2 watershed area and representing surface deposits, drainage network and permafrost distribution (1957 and 2009). First results show that 40 to 70% of the 1957 permafrost has disappeared in 2009 in various sector of the watershed. The percentage of permafrost degradation is positively correlated with distance from the sea and the presence of a well-developed drainage network. The second step is to calculate an equation which will allow changing the missing permafrost surface between 1957 and 2009 into a volume. The equation will take into account the average depth of permafrost and active layer, the mean

  10. A Numerical Study of Pore Fluid and Gas Migration Patterns Within Arctic Shelf Sediments Associated With Relict Off-Shore Permafrost

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2012-12-01

    Permafrost-associated methane hydrate deposits along the shallow Arctic continental shelf are thought to be a relict of glacial periods, when a large volume of Earth's water was locked up in polar ice and sea levels were lower, exposing the continental shelves to sub-freezing temperatures. Because of the cold surface temperatures, hydrate deposits are potentially stable here at unusually shallow depths, creating an extensive near-surface carbon reservoir. However, re-submergence of the shelf due to rising sea levels since the last glacial maximum 18 kyr ago has brought a temperature change of roughly +18C to the surface sediments. The evolution of permafrost-associated methane hydrate deposits is potentially complex, and an understanding of the temperature field alone is not sufficient. Salt, which is concentrated in pore fluids when permafrost forms, substantially changes the growth and decay of both permafrost and methane hydrate. The permafrost, in particular, has a strong influence on the mobility of gas within the shelf sediments. In order to quantify these complex interactions we have developed a two-dimensional, finite-volume model for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. We track the evolution of temperature, salinity, and pressure fields with prescribed boundary conditions, and account for latent heat of water ice formation during growth or decay of permafrost. The permeability structure of the sediments is coupled to changes in permafrost. The model can be run over several glacial cycles to simulate the natural environment in which Arctic hydrate deposits form, while also allowing us to explore the consequences of addition warming due to anthropogenic forcing. Preliminary results show that pore fluid and gas migration is strongly influenced by the permeability variations imposed by the overlying permafrost. When permafrost grows, high salinity pore fluids form as salt is excluded from ice. Increasing salinity

  11. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; An, Lizhe; Feng, Huyuan

    2016-05-01

    Permafrost on the Qinghai-Tibet Plateau is one of the most sensitive regions to climate warming, thus characterizing its microbial diversity and community composition may be important for understanding their potential responses to climate changes. Here, we investigated the prokaryotic diversity in a 10-m-long permafrost core from the Qinghai-Tibet Plateau by restriction fragment length polymorphism analysis targeting the 16S rRNA gene. We detected 191 and 17 bacterial and archaeal phylotypes representing 14 and 2 distinct phyla, respectively. Proteobacteria was the dominant bacterial phylum, while archaeal communities were characterized by a preponderance of Thaumarchaeota. Some of prokaryotic phylotypes were closely related to characterized species involved in carbon and nitrogen cycles, including nitrogen fixation, methane oxidation and nitrification. However, the majority of the phylotypes were only distantly related to known taxa at order or species level, suggesting the potential of novel diversity. Additionally, both bacterial α diversity and community composition changed significantly with sampling depth, where these communities mainly distributed according to core horizons. Arthrobacter-related phylotypes presented at high relative abundance in two active layer soils, while the deeper permafrost soils were dominated by Psychrobacter-related clones. Changes in bacterial community composition were correlated with most measured soil variables, such as carbon and nitrogen contents, pH, and conductivity.

  12. ENANTIOMERIC RATIOS OF CHIRAL PCB ATROPISOMERS IN RADIODATED SEDIMENT CORES

    EPA Science Inventory

    Enantiomeric ratios (ERs)) of chiral polychlorinated biphenyl (PCB) atropisomers were quantified in radiodated sediment cores of Lake Hartwell SC, a reservoir heavily impacted by PCBS, to study spatial and temporal changes in chirality. A chiral analysis of cores showed accumulat...

  13. Long-term preservation of microbial ecosystems in permafrost

    NASA Astrophysics Data System (ADS)

    Gilichinsky, D. A.; Vorobyova, E. A.; Erokhina, L. G.; Fyordorov-Dayvdov, D. G.; Chaikovskaya, N. R.

    It has been established that significant numbers (up to 10 million cells per gram of sample) of living microorganisms of various ecological and morphological groups have been preserved under permafrost conditions, at temperatures ranging from -9 to -13°C and depths of up to 100 m, for thousands and sometimes millions of years. Preserved since the formation of permafrost in sand-clay sediments of the Pliocene-Quaternary period and in paleosols and peats buried among them, these cells are the only living organisms that have survived for a geologically significant period of time. The complexity of the microbial community preserved varies with the age of the permafrost. Eukaryotes are found only in Holocene sediments; while prokaryotes are found to greater ages, i.e., Pliocene and Pleistocene. The diversity of microorganisms decreases with increasing age of sediments, and as a result cocci and corynebacteria are predominant. Enzyme activity (catalase and hydrolytic enzymes) and photosynthetic pigments (chlorophyll and pheophytin have also been detected in permafrost sediments. These results permit us to outline some approaches to the search for traces of life in the permafrost of Martian sediments by borehole core sampling. It is in the deep horizons (and not on the planet surface), isolated by permafrost from the external conditions, that results similar to those obtained on Earth can be expected.

  14. Infrared images of core sediments offshore southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, H. T.; Chuang, Y. H.

    2015-12-01

    The core sediments may retain the negative thermal anomaly caused by the gas hydrate dissociation on the way uploading from sea floor. To identify the signal of negative thermal anomaly, fifteen infrared images of core sediments with tens of meter in length have been analyzed the temperature distribution off southwestern Taiwan. This study results show that most of the core sediments were found lots of gaps with spiking pattern recognition of high temperature on the lower portions. The geochemistry study suggested that the gas in gaps and the sediments were mainly composed of methane which may be the indicators of gas hydrate dissociation in the higher temperature and lower pressure environment. The thermal gradients 0.044-0.114 ℃/m of core sediments are close to the observations in situ by the measurements of temperature probes that thermal gradient are 0.06-0.09 ℃/m. The temperature of all core sediments are greater than 20 ℃. It is obvious that the temperature of core sediments were increased tremendously by the heating of sea water. We found eight out of fifteen core sediments with significant negative thermal anomaly 0.4-1.0 ℃ in different depth between 2 and 10 meters below sea floor. Compare to the experiment in lab that the temperature could be decreased 1.1-1.5 ℃ due to the gas hydrate dissociation, the quantity of the negative thermal anomaly of the core sediments are possible related to the gas hydrate dissociation.

  15. /sup 137/Cs radioactive dating of Lake Ontario sediment cores

    SciTech Connect

    Ward, T.E.; Breeden, J.; Komisarcik, K.; Porter, R.; Czuczwa, J.; Kaminski, R.; McVeety, B.D.

    1987-12-01

    The distribution of /sup 137/Cs in sediment cores from Lake Ontario provides estimates of the sediment accumulation rates. Geochronology with /sup 210/Pb dating and distribution of Ambrosia (ragweed) pollen compare well with /sup 137/Cs dating. These methods can determine with precision, changes in sedimentation occurring over the past 100 years or so. Typical sedimentation rates of 0.18-0.36 cm/yr were measured. 16 refs., 3 figs., 2 tabs.

  16. Geochemistry of sediments in cores and sediment traps from Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Bischoff, James L.; Cummins, Kathleen; Shamp, Donald D.

    2005-01-01

    The present study of Bear Lake began in 1998. Initially, the study utilized sediments from three long cores (up to 5 m) previously collected in 1996 and short cores (up to 40 cm) collected in 1998. The short cores were specifically acquired to preserve the uppermost layers of sediment that may have been lost in the long cores. In addition, three arrays of sediment traps were deployed during the summer of 1998, and sediment from these traps was collected during the summers of 1999 and 2000 (see Dean and others, 2005, for core and sediment trap locations). The cores and sediment traps were sampled, and splits were distributed to various investigators for analyses of a wide variety of sediment parameters. The chemical composition of the acid-soluble component of the sediments is presented in this report. HCl or HNO3 treatment of the sediment quantitatively dissolves the authigenic component of the sediment, a component that includes carbonates, sulfates, and iron-mono sulfides. In the case of Bear Lake, CaCO3 is the major component of the sediment today and for most of the Holocene (Dean and others 2005). The chemical composition of the acid-soluble fraction gives important information on this component and, therefore, insight into the chemical conditions of the lake at the time of carbonate deposition.

  17. Characteristics of and corrections for core shortening in unconsolidated sediments

    USGS Publications Warehouse

    Morton, Robert A.; White, William A.

    1997-01-01

    Thinning, bypassing, and compaction of shallow unconsolidated sediments during manual coring or vibracoring operations probably cause more sediment deformation and greater stratigraphic displacement than is commonly reported in the wetland literature. We measured core shortening in open-barrel cores from fluvial wetlands, lagoonal flats, and marshes to document the magnitude and characteristics of shortening where sediments may be stiff and require extra mechanical effort to recover a sufficient length of sample for analysis. Results of those measurements indicate that thinning or non- recovery of discrete sediment intervals can range from 0 to 67 percent and cumulative core shortening can be as much as 30 percent even for cores less than one meter long. Detailed open-barrel measurements also show that core shortening is not uniformly distributed throughout the depth of penetration as is often assumed. Analytical data derived from shortened cores can only be properly interpreted if patterns of shortening are established and incorporated into the analysis. Minor artificial displacement of sediment depths can alter plots of physico-chemical parameters and can significantly influence calculated rates of sedimentation and other depth-dependent statistical relationships. This study (1) demonstrates how plots of interval shortening and cumulative shortening can be used to characterize the distribution of shortening at depth and (2) presents a simple equation for stratigraphic restoration so that core observations and analyses are corrected to their original depths.

  18. Descriptions of WHOI Sediment Cores, Volume 8

    DTIC Science & Technology

    1993-05-01

    Siliceous Detrital grains Foraminifera Diatoms Micronodules Nannofossils Radiolaria Zeolites Discoasters Sponges Volcanic shards Pteropods...excess of 15%. 1 15% < % inorganic components < 30% detrital grains Mn micronodules (MAJOR SEDIMENT NAME) with zeolites volcanic ash -- etc. % inorganic...components > 30% detrital grains Mn micronodules (MAJOR SEDIMENT NAME) / zeolites volcanic ash -- etc. I 1 , u~ ;U L)I 0.1 CC - 12 P*- 4-)U UU 0 rm UU

  19. Geochemistry of drill core headspace gases and its significance in gas hydrate drilling in Qilian Mountain permafrost

    NASA Astrophysics Data System (ADS)

    Lu, Zhengquan; Rao, Zhu; He, Jiaxiong; Zhu, Youhai; Zhang, Yongqin; Liu, Hui; Wang, Ting; Xue, Xiaohua

    2015-02-01

    Headspace gases from cores are sampled in the gas hydrate drilling well DK-8 in the Qilian Mountain permafrost. Gas components and carbon isotopes of methane from headspace gas samples are analyzed. The geochemical features of the headspace gases along the well profile are compared with occurrences of gas hydrate, and with the distribution of faults or fractures. Their geochemical significance is finally pointed out in gas hydrate occurrences and hydrocarbon migration. Results show high levels of hydrocarbon concentrations in the headspace gases at depths of 149-167 m, 228-299 m, 321-337 m and 360-380 m. Visible gas hydrate and its associated anomalies occur at 149-167 m and 228-299 m; the occurrence of high gas concentrations in core headspace gases was correlated to gas hydrate occurrences and their associated anomalies, especially in the shallow layers. Gas compositions, gas ratios of C1/ΣC1-5, C1/(C2 + C3), iC4/nC4, and iC5/nC5, and carbon isotopic compositions of methane (δ13C1, PDB‰) indicate that the headspace gases are mainly thermogenic, partly mixed with biodegraded thermogenic sources with small amounts derived from microbial sources. Faults or fracture zones are identified at intervals of 149-167 m, 228-299 m, 321-337 m, and near 360-380 m; significantly higher gas concentrations and lower dryness ratio were found in the headspace gases within the fault or fracture zones compared with areas above these zones. In the shallow zones, low dryness ratios were observed in headspace gases in zones where gas hydrate and faults or fracture zones were found, suggesting that faults or fracture zones serve as migration paths for gases in the deep layers and provide accumulation space for gas hydrate in the shallow layers of the Qilian Mountain permafrost.

  20. Natural thorium isotopes in marine sediment core off Labuan port

    SciTech Connect

    Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.; Mohamed, C. A. R.

    2014-02-12

    Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. The sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.

  1. Gas Hydrate-Sediment Morphologies Revealed by Pressure Core Analysis

    NASA Astrophysics Data System (ADS)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M.

    2006-12-01

    Analysis of HYACINTH pressure cores collected on IODP Expedition 311 and NGHP Expedition 1 showed gas hydrate layers, lenses, and veins contained in fine-grained sediments as well as gas hydrate contained in coarse-grained layers. Pressure cores were recovered from sediments on the Cascadia Margin off the North American West Coast and in the Krishna-Godavari Basin in the Western Bay of Bengal in water depths of 800- 1400 meters. Recovered cores were transferred to laboratory chambers without loss of pressure and nondestructive measurements were made at in situ pressures and controlled temperatures. Gamma density, P-wave velocity, and X-ray images showed evidence of grain-displacing and pore-filling gas hydrate in the cores. Data highlights include X-ray images of fine-grained sediment cores showing wispy subvertical veins of gas hydrate and P-wave velocity excursions corresponding to grain-displacing layers and pore-filling layers of gas hydrate. Most cores were subjected to controlled depressurization experiments, where expelled gas was collected, analyzed for composition, and used to calculate gas hydrate saturation within the core. Selected cores were stored under pressure for postcruise analysis and subsampling.

  2. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China

    PubMed Central

    Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; Stegen, James C.; An, Lizhe; Feng, Huyuan

    2015-01-01

    Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent

  3. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; Stegen, James C; An, Lizhe; Feng, Huyuan

    2015-01-01

    Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent

  4. Comparison of sediment profile image data with profiles of oxygen and Eh from sediment cores

    NASA Astrophysics Data System (ADS)

    Diaz, Robert J.; Trefry, John H.

    2006-10-01

    A study of oil and gas development in the Gulf of Mexico provided a unique opportunity to compare data from sediment profile images (SPI) with that of sediment cores collected at locations in the central Gulf of Mexico from 1034 to 1175 m. Variables measured from SPI included sediment grain-size, sediment texture, apparent depth of oxygen penetration (aDOP) into the sediments, and parameters related to biogenic activity (tubes, burrows, feeding pits or mounds, and subsurface feeding voids). Variables measured from the sediment cores included sedimentation rate, dissolved oxygen profiles, and redox potential (Eh). There was a high degree of concordance between the two data sets based on correlation analysis. For example, the correlation between aDOP and maximum penetration of oxygen into the sediment was 0.69. For deep-sea sediment, SPI provides a means by which general geochemical conditions of near surface sediment can be remotely assessed providing a quick method for mapping surficial geochemistry over large areas.

  5. INNOVATIVE TECHNOLOGY EVALUATION REPORT, SEDIMENT SAMPLING TECHNOLOGY, ART'S MANUFACTURING, SPLIT CORE SAMPLER FOR SUBMERGED SEDIMENTS

    EPA Science Inventory


    The Split Core Sampler for Submerged Sediments (Split Core Sampler) designed and fabricated by Arts Manufacturing & Supply, Inc., was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at ...

  6. Short Sediment Cores as Archives of Urban Pollution

    NASA Astrophysics Data System (ADS)

    Latimer, J. C.; McLennan, D. A.; Stone, J.; Memmer, E. D.; Foster, J. A.; Hardin, K. J.; Nickerson, Z.; Portwood, C. A.; Williams, T. M.

    2014-12-01

    Urban areas are host to numerous sources of environmental pollution, including industry, traffic, and past land uses. To document this pollution within Vigo County, Indiana, we collected several short cores from ponds and wetlands throughout the county, including cores from the old industrial park in Terre Haute, nature parks, a lake impacted by acid mine drainage, and a newly restored wetland to investigate heavy metal burial in these aquatic ecosystems. One core was collected from a holding pond that was constructed in the 1950's on the former International Paper (IP) site where corrugated packing products were produced for nearly a century. One of the nature parks (Dobbs Nature Park) was established in 1976, while the other sits on a former Brownfield site and was only recently opened to the public (Maple Avenue Nature Park). Scott Lake is adjacent to an abandoned coal mine, and continues to receive acidic drainage. Wabashiki Fish and Wildlife Area is flooded seasonally by the Wabash River. Prior land uses for the Wabashiki include agriculture and illegal dumping. All of these sites, except IP are designated fishing areas. Based on water chemistry and diatom assemblages, these ponds have acceptable water quality; however, some are becoming increasingly more eutrophic. Preliminary results from the IP and Maple Avenue Nature Park sediment cores indicate elevated heavy metal concentrations above background levels and at concentrations high enough to impact benthic organisms based on NOAA Sediment Quality Guidelines. Diatoms from the IP core suggest a transition from low productivity at the base to nutrient-rich conditions in more recent sediments, and several diatom specimens have observable deformities (typically an indicator of heavy metals). The base of the IP core also has metal concentrations that are 5 times greater than the top of the core. In many cases, sediments from the Maple Avenue Nature Park pond have metal concentrations higher than the surrounding

  7. Bioavailability of sediment-associated PAHs by Lumbriculus variegatus in sediment cores

    SciTech Connect

    Harkey, G.A. |; VanHoof, P.L.; Landrum, P.F.

    1994-12-31

    Lumbriculus variegatus were exposed four weeks to sediment core sections. Sediment was taken from Lake George in northern Michigan and known to be historically contaminated with PAHs. Bioaccumulation was maximal at the 12--16 cm depth where sediment PAH concentrations were greatest. Accumulation was minimal in surficial and 44--48 cm sections. Accumulation peaked at about 96 h, then declined over the remainder of the study for some of the lower molecular weight PAHs. For most higher molecular weight compounds, accumulation peaked at 2 weeks, then slightly declined at 4 weeks. Uptake rate coefficients stayed relatively constant for specific PAH congeners over the range of sediment depths, suggesting constant bioavailability with sediment aging. Accumulation factors (AFs) of selected congeners were also consistent among sediment depths and were comparable to those calculated for other species reported in previous studies.

  8. Technologies for retrieving sediment cores in Antarctic subglacial settings.

    PubMed

    Hodgson, Dominic A; Bentley, Michael J; Smith, James A; Klepacki, Julian; Makinson, Keith; Smith, Andrew M; Saw, Kevin; Scherer, Reed; Powell, Ross; Tulaczyk, Slawek; Rose, Mike; Pearce, David; Mowlem, Matt; Keen, Peter; Siegert, Martin J

    2016-01-28

    Accumulations of sediment beneath the Antarctic Ice Sheet contain a range of physical and chemical proxies with the potential to document changes in ice sheet history and to identify and characterize life in subglacial settings. Retrieving subglacial sediments and sediment cores presents several unique challenges to existing technologies. This paper briefly reviews the history of sediment sampling in subglacial environments. It then outlines some of the technological challenges and constraints in developing the corers being used in sub-ice shelf settings (e.g. George VI Ice Shelf and Larsen Ice Shelf), under ice streams (e.g. Rutford Ice Stream), at or close to the grounding line (e.g. Whillans Ice Stream) and in subglacial lakes deep under the ice sheet (e.g. Lake Ellsworth). The key features of the corers designed to operate in each of these subglacial settings are described and illustrated together with comments on their deployment procedures.

  9. There is no 1954 in that core! Interpreting sedimentation rates and contaminant trends in marine sediment cores.

    PubMed

    Johannessen, S C; Macdonald, R W

    2012-04-01

    Marine sediment preserves a useful archive for contaminants and other properties that associate with particles. However, biomixing of sediments can smear the record on a scale of years to thousands of years, depending on sedimentation rate and on the depth and vigour of mixing within a particular sediment. Where such mixing occurs, dates can no longer be associated with discrete sediment depths. Nevertheless, much can still be learned from biomixed profiles, provided that mixing is accounted for. With no modelling at all, it is possible to calculate an inventory of a contaminant at a site and a maximum possible sedimentation rate, and to determine whether the contaminant has increased or decreased over time. Radiodating the core with (210)Pb permits the estimation of sedimentation and mixing rates, which can be combined with the surface contaminant concentration to estimate an approximate flux of the contaminant. Numerical models that incorporate sedimentation and mixing rates (determined using (210)Pb and other transient signals with known deposition histories) can provide the basis to propose plausible histories for contaminant fluxes.

  10. Mossbauer study of sediment cores from Victoria harbour, Hong Kong

    PubMed

    Tanner; Leong; Pan; Yu

    2000-12-01

    The concentrations of Fe and other abundant metals in 6 m-long sediment cores from four locations in the world's largest container port, Hong Kong, have been determined, in addition to physical characteristics and 210Pb activities. Fe is generally present at concentrations between 2% and 3% (depending on the particle size), similar to values found in granitic rocks. Its speciation was studied by room temperature Mossbauer spectroscopy. Two Fe(II) species and one Fe(III) species were found to be present in the cores. The relative proportions of Fe(II) and Fe(III) generally changed with the depth of sediment. Most noticeably, for the core taken from near the Star Ferry Pier at the Kowloon side of Victoria harbour, the proportion of Fe(II) was fairly constant down to 4.75 m, but then decreased with depth, so that near the core base (6 m depth), the iron was present almost exclusively as Fe(III). The colour of the core changed from olive grey to olive yellow between 5 and 6 m. According to the core chronology, this depth represents ca. 1900, before the ferry pier construction, when the harbour was unpolluted.

  11. Stability of intra-permafrost hydrates in the Arctic shelf: Results of experimental work performed in the East Siberian Arctic Shelf

    NASA Astrophysics Data System (ADS)

    Chuvilin, E. M.

    2015-12-01

    One possible reason for methane venting from the Arctic shelf could be destabilization of intra-permafrost hydrates due to inundation of permafrost by seawater a few thousand years ago. Formation of intra-permafrost hydrates presumably takes place when regression of the sea exposes a shelf above sea level; subsequently the sediments cool and freeze. Ice crystals growing within the pore and/or inter-pore space create high pressure; together with low temperatures (down to -22°C), this produces very specific temperature-pressure (T/P) conditions that allow the existence of hydrates at any depth below the seafloor/ground surface where such T/P conditions develop. An additional factor stabilizing this type of hydrate is the so-called self-preservation phenomenon; due to this phenomenon, it has been suggested that hydrates can remain stable during inter-glacial cycles (so-called metastable or relic hydrates). However, destabilization of intra-permafrost hydrates might occur due to significant change in the permafrost thermal regime as well as to salt penetration down the sediment core. To assess the stability of intra-permafrost hydrates, we examined sediment cores drilled from the sea ice in the near-shore zone of the East Siberian Arctic Shelf (ESAS) (Laptev Sea, Buor-Khaya Bay). There is a critical negative (below 0°C) temperature under which relic hydrates start to dissociate, causing volumetric expansion of dissociation-generated free gas. Experimental data revealed that salt penetration into frozen hydrate-containing sediments could affect the stability of intra-permafrost hydrates before heat propagation causes thawing of permafrost. Intrusion of salt ions can cause active dissociation of intra-permafrost hydrates and consequent releases of methane even from frozen hydrate-bearing sediments/ground. These findings are important in connection with methane releases observed in the ESAS underlain with subsea permafrost, which is experiencing change in its thermal

  12. A sampler for coring sediments in rivers and estuaries

    USGS Publications Warehouse

    Prych, Edmund A.; Hubbell, D.W.

    1966-01-01

    A portable sampler developed to core submerged unconsolidated sediments collects cores that are 180 cm long and 4.75cm in diameter. The sampler is used from a 12-m boat in water depths up to 20 m and in flow velocities up to 1.5m per second to sample river and estuarine deposits ranging from silty clay to medium sand. Even in sand that cannot be penetrated with conventional corers, the sampler achieves easy penetration through the combined application of vibration, suction, and axial force. A piston in the core barrel creates suction, and the suspension system is arranged so that tension on the support cable produces both a downward force on the core barrel and a lateral support against overturning. Samples are usually retained because of slight compaction in the driving head; as a precaution, however, the bottom of the core barrel is covered by a plate that closes after the barrel is withdrawn from the bed. Tests show that sample-retainers placed within the driving head restrict penetration and limit core lengths. Stratification within cores is disrupted little as a result of the sampling process.

  13. Diagenetic regimes in Arctic Ocean sediments: Implications for sediment geochemistry and core correlation

    NASA Astrophysics Data System (ADS)

    Meinhardt, A.-K.; März, C.; Schuth, S.; Lettmann, K. A.; Schnetger, B.; Wolff, J.-O.; Brumsack, H.-J.

    2016-09-01

    Dark brown sediment layers are a potential stratigraphic tool in Quaternary Arctic Ocean sediments. They are rich in Mn, Fe, and trace metals scavenged from the water column and were most likely deposited during interglacial intervals. In this study, we combine sediment and pore water data from sediment cores taken in different parts of the Arctic Ocean to investigate the influence of early diagenetic processes on sediment geochemistry. In most studied cores, Mn, Co, and Mo are released into the pore waters from Mn oxide dissolution in deeper (>1.5 m) sediment layers. The relationship between sedimentary Mn, Co, and Mo contents in excess of the lithogenic background (elementxs) shows that Coxs/Moxs values are a diagnostic tool to distinguish between layers with diagenetic metal addition from the pore waters (Coxs/Moxs < 1), layers affected by Mn oxide dissolution and metal release (Coxs/Moxs > 10), and unaffected layers (Coxs/Moxs from 1 to 10). Steady-state calculations based on current pore water profiles reveal that in the studied cores, the diagenetic addition of these metals from the pore water pool alone is not sufficient to produce the sedimentary metal enrichments. However, it seems evident that dissolution of Mn oxides in the Mn reduction zone can permanently alter the primary geochemical signature of the dark brown layers. Therefore, pore water data and Coxs/Moxs values should be considered before core correlation when this correlation is solely based on Mn contents and dark sediment color. In contrast to the mostly non-lithogenic origin of Mn in the dark brown layers, sedimentary Fe consists of a large lithogenic (80%) and a small non-lithogenic fraction (20%). Our pore water data show that diagenetic Fe remobilization is not currently occurring in the sediment. The dominant Fe sources are coastal erosion and river input. Budget calculations show that Fe seems to be trapped in the modern Arctic Ocean and accumulates in shelf and basin sediments. The Fe

  14. Exploring Viral Mediated Carbon Cycling in Thawing Permafrost Microbial Communities

    NASA Astrophysics Data System (ADS)

    Trubl, G. G.; Solonenko, N.; Moreno, M.; Sullivan, M. B.; Rich, V. I.

    2014-12-01

    Viruses are the most abundant biological entities on Earth and their impact on carbon cycling in permafrost habitats is poorly understood. Arctic C cycling is particularly important to interpret due to the rapid climate change occurring and the large amount of C stockpiled there (~1/3 of global soil C is stored in permafrost). Viruses of microbes (i.e. phages) play central roles in C cycling in the oceans, through cellular lysis (phage drive the largest ocean C flux about 150 Gt yr-1, dwarfing all others by >5-fold), production of associated DOC, as well as transport and expression during infection (1029 transduction events day-1). C cycling in thawing permafrost systems is critical in understanding the climate trajectory and phages may be as important for C cycling here as they are in the ocean. The thawed C may become a food source for microbes, producing CO2 and potentially CH4, both potent greenhouse gases. To address the potential role of phage in C cycling in these dynamic systems, we are examining phage from an arctic permafrost thaw gradient in northern Sweden. We have developed a protocol for successfully extracting phage from peat soils and are quantifying phage in 15 peat and 2 lake sediment cores, with the goal of sequencing viromes. Preliminary data suggest that phage are present at 109 g-1 across the permafrost thaw gradient (compared to the typical marine count ~105 ml-1), implying a potentially robust phage-host interaction web in these changing environments. We are examining phage from 11 depth intervals (covering the active and permafrost layer) in the cores to assess phage-host community dynamics. Phage morphology and abundance for each layer and environment are being determined using qTEM and EFM. Understanding the phage that infect bacteria and archaea in these rapidly changing habitats will provide insight into the controls on current and future CH4 and CO2 emissions in permafrost habitats.

  15. Ecosystem history of South Florida; Biscayne Bay sediment core descriptions

    USGS Publications Warehouse

    Ishman, S.E.

    1997-01-01

    The 'Ecosystem History of Biscayne Bay and the southeast Coast' project of the U.S. Geological Survey is part of a multi-disciplinary effort that includes Florida Bay and the Everglades to provide paleoecologic reconstructions for the south Florida region. Reconstructions of past salinity, nutrients, substrate, and water quality are needed to determine ecosystem variability due to both natural and human-induced causes. Our understanding of the relations between the south Florida ecosystem and introduced forces will allow managers to make informed decisions regarding the south Florida ecosystem restoration and monitoring. The record of past ecosystem conditions can be found in shallow sediment cores. This U.S. Geological Survey Open-File Report describes six shallow sediment cores collected from Biscayne Bay. The cores described herein are being processed for a variety of analytical procedures, and this provides the descriptive framework for future analyses of the included cores. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  16. The Late Pliocene Eltanin Impact: Documentation From Sediment Core Analyses

    NASA Technical Reports Server (NTRS)

    Gersonde, R.; Kyte, F.; Flores, J. A.; Becquey, S.

    2002-01-01

    The expeditions ANT-XII/4 (1995) and ANT-XVIII/5a (2001) of the RV POLARSTERN collected extensive bathymetric and seismic data sets as well as sediment cores from an area in the Bellingshausen Sea (eastern Pacific Southern Ocean) that allow the first comprehensive geoscientific documentation of an asteroid impact into a deep ocean (approx. 5 km) basin, named the Eltanin impact. Impact deposits have now been recovered from a total of more than 20 sediment cores collected in an area covering about 80,000 km2. Combined biomagnetostratigraphic dating places the impact event into the earliest Matuyama Chron, a period of enhanced climate variability. Sediment texture analyses and studies of sediment composition including grain size and microfossil distribution reveal the pattern of impact- related sediment disturbance and the sedimentary processes immediately following the impact event. The pattern is complicated by the San Martin Seamounts (approx. 57.5 S, 91 W), a large topographic elevation that rises up to 3000 m above the surrounding abyssal plain in the area affected by the Eltanin impact. The impact ripped up sediments as old as Eocene and probably Paleocene that have been redeposited in a chaotic assemblage. This is followed by a sequence sedimented from a turbulent flow at the sea floor, overprinted by fall-out of airborne meteoritic ejecta that settled trough the water column. Grain size distribution reveals the timing and interaction of the different sedimentary processes. The gathered estimate of ejecta mass deposited over the studied area, composed of shock-melted asteroidal material and unmelted meteorites including fragments up to 2.5 cm in diameter, point to an Eltanin asteroid larger than the 1 km in diameter size originally suggested as a minimum based on the ANT-XII/4 results. This places the energy released by the impact at the threshold of those considered to cause environmental disturbance at a global scale and it makes the impact a likely transport

  17. Sediment magnetic and geochemical data from Quaternary lacustine sediment in two cores from Tule Lake, Siskiyou County, California

    USGS Publications Warehouse

    Best, Patti J.; Reynolds, Richard L.; Rosenbaum, Joseph G.; Dean, Walter E.; Honey, Jeannine; Drexler, John W.; Adam, David P.

    1996-01-01

    Sediment magnetic and geochemical results have been obtained from the top 60 meters of lacustrine sediments recovered in two cores from Tule Lake in northern California. The sediment magnetic and geochemical data, presented here in tabular form, complement studies of diatoms and pollen in the cores that are the bases for published paleoclimatic interpretations. This report also documents the methods used to obtain the magnetic properties and geochemical data.

  18. Sediment magnetic, paleomagnetic, and geochemical data from Quaternary lacustrine sediment in a core from Grass Lake, Siskiyou County, California

    USGS Publications Warehouse

    Best, Patti J.; Reynolds, Richard L.; Rosenbaum, Joseph G.; Drexler, John W.; Adam, David P.

    1996-01-01

    Sediment magnetic and geochemical results have been obtained from the top 60 meters of lacustrine sediments recovered in two cores from Tule Lake in northern California. The sediment magnetic and geochemical data, presented here in tabular form, complement studies of diatoms and pollen in the cores that are the bases for published paleoclimatic interpretations. This report also documents the methods used to obtain the magnetic properties and geochemical data.

  19. Historical records of trace metals in core sediments from the Lianyungang coastal sea, Jiangsu, China.

    PubMed

    Li, Yu; Li, Hong-Guan

    2017-03-15

    We analyzed element concentrations in cores from the Lianyungang coastal sea to determine depositional trends and geochemical sources of metals. Enrichment factors (EFs) and pollution load index (PLI) were used to assess the enrichment and pollution of metals. Profiles of vertical distributions of the elements reflected different depositional environments in 3 cores. Cores A and C deposited sediments with rich terrestrial elements by rivers, corresponding to mixed-up patterns in the sediment. Meanwhile, core B was mainly deposited in a less undisturbed depositional environment. Correlations and principal component analysis indicated that sediments were influenced by natural and anthropogenic impacts. According to the EFs, most metals showed no significant enrichment and pollution in the core sediments. Lastly, PLI values (<1) of sediments indicated that the Lianyungang coastal sea was a lowly polluted area despite PLI value of metals in average sediment was lower than that in surface sediment.

  20. Arctic and subarctic environmental analyses utilizing ERTS-1 imagery. [permafrost sediment transport, snow cover, ice conditions, and water runoff in Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Mckim, H. L.; Haugen, R. K.; Gatto, L. W.; Slaughter, C. W.; Marlar, T. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Physiognomic landscape features were used as geologic and vegetative indicators in preparation of a surficial geology, vegetation, and permafrost map at a scale of 1:1 million using ERTS-1 band 7 imagery. The detail from this map compared favorably with USGS maps at 1:250,000 scale. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. ERTS-1 imagery provides for the first time, a means of monitoring the following regional estuarine processes: daily and periodic surface water circulation patterns; changes in the relative sediment load of rivers discharging into the inlet; and, several local patterns not recognized before, such as a clockwise back eddy offshore from Clam Gulch and a counterclockwise current north of the Forelands. Comparison of ERTS-1 and Mariner imagery has revealed that the thermokarst depressions found on the Alaskan North Slope and polygonal patterns on the Yukon River Delta are possible analogs to some Martian terrain features.

  1. Wetland paleoecological study of southwest coastal Louisiana: sediment cores and diatom calibration dataset

    USGS Publications Warehouse

    Smith, Kathryn E. L.; Flocks, James G.; Steyer, Gregory D.; Piazza, Sarai C.

    2015-01-01

    Wetland sediment data were collected in 2009 and 2010 throughout the southwest Louisiana Chenier Plain as part of a pilot study to develop a diatom-based proxy for past wetland water chemistry and the identification of sediment deposits from tropical storms. The complete dataset includes forty-six surface sediment samples and nine sediment cores. The surface sediment samples were collected in fresh, intermediate, and brackish marsh and are located coincident with Coastwide Reference Monitoring System (CRMS) sites. The nine sediment cores were collected at the Rockefeller Wildlife Refuge (RWR) located in Grand Chenier, La.

  2. Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic.

    PubMed

    Juck, D F; Whissell, G; Steven, B; Pollard, W; McKay, C P; Greer, C W; Whyte, L G

    2005-02-01

    Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-microm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses.

  3. Utilization of Fluorescent Microspheres and a Green Fluorescent Protein-Marked Strain for Assessment of Microbiological Contamination of Permafrost and Ground Ice Core Samples from the Canadian High Arctic

    PubMed Central

    Juck, D. F.; Whissell, G.; Steven, B.; Pollard, W.; McKay, C. P.; Greer, C. W.; Whyte, L. G.

    2005-01-01

    Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-μm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses. PMID:15691963

  4. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high

  5. Airborne electromagnetic imaging of discontinuous permafrost

    NASA Astrophysics Data System (ADS)

    Minsley, Burke J.; Abraham, Jared D.; Smith, Bruce D.; Cannia, James C.; Voss, Clifford I.; Jorgenson, M. Torre; Walvoord, Michelle A.; Wylie, Bruce K.; Anderson, Lesleigh; Ball, Lyndsay B.; Deszcz-Pan, Maryla; Wellman, Tristan P.; Ager, Thomas A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ˜1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ˜4 million years and the configuration of permafrost to depths of ˜100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface - groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ˜1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments.

  6. Airborne electromagnetic imaging of discontinuous permafrost

    USGS Publications Warehouse

    Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; Deszcz-Pan, M.; Wellman, T.P.; Ager, T.A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ∼1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ∼4 million years and the configuration of permafrost to depths of ∼100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface – groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ∼1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments.

  7. Permafrost as palaeo-environmental archive - potentials and limitations

    NASA Astrophysics Data System (ADS)

    Schirrmeister, L.; Wetterich, S.; Meyer, H.; Grosse, G.; Schwamborn, G.; Siegert, C.

    2009-04-01

    Since 1994, the Periglacial Research Group of the Alfred Wegener Institute is studying permafrost sequences of the Beringian landmass. The study sites in Siberia cover lake banks on Taymyr Peninsula, coastal sites at the Laptev and the East Siberian Seas, locations in the Lena Delta, at the lower Kolyma river, the middle Lena and the lower Aldan rivers, and the catchment area of the El'gygytgyn crater lake in Chukotka. In Alaska, permafrost tunnels near Fairbanks and Barrow, and coastal sites on the Seward Peninsula coast were studied. In addition, Canadian sites on Herschel Island in the Beaufort Sea and at the adjacent coast of the Yukon plain were studied. Subsurface exposures like tunnels and cellars provided the opportunity for three-dimensional studies of sedimentary and ground ice features, relatively ‘clean' field conditions for in-situ experiments, monitoring procedures, and detailed and repeatable sampling. Permafrost cores were drilled in order to study inaccessible sequences below the terrain surface and shelf sea floor. Cores were transported and stored frozen for further high-resolution analysis. Reference core sections were preserved for subsequent later studies. Terrestrial sediment cores are highly localized records, sometimes problematic in extrapolating horizons in inhomogeneous sediments like ground ice-deformed permafrost deposits, and drill campaigns are usually cost intensive and logistical challenging. Coastal permafrost cliffs often naturally expose large cross sections trough modern and ancient landscapes. Contrary to cores, they provide an opportunity to study the wider context of depositional environments and ground ice features. Due to the relative easy access to coasts and the recurring natural exposure of cliffs by thermo-abrasive wave action they are very convenient study objects for regional comparisons and correlation of past environmental conditions. Finally, palaeogeographical reconstructions are also guided by remote sensing

  8. Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring.

    PubMed

    Lamarche-Gagnon, Guillaume; Comery, Raven; Greer, Charles W; Whyte, Lyle G

    2015-01-01

    The lost hammer (LH) spring perennially discharges subzero hypersaline reducing brines through thick layers of permafrost and is the only known terrestrial methane seep in frozen settings on Earth. The present study aimed to identify active microbial communities that populate the sediments of the spring outlet, and verify whether such communities vary seasonally and spatially. Microcosm experiments revealed that the biological reduction of sulfur compounds (SR) with hydrogen (e.g., sulfate reduction) was potentially carried out under combined hypersaline and subzero conditions, down to -20 °C, the coldest temperature ever recorded for SR. Pyrosequencing analyses of both 16S rRNA (i.e., cDNA) and 16S rRNA genes (i.e., DNA) of sediments retrieved in late winter and summer indicated fairly stable bacterial and archaeal communities at the phylum level. Potentially active bacterial and archaeal communities were dominated by clades related to the T78 Chloroflexi group and Halobacteria species, respectively. The present study indicated that SR, hydrogenotrophy (possibly coupled to autotrophy), and short-chain alkane degradation (other than methane), most likely represent important, previously unaccounted for, metabolic processes carried out by LH microbial communities. Overall, the obtained findings provided additional evidence that the LH system hosts active communities of anaerobic, halophilic, and cryophilic microorganisms despite the extreme conditions in situ.

  9. Water column and bed-sediment core samples collected from Brownlee Reservoir near Oxbow, Oregon, 2012

    USGS Publications Warehouse

    Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.

  10. Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario.

    PubMed

    Yeung, Leo W Y; De Silva, Amila O; Loi, Eva I H; Marvin, Chris H; Taniyasu, Sachi; Yamashita, Nobuyoshi; Mabury, Scott A; Muir, Derek C G; Lam, Paul K S

    2013-09-01

    Fourteen perfluoroalkyl substances (PFASs) including short-chain perfluorocarboxylates (PFCAs, C4-C6) and perfluoroalkane sulfonates (PFSAs, C4 and C6) were measured in surface sediment samples from 26 stations collected in 2008 and sediment core samples from three stations (Niagara, Mississauga, and Rochester basins) collected in 2006 in Lake Ontario. Perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUnDA) were detected in all 26 surface sediment samples, whereas perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonamide (FOSA), perfluorododecanoate (PFDoDA) and perfluorobutanoate (PFBA) were detected in over 70% of the surface sediment samples. PFOS was detected in all of the sediment core samples (range: 0.492-30.1ngg(-1) d.w.) over the period 1952-2005. The C8 to C11 PFCAs, FOSA, and PFBA increased in early 1970s. An overall increasing trend in sediment PFAS concentrations/fluxes from older to more recently deposited sediments was evident in the three sediment cores. The known PFCAs and PFSAs accounted for 2-44% of the anionic fraction of the extractable organic fluorine in surface sediment, suggesting that a large proportion of fluorine in this fraction remained unknown. Sediment core samples collected from Niagara basin showed an increase in unidentified organic fluorine in recent years (1995-2006). These results suggest that the use and manufacture of fluorinated organic compounds other than known PFCAs and PFSAs has diversified and increased.

  11. Analysis of particulate matter collected by sediment traps and from sediment Cores

    NASA Astrophysics Data System (ADS)

    Collier, Bob; Dymond, Jack; Conard, Roberta; Robbins, Jim

    These contributions are primarily directed at elemental analyses for major and trace cations and silicon on particles collected by sediment traps and sediment cores; samples typically having at least several hundred milligrams available. The techniques outlined below and other wet chemical methods are reviewed in more detail in an OSU technical report by Robbins et al. [1984]. Typically, our group filters water samples for trace metal analyses immediately upon their arrival at the surface. The primary emphasis of these techniques focuses on the dissolved material. Since we have not had a full clean-lab available, we subsample the Niskins immediately using a semi-closed connection to large mouth bottles (LPE) which minimizes atmospheric exposure to contamination. The samples are then vacuum filtered within a portable laminar-flow hood (HEPA filtered) using plastic filtration "chimneys" (Millipore or Nuclepore) placed over a plastic vacuum chamber which contains the filtrate sample bottle. Filtration is carried out with 1 N HCl acid-leached Nuclepore or Poretics filters (0.4 μm) and the filtrate is collected directly into the final sample bottle. Both filtered and unfiltered subsamples are acidified to a pH<2 with 2 mL 6 N HCl L-1 sample using subboiling-distilled HCl, and the difference in concentration between the filtered and unfiltered sample is taken to represent an acid-labile particulate fraction.

  12. Implications of excess 210Pb and 137Cs in sediment cores from Mikawa Bay, Japan.

    PubMed

    Lu, Xueqiang; Matsumoto, Eiji

    2009-01-01

    Four sediment cores were collected from Mikawa Bay, Japan, and excess 210Pb and 137Cs were measured by gamma spectrometry. Sedimentation rates for the four cores were determined by 210Pb method. The sedimentation rate range is 0.10-0.70 g/(cm2 x year). The bio-mixing depth for each core is less than 7.0 cm, and was determined by the excess 210Pb profiles as well. Therefore, the bioturbation is slight. The 210Pb-derived dates coincided with the results from 137Cs geochronology. Acceleration in sedimentation rate due to environmental alteration has been found in cores A2.5 and 05AS8, representing two depocenters due to their topography. Evidence of the Tokai Flood in 2000 was found in core 05AS8 according to the profiles of both radioisotopes and trace metals.

  13. Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.

    2012-12-01

    Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2

  14. User Friendly Processing of Sediment CT Data: Software and Application in High Resolution Non-Destructive Sediment Core Data Sets

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.; Abbott, M. B.; Francus, P.; Lapointe, F.

    2015-12-01

    Computed Tomography (CT) of sediment cores allow for high resolution images, three dimensional volumes, and down core profiles, generated through the attenuation of X-rays as a function of density and atomic number. When using a medical CT-Scanner, these quantitative data are stored in pixels using the Hounsfield scale, which are relative to the attenuation of X-rays in water and air at standard temperature and pressure. Here we present MATLAB based software specifically designed for sedimentary applications with a user friendly graphical interface to process DICOM files and stitch overlapping CT scans. For visualization, the software allows easy generation of core slice images with grayscale and false color relative to a user defined Hounsfield number range. For comparison to other high resolution non-destructive methods, down core Hounsfield number profiles are extracted using a method robust to coring imperfections, like deformation, bowing, gaps, and gas expansion. We demonstrate the usefulness of this technique with lacustrine sediment cores from the Western United States and Canadian High Arctic, including Fish Lake, Oregon, and Sawtooth Lake, Ellesmere Island. These sites represent two different depositional environments and provide examples for a variety of common coring defects and lithologies. The Hounsfield profiles and images can be used in combination with other high resolution data sets, including sediment magnetic parameters, XRF core scans and many other types of data, to provide unique insights into how lithology influences paleoenvironmental and paleomagnetic records and their interpretations.

  15. Doppler Scanning of Sediment Cores: A Useful Method for Studying Sedimentary Structures and Defining the Cutting Angle for Half Cores

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namik; Biltekin, Demet; Eris, Kadir; Albut, Gulum; Ogretmen, Nazik; Arslan, Tugce; Sari, Erol

    2014-05-01

    We tested the doppler ultrasound scanning of sediment cores in PVC liners using 8 megahertz ultrasonic waves for detection of angular laminations. The method was tested with artificially prepared cores as well as marine and lake sediment cores, and proven to be a useful and fast technique for imaging and determining the vertical angularity of sedimentary structures, such as laminations and beddings. Random cutting axes provide two angularities on X and Y dimensions. In this study, the main scientific problem is 'sequential angular disconformity'. Importance of detection of these anomalies on whole cores before dividing into half cores based on determining the right cutting axes. Successful imaging was obtained from top three centimeter depth of the sediments below the PVC liner, using a linear Doppler probe. Other Doppler probes (e.g., convex probe) did not work for core scanning because of their wave-form and reflection characteristics. Longitudinal and rotational scanning with gap filler and ultrasonic wave conductive gel material for keeping energy range of wave is necessary for detecting the variation in the dip of the bedding and laminae in the cores before separation. Another angular reasoned problem is about horizontal surface and can be easily solved with adjustable position of sensor or ray source placement. Border of sampling points between two different lithology must be stay with regard to neighbour sediment angles. Vertical angularity correction is not easy and its effect on signal propagation, detection biases and effectible to mixed samples contamination during physical sampling (particle size analyzing). Determining the attitude of angled bedding before core splitting is important for further core analyses such as elemental analysis and digital X-ray radiography. After Doppler scanning, the splitting direction (i.e., vertical to bedding and lamination) can be determined. The method is cheap, quick and non- hazardous to health, unlike the x

  16. Characterization And Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Elias, D. A.; Phelps, T. J.; Thornton, P. E.; Graham, D. E.

    2011-12-01

    Increased temperatures in high latitude regions are warming the surface and subsurface, resulting in thawing permafrost. At issue is the potential for increased greenhouse gas (GHG) generation and emission, caused by microbial degradation of vast stores of buried organic carbon. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation and emission, while refining the resolution of the Community Land Model (CLM4) by parameterizing depth-dependent GHG production processes, with respect to temperature and pH. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Core samples were obtained from a discontinuous permafrost site in Fairbanks, AK with a mean annual temperature of -3.3oC. Each core was sectioned into surface/near surface (0-0.8 m), active layer (annual thawing/freezing, 0.8m-1.6m .), and permafrost (1.6-2.2 m). Core sections were pulverized and used for sediment characterization as well as microcosm construction. Sediment characterization included water content (20-60%), pH (5.5-6.6), total N (0.05-0.25%) and C (0.4-4.1%), and total organic carbon (0.4-3.6%). Surface layer microcosms were constructed aerobically while the active and permafrost layers were constructed anaerobically. The microcosms, 20 g sediment with 38 ml headspace had either in-situ water levels (n=6) or 15 ml sterile water added (n=2) to saturate, and then incubated at -2oC, +3oC, or +5oC for 6 months. At monthly intervals, CO2 and CH4 were quantified by GC. At 6 months, microcosm samples and original core material were analyzed via 454 16S rDNA pyrosequencing to identify changes

  17. Halogenated compounds in a dated sediment core of the Teltow Canal, Berlin: time related sediment contamination.

    PubMed

    Heim, S; Ricking, M; Schwarzbauer, J; Littke, R

    2005-12-01

    To study the recent contamination history of DDT (1,1,1-trichloro-2,2-bis(chlorophenyl)ethane) and its metabolites, as well as methoxychlor (1,1,1-trichloro-2,2-bis(p-methoxyphenyl)ethane), chlorfenson (4-chlorophenyl-p-chlorobenzenesulfonate), and further halogenated aromatics, a sediment core was collected from the Teltow Canal in Berlin (Germany). The sampling site is located nearby a former industrial point source, where recently analyses on pre-samples have indicated high concentrations of halogenated organic compounds. The deposition time of the investigated sediments was determined by gamma-spectrometrical dating. Pollution trends of selected contaminants were attributed to a time period between 5 and 10 years. Concentration profiles reflect not only the recent pollution history of these compounds, but also the time-depending effects of the ban, restriction and termination of DDT-production in the German Democratic Republic (GDR). DDT and other chlorinated aromatic compounds were produced onsite until the late 1980s. Maximum values of 133 mg kg(-1) (dry weight) for p,p'-DDD (1,1-dichloro-2,2-bis(chlorophenyl)ethane) and approximately 100 mg kg(-1) (dry weight) for p,p'-DDMS (1-chloro-2,2-bis(chlorophenyl)ethane), main metabolites of the anaerobic degradation of DDT, were determined. The occurrence of all selected contaminants, most of which have been banned more than 10 years ago, demonstrate recent contamination pathways, and the necessity of a continuous long-term monitoring of the affected environment.

  18. Permafrost Degradation and Stream Metabolism in the Arctic: The effect of thaw slump sedimentation on biological productivity and water quality in the Selawik River, Northwest Alaska

    NASA Astrophysics Data System (ADS)

    Calhoun, J. P.; Crosby, B. T.

    2011-12-01

    The Selawik River in northwest Alaska, drains ~12,500 km^2 of tree line spruce forest, upland tundra and lowland wetlands. Along the river corridor, high concentrations of fine sediment from a large, young, active retrogressive thaw slump alter the physical and ecological form and function of the stream. This disturbance impacts the entire downstream river corridor, affecting the viability of fish habitat and quality drinking water that subsistence-based native communities depend on. In anticipated warming scenarios, it can be expected that there will be an increase in both the frequency and magnitude of these permafrost degradation features, increasing the extent to which local villages and ecosystems are affected. Our study aims to improve our physical understanding of this system in order to provide biologists, land managers and city officials improved predictive capabilities. Whole stream metabolism (WSM) combines nutrient cycling and organic matter processing to provide an integrated measure of stream health. We utilized a suite of water quality data including temperature, dissolved oxygen, turbidity, pH, pressure, and conductance to calculate WSM values at two experimental reaches up and downstream of the slump over the past three summers. The immediate effects are large magnitude diurnal increases in turbidity, suppressed dissolved oxygen values, and strong attenuation of photosynthetically active radiation (PAR) with depth. We found from 2010 data that, on average, the waters downstream from the slump were 23 times more turbid, had roughly half the dissolved oxygen, and had 4.7 and 2.7 times lower gross primary production (GPP) and ecosystem respiration (ER) respectively. In the summer of 2011, we collected measurements of terrestrial PAR, subsurface PAR, dissolved oxygen and turbidity at multiple river depths at 5 experimental locations. Though turbidity varied roughly by two orders of magnitude and terrestrial PAR increased 850 times between solar

  19. Chemical analysis of sediment cores from the East Waterway (Everett, Washington). Final report

    SciTech Connect

    Crecelius, E.A.; Bloom, N.S.; Gurtisen, J.M.

    1984-06-01

    Chemical data for two sediment cores from the East Waterway of Everett, Washington, indicate that 20 to 30 cm of contaminated sediments are accumulating per year. The concentrations of several heavy metals (Pb, Hg and Cu), polychlorinated biphenyls (PCBs) and petroleum hydrocarbons increase with depth in the sediments suggesting contamination of this waterway has varied by as much as a factor of 10 during the last 5 years. 7 references, 9 figures, 12 tables.

  20. A new approach to quantitatively describe permafrost core using multi-energy CT scanning: composition fraction and morphological analysis

    NASA Astrophysics Data System (ADS)

    Chang, C.; McKnight, C.; Kneafsey, T. J.

    2014-12-01

    Composition discernment, fraction calculation and morphological analysis of a shallow core retrieved from Barrow, AK as part of the Next Generation Ecosystem Experiments in the Arctic (NGEE-Arctic) were conducted to give a quantitative description of the core. Imaging of the core was performed using a medical X-ray computed tomography (CT) scanner, which gives a 3D image with a resolution of 0.195×0.195×0.625mm3. The core consists mainly of mineral, ice, organic matter and air and composition discernment and fraction calculation focus on the first three materials. Four scans with different energies were performed because materials with different density show different responses on scans with varying energies. A calibration curve showing the relationship between density and CT value was built by scanning standard materials having a wide range of density. CT value of the three compositions under four energies was determined by the calibration curve and the core scan. Composition fraction was calculated on the assumption that the core CT value is linearly proportional to the composition fraction and by solving linear least-squares problems with bounds. Comparison of the estimated and measured core CT value shows that the correlation coefficient is more than 0.99, indicating the accuracy of the calculation. Two regions with relatively high fraction of organic matter (10%) were distinguished, which are located at the top of the core and ice filled fractures at the bottom of the active layer. Morphological analysis was applied to the mineral and ice because of low fraction of organic matter. Three segmentations corresponding to ice-rich (with a density of 0.86 to 1.24 g/cm3), transition from ice to mineral (1.24 to 1.47 g/cm3) and mineral-rich (1.47 to 2.65 g/cm3) were applied to the core, and two area (area and area standard deviation) and three morphological (circulatory, roundness and rectangularity) parameters were analysed. By conducting Principle Component

  1. [Contaminative features of heavy metals for tidal sediment cores in Tianjin Bohai Bay].

    PubMed

    Qin, Yan-wen; Meng, Wei; Zheng, Bin-hui; Zhang, Lei; Su, Yi-bing

    2006-02-01

    Three sediment cores were collected in Nov. of 2003 from Dagu estuary to Qikou estuary. The grain size, TOC and heavy metal contents of core sediments were analyzed in order to study the geochemical characteristics, contamination features and the spatial and vertical distribution characters for heavy metals of tidal zones in Bohai Bay. The grain size of tidal sediments becomes finer from north to south. Ultrafine, fine and power sand are the main compositions in the sediment of Dagu and Duliujian estuary. The sediment of Qikou estuary is mainly composed by power and ultrafine sand. The vertical distribution trends of three sediment cores indicate that the grain-size becomes bigger from the bottom to the upper. The distribution of Fe, Al, Mn contents has distinct negative correlation with the grain-size of sediment, that is to say, the fine-grained sediments have higher contents of Fe, Al, Mn. Pb, Zn and Cd are the dominating contaminative elements in tidal sediments of Bohai Bay. Their contents are higher than the corresponding environmental background values, indicating of the anthropogenic enrichment.

  2. Contaminant trends in reservoir sediment cores as records of influent stream quality

    USGS Publications Warehouse

    Van Metre, P.C.; Mahler, B.J.

    2004-01-01

    When reconstructing water-quality histories from lake and reservoir cores, it is sometimes assumed that the chemical signatures in the cores reflect historical water quality in the influent streams. To investigate this assumption, concentrations of metals, PAHs, and organochlorine compounds in sediment cores were compared to those associated with an influent-stream suspended sediment for three reservoirs in Fort Worth, TX, and two reservoirs in Boston, MA, U.S.A., and interpreted in light of land-use and regulation histories. In evaluating relations between suspended sediments and cores, three levels of preservation were indicated: (1) influent concentrations and historical trends are preserved in cores (metals at all sites; some organic contaminants at some sites); (2) some loss occurs during transport and initial deposition but relative historical trends are preserved in cores (some organic contaminants at some sites); and (3) neither stream concentrations nor relative historical trends are preserved (dieldrin and p,p???-DDT). The degree of preservation of influent concentration histories varied between lakes, particularly for PAHs. The results support the use of sediment cores to infer streamwater-quality histories for many contaminants but indicate that reservoir-bottom sediment samples might underestimate concentrations of organic contaminants in some streams.

  3. Anthropogenic Eutrophication of Narragansett Bay: Evidence from Dated Sediment Cores

    EPA Science Inventory

    The organic matter preserved in estuarine sediments provides a number of useful indicators, or "proxies" that can be used to infer paleoenvironmental changes One type of paleoenvironmental change is anthropogenic eutrophication. The human activity largely responsible for increasi...

  4. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier.

    PubMed

    Curtosi, Antonio; Pelletier, Emilien; Vodopivez, Cristian L; Mac Cormack, Walter P

    2007-09-20

    Although Antarctica is still considered as one of the most pristine areas of the world, the growing tourist and fisheries activities as well as scientific operations and their related logistic support are responsible for an increasing level of pollutants in this fragile environment. Soils and coastal sediments are significantly affected near scientific stations particularly by polycyclic aromatic hydrocarbons (PAHs). In this work sediment and soil were sampled in two consecutive summer Antarctic expeditions at Potter Cove and peninsula, in the vicinity of Jubany Station (South Shetland Islands). Two- and 3-ring PAHs (methylnaphthalene, fluorene, phenanthrene and anthracene) were the main compounds found in most sites, although total PAH concentrations showed relatively low levels compared with other human-impacted areas in Antarctica. Pattern distribution of PAHs observed in samples suggested that low-temperature combustion processes such as diesel motor combustion and open-field garbage burning are the main sources of these compounds. An increase in PAH concentrations was observed from surface to depth into the active soil layer except for a unique sampling site where a fuel spill had been recently reported and where an inverted PAH concentration gradient was observed. The highest level was detected in the upper layer of permafrost followed by a sharp decrease in depth, showing this layer is acting as a barrier for downward PAH migration. When PAH levels in soil from both sampling programs were compared a significant decrease (p<0.01) was observed in summer 2005 (range at 75-cm depth: 12+/-1-153+/-22 ng/g) compared to summer 2004 (range at 75-cm depth: 162+/-15-1182+/-113 ng/g) whereas concentrations in surface sediment collected nearby the station PAHs increased drastically in 2005 (range: 36+/-3-1908+/-114 ng/g) compared to 2004 (range: 28+/-3-312+/-24 ng/g). Precipitation regime and water run off suggest that an important wash out of soil-PAHs occurred during

  5. Identification of water-quality trends using sediment cores from Dillon Reservoir, Summit County, Colorado

    USGS Publications Warehouse

    Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2001-01-01

    Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium

  6. Estimation of a Historic Mercury Load Function for Lake Michigan using Dated Sediment Cores

    EPA Science Inventory

    Box cores collected between 1994 and 1996 were used to estimate historic mercury loads to Lake Michigan. Based on a kriging spatial interpolation of 54 Pb-210 dated cores, 228 metric tons of mercury are stored in the lake’s sediments (excluding Green Bay). To estimate the time ...

  7. A method for estimation of historic contaminant loads using dated sediment cores

    EPA Science Inventory

    Dated sediment cores were used to assess the history of contaminant loads. The contaminant selected must be one that is not significantly remobilized by post depositional processes such as diagenesis. In addition, the core must be from an area with a high deposition rate and litt...

  8. Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice

    USGS Publications Warehouse

    Ewing, Stephanie A.; Paces, James B.; O'Donnell, J.A.; Jorgenson, M.T.; Kanevskiy, M.Z.; Aiken, George R.; Shur, Y.; Harden, Jennifer W.; Striegl, Robert G.

    2015-01-01

    The residence time of ice in permafrost is an indicator of past climate history, and of the resilience and vulnerability of high-latitude ecosystems to global change. Development of geochemical indicators of ground-ice residence times in permafrost will advance understanding of the circumstances and evidence of permafrost formation, preservation, and thaw in response to climate warming and other disturbance. We used uranium isotopes to evaluate the residence time of segregated ground ice from ice-rich loess permafrost cores in central Alaska. Activity ratios of 234U vs. 238U (234U/238U) in water from thawed core sections ranged between 1.163 and 1.904 due to contact of ice and associated liquid water with mineral surfaces over time. Measured (234U/238U) values in ground ice showed an overall increase with depth in a series of five neighboring cores up to 21 m deep. This is consistent with increasing residence time of ice with depth as a result of accumulation of loess over time, as well as characteristic ice morphologies, high segregated ice content, and wedge ice, all of which support an interpretation of syngenetic permafrost formation associated with loess deposition. At the same time, stratigraphic evidence indicates some past sediment redistribution and possibly shallow thaw among cores, with local mixing of aged thaw waters. Using measures of surface area and a leaching experiment to determine U distribution, a geometric model of (234U/238U) evolution suggests mean ages of up to ∼200 ky BP in the deepest core, with estimated uncertainties of up to an order of magnitude. Evidence of secondary coatings on loess grains with elevated (234U/238U) values and U concentrations suggests that refinement of the geometric model to account for weathering processes is needed to reduce uncertainty. We suggest that in this area of deep ice-rich loess permafrost, ice bodies have been preserved from the last glacial period (10–100 ky BP), despite subsequent

  9. Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice

    NASA Astrophysics Data System (ADS)

    Ewing, S. A.; Paces, J. B.; O'Donnell, J. A.; Jorgenson, M. T.; Kanevskiy, M. Z.; Aiken, G. R.; Shur, Y.; Harden, J. W.; Striegl, R.

    2015-03-01

    The residence time of ice in permafrost is an indicator of past climate history, and of the resilience and vulnerability of high-latitude ecosystems to global change. Development of geochemical indicators of ground-ice residence times in permafrost will advance understanding of the circumstances and evidence of permafrost formation, preservation, and thaw in response to climate warming and other disturbance. We used uranium isotopes to evaluate the residence time of segregated ground ice from ice-rich loess permafrost cores in central Alaska. Activity ratios of 234U vs. 238U (234U/238U) in water from thawed core sections ranged between 1.163 and 1.904 due to contact of ice and associated liquid water with mineral surfaces over time. Measured (234U/238U) values in ground ice showed an overall increase with depth in a series of five neighboring cores up to 21 m deep. This is consistent with increasing residence time of ice with depth as a result of accumulation of loess over time, as well as characteristic ice morphologies, high segregated ice content, and wedge ice, all of which support an interpretation of syngenetic permafrost formation associated with loess deposition. At the same time, stratigraphic evidence indicates some past sediment redistribution and possibly shallow thaw among cores, with local mixing of aged thaw waters. Using measures of surface area and a leaching experiment to determine U distribution, a geometric model of (234U/238U) evolution suggests mean ages of up to ∼200 ky BP in the deepest core, with estimated uncertainties of up to an order of magnitude. Evidence of secondary coatings on loess grains with elevated (234U/238U) values and U concentrations suggests that refinement of the geometric model to account for weathering processes is needed to reduce uncertainty. We suggest that in this area of deep ice-rich loess permafrost, ice bodies have been preserved from the last glacial period (10-100 ky BP), despite subsequent fluctuations in

  10. Polychlorinated biphenyl congeners in sediment cores from the Upper Mississippi River.

    PubMed

    Martinez, Andres; Schnoebelen, Douglas J; Hornbuckle, Keri C

    2016-02-01

    We determined polychlorinated biphenyls (PCBs) and radionuclide (137)Cs in sediment cores from the Upper Mississippi River (UMR) and the Iowa River, Iowa, at their confluence. Vertical distribution of (137)Cs indicated negligible mixing in the UMR core, while the Iowa River core showed signs of mixing. A clear (137)Cs peak was found in the UMR core, which was correlated to 1963. The PCB vertical distribution in UMR core was similar to the historical trend in Aroclor production observed in Great Lakes cores, with a peak close to the (137)Cs peak, suggesting a date near 1960. In general, PCB congener profiles in both cores resembled the Iowa soil background signal. We concluded that despite evidence of mixing in the Iowa River core, both cores retain the PCB signature of historical and regional environmental exposure. Further, our results indicate that this iconic waterway has a long history of PCBs that reflects national production and use.

  11. Polychlorinated biphenyl congeners in sediment cores from the Upper Mississippi River

    PubMed Central

    Martinez, Andres; Schnoebelen, Douglas J.; Hornbuckle, Keri C.

    2015-01-01

    We determined polychlorinated biphenyls (PCBs) and radionuclide 137Cs in sediment cores from the Upper Mississippi River (UMR) and the Iowa River, Iowa, at their confluence. Vertical distribution of 137Cs indicated negligible mixing in the UMR core, while the Iowa River core showed signs of mixing. A clear 137Cs peak was found in the UMR core, which was correlated to 1963. The PCB vertical distribution in UMR core was similar to the historical trend in Aroclor production observed in Great Lakes cores, with a peak close to the 137Cs peak, suggesting a date near 1960. In general, PCB congener profiles in both cores resembled the Iowa soil background signal. We concluded that despite evidence of mixing in the Iowa River core, both cores retain the PCB signature of historical and regional environmental exposure. Further, our results indicate that this iconic waterway has a long history of PCBs that reflects national production and use. PMID:26547030

  12. Permafrost-ice-sheet interactions during the Quaternary

    NASA Astrophysics Data System (ADS)

    Willeit, Matteo; Ganopolski, Andrey

    2016-04-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. We recently included a permafrost module in the Earth system model CLIMBER-2 to explore the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution during the Quaternary. The model has been shown to perform generally well at reproducing present-day permafrost extent and thickness. Modelled permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. In a previous study we showed that over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM. In transient model simulations of the "40 kyr world" of the early Pleistocene we show that when all continents are covered by a thick sediment layer the response of ice volume to the obliquity component of orbital forcing is enhanced while the response to precession is dampened. We therefore argue that permafrost could have played a role for ice sheet evolution when all continents were covered by a thick sediment layer, as was likely the case in the early Pleistocene before the sediment layer was gradually eroded by expanding ice sheets over parts of northern Canada and Scandinavia.

  13. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod

    PubMed Central

    Schwing, Patrick T.; Romero, Isabel C.; Larson, Rebekka A.; O'Malley, Bryan J.; Fridrik, Erika E.; Goddard, Ethan A.; Brooks, Gregg R.; Hastings, David W.; Rosenheim, Brad E.; Hollander, David J.; Grant, Guy; Mulhollan, Jim

    2016-01-01

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments. PMID:27585268

  14. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    PubMed

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-08-17

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.

  15. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores

    USGS Publications Warehouse

    Hostettler, F.D.; Pereira, W.E.; Kvenvolden, K.A.; VanGeen, A.; Luoma, S.N.; Fuller, C.C.; Anima, R.

    1999-01-01

    San Francisco Bay is one of the world's largest urbanized estuarine systems. Its water and sediment receive organic input from a wide variety of sources; much of this organic material is anthropogenically derived. To document the spatial and historical record of the organic contaminant input, surficial sediment from 17 sites throughout San Francisco Bay and sediment cores from two locations Richardson Bay and San Pablo Bay were analyzed for biomarker constituents. Biomarkers, that is, 'molecular fossils', primarily hopanes, steranes, and n-alkanes, provide information on anthropogenic contamination, especially that related to petrogenic sources, as well as on recent input of biogenic material. The biomarker parameters from the surficial sediment and the upper horizons of the cores show a dominance of anthropogenic input, whereas the biomarker profiles at the lower horizons of the cores indicate primarily biogenic input. In the Richardson Bay core the gradual upcore transition from lower maturity background organics to a dominance of anthropogenic contamination occurred about 70-100 years ago and corresponds to the industrial development of the San Francisco Bay area. In San Pablo Bay, the transition was very abrupt, reflecting the complex depositional history of the area. This sharp transition, perhaps indicating a depositional hiatus or erosional period, dated at pre-1952, is clearly visible. Below, the hiatus the biomarker parameters are immature; above, they are mature and show an anthropogenic overlay. Higher concentrations of terrigenous n-alkanes in the upper horizons in this core are indicative of an increase in terrigenous organic matter input in San Pablo Bay, possibly a result of water diversion projects and changes in the fresh water flow into the Bay from the Delta. Alternatively, it could reflect a dilution of organic material in the lower core sections with hydraulic mining debris.

  16. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability.

    PubMed

    Jørgensen, Tina; Haile, James; Möller, Per; Andreev, Andrei; Boessenkool, Sanne; Rasmussen, Morten; Kienast, Frank; Coissac, Eric; Taberlet, Pierre; Brochmann, Christian; Bigelow, Nancy H; Andersen, Kenneth; Orlando, Ludovic; Gilbert, M Thomas P; Willerslev, Eske

    2012-04-01

    Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the approach has never been directly compared with the traditional methods of pollen and macrofossil analysis. We conducted a comparative survey of 18 ancient permafrost samples spanning the Late Pleistocene (46-12.5 thousand years ago), from the Taymyr Peninsula in northern Siberia. The results show that pollen, macrofossils and sedaDNA are complementary rather than overlapping and, in combination, reveal more detailed information on plant palaeocommunities than can be achieved by each individual approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition and the determination of indicator species to describe environmental changes. Combining data from all three proxies reveals an area continually dominated by a mosaic vegetation of tundra-steppe, pioneer and wet-indicator plants. Such vegetational stability is unexpected, given the severe climate changes taking place in the Northern Hemisphere during this time, with changes in average annual temperatures of >22 °C. This may explain the abundance of ice-age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals the benefits of combining sedaDNA, pollen and macrofossil for palaeovegetational reconstruction and adds to the increasing evidence suggesting large areas of the Northern Hemisphere remained ecologically stable during the Late Pleistocene.

  17. Legacy Effects of Warming on Permafrost Carbon Release

    NASA Astrophysics Data System (ADS)

    Blok, D.; Faucherre, S.; Banyasz, I.; Michelsen, A.; Elberling, B.

    2015-12-01

    Warming in arctic tundra may thaw currently frozen upper permafrost layers, potentially releasing organic carbon (C) that was preserved by cold conditions for hundreds or thousands of years. Apart from the direct control of temperature on permafrost carbon dioxide (CO2) production, warming may alter permafrost CO2 production rates through changes in either permafrost C quality or changes in microbial communities. We incubated exogenous permafrost cores in four different warming experiments in NE-Greenland. The experiments were located in both Salix- and Cassiope-dominated sub-sites and were established in 2004 (old site) and 2007 (new site). Permafrost cores were buried as "open incubators" (free vertical water flow) at both 5-10cm depth (shallow) and 15-20cm depth (deep) in both non-manipulated (control) and warmed plots (warmed) and incubated for 2 years in the field. After retrieval from the field, permafrost cores were kept undisturbed in a lab fridge for three months, after which sub-samples were incubated at 5°C in glass vials. Permafrost CO2 production rates were subsequently measured after one week, four weeks and three months incubation in the lab. We measured the legacy effects of in situ conditions, including experimental warming in the field, on permafrost respiration under controlled laboratory conditions. We assessed the effects of plot type, vegetation type, experiment age, and incubation depth on permafrost CO2 production rates. After 3 months incubation in the lab, we measured a positive effect of warming on permafrost CO2 production rates for shallow-incubated cores, but not for deep-incubated cores. Production rates of CO2 were significantly higher for cores incubated in the old site compared to the new site. Our results suggest that warming may not only directly stimulate permafrost C release, but also indirectly through the effects of infiltrating water, nutrients and microbes from near-surface soil layers.

  18. Use of Vibratory Coring Samplers for Sediment Surveys.

    DTIC Science & Technology

    1981-07-01

    sedimentological analysis is presented to aid others in con- ducting geologic and engineering studies using the vibracore. 2 UNCLASSIFIED SECURITY...such as lacustrine or estuarine sediments. Medium and coarse grain-sized sand and gravels also offer little resistance and recoveries are generally 75...Sedimentary Petrology, Vol. 50, No. 2, June 1980, pp. 641-642. 12 MEDIUM SHELF FACIES SA FINE SHELF FACIES SAND (A) W FINE SHELF FACIES SAND (A) L COREDD 3EIU

  19. [Distribution of polycyclic aromatic hydrocarbon in core sediments of the Bohai Straight].

    PubMed

    Wu, Y; Zhang, J

    2001-05-01

    Thirteen compounds of PAHs were identified by GC in the core sediments of Bohai Straight (S44 and T4 Stations). The distribution and source identification were studied with the two core sediments. The total concentrations changed from 60.3 ng/g to 2076.5 ng/g. Though the contamination of PAHs in the study area is quite modest, some carcinogenic compounds were detected in most samples. From the indicators such as Pen/Anth and Fluo/Pyr etc. the dominated origin of PAHs in S44 Station is pyrolytic origins. However, in T4 Station, a mixture of pyrolysis and petroleum origin is suggested in this area. The distribution of PAHs in the core sediments also could be a good indicative of the contribution of human activity.

  20. Mercury contamination history of an estuarine floodplain reconstructed from a 210Pb-dated sediment core (Berg River, South Africa).

    PubMed

    Kading, T J; Mason, R P; Leaner, J J

    2009-01-01

    Mercury deposition histories have been scarcely documented in the southern hemisphere. A sediment core was collected from the ecologically important estuarine floodplain of the Berg River (South Africa). We establish the concentration of Hg in this (210)Pb-dated sediment core at <50 ng g(-1) Hg(T) throughout the core, but with 1.3 ng g(-1) methylmercury in surface sediments. The (210)Pb dating of the core provides a first record of mercury deposition to the site and reveals the onset of enhanced mercury deposition in 1970. The ratio of methylmercury to total mercury is relatively high in these sediments when compared to other wetlands.

  1. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  2. (129)I record of nuclear activities in marine sediment core from Jiaozhou Bay in China.

    PubMed

    Fan, Yukun; Hou, Xiaolin; Zhou, Weijian; Liu, Guangshan

    2016-04-01

    Iodine-129 has been used as a powerful tool for environmental tracing of human nuclear activities. In this work, a sediment core collected from Jiaozhou Bay, the east coast of China, in 2002 was analyzed for (129)I to investigate the influence of human nuclear activities in this region. Significantly enhanced (129)I level was observed in upper 70 cm of the sediment core, with peak values in the layer corresponding to 1957, 1964, 1974, 1986, and after 1990. The sources of (129)I and corresponding transport processes in this region are discussed, including nuclear weapons testing at the Pacific Proving Grounds, global fallout from a large numbers of nuclear weapon tests in 1963, the climax of Chinese nuclear weapons testing in the early 1970s, the Chernobyl accident in 1986, and long-distance dispersion of European reprocessing derived (129)I. The very well (129)I records of different human nuclear activities in the sediment core illustrate the potential application of (129)I in constraining ages and sedimentation rates of the recent sediment. The releases of (129)I from the European nuclear fuel reprocessing plants at La Hague (France) and Sellafield (UK) were found to dominate the inventory of (129)I in the Chinese sediments after 1990, not only the directly atmospheric releases of these reprocessing plants, but also re-emission of marine discharged (129)I of these reprocessing plants in the highly contaminated European seas.

  3. Identifying heavy metal levels in historical flood water deposits using sediment cores.

    PubMed

    Lintern, Anna; Leahy, Paul J; Heijnis, Henk; Zawadzki, Atun; Gadd, Patricia; Jacobsen, Geraldine; Deletic, Ana; Mccarthy, David T

    2016-11-15

    When designing mitigation and restoration strategies for aquatic systems affected by heavy metal contamination, we must first understand the sources of these pollutants. In this study, we introduce a methodology that identifies the heavy metal levels in floodplain lake sediments deposited by one source; fluvial floods. This is done by comparing sediment core heavy metal profiles (i.e., historical pollution trends) to physical and chemical properties of sediments in these cores (i.e., historical flooding trends). This methodology is applied to Willsmere and Bolin Billabongs, two urban floodplain lakes (billabongs) of the Yarra River (South-East Australia). Both billabongs are periodically inundated by flooding of the Yarra River and one billabong (Willsmere Billabong) is connected to an urban stormwater drainage network. 1-2-m long sediment cores (containing sediment deposits up to 500 years old) were taken from the billabongs and analysed for heavy metal concentrations (arsenic, chromium, copper, lead, nickel, zinc). In cores from both billabongs, arsenic concentrations are high in the flood-borne sediments. In Bolin Billabong, absolute metal levels are similar in flood and non-flood deposits. In Willsmere Billabong, absolute copper, lead and zinc levels were generally lower in fluvial flood-borne sediments in the core compared to non-fluvial sediments. This suggests that heavy metal concentrations in Bolin Billabong sediments are relatively similar regardless of whether or not fluvial flooding is occurring. However for Willsmere Billabong, heavy metal concentrations are high when overland runoff, direct urban stormwater discharges or atmospheric deposition is occurring. As such, reducing the heavy metal concentrations in these transport pathways will be of great importance when trying to reduce heavy metal concentrations in Willsmere Billabong sediments. This study presents a proof-of-concept that can be applied to other polluted aquatic systems, to understand the

  4. Past freeze and thaw cycling in the margin of the El'gygytgyn crater deduced from a 141 m long permafrost record

    NASA Astrophysics Data System (ADS)

    Schwamborn, G.; Meyer, H.; Schirrmeister, L.; Fedorov, G.

    2014-06-01

    The continuous sediment record from Lake El'gygytgyn in the northeastern Eurasian Arctic spans the last 3.6 Ma and for much of this time permafrost dynamics and lake level changes have likely played a crucial role for sediment delivery to the lake. Changes in the ground-ice hydrochemical composition (δ18O, δD, pH, electrical conductivity, Na+, Mg2+, Ca2+, K+, HCO3-, Cl-, SO4-) of a 141 m long permafrost record from the western crater plain are examined to reconstruct repeated periods of freeze and thaw at the lake edge. Stable water isotope and major ion records of ground ice in the permafrost reflect both a synsedimentary palaeo-precipitation signal preserved in the near-surface permafrost (0.0-9.1 m core depth) and a post-depositional record of thawing and refreezing in deeper layers of the core (9.1-141.0 m core depth). These lake marginal permafrost dynamics were controlled by lake level changes that episodically flooded the surfaces and induced thaw in the underlying frozen ground. During times of lake level fall these layers froze over again. At least three cycles of freeze and thaw are identified and the hydrochemical data point to a vertical and horizontal talik refreezing through time. Past permafrost thaw and freeze may have destabilised the basin slopes of Lake El'gygytgyn and this has probably promoted the release of mass movements from the lake edge to the deeper basin as known from frequently occurring turbidite layers in the lake sediment column.

  5. Slope Edge Deformation and Permafrost Dynamics Along the Arctic Shelf Edge, Beaufort Sea, Canada

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Riedel, M.; Melling, H.

    2015-12-01

    The shelf of the Canadian Beaufort Sea is underlain by relict offshore permafrost that formed in the long intervals of terrestrial exposure during glacial periods. At the shelf edge the permafrost thins rapidly and also warms. This area has a very distinct morphology that we attribute to both the formation and degradation of ice bearing permafrost. Positive relief features include circular to oval shaped topographic mounds, up to 10 m high and ~50 m in diameter which occur at a density of ~6 per km2. Intermixed are circular topographic depressions up to 20 m deep. This topography was investigated using an autonomous underwater vehicle that provides 1 m horizontal resolution bathymetry and chirp profiles, a remotely operated vehicle to document seafloor textures, and sediment cores to sample pore waters. A consistent down-core freshening at rates of 14 to 96 mM Cl- per meter was found in these pore waters near the shelf edge. Downward extrapolation of these trends indicates water with ≤335 mM Cl- should occur at 2.3 to 22.4 m sub-seafloor depths within this shelf edge deformation band. Pore water with 335 mM Cl- or less freezes at -1.4°C. As bottom water temperatures in this area are persistently (<-1.4°C) cold and ground ice was observed in some core samples, we interpret the volume changes associated with mound formation are in part due to pore water freezing. Thermal models (Taylor et al., 2014) predict brackish water along the shelf edge may be sourced in relict permafrost melting under the adjacent continental shelf. Buoyant brackish water is hypothesized to migrate along the base of the relict permafrost, to emerge at the shelf edge and then refreeze when it encounters the colder seafloor. Expansion generated by the formation of ice-bearing permafrost generates the positive relief mounds and ridges. The associated negative relief features may be related to permafrost dynamics also. Permafrost dynamics may have geohazard implications that are unique to the

  6. Characterization of sediment cores containing methane hydrate recovered from the Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Nagao, J.; Jin, Y.; Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Kida, M.; Nakatsuka, Y.; Suzuki, K.; Fujii, T.; Yamamoto, K.

    2013-12-01

    On the March 2013, Japan Oil, Gas and Metals National Corporation (JOGMEC) has conducted the first gas production test from methane hydrate deposits in the Nankai Trough offshore Japan. In the Eastern Nankai Trough area off the Pacific coast of Japan, highly concentrated methane hydrate deposits were discovered in Pleistocene turbidite sediments.. Along with geological information, structure and physical properties of the sediments are essential information to understand the nature and origin of the deposits, and preserving those in-situ values in core samples for laboratory testing on surface is a quite important scientific challenge. To solve the problem, JOGMEC and JAMSTEC have developed a pressure coring device and utilized it on D/V Chikyu for our coring operation before the production test. In this operation, we obtained two types of cores; one is the dissociation preserved core by rapidly cooled by emerging into liquid nitrogen (LN2 core), the other is stored in special pressure vessels without depressurizing and kept under original pressure and temperature (pressure core). Here the summary of LN2 core sample analyses, such as X-ray CT, p-wave velocity, particle analysis, permeability, mechanical properties, and gas composition, is presented. Also future analysis plan for pressure core is explained. This work was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by METI.

  7. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    NASA Astrophysics Data System (ADS)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  8. Impregnation method for detecting annual laminations in sediment cores: An overview

    NASA Astrophysics Data System (ADS)

    Boës, Xavier; Fagel, Nathalie

    2005-08-01

    Annually laminated sediments can provide an absolute time scale (by varve counting) and a high-resolution palaeoclimate information (from varve thickness). Both types of information may be directly measured from sediment core surfaces. In this paper, we stress that varve counting and varve thickness measurements derived from fresh core surfaces could not systematically reveal the internal sedimentary structure, even if assisted by high resolution image analysis. We present an example of a homogeneous sediment core for which the varves were only observable after core impregnation and polishing steps. Because the impregnation methods are not yet standardized, the aim of this paper is to give an updated review of the methodology. In this review, we present the major critical points during impregnation steps. In particular, we focus on all of the post-treatment sediment disturbances that can alter the laminated micro-structure and, consequently, varve measurements. Finally, we propose a modified impregnation protocol, especially adapted for tracking varved intervals in long cores.

  9. Historical record and sources of polycyclic aromatic hydrocarbons in core sediments from the Yangtze Estuary, China.

    PubMed

    Liu, M; Baugh, P J; Hutchinson, S M; Yu, L; Xu, S

    2000-11-01

    Polycyclic aromatic hydrocarbons (PAHs) in a sediment core taken from intertidal flat in the Yangtze Estuary were determined by gas chromatography-mass spectrometry. The results indicate that the total concentration of PAHs ranged from 0.08 to 11.74 microg/g. The concentration levels of total and individual PAHs changed dramatically with depth. The concentrations of PAHs were relatively high above 35 cm depth and remained constantly low below this depth. The historical record of PAHs in the core shows subsurface maximum (one or more peak values), followed by decreased levels to the surface and with depth. And, PAH sediment record in the core profile is in agreement with historically sewage discharge events during the 1980s to 1990s. The distribution of target molecule acenephthene, the fluoranthene/pyrene ratio, the proportion of 2-3-ring and 4-5-ring PAHs, and alkylated naphthalene to parent naphthalene in the core profile show that the sources in this area are characterized by petroleum-derived PAH contamination (mainly sewage discharge and the river runoff) and the incorporation of atmospheric inputs. Studies indicate the PAH profile pattern in this site in comparison with other regions appear to reflect its particular local position (near the sewage outlet). Moreover, physico-chemical conditions and sedimentation rate as well as biodegradation also affect the PAH concentration levels in the core sediments.

  10. Organochlorine pesticides in the sediment core of Gwangyang bay, South Korea.

    PubMed

    Kim, Yun-Seok; Eun, Heesoo; Cho, Hyeon-Seo; Kim, Kyoung-Soo; Sakamoto, Toshihiro; Watanabe, Eiki; Baba, Koji; Katase, Takao

    2008-04-01

    The nine organochlorine pesticides (OCPs) in the sediment samples taken from Gwangyang Bay, which is a heavy chemical industrial region in South Korea, are analyzed to evaluate their contaminations during the past 50 years. The vertical distributions of SigmaOCPs concentration in the sediment core were in good agreement with the temporal amount of pesticides used in South Korea except for the top sediment layer. The DDTs were predominant, their concentrations ranging from 78.0 to 202 pg/g dry wt and attributed more than 60% to SigmaOCPs in all the sediment layers. Based on the ratio of DDT metabolite compositions, the DDT contamination in the top layer might be caused from recent input. This is due to the highest residual concentration of OCPs in the top layer. Although HCB and mirex have been unregistered as pesticides in South Korea, two compounds were detectable in all of the sediment samples in the range from 0.243 to 16.7 pg/g dry wt in the study area. The emission source of HCB in the sediment core could be estimated to be due to incomplete combustion in the industrial chemical processes rather than pesticide application. Regarding horizontal distribution of SigmaOCPs, the concentration was slightly higher than for the inner bay than the outer bay. The OCPs in the sediments of Gwangyang Bay were compared with those of other countries by hierarchical cluster analysis and principal component analysis.

  11. Paleoecological inferences of recent alluvial damming of a lake basin due to retrogressive permafrost thaw slumping

    NASA Astrophysics Data System (ADS)

    Quinlan, R.; Delaney, S.; Lamoureux, S. F.; Kokelj, S. V.; Pisaric, M. F.

    2014-12-01

    Expected climate impacts of future warming in the Arctic include thawing of permafrost landscapes in northern latitudes. Thawing permafrost is expected to have major consequences on hydrological dynamics, which will affect the limnological conditions of Arctic lakes and ponds. In this study we obtained a sediment core from a small lake (informally named "FM1") near Fort McPherson, Northwest Territories, Canada, with a large retrogressive thaw slump (nearly 1 kilometre in diameter) within its catchment. A radiocarbon date from the base of the FM1 sediment core suggests the lake formed between 990-1160 Cal AD. The analysis of aerial photographs indicate the thaw slump initiated between 1970-1990, and sediment geochemistry analysis indicated major changes in sediment content at 54-cm sediment core depth. Analyses of subfossil midge (Chironomidae) fossils inferred that, pre-slump, lake FM1 was shallow with a large bog or wetland environment, with midge assemblages dominated by taxa such as Limnophyes and Parametriocnemus. Post-thaw midge assemblages were dominated by subfamily Chironominae (Tribe Tanytarsini and Tribe Chironomini) taxa, and the appearance of deepwater-associated taxa such as Sergentia suggests that lake FM1 deepened, possibly as a result of alluvial damming from slump materials washing into the lake near its outlet. Most recent stratigraphic intervals infer a reversion back to shallower conditions, with a slight recovery of bog or wetland-associated midge taxa, possibly due to rapid basin infilling from increased deposition rates of catchment-derived materials. Results emphasize that there may be a variety of different outcomes to Arctic lake and pond ecosystems as a result of permafrost thawing, contingent on system-specific characteristics such as slump location relative to the lake basin, and relative inflow and outflow locations within the lake basin.

  12. Pressure Core Characterization

    NASA Astrophysics Data System (ADS)

    Santamarina, J. C.

    2014-12-01

    Natural gas hydrates form under high fluid pressure and low temperature, and are found in permafrost, deep lakes or ocean sediments. Hydrate dissociation by depressurization and/or heating is accompanied by a multifold hydrate volume expansion and host sediments with low permeability experience massive destructuration. Proper characterization requires coring, recovery, manipulation and testing under P-T conditions within the stability field. Pressure core technology allows for the reliable characterization of hydrate bearing sediments within the stability field in order to address scientific and engineering needs, including the measurement of parameters used in hydro-thermo-mechanical analyses, and the monitoring of hydrate dissociation under controlled pressure, temperature, effective stress and chemical conditions. Inherent sampling effects remain and need to be addressed in test protocols and data interpretation. Pressure core technology has been deployed to study hydrate bearing sediments at several locations around the world. In addition to pressure core testing, a comprehensive characterization program should include sediment analysis, testing of reconstituted specimens (with and without synthetic hydrate), and in situ testing. Pressure core characterization technology can be used to study other gas-charged formations such as deep sea sediments, coal bed methane and gas shales.

  13. Hexabromocyclododecanes in surface sediments and a sediment core from Rivers and Harbor in the northern Chinese city of Tianjin.

    PubMed

    Zhang, Yanwei; Ruan, Yuefei; Sun, Hongwen; Zhao, Lijie; Gan, Zhiwei

    2013-02-01

    In the present study, hexabromocyclododecanes (HBCDs) were investigated in the sediment from Haihe River (HR), Dagu Dainage Canal (DDC) and Tianjin Harbor (TH) at Bohai Bay using a total of 51 samples of surface sediments and a sediment core collected from May to September in 2010, and its diastereomer- and enantiomer-specific profiles were analyzed. The concentration of total HBCDs were generally high, with mean value and ranges of 31.0 and 1.35-634 ng g(-1)dw, respectively. The contamination followed the order of TH>DDC>HR. Higher levels (up to 634 ng g(-1)dw) occurred in the lower reach of HR and DDC located in an industrial area of Tianjin. This is the first time to report so high concentration of HBCDs in sediment in Southeast Asia. The γ-diastereomer dominated in most samples (44 out of 51), and this is in agreement with the diastereomer distribution pattern in industrial products, while α-HBCD was the dominant diastereomer in the other seven samples. However, only few samples exhibited γ-diastereomer ratio similar to that (75-89%) in technical products, indicating the inter-transformation and variable degradation of the different isomers. The high ratio of γ-diastereomer could be used as an indicator for fresh contamination input. Enantiomeric factors (EFs) of HBCD isomers in most of the samples were statistically different from technical products (p<0.05), showing a trend of more easily enrichment of the (-)-HBCD-enantiomer compared to the (+)-HBCD-enantiomer. The δ- and ε-diastereomers were frequently detected but at low level. The HBCDs in the sediment core showed several peaks, and the greatest value occurred in 2005, when a plastic manufacture plant using HBCD was set up nearby.

  14. DDTs and HCHs in sediment cores from the coastal East China Sea.

    PubMed

    Lin, Tian; Nizzetto, Luca; Guo, Zhigang; Li, Yuanyuan; Li, Jun; Zhang, Gan

    2016-01-01

    Four sediment cores were collected along the Yangtze-derived sediment transport pathway in the inner shelf of the East China Sea (ECS) for OCP analysis. The sediment records of HCHs and DDTs in estuarine environment reflected remobilization of chemicals from enhanced soil erosion associated to extreme flood events or large scale land use transformation. The sediment records in the open sea, instead, reflected long-term historical trends of OCP application in the source region. Unlike the so-called mud wedge distribution of sediment, inventories of HCHs and DDTs slightly increased from the mouth of Yangtze River alongshore toward south, suggesting the sediment deposition rate was one of factors on the exposure of chemicals within the inner shelf of the ECS. Re-suspension and transport of the Yangtze-derived sediment and consequent fractionation in grain size and TOC were also responsible for the spatial variation of inventories of catchment derived OCPs in a major repository area of the Yangtze suspended sediment. The total burdens of HCHs and DDTs in the inner shelf of the ECS were 35tons and 110tons, respectively. After 1983 (year of the official ban in China), those values were 13tons and 50tons, respectively. It appears that the Yangtze still delivers relatively high inputs of DDTs more than 30years after the official ban. High proportions of DDD+DDE and β-HCH suggested those OCPs mainly originated from historical usage in the catchment recent years.

  15. Chromium geochemistry of serpentinous sediment in the Willow core, Santa Clara County, California

    USGS Publications Warehouse

    Oze, Christopher J.; LaForce, Matthew J.; Wentworth, Carl M.; Hanson, Randall T.; Bird, Dennis K.; Coleman, Robert G.

    2003-01-01

    A preliminary investigation of Cr geochemistry in serpentinous sediment completed for a multiple-aquifer ground-water monitoring well (Willow core of Santa Clara County, CA) determined sediment at depths >225 meters contains Cr concentrations ranging from 195 to 1155 mg/kg. Serpentinous sediment from this site is a potential source of non-anthropogenic Cr contamination. Chromium-bearing minerals such as Cr-spinel appear to be the main source of Cr in the sediment; however, Cr-bearing silicates and clay minerals are additional Cr sources. Aqueous Cr concentrations in the sediment are <4.6 mg/L; however, the valence of Cr was not identified in the solutions or in the sediment. Although there is no indication of Cr(VI) contamination derived from the serpentinous sediment, elevated Cr concentrations in the sediment, the observed ‘dissolution’ textures of the Cr-bearing minerals, the estimated redox environment, and water chemistry indicate the formation of Cr(VI) is potentially favorable.

  16. [Vertical distribution characteristics of organochlorine pesticides and polychlorinated biphenyls in sediment core from Lake Nansihu].

    PubMed

    Li, Hong-li; Li, Guo-gang; Yang, Fan; Gao, Hong; Gong, Zheng-yu; Zhu, Chen; Lian, Jun

    2007-07-01

    The organochlorinne pesticides (OCPs) and the polychlorinated biphenyls (PCBs) in sediment core collected from Lake Nansihu were quantificationally analyzed by GC-ECD. The pollution history of OCPs and PCBs in this area was reconstructed by analysis of the concentrations of OCPs and PCBs connected with the deposition time by 210Pb isotope dating method. The results indicated that the concentration ranges of OCPs, HCHs, DDTs and PCBs were 1.64 - 17.9, 0.66 - 12.5, 0.24 - 2.99 and 7.84 - 42.8 ng g(-1) respectively. The sediment rate and the average mass sedimentation were calculated to be 0.330 cm a(-1) and 0.237 g (cm2 a)(-1), and the sediment time of this core sample ranged from 1899 to 2000. OCPs and PCBs had the peak value at 1960s and 1970s. The source analysis showed HCH came from HCH products and lindane, and HCH and DDT came from historic using. The source of PCBs had been deduced to be the blench process of paper making and incinerator emission. Except the concentration of beta-HCH, gamma-HCH and aldrin at 14 - 16 cm depth, the other concentrations of OCPs and PCBs were all less than the low ecologic risk value. The whole sediment core of Lake Nansihu belonged to the low ecologic risk level.

  17. Bioavailability of polycyclic aromatic hydrocarbons from a historically contaminated sediment core

    SciTech Connect

    Harkey, G.A.; Van Hoof, P.L.; Landrum, P.F.

    1995-09-01

    To determine changes in bioavailability of selected polycyclic aromatic hydrocarbons (PAHs) with sediment aging, Lumbriculus variegatus were exposed for 4 weeks to sediment core sections taken from a contaminated lake. Core depths included surficial (0 to 4 cm), 4- to 8-, 12- to 16-, 28- to 32-, and 44- to 48-cm sections deposited for approximately 1899 to 1993, and were known to be historically contaminated with PAHs. Bioaccumulation was maximal at the 12- to 16-cm depth (circa 1967) where sediment PAH concentrations were greatest. Accumulation was generally below detection limits in the 0- to 4-cm depths, even though sediment concentrations of some compounds were comparable to those at the 12- to 16-cm depth where accumulation was great enough to generate accurate kinetics curves. Accumulation peaked at about 96 h, then declined over the remainder of the study for the lower-molecular-weight PAHs. For most higher-molecular-weight PAHs, accumulation peaked at about 2 weeks, then declined only slightly after 4 weeks. The differential bioavailability observed between surficial and at-depth core sections raises questions concerning the adequacy of results generated from toxicity and bioaccumulation tests routinely conducted surficial sediments.

  18. Experimental Simulations of Methane Gas Migration through Water-Saturated Sediment Cores

    NASA Astrophysics Data System (ADS)

    Choi, J.; Seol, Y.; Rosenbaum, E. J.

    2010-12-01

    Previous numerical simulations (Jaines and Juanes, 2009) showed that modes of gas migration would mainly be determined by grain size; capillary invasion preferably occurring in coarse-grained sediments vs. fracturing dominantly in fine-grained sediments. This study was intended to experimentally simulate preferential modes of gas migration in various water-saturated sediment cores. The cores compacted in the laboratory include a silica sand core (mean size of 180 μm), a silica silt core (1.7 μm), and a kaolin clay core (1.0 μm). Methane gas was injected into the core placed within an x-ray-transparent pressure vessel, which was under continuous x-ray computed tomography (CT) scanning with controlled radial (σr), axial (σa), and pore pressures (P). The CT image analysis reveals that, under the radial effective stress (σr') of 0.69 MPa and the axial effective stress (σa') of 1.31 MPa, fracturings by methane gas injection occur in both silt and clay cores. Fracturing initiates at the capillary pressure (Pc) of ~ 0.41 MPa and ~ 2.41 MPa for silt and clay cores, respectively. Fracturing appears as irregular fracture-networks consisting of nearly invisibly-fine multiple fractures, longitudinally-oriented round tube-shape conduits, or fine fractures branching off from the large conduits. However, for the sand core, only capillary invasion was observed at or above 0.034 MPa of capillary pressure under the confining pressure condition of σr' = 1.38 MPa and σa' = 2.62 MPa. Compared to the numerical predictions under similar confining pressure conditions, fracturing occurs with relatively larger grain sizes, which may result from lower grain-contact compression and friction caused by loose compaction and flexible lateral boundary employed in the experiment.

  19. Thermal Properties of Bazhen fm. Sediments from Thermal Core Logging

    NASA Astrophysics Data System (ADS)

    Spasennykh, Mikhail; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Romushkevich, Raisa; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Zhukov, Vladislav; Karpov, Igor; Saveliev, Egor; Gabova, Anastasia

    2016-04-01

    The Bazhen formation (B. fm.) is the hugest self-contained source-and-reservoir continuous petroleum system covering by more than 1 mln. km2 (West Siberia, Russia). High lithological differentiation in Bazhen deposits dominated by silicic shales and carbonates accompanied by extremely high total organic carbon values (of up to 35%), pyrite content and brittle mineralogical composition deteriorate standard thermal properties assessment for low permeable rocks. Reliable information of unconventional system thermal characteristics is the necessary part of works such as modelling of different processes in reservoir under thermal EOR for accessing their efficiency, developing and optimizing design of the oil recovery methods, interpretation of the well temperature logging data and for the basin petroleum modelling. A unique set of data including thermal conductivity, thermal diffusivity, volumetric heat capacity, thermal anisotropy for the B.fm. rocks was obtained from thermal core logging (high resolution continuous thermal profiling) on more than 4680 core samples (2000 of B.fm. samples are among) along seven wells for four oil fields. Some systematic peculiarities of the relation between thermal properties of the B.fm. rocks and their mineralogical composition, structural and texture properties were obtained. The high-resolution data are processed jointly with the standard petrophysical logging that allowed us to provide better separation of the formation. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  20. Correlations Between Physical and Hydraulic Properties and Uranium Desorption in Contaminated, Intact Sediment Cores

    NASA Astrophysics Data System (ADS)

    Rockhold, M. L.; Oostrom, M.; Wietsma, T. W.; Zachara, J. M.

    2010-12-01

    An unlined disposal pond in the 300 Area of the Hanford Site received uranium-bearing liquid effluents associated with nuclear reactor fuel rod processing from 1943 to 1975. Contaminated sediments from the base and sides of the former pond were excavated and removed from the site in the early 1990s, but a uranium plume has persisted in the groundwater at concentrations exceeding the drinking water standard. The former process pond is located adjacent to the Columbia River and seasonal fluctuations in the river stage and water table provide a mechanism for resupplying residual uranium from the vadose zone to the groundwater when the lower vadose zone is periodically rewetted. Intact cores were collected from the site for measurements of physical, hydraulic, and geochemical properties. Multistep outflow experiments were also performed on the intact cores to determine permeability-saturation-capillary pressure relations. Pore water displaced during these experiments for two of the vadose zone cores was also analyzed for uranium. For a core containing finer-textured sediment classified as muddy sandy gravel, and a core containing coarser-textured sediment classified as gravel, the relative aqueous uranium concentrations increased by factors of 8.3 and 1.5, respectively, as the cores were desaturated and progressively smaller pore-size classes were drained. Aqueous concentrations of uranium in the extracted pore waters were up to 115 times higher than the current drinking water standard of 30 ppb. These results confirm that there is a continuing source of uranium in the vadose zone at the site, and are consistent with a hypothesis that the persistence of the groundwater uranium plume is also associated, in part, with rate-limited mass transfer from finer-textured sediments. The data from these and several other intact cores from the site are evaluated to explore relationships between physical and hydraulic properties and uranium desorption characteristics.

  1. Assessing remobilization characteristics of arsenic (As) in tributary sediment cores in the largest reservoir, China.

    PubMed

    Gao, Li; Gao, Bo; Xu, Dongyu; Peng, Wenqi; Lu, Jin; Gao, Jijun

    2017-06-01

    The environmental impact of the Three Gorges Reservoir (TGR) in China has raised widespread concern especially in relation to metal pollution. The diffusive gradient in thin films (DGT) technology was applied to investigate arsenic (As) remobilization in sediment cores collected from the main stream and a tributary in the TGR during July 2015. The results showed that the horizontal and vertical distributions of CDGT-As varied among the four sampling sites. For the same DGT probe, the horizontal distributions of CDGT-As (0-6mm, 6-12mm, 12-18mm) exhibited similarity in the overlying water and different tendencies in the sediment profiles; the vertical variations of CDGT-As showed different mobilization tendencies. Moreover, the mobility patterns of As in the sediment profile showed the diffusion potential of As from the deep sediment to the surface sediment and overlying water were in the order of MX-2< MX-1< CJ < MX-3. In addition, similar distribution characteristics and correlation analysis showed that the mechanisms of As mobility were associated with Fe and Mn. The results also showed that sulphide and As were simultaneous remobilization in the tributary sediment core in the TGR.

  2. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    USGS Publications Warehouse

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial-sediment

  3. Sediment Coring of the Proglacial Lake Donguz-Orun (northern Caucasus, Russia)

    NASA Astrophysics Data System (ADS)

    Alexandrin, Mikhail; Solomina, Olga; Kalugin, Ivan; Darin, Andrey; Nesje, Atle

    2014-05-01

    So far, no high-resolution reconstructions of climate and glacier variations based on lake sediment properties are available in Caucasus Mountains. In other presently glaciated regions this approach is proved to be very useful for this purpose (e.g. Nesje et al., 2001, 2011; Bakke, 2005, Nesje, 2009) In this paper we report the first results of the sediment coring of Donguz-Orun Lake (N 43°13'26", E 42°29'35") situated in the upper reaches of Donguz-Orun-Kyol, a tributary of Baksan river in the Elbrus region of Northern Caucasus, a typical proglacial lake dammed by a lateral moraine deposited by the Donguz-Orun Glacier. It is a drainage lake with several inflowing glacial streams and effluent river Donguz-Orun. The surface area is around 105 000 m2 with a water volume of 465 000m3. The average water depth is around 4.5 m, with a maximum water depth of 14 m. The deepest part is found close to the moraine dam in the narrow northern part of the lake. This is normally consistent with this type of glacial lake systems. An intensive gravitational drift of the moraine material towards the lake is observed. These non-rounded moraine boulders constitute a significant part of the lakebed. Lacustrine sediments are present though. The coring campaign from Institute of Geography, Russian Academy of Sciences (August 2012) used a modified piston corer with a 110 mm-diameter plastic tube (Nesje, 1992) mounted on the inflatable catamaran to obtain lake sediments from Lake Donguz-Orun. A 28-cm long core was retrieved from a water depth of around 7 m. The sediments consist of regularly laminated, fine beige clay, with several interlayers of sand. The coring process appeared to be challenging due to the stiffness of clay, which led to extreme bending of the sediment layers in the basal part of the core. The original thickness of the sediments was obviously higher than observed in the core. In order to clarify the recent history of the Donguz-Orun glacier, we used lichenometry and

  4. Chronology from sediment cores collected in southwestern Everglades National Park, Florida

    USGS Publications Warehouse

    Bernhardt, C.E.; Wingard, G.L.; Willard, D.A.; Marot, M.E.; Landacre, B.; Holmes, C.W.

    2013-01-01

    Age model data are presented for 10 cores from the southwestern coastal mangrove zone of Everglades National Park, Florida, collected in Common Era (CE) 2004 and 2005 and used for paleoecological analysis. Carbon-14 (14C), lead-210 (210Pb), cesium-137 (137Cs), radium-226 (226Ra), and pollen biostratigraphic information is included, and age models were generated for 6 of the 10 cores. Age reversals and sediment disturbance prevented construction of age models on the remaining four cores. Four cores present a continuous record of the last 50 to 100 years, making them useful for analyzing the impacts caused by changes in water management in south Florida. These cores are Harney River 2A and Harney River 1A, Shark River 2A, and Roberts River.

  5. Climatic fluctuations during the Holocene based on eastern Mediterranean continental shelf sediment cores

    NASA Astrophysics Data System (ADS)

    Mor-Federman, Tsofit; Bookman, Revital; Almogi-Labin, Ahuva; Herut, Barak

    2013-04-01

    Sediments deposited on the south eastern Mediterranean continental shelf are sensitive recorders of climatic and oceanographic variability affected by the north Atlantic and indirectly by monsoonal systems. In order to reconstruct the influence of these climatic systems two cores were taken off shore the southern and central Israeli coast at water depths of ~35 m. The sediments were characterized by majors and traces elements, and the sediment provenance was determined using 87Sr/86Sr ratios. Detrital input from the Nile and local environment was studied using grain size distribution and sedimentation rates. Water column productivity was inferred by TOC and δ13Corg. The cores, dated to 7,630 and 8,440 14C years BP, show two distinct sedimentation regimes. The early Holocene is characterized by high sedimentation rates (190-140 cm/ka) that decrease in the last 5,500 years (50-60 cm/ka) in both north and central cores. Coarse grain size is dominant in the early Holocene, with a decreasing trend in the northern core. This distribution is probably connected to eustatic sea level rise and recycling of coarse sediments from the flooded shallow Nile cone. In the late Holocene, as sea level stabilized, grain size is finer in the south; while to the north, cycles of ~1,500 years in coarse grain size characterize the period. Carbonate and organic carbon further present the change along the period. Decrease in carbonate content and increase in δ13Corg during the late Holocene indicate decrease in water column productivity. In contradiction, organic carbon is relatively high in the late Holocene. This is explained by the coarse sediment texture in the early Holocene leading to better oxidation of buried organic matter. Strontium isotopes show changes in sediment provenance. In the early Holocene high 87Sr/86Sr values of ~0.71 reflect a dominant signature of the White Nile and the Yellow Nile and in part the local streams. During the last 5,500 years lower values of ~0

  6. Climate Change and the Permafrost Carbon Feedback

    NASA Astrophysics Data System (ADS)

    Schuur, E. A. G.; McGuire, A. D.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Koven, C. D.; Kuhry, P.; Lawrence, D. M.; Natali, S.; Olefeldt, D.; Romanovsky, V. E.; Schaedel, C.; Schaefer, K. M.; Turetsky, M. R.; Treat, C. C.; Vonk, J.

    2014-12-01

    Approximately twice as much soil carbon is stored in the northern circumpolar permafrost zone than is currently contained in the atmosphere. Permafrost thaw, and the microbial decomposition of previously frozen organic carbon, is considered one of the most likely positive feedbacks from terrestrial ecosystems to the atmosphere in a warmer world. Yet, the rate and form of release is highly uncertain but crucial for predicting the strength and timing of this carbon cycle feedback this century and beyond. New insight brought together under a multi-year synthesis effort by the Permafrost Carbon Network helps constrain current understanding of the permafrost carbon feedback to climate, and provides a framework for newly developing research initiatives in this region. A newly enlarged soil carbon database continues to verify the widespread pattern of large quantities of carbon accumulated deep in permafrost soils. The known pool of permafrost carbon is now estimated to be 1330-1580 Pg C, with the potential for ~400 Pg C in deep permafrost sediments that remain largely unquantified. Laboratory incubations of these permafrost soils reveal that a significant fraction of this material can be mineralized by microbes and converted to CO2 and CH4 on time scales of years to decades, with decade-long average losses from aerobic incubations ranging from 6-34% of initial carbon. Variation in loss rates is depended on the carbon to nitrogen ratio, with higher values leading to more proportional loss. Model scenarios show potential C release from the permafrost zone ranging from 37-174 Pg C by 2100 under the current climate warming trajectory (RCP 8.5), with an average across models of 92±17 Pg C. Furthermore, thawing permafrost C is forecasted to impact global climate for centuries, with models, on average, estimating 59% of total C emissions after 2100. Taken together, greenhouse gas emissions from warming permafrost appear likely to occur at a magnitude similar to other

  7. Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: Integrating hydrologic and biological processes using sediment perfusion cores

    USGS Publications Warehouse

    Sheibley, R.W.; Duff, J.H.; Jackman, A.P.; Triska, F.J.

    2003-01-01

    Inorganic N transformations were examined in streambed sediments from the Shingobee River using sediment perfusion cores. The experimental design simulated groundwater-stream water mixing within sediment cores, which provided a well-defined one-dimensional representation of in situ hydrologic conditions. Two distinct hydrologic and chemical settings were preserved in the sediment cores: the lowermost sediments, perfused with groundwater, remained anaerobic during the incubations, whereas the uppermost sediments, perfused with oxic water pumped from the overlying water column, simulated stream water penetration into the bed. The maintenance of oxic and anoxic zones formed a biologically active aerobic-anaerobic interface. Ammonium (NH4+) dissolved in groundwater was transported conservatively through the lower core zone but was removed as it mixed with aerated recycle water. Concurrently, a small quantity of nitrate (NO3-) equaling ???25% of the NH4+ loss was produced in the upper sediments. The NH4+ and NO3- profiles in the uppermost sediments resulted from coupled nitrification-denitrification, because assimilation and sorption were negligible. We hypothesize that anaerobic microsites within the aerated upper sediments supported denitrification. Rates of nitrification and denitrification in the perfusion cores ranged 42-209 and 53-160 mg N m-2 day-1, respectively. The use of modified perfusion cores permitted the identification and quantification of N transformations and verified process control by surface water exchange into the shallow hyporheic zone of the Shingobee River.

  8. A Direct-Push Sample-Freezing Drive Shoe for Collecting Sediment Cores with Intact Pore Fluid, Microbial, and Sediment Distributions

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Trost, J.; Christy, T. M.; Mason, B.

    2015-12-01

    Abiotic and biological reactions in shallow groundwater and bottom sediments are central to understanding groundwater contaminant attenuation and biogeochemical cycles. The laminar flow regime in unconsolidated surficial aquifers creates narrow reaction zones. Studying these reaction zones requires fine-scale sampling of water together with adjacent sediment in a manner that preserves in situ redox conditions. Collecting representative samples of these narrow zones with traditional subsurface sampling equipment is challenging. For example, use of a basket type core catcher for saturated, non-cohesive sediments results in loss of fluid and sediments during retrieval. A sample-freezing drive shoe designed for a wire line piston core sampler allowed collection of cores with intact sediment, microbial, and pore fluid distributions and has been the basis for studies documenting centimeter-scale variations in aquifer microbial populations (Murphy and Herkelrath, 1996). However, this freezing drive shoe design is not compatible with modern-day direct push sampling rigs. A re-designed sample-freezing drive shoe compatible with a direct-push dual-tube coring system was developed and field-tested. The freezing drive shoe retained sediment and fluid distributions in saturated sediment core samples by freezing a 10 centimeter plug below the core sample with liquid CO­2. Core samples collected across the smear zone at a crude oil spill site near Bemidji, Minnesota, were successfully extracted without loss of fluid or sediment. Multiple core sections from different depths in the aquifer were retrieved from a single hole. This new design makes a highly effective sampling technology available on modern-day direct push sampling equipment to inform myriad questions about subsurface biogeochemistry processes. The re-design of the freezing drive shoe was supported by the USGS Innovation Center for Earth Sciences. References: Murphy, Fred, and W. N. Herkelrath. "A sample

  9. Preservation of cell structures in permafrost: a model for exobiology.

    PubMed

    Soina, V S; Vorobiova, E A; Zvyagintsev, D G; Gilichinsky, D A

    1995-03-01

    The present report is the first contribution toward a comprehensive fine-structural study of microbial cells from permafrost. Prokaryotes with a variety of cell wall types demonstrate high stability of cell structure after long-term cryopreservation in frozen soils and sediments of the Arctic. The surface capsular layers that were a salient feature of the cells both in situ and on nutrient media may be an adaptation to low temperature. To the extent that permafrost regions on Earth approximate Martian conditions, preservation of cell structure there can serve as the basis for predictions about preservation in Martian permafrost sediments.

  10. Thermal and spectral characterization of anaerobic thermal behavior patterns in a lacustrine sediment core.

    PubMed

    Guo, Fei; Mu, Yunsong; Chen, Cheng; Liao, Haiqing; Bai, Yingchen

    2016-10-01

    The thermal evolution of sedimentary organic matter is a significant mechanism in continental oil and gas formation. This study presents a new method to estimate vertical thermal evolution trends in a lake sediment core. Twenty sediment samples from a 60-cm core recovered from Lake Bosten were heated to 600 °C at a rate of 10 °C min(-1) under a N2 atmosphere. The sediments were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and then, the samples were analyzed with total organic carbon (TOC) analyses, X-ray diffraction, and (137)Cs isotopic dating techniques. Two main anaerobic thermal degradation processes were observed in the thermograms. The pyrolysis results showed variations with sediment age, with labile carbon (237.2 ± 42.98 °C) manifesting different thermogram patterns than recalcitrant carbon (498.35 ± 30.09 °C). There was a significant linear correlation between sample weight loss and TOC (r = 0.972, p < 0.001), as well as between the DSC and TGA peaks (r = 0.963, p < 0.001). As a conclusion, the thermal stability of both labile organic carbon and recalcitrant organic carbon in lacustrine sediment core increased gradually with age. These results confirm that advanced thermal techniques (DSC and TGA) operated in inert gas are potential quantitative methods to characterize the anaerobic thermal behavior of sediment organic carbon.

  11. Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia.

    PubMed

    Badr, Nadia B E; El-Fiky, Anwar A; Mostafa, Alaa R; Al-Mur, Bandr A

    2009-08-01

    In the last three decades, the industrial and human activities in the coastal area of Saudi Arabia have increased dramatically and resulted in the continuous invasion of different types of pollutants including heavy metals. Seven sediment cores were collected from three major industrialized areas; Jeddah, Rabigh and Yanbu, along the coast of Saudi Arabia to determine the spatial and temporal distribution of metals and to assess the magnitude of pollution and their potential biological effects. Sediments were analyzed for texture, calcium carbonate contents, organic matter and metals (Al, Fe, Mn, Cd, Cr, Cu, Ni, Pb and Zn). Some metals like, Cr, Mn, Ni and Zn, were enriched in the upper 15 cm of core samples (recent deposition of sediments). Cadmium concentrations showed high fluctuations with depth and reverse pattern to that for Al, Fe and Mn which indicated land based sources of this element to the studied areas. Elevated concentrations of lead were recorded in the bottom layers of cores in Jeddah that indicated the most dramatic increase in usage of gasoline in early 1970s. The calculated contamination factors (CF's) were found in the following sequences: Cd > Pb > Ni > Cu > Zn > Cr > Mn for all studied areas. Results of Pollution Load Index (PLI) revealed that Jeddah is the most polluted area, followed by Rabigh while Yanbu is the least contaminated area. Except for Ni, the concentrations of most metals in the majority of sediment samples were believed to be safe for living organisms. As no data were available on the concentration of metals in core sediments in the coastal area of Saudi Arabia, the results of this study would serve as a baseline against which future anthropogenic effects can be assessed.

  12. Chlorinated hydrocarbon pesticides and polychlorinated biphenyls in sediment cores from San Francisco Bay

    USGS Publications Warehouse

    Venkatesan, M.I.; De Leon, R. P.; VanGeen, A.; Luoma, S.N.

    1999-01-01

    Sediment cores of known chronology from Richardson and San Pablo Bays in San Francisco Bay, CA, were analyzed for a suite of chlorinated hydrocarbon pesticides and polychlorinated biphenyls to reconstruct a historic record of inputs. Total DDTs (DDT = 2,4'- and 4,4'-dichlorodiphenyltrichloroethane and the metabolites, 2,4'- and 4,4'-DDE, -DDD) range in concentration from 4-21 ng/g and constitute a major fraction (> 84%) of the total pesticides in the top 70 cm of Richardson Bay sediment. A subsurface maximum corresponds to a peak deposition date of 1969-1974. The first measurable DDT levels are found in sediment deposited in the late 1930's. The higher DDT inventory in the San Pablo relative to the Richardson Bay core probably reflects the greater proximity of San Pablo Bay to agricultural activities in the watershed of the Sacramento and San Joaquin rivers. Total polychlorinated biphenyls (PCBs) occur at comparable levels in the two Bays (< 1-34 ng/g). PCBs are first detected in sediment deposited during the 1930's in Richardson Bay, about a decade earlier than the onset of detectable levels of DDTs. PCB inventories in San Pablo Bay are about a factor of four higher in the last four decades than in Richardson Bay, suggesting a distribution of inputs not as strongly weighed towards the upper reaches of the estuary as DDTs. The shallower subsurface maximum in PCBs compared to DDT in the San Pablo Bay core is consistent with the imposition of drastic source control measures four these constituents in 1970 and 1977 respectively. The observed decline in DDT and PCB levels towards the surface of both cores is consistent with a dramatic drop in the input of these pollutants once the effect of sediment resuspension and mixing is taken into account.

  13. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh.

    PubMed

    Selim Reza, A H M; Jean, Jiin-Shuh; Yang, Huai-Jen; Lee, Ming-Kuo; Woodall, Brian; Liu, Chia-Chuan; Lee, Jyh-Fu; Luo, Shang-De

    2010-03-01

    Groundwater and core sediments of two boreholes (to a depth of 50m) from the Chapai-Nawabganj area in northwestern Bangladesh were collected for arsenic concentration and geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10-40m of depth) range from 2.8microgL(-1) to 462.3microgL(-1). Groundwater geochemical conditions change from oxidized to successively more reduced, higher As concentration with depth. Higher sediment arsenic levels (55mgkg(-1)) were found within the upper 40m of the drilled core samples. X-ray absorption near-edge structure spectroscopy was employed to elucidate the arsenic speciation of sediments collected from two boreholes. Environmental scanning electron microscopy and transmission X-ray microscopy were used to investigate the characteristics of FeOOH in sediments which adsorb arsenic. In addition, a pH-Eh diagram was drawn using the Geochemist's Workbench (GWB) software to elucidate the arsenic speciation in groundwater. The dominant groundwater type is Ca-HCO(3) with high concentrations of As, Fe and Mn but low levels of NO(3)(-) and SO(4)(2-). Sequential extraction analysis reveals that Mn and Fe hydroxides and organic matter are the major leachable solids carrying As. High levels of arsenic concentration in aquifers are associated with fine-grained sediments. Fluorescent intensities of humic substances indicate that both groundwater and sediments in this arsenic hotspot area contain less organic matter compared to other parts of Bengal basin. Statistical analysis clearly shows that As is closely associated with Fe and Mn in sediments while As is better correlated with Mn in groundwater. These correlations along with results of sequential leaching experiments suggest that reductive dissolution of MnOOH and FeOOH mediated by anaerobic bacteria represents an important mechanism for releasing arsenic into the groundwater.

  14. Geochemical studies of backfill aggregates, lake sediment cores and the Hueco Bolson Aquifer

    NASA Astrophysics Data System (ADS)

    Thapalia, Anita

    This dissertation comprises of three different researches that focuses on the application of geochemistry from aggregates, lake sediment cores and Hueco Bolson Aquifer. Each study is independent and presented in the publication format. The first chapter is already published and the second chapter is in revision phase. Overall, three studies measure the large scale (field) as well as bench scale (lab) water-rock interactions influenced by the climatic and anthropogenic factors spans from the field of environmental geology to civil engineering. The first chapter of this dissertation addresses the chemical evaluation of coarse aggregates from six different quarries in Texas. The goal of this work is to find out the best geochemical methods for assessing the corrosion potential of coarse aggregates prior to their use in mechanically stabilized earth walls. Electrochemical parameters help to define the corrosion potential of aggregates following two different leaching protocols. Testing the coarse and fine aggregates demonstrate the chemical difference due to size-related kinetic leaching effects. Field fines also show different chemistry than the bulk rock indicating the weathering impact on carbonate rocks. The second chapter investigates zinc (Zn) isotopic signatures from eight lake sediment cores collected both from pristine lakes and those impacted by urban anthropogenic contamination. Zinc from the natural weathering of rocks and anthropogenic atmospheric pollutants are transported to these lakes and the signatures are recorded in the sediments. Isotopic analysis of core samples provides the signature of anthropogenic contamination sources. Dated sediment core and isotopic analysis can identify Zn inputs that are correlated to the landuse and population change of the watersheds. Comparison of isotopic data from both pristine and urban lake sediment core also serves as an analog in other lake sediment cores in the world. The third chapter studies on Hueco Bolson

  15. The Record of Geomagnetic Excursions from a ~150 m Sediment Core: Clear Lake, Northern California

    NASA Astrophysics Data System (ADS)

    Levin, E.; Byrne, R.; Looy, C. V.; Wahl, D.; Noren, A. J.; Verosub, K. L.

    2015-12-01

    We are studying the paleomagnetic properties of a new ~150 meter drill core from Clear Lake, CA. Step-wise demagnetization of the natural remanent magnetism (NRM) yields stable directions after 20 mT, implying that the sediments are reliable recorders of geomagnetic field behavior. Several intervals of low relative paleointensity (RPI) from the core appear to be correlated with known geomagnetic excursions. At about 46 m depth, and ~33 ka according to an age model based on radiocarbon dates obtained from pollen and the Olema ash bed, a low RPI zone seems to agree with the age and duration of the Mono Lake Excursion, previously identified between 32 and 35 ka. Slightly lower in the core, at about 50 m depth and ~40 ka, noticeably low RPI values seem to be coeval with the Laschamp excursion, which has been dated at ~41 ka. A volcanic ash near the bottom of the core (141 mblf) is near the same depth as an ash identified in 1988 by Andrei Sarna-Wojcicki and others as the Loleta ash bed in a previous Clear Lake core. If the basal ash in the new core is indeed the, Loleta ash bed, then the core may date back to about 270-300 ka. Depending on the age of the lowest ash, a sequence of low RPI intervals could correlate with the Blake (120 ka), Iceland Basin (188 ka), Jamaica/Pringle Falls (211 ka), and CR0 (260 ka) excursions. Correlation of the low RPI intervals to these geomagnetic excursions will help in the development of a higher resolution chronostratigraphy for the core, resolve a long-standing controversy about a possible hiatus in the Clear Lake record, and provide information about climatically-driven changes in sedimentation.

  16. Toxicity of sediment cores collected from the ashtabula river in northeastern Ohio, USA, to the amphipod hyalella azteca

    USGS Publications Warehouse

    Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.

    2009-01-01

    This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to

  17. Comparative Metagenomic Analysis Of Microbial Communities From Active Layer And Permafrost After Short-Term Thaw

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Chauhan, A.; Saarunya, G.; Murphy, J.; Williams, D.; Layton, A. C.; Pfiffner, S. M.; Stackhouse, B. T.; Sanders, R.; Lau, C. M.; myneni, S.; Phelps, T. J.; Fountain, A. G.; Onstott, T. C.

    2012-12-01

    .Permafrost areas occupy 20-25% of the Earth and extend of 1 km depths. The total number of prokaryotes and their biomass in cold regions are estimated to be 1 x 1030 cells and 140 x1015 g of C, respectively. Thus these environments serve as a reservoir of microbial and biogeochemical activity, which is likely to increase upon thawing. We are currently performing long-term thawing experiments at 4o C on 18, geochemically well-characterized, 1 meter long, intact cores consisting of active-layer (0-70 cm depth) and permafrost, collected from a 7 meter diameter ice-wedge polygon located at the McGill Arctic Research Station on Axel Heiberg Island, Nunavut, Canada. The organic carbon content of these cores averages ~1% at depth but increases to 5.4% in the top 10 cm. The cores were subdivided into four treatment groups: saturated cores (thawed while receiving artificial rain), drained cores (being thawed under natural hydrological conditions), dark cores (thawed under natural hydrological conditions with no light input) and control cores (maintain permafrost table at 70 cm depth). Over the course of 10 weeks the cores were progressively thawed from -4oC to 4oC from the top down to simulate spring thaw conditions in the Arctic. The temperatures at 5 cm, 35 cm, 65 cm, and below the permafrost table in the core were recorded continuously. Pore water and gas samples from 4 depths in each core were collected every two weeks and analyzed for pH, anions, cations, H2, CH4, CO, O2, N2, CO2 and δ13C of CO2. Headspace gas samples were collected weekly and analyzed for the same gases as the pore gases. Sediment sub-samples from the 4 depths were collected and total community genomic DNA (gDNA) was isolated using FastDNA SPIN kit followed by Qiagen column purification. The average yield of gDNA was ~3.5 μg/g of soil for the upper 5 cm active layers and decreased to ~1.5 μg/g of soil in the permafrost. The bacterial 16S copy numbers estimated by real-time quantitative PCR

  18. Nondestructive X-Ray Computed Tomography Analysis of Sediment Cores: A Case Study from the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Oti, E.; Polyak, L. V.; Cook, A.; Dipre, G.

    2014-12-01

    Investigation of marine sediment records can help elucidate recent changes in the Arctic Ocean circulation and sea ice conditions. We examine sediment cores from the western Arctic Ocean, representing Late to Early Quaternary age (potentially up to 1 Ma). Previous studies of Arctic sediment cores indicate that interglacial/interstadial periods with relatively high sea levels and reduced ice cover are characterized by vigorous bioturbation, while glacial intervals have little to no bioturbation. Traditional methods for studying bioturbation require physical dissection of the cores, effectively destroying them. To treat this limitation, we evaluate archival sections of the cores using an X-ray Computed Tomography (XCT) scanner, which noninvasively images the sediment cores in three dimensions. The scanner produces density sensitive images suitable for quantitative analysis and for identification of bioturbation based on size, shape, and orientation. We use image processing software to isolate burrows from surrounding sediment, reconstruct them three-dimensionally, and then calculate their surface areas, volumes, and densities. Preliminary analysis of a core extending to the early Quaternary shows that bioturbation ranges from 0 to approximately 20% of the core's volume. In future research, we will quantitatively define the relationship between bioturbation activity and glacial regimes. XCT examination of bioturbation and other sedimentary features has the potential to shed light on paleoceanographic conditions such as sedimentation patterns and food flux. XCT is an alternative, underexplored investigation method that bears implications not only for illustrating paleoclimate variations but also for preserving cores for future, more advanced technologies.

  19. Plutonium and americium inventories in atmospheric fallout and sediment cores from Blelham Tarn, Cumbria (UK).

    PubMed

    Michel, H; Barci-Funel, G; Dalmasso, J; Ardisson, G; Appleby, P G; Haworth, E; El-Daoushy, F

    2002-01-01

    The objective of this paper is to report on the results of a study of 238Pu, 239 + 240Pu and 241Am inventories onto Blelham Tarn in Cumbria (UK). The atmospheric fallout inventory was obtained by analysing soil cores and the results are in good agreement with the literature: 101 Bq m(-2) for 239 + 240Pu; 4.5 Bq m(-2) for 238Pu and 37 Bq m(-2) for 241Am. The sediment core inventory for the whole lake is compared to the atmospheric fallout inventory. The sediment activity is 60-80% higher than the estimated fallout activity, showing a catchment area contribution and in particular the stream input.

  20. Increasing polybrominated diphenyl ether (PBDE) contamination in sediment cores from the inner Clyde Estuary, UK.

    PubMed

    Vane, Christopher H; Ma, Yun-Juan; Chen, She-Jun; Mai, Bi-Xian

    2010-02-01

    The concentrations of 16 polybrominated diphenyl ether (PBDE) congeners in six short sediment cores from the Clyde Estuary were determined by gas-chromatography mass-spectrometry. Total PBDE concentrations ranged from 1 to 2,645 mug/kg and the average concentration was 287 mug/kg. BDE-209 was the main congener and varied from 1 to 2,337 mug/kg. Elevated total PBDE concentrations were observed close to the sediment surface in the uppermost 10 cm of four of the six sediment cores. Comparison of the down core PBDE profiles revealed that the increase was driven by the accumulation of deca-BDE. Although the deca-BDE mix was dominant, the presence of lower molecular weight congeners BDE-47, BDE-99, BDE-183 and BDE-153 at most sediment intervals suggested additional sources of penta-BDE and octa-BDE pollution. Changing PBDE source input was the major factor in influencing the proportion of nona-brominated congeners, although other explanations such as post burial photo-debromination of BDE-209 cannot be entirely discounted. A clear cascading to lower hepta-, hexa-, and penta-homologues was not found. The increase in total PBDE concentrations and particularly the deca-BDE may possibly be ascribed to the use and subsequent disposal of electrical appliances such as televisions and computers. In the Clyde sediments, the proportion of nona-brominated congeners was higher than that reported for commercial mixtures. This might be due to changing sources of PBDEs or post burial photo-debromination of BDE-209.

  1. Ecotoxicological impact assessment of heavy metals in core sediments of a tropical estuary.

    PubMed

    Harikumar, P S; Nasir, U P

    2010-10-01

    Down core variation of heavy metals in three sediment cores from Cochin estuary was studied. The average concentration of iron, manganese, nickel, copper, zinc, cadmium, lead and mercury in each slices of sediment was determined. Quality of the sediments were evaluated based on sediment quality guidelines, pollution load index, and sum of toxic units and with effect range low/effect range median and threshold effect level/probable effect level values of environmental protection agency guidelines. The degree of contamination for each station was determined. The results of the study revealed higher concentration of heavy metals in surface layers than in deeper ones. The concentration of heavy metals in some stations exceeded the effect range median levels, which represents a probable effect range with in which adverse biological effects frequently occur. The spatial variation of heavy metals showed more contamination in the downstream at Pathalam industrial site. Statistical analysis showed that the correlation among different parameters differs with respect to stations. The present study highlighted severe heavy metal contamination of Cochin estuary with increased rate of deposition.

  2. Deformed sediments in the Dead Sea drill core: a long-term palaeoseismic record

    NASA Astrophysics Data System (ADS)

    Marco, Shmuel; Kagan, Elisa J.

    2014-05-01

    The lacustrine 70 ka sediments outcropping around the Dead Sea contain superb examples of seismites that were formed at the margins of the lakes in water depths of <100 m. In previous studies we explored the temporal distribution and the physics of seismite formation. Now we examine the drill cores from the depocentre in order to understand how the deep basin sediments reacted to the earthquake vibrations and compare the record with that from the margins. Our interpretation is largely based on our acquaintance with the outcrops, on mechanical analyses, and on modern analogs. We realize that several types of disturbed layers that appear in the cores are seismites that do not appear in the lake margin facies but only at the depocentre, mostly transported material in the form of turbiditic slumps. We recognize numerous slumps of various thicknesses ranging from mm to several decimeters. The allochtonous contribution to the depocentre sediment load results with three times the thickness at the margins. Analyses of the anisotropy of the magnetic susceptibility (AMS) show mostly sedimentary fabric (vertical K3) or unstable scatter. Standard AMS analysis procedure requires multiple sampling for each level, but we can only recover one specimen. Therefore, we regard the results inconclusive. The main product of this stage is an inventory of all the features in the cores that we suspect to be seismites.

  3. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough.

    PubMed

    Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua

    2017-02-15

    Sediment core samples from the northern Okinawa Trough (OT) were analyzed to determine abundances and distributions of hydrocarbons by gas chromatography-mass spectrometer (GC-MS). The results show that the n-alkanes in this sediment core conform to a bimodal distribution, and exhibit an odd-to-even predominance of high molecular weights compared to an even-to-odd predominance in low molecular weight n-alkanes with maxima at C16 and C18. The concentrations of bitumen, alkanes and polyaromatic hydrocarbons (PAHs) were higher in samples S10-07 than all others. Three maturity parameters as well as the ratios between parent phenanthrenes (Ps) and methylphenanthrenes (MPs) in samples S10-07 and S10-17 were higher. The distribution and composition of hydrocarbons in sample S10-07 suggest that one, or several, undetected hydrothermal fields may be present in the region of this sediment core. Results also suggest that volcanism may be the main reason for the observed distribution and composition of hydrocarbons in S10-17 sample.

  4. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Liu, Qingsong; Zhang, Xunhua; Liu, Jian; Wu, Zhiqiang; Mei, Xi; Shi, Xuefa; Zhao, Quanhong

    2016-07-01

    Continental shelves serve as a bridge between the continent and ocean and sediments in this region are sensitive to land-sea interaction, sea-level variation and local subsidence. In this study, we present a comprehensive magnetic study of the longest sediment core (CSDP-1, 300.1 m) recovered from the South Yellow Sea. The major magnetic minerals in the studied sediments are magnetite, hematite and greigite. Greigite records a chemical remanent magnetization, which can be removed effectively by thermal demagnetization. The magnetostratigraphy defined in this study contains the Matuyama-Brunhes boundary (M/B, 781 ka) at ∼73.68 m, which is consistent with results from adjacent cores. The base of the Quaternary (∼2.6 Ma) in the Yellow Sea is recovered for the first time at a depth of 227.16 m. The basal age of the core is estimated to be ∼3.50 Ma. It indicates that the first transgression of the Yellow Sea occurred no later than ∼1.7 Ma. Succeeding large amplitude regressions occurred in some cold periods such as during MIS 20, MIS 18, and MIS 10. Our results provide the first chronology that brackets the entire Quaternary and we reconstruct the sedimentary evolution of the Yellow Sea with robust age constraints, which provides an important framework for further paleoenvironmental and tectonic studies.

  5. Historical Profiles of Polycyclic Aromatic Hydrocarbons (PAHs) in Marine Sediment Cores from Northwest Spain.

    PubMed

    Pérez-Fernández, Begoña; Viñas, Lucía; Bargiela, Jesica

    2016-11-01

    The northwest coast of Spain is characterized by an irregular coastline rich in marine life and with the highest mussel production in Europe. Taking this into account, the characterization of the pollution levels and the sources involved appear necessary. Not only were parent Polycyclic Aromatic Hydrocarbons (PAHs) analysed but also their alkylated homologues. In total, 35 compounds were analyzed in 5 sediment cores. Sediments were collected using a box core dredge and extracted by (Pressurized Liquid Extraction) whilst the quantification of PAHs was performed using gas chromatography coupled to mass spectrometry (GC-MS). The total concentration detected varied from 49.6 to 2489 ng g(-1) dry weight (d.w.) of which parent PAHs ranged from 44.5 to 2254 ng g(-1) d.w. and alkylated PAHs varied from 5.04 to 317 ng g(-1) d.w. Temporal and spatial evolution were outlined and pollution sources were identified along with a possible correlation between this pollution and local history and industry. Most of the PAHs from the superficial samples have a biomass and coal combustion profile, and some specific, localized events are reflected in the total PAH concentration evolution. Moreover, the study of the deepest layers of the sampled cores provides a baseline to develop background concentration values that will help in future sediment quality assessment.

  6. Sediment cores as archives of historical changes in floodplain lake hydrology.

    PubMed

    Lintern, Anna; Leahy, Paul J; Zawadzki, Atun; Gadd, Patricia; Heijnis, Henk; Jacobsen, Geraldine; Connor, Simon; Deletic, Ana; McCarthy, David T

    2016-02-15

    Anthropogenic activities are contributing to the changing hydrology of rivers, often resulting in their degradation. Understanding the drivers and nature of these changes is critical for the design and implementation of effective mitigation strategies for these systems. However, this can be hindered by gaps in historical measured flow data. This study therefore aims to use sediment cores to identify historical hydrological changes within a river catchment. Sediment cores from two floodplain lakes (billabongs) in the urbanised Yarra River catchment (Melbourne, South-East Australia) were collected and high resolution images, trends in magnetic susceptibility and trends in elemental composition through the sedimentary records were obtained. These were used to infer historical changes in river hydrology to determine both average trends in hydrology (i.e., coarse temporal resolution) as well as discrete flood layers in the sediment cores (i.e., fine temporal resolution). Through the 20th century, both billabongs became increasingly disconnected from the river, as demonstrated by the decreasing trends in magnetic susceptibility, particle size and inorganic matter in the cores. Additionally the number of discrete flood layers decreased up the cores. These reconstructed trends correlate with measured flow records of the river through the 20th century, which validates the methodology that has been used in this study. Not only does this study provide evidence on how natural catchments can be affected by land-use intensification and urbanisation, but it also introduces a general analytical framework that could be applied to other river systems to assist in the design of hydrological management strategies.

  7. Water-quality trends in suburban Houston, Texas, 1954-97, as indicated by sediment cores from Lake Houston

    USGS Publications Warehouse

    Van Metre, P.C.; Sneck-Fahrer, D. A.

    2002-01-01

    Water-quality trends were assessed in Lake Houston using age-dated sediment cores. Sediments deposited in the lake contain a partial chemical signature of human activities in the watershed. Over time, a water-quality history is recorded in the bottom sediments. Although the sediments in Lake Houston are clean compared to sediment-quality guidelines, increasing concentrations of mercury, zinc, and polycyclic aromatic hydrocarbons (PAHs) during the past several decades are evidence of the increasing human effect on water quality. The positive effects of regulation are indicated by decreases in concentrations of lead and DDT.

  8. Detection of Tephra Layers in Antarctic Sediment Cores with Hyperspectral Imaging

    PubMed Central

    Aymerich, Ismael F.; Oliva, Marc; Giralt, Santiago; Martín-Herrero, Julio

    2016-01-01

    Tephrochronology uses recognizable volcanic ash layers (from airborne pyroclastic deposits, or tephras) in geological strata to set unique time references for paleoenvironmental events across wide geographic areas. This involves the detection of tephra layers which sometimes are not evident to the naked eye, including the so-called cryptotephras. Tests that are expensive, time-consuming, and/or destructive are often required. Destructive testing for tephra layers of cores from difficult regions, such as Antarctica, which are useful sources of other kinds of information beyond tephras, is always undesirable. Here we propose hyperspectral imaging of cores, Self-Organizing Map (SOM) clustering of the preprocessed spectral signatures, and spatial analysis of the classified images as a convenient, fast, non-destructive method for tephra detection. We test the method in five sediment cores from three Antarctic lakes, and show its potential for detection of tephras and cryptotephras. PMID:26815202

  9. Nd isotope calibration of core top sediments along the South African Margin

    NASA Astrophysics Data System (ADS)

    Jones, K. M.; Goldstein, S. L.; Hemming, S. R.; Hall, I.; Zahn, R.

    2006-12-01

    Nd isotope ratios in the authigenic ferromanganese fraction of deep-sea sediments show great promise as tracers of ocean circulation. Its designation as a focus tracer for the new GEOTRACES program requires a better understanding of the processes that affect seawater Nd isotope ratios and their transfer to sediments. In this context, the southern tip of Africa is an important location for inter-ocean exchange. There, the North Atlantic Deep Water (NADW) leaves the Atlantic system and flows northeastward, sandwiched by Antarctic Intermediate Water (AAIW) above and Antarctic Bottom Water (AABW) below. It is an ideal place to calibrate coretop samples against these water masses in the hopes of using the successful cores to constrain changes in paleocirculation. Water column samples and cores at various depths were collected during Cruise 154 of the RRS Charles Darwin during Dec.-Jan. 2003-2004 along the eastern margin of South Africa. We report the first results of Holocene coretop ferromanganese leachates from sediment cores at water depths ranging between 1010 and 3706 m, where ambient water masses range from AAIW through NADW-AABW mixtures. Thus, we expected the Nd isotope ratios to be high at AAIW and AABW depths and low at NADW depths, at values that compare favorably with published water column data from the south Atlantic and western Indian Oceans. A few samples showed Nd isotope ratios clearly different from seawater; these are from the submarine fan of the Tugela River and a region with documented slump deposits near East London. Filtering these out, the remaining samples display a distinct U-shape in a plot of ɛNd vs depth, with those samples from the NADW cores yielding the lowest Nd isotope ratios (ɛNd ~ -11.5 to -12.5) and those reflecting mixtures showing appropriately higher values. This was true despite slightly elevated Sr isotope ratios in all but one core. We calculated a synthetic seawater Nd depth profile from 1500m to 4000m depth with three end

  10. Results of submerged sediment core sampling and analysis on Par Pond, Pond C, and L Lake: July 1995

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Friday, G.P.

    1996-06-01

    Sediment cores from shallow and deep water locations in Par Pond, Pond C, and L Lake were collected and analyzed in 1995 for radioactive and nonradioactive constituents. This core analysis was conducted to develop a defensible characterization of contaminants found in the sediments of Par Pond, Pond C, and L Lake. Mercury was the only nonradiological constituent with a nonestimated quantity that was detected above the U.S Environmental Protection Agency Region IV potential contaminants of concern screening criteria. It was detected at a depth of 0.3--0.6 meters (1.0--2.0 feet) at one location in L Lake. Cesium-137, promethium-146, plutonium-238, and zirconium-95 had significantly higher concentrations in Par Pond sediments than in sediments from the reference sites. Cobalt-60, cesium-137, plutonium-238, plutonium-239/240, and strontium-90 had significantly higher concentrations in L-Lake sediments than sediments from the reference sites.

  11. Identifying water-quality trends in the Trinity River, Texas, USA, 1969 1992, using sediment cores from Lake Livingston

    NASA Astrophysics Data System (ADS)

    Metre, P. C. Van; Callender, E.

    1996-12-01

    Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.

  12. Geochemical proxies for weathering and provenance of Late Quaternary alluvial core-sediments from NW India

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Amir, Mohd; Paul, Debajyoti; Sinha, Rajiv

    2014-05-01

    The Indo-Gangetic alluvial plains are formed by sediment deposition in the foreland basin as a result of upliftment and subsequent erosion of the Himalaya. Earlier study (Sinha et al., 2013) has shown the subsurface existence of buried channel bodies beneath the Ghaggar plains in NW Indo-Gangetic plains. The mapped sand bodies follow trace of a paleochannel that begins at the mountain front near the exit of river Sutlej and extends to the northern margin of the Thar desert, suggesting existence of a large Himalayan-sourced river (Singh et al., 2011) in the past. The buried sand bodies hold potential records of erosion history over the Himalaya that could be used to assess climate-controlled erosion over the Himalaya. Geochemical variations in the sediments from two (~45m long) cores drilled below the trace of the paleochannel (upstream) near Sirhind, Punjab and two cores (GS-10 & 11) from downstream near Kalibangan, Rajasthan, are used in this study to understand the erosional pattern over the Himalaya during Late Quaternary. Down-core variations in chemical index of alteration (CIA=51-79) along with K2O/Na2O and Al2O3/(CaO+Na2O) ratios are consistent with the trends of SW summer monsoonal fluctuations during the Glacial-Interglacial periods indicating climate controlled weathering at the source; higher values during Interglacial and lower during Glacial periods with maximum value during the Holocene. Sr-Nd isotopic compositions of drill-cores sediments, 87Sr/86Sr (0.7314-0.7946), ɛNd (-23.2 to -14) are within the range of silicate rocks from the Higher and Lesser Himalaya. Significant down-core variations in 87Sr/86Sr and ɛNd are observed that reflect the mixing of varying proportions of the Higher and Lesser Himalayan sediments, the two dominant sources to the core sites. Sediments deposited during MIS-2 and MIS-4, cold and dry Glacial periods, show high 87Sr/86Sr and low ɛNd suggesting an enhanced contribution from the Lesser Himalayan rocks that are

  13. Mono Lake Excursion in Cored Sediment from the Eastern Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Liddicoat, Joseph; Iorio, Marina; Sagnotti, Leonardo; Incoronato, Alberto

    2013-04-01

    A search for the Laschamp and Mono Lake excursions in cored marine and lacustrine sediment younger than 50,000 years resulted in the discovery of both excursions in the Greenland Sea (73.3˚ N, 351.0˚ E, Nowaczyk and Antanow, 1997), in the North Atlantic Ocean (62.7˚ N, 222.5˚ E, Channell, 2006), in Pyramid Lake in the Lahontan Basin, NV, USA (40.1˚ N, 240.2˚ E, Benson et al., 2008), and in the Black Sea (43.2˚ N, 36.5˚ E, Nowaczyk et al., 2012). The inclination, declination, and relative field intensity during the Mono Lake Excursion (MLE) in the Black Sea sediment matches well the behaviour of the excursion in the Mono Basin, CA, in that a reduction in inclination during westerly declination is soon followed by steep positive inclination when declination is easterly, and relative field intensity increases after a low at the commencement of the excursion (Liddicoat and Coe, 1979). A large clockwise loop of Virtual Geomagnetic Poles (VGPs) at the Black Sea when followed from old to young patterns very well the VGP loop formed by the older portion of the MLE in the Mono Basin (Liddicoat and Coe, 1979). We also searched for the MLE in cored sediment from the eastern Tyrrhenian Sea (40.1˚ N, 14.7˚ E) where the age of the sediment is believed to be about 32,000 years when comparing the susceptibility in the core with the susceptibility in a nearby one that is dated by palaeomagnetic secular variation records, Carbon-14, and numerous tephra layers in the Tyrrhenian Sea sediment (Iorio et al., 2011). In the Tyrrhenian Sea core, called C1067, closely spaced samples demagnetized in an alternating field to100 mT record a shallowing of positive inclination to 48˚ that is followed by steep positive inclination of 82˚ when declination moves rapidly to the southeast. The old to young path of the VGPs in C1067 forms a narrow counter-clockwise loop that reaches 30.3˚ N, 30.8˚ E and that is centered at about 55˚ N, 15˚ E. Although descending to a latitude that is

  14. Concerning the petroleum hydrocarbons migration in the permafrost zone

    NASA Astrophysics Data System (ADS)

    Goncharov, I. V.; Panova, E.; Grinko, A.; Dudarev, O.; Semiletov, I. P.

    2015-12-01

    In order to understand the mechanisms controlling methane emissions in the Laptev Sea it is extremely important to know the distribution patterns of subsea permafrost in the coastal zone. One possible solution to this problem is to analyze the hydrocarbon fluids in the bottom sediments. The object of our study was the core sample from Ivashkinskaya lagoon (Lena Delta, Sakha Republic). Pyrolytic studies were performed for this core sample (ROCK- EVAL 6 TURBO). According to the pyrolysis results there were 5 samples from the upper section in the range 0.36-5.58m selected for the further studies. The common feature of these samples is high content level of the pelitic component. They contain more than 1.0% of TOC and are composed of volatile organic compounds. Extracts obtained from the core sample were analyzed by GC-MS («Hewlett Packard» 6890/5973). Analyzed extracts demonstrated different classes of organic compounds in their composition with saturated and unsaturated hydrocarbons and acids dominating. Here are the histograms of n-alkanes in function of the carbon atoms number in the molecule (Figure). Considering our work experience with the Black Sea sediments we suggest that the samples with a high degree of even n-alkanes are confined to zones of petroleum hydrocarbons migration coming from the deep oil deposits. Figure. Typical n-alkanes distribution in the extracts (horizontal axis - the number of carbon atoms in the molecule, vertical axis - relative abundance)

  15. Atmospheric Mercury Depositional Chronology Reconstructed from Lake Sediments and Ice Core in the Himalayas and Tibetan Plateau.

    PubMed

    Kang, Shichang; Huang, Jie; Wang, Feiyue; Zhang, Qianggong; Zhang, Yulan; Li, Chaoliu; Wang, Long; Chen, Pengfei; Sharma, Chhatra Mani; Li, Qing; Sillanpää, Mika; Hou, Juzhi; Xu, Baiqing; Guo, Junming

    2016-03-15

    Alpine lake sediments and glacier ice cores retrieved from high mountain regions can provide long-term records of atmospheric deposition of anthropogenic contaminants such as mercury (Hg). In this study, eight lake sediment cores and one glacier ice core were collected from high elevations across the Himalaya-Tibet region to investigate the chronology of atmospheric Hg deposition. Consistent with modeling results, the sediment core records showed higher Hg accumulation rates in the southern slopes of the Himalayas than those in the northern slopes in the recent decades (post-World War II). Despite much lower Hg accumulation rates obtained from the glacier ice core, the temporal trend in the Hg accumulation rates matched very well with that observed from the sediment cores. The combination of the lake sediments and glacier ice core allowed us to reconstruct the longest, high-resolution atmospheric Hg deposition chronology in High Asia. The chronology showed that the Hg deposition rate was low between the 1500s and early 1800, rising at the onset of the Industrial Revolution, followed by a dramatic increase after World War II. The increasing trend continues to the present-day in most of the records, reflecting the continuous increase in anthropogenic Hg emissions from South Asia.

  16. Geochemical data for core and bottom-sediment samples collected in 2007 from Grand Lake O' the Cherokees, northeast Oklahoma

    USGS Publications Warehouse

    Fey, David L.; Becker, Mark F.; and Smith, Kathleen S.

    2010-01-01

    Grand Lake O' the Cherokees is a large reservoir in northeast Oklahoma, below the confluence of the Neosho and Spring Rivers, both of which drain the Tri-State Mining District to the north. The Tri-State district covers an area of 1,200 mi2 (3,100 km2) and comprises Mississippi Valley-type lead-zinc deposits. A result of 120 years of mining activity is an estimated 75 million tons of processed mine tailings (chat) remaining in the district. Concerns of sediment quality and the possibility of human exposure to cadmium and lead through eating fish have led to several studies of the sediments in the Tri-State district. In order to record the transport and deposition of metals from the Tri-State district by the Spring and Neosho Rivers into Grand Lake O' the Cherokees, the U.S. Geological Survey collected 11 sediment cores and 15 bottom-sediment samples in September 2007. Subsamples from five selected cores and the bottom-sediment samples were analyzed for major and trace elements and forms of carbon. The sediment samples collected from the sediment-water interface had larger average concentrations of zinc, cadmium, and lead than local background. The core collected from the Spring River had the largest concentrations of mining-related elements. A core collected just south of Twin Bridges State Park, at the confluence of the Spring and Neosho Rivers, showed a mixing zone with more mining-related elements coming from the Spring River side. The element zinc showed the most definitive patterns in graphs depicting concentration-versus-depth profiles. A core collected from the main body of the reservoir showed affected sediment down to a depth of 85 cm (33 in). This core and two others appear to have penetrated to below mining-affected sediment.

  17. Distribution, provenance and early diagenesis of major and trace metals in sediment cores from the Mandovi estuary, western India

    NASA Astrophysics Data System (ADS)

    Prajith, A.; Rao, V. Purnachandra; Chakraborty, P.

    2016-03-01

    Major elements and trace metals were analyzed in four sediment cores recovered along a transect in the Mandovi estuary for their distribution, provenance and early diagenesis. The sediments were clayey silts in cores from the upper/lower estuary and sand-dominated in cores from the middle estuary/bay. Organic carbon (OC) content varied from 0.5 to 4%, with higher values in fine-grained sediments. The mean Fe and Mn contents of sediments from the upper/middle estuary were 3-5 times and 8-13 times, respectively higher than the reference sediment (RS) from the same estuary. The mean Fe and Mn contents of sediments from the lower estuary/bay were close to the RS. Strong inter-metal correlation among Ti, V, Cr and Zr in all the cores indicated their contribution from a common source, probably the laterites from hinterland. Trace metals were more enriched in fine-grained sediments than in sand-dominated sediments. Early diagenetic control on the redistribution of metal is evident in core sediments from the middle estuary to Bay. The distribution of Mo, U and Pb followed that of Fe and Mn in the upper estuary and OC in the lower estuary/bay. Our results indicated strong anthropogenic contribution of metals from ore deposits in the upper/middle estuary. The Mn and Cr contents of sediment in the upper/middle estuary and Fe in the middle estuary were highly enriched suggestive of 'significant pollution signal'. More trace metals from the middle estuary were moderately enriched. Speciation studies showed Mn and Pb occurred abundantly in non-residual phases. High Mn content and its high percentage in exchangeable and reductive phases indicate that it was susceptible to be mobilized. However, Fe, Cu and Ni occurred abundantly in residual phases and less percentage of them were expected to be bio-available.

  18. Physical processes in Subglacial Lake Whillans, West Antarctica: Inferences from sediment cores

    NASA Astrophysics Data System (ADS)

    Hodson, T. O.; Powell, R. D.; Brachfeld, S. A.; Tulaczyk, S.; Scherer, R. P.

    2016-06-01

    The hydrologic system beneath the Antarctic Ice Sheet is thought to influence both the dynamics and distribution of fast flowing ice streams, which discharge most of the ice lost by the ice sheet. Despite considerable interest in understanding this subglacial network and its affect on ice flow, in situ observations from the ice sheet bed are exceedingly rare. Here we describe the first sediment cores recovered from an active subglacial lake. The lake, known as Subglacial Lake Whillans, is part of a broader, dynamic hydrologic network beneath the Whillans Ice Stream in West Antarctica. Even though "floods" pass through the lake, the lake floor shows no evidence of erosion or deposition by flowing water. By inference, these floods must have insufficient energy to erode or transport significant volumes of sediment coarser than silt. Consequently, water flow beneath the region is probably incapable of incising continuous channels into the bed and instead follows preexisting subglacial topography and surface slope. Sediment on the lake floor consists of till deposited during intermittent grounding of the ice stream following flood events. The fabrics within the till are weaker than those thought to develop in thick deforming beds suggesting subglacial sediment fluxes across the ice plain are currently low and unlikely to have a large stabilizing effect on the ice stream's grounding zone.

  19. Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain

    USGS Publications Warehouse

    Lenz, Josefine; Jones, Benjamin M.; Wetterich, Sebastian; Tjallingii, Rik; Fritz, Michael; Arp, Christopher D.; Rudaya, Natalia; Grosse, Guido

    2016-01-01

    Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation, and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological, and geochemical proxies. Radiocarbon and 210Pb/137Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~1400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the “alder high” that occurred in the region ~4000 cal yr BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were, therefore, archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.

  20. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  1. Time trends of perfluorinated compounds from the sediment core of Tokyo Bay, Japan (1950s-2004).

    PubMed

    Zushi, Yasuyuki; Tamada, Masafumi; Kanai, Yutaka; Masunaga, Shigeki

    2010-03-01

    Perfluorinated compounds (PFCs) were detected in sediment core samples collected in Tokyo Bay to reveal their time trends. The core sample deposited during 1950s-2004 was divided into two- to three-year intervals and the concentrations of 24 types of PFCs were determined. Perfluorooctane sulfonate (PFOS) decreased gradually from the early 1990s and its precursor decreased rapidly in the late 1990s, whereas perfluorooctanoic acid (PFOA) increased rapidly. The observed trends were regarded as a reflection of the shift from perfluorooctyl sulfonyl fluoride (PFOSF)-based products to telomer-based products after the phaseout of PFOSF-based products in 2001. The branched isomers of perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTrDA) were detected in the sample with its ratio of linear-isomer/branched-isomer concentrations decreasing. In this study, we revealed that the sediment core can serve as a tool for reconstructing the past pollution trend of PFCs and can provide interesting evidence concerning their environmental dynamics and time trend.

  2. Biogenic silica in Lake Baikal sediments: results from 1990-1992 American cores

    USGS Publications Warehouse

    Carter, Susan J.; Colman, Steven M.

    1994-01-01

    The Lake Baikal Paleoclimate Project is a joint Russian-American program established to study the paleoclimate of Central Asia. During three summer field seasons, duplicate Russian and American cores were taken at a number of sites in different sedimentary environments in the lake. Eight cores returned to the U.S. were quantitatively analyzed for biogenic silica using a single-step 5-hour alkaline leach, followed by dissolved silicon analysis by inductively-coupled-plasma atomic-emission spectroscopy. Sediments of Holocene age in these cores have biogenic silica maxima that range from about 15 to 80 percent. An underlying zone in each core with low biogenic-silica concentrations (0 to 5 percent) dates from the last glacial maximum. The transition from the last glaciation to the present interglaciation, recorded by biogenic silica, began about 13,000 years ago. Biogenic silica profiles from these cores appear to be a good measure of past diatom productivity and a useful basis for paleoclimatic interpretations.

  3. Rapid Permafrost Carbon Degradation at the Land-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Tanski, G.

    2015-12-01

    Climate change has a strong impact on permafrost coasts in the Arctic. With increasing air and water temperatures, the ice-rich unlithified permafrost coasts will thaw and erode at a greater pace. Organic carbon that has been stored for thousands of years is mobilized and degrades on its way to the ocean. The objective of this study is to investigate to what extent permafrost carbon degrades after thawing before it enters the ocean in a retrogressive thaw slump. A slump located on Herschel Island (Yukon Territory, Canada) was sampled systematically along transects from the permafrost headwall to the coastline. Concentrations of particulate and dissolved organic carbon (POC and DOC) as well as its stable carbon isotopes (δ13C-POC and δ13C-DOC) were measured and compared in frozen deposits and in thawed sediments. Ammonium, nitrite and nitrate were also analyzed in order to identify and understand the carbon metabolization mechanisms taking place during slump activity. Our results show that major portions of permafrost carbon are metabolized right after thawing. Ammonium concentrations are highest in areas where thawed permafrost material directly accumulates. We suggest that before entering the nearshore zone permafrost organic carbon and nitrogen is subject to major degradation and metabolization. This makes permafrost coasts and retrogressive thaw slumps degradation hotspots at the land-ocean-interface.

  4. The presence of rapidly degrading permafrost plateaus in southcentral Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Baughman, Carson; Romanovsky, Vladimir E.; Parsekian, Andrew D.; Babcock, Esther; Stephani, Eva; Jones, Miriam C.; Grosse, Guido; Berg, Edward E

    2016-01-01

    Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0°C. In this study, we document the presence of residual permafrost plateaus on the western Kenai Peninsula lowlands of southcentral Alaska, a region with a MAAT of 1.5 ± 1°C (1981 to 2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (−0.04 to −0.08°C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but was as shallow as 0.53 m. Late winter surveys (drilling, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to >6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60%, with lateral feature degradation accounting for 85% of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing permafrost history in

  5. Historical reconstruction of contamination using sediment cores: A review. Technical memo

    SciTech Connect

    Valette-Silver, N.

    1992-03-01

    Historical reconstructions of contamination using cored sediments have been performed in the United States and abroad, in marine as well as freshwater environments. Most studies have dealt with trace metals, while a few reported results for organic contaminants. With some exceptions, these studies show an increase in sediment contamination during the late 1800s, followed by an acceleration in the rate of contamination in the 1940s, and a plateau or a maximum in the 1960-1970s. Little is known about the trends of coastal pollution over the last decade, as only a few studies have been carried out since 1980. From these studies, however, it appears that Pb concentrations have decreased in most areas of the world following the implementation of laws regulating the use of leaded gasoline in automobiles.

  6. The results of pressure coring in Nankai gas-production test site, and plan for pressure core analysis of natural gas-hydrate bearing deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Nakatsuka, Y.; Konno, Y.; Kida, M.; Yoneda, J.; Egawa, K.; Jin, Y.; Ito, T.

    2012-12-01

    As a part of the Methane hydrate research and development (R&D) program in Japan, the first gas-production test from marine methane hydrate deposits is planned to be conducted during first quarter of 2013. The Daini Atsumi Knoll, that is located in the Nankai Trough region along the southeastern margin of Japan has been selected as the production test site by the Methane Hydrate Research Consortium in Japan (MH21). We had already carried out pressure core sampling using Pressure Temperature Core Sampler (PTCS) at 2004 near the test site, however we could not maintain their pressure after core recovery although the samples were stored as frozen material using liquid nitrogen at that time. To grasp better condition of gas hydrate bearing sediments around test-well, we decided to conduct pressure coring and analyses on them again to before starting gas production test. In June-July 2012, the pressure coring operation with Hybrid Pressure Core Sampler (Hybrid PCS) and Pressure Core Analysis/Transfer System (PCATS) was conducted. As the result of coring, more than 20m long pressure cores were taken by Hybrid PCS, successfully (pressure-maintained). They were analyzed and cut, and a part of them were transferred into Pressure Storage Cambers under gas hydrate stability P/T condition using PCATS. Also, the PCATS could take Gamma-ray density, P-wave velocity and high-resolution X-ray CT images of each core, thus, we could choose appropriate samples from each core for each specific experiment. The cores were stored under gas hydrate stability condition within Pressure Storage Cambers, and stored in refrigerator cabinet in Methane Hydrate Research Center (MHRC) of National Institute of Advanced Industrial Science and Technology (AIST). Many analyses; such as grain size distribution, gas volume measurement, mineral composition, micro-structure observation, permeability and strength/stiffness of sediments, are proposed by researcher of MHRC/AIST to understand relationships

  7. Surface (sea floor) and near-surface (box cores) sediment mineralogy in Baffin Bay as a key to sediment provenance and ice sheet variations

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.

    2011-01-01

    To better understand the glacial history of the ice sheets surrounding Baffin Bay and to provide information on sediment pathways, samples from 82 seafloor grabs and core tops, and from seven box cores were subjected to quantitative X-ray diffraction weight percent (wt.%) analysis of the 2000 m) all show an abrupt drop in calcite wt.% (post-5 cal ka BP?) following a major peak in detrital carbonate (mainly dolomite). This dolomite-rich detrital carbonate (DC) event in JR175BC06 is possibly coeval with the Younger Dryas cold event. Four possible glacial-sourced end members were employed in a compositional unmixing algorithm to gain insight into down core changes in sediment provenance at the deep central basin. Estimates of the rates of sediment accumulation in the central basin are only in the range of 2 to 4 cm/cal ka, surprisingly low given the glaciated nature of the surrounding land.

  8. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    NASA Astrophysics Data System (ADS)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    A characteristic feature of permafrost soils in the Arctic is widespread intra-permafrost unfrozen brine lenses - cryopegs. They are often found in permafrost horizons in the north part of Western Siberia, in particular, on the Yamal Peninsula. Cryopegs depths in permafrost zone can be tens and hundreds of meters from the top of frozen strata. The chemical composition of natural cryopegs is close to sea waters, but is characterized by high mineralization. They have a sodium-chloride primary composition with a minor amount of sulphate. Mineralization of cryopegs brine is often hundreds of grams per liter, and the temperature is around -6…-8 °C. The formation of cryopegs in permafrost is associated with processes of long-term freezing of sediments and cryogenic concentration of salts and salt solutions in local areas. The cryopegs' formation can take place in the course of permafrost evolution at the sea transgressions and regressions during freezing of saline sea sediments. Very important feature of cryopegs in permafrost is their transformation in the process of changing temperature and pressure conditions. As a result, the salinity and chemical composition are changed and in addition the cryopegs' location can be changed during their migration. The cryopegs migration violates the thermodynamic conditions of existence intra-permafrost gas hydrate formations, especially the relic gas hydrates deposits, which are situated in the shallow permafrost up to 100 meters depth in a metastable state [1]. The interaction cryopegs with gas hydrates accumulations can cause decomposition of intra-permafrost hydrates. Moreover, the increasing of salt and unfrozen water content in sedimentary rocks sharply reduce the efficiency of gas hydrates self-preservation in frozen soils. It is confirmed by experimental investigations of interaction of frozen gas hydrate bearing sediments with salt solutions [2]. So, horizons with elevated pressure can appear, as a result of gas hydrate

  9. Environmental magnetic and petroleum hydrocarbons records in sediment cores from the north east coast of Tamilnadu, Bay of Bengal, India.

    PubMed

    Venkatachalapathy, R; Veerasingam, S; Basavaiah, N; Ramkumar, T; Deenadayalan, K

    2011-04-01

    In this study, mineral magnetic properties and petroleum hydrocarbons were statistically analysed in four sediment cores (C1, A1, T1 and K1) from the north east coast of Tamilnadu, India to examine the feasibility of PHC concentrations assessment using magnetic susceptibility. The C1 and A1 cores reveal a clear horizon of increase in PHC above 35 and 50 cm respectively suggesting the excess anthropogenic loading occurred in the recent past. Magnetic properties which were enhanced in the upper part of the sediment cores were the result of ferrimagnetic minerals from anthropogenic sources. Factor analysis confirmed that the input of magnetic minerals and petroleum hydrocarbons in Chennai coastal sediments are derived from the same sources. The present study shows that instead of expensive and destructive PHC chemical methods, magnetic susceptibility is found to be a suitable, cheap and rapid method for detailed study of petroleum hydrocarbon contamination in marine sediments.

  10. Source determination of benzotriazoles in sediment cores from two urban estuaries on the Atlantic Coast of the United States.

    PubMed

    Cantwell, Mark G; Sullivan, Julia C; Katz, David R; Burgess, Robert M; Bradford Hubeny, J; King, John

    2015-12-15

    Benzotriazoles (BZTs) are used in a broad range of commercial and industrial products, particularly as metal corrosion inhibitors and as ultraviolet (UV) light stabilizer additives in plastics and polymers. In this study, dated sediment cores from two east coast estuaries were analyzed for commonly used BZTs. In Narragansett Bay, UV stabilizing BZTs (UV-BZTs) were present at high levels from 1961 on, reflecting their patent date, local production and long-term preservation in sediment. In Salem Sound, UV-BZTs were present at concentrations consistent with other coastal marine locations not influenced by BZT production. Anticorrosive BZTs (AC-BZTs) were found in both cores, with the highest levels reported to date present in Narragansett Bay, indicating sorption to, and preservation in, sediments. This study revealed that both classes of BZTs have remained structurally intact over time in coastal sediment cores, demonstrating their resistance to degradation and persistence in environmental compartments.

  11. [Hydrolytic enzyme activities in the bottom sediment cores from Norwegian Sea and statistical analysis of their distribution].

    PubMed

    Korneeva, G A; Gordeeva, E L

    2004-01-01

    Proteinase and amylase enzyme activities were evaluated in bottom sediment cores from the Norwegian Sea collected along a transect from the summit plane of the Voring Plateau on the east to fault uplifts of the Yan-Mayen transform zone perpendicular to the present-day Norwegian Current. Spotted vertical distribution of hydrolytic enzyme activities by the location and depth of the cores and specific distribution of proteinase and amylase activities have been revealed in four bottom sediment cores (up to 300 cm; 5 cm resolution). Specific activity distribution has been revealed for different types of enzyme-sorbing bottom sediments. Current methods of statistical analysis and mathematical modeling were applied to reveal the relationship between enzymatic degradation of protein and polysaccharide organic compounds and the content of carbonates and organic matter in bottom sediments.

  12. Historical changes in the Columbia River estuary based on sediment cores: feasibility studies

    USGS Publications Warehouse

    Petersen, J.H.; Reisenbichler, R.; Gelfenbaum, G.R.; Peterson, C.; Baker, D.; Leavitt, P.R.; Simenstad, C.A.; Prahl, F.G.

    2003-01-01

    The importance of the Columbia River estuary to salmon, other fishes, migratory birds, and other species is fairly well established. Relatively little is known, however, about long-term, historic variations in biological processes and conditions within the estuary. For example, have conditions varied greatly with climatic regime shifts and how has dam construction on the Columbia River influenced biological communities over time? We conducted a feasibility study to see if sediment cores from the estuary could be aged and whether biological or contaminant indicators could be identified. Such information could be useful in understanding long-term environmental variation and in restoration studies.

  13. Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture.

    PubMed

    Kleeberg, Andreas; Neyen, Marielle; Schkade, Uwe-Karsten; Kalettka, Thomas; Lischeid, Gunnar

    2016-04-01

    Glacial kettle holes in young moraine regions receive abundant terrigenous material from their closed catchments. Core chronology and sediment accumulation were determined for two semi-permanent kettle holes, designated RG and KR, on arable land close to the villages of Rittgarten and Kraatz, respectively, in Uckermark, NE Germany. Core dating ((210)Pb, (137)Cs) revealed variable sediment accretion rates through time (RG 0.4-23.1 mm a(-1); KR 0.2-35.5 mm a(-1)), with periods of high accumulation corresponding to periods of intensive agricultural activity and consequent erosional inputs from catchments. Sediment composition (C, N, P, S, K, Ca, Fe, Mn, Zn, Cu, Mo, Pb, Cd, Zr) was used to determine sediment source and input processes. At RG, annual P input increased from 0.65 kg ha(-1) in the early nineteenth century to 1.67 kg ha(-1) by 2013. At KR, P input increased from 0.6 to 4.1 kg ha(-1) over the last century. There was a concurrent increase in Fe input in both water bodies. Thus, Fe/P ratios showed no temporal trend and did not differ between RG (18.5) and KR (18.4), indicating similar P mobility. At RG, the S/Fe ratio increased from 0.4 to 2.3, indicating more iron sulphides and thus higher P availability, coinciding with high coverage of duckweed (Spirodela polyrhiza (L.)) and soft hornwort (Ceratophyllum submersum L.). At KR, however, this ratio remained low and relatively unchanged (0.3 ± 0.4), indicating more efficient Fe-P binding and lower hydrophyte productivity. Trends in sediment composition indicate a shift towards eutrophication in both kettle holes, but with differences in timing and magnitude. Other morphologically similar kettle holes in NE Germany that are prone to erosion could have been similarly impacted but may differ in the extent of sediment infilling and degradation of their ecological functions.

  14. Preliminary Results of a Multi-Proxy Lake Sediment Core Study in East-Central France

    NASA Astrophysics Data System (ADS)

    Misner, T.; Meyers, S.; Rosenmeier, M.; Strano, S.; Straffin, E.

    2008-12-01

    This paper presents the preliminary results of a multi-proxy study of natural and human-induced changes in the Burgundian environment, as recorded in the sediment geochemistry of three small freshwater basins within the Arroux River Valley, east-central France. Accelerator mass spectrometry radiocarbon dates constrain the age of core material collected from the basins, and indicate that these mill and farm ponds were constructed by at least 1200 A.D. The pond sediments are predominantly massive, organic-rich muds that contain discrete sand and gravel lenses likely related to episodic flooding and/or basin drainage. In this study, continuous X-ray fluorescence (XRF) scanning is used to quantify bulk geochemical variability throughout the lake sediment cores, and to investigate specific elemental proxies for paleoenvironmental change (detrital flux, biogenic flux, and redox state). The high-resolution XRF data are supplemented by sediment magnetic susceptibility measurements, and organic matter concentration as determined by loss on ignition. These records demonstrate a general increase in detrital sediment input from 1200 to 1300 A.D., during a period of known regional agricultural expansion. We infer these changes to be the consequence of increased catchment soil erosion and material flux to the water bodies. The data also suggest changes in mill and farm pond primary productivity, also related to soil erosion and changing transport of soil nutrients to the basins. Near the onset of the Little Ice Age (ca. 1500 A.D.) pond productivity reductions are apparent, likely indicating colder climates. These mill and farm pond sedimentary archives, in conjunction with historic records, can be used to better understand past land management strategies. Furthermore, historically documented landscape changes can be examined within the context of prevailing climatic conditions over the last ~800 years in an effort to establish future best management practices and the most

  15. Tracking the Transformation and Preservation of Organic Biomarkers in a Varved Sediment-Core Series

    NASA Astrophysics Data System (ADS)

    Tolu, J.; Bigler, C.; Bindler, R.

    2014-12-01

    An important premise for reconstructing environmental changes using sediment records is to understand which environmental information reaches the lake bottom and how diagenetic processes may affect the proxies, such as terrestrial and aquatic organic biomarkers. We can tackle this question using a unique series of varved sediment cores collected from the lake Nylandssjön (northern Sweden). In addition to limnological and sediment trap sampling since 2001, we have a collection of freeze cores taken in late winter and stored since 1979, which allows us to track individual varve years (e.g., 1978) over time (~30 years). A previous study using this collection showed that 23 % of C and 35 % of N were lost during the first 25 years with a C:N ratio increase of ≈21, suggesting important implications for diagenetic effects on organic biomarkers. To assess the preservation/transformation of organic biomarkers, we developed a new Pyrolysis-Gas Chromatography/Mass Spectrometry method that allows the rapid determination of biomarkers from the common OM classes (e.g., plant waxes, microbial lipids, lignins) using sub-mg sample sizes and thus applicable to high-resolution sampling of the varved sediment (Tolu et al., under review). Our results show that the different biomarkers exhibit a broad spectrum of reactivities over ~30 years -% change determined by ([Peak area at t] - [Peak area at t=0])/ [peak area at t=0] x 100-. For example: 67-80 % of the algal chlorophyll-derived product 'phytene' is lost depending which single varve year is followed over time (e.g., 1979). Only 12-32 % of "pristene", the degraded form of algal chlorophyll, is lost. The guaiacyl and syringyl lignin units are affected by a smaller loss, i.e. 5-15 %, and the S/G ratio, indicative of angiosperm/gymnosperm plant input remains stable, which is contrary to previous work on non-varved lake sediments. Considering all biomarkers, the degradation/production plateaued after ~15 years, which indicates that

  16. Quaternary sedimentation and subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring

    USGS Publications Warehouse

    Colman, Steven M.; Karabanov, E.B.; Nelson, C. H.

    2003-01-01

    The long, continuous, high-latitude, stratigraphic record of Lake Baikal was deposited in three broad sedimentary environments, defined by high-resolution seismic-reflection and coring methods: (1) turbidite depositional systems, by far the most widespread, characterizing most of the margins and floors of the main basins of the lake, (2) large deltas of major drainages, and (3) tectonically or topographically isolated ridges and banks. Holocene sedimentation rates based on radiocarbon ages vary by more than an order of magnitude among these environments, from less than about 0.03 mm/yr on ridges and banks to more than about 0.3 mm/yr on basin floors. Extrapolating these rates, with a correction for compaction, yields tentative estimates of about 25 and 11 Ma for the inception of rifting in the Central and North basins, respectively, and less than 6 Ma for the 200-m sediment depth on Academician Ridge. The Selenga Delta has the distinctive form of a classic prograding Gilbert-type delta, but its history appears to represent a complex combination of tectonism and sedimentation. The central part of the delta is underlain by prograding, shallow-water sequences, now several hundred meters below the lake surface. These deposits and much of the delta slope are mantled by fine-grained, deep-water, hemipelagic deposits whose base is estimated to be about 650,000 years old. Modern coarse-grained sediment bypasses the delta slope through fault-controlled canyons that feed large, subaqueous fans at the ends of the South and Central basins. These relations, along with abundant other evidence of recent faulting and the great depths of the Central and South basins, suggest that these two rift basins have experienced a period of unusually rapid subsidence over the last 650,000 years, during at least part of which sedimentation has failed to keep pace.

  17. Geophysical characterization of permafrost terrain at Iqaluit International Airport, Nunavut

    NASA Astrophysics Data System (ADS)

    Oldenborger, Greg A.; LeBlanc, Anne-Marie

    2015-12-01

    Iqaluit International Airport presently suffers from instabilities and subsidence along its runway, taxiways and apron. In particular, asphalt surfaces are significantly impacted by settlement and cracking. These instabilities may be related to permafrost, permafrost degradation and associated drainage conditions. Low induction number electromagnetic measurements along with galvanic and capacitive electrical resistivity surveys were performed over selected areas within the airport boundary and in the near vicinity to assist with permafrost characterization and to investigate active permafrost processes. Electrical resistivity images suggest distinct electrical signatures for different terrain units and sediment types, and for ice-rich material including ice wedges. Anomalous regions are identified that are coincident with localized settlement problems. Repeated resistivity maps reveal seasonal changes indicative of high unfrozen water content and freeze/thaw of groundwater beneath airport infrastructure in distinct regions related to surficial geology. Even with continuous permafrost and cold permafrost temperatures, the resistivity models reveal anomalously conductive material at depth that is not obviously correlated to mapped surficial sediments and that may represent thaw susceptible sediments or significant unfrozen water content.

  18. Permafrost aggradation in recently deglaciated alpine environments

    NASA Astrophysics Data System (ADS)

    Leopold, Matthias; Dusik, Jana; Stocker-Waldhuber, Martin; Völkel, Jörg; Becht, Michael

    2015-04-01

    Permafrost degradation is of major interest in the present discussion about alpine climate change and natural hazard prevention. Glacial retreat since the Little Ice Age (LIA) is followed by destabilisation of the surrounding mountains due to melting permafrost in bedrock and sediments. Glacial retreat also exposes huge areas of lateral and ground moraines. Areas of formerly temperate glaciers experience colder temperatures only since their ice cover has melted and basal meltwater no longer heats the ground. With a huge pore volume in the sediment body, water supply during the melt season and large daily temperature variations in high mountains, distinct freeze and thaw processes start and generate periglacial forms like patterned ground in the direct glacier forefield. Those geomorphic features are precursors for possible permafrost aggradation in proglacial areas. The work presented is part of the joint project PROSA (High-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) that aims in the quantification of a sediment budget for the upper Kaunertal valley, Austrian Central Alps. In this sense and to find out about erosion causing prerequisites and processes, permafrost and ground ice occurrence, as well as sediment thickness is measured by i.a. application of geophysical measurements, multitemporal airborne and terrestrial LiDAR, as well as aerial photographs. In this case study we examine the spatial and temporal settings for permafrost aggradation in a recently deglaciated cirque, belonging to the catchment area of the Gepatschferner glacier using electric resistivity tomography (ERT) and basal temperature of the winterly snowcover (BTS) measurements to detect the state of the permafrost, multitemporal aerial photographs dating back to 1953 to reproduce recent deglaciation of the cirque and multitemporal airborne LiDAR data to gain information about surface elevation changes. The northeast facing cirque is situated in

  19. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils

    NASA Astrophysics Data System (ADS)

    Treat, C. C.; Jones, M. C.; Camill, P.; Gallego-Sala, A.; Garneau, M.; Harden, J. W.; Hugelius, G.; Klein, E. S.; Kokfelt, U.; Kuhry, P.; Loisel, J.; Mathijssen, P. J. H.; O'Donnell, J. A.; Oksanen, P. O.; Ronkainen, T. M.; Sannel, A. B. K.; Talbot, J.; Tarnocai, C.; Väliranta, M.

    2016-01-01

    Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m-2 yr-1) than in permafrost-free bogs (18 g C m-2 yr-1) and were lowest in boreal permafrost peatlands (14 g C m-2 yr-1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.

  20. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils

    USGS Publications Warehouse

    Treat, C.C.; Jones, Miriam C.; Camill, P.; Gallego-Sala, A.; Garneau, M.; Harden, Jennifer W.; Hugelius, G.; Klein, E.S.; Kokfelt, U.; Kuhry, P.; Loisel, J.; Mathijssen, J.H.; O'Donnell, J.A.; Oksanen, P.O.; Ronkainen, T.M.; Sannel, A.B.K.; Talbot, J. J.; Tarnocal, C.M.; Valiranta, M.

    2016-01-01

    Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m−2 yr−1) than in permafrost-free bogs (18 g C m−2 yr−1) and were lowest in boreal permafrost peatlands (14 g C m−2 yr−1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.

  1. Subsea Permafrost Climate Modeling - Challenges and First Results

    NASA Astrophysics Data System (ADS)

    Rodehacke, C. B.; Stendel, M.; Marchenko, S. S.; Christensen, J. H.; Romanovsky, V. E.; Nicolsky, D.

    2015-12-01

    Recent observations indicate that the East Siberian Arctic Shelf (ESAS) releases methane, which stems from shallow hydrate seabed reservoirs. The total amount of carbon within the ESAS is so large that release of only a small fraction, for example via taliks, which are columns of unfrozen sediment within the permafrost, could impact distinctly the global climate. Therefore it is crucial to simulate the future fate of ESAS' subsea permafrost with regard to changing atmospheric and oceanic conditions. However only very few attempts to address the vulnerability of subsea permafrost have been made, instead most studies have focused on the evolution of permafrost since the Late Pleistocene ocean transgression, approximately 14000 years ago.In contrast to land permafrost modeling, any attempt to model the future fate of subsea permafrost needs to consider several additional factors, in particular the dependence of freezing temperature on water depth and salt content and the differences in ground heat flux depending on the seabed properties. Also the amount of unfrozen water in the sediment needs to be taken into account. Using a system of coupled ocean, atmosphere and permafrost models will allow us to capture the complexity of the different parts of the system and evaluate the relative importance of different processes. Here we present the first results of a novel approach by means of dedicated permafrost model simulations. These have been driven by conditions of the Laptev Sea region in East Siberia. By exploiting the ensemble approach, we will show how uncertainties in boundary conditions and applied forcing scenarios control the future fate of the sub sea permafrost.

  2. Promise and Pitfalls of Using Grain Size Analysis to Identify Glacial Sediments in Alpine Lake Cores.

    NASA Astrophysics Data System (ADS)

    Clark, D. H.

    2011-12-01

    Lakes fed by glacier outwash should have a clastic particle-size record distinct from non-glacial lakes in the same area, but do they? The unique turquoise color of alpine glacial lakes reflects the flux of suspended clastic glacial rock flour to those lakes; conversely, lakes not fed by outwash are generally clear with sediments dominated by organics or slope-wash from nearby hillslopes. This contrast in sediment types and sources should produce a distinct and measureable different in grain sizes between the two settings. Results from a variety of lakes suggest the actual situation is often more subtle and complex. I compare grain size results to other proxies to assess the value of grain size analysis for paleoglacier studies. Over the past 10 years, my colleagues and I have collected and analyzed sediment cores from a wide variety of lakes below small alpine glaciers in an attempt to constrain the timing and magnitude of alpine glaciation in those basins. The basic concept is that these lakes act as continuous catchments for any rock flour produced upstream by glacier abrasion; as a glacier grows, the flux of rock flour to the lake will also increase. If the glacier disappears entirely, rock flour deposition will also cease in short order. We have focused our research in basins with simple sedimentologic settings: mostly small, high-altitude, stripped granitic or metamorphic cirques in which the cirque glaciers are the primary source of clastic sediments. In most cases, the lakes are fed by meltwater from a modern glacier, but were ice free during the earlier Holocene. In such cases, the lake cores should record formation of and changes in activity of the glacier upstream. We used a Malvern Mastersizer 2000 laser particle size analyzer for our grain size analyses, as well as recording magnetic susceptibility, color, and organics for the same cores. The results indicate that although lakes often experience increases in silt and clay-size (<0.63 mm) clastic

  3. Vertical distribution and indications of lipids biomarkers in the sediment core from East China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Jiangtao; Li, Feng; Yang, Shu; Tan, Liju

    2016-07-01

    To study the distribution and indications of lipids biomarkers in the mud areas of the East China Sea shelf, a sediment core was collected. Lipids were determined to find the origination of different organic matter (fatty acids and sterols) inputs. The results demonstrated that the distribution of fatty acids and sterols indicated the organic matter derived from the mixed allochthonous and autochthonous sources, but mainly autochthonous. The total fatty acids concentrations ranged from 29.08 μg g-1 to 303.92 μg g-1 and exhibited unimodal distribution with the predominance of C16-fatty acid. Neutral lipid concentrations ranged from 1.77 μg g-1 to 4.65 μg g-1. Furthermore, the distribution patterns of sterols varied with depth, and were dominated by C27-sterol and C29-sterol in the top and bottom sediments respectively. Although bacterial lipids were recruited during diagenesis, the refractory terrestrial lipids were usually preferentially preserved. This records dated from the 1980s suggested that the phytoplankton community was mainly influenced by eutrophication in the East China Sea and this variation may be recorded by lipid biomarkers deposited in the sediment.

  4. Phosphorus in foraminiferal sediments from North Atlantic Ridge cores and in pure limestones

    NASA Technical Reports Server (NTRS)

    Sherwood, B. A.; Sager, S. L.; Holland, H. D.

    1987-01-01

    Samples of foraminiferal ooze from two North Atlantic cores were cleaned and progressively dissolved. Most of the P, Fe, and Mn was released during the first of two reductive cleaning steps. Most of the remainder of these elements and most of the Ca were released during the final acid dissolution step. The P in these samples is present largely in Fe- and Mn-rich coatings, not as a constituent of the foraminiferal shells themselves. Our results are consistent with those of earlier studies. The concentration of P in carbonate oozes in which it is clearly associated with coatings is similar to that of modern calcareous sediments in general, and with that of reasonably pure limestones of all ages. Phosphorus is apparently associated with (Fe, Mn)-oxide coatings in many carbonate sediments. The rate of removal of P from the oceans as a constituent of such sediments depends on the rate of formation of (Fe, Mn) coatings, not on the rate of incorporation of P into calcium carbonate.

  5. Holocene paleoclimatic evidence and sedimentation rates from a core in southwestern Lake Michigan

    USGS Publications Warehouse

    Colman, Steven M.; Jones, Glenn A.; Forester, R.M.; Foster, D.S.

    1990-01-01

    Preliminary results of a multidisciplinary study of cores in southwestern Lake Michigan suggest that the materials in these cores can be interpreted in terms of both isostatically and climatically induced changes in lake level. Ostracodes and mollusks are well preserved in the Holocene sediments, and they provide paleolimnologic and paleoclimatic data, as well as biogenic carbonate for stable-isotope studies and radiocarbon dating. Pollen and diatom preservation in the cores is poor, which prevents comparison with regional vegetation records. New accelerator-mass spectrometer 14C ages, from both carbon and carbonate fractions, provide basin-wide correlations and appear to resolve the longstanding problem of anomalously old ages that result from detrital organic matter in Great Lakes sediments. Several cores contain a distinct unconformity associated with the abrupt fall in lake level that occurred about 10.3 ka when the isostatically depressed North Bay outlet was uncovered by the retreating Laurentide Ice Sheet. Below the unconformity, ostracode assemblages imply deep, cold water with very low total dissolved solids (TDS), and bivalves have ?? 18O (PDB) values as light as - 10 per mil. Samples from just above the unconformity contain littoral to sublittoral ostracode species that imply warmer, higher-TDS (though still dilute) water than that inferred below the unconformity. Above this zone, another interval with ?? 18O values more negative than - 10 occurs. The isotopic data suggest that two influxes of cold, isotopically light meltwater from Laurentide ice entered the lake, one shortly before 10.3 ka and the other about 9 ka. These influxes were separated by a period during which the lake was warmer, shallower, but still very low in dissolved solids. One or both of the meltwater influxes may be related to discharge from Lake Agassiz into the Great Lakes. Sedimentation rates appear to have been constant from about 10 ka to 5 ka. Bivalve shells formed between about

  6. Submerged terrestrial landscapes in the Baltic Sea: Evidence from multiproxy analyses of sediment cores from Fehmarnbelt

    NASA Astrophysics Data System (ADS)

    Enters, Dirk; Wolters, Steffen; Blume, Katharina; Segschneider, Martin; Lücke, Andreas; Theuerkauf, Martin; Hübener, Thomas

    2016-04-01

    Five sediment cores were taken from the southern part of the Fehmarn Belt (Baltic Sea) in the context of an environmental impact study for the intended fixed traverse between Germany and Denmark. The lithologies of the 8m long cores reveal dramatic changes in sedimentary environments which reflect the early Holocene history of the southern Baltic Sea. A succession of terrestrial, semiterrestrial and limnic facies from glacial sediments to peat, lacustrine/estuarine deposits and finally marine sediments document the interplay of eustatic sea level rise and isostatic rebound, which finally lead to the establishment of marine conditions during the Littorina transgression. An age control of the observed changes was established by dating over 50 C-14 samples of different fractions. During the Lateglacial minerogenic varves with thicknesses of several centimeters verify the existence of a proglacial lake in the Fehmarnbelt. Peat development started around 11.250 cal. BP and terminated ca. 10.600 cal. BP which is roughly contemporaneous with the end of the Yoldia Phase in the central Baltic Sea. The oldest peat layers consist of undecomposed sedges and reed. Woody remains of willows appear not before 10.700 cal BP and indicate a stagnant or slowly decreasing water table. This semi-terrestrial phase is followed by a shallow inland lake which existed until the Littorina transgression around 8.300 cal. BP. Initially the lacustrine sediments exhibit high C/N ratios, low low δ13Corg values and contain numerous wood fragments as well as other botanical macro remains. This indicates shallow conditions close to the lake shore. Later, the occurrence of planktonic diatom species such as Aulacoseira ambigua suggest greater water depths. We did not find any indications of the often postulated catastrophic outburst of the Ancylus Lake via Fehmarnbelt and the Great Belt into the North Sea. Likewise, XRF scanning does not show conspicuous peaks in Ti or K which would have been

  7. Disequilibrium between [sup 226]Ra and supported [sup 210]Pb in a sediment core from a shallow Florida lake

    SciTech Connect

    Brenner, M.; Peplov, A.J.; Schelske, C.L. )

    1994-07-01

    [sup 210]Pb dating can be used to assign ages in lake sediment cores, calculate rates of sediment accumulation, and determine the timing of recent changes in lake-watershed ecosystems. We used low-background gamma counting to measure [sup 226]Ra and total [sup 210]Pb activity in a core from Lake Rowell, Florida. [sup 226]Ra activity was high and strongly variable throughout the core, even exceeding total [sup 210]Pb activity in recently deposited sediments. We traced one source of Ra-rich sediments to the only inflow, Alligator Creek, where stream-bottom deposits display disequilibrium between [sup 226]Ra and supported [sup 210]Pb. High and variable [sup 226]Ra activity in the Lake Rowell profile argues for direct estimates of in situ Ra in lake sediment cores from disturbed watersheds that have Ra-bearing bedrock. Isotopic disequilibrium between [sup 226]Ra and supported [sup 210]Pb makes it difficult to distinguish between supported and unsupported [sup 210]Pb activity throughout the Lake Rowell core and would require special assumptions and nonconventional dating models to establish age-depth relationships. 78 refs., 3 figs., 1 tab.

  8. Dechlorane plus and other flame retardants in a sediment core from Lake Ontario.

    PubMed

    Qiu, Xinghua; Marvin, Chris H; Hites, Ronald A

    2007-09-01

    Our previous research on atmospheric samples suggested that Lake Ontario might receive significant amounts of Dechlorane Plus (DP), a highly chlorinated flame retardant, from the atmosphere and from inputs from DP's manufacturing facility in Niagara Falls, New York. To confirm this suspicion, a sediment core from the central basin of Lake Ontario was analyzed for the two isomers of DP, for polybrominated diphenyl ethers (PBDEs), and for 1,2-bis-(2,4,6-tribromophenoxy)ethane (TBE). The results showed that the concentration of DP in sediment increased rapidly starting in the mid-1970s and reached its peak concentration (310 ng g(-1) dry weight) in the mid-1990s. The peak flux and total inventory of DP were estimated to be 9.3 ng cm(-2) yr(-1) and 120 ng cm(-2), respectively. These values suggest that the total burden of DP in Lake Ontario is approximately 20 tons and that the maximum load rate was approximately 2 tons per year. The highest concentrations of PBDEs and TBE were found in the surficial sediment, with average concentrations of 2.8, 14, and 6.7 ng g(-1) d.w. for PBDE(3-7) (tri-through hepta-BDEs), BDE-209, and TBE, respectively. The surface fluxes were 0.08, 0.43, and 0.20 ng cm(-2) yr(-1), and the inventories were 0.87, 3.9, and 1.8 ng cm(-2) for PBDE3-7, BDE-209, and TBE, respectively. The concentration of DP in Lake Ontario sediment exceeds that of the brominated flame retardants combined.

  9. Response of Core Microbial Consortia to Chronic Hydrocarbon Contaminations in Coastal Sediment Habitats

    PubMed Central

    Jeanbille, Mathilde; Gury, Jérôme; Duran, Robert; Tronczynski, Jacek; Agogué, Hélène; Ben Saïd, Olfa; Ghiglione, Jean-François; Auguet, Jean-Christophe

    2016-01-01

    Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs) contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e., Bacteria, Archaea, and Eukarya) using 454 pyrosequencing on the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon) and the French Atlantic Ocean (Bay of Biscay and English Channel). Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core Operational taxonomic units (OTUs) and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC) and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator – prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the network structure and indicated a higher vulnerability to environmental perturbations in the contaminated sediments. PMID:27790213

  10. Response of Benthic Foraminiferal Size to Oxygen Concentration in Antarctic Sediment Cores

    NASA Astrophysics Data System (ADS)

    Guo, D.; Keating-Bitonti, C.; Payne, J.

    2014-12-01

    Oxygen availability is important for biological reactions and the demand of oxygen is determined by the size of the organism. Few marine organisms can tolerate low oxygen conditions, but benthic foraminifera, a group of amoeboid protists that are highly sensitive to environmental factors, are known to live in these conditions. Benthic foraminifera may be able to live in oxygen stressed environments by changing the size and shape of their test. Low oxygen concentrations should favor smaller, thinner-shelled, flattened test morphologies. We hypothesize that the volume-to-surface area ratio of benthic foraminifera will decrease with decreasing dissolved oxygen concentrations. To test this hypothesis, we picked two calcareous species (Epistominella exigua and Cassulinoides porrectus) and one agglutinated species (Portatrochammina antarctica) from three sediment cores collected from Explorer's Cove, Antarctica. Starting at the sediment-water interface, each core spans approximately 5-8 cm of depth. Profiles of dissolved oxygen concentrations were measured at the time of collection. At specific depths within the cores, we measured the three dimensions of picked foraminiferal tests using NIS-Elements. We calculated the volume and surface area of the tests assuming the shape of the foraminifers was an ellipsoid. The size trends of E. exigua confirm our hypothesis that the test volume-to-surface area ratios correlate positively with dissolved oxygen concentrations (p-value < 0.001). However, the size trends of the other species refute our hypothesis: P. antarctica shows no correlation and C. porrectus shows a negative correlation (p-value < 0.001) to dissolved oxygen concentrations. Thus, our results show that the change in size in response to variations in dissolved oxygen concentrations is species dependent. Moreover, we find that calcareous species are more sensitive to oxygen fluctuations than agglutinated species.

  11. Response of Core Microbial Consortia to Chronic Hydrocarbon Contaminations in Coastal Sediment Habitats.

    PubMed

    Jeanbille, Mathilde; Gury, Jérôme; Duran, Robert; Tronczynski, Jacek; Agogué, Hélène; Ben Saïd, Olfa; Ghiglione, Jean-François; Auguet, Jean-Christophe

    2016-01-01

    Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs) contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e., Bacteria, Archaea, and Eukarya) using 454 pyrosequencing on the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon) and the French Atlantic Ocean (Bay of Biscay and English Channel). Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core Operational taxonomic units (OTUs) and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC) and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator - prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the network structure and indicated a higher vulnerability to environmental perturbations in the contaminated sediments.

  12. Possible Recording of the Hilina Pali Excursion in Cored Tyrrhenian Sea Sediment

    NASA Astrophysics Data System (ADS)

    Iorio, Marina; Liddicoat, Joseph; Sagnotti, Leonardo; Incoronato, Alberto; de Anteriis, Giovanni; Insinga, Donatella; Angelino, Antimo

    2013-04-01

    First encountered in marine sediment cored from the Gulf of Mexico (19.5˚ N, 267.0˚ E)(Clark and Kennett, 1973), the Hilina Pali Excursion (HPE) is named for a locality in Hawaii (19.5˚ N, 205.0˚ E) where inclination of about negative 40˚ is documented in cored basalt (Teanby et al., 2002). Prior to naming the excursion, Coe et al. (1978) also found shallow inclination in basalt from Kilauea Volcano (19.2˚ N, 204.7˚ E) that is dated at about 18,000 yrs B.P. (uncorrected Carbon-14, Rubin and Berthold, 1961) - the age now assigned to the HPE - and was erupted when the field intensity was reduced to nearly half the present intensity. More recently, the HPE was located at Changbaishan Volcano in northeastern China (40.2˚ N, 128.0˚ E) where the age is established by Ar40/Ar39 dates (Singer et al., 2011). In exposed lake sediments in the Mono Basin, CA (38.0˚ N, 240.8˚ E), shallow positive inclination at about 18,000 yrs B.P. might also be the HPE. In the Mono Basin, normalized (NRM/ARM) intensity is reduced at that time (Zimmerman et al., 2006), and the Virtual Geomagnetic Poles (VGPs) during the reduced intensity form a clockwise trending loop when followed from old to young that descends to 53.8˚ N, 22.7˚ E (n = 6, Alpha-95 = 2.3˚) and is centered at about 50˚ N, 30˚ E (Coe and Liddicoat, 2012). There is a possible excursion of the palaeomagnetic field recorded in marine sediment at a locality in the Tyrrhenian Sea about 25 km south of Ischia (40.5˚ N, 13.7˚ E). The excursion is in sediment from two core segments that span about 22,000-18,000 yrs B.P. (de Alteriis et al., 2010) and occurs as reduced positive inclination (about 50˚) at about 20,000 yrs B.P. that increases to about 80˚ at about 18,000 yrs B.P. when declination changes from west to east. This pattern of field behaviour is similar to the behaviour of the possible HPE in the Mono Basin (Coe and Liddicoat, 2012) and in sediment cored from Lac du Bouchet, FR (44.9˚ N, 3.8˚ E) that is

  13. A 59-year sedimentary record of metal pollution in the sediment core from the Huaihe River, Huainan, Anhui, China.

    PubMed

    Wang, Jie; Liu, Guijian; Zhang, Jiamei; Liu, Houqi; Lam, Paul K S

    2016-12-01

    An approximately 59-year (1955-2014) sedimentary record of metal elements (Cu, Pb, Zn, Ni, Co, Mn, and Fe) in a sediment core, collected from the Huaihe River, Huainan City, Anhui Province, China, was reconstructed by using (210)Pb geochronology. Copper, Zn, Ni, Co, and Mn evaluated by enrichment factor (EF) indicated minor contamination due to water pollution accidents of the Huaihe River that occurred in 1990s and 2004. Lead presented the most severe pollution among the metals studied, especially during 1957-1974. The use of leaded petrol and atmospheric deposition of coal combustion flue gases could have contributed to Pb contamination. In spite of the general good quality (mean sediment pollution index (SPI) 35.69) of the sediment core evaluated by SPI based on the principal component analysis, worse sediment qualities in the upper section (<6 cm, 2004) were still observed, suggesting intensive human activities causing the increasing concentrations of metals in recent decades.

  14. Microbial population, activity, and phylogenetic diversity in the subseafloor core sediment from the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; Suzuki, M.; Takai, K.; Nealson, K. H.; Horikoshi, K.

    2002-12-01

    Subseafloor environments has already been recognized as the largest biosphere on the planet Earth, however, the microbial diversity and activity has been still poorly understood, even in their impacts on biogeochemical processes, tectonic settings, and paleoenvironmental events. We demonstrate here the evaluation of microbial community structure and active habitats in deeply buried cold marine sediments collected from the Sea of Okhotsk by a combined use of molecular ecological surveys and culturing assays. The piston core sediment (MD01-2412) was collected by IMAGES (International Marine Global Change Study) Project from the southeastern Okhotsk Sea, June 2001. The total recovered length was about 58m. The lithology of the core sediment was mainly constructed from pelagic clay (PC) and volcanic ash layers (Ash). We collected aseptically the most inside core parts from 16 sections at different depths for microbiological study. The direct count of DAPI-stained cells revealed that the cells in Ash samples were present 1.2 to 2.2 times higher than in PC samples. The quantitative-PCR of 16S rDNA between bacterial and archaeal rDNA suggested that the increased population density in Ash layers was caused by the bacterial components. We studied approximately 650 and 550 sequences from bacterial and archaeal rDNA clone libraries, respectively. The similarity and phylogenetic analyses revealed that the microbial community structures were apparently different between in Ash layers and PC samples. From bacterial rDNA clone libraries, the members within gamma-Proteobacteria such as genera Halomonas, Shewanella, Psychromonas and Methylosinus were predominantly detected in Ash layers whereas the Dehalococcoides group and delta-Proteobacteria were major bacterial components in PC samples. From archaeal libraries, the sequences from Ash and PC samples were affiliated into the clusters represented by the environmental sequences obtained from terrestrial and deep-sea environments

  15. Radiometric dating of sediment cores from a hydrothermal vent zone off Milos Island in the Aegean Sea.

    PubMed

    Ugur, Aysun; Miquel, Juan-Carlos; Fowler, Scott W; Appleby, Peter

    2003-05-20

    Sediment cores from a hydrothermal vent zone off Milos Island in the Aegean Sea were dated using the 210Pb method. The average unsupported 210Pb inventory in the cores was calculated to be 3256 Bq m(-2). The corresponding mean annual 210Pb flux of 105 Bq m(-2) year(-1) is comparable to estimates of the atmospheric flux given in the literature. 210Pb fluxes calculated from the unsupported 210Pb inventories in cores are also comparable with the 210Pb vertical fluxes determined from settling particles off the coast of Milos Island. The highest unsupported 210Pb concentrations (89 Bq kg(-1)) were measured in the sediments nearest to the hydrothermal vent area suggesting that the sedimentation rate is lowest at this site. Direct gamma measurements of 210Pb were used to date three sediment cores that are located at different distances from the vent zone: one is in the immediate vicinity of the vent; and others are outside the zone. Sedimentation rates for these cores, calculated using the CRS and CIC models, ranged from 0.088+/-0.008 cm year(-1) to 0.14+/-0.01 cm year(-1). Where both models were applicable, the results given by the two methods were in good agreement. 137Cs concentrations in all three cores generally declined with depth but showed no clear signal of either the period of maximum fallout from weapons testing or the Chernobyl accident. 210Po activities were also measured and the maximum 210Po concentration was in the sediment surface layer (166 Bq kg(-1)).

  16. The International Permafrost Association: current initiatives for cryospheric research

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Lewkowicz, Antoni G.; Christiansen, Hanne H.; Romanovsky, Vladimir E.; Lantuit, Hugues; Schrott, Lothar; Sergeev, Dimitry; Wei, Ma

    2015-04-01

    The International Permafrost Association (IPA), founded in 1983, has as its objectives to foster the dissemination of knowledge concerning permafrost and to promote cooperation among persons and national or international organizations engaged in scientific investigation and engineering work on permafrost. The IPA's primary responsibilities are convening International Permafrost Conferences, undertaking special projects such as preparing databases, maps, bibliographies, and glossaries, and coordinating international field programs and networks. Membership is through adhering national or multinational organizations or as individuals in countries where no Adhering Body exists. The IPA is governed by its Executive Committee and a Council consisting of representatives from 26 Adhering Bodies having interests in some aspect of theoretical, basic and applied frozen ground research, including permafrost, seasonal frost, artificial freezing and periglacial phenomena. This presentation details the IPA core products, achievements and activities as well as current projects in cryospheric research. One of the most important core products is the circumpolar permafrost map. The IPA also fosters and supports the activities of the Global Terrestrial Network on Permafrost (GTN-P) sponsored by the Global Terrestrial Observing System, GTOS, and the Global Climate Observing System, GCOS, whose long-term goal is to obtain a comprehensive view of the spatial structure, trends, and variability of changes in the active layer thickness and permafrost temperature. A further important initiative of the IPA are the biannually competitively-funded Action Groups which work towards the production of well-defined products over a period of two years. Current IPA Action Groups are working on highly topical and interdisciplinary issues, such as the development of a regional Palaeo-map of Permafrost in Eurasia, the integration of multidisciplinary knowledge about the use of thermokarst and permafrost

  17. Permafrost: An International Approach to 21th Century Challenges

    NASA Astrophysics Data System (ADS)

    Brown, J.

    2003-12-01

    Whereas glaciers are easily discernible to the human eye and satellites, permafrost terrains and their physical components are not easily detected from the surface without supplemental knowledge and measurements. In the Northern Hemisphere, approximately 17 million km2 of exposed land contains some extent of permafrost or ground that remains frozen for more than two years. The vast majority, or 11 million km2, of permafrost terrain has temperatures of 5° C or below, with perennially frozen ground underlying essentially all ground surfaces to considerable depths. Permafrost in the remaining regions, including mid-latitude mountains, is both warmer and is spatially variable (discontinuous). As climate warms the uppermost permafrost is subjected to increase thaw with resulting ground subsidence, accelerated erosion, and related biogeochemical modifications. The challenging questions to geocryologists, modelers and the public relate to the rate of change and the spatial variability of the projected thaw, particularly in the warmer zones where actual areal and subareal distribution of permafrost is poorly known. An international network of active layer measurements and borehole sites now exists under the Global Climate Observing System (GCOS), but requires additional sites for representative coverage. This Global Terrestrial Network for Permafrost (GTN-P) is coordinated by the 24-member, International Permafrost Association. At the Eighth International Conference on Permafrost (ICOP) in Zurich in July 2003, the IPA Council agreed on the scope of new activities for the next five years, many of which will be undertaken in cooperation with other international organizations (e.g. WCRP/CliC; ICSI, IASC, SCAR, IGU, IUGS). Examples of the activities of the IPA Working Groups are: 1. Antarctic Permafrost and Periglacial Environments (active layer processes, maps, database). 2. Coastal and Offshore Permafrost (sediment and organic transfers, subsea permafrost dynamics). 3

  18. Diagenetic effects on magnetic minerals in a Holocene lacustrine sediment core from Huguangyan maar lake, southeast China

    NASA Astrophysics Data System (ADS)

    Wu, Xudong; Wang, Yong; Bian, Liu; Shen, Ji

    2016-09-01

    Post-depositional reductive diagenesis usually results in partial or entire cleansing of the pristine palaeomagnetic signal, therefore, its intensity is important to be assessed for sediments that are in the purpose of retrieving palaeomagnetic information. Grain size, rock magnetic and geochemical studies on the entire core, along with scanning electron microscope observations and X-ray diffraction analyses for representative samples were carried out on a Holocene sediment core retrieved from the deep water part of Huguangyan maar lake (HGY), southeast China. The pristine magnetic mineral assemblage of the studied core is domianted by superparamagnetic (SP) and stable single domain titanomagnetite, and high coercivity minerals are not detectable. Based on down-core variations of the average grain size (MZ), total organic carbon (TOC), detrital elements (Al, Ti, Fe and Mn) and the concentration and mineralogy of magnetic minerals, the studied core could be divided into three subsections. The uppermost subsection is the least affected by diagenesis, with detrital titanomagnetite as the dominant magnetic mineral. This is owing to low TOC contents, but high detrital input generated by weak Asian summer monsoon intensity during the late Holocene. The intermediate subsection shows down-core progressively enhanced dissolution of detrital titanomagnetite, and concomitant formation of authigenic pyrite and siderite, which indicates down-core progressively enhanced diagenesis generated by down-core progressive increasing TOC content, but decreasing detrital input as the result of down-core progressively strengthened Asian summer monsoon intensity. The pristine magnetic mineral assemblage has been profoundly modified in the lowermost subsection. At certain positions of the lowermost subsection, detrital titanomagnetite has been even completely dissolved via diagenesis, giving place to authigenic pyrite and siderite. High TOC content, but low detrital input generated from

  19. GlobPermafrost - how space supports understanding of permafrost?

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Grosse, Guido; Kääb, Andreas; Westermann, Sebastian; Strozzi, Tazio; Wiesmann, Andreas; Duguay, Claude; Seifert, Frank Martin

    2016-04-01

    The GlobPermafrost project (2016-2019) develops, validates and implements information products to support the research communities and related international organisations like IPA and CliC in their work on understanding permafrost better by integration of EO data. Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution in various wavelengths. Prototype cases will cover different aspects of permafrost by integrating in situ measurements of subsurface permafrost properties (active layer depth, active layer and permafrost temperatures, organic layer thickness, liquid water content in the active layer and permafrost), surface properties (vegetation cover, snow depth)and modelling to provide a better understanding of permafrost today. The techniques will extend point source process and permafrost monitoring to a broader spatial domain, to support permafrost distribution modelling and mapping techniques implemented in a GIS framework and will complement active layer and thermal observing networks. Initial user requirements have been gathered at the DUE-IPA-GTNP-CliC workshop in Frascati in February 2014, which have been further consolidated within the Permafrost community during 2014 in request of the WMO Polar Space Task Group. A subset of these requirements will be demonstrated within GlobPermafrost and assessed by user organisations: -Circumpolar permafrost extend -Permafrost dedicated land cover class prototype -Local investigations around long term monitoring sites -Regional transects for "hot spot" identification -Mountain permafrost areas The initial observation scenario is presented, discussing challenges in methods as well as data availability.

  20. Biodiversity of cryopegs in permafrost.

    PubMed

    Gilichinsky, David; Rivkina, Elizaveta; Bakermans, Corien; Shcherbakova, Viktoria; Petrovskaya, Lada; Ozerskaya, Svetlana; Ivanushkina, Natalia; Kochkina, Galina; Laurinavichuis, Kyastus; Pecheritsina, Svetlana; Fattakhova, Rushania; Tiedje, James M

    2005-06-01

    This study describes the biodiversity of the indigenous microbial community in the sodium-chloride water brines (cryopegs) derived from ancient marine sediments and sandwiched within permafrost 100-120,000 years ago after the Arctic Ocean regression. Cryopegs remain liquid at the in situ temperature of -9 to -11 degrees C and make up the only habitat on the Earth that is characterized by permanently subzero temperatures, high salinity, and the absence of external influence during geological time. From these cryopegs, anaerobic and aerobic, spore-less and spore-forming, halotolerant and halophilic, psychrophilic and psychrotrophic bacteria, mycelial fungi and yeast were isolated and their activity was detected below 0 degrees C.

  1. Soft-sediment deformation structures in cores from lacustrine slurry deposits of the Late Triassic Yanchang Fm. (central China)

    NASA Astrophysics Data System (ADS)

    Yang, Renchao; Loon, A. J. (Tom) van; Yin, Wei; Fan, Aiping; Han, Zuozhen

    2016-09-01

    The fine-grained autochthonous sedimentation in the deep part of a Late Triassic lake was frequently interrupted by gravity-induced mass flows. Some of these mass flows were so rich in water that they must have represented slurries. This can be deduced from the soft-sediment deformation structures that abound in cores from these lacustrine deposits which constitute the Yanchang Fm., which is present in the Ordos Basin (central China). The flows and the resulting SSDS were probably triggered by earthquakes, volcanic eruptions, shear stress of gravity flows, and/or the sudden release of overburden-induced excess pore-fluid pressure. The tectonically active setting, the depositional slope and the high sedimentation rate facilitated the development of soft-sediment deformations, which consist mainly of load casts and associated structures such as pseudonodules and flame structures. Sediments with such deformations were occasionally eroded by slurries and became embedded in their deposits.

  2. Estimation of sources and inflow of dioxins and polycyclic aromatic hydrocarbons from the sediment core of Lake Suwa, Japan.

    PubMed

    Ikenaka, Yoshinori; Eun, Heesoo; Watanabe, Eiki; Kumon, Fujio; Miyabara, Yuichi

    2005-12-01

    To elucidate the historical changes in polychlorinated dibenzo-p-dioxin (PCDD), polychlorinated dibenzofuran (PCDF), coplanar polychlorinated biphenyl (co-PCB), and polycyclic aromatic hydrocarbon (PAH) inflows in Lake Suwa, their concentrations in the sediment core were analyzed in 5 cm interval. The maximum concentrations (depth cm) of PCDDs/DFs, co-PCBs, and PAHs were 25.2 ng/g dry (30-35 cm), 19.0 ng/g dry (30-35 cm), and 738, 795 ng/g dry (50-55 cm, 30-35 cm), respectively. Age and sedimentation rate of the sediment were estimated from the vertical changes in apparent density. Deposition rate of dioxins and PAHs were calculated from the concentration and sedimentation rate of the sediment. The results indicate that large amounts of dioxins and PAHs flowed into the lake in flood stage compared to normal stage.

  3. Concentration of antifouling biocides and metals in sediment core samples in the northern part of Hiroshima Bay.

    PubMed

    Tsunemasa, Noritaka; Yamazaki, Hideo

    2014-06-04

    Accumulation of Ot alternative antifoulants in sediment is the focus of this research. Much research had been done on surface sediment, but in this report, the accumulation in the sediment core was studied. The Ot alternative antifoulants, Diuron, Sea-Nine211, and Irgarol 1051, and the latter's degradation product, M1, were investigated in five samples from the northern part of Hiroshima Bay. Ot compounds (tributyltin (TBT) and triphenyltin (TPT)) were also investigated for comparison. In addition, metal (Pb, Cu, Zn, Fe and Mn) levels and chronology were measured to better understand what happens after accumulation on the sea floor. It was discovered that Ot alternative antifoulant accumulation characteristics in sediment were like Ot compounds, with the concentration in the sediment core being much higher than surface sediment. The concentration in sediment seems to have been affected by the regulation of Ot compounds in 1990, due to the concentration of Ot alternative antifoulants and Ot compounds at the survey point in front of the dock, showing an increase from almost the same layer after the regulation.

  4. Concentration of Antifouling Biocides and Metals in Sediment Core Samples in the Northern Part of Hiroshima Bay

    PubMed Central

    Tsunemasa, Noritaka; Yamazaki, Hideo

    2014-01-01

    Accumulation of Ot alternative antifoulants in sediment is the focus of this research. Much research had been done on surface sediment, but in this report, the accumulation in the sediment core was studied. The Ot alternative antifoulants, Diuron, Sea-Nine211, and Irgarol 1051, and the latter’s degradation product, M1, were investigated in five samples from the northern part of Hiroshima Bay. Ot compounds (tributyltin (TBT) and triphenyltin (TPT)) were also investigated for comparison. In addition, metal (Pb, Cu, Zn, Fe and Mn) levels and chronology were measured to better understand what happens after accumulation on the sea floor. It was discovered that Ot alternative antifoulant accumulation characteristics in sediment were like Ot compounds, with the concentration in the sediment core being much higher than surface sediment. The concentration in sediment seems to have been affected by the regulation of Ot compounds in 1990, due to the concentration of Ot alternative antifoulants and Ot compounds at the survey point in front of the dock, showing an increase from almost the same layer after the regulation. PMID:24901529

  5. Characterization of organic matter in a sediment Core near the Mataripe refinery, Bahia-Brazil.

    PubMed

    Costa, Alexandre Barreto; de Souza, José Roberto Bispo; Zucchi, Maria do Rosário; de Azevedo, Antonio Expedito Gomes; de Argollo, Roberto Max

    2016-04-15

    A sediment core was taken from the Todos os Santos Bay, near the Mataripe Bahia-Brazil refinery. The results of dating, (210)Pb and (137)Cs methods, combined with organic indicators, Polycyclic aromatic hydrocarbons (PAHs), n-alkanes and total organic carbon (TOC), showed significant change with the start of production of the oil fields of Aratu, Itaparica and Dom João (1939-1947) and the construction of the Mataripe refinery (1949-1950). This event was marked by a series of significant changes, including an abrupt increase in TOC and the growth of PAH concentrations and the presence Unresolved/Resolved ratio (UR/R)>4 in n-alkanes fraction, which indicated that the contamination was of petrogenic origin. The δ(13)C of specific n-alkanes compounds showed gradual deplete with the depth.

  6. Historical tide gauge data and sediment cores put Hurricane Sandy in context

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-11-01

    Historical tide gauge data and sediment cores put Hurricane Sandy in context Several studies that put the recent devastating Hurricane Sandy in context were reported on 5 November at the annual meeting of the Geological Society of America in Charlotte, N. C. Stefan Talke of Portland State University explained that old tide gauge data that he and colleagues have been digitizing show that Sandy was the largest hurricane to hit New York in more than 100 years. Compared to the 1893 storm that was the largest in their records, "Hurricane Sandy was much larger, probably about twice as large, in terms of storm surge," he said. Their study is part of an effort to determine whether sea level rise is accelerating.

  7. Permafrost carbon: Catalyst for deglaciation

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew H.

    2016-09-01

    The sources contributing to the deglacial rise in atmospheric CO2 concentrations are unclear. Climate model simulations suggest thawing permafrost soils were the initial source, highlighting the vulnerability of modern permafrost carbon stores.

  8. The microbial ecology of permafrost.

    PubMed

    Jansson, Janet K; Taş, Neslihan

    2014-06-01

    Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost features and between sites. Some microorganisms are even active at subzero temperatures in permafrost. An emerging concern is the impact of climate change and the possibility of subsequent permafrost thaw promoting microbial activity in permafrost, resulting in increased potential for greenhouse-gas emissions. This Review describes new data on the microbial ecology of permafrost and provides a platform for understanding microbial life strategies in frozen soil as well as the impact of climate change on permafrost microorganisms and their functional roles.

  9. Major and trace elements in 35 lake and reservoir sediment cores from across the United States, 1994-2001

    USGS Publications Warehouse

    Van Metre, Peter C.; Mahler, Barbara J.; Wilson, Jennifer T.; Callender, Edward

    2006-01-01

    This report presents data on major and trace element concentrations in sediment cores collected from 35 lakes and reservoirs during 1994-2001. The lakes and reservoirs are located in or near 18 major urban areas across the United States and provide a geographically diverse coverage of urban land use for the country as well as some reference settings. Vertical intervals of the cores were analyzed for eight major elements and eight trace elements.

  10. Well cementing in permafrost

    SciTech Connect

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

  11. An assessment of butyltins and metals in sediment cores from the St. Thomas East End Reserves, USVI.

    PubMed

    Hartwell, S Ian; Apeti, Dennis A; Mason, Andrew L; Pait, Anthony S

    2016-11-01

    Tributyltin (TBT) concentrations near a marina complex in Benner Bay on St. Thomas, US Virgin Islands, were elevated relative to other areas in a larger study of the southeastern shore of the island. At the request of the USVI Coastal Zone Management Program, sediment cores and surface sediment samples were collected to better define the extent and history of TBT deposition in the vicinity of Benner Bay. The sediment cores were sectioned into 2-cm intervals and dated with (210)Pb and (137)Cs. The core sections and the surface samples were analyzed for butyltins and 16 elements. Deposition rates varied from 0.07-5.0 mm/year, and were highest in the marina complex. Core ages ranged from 54 to 200 years. The bottoms of the cores contained shell hash, but the top layers all consisted of much finer material. Surface concentrations of TBT exceeded 2000 ng Sn/g (dry weight) at two locations. At a depth of 8 cm TBT exceeded 8800 ng Sn/g in the marina complex sediment. Based on the ratio of tributyltin to total butyltins, it appears that the marina sediments are the source of contamination of the surrounding area. There is evidence that vessels from neighboring islands may also be a source of fresh TBT. Copper concentrations increase over time up to the present. Gradients of virtually all metals and metalloids extended away from the marina complex. NOAA sediment quality guidelines were exceeded for As, Pb, Cu, Zn, and Hg.

  12. The Effectiveness of L*a*b* Color Analysis in Determining the Elemental and Mineralogical Composition of Lake Sediment Cores

    NASA Astrophysics Data System (ADS)

    Dawson, S.; Lascu, I.; Myrbo, A.; Wittkop, C.

    2006-12-01

    High-resolution L*a*b color and x-ray fluorescence (XRF) elemental profiles were compared for a set of Midwestern U.S. lake sediment cores held in the National Lacustrine Core Repository. The cores all display centi- to decimeter scale light-dark banding (nicknamed "raccoon-tail banding"), determined by variations in carbonate versus organic matter content. Carbonate minerals are evidently depleted in the organic-rich strata due to carbonate dissolution in the hypolimnion and sediment column, which is the result of both external (i.e., climatic) and internal factors. XRF was performed at a resolution comparable to the L*a*b* image analysis of the core sections, which allowed the investigation of the relationship between sediment color and composition within a core. The "a" component in this image analysis is correlated with elemental iron abundance, and the "b" and "L" components are related to calcium (calcite) and organic carbon content. Overall, this study has determined that L*a*b* color analysis of high-resolution digital images is an easy and fast way to obtain preliminary information about the composition of core material. When used in conjunction with scanning XRF data, color analysis can replace lower-resolution geochemical analyses to produce sub-annual scale records of lake dynamics and responses to climate change.

  13. A carbon, nitrogen, and sulfur elemental and isotopic study in dated sediment cores from the Louisiana Shelf

    USGS Publications Warehouse

    Rosenbauer, R.J.; Swarzenski, P.W.; Kendall, C.; Orem, W.H.; Hostettler, F.D.; Rollog, M.E.

    2009-01-01

    Three sediment cores were collected off the Mississippi River delta on the Louisiana Shelf at sites that are variably influenced by recurring, summer-time water-column hypoxia and fluvial loadings. The cores, with established chronology, were analyzed for their respective carbon, nitrogen, and sulfur elemental and isotopic composition to examine variable organic matter inputs, and to assess the sediment record for possible evidence of hypoxic events. Sediment from site MRJ03-3, which is located close to the Mississippi Canyon and generally not influenced by summer-time hypoxia, is typical of marine sediment in that it contains mostly marine algae and fine-grained material from the erosion of terrestrial C4 plants. Sediment from site MRJ03-2, located closer to the mouth of the Mississippi River and at the periphery of the hypoxic zone (annual recurrence of summer-time hypoxia >50%), is similar in composition to core MRJ03-3, but exhibits more isotopic and elemental variability down-core, suggesting that this site is more directly influenced by river discharge. Site MRJ03-5 is located in an area of recurring hypoxia (annual recurrence >75%), and is isotopically and elementally distinct from the other two cores. The carbon and nitrogen isotopic composition of this core prior to 1960 is similar to average particulate organic matter from the lower Mississippi River, and approaches the composition of C3 plants. This site likely receives a greater input of local terrestrial organic matter to the sediment. After 1960 and to the present, a gradual shift to higher values of ??13C and ??15N and lower C:N ratios suggests that algal input to these shelf sediments increased as a result of increased productivity and hypoxia. The values of C:S and ??34S reflect site-specific processes that may be influenced by the higher likelihood of recurring seasonal hypoxia. In particular, the temporal variations in the C:S and ??34S down-core are likely caused by changes in the rate of

  14. Grain Size Analyses of Neogene-Quaternary Sediments from the Arctic Coring Expedition

    NASA Astrophysics Data System (ADS)

    Moran, K.; Lado-Insua, T.; O'Regan, M.

    2013-12-01

    The Arctic Coring Expedition (ACEX) recovered the first Cenozoic sediment sequence from the central Arctic Ocean. Results from this expedition indicate that perennial sea ice may have formed in the Arctic at or before the early mid-Miocene. Sea ice formation is an important process in the global climate system, affecting directly the Earth's albedo and indirectly the Meridional Overturning Circulation. The deep Arctic Ocean receives sediment primarily from ice-rafted debris and turbidity currents. Suspension freezing on the shallow continental shelves of the Arctic has generally been considered the major process trapping sediment within sea ice. Sea ice motion is largely driven by wind. The anticyclonic Beaufort Gyre transports sea ice over the Amerasia Basin, while the Transpolar Drift transports it across the Eurasian Basin. The Transpolar Drift is divided into a Siberian and Polar branch, both branches cross the position of the ACEX drilling sites on the Lomonosov Ridge. Grain size analyses of ACEX sediments were obtained with a Malvern Mastersizer 2000 laser diffraction particle sizing system. Preliminary analyses indicate pulses with a higher percentage of sand between 3.64 Ma ago until the end of the Gelasian (1.8 Ma). The percent sand remained relatively low during the Cenozoic with the exception of two major increases of sand occurring ~6.2 and 9.2 Ma ago and a smaller peak ~8.2 Ma ago. These intervals also show less sorting and lower values for skewness and kurtosis. Increases in the percentage of sand and less sorting at this latitude relate to ice rafted debris, indicating an increase in sea-ice melting during these periods. A Principal Components Analysis and a Maximum Correlation Factor Analysis agree on a correlation between different grain sizes that would divide the grain size in two major distributions (<19 μm and 19 μm to 2 mm) based on the sedimentation and transport mechanism. These two classes do not agree with the major divisions of sand (63

  15. Geoacoustic characteristics at the DH-2 long-core sediments in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2015-04-01

    A long core of 27.2 m was acquired at the DH-2 site (37°34.355'N and 129°19.516'E) in the Korean continental margin of the western East Sea. The core site is located near the Donghae City and the water depth is 316.6 m deep. The long-core sediment was recovered using the Portable Remotely Operated Drill (PROD), a fully contained drilling system, remotely operated at the seafloor. The recovered core sediments were analyzed for physical, sedimentological, and geoacoustic properties mostly at 10~30 cm intervals. Based on the long-core data with subbottom and air-gun profiles at the DH-2 core site, geoacoustic characteristics of the deeper sedimentary successions were firstly investigated in the Korean continental margin of the western East Sea. The geoacoustic measurements comprise 86 P-wave velocities and 76 attenuation values. These geoacoustic characteristics of the DH-2 long core probably contribute for reconstruction of geoacoustic models reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: long core, geoacoustic, East Sea, continental margin, P-wave speed Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025733) and by the Agency of Defense Development (UD140003DD).

  16. Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Portnov, Alexey; Mienert, Jurgen; Semenov, Peter; Ilatovskaya, Polina

    2015-08-01

    The Holocene marine transgression starting at ~19 ka flooded the Arctic shelves driving extensive thawing of terrestrial permafrost. It thereby promoted methanogenesis within sediments, the dissociation of gas hydrates, and the release of formerly trapped gas, with the accumulation in pressure of released methane eventually triggering blowouts through weakened zones in the overlying and thinned permafrost. Here we present a range of geophysical and chemical scenarios for the formation of pingo-like formations (PLFs) leading to potential blowouts. Specifically, we report on methane anomalies from the South Kara Sea shelf focusing on two PLFs imaged from high-resolution seismic records. A variety of geochemical methods are applied to study concentrations and types of gas, its character, and genesis. PLF 1 demonstrates ubiquitously low-methane concentrations (14.2-55.3 ppm) that are likely due to partly unfrozen sediments with an ice-saturated internal core reaching close to the seafloor. In contrast, PLF 2 reveals anomalously high-methane concentrations of >120,000 ppm where frozen sediments are completely absent. The methane in all recovered samples is of microbial and not of thermogenic origin from deep hydrocarbon sources. However, the relatively low organic matter content (0.52-1.69%) of seafloor sediments restricts extensive in situ methane production. As a consequence, we hypothesize that the high-methane concentrations at PLF 2 are due to microbial methane production and migration from a deeper source.

  17. 3D Porosity Estimation of the Nankai Trough Sediments from Core-log-seismic Integration

    NASA Astrophysics Data System (ADS)

    Park, J. O.

    2015-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake fault. Historic, great megathrust earthquakes with a recurrence interval of 100-200 yr have generated strong motion and large tsunamis along the Nankai Trough subduction zone. At the Nankai Trough margin, the Philippine Sea Plate (PSP) is being subducted beneath the Eurasian Plate to the northwest at a convergence rate ~4 cm/yr. The Shikoku Basin, the northern part of the PSP, is estimated to have opened between 25 and 15 Ma by backarc spreading of the Izu-Bonin arc. The >100-km-wide Nankai accretionary wedge, which has developed landward of the trench since the Miocene, mainly consists of offscraped and underplated materials from the trough-fill turbidites and the Shikoku Basin hemipelagic sediments. Particularly, physical properties of the incoming hemipelagic sediments may be critical for seismogenic behavior of the megathrust fault. We have carried out core-log-seismic integration (CLSI) to estimate 3D acoustic impedance and porosity for the incoming sediments in the Nankai Trough. For the CLSI, we used 3D seismic reflection data, P-wave velocity and density data obtained during IODP (Integrated Ocean Drilling Program) Expeditions 322 and 333. We computed acoustic impedance depth profiles for the IODP drilling sites from P-wave velocity and density data. We constructed seismic convolution models with the acoustic impedance profiles and a source wavelet which is extracted from the seismic data, adjusting the seismic models to observed seismic traces with inversion method. As a result, we obtained 3D acoustic impedance volume and then converted it to 3D porosity volume. In general, the 3D porosities show decrease with depth. We found a porosity anomaly zone with alteration of high and low porosities seaward of the trough axis. In this talk, we will show detailed 3D porosity of the incoming sediments, and present implications of the porosity anomaly zone for the

  18. A Bayesian Approach for Reconstructing the Past Ocean Circulation from a Limited Number of Sediment-Core Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    Primeau, F.

    2014-12-01

    Paleoceanographers are faced with the problem of making inferences about the ventilation of the ocean in the past from localized benthic and planktonic radiocarbon measurements obtained from a small number of sediment cores, which leads to an underdetermined problem. With the goal of moving beyond testing the null hypothesis that the sediment core data are consistent with the modern circulation we seek to reconstruct the most probable paleocirculation based on our knowledge of ocean dynamics and available constraints from sediment-core radiocarbon records. We propose a Bayesian inversion approach in which we use a modern circulation estimate constrained by modern radiocarbon data to define the mean of the prior probability distribution for the unknown paleocirculation. The approach resolves the indeterminacy of the inverse problem by choosing a paleocirculation that is minimally different from the modern circulation while still being consistent with the available sediment-core radiocarbon records. In this talk we will present the general formulation of the method as well as various approximations to reduce the computational challenge.

  19. RECONSTRUCTION OF CONTAMINANT TRENDS IN A SALT WEDGE ESTUARY WITH SEDIMENT CORES DATED USING A MULTIPLE PROXY APPROACH

    EPA Science Inventory

    The Taunton River is a partially mixed tidal estuary in southeastern Massachusetts (USA) which has received significant contaminant inputs, yet little information exists on the history of discharge and the subsequent fate of these contaminants. Three sediment cores taken along a...

  20. Impact of Climate and Fires on Abrupt Permafrost Thaw in Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Reents, C.; Greenberg, J. A.; Hu, F.

    2015-12-01

    Thermo-erosion from abrupt permafrost thaw is a key pulse disturbance in the Arctic that may impact the global carbon cycle. Abrupt thaw can occur when the permafrost active layer expands in response to climate warming and/or increased wildfire activity. Understanding these drivers of thermo-erosion is necessary to anticipate feedbacks in the Arctic, where summer temperature and fire frequency are predicted to increase. We examine modern and late-Holocene thermo-erosion in high-fire (Noatak) and low-fire (North Slope) tundra ecoregions of Alaska using a combination of remote-sensing and paleo-records. Lakes with active thaw features were identified through Landsat-7 image classification and time-series analysis based on observed 0.52-0.60 μm reflectance peaks following slump formation. We identified 1067 and 1705 lakes with active features between CE 2000-2012 in the Noatak and North Slope ecoregions, respectively. The density of features was higher in the highly flammable Noatak (0.04 versus 0.01 features km-2, respectively), suggesting that warmer climate and/or fires likely promote high thermo-erosional activity at present. To assess modern signals of thermo-erosion and identify past events, we analyzed soil profiles and lake-sediment cores from both ecoregions using X-ray fluorescence. The ratios of Ca:K and Ca:Sr increased with depth in permafrost soils, were higher in soils from younger versus older slump surfaces, and were significantly correlated with the ratio of carbonate to feldspar and clay minerals in lake sediments (r=0.96 and 0.93, P<0.0001, n=15). We interpret past increases in Ca:K, Ca:Sr, and δ13C as enhanced weathering of carbonate-rich permafrost soils associated with thermo-erosion. At the North Slope site, we identified ten episodes of thermoerosion over the past 6000 years and found strong correspondence to summer temperature trends. Events were more frequent at the Noatak site, where 15 thermo-erosional episodes and 26 fires occurred over

  1. Reconstruction of the conditions of Late Holocene sedimentation by integrated analysis of a core of the bottom sediments from the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Vologina, E. G.; Sturm, M.; Kalugin, I. A.; Darin, A. V.; Astakhov, A. S.; Chernyaeva, G. P.; Kolesnik, A. N.; Bosin, A. A.

    2016-08-01

    Integrated studies were performed on bottom sediments collected in the Chukchi Sea in the northern part of the Gerald Canyon 150 km northeast from Wrangel Island. The recent sedimentation rate amounted to 0.9 mm/year by 210Pb at the sampling site. The concentrations of biogenic components (SiO2bio, Corg, Ntot, and Br) were minimum at the lower part of the core, where an increase of Thalassiosira antarctica antarctica, probably results from low biological productivity during the Maunder Minimum. The increased concentrations of biogenic components, as well as the decreased values of magnetic susceptibility and X-ray density, in the upper part of the core (1-2 cm) correspond to the last decade of recent of global warming.

  2. Benchscale Assessment of the Efficacy of a Reactive Core Mat to Isolate PAH-spiked Aquatic Sediments

    PubMed Central

    Meric, Dogus; Barbuto, Sara; Sheahan, Thomas C.; Shine, James P.; Alshawabkeh, Akram N.

    2013-01-01

    This paper describes the results of a benchscale testing program to assess the efficacy of a reactive core mat (RCM) for short term isolation and partial remediation of contaminated, subaqueous sediments. The 1.25 cm thick RCM (with a core reactive material such as organoclay with filtering layers on top and bottom) is placed on the sediment, and approximately 7.5 – 10 cm of overlying soil is placed on the RCM for stability and protection. A set of experiments were conducted to measure the sorption characteristics of the mat core (organoclay) and sediment used in the experiments, and to determine the fate of semi-volatile organic contaminants and non-reactive tracers through the sediment and reactive mat. The experimental study was conducted on naphthalene-spiked Neponset River (Milton, MA) sediment. The results show nonlinear sorption behavior for organoclay, with sorption capacity increasing with increasing naphthalene concentration. Neponset River sediment showed a notably high sorption capacity, likely due to the relatively high organic carbon fraction (14%). The fate and transport experiments demonstrated the short term efficiency of the reactive mat to capture the contamination that is associated with the post-capping period during which the highest consolidation-induced advective flux occurs, driving solid particles, pore fluid and soluble contaminants toward the reactive mat. The goal of the mat placement is to provide a physical filtering and chemically reactive layer to isolate contamination from the overlying water column. An important finding is that because of the high sorption capacity of the Neponset River sediment, the physical filtering capability of the mat is as critical as its chemical reactive capacity. PMID:24367237

  3. Application of 2-D geoelectrical resistivity tomography for mountain permafrost detection in sporadic permafrost environments: Experiences from Eastern Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas

    2015-04-01

    Mountain permafrost covers some 2000 km² of the Austrian Alps which is less than 2.5% of the national territory. Delineating the altitudinal lower limit of permafrost in the mountains of Austria is difficult due the complex topography, the rather sparseness of field verification data and the lack of long-term permafrost monitoring data. Such monitoring data should cover different slope aspects, different elevations, different substrates and different mountain regions of Austria. In this study it was attempted to delineate the lower limit of permafrost at two study sites in the Tauern Range, Austria, applying two-dimensional geoelectrical resistivity tomography (ERT). In addition, multi-annual ground temperature data collected by miniature temperature datalogger (MDT) were used to validate the results. At the study site Hochreichart (maximum elevation 2416 m asl), located in the Seckauer Tauern Range, 14 ERT profiles (lengths 48-196 m; electrode spacing 2, 2.5 or 4 m) were measured at elevations between 1805 and 2416 m asl. Measurements were carried out at two cirques (Reichart, Schöneben) and at the summit plateau of Hochreichart. Results at this site indicate that permafrost lenses are detectable at elevations down to c.1900 m asl at radiation-sheltered sites. Furthermore, at the summit plateau permafrost only occurs as rather small lenses. The ERT-based permafrost pattern is generally confirmed by the MTD data with negative mean annual ground temperature values at only a few monitoring sites. However, the possibility of air-filled cavities causing higher resistive zones faking permafrost existence cannot be excluded because coarse-grained sediments (i.e. relict rock glaciers and autochthonous block fields) are widespread at this study site. At the second study site Kögele Cirque (maximum elevation 3030 m asl) located in the Schober Mountains 12 ERT profiles (lengths 48 m; electrode spacing 2 m) were measured at elevations between 2631 and 2740 m asl. Spatially

  4. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  5. Initial Results on the Extraterrestrial Component of New Sediment Cores Containing Deposits of the Eltanin Impact Event

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer

    2003-01-01

    Background The impact of the Eltanin asteroid into the Bellingshausen Sea (2.15 Ma) is the only known impact in a deep-ocean (approx. 5 km) basin. In 1995, Polarstern expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5 S, 91 W) contained well-preserved impact deposits. Sediments of Eocene age and younger were ripped up and redeposited by the impact. The depositional sequence produced by the impact has three units: a chaotic assemblage of sediment fragments up to 50 cm, followed by laminated sands deposited as a turbulent flow, and finally silts and clays that accumulated from dispersed sediments in the water column. The meteoritic impact ejecta, which is composed of shock-melted asteroidal materials and unmelted meteorites, settled through the water column and concentrated near the top of the laminated sands.

  6. Normalization to lithium for the assessment of metal contamination in coastal sediment cores from the Aegean Sea, Greece.

    PubMed

    Aloupi, M; Angelidis, M O

    2001-07-01

    Sediment cores from the harbour and the coastal zone of Mytilene, island of Lesvos, Greece, were used to study the metal contamination caused by the discharge of untreated urban effluents into the sea. In the harbour. the upper layers were highly enriched in Cd, Cu, Pb and Zn, while no metal enrichment was recorded in the cores from the wider coastal zone. The metal data were normalized to Li (conservative element) to compensate for the natural textural and mineralogical variability. It was found that only the upper 18 cm of the core collected from the harbour of Mytilene could be reported as metal contaminated. Also, through the normalization procedure, it was found that the surface layers of coastal sediments assumed 'clean' were enriched in Pb, probably as a result of atmospheric transportation of the metal from the nearby town.

  7. The multiproxy analysis of a lacustrine-palustrine sediment core from Lebanon reveals four climate cycles

    NASA Astrophysics Data System (ADS)

    Gasse, F. A.; van Campo, E.; Demory, F.; Develle, A.; Tachikawa, K.; Buchet, N.; Sonzogni, C.; Thouveny, N.; Bard, E. G.; Vidal, L.

    2013-12-01

    The study of a sediment core retrieved from the small Yammouneh basin (34.06°N-34.09°N, 36.0°E-36.03°E, 1360 m a.s.l.), Lebanon, provides for the first time a nearly continuous record spanning approximately 360 ka in northern Levant. The basin, located on the eastern flank of Mount Lebanon, is mainly supplied by karstic springs which discharge snowmelt water infiltrated through the western highlands. Part of its water inputs is lost by seepage through its faulted bottom. The core, 73 m long, consists of four whitish carbonated intervals rich in lacustrine organism remains, interrupting a thick accumulation of colored silty clays almost devoid of shells but for ostracods. We analyzed sediment features (mineralogical and elemental composition, light microscopy and SEM observations, grain size), magnetic properties, pollen and calcite oxygen isotopes (δc) derived from ostracod shell composition. The chronological framework is based on 14C ages of wood fragments, U/Th dating, and a high resolution reconstruction of relative paleointensity variations correlated with regional (Portuguese margin) and global (Sint-800) master curves down to about 360 ka. Although the chronology still needs improvement, the 3 upper carbonated intervals undoubtedly fit Interglacials MIS 1, MIS 5.5 and MIS 7, respectively. The deepest one (49-60 m) is assigned to MIS 9 by its proxy analogies with dated Interglacials. The sequence covers a large part of MIS 10. Relationships between individual indicators are explored, in addition to visual comparisons of individual records, from the multiproxy matrix after resampling at a common depth scale of 25 cm. We compute simple linear coefficients between 20 variables, perform Principal Component Analyses based on all variables, on terrestrial pollen biomes, on all sedimentological proxies, and cross-correlations between them and δc. During Interglacial maxima, high local and regional efficient moisture is evidenced by dense arboreal vegetation of

  8. Historical trends of trace metals in a sediment core from a contaminated tidal salt marsh in San Francisco Bay.

    PubMed

    Hwang, Hyun-Min; Green, Peter G; Young, Thomas M

    2009-08-01

    Sedimentation of metals preserves historical records of contaminant input from local and regional sources, and measurement of metals in sediment cores can provide information for reconstruction of historical changes in regional water and sediment quality. Sediment core was collected from Stege Marsh located in central San Francisco Bay (California, USA) to investigate the historical input of trace metals. Aluminum-normalized enrichment factors indicate that inputs from anthropogenic sources were predominant over natural input for Ag, Cu, Pb, and Zn. Among these, lead was the most anthropogenically impacted metal with enrichment factors ranging from 32 to 108. Depth profiles and coefficients of variation show that As, Cd, and Se were also influenced by anthropogenic input. The levels of these anthropogenically impacted metals decline gradually towards the surface due to regulation of the use of leaded gasoline, municipal and industrial wastewater discharge control, and closure of point sources on the upland of Stege Marsh. Although trace metal contamination is expected to be continuously declining, the rates of decline have slowed down. For lead, it is estimated to take 44, 82, and 153 years to decrease to probable effects level (112 microg/g), the San Francisco Bay ambient surface sediment level (43.2 microg/g), and the local baseline levels (5 microg/g), respectively. Some metals in surface sediments (0-6 cm) are still higher than sediment quality guidelines such as the probable effects level. To further facilitate the recovery of sediment quality, more efficient management plans need to be developed and implemented to control trace metals from non-point sources such as stormwater runoff.

  9. Sediment Core Contaminant Profiling in Site Assessment: Implications for Atmospheric Deposition of Contaminants Versus Point Source Release

    NASA Astrophysics Data System (ADS)

    Benson, A. A.; Johnston, M. J.; Nelson, T.; Desrocher, S.; Bergquist, B.; Slater, G. F.

    2009-05-01

    Differentiating between point source industrial contamination and regional atmospheric deposition is integral to accurately implementing effective monitoring, mitigation and remediation programs. This study evaluates polycyclic aromatic hydrocarbon (PAH), lead (Pb) and mercury (Hg) profiles in sediment cores retrieved from two northern Ontario lakes. One lake (Lake A) has an industrial facility located close to the shore, while the other (Lake B) located 3 km away does not. The goal of this study was to demonstrate the use of contaminant concentration profiling in sediment cores as a tool for differentiating atmospheric versus point source industrial inputs to lake sediments. Concentration profiles for Pb, Hg and PAH from both lakes were consistent with atmospheric deposition as observed in other lakes lacking industrial sources. Hg concentrations increased from 0.18 µg/g at a depositional date of approximately 1900 to 0.26 µg/g in the uppermost sediments. Concurrently, Pb concentrations increased from 5 ug/g at a depositional date of approximately 1900 to 25 ug/g and 26 ug/g in the most recent sediment of Lakes A and B respectfully. Both of these profiles were similar to other remote lakes. The range in concentrations of individual PAHs from both lakes (0.1 ug/g to 0.17 ug/g) were also within the range of concentrations found in other remote areas, however, they were significantly lower than those observed in nearby Siskiwit Lake. This difference was explained by the configuration of regional combustion sources and prevailing wind patterns that indicated Siskiwit Lake was receiving inputs from coal fired power generation plants which do not appear to be impacting the lakes in this study. In addition, comparison of cores collected proximal to the industrial site and in the middle of the lake revealed no relationship regarding increasing concentrations with proximity to the industrial facility. Thus the observed concentrations in these sediments were concluded to

  10. Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.

    2009-01-01

    A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7

  11. Characterizing the export of fossil carbon from permafrost soils of Spitsbergen using compound-specific radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Mollenhauer, G.; Kusch, S.; Rethemeyer, J.

    2012-04-01

    Permafrost soils in the circumpolar Arctic regions contain vast amounts of carbon stored as organic matter, which could potentially be mobilized during the climate warming expected to be particularly severe in these regions. Deeper thawing of permafrost soils may result in degradation and erosion of previously freeze-locked organic matter, followed by transport to the ocean and respiration to CO2. We studied a small catchment area covered by permafrost soils on the island of Spitsbergen at approximately 78°N, Svalbard archipelago. Total organic carbon (TOC) in a soil profile of the annually thawed active layer exhibits increasing radiocarbon ages with depth of 5800 conventional radiocarbon years (14C yrs BP) in 0 to 30 cm depth to 26000 14C yrs BP at 60-85 cm. However, in this region known for its occurrence of carboniferous and tertiary coals, these ages are likely biased by variable relative contributions of fossil coal particles. Compound-specific radiocarbon ages of short-chain (C16) and long-chain (C26 and C28) fatty acids, which are derived mainly from bacteria and recent tundra vegetation, respectively, aree substantially younger than TOC, but still reach values between 2280 14C yrs BP for C16 in the uppermost 0-30 cm and 8350 14C yrs BP for C26 fatty acids in the 30-60 cm soil depth interval. Obviously, several different carbon pools contribute to TOC in the soil profile, and carbon turnover is slow. Radiocarbon dating of long-chain (C26-C28) fatty acids recovered from core-top sediments of the Bayelva river draining the catchment and from shallow water fjord sediments directly off the river mouth yields 14C ages of 10800 and 7900 yrs BP, respectively. As the C16 fatty acids in marine sediments are primarily attributed to marine phytoplankton, its modern in the marine sediment age clearly identifies it as a recent sediment, in which old terrestrial plant material is deposited. Apparently, this terrigenous material is buried near shore, as 14C ages of long

  12. Iridium Concentrations and Abundances of Meteoritic Ejecta from the Eltanin Impact in Sediment Cores from Polarstern Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    The abundances of meteoritic ejecta from the Eltanin asteroid impact have been examined in several sediment cores recovered by the FS Polarstern during expedition ANT XII/4 using elemental concentrations of iridium and weights of coarse ejecta debris. Three cores with well-preserved impact deposits, PS204-1, PS2708-1, and PS2709-1, each contain Ir and ejecta fluences similar to those found in USNS Eltanin core E13-4. Small Ir anomalies and traces of ejecta were found in cores PS2706-1 and PS2710-1, but since these cores lack well-defined deposits, these are considered to be reworked and not representative of the fallout. No evidence of ejecta was found in cores PS2802-1 and PS2705-1. These results confirm earlier speculation that the Eltanin impact resulted in deposits of ejecta with up to 1 gram/sq centimeter of depris over a wide area of the ocean floor. However, there are sill large uncertainties over the actual regional or global extent of this unique sediment deposit.

  13. Microorganisms from Permafrost Viable and Detectable by 16SRNA Analysis: A Model for Mars

    NASA Technical Reports Server (NTRS)

    Tsapin, A. I.; McDonald, G. D.; Andrews, M.; Bhartia, R.; Douglas, S.; Gilichinsky, D.

    1999-01-01

    Preliminary studies of Arctic and Antarctic permafrost have shown that this environment harbors microorganisms which can be isolated in pure culture, and that these organisms can survive for a long period of time (up to 20 Ma) in permafrost. It is believed that the permanent subzero temperatures in permafrost and ice environments are the main parameters ensuring the longevity of microbes. In this project we studied permafrost cores from different areas of the Siberian Arctic and Antarctic, with ages from several thousand years up to several millions years (Ma). In general, Antarctic permafrost has a higher sand content, while Siberian permafrost has a texture more characteristic of clay or normal soil. Additional information is contained in the original extended abstract.

  14. Reconstructing Quaternary precipitation periodicities with Santa Barbara Basin sediment cores: application of the siliciclastic detrital element proxy at annual resolution

    NASA Astrophysics Data System (ADS)

    Napier, T.; Hendy, I. L.; Hinnov, L.; Brown, E. T.

    2015-12-01

    Precipitation patterns in Southern California directly affect water availability, and extreme weather exacerbates water stress and subsequent societal impacts in this highly populated and vital agricultural region. In the future, mean annual precipitation is predicted to decrease in California, although frequency of heavy precipitation events may increase. To reconstruct annual precipitation history in Southern California, including both the magnitude and recurrence intervals, we analyze sediment from two Late Holocene (past ~150 years and past ~2 ka) and five Pleistocene (~400-450 ka [MIS 11 and 12] and ~735 ka [MIS 18]) cores collected in Santa Barbara Basin using data from XRF core scans for elements associated with the terrigenous siliciclastic detrital fraction of core sediment (Al, Fe, K, Rb, Si, Ti, Zr). We develop a floating annual age model for each core through identification of the annual signal in the siliciclastic detrital fraction. Siliciclastic detrital element concentrations increase in sediment associated with precipitation events and floods, and decrease in sediment associated with droughts. Variability in the concentrations of these elements can thus be used as a precipitation and river runoff proxy. We investigate changes in annual detrital sediment input during glacial, deglacial, and interglacial climate states, and changes due to rapid climate change (centennial to millennial time scales). Power spectral analysis of our annually tuned time series reveals precipitation periodicities associated with the Pacific Decadal Oscillation (15-25, 50-70 years) and El Niño-Southern Oscillation (2-7 years) that are dissimilar to common tidal perigee and nodal periods. These results provide information on the nature and response of precipitation patterns due to past changes in climate forcing, which will improve climate predictions for this region, especially interannual and decadal variability that impact climate on human timescales (i.e. <100 years).

  15. Sedimentary record of polycyclic aromatic hydrocarbons in a sediment core from the Pearl River Estuary, South China.

    PubMed

    Liu, G Q; Zhang, G; Li, X D; Li, J; Peng, X Z; Qi, S H

    2005-01-01

    Owing to the hydrodynamic and sedimentation conditions, the western shoal of the Pearl River Estuary (PRE) is known to be an important sink of terrestrial substances including particle-associated pollutants from the Pearl River Delta (PRD) region. In this study, we report the sedimentary record of polycyclic aromatic hydrocarbons (PAHs) during the 20(th) century in a sediment core from the western shoal of the PRE. The summation PAH concentration ranged from 59 ng g(-1) to 330 ng g(-1) in the core with two distinct peaks. An initial increase of summation PAH concentration was found around the 1860s. The amounts of PAHs remained relatively constant for roughly 100 years, followed by the first peak in the 1950s. Then, there was a decrease in PAH concentration and flux in the 1960s and 1970s. A sharp increase of PAH concentration was observed in the early 1980s with a maximum concentration in the 1990s. The PAH diagnostic ratios indicated that the PAHs in the sediment core were mainly of pyrolytic origin, and that atmospheric deposition and land runoff may serve as the important pathways for PAHs input to the sediment. The Gross Domestic Product (GDP) was used as an index of socioeconomic development in the PRD region, which was correlated positively with the changes of PAH concentration and flux in the sediment core. The rapid increase in vehicle numbers and energy consumption in the region in the last two decades may have contributed to the rapid PAH increase since the early 1980s. The results clearly elucidated the impact of regional economic development on the estuarine environment.

  16. Quantitative mineralogy of surface sediments of the Iceland shelf, and application to down-core studies of holocene ice-rafted sediments

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.

    2007-01-01

    Quantitative X-ray diffraction analyses on the < 2 mm sediment fraction from the Iceland shelves are reported for subglacial diamictons, seafloor surface sediments, and the last 2000 cal yr BP from two cores. The overall goal of the paper is to characterize the spatial variability of the mineralogy of the present-day surface sediments (18 non-clay minerals and 7 clay minerals), compare that with largely in situ erosional products typified by the composition of subglacial diamictons, and finally examine the late Holocene temporal variability in mineral composition using multi-mineral compositions. The subglacial diamictons are dominated in the non-clay-mineral fraction by the plagioclase feldspars and pyroxene with 36.7 ?? 6.1 and 17.9 ?? 3.5 wt % respectively, with smectites being the dominant clay minerals. The surface seafloor sediments have similar compositions although there are substantial amounts of calcite, plus there is a distinct band of sites from NW to N-central Iceland that contain 1-6 wt% of quartz. This latter distribution mimics the modern and historic pattern of drift ice in Iceland waters. Principal component analysis of the transformed wt% (log-ratio) non-clay minerals is used to compare the subglacial, surface, and down-core mineral compositions. Fifty-eight percent of the variance is explained by the first two axes, with dolomite, microcline, and quartz being important "foreign" species. These analyses indicate that today the NW-N-central Iceland shelf is affected by the import of exotic minerals, which are transported and released from drift ice. The down-core mineralogy indicates that this is a process that has varied over the last 2000 cal yr BP. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).

  17. Compositional classification and sedimentological interpretation of the laminated lacustrine sediments at Baumkrichen (Western Austria) using XRF core scanning data

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Tjallingii, Rik; Bloemsma, Menno; Brauer, Achim; Starnberger, Reinhard; Spötl, Christoph; Dulski, Peter

    2015-04-01

    The outcrop at Baumkirchen (Austria) encloses part of a unique sequence of laminated lacustrine sediments deposited during the last glacial cycle. A ~250m long composite sediment record recovered at this location now continuously covers the periods ~33 to ~45 ka BP (MIS 3) and ~59 to ~73 ka BP (MIS 4), which are separated by a hiatus. The well-laminated (mm-cm scale) and almost entirely clastic sediments reveal alternations of clayey silt and medium silt to very-fine sand layers. Although radiocarbon and optically stimulated luminescence (OSL) dating provide a robust chronology, accurate dating of the sediment laminations appears to be problematic due to very high sedimentation rates (3-8 cm/yr). X-ray fluorescence (XRF) core scanning provided a detailed ~150m long record of compositional changes of the sediments at Baumkirchen. Changes in the sediments are subtle and classification into different facies based on individual elements is therefore subjective. We applied a statistically robust clustering analysis to provide an objective compositional classification without prior knowledge, based on XRF measurements for 15 analysed elements (all those with an acceptable signal-noise ratio: Zr, Sr, Ca, Mn, Cu, Zn, Rb, Ni, Fe, K, Cr, V, Si, Ba, T). The clustering analysis indicates a distinct compositional change between sediments deposited below and above the stratigraphic hiatus, but also differentiates between individual different laminae. Preliminary results suggest variations in the sequence are largely controlled by the relative occurrence of different kinds of sediment represented by different clusters. Three clusters identify well-laminated sediments, visually similar in appearance, each dominated by an anti-correlation between Ca and one or more of the detrital elements K, Zr, Ti, Si and Fe. Two of these clusters occur throughout the entire sequence, one frequently and the other restricted to short sections, while the third occurs almost exclusively below the

  18. USE OF SEDIMENT CORE PROFILING IN ASSESSING EFFECTIVENESS OF MONITORED NATURAL RECOVERY

    EPA Science Inventory

    The Sediment Issue summarizes two studies conducted by the National Risk Management Research Laboratory of U.S. EPA to evaluate the natural recovery of surface sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) an polychlorinated biphenyls (PCBs). Natural recove...

  19. Chronologies of marine sediment cores during the Last Interglacial: strengths and limitations of commonly used climato-stratigraphic alignments

    NASA Astrophysics Data System (ADS)

    Govin, Aline; Capron, Emilie

    2015-04-01

    The Last Interglacial (LIG, ~129-116 thousand of years, ka) is relatively well documented in marine sediment cores retrieved across the globe. However, these records exhibit very few absolute age markers such as magnetic events and dated tephra layers, which limits the definition of independent and precise LIG age models. As a result, age models of marine sediments are defined using various methods based on the (i) synchronisation or (ii) climato-stratigraphic alignment of marine records to dated "reference" records, assuming simultaneous regional changes for a given climate variable (e.g. foraminiferal δ18O, temperature). The use of different "reference" chronologies (e.g. LR04, speleothem or ice core chronologies) also limits a precise investigation of climatic sequences across the LIG. Here, we evaluate the underlying hypotheses, strengths and limitations, and age uncertainties of methods commonly used in marine sediments during the LIG: i.e. benthic δ18O alignment to the LR04 benthic δ18O stack, temperature alignment to ice core or to speleothem records. We compare the resulting age models using examples from the North Atlantic core MD95-2042 and the Southern Ocean core MD02-2488. We show a lack of remarkable tie-points within the LIG, which limits the study of the sub-millennial-scale climate variability. We also report age offsets up to 4 ka when different reference chronologies (e.g. ice cores vs. speleothems) or different types of aligned records (e.g. SST vs. planktonic δ18O) are used. These results highlight the need for careful estimates of age uncertainties when defining age models in marine sediments. They also emphasize the fact that LIG chronologies should be considered with care. A clear statement on the reference chronology, the method of alignment and the type of tracers that are used should be given when investigating the LIG sequence of climatic events from various sediment cores or when comparing LIG marine records and climate model

  20. Historical trends of concentrations, source contributions and toxicities for PAHs in dated sediment cores from five lakes in western China.

    PubMed

    Xu, Jian; Guo, Jian-Yang; Liu, Gui-Rong; Shi, Guo-Liang; Guo, Chang-Sheng; Zhang, Yuan; Feng, Yin-Chang

    2014-02-01

    In this work, sixteen U.S. EPA priority PAH compounds in the dated sediment cores were detected from five lakes in western China. In most lakes, the concentrations of the total PAHs (ΣPAHs) increased from the deep layers to the surface sediments. Two source categories, i.e. vehicular emission and biomass & domestic coal combustion were identified by Unmix, a factor analysis receptor model to explore the source contributions of PAHs in the dated sediments. The source apportionment results showed that biomass & domestic coal combustion contributed larger proportion of PAHs in the five lakes. The toxicities of PAHs in the dated sediments, assessed by BaP equivalent (BaPE) values showed that the BaPE increased gradually from the deep layers to the surface sediments in most lakes. For the first effort, the contribution of each source to BaPE was apportioned by Unmix-BaPE method, and the result indicated that the vehicular emission posed the highest toxic risk. The percentage contribution of vehicular emission for PAHs and BaPE also increased from the deep layers to the surface sediments, while biomass & domestic coal combustion exhibited the opposite tendency.

  1. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai, Northwest China.

    PubMed

    Wang, Pingkang; Zhang, Xuhui; Zhu, Youhai; Li, Bing; Huang, Xia; Pang, Shouji; Zhang, Shuai; Lu, Cheng; Xiao, Rui

    2014-12-01

    The gas hydrate petroleum system in the permafrost of the Qilian Mountains, which exists as an epigenetic hydrocarbon reservoir above a deep-seated hydrocarbon reservoir, has been dynamic since the end of the Late Pleistocene because of climate change. The permafrost limits the occurrence of gas hydrate reservoirs by changing the pressure-temperature (P-T) conditions, and it affects the migration of the underlying hydrocarbon gas because of its strong sealing ability. In this study, we reconstructed the permafrost structure of the Qilian Mountains using a combination of methods and measured methane permeability in ice-bearing sediment permafrost. A relationship between the ice saturation of permafrost and methane permeability was established, which permitted the quantitative evaluation of the sealing ability of permafrost with regard to methane migration. The test results showed that when ice saturation is >80%, methane gas can be completely sealed within the permafrost. Based on the permafrost properties and genesis of shallow gas, we suggest that a shallow "gas pool" occurred in the gas hydrate petroleum system in the Qilian Mountains. Its formation was related to a metastable gas hydrate reservoir controlled by the P-T conditions, sealing ability of the permafrost, fault system, and climatic warming. From an energy perspective, the increasing volume of the gas pool means that it will likely become a shallow gas resource available for exploitation; however, for the environment, the gas pool is an underground "time bomb" that is a potential source of greenhouse gas.

  2. Tool for Sampling Permafrost on a Remote Planet

    NASA Technical Reports Server (NTRS)

    Peters, Gregory

    2006-01-01

    A report discusses the robotic arm tool for rapidly acquiring permafrost (RATRAP), which is being developed for acquiring samples of permafrost on Mars or another remote planet and immediately delivering the samples to adjacent instruments for analysis. The prototype RATRAP includes a rasp that protrudes through a hole in the bottom of a container that is placed in contact with the permafrost surface. Moving at high speed, the rasp cuts into the surface and loads many of the resulting small particles of permafrost through the hole into the container. The prototype RATRAP has been shown to be capable of acquiring many grams of permafrost simulants in times of the order of seconds. In contrast, a current permafrost sampling system that the RATRAP is intended to supplant works by scraping with tines followed by picking up the scrapings in a scoop, sometimes taking hours to acquire a few grams. Also, because the RATRAP inherently pulverizes the sampled material, it is an attractive alternative to other sampling apparatuses that generate core or chunk samples that must be further processed by a crushing apparatus to make the sample particles small enough for analysis by some instruments.

  3. Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN

    USGS Publications Warehouse

    Sheibley, R.W.; Jackman, A.P.; Duff, J.H.; Triska, F.J.

    2003-01-01

    Nitrification and denitrification kinetics in sediment perfusion cores were numerically modeled and compared to experiments on cores from the Shingobee River MN, USA. The experimental design incorporated mixing groundwater discharge with stream water penetration into the cores, which provided a well-defined, one-dimensional simulation of in situ hydrologic conditions. Ammonium (NH+4) and nitrate (NO-3) concentration gradients suggested the upper region of the cores supported coupled nitrification-denitrification, where groundwater-derived NH+4 was first oxidized to NO-3 then subsequently reduced via denitrification to N2. Nitrification and denitrification were modeled using a Crank-Nicolson finite difference approximation to a one-dimensional advection-dispersion equation. Both processes were modeled using first-order reaction kinetics because substrate concentrations (NH+4 and NO-3) were much smaller than published Michaelis constants. Rate coefficients for nitrification and denitrification ranged from 0.2 to 15.8 h-1 and 0.02 to 8.0 h-1, respectively. The rate constants followed an Arrhenius relationship between 7.5 and 22 ??C. Activation energies for nitrification and denitrification were 162 and 97.3 kJ/mol, respectively. Seasonal NH+4 concentration patterns in the Shingobee River were accurately simulated from the relationship between perfusion core temperature and NH+4 flux to the overlying water. The simulations suggest that NH+4 in groundwater discharge is controlled by sediment nitrification that, consistent with its activation energy, is strongly temperature dependent. ?? 2003 Elsevier Ltd. All rights reserved.

  4. ADAPT: building conceptual models of the physical and biological processes across permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Allard, M.; Vincent, W. F.; Lemay, M.

    2012-12-01

    Fundamental and applied permafrost research is called upon in Canada in support of environmental protection, economic development and for contributing to the international efforts in understanding climatic and ecological feedbacks of permafrost thawing under a warming climate. The five year "Arctic Development and Adaptation to Permafrost in Transition" program (ADAPT) funded by NSERC brings together 14 scientists from 10 Canadian universities and involves numerous collaborators from academia, territorial and provincial governments, Inuit communities and industry. The geographical coverage of the program encompasses all of the permafrost regions of Canada. Field research at a series of sites across the country is being coordinated. A common protocol for measuring ground thermal and moisture regime, characterizing terrain conditions (vegetation, topography, surface water regime and soil organic matter contents) is being applied in order to provide inputs for designing a general model to provide an understanding of transfers of energy and matter in permafrost terrain, and the implications for biological and human systems. The ADAPT mission is to produce an 'Integrated Permafrost Systems Science' framework that will be used to help generate sustainable development and adaptation strategies for the North in the context of rapid socio-economic and climate change. ADAPT has three major objectives: to examine how changing precipitation and warming temperatures affect permafrost geosystems and ecosystems, specifically by testing hypotheses concerning the influence of the snowpack, the effects of water as a conveyor of heat, sediments, and carbon in warming permafrost terrain and the processes of permafrost decay; to interact directly with Inuit communities, the public sector and the private sector for development and adaptation to changes in permafrost environments; and to train the new generation of experts and scientists in this critical domain of research in Canada

  5. Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans

    NASA Astrophysics Data System (ADS)

    Damaschke, M.; Sulpizio, R.; Zanchetta, G.; Wagner, B.; Böhm, A.; Nowaczyk, N.; Rethemeyer, J.; Hilgers, A.

    2013-01-01

    A detailed tephrostratigraphic record, which dates back to Marine Isotope Stage (MIS) 5b (ca. 91 kyr), has been established from a 17.76 m long core (Co1215) from Lake Prespa (Macedonia, Albania and Greece). A total of eleven tephra and cryptotephra layers (PT0915-1 to PT0915-11) were identified, using XRF scanning, magnetic susceptibility measurements, and macro- and microscopic inspection of the sediments. The major element composition of glass shards and/or micro-pumice fragments indicates that the tephras and cryptotephras originate from the explosive volcanism of Italy. Eight tephra and cryptotephra layers were correlated with specific volcanic eruptions: the AD 512 eruption of Somma-Vesuvius (1438 cal yr BP), the Mercato eruption of Somma-Vesuvius (8890 ± 90 cal yr BP), the Tufi Biancastri/LN1-LN2 eruption of the Campi Flegrei (14 749 ± 523 cal yr BP and 15 551 ± 621 cal yr BP), the SMP1-e/Y-3 eruption of the Campi Flegrei (30 000-31 000 cal yr BP), the Campanian Ignimbrite/Y-5 eruption of the Campi Flegrei (39 280 ± 110 cal yr BP), the SMP1-a event of Ischia Island (around 44 000 cal yr BP) and the Green Tuff/Y-6 eruption of Pantelleria Island (around 45 000 cal yr BP). One tephra could be attributed to the volcanic activity of Mount Etna, but probably represents an unknown eruption at ca. 60 000 cal yr BP. Cryptotephras PT0915-6 and PT0915-10 remain unclassified so far, but according to the presented age-depth model these would have been deposited around 35 000 and 48 500 cal yr BP, respectively. Some of the tephras and cryptotephras are recognised for the first time in the Balkan region. The tephrostratigraphic work provides important information about ash dispersal and explosion patterns of source volcanoes and can be used to correlate and date geographically distant paleoenvironmental and archaeological archives in the central Mediterranean region. Moreover, the tephrostratigraphic work in combination with radiocarbon and electron spin resonance (ESR

  6. Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans

    NASA Astrophysics Data System (ADS)

    Damaschke, M.; Sulpizio, R.; Zanchetta, G.; Wagner, B.; Böhm, A.; Nowaczyk, N.; Rethemeyer, J.; Hilgers, A.

    2012-09-01

    A detailed tephrostratigraphic record, which dates back to Marine Isotope Stage (MIS) 5, has been established from a 17.76 m long core (Co1215) from Lake Prespa (Macedonia, Albania and Greece). A total of eleven tephra and cryptotephra layers (PT0915-1 to PT0915-11) were identified, using XRF scanning, magnetic susceptibility measurements, and macro- and microscopic inspection of the sediments. The major element composition of glass shards and/or micro-pumice fragments indicates that the tephras and cryptotephras originate from the explosive volcanism of Italy. Eight tephra and cryptotephra layers were correlated with specific volcanic eruptions: cryptotephra PT0915-1 with the 512 AD eruption of Somma-Vesuvius (1438 cal yr BP), tephra PT0915-2 with the Mercato eruption of Somma-Vesuvius (8890 ± 90 cal yr BP), cryptotephras PT0915-3 and PT0915-4 with Tufi Biancastri/LN1-LN2 of the Campi Flegrei (14 749 ± 523 cal yr BP and 15 551 ± 621 cal yr BP), tephra PT0915-5 with the SMP1-e/Y-3 eruption of the Campi Flegrei (30 000-31 000 cal yr BP), tephra PT0915-7 with the Campanian Ignimbrite/Y-5 of the Campi Flegrei (39 280 ± 110 cal yr BP), cryptotephra PT0915-8 with the SMP1-a event of Ischia Island (around 44 000 cal yr BP) and tephra PT0915-9 with the Green Tuff/Y-6 eruption of Pantelleria Island (around 45 000 cal yr BP). Tephra PT0915-11 could be attributed to the volcanic activity of Mount Etna, but probably represents a hitherto unknown eruption at ca. 60 000 cal yr BP. Cryptotephras PT0915-6 and PT0915-10 remain unclassified so far, but according to the presented age-depth model these would have been deposited around 35 000 and 48 500 cal yr BP, respectively. Some of the tephras and cryptotephras are recognised for the first time in the Balkan region. The tephrostratigraphic work provides important information about ash dispersal and explosion patterns of source volcanoes and can be used to correlate and date geographically distant paleoenvironmental and

  7. Development of radiographic and microscopic techniques for the characterization of bacterial transport in intact sediment cores from Oyster, Virginia.

    PubMed

    Dong, H; Onstott, T C; DeFlaun, M F; Fuller, M E; Gillespie, K M; Fredrickson, J K

    1999-08-01

    The objective of this study was to ascertain the physical and mineralogical properties responsible for the retention of bacteria in subsurface sediments. The sediment core chosen for this study was a fine-grained, quartz-rich sand with minor amounts of Fe and Al hydroxides. A bacterial transport experiment was performed using an intact core collected from a recent excavation of the Butler's Bluff member of the Nassawadox formation in the borrow pit at Oyster, VA. and a 14C-labeled bacterial strain OYS2-A was selected for its relatively low adhesion. After the bacterial breakthrough was observed in the effluent, the intact core was dissected to determine the internal distribution of the injected bacteria retained in the sediment. The sediment was dried, epoxy fixed, and thin sectioned. The distribution of 14C activity in the thin sections was mapped using a phosphor screen and X-ray film. The remainder of the core was subsampled and the 14C activity of the subsamples was determined by liquid scintillation counting. The phosphor imaging technique was capable of directly imaging the distribution of radiolabeled bacteria in thin sections, because of its high sensitivity and linear response over a large activity range. The phosphor imaging signal intensity was utilized as a measure of bacterial concentration. The distribution of bacteria at the millimeter scale in the thin sections was compared to the grain size, porosity, and mineralogy as measured by scanning electron microscopy (SEM) and energy dispersive spectrum (EDS) analyses. No apparent correlation was observed between the retention or collision efficiency of bacteria in the sediment and the amount of Fe and Al hydroxides. This apparent lack of correlation can be qualitatively explained by combination of several factors including a nearly neutral surface charge of the bacterial strain, and texture of the Fe and Al hydroxides in the sediment. The combination of phosphor imaging with SEM-EDS proved to be a robust

  8. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: application of acid leachable technique.

    PubMed

    Janaki-Raman, D; Jonathan, M P; Srinivasalu, S; Armstrong-Altrin, J S; Mohan, S P; Ram-Mohan, V

    2007-01-01

    Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO(3), organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO(3) indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources.

  9. Beaded streams of Arctic permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.

    2014-07-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s-1, yet channel runs still move water rapidly between pools

  10. The International University Courses on Permafrost (IUCP): an IPY Education Initiative From the International Permafrost Association (IPA)

    NASA Astrophysics Data System (ADS)

    Prick, A.; Christiansen, H. H.

    2006-12-01

    Worldwide, only very few dedicated permafrost courses exist at university level today. This significantly limits the development of new permafrost researchers. Therefore, the International Permafrost Association (IPA) has developed an overview of International University Courses on Permafrost (IUCP), as part of its participation in the IPY. This polar-related educational program covers cross-cutting activities of the four core IPY-IPA endorsed cluster projects that constitute the IPY Permafrost Programme: Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost (TSP; Project 50); Antarctic and sub-Antarctic Permafrost, Periglacial and Soil Environments (ANTPAS; Project 33); Arctic Circumpolar Coastal Observatory Network (ACCO-Net; Project 90); Carbon Pools in Permafrost Regions (CAPP; Project 373). The IUCP collects information about existing and new IPY permafrost courses worldwide, to encourage a broad international student participation in the existing courses. All courses dealing with permafrost and periglacial geomorphology within the science and engineering disciplines and organized in 2007 to 2009 in both hemispheres qualify for IUCP. Some courses are exclusively field-based and take place in various polar regions, offering students a unique opportunity to gather field experience. Other courses are theoretical and classroom-based or include only limited time in the field. All course levels are taken into account, from undergraduate to doctorate level; the IPA also encourages young professional participation in the IUCP. IPA- IPY education coordinators in each country are providing relevant information. IUCP course information is presented on the IPA webpage. The use of web resource and search tools allow easy access to course contents. The IUCP course numbers by countries as by August 2006 is: Argentina (1), Belgium (1), Canada (29), China (11), Denmark (1), France (2), Japan (7), Mongolia (1), Netherlands (4), New Zealand (1

  11. Icy Satellites: Perpetual Permafrost

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.; Moore, J. M.

    2003-12-01

    The ice-rich moons of the outer solar system are worlds of perpetual permafrost. By analogy to the terrestrial roles of silicates and water ice, surface materials of these worlds commonly consist of components that are respectively refractory and volatile at local environmental conditions. We consider the physical properties, volatile components, and geomorphological characteristics of outer planet satellite surfaces and shallow regoliths as analogs to permafrost environments. Near-surface temperatures of ~40 to 165 K preclude melting of water-ice, except where endogenic activity has increased surface temperatures locally. However, water and/or more volatile ices can be transported in the vapor phase, and can liquefy in the deeper subsurface. In the water-ice-poor regolith of Io, SO2 and possibly H2S are volatile ices that can be transported in the vapor phase and can liquefy at depth, resulting in degradation and local collapse of the ground surface. Sublimation degradation is especially evident in images of Callisto, where slow diffusive loss of CO2 is the likely erosive agent. On Neptune's large moon Triton, nitrogen plays the role of a permafrost volatile, near its melting temperature in a regolith of more refractory ices. Most large icy satellites probably have water-rich subsurface oceans, and it has been proposed that Europa's subsurface ocean might sustain life. Frigid surface temperatures and severe charged particle radiation preclude near-surface metabolism, but organisms could potentially survive within deeper regions and local upwelling plumes that approach the ice melting temperature.

  12. Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores.

    PubMed

    Santschi, P H; Presley, B J; Wade, T L; Garcia-Romero, B; Baskaran, M

    2001-07-01

    Profiles of trace contaminant concentrations in sediment columns can be a natural archive from which pollutant inputs into coastal areas can be reconstructed. Reconstruction of historical inputs of anthropogenic chemicals is important for improving management strategies and evaluating the success of recent pollution controls measures. Here we report a reconstruction of historical contamination into three coastal sites along the US Gulf Coast: Mississippi River Delta, Galveston Bay and Tampa Bay. Within the watersheds of these areas are extensive agricultural lands as well as more than 50% of the chemical and refinery capacity of the USA. Despite this pollution potential, relatively low concentrations of trace metals and trace organic contaminants were found in one core from each of the three sites. Concentrations and fluxes of most trace metals found in surface sediments at these three sites, when normalized to Al, are typical for uncontaminated Gulf Coast sediments. Hydrophobic trace organic contaminants that are anthropogenic (polycyclic aromatic hydrocarbons, DDTs, and polychlorinated biphenyls) are found in sediments from all locations. The presence in surface sediments from the Mississippi River Delta of low level trace contaminants such as DDTs, which were banned in the early 1970's, indicate that they are still washed out from cultivated soils. It appears that the DDTs profile in that sediment core was produced by a combination of erosion processes of riverine and other sedimentary deposits during floods. Most of the pollutant profiles indicate that present-day conditions have improved from the more contaminated conditions in the 1950-1970's, before the advent of the Clean Water Act.

  13. Effects of Temperature and Substrate Availability on Methanotrophy in Arctic Permafrost Landscapes

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, T.; Graham, D. E.; Wullschleger, S. D.

    2014-12-01

    Arctic permafrost ecosystems store ~ 50 % of global belowground carbon (C) and are a considerable source of atmospheric methane (CH4). Current estimates report that nearly 10 - 40 Tg yr-1 of CH4 is released from permafrost environments. In particular, topographic depressions on the landscape are predominantly anoxic and conducive to active methanogenesis. At the sediment-water interfaces of the water-saturated polygonal units, namely low- and flat-centered polygons, CH4 and oxygen gradients overlap and bacterial CH4 oxidation is an important process contributing to CH4 consumption. Methanotrophic bacteria represent the major terrestrial sinks for CH4 and can reduce CH4 emissions by ~70 %. Therefore, determining how the activity and abundance of methanotrophic communities respond to warming temperature conditions is critical to predicting effects of permafrost thaw and active layer warming on CH4 emissions. As ground temperature increases in the Arctic landscape, a major impact of permafrost thaw could be draining of the active layer with resultant subsidence leading to the formation of elevated and relatively oxic high-centered polygons. These changes can impact both methanogen and methanotroph communities and affect net CH4 fluxes. To understand the controls of temperature and substrate availability on CH4 oxidation, we examined process rates and temporal dynamics of methanotroph biomass in contrasting landscape gradients. We investigated the active layer and Cryoturbated permafrost organic soilsd from replicate soil cores collected from high-centered and flat-centered polygonal units in the Barrow Environmental Observatory, Barrow, AK. We used quantitative PCR to quantify methanogen (mcrA) and methanotroph (pmoA) population size by functional gene analysis. We present potential methane oxidation activity in response to three incubation temperatures (-2 oC, 4 oC, and 10 oC) that represent thaw-season ground temperatures. Our objectives were to estimate the rates

  14. PAHs in sediment cores at main river estuaries of Chaohu Lake: implication for the change of local anthropogenic activities.

    PubMed

    Ren, Chen; Wu, Yaketon; Zhang, Shuo; Wu, Liang-Liang; Liang, Xiao-Guo; Chen, Tian-Hu; Zhu, Cheng-Zhu; Sojinu, Samuel O; Wang, Ji-Zhong

    2015-02-01

    In the present study, 28 polycyclic aromatic hydrocarbons (PAHs) were investigated in four sediment cores collected from the main river estuaries of Chaohu Lake, one of the severely polluted lakes in China. The results indicate that elevated concentrations of total PAHs (Σ28PAH) were found in the samples from the estuary of Nanfei River (ENF), considering BaP-based total toxicity equivalent (TEQ-BaP) and toxic unit (TU) results; there are potential adverse environmental implications. The total organic carbon (TOC) played an important role on the accumulation of PAHs at ENF and the estuary of Tongyang River (ETY). The predominant PAHs are high molecular weight (HMW) homologous for all samples; as a result, industrial wastewater from a steel company is expectedly the key source of PAHs in ENF, while coke consumption would be the important source of PAHs at other three sampling sites. Vertical distribution of PAHs in the sediment cores could be explained by the local social and economic activities. Furthermore, a minor variation of PAH composition in the sediment core could be justified by the stable structure of energy consumption in the Anhui Province. These results justify the need for further enhancement of industrial wastewater treatment and development of renewable energies which are the key factors on the control of PAH pollution in China.

  15. Final report on the sampling and analysis of sediment cores from the L-Area oil and chemical basin

    SciTech Connect

    Not Available

    1985-08-01

    Nine vibracores were collected in the L-Area oil and chemical basin (904-83G) during late March and early April 1985. These cores were collected for analysis of the sludge on the basin floor and the underlying sediment. Several different field and laboratory analyses were performed on each three inch segment of all the cores. These included: (1) Sediment characterization; (2) Percent moisture; (3) Dry weight; (4) Spectral gamma analysis; (5) Gross alpha and beta analysis. Detailed chemical analysis were measured on selected intervals of 2 cores (LBC-5 and 6) for complete chemical characterization of the sediments. This sampling program was conducted to provide information so that a closure plan for the basin could be developed. This report describes the methods employed during the project and provide a hard copy of the analytical results from the sample analyses. Included in the appendices are copies of all field and laboratory notes taken during the project and copies of the gas chromatograms for the petroleum hydrocarbon analysis. All chemical results were also submitted on a 5-inch floppy disk.

  16. Tephra in marine sediment cores offshore southern Iceland: A 68,000 year record of explosive volcanism

    NASA Astrophysics Data System (ADS)

    Bonanati, Christina; Wehrmann, Heidi; Portnyagin, Maxim; Hoernle, Kaj; Mirzaloo, Maryam; Nürnberg, Dirk

    2016-04-01

    Explosive volcanic eruptions on Iceland, even of intermediate magnitude have far-reaching impacts. Their far-distal deposits have been found up to Northern Continental Europe and Greenland. On Iceland, the harsh environment and strongly erosive conditions limit the preservation of volcanic deposits and their accessibility on land. The area offshore southern Iceland preserves information about the depositional fans at medial distance from the volcanic source. Here we use this sedimentary archive to reconstruct the Icelandic eruption record in greater detail. This high resolution geological record allows us to infer eruption frequencies and explosiveness in great detail and contributes to the assessment of Icelandic volcanic hazards, volcano-climate interaction, stratigraphy and palaeoceanographic reconstructions. Eight gravity cores were obtained during RV Poseidon Cruise 457, at 260 to 1,600 m water depths and distances of 130 to 400 km west to southeast of Iceland. The ˜4 to 10 m long sediment cores reach back to the Late Pleistocene (˜68 ka BP; dated by 14C and sedimentation rates), mostly excluding the Holocene. Potential tephra layers were identified by visual inspection and color scans. Volcanic glass shards were analyzed for their major element composition by electron microprobe and assigned to their eruptive source by geochemical fingerprinting. More than 50 primary tephra layers and nearly as many reworked layers were identified, several of which were correlated across the cores. The mostly basaltic tephra shards are derived from the Katla, Grímsvötn-Lakagígar, Bárðarbunga-Veiðivötn, and Hekla volcanic systems. Primary and mixed layers with particles of unique bimodal composition identical to the ˜12 ka BP Vedde-Tephra from the Katla Volcanic System, including rhyolitic particles, were identified in nearly all cores and used as time marker and for inter-core correlation. Tephra layers of unique unknown composition were also identified and

  17. Outcrop and core integrative ichnofabric analysis of Miocene sediments from Lepe, Huelva (SW Spain): Improving depositional and paleoenvironmental interpretations

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tovar, Francisco J.; Dorador, Javier; Mayoral, Eduardo; Santos, Ana

    2017-03-01

    Ichnofabric analysis was conducted in Miocene sediments from Lepe (Huelva, SW Spain) based on integrative outcrop and core research, to improve interpretations of depositional and paleoenvironmental conditions, with special attention to sequence stratigraphy. Seven intervals were differentiated in outcrops based on stratigraphic and ichnological features, consisting of two ichnofabrics: Ophiomorpha-Thalassinoides-Spongeliomorpha ichnofabric characterizes intervals 1, 2, 6, 7 and 8, while Palaeophycus-Planolites-Phycosiphon ichnofabric characterizes intervals 3, 4 and 5. Fourteen ichnofabrics were differentiated in the core, mainly in view of lithological features, including ferruginous material, grain size, mottled background, ichnotaxa, and Bioturbation Index. A comparison between outcrop and core ichnofabrics through the upper 13.5 m, corresponding to the uppermost Tortonian-lowermost Messinian interval, revealed certain similarities as well as some differences. A continuous and relatively slow siliciclastic deposition with punctual variations in the sedimentation rate can be interpreted that, associated with favorable paleoenvironmental parameters such as aerobic conditions and nutrient availability, evidence that a well-developed and diverse macroinvertebrate trace maker community existed at that time. Softgrounds are dominant, but occasionally loosegrounds and even firmgrounds could develop. The ichnofabric distribution shows long-range patterns in outcrop and core, and short-range patterns exclusively in core. Long-range patterns reflect the last phases of a transgressive system tract, with a ;maximum flooding zone; at the end, and then a highstand normal regression. High-frequency, short-range, repetitive patterns in ichnofabrics from core, mainly between ichnofabrics 6/8 to 9 from lower to upper part of the pattern, can be linked to ;local flooding surfaces;, subdividing the ;maximum flooding zone; into parasequences. Our results reveals the usefulness of

  18. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    PubMed Central

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-01-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores. PMID:28230151

  19. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    NASA Astrophysics Data System (ADS)

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-02-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  20. Potential microbial contamination during sampling of permafrost soil assessed by tracers.

    PubMed

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S

    2017-02-23

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  1. Investigation of mechanical properties of hydrate-bearing pressure core sediments recovered from the Eastern Nankai Trough using transparent acrylic cell triaxial testing system (TACTT-system)

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Masui, A.; Konno, Y.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Tenma, N.; Nagao, J.

    2014-12-01

    Natural gas hydrate-bearing pressure core sediments have been sheared in compression using a newly developed Transparent Acrylic Cell Triaxial Testing (TACTT) system to investigate the geophysical and geomechanical behavior of sediments recovered from the deep seabed in the Eastern Nankai Trough, the first Japanese offshore production test region. The sediments were recovered by hybrid pressure core system (hybrid PCS) and pressure cores were cut by pressure core analysis tools (PCATs) on board. These pressure cores were transferred to the AIST Hokkaido centre and trimmed by pressure core non-destructive analysis tools (PNATs) for TACTT system which maintained the pressure and temperature conditions within the hydrate stability boundary, through the entire process of core handling from drilling to the end of laboratory testing. An image processing technique was used to capture the motion of sediment in a transparent acrylic cell, and digital photographs were obtained at every 0.1% of vertical strain during the test. Analysis of the optical images showed that sediments with 63% hydrate saturation exhibited brittle failure, although nonhydrate-bearing sediments exhibited ductile failure. In addition, the increase in shear strength with hydrate saturation increase of natural gas hydrate is in agreement with previous data from synthetic gas hydrate. This research was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program by the Ministry of Economy, Trade and Industry (METI).

  2. A New Automated Technique for the Construction of More Accurate Composite Depth Scales and an Analysis of Core Deformation in Different Sediment Types

    NASA Astrophysics Data System (ADS)

    Lisiecki, L. E.

    2003-12-01

    A composite depth section reconstructs a continuous record of the sediment at a drilling site by splicing together cores from different holes; its corresponding composite depth scale describes the correlation of the sediments between holes. Both are important tools for analyzing the sediment recovered from a drilling site. The standard splicing technique for creating composite depth sections does not correct for distortion within cores, so that a sedimentary feature may have a slightly different composite depth in each hole. Additionally, the splicing technique often results in composite depths which are ˜10% greater than recorded drill depths. A new automated compositing technique aligns features between holes and prevents the artificial increase in composite depth. The results of this technique are compared with the traditional composite depth scale. Additionally, the new technique allows for analysis of the deformation and extension that occurs in cores during the drilling and extraction process. This study describes typical core deformation and its effect on calculated sedimentation rates for the carbonate and siliceous sediments of ODP Leg 138 and the terrigenous-dominated pelagic sediments of ODP Leg 154. Preliminary results indicate that cores from Leg 138 are stretched by more than 5% and those from Leg 154 by nearly 3%. For both legs, extension is greatest in the top half of cores, but variability in deformation may increase toward either end of a core.

  3. Dating of pollen samples from the sediment core of Lake St Anne in the East Carpathian Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Hubay, Katalin; Katalin Magyari, Enikö; Braun, Mihály; Schabitz, Frank; Molnár, Mihály

    2016-04-01

    Lake St Anne (950 m a.s.l.) is situated in the Ciomadul volcano crater, the youngest volcano in the Carpathians. Aims driving forward the studies there are twofold, one is dating the latest eruption of the Ciomadul volcano and the other is the multi-proxy palaeoenvironmental reconstruction of this region. The sediment of Lake St Anne was sampled several times already, but never reached the bottom of the lake before. During the winter of 2013 at a new core location drilling started at 600 cm water depth and finally reached the bottom of the lake sediment at approximately 2300 cm including water depth. As for all multi-proxy studies essential requirement was to build a reliable chronology. Sediments were dated by radiocarbon method. Previous radiocarbon dates were measured on plant macrofossils, charcoal, Cladocera eggs, chironomid head capsules and bulk lake sediments. Lake St Anne has volcanic origin and there is intensive upwelling of CO2it is important to study and take into consideration, whether there is any local reservoir effect at the case of samples where it could be problematic. Furthermore the late part of the sediment section (between 15,000 and 30,000 cal. yr BP) has low organic matter content (less than 2-4%) with scarcity of datable plant macrofossil material. In this review a different fraction of pollen samples with terrestrial origin was tested and studied as a novel sample type for the radiocarbon dating. Pollen samples were extracted from the lake sediment cores. This type of organic material could be an ideal candidate for radiocarbon based chronological studies as it has terrestrial source and is present in the whole core in contrast with the terrestrial macrofossils. Although the pollen remains were present in the whole core, in many cases their amount give a challenge even for the AMS technic. Samples were measured with EnvironMICADAS AMS and its gas ion source in the HEKAL laboratory (Debrecen, Hungary). We examine the reliability the

  4. Footprint of roman and modern mining activities in a sediment core from the southwestern Iberian Atlantic shelf.

    PubMed

    Mil-Homens, Mário; Vale, Carlos; Naughton, Filipa; Brito, Pedro; Drago, Teresa; Anes, Bárbara; Raimundo, Joana; Schmidt, Sabine; Caetano, Miguel

    2016-11-15

    A 5-m long sediment core (VC2B), retrieved in the Southwestern Iberian Atlantic shelf, at 96m water depth, was used to assess major changes in climate and human activities during the last 9.7kyrs. Analytical measurements included sedimentological (mean grain size, and the contents of sand, silt and clay), geochemical (major, minor, trace and rare earth elements; REEs) and chronological ((210)Pb and (14)C) parameters. Two episodes of increment of fine-grained particles, occurring at 3050BCE and 1350CE, suggest the retreat of the coast line to the present level and the beginning of a wetter phase associated with the "Little Ice Age". The North American Shale Composite (NASC)-normalized REE-pattern detected in the shelf is similar to that found in the Guadiana estuarine sediments. The possibility of this estuary as a contributor to the sediment load deposited in the adjacent coastal zone was indicated. Trace elements were significantly correlated with Al until 1850CE, pointing that grain-size rules its distribution in sediments. The depth variation of As, Cu and Pb enrichment factors relative to background values shows two periods of intense human activity that can be mainly linked to mining: (i) across the Roman Period, marked by low enrichments; and (ii) starting on the second half of the 19th century until nowadays with significantly increased enrichments, especially of Pb and Cu. In addition to As, Cu and Pb, this period is also marked by high enrichments of Hg and Zn. Despite the decrease/closure of sulphide massive deposits mining exploitation (e.g., São Domingos, Las Herrerias) during the second half of the 20th century, results showed ongoing input of Pb, Cu, As, Hg and Zn to coastal sediments. Thus, the legacy of contamination by these elements, mainly from leaching of slags and tailings, and remobilization/reworking of contaminated estuarine sediments, is still recorded in marine sediments.

  5. Preliminary Results from a Late Pleistocene to Holocene Paleoclimate Study of the Lake Sediment Cores, Northern New Mexico

    NASA Astrophysics Data System (ADS)

    Cedillo, D. N.; Brister, A. R.; LoPresti, C. A.; Maldonado, M.; Pitrucha, R. M.; West, C.; Martinez, E.; Lineline, J.; Petronis, M. S.

    2011-12-01

    We present the preliminary results from an integrated, paleoclimatic study of sediment cores collected from the Las Vegas National Wildlife Refuge (LVNWR) and surrounding region that bear on the late Pleistocene to Holocene paleoclimatic variations in northeastern NM. We collected sedimentologic, midge fossil, and rock magnetic data from sediment cores to characterize the materials, identify stratigraphic changes, document shifting lake levels, assess temperature changes, and infer paleoclimate conditions. Data from McAllister and Wallace Lake are encouraging and reveal depth dependent changes in fossil assemblages, grain size, and rock magnetic properties that we interpret to reflect climatic driven variations impacting the depositional system. We recognize three different types of chironomid subfamilies (Chironomini, Tanypodinae, and Orthocladiinae). Based on the fossil results, the water has been warm in the most recent years. Grain size distribution from the lower to upper core levels reveal that the amount of fine sand-sized sediment (0.125 mm diameter) increases while the amount of medium (0.25) to coarse (0.50) sand-sized sediment decreases implying that there may have been a reduction in stream energy and hence precipitation over the time period represented by the core. Bulk low-field magnetic susceptibility decreases by an order of magnitude from the surface to the base of the measured core suggesting a change in detrital magnetic influx into the lacustrian system. Curie point estimates indicate that the dominant magnetic mineral in all samples is cubic, low-Ti titanomagnetite phase. We postulate that concurrent with alpine glacial activity during the Pleistocene, the LVNWR and the transitional Great Plains region to the northeast was an expansive single lake or interconnected lake system, analogous to the Pleistocene lakes of the Estancia Basin (Lake Estancia) and the Tularosa Basin (Lake Otero) of central and southern NM. Following the end of glacial

  6. Seismically induced soft-sediment deformation structures revealed by X-ray computed tomography of boring cores

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    2016-06-01

    X-ray computed tomography (CT) allows us to visualize three-dimensional structures hidden in boring cores nondestructively. We applied medical X-ray CT to cores containing seismically induced soft-sediment deformation structures (SSDSs) obtained from the Kanto region of Japan, where the 2011 off the Pacific coast of Tohoku Earthquake occurred. The CT images obtained clearly revealed various types of the seismically induced SSDSs embedded in the cores: a propagating sand dyke bent complexly by the preexisting geological structure, deformed laminations of fluidized sandy layers, and two types of downward mass movement (ductile downward folding and brittle normal faulting) as compensation for upward sand transport through sand dykes. Two advanced image analysis techniques were applied to the sand dyke CT images for the first time. The GrowCut algorithm, a specific digital image segmentation technique that uses cellular automata, was used successfully to extract the three-dimensional complex sand dyke structures embedded in the sandy sediments, which would have been difficult to achieve using a conventional image processing technique. Local autocorrelation image analysis was performed to detect the flow pattern aligned along the sand dykes objectively. The results demonstrate that X-ray CT coupled with advanced digital image analysis techniques is a promising approach to studying the seismically induced SSDSs in boring cores.

  7. [Distribution characteristics of organochlorine pesticides in bank soil samples and estuarial sediment core of the Minjiang River, Southeast China].

    PubMed

    Zhang, Jia-Quan; Qi, Shi-Hua; Xing, Xin-Li; Tan, Ling-Zhi; Zhang, Jun-Peng; Hu, Ying; Song, Qi

    2011-03-01

    The 19 soil samples and one sediment core were collected from near the banks and in estuary of the Minjiang River. The concentrations of OCPs in the samples were determined by GC-ECD with the internal standard method. The results showed that the concentrations of OCPs, HCHs, DDTs in soils near the banks of Minjiang were in the ranges of 4.31-877.80 ng x g(-1) (with a mean 74.13 ng x g(-1)), 1.32-24.01 ng x g(-1) (7.50 ng x g(-1)), 1.67-876.49 ng x g(-1) (66.64 ng x g(-1)), respectively. Through the study of the vertical distribution characteristics of OCPs in the area, the pollution history of OCPs in the Minjiang estuary was discussed. The concentrations of HCHs and DDTs in the core ranged from 0.34-11.72 ng x g(-1) and 1.12-31.04 ng x g(-1), respectively. The results also showed that the soils and cores in the area have polluted lightly by DDTs, but not been polluted by HCHs. Upper section of the sediment core, o ,p'-DDT was the main composition, which indicated that new DDTs may be still used recently in the Minjiang area. The vertical changes of OCPs reflected basically their production and application history in banks of Minjiang River, Fujian Province.

  8. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology.

    PubMed

    Gilichinsky, D A; Wilson, G S; Friedmann, E I; McKay, C P; Sletten, R S; Rivkina, E M; Vishnivetskaya, T A; Erokhina, L G; Ivanushkina, N E; Kochkina, G A; Shcherbakova, V A; Soina, V S; Spirina, E V; Vorobyova, E A; Fyodorov-Davydov, D G; Hallet, B; Ozerskaya, S M; Sorokovikov, V A; Laurinavichyus, K S; Shatilovich, A V; Chanton, J P; Ostroumov, V E; Tiedje, J M

    2007-04-01

    Antarctic permafrost soils have not received as much geocryological and biological study as has been devoted to the ice sheet, though the permafrost is more stable and older and inhabited by more microbes. This makes these soils potentially more informative and a more significant microbial repository than ice sheets. Due to the stability of the subsurface physicochemical regime, Antarctic permafrost is not an extreme environment but a balanced natural one. Up to 10(4) viable cells/g, whose age presumably corresponds to the longevity of the permanently frozen state of the sediments, have been isolated from Antarctic permafrost. Along with the microbes, metabolic by-products are preserved. This presumed natural cryopreservation makes it possible to observe what may be the oldest microbial communities on Earth. Here, we describe the Antarctic permafrost habitat and biodiversity and provide a model for martian ecosystems.

  9. Trends in chemical concentration in sediment cores from three lakes in New Jersey and one lake on Long Island, New York

    USGS Publications Warehouse

    Long, Gary R.; Ayers, Mark A.; Callender, Edward; Van Metre, Peter C.

    2003-01-01

    Data from this study indicate that changes in population, land use, and chemical use in the urbanized watersheds over the period of sedimentary record have contributed to upward trends in concentrations of trace elements and hydrophobic organic compounds. Although downward trends were observed for some constituents in the years after their concentrations peaked, concentrations of most constituents in urban lake cores were higher in the most recently deposited sediments than at the base of each respective core and in the reference lake cores. Similar trends in concentrations of these constituents have been observed in sediment cores from other urban lakes across the United States.

  10. Distribution of selenium, molybdenum and uranium in sediment cores from the Colorado River delta, Baja California, Mexico.

    PubMed

    Orozco-Durán, A; Daesslé, L W; Gutiérrez-Galindo, E A; Muñoz-Barbosa, A

    2012-01-01

    The distribution of selenium, molybdenum and uranium was studied in ~1.5 m sediment cores from the Colorado River delta, at the Colorado (CR) and Hardy (HR) riverbeds. Core HR2 showed highest Se, Mo and U concentrations at its bottom (2.3, 0.95 and 1.8 μg g(-1)) within a sandy-silt layer deposited prior to dam construction. In CR5 the highest concentrations of these elements (0.9, 1.4 and 1.7 μg g(-1) respectively) were located at the top of the core within a surface layer enriched in organic carbon. A few samples from HR2 had Se above the probable toxic effect level guidelines.

  11. Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India.

    PubMed

    Veerasingam, S; Vethamony, P; Mani Murali, R; Fernandes, B

    2015-02-15

    The concentrations of seven trace metals (Fe, Mn, Cu, Cr, Co, Pb and Zn) in three sediment cores were analysed to assess the depositional trends of metals and their contamination level in the Mandovi estuary, west coast of India. All sediment cores showed enrichment of trace metals in the upper part of core sediments and decrease in concentration with depth, suggesting excess of anthropogenic loading (including mining activities) occurred during the recent past. Scanning electron microscope (SEM) images distinguished the shape, size and structure of particles derived from lithogenic and anthropogenic sources in core sediments. The geo-accumulation index (I(geo)) values indicate that Mandovi estuary is 'moderately polluted' with Pb, whereas 'unpolluted to moderately polluted' with Fe, Mn, Cu, Cr, Co and Zn. The comparative analysis of trace metals revealed that Fe and Mn were highly enriched in the Mandovi estuary compared to all other Indian estuaries.

  12. Initial Results on the Meteoritic Component of new Sediment Cores Containing Deposits of the Eltanin Impact Event

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer; Kuhn, Gerhard

    2002-01-01

    The late Pliocene impact of the Eltanin asteroid is the only known asteroid impact in a deep- ocean (-5 km) basin . This was first discovered in 1981 as an Ir anomaly in sediment cores collected by the USNS Eltanin in 1965. In 1995, Polarstern expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5 S, 91 W) contained well-preserved impact deposits that include disturbed ocean sediments and meteoritic impact ejecta. The latter is composed of shock-melted asteroidal materials and unmelted meteorites. In 2001, the FS Polarstern returned to the impact area during expedition ANT XVIIU5a. At least 16 cores were recovered that contain ejecta deposits. These cores and geophysical data from the expedition can be used to map the effects of the impact over a region of about 80,000 square km. To date we have measured Ir concentrations in sediments from seven of the new cores and preliminary data should be available for a few more by the time of the meeting. Our initial interpretation of these data is that there is a region in the vicinity of the San Martin Seamounts comprising at least 20,000 square km in which the average amount of meteoritic material deposited was more than 1 g per square cm. This alone is enough material to support a 500 m asteroid. Beyond this is a region of about 60,000 square km, mostly to the north and west, where the amount of ejecta probably averages about 0.2 g per square cm. Another 400 km to the east, USNS Eltanin core E10-2 has about 0.05 g per square cm, so we know that ejecta probably occurs across more than a million square km of ocean floor. A key to future exploration of this impact is to find evidence of the ejecta at more sites distant from the seamounts. We currently have almost no data from regions to the west or south of the San Martin seamounts.

  13. Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor, Taiwan.

    PubMed

    Chen, Chih-Feng; Ju, Yun-Ru; Chen, Chiu-Wen; Dong, Cheng-Di

    2016-12-01

    Six sediment cores collected at the Kaohsiung Harbor of Taiwan were analyzed to evaluate their vertical profiles, enrichments, accumulations, and source apportionments of heavy metals. This was performed to investigate any potential ecological risks posed by heavy metals. Results indicated that the mean heavy metal content (mg kg(-1)) in the six sediment cores was as follows: Hg (0.4-6.4), Cd (<0.05-2.4), Cr (18-820), Cu (16-760), Pb (31-140), and Zn (76-1900). The patterns of heavy metal content in the sediment cores differed substantially among the four river mouths. However, the vertical profiles of metals were relatively stable, indicating that wastewater has the constant characteristics and has been discharged into the rivers for a long period of time. Results of pollution assessment of enrichment factor, geo-accumulation index, and pollution load index revealed that river mouths experience severe enrichment, strong accumulation, and high contamination from the primary heavy metals. It was not consistent in the assessment results of mean effect range median quotient, potential ecological risk index, and total toxic unit method. Potential ecological risks caused by Hg in the sediments at Canon River and Love River mouths on aquatic organisms were extremely high. The estimates derived from the receptor modeling of multiple linear regression of the absolute principal component scores indicated that the contributions of the composite heavy metals derived from the Canon River and the Love River on the potential toxicity and risks to the water environment of Kaohsiung Harbor were highest, followed by those derived from Salt River and Jen-Gen River.

  14. 19th-20th century rainfall patterns reconstructed from sediment provenance in a Santa Barbara Basin box core

    NASA Astrophysics Data System (ADS)

    Napier, T.; Hendy, I. L.; Schimmelmann, A.

    2013-12-01

    Rainfall patterns in Southern California directly affect the availability of water resources and induce hazards in this highly populated and water stressed region. Extreme weather consists of heavy rainfall events in winter associated with atmospheric rivers, and drought conditions when winter rains do not arrive. Water availability has a significant societal impact in Southern California. Here we reconstruct 19th-20th century precipitation history of river catchments draining into Santa Barbara Basin (SBB) through a combination of high-resolution elemental and mineralogical analyses. The deep center of the SBB features suboxic bottom waters and high sedimentation rates resulting in minimal bioturbation of annual sedimentation, which enables high-resolution paleoclimate research. Scanning XRF analysis at a 200 μm resolution of box core SPR0901-04BC from SBB was used to determine annual changes in sediment composition. Samples at 1 cm resolution from the same box core were analyzed for a more extensive suite of elements by ICP-MS, while mineralogy in each sample was determined from whole rock and clay fraction (<2 μm) analysis using X-ray defraction. Elements associated with siliciclastic sediment increase in relative abundance during wet years when significant river runoff events (floods) occurred. The relative proportions of these elements differ between flood events, possibly reflecting differences in temporal and/or spatial rainfall patterns that vary the response of each river catchment draining into SBB. Watershed sediment from the Santa Ynez Mountain streams and Ventura and Santa Clara River catchments derives mostly from Cenozoic sedimentary units, except the Santa Clara River catchment, which contains metamorphic and igneous units. As river runoff is responsible for a significant portion of the terrigenous input into SBB, and is primarily the result of precipitation events, characteristic mineralogy and elemental signatures are a direct recorder of

  15. Historical trends of PCDD/Fs and CO-PCBs in a sediment core collected in Sendai Bay, Japan.

    PubMed

    Okumura, Y; Yamashita, Y; Kohno, Y; Nagasaka, H

    2004-09-01

    The vertical distribution of dioxins in a sediment core was investigated to elucidate historical trends of dioxins discharged into Sendai Bay, Japan. The dioxin concentration was 410 pg/g dry weight (dw) in sediments deposited in the mid-1930s and 3870 pg/g dw in those deposited in the mid-1980s. Dioxin fluxes increased from the mid-1930s and then reached a maximum in the mid-1980s. 1,3,6,8-TeCDD+1,3,7,9-TeCDD, OCDD, and Co-PCB concentrations were 110, 140, and 26 pg/g dw, respectively, in mid-1930s sediments, and reached maximums of 1800, 1100, and 200 pg/g dw, respectively, in mid-1980s sediments. Shipments to Miyagi Prefecture of CNP and PCP products, the major sources of 1,3,6,8-TeCDD+1,3,7,9-TeCDD and OCDD, were highest in 1975 (4700t) and 1970 (3100t), respectively; and in Japan, the amount of PCBs, the major source of Co-PCB congeners, used was highest (11,100t) in 1970. Thus, the period for which the maximum concentrations of 1,3,6,8+1,3,7,9-TeCDD, OCDD, and Co-PCBs were measured in the sediment core (mid-1980s) did not correspond to the time of maximum use of CNP, PCP, or PCB products, but lagged behind by more than 10 years. We attributed this time lag to the time required for the movement of dioxins from Miyagi Prefecture to Sendai Bay.

  16. Methane release from the East-Siberian Arctic Shelf and its connection with permafrost and hydrate destabilization: First results and potential future developments

    NASA Astrophysics Data System (ADS)

    Shakhova, N.; Semiletov, I.

    2012-04-01

    The East Siberian Arctic Shelf (ESAS) is home to the world's largest hydrocarbon stocks, which consist of natural gas, coal bed methane (CH4), and shallow Arctic hydrates. Until recently, the ESAS was not considered a CH4 source due to the supposed impermeability of sub-sea permafrost, which was thought to completely isolate the CH4 beneath from modern biogeochemical cycles. However, the ESAS represents an enormous potential CH4 source that could be responsive to ongoing global warming. Such response could occur in substantially shorter time than that of terrestrial Arctic ecosystems, because sub-sea permafrost has experienced long-lasting destabilization initiated by its inundation during the Holocene ocean transgression. ESAS permafrost stability and integrity is key to whether sequestered ancient carbon escapes as the potent greenhouse gas CH4. Recent data suggest the sub-sea permafrost is currently experiencing significant changes in its thermal regime. For example, our recent data obtained in the ESAS during the drilling expedition of 2011 showed no frozen sediments at all within the 53 m long drilling core at water temperatures varying from -0.6°C to -1.3°C. Unfrozen sediments provide multiple potential CH4 migration pathways. We suggest that open taliks have formed beneath the areas underlain or influenced by the nearby occurrence of fault zones, under paleo-valleys, and beneath thaw lakes submerged several thousand years ago during the ocean transgression. Temporary gas migration pathways might occur subsequent to seismic and tectonic activity in an area, due to sediment settlement and subsidence; hydrates could destabilize due to development of thermokarst-related features or ice-scouring. Recently obtained geophysical data identified numerous gas seeps, mostly above prominent reflectors, and the ubiquitous occurrence of shallow gas-charged sediments containing numerous gas chimneys, underscoring the likelihood that the ability of sub-sea permafrost to

  17. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  18. Permafrost Hazards and Linear Infrastructure

    NASA Astrophysics Data System (ADS)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  19. Spatial trends and historical deposition of mercury in eastern and northern Canada inferred from lake sediment cores.

    PubMed

    Muir, D C G; Wang, X; Yang, F; Nguyen, N; Jackson, T A; Evans, M S; Douglas, M; Köck, G; Lamoureux, S; Pienitz, R; Smol, J P; Vincent, W F; Dastoor, A

    2009-07-01

    Recent and historical deposition of mercury (Hg) was examined over a broad geographic area from southwestern Northwest Territories to Labrador and from the U.S. Northeast to northern Ellesmere Island using dated sediment cores from 50 lakes (18 in midlatitudes (41-50 degrees N), 14 subarctic (51-64 degrees N) and 18 in the Arctic (65-83 degrees N)). Distinct increases of Hg overtime were observed in 76% of Arctic, 86% of subarctic and 100% of midlatitude cores. Subsurface maxima in Hg depositional fluxes (microg m(-2) y(-1)) were observed in only 28% of midlatitude lakes and 18% of arctic lakes, indicating little recent reduction of inputs. Anthropogenic Hg fluxes adjusted for sediment focusing and changes in sedimentation rates (deltaF(adj,F)) ranged from -22.9 to 61 microg m(-2) y(-1) and were negatively correlated (r = -0.57, P < 0.001) with latitude. Hg flux ratios (FRs; post-1990)/pre-1850) ranged from 0.5 to 7.7. The latitudinal trend for Hg deltaF(adj,F) values showed excellent agreement with predictions of the global mercury model, GRAHM for the geographic location of each lake (r = 0.933, P < 0.001). The results are consistent with a scenario of slow atmospheric oxidation of mercury, and slow deposition of reactive mercury emissions, declining with increasing latitude away from emission sources in the midlatitudes, and support the view that there are significant anthropogenic Hg inputs in the Arctic.

  20. Monitoring of Permafrost in the Hovsgol Mountain Region, Mongolia

    NASA Astrophysics Data System (ADS)

    Sharkhuu, A.; Natsagdorj, S.; Etzelmuller, B.; Heggem, E. S.; Nelson, F. E.; Shiklomanov, N.; Goulden, C.

    2005-12-01

    The Hovsgol Mountain Region is located between the coordinates of N 49°-52° and E 98°-102 ° in territory of Hovsgol Province, Mongolia. The territory is characterized by mountain permafrost, sporadic to continuous in its distribution, and occupies the southern fringe of the Siberian continuous permafrost zone. The main goal of permafrost monitoring in the region is to study recent degradation of permafrost under the influence of climate warming and human activities. Monitoring of permafrost is conducted within the framework of the Circumpolar Active Layer Monitoring (CALM) and the Global Terrestrial Network for Permafrost (GTN-P) programs. The main parameters being monitored are active layer depth and mean annual permafrost temperature at the level of the zero annual amplitude. Long-term CALM and GTN-P programs are based on ground temperature measurements in shallow to deep boreholes. Each borehole for monitoring is installed using instrumentation designed specifically to protect against air convection in them. Temperature measurements in the boreholes are made using identical thermo-resistors at corresponding depths, and carried out on the same dates each year. In addition, temperature dataloggers and thaw tubes are installed in most of the boreholes. At present, there are eight long-term (15-35 years) CALM and GTN-P active borehole sites. Boreholes are located in the Sharga valley (southwest), Burehkhan and Hovsgol phosphorite areas and Hatgal village (central part of the region) and in the Darhad depression. Initial results of the long term monitoring show that average rates of increase in active layer depth and mean annual permafrost temperature under influence of recent climate warming in the Hovsgol Mountain Region are 5-15 cm and 0.15-0.25°C per decade, respectively. The rate of permafrost degradation in bedrock is greater than in unconsolidated sediments, in ice-poor sediments more than ice-rich ones, and on north-facing slopes more than on south

  1. Effects of Salinity and Sea Level Change on Permafrost-Hosted Methane Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Elwood-Madden, M.

    2010-12-01

    Recent observations of methane release from sediments on the circum-arctic continental shelf indicate that arctic warming is likely leading to increased fluxes of methane . Thermodynamics predicts that 2-4 degree increases in global temperature will lead to massive marine hydrate decomposition; however, the rate of warming deep ocean waters and sediments is fairly slow, resulting in modest fluxes of methane over hundreds to thousands of years. In contrast, increasing arctic temperatures and rising sea level may have immediate effects on permafrost-hosted hydrate deposits. Rising sea level affects both the geothermal gradient of the region and the salinity of pore waters, leading to hydrate destabilization (Figure 1). Seawater infiltration of permafrost may be currently dissociating permafrost-hosted methane hydrate through a combination of mechanisms: shifting geothermal gradients to higher temperatures, addition of salts due to seawater encroachment, and the transition from solid state diffusion of methane through overlying ice cemented permafrost to mass transfer through seawater-saturated sediments via aqueous diffusion, advection, or ebullition. Effects of seawater erosion of permafrost have been observed in arctic coastal areas, and degradation of arctic permafrost is predicted to continue, especially in coastal areas. However, the rate at which these processes proceed and their effects on permafrost-hosted methane hydrates have been largely uninvestigated. Changes in geothermal gradient alone take hundreds to thousands of years to affect relatively deep hydrate reservoirs. However, warmer temperatures combined with freezing point depression effects of seawater may lead to rapid melting of permafrost ice, thus accelerating the transfer of heat to the hydrate reservoirs and changing the mass transfer mechanism of methane release from slow solid state diffusion through ice to more rapid aqueous diffusion, advection, or ebullition. Therefore, we hypothesize that

  2. Watershed trend analysis and water-quality assessment using bottom-sediment cores from Cheney Reservoir, south-central Kansas

    USGS Publications Warehouse

    Pope, Larry M.

    1998-01-01

    An examination of Cheney Reservoir bottom sediment was conducted in August 1997 to describe long-term trends and document the occurrence of selected constituents at concentrations that may be detrimental to aquatic organisms. Average concentrations of total phosphorus in bottom-sediment cores ranged from 94 to 674 milligrams per kilogram and were statistically related to silt- and (or) clay-size particles. Results from selected sampling sites in Cheney Reservoir indicate an increasing trend in total phosphorus concentrations. This trend is probably of nonpoint-source origin and may be related to an increase in fertilizer sales in the area, which more than doubled between 1965 and 1996, and to livestock production. Few organochlorine compounds were detected in bottom-sediment samples from Cheney Reservoir. DDT, its degradation products DDD and DDE, and dieldrin had detectable concentrations in the seven samples that were analyzed. DDT and DDD were each detected in one sample at concentrations of 1.0 and 0.65 microgram per kilogram, respectively. By far, the most frequently detected organochlorine insecticide was DDE, which was detected in all seven samples, ranging in concentration from 0.31 to 1.3 micrograms per kilogram. A decreasing trend in DDE concentrations was evident in sediment-core data from one sampling site. Dieldrin was detected in one sample from each of two sampling sites at concentrations of 0.21 and 0.22 micrograms per kilogram. Polychlorinated biphenyls were not detected in any bottom-sediment sample analyzed. Selected organophosphate, chlorophenoxy-acid, triazine, and acetanilide pesticides were analyzed in 18 bottom-sediment samples. Of the 23 pesticides analyzed, only the acetanilide herbicide metolachlor was detected (in 22 percent of the samples). Seven bottom-sediment samples were analyzed for major metals and trace elements. The median and maximum concentrations of arsenic and chromium, the maximum concentration of copper, and all

  3. A chronology of Late-Pleistocene permafrost events in southern New Jersey, eastern USA

    USGS Publications Warehouse

    French, H.M.; Demitroff, M.; Forman, S.L.; Newell, W.L.

    2007-01-01

    Frost fissures, filled with wind-abraded sand and mineral soil, and numerous small-scale non-diastrophic deformations, occur in the near-surface sediments of the Pine Barrens of southern New Jersey. The fissures are the result of thermal-contraction cracking and indicate the previous existence of either permafrost or seasonally-frozen ground. The deformations reflect thermokarst activity that occurred when permafrost degraded, icy layers melted and density-controlled mass displacements occurred in water-saturated sediments. Slopes and surficial materials of the area reflect these cold-climate conditions. Optically-stimulated luminescence permits construction of a tentative Late-Pleistocene permafrost chronology. This indicates Illinoian, Early-Wisconsinan and Late-Wisconsinan episodes of permafrost and/or deep seasonal frost and a Middle-Wisconsinan thermokarst event. Copyright ?? 2007 John Wiley & Sons, Ltd.

  4. Microbes in thawing permafrost: the unknown variable in the climate change equation

    SciTech Connect

    Graham, David E; Wallenstein, Matthew D; Vishnivetskaya, T.; Waldrop, Mark P.; Phelps, Tommy Joe; Pfiffner, Susan M.; Onstott, T. C.; Whyte, Lyle; Rivkina, Elizaveta; Gilichinsky, David A; Elias, Dwayne A; Mackelprang, Rachel; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Wagner, Dirk; Wullschleger, Stan D; Jansson, Janet

    2012-01-01

    Considering that 25% of Earth s terrestrial surface is underlain by permafrost (ground that has been continuously frozen for at least 2 years), our understanding of the diversity of microbial life in this extreme habitat is surprisingly limited. Taking into account the total mass of perennially frozen sediment (up to several hundred meters deep), permafrost contains a huge amount of buried, ancient organic carbon (Tarnocai et al., 2009). In addition, permafrost is warming rapidly in response to global climate change (Romanovsky et al., 2010), potentially leading to widespread thaw and a larger, seasonally thawed soil active layer. This concern has prompted the question: will permafrost thawing lead to the release of massive amounts of carbon dioxide (CO2) and methane (CH4) into the atmosphere? This question can only be answered by understanding how the microbes residing in permafrost will respond to thaw, through processes such as respiration, fermentation, methanogenesis and CH4 oxidation (Schuur et al., 2009). Predicting future carbon fluxes is complicated by the diversity of permafrost environments, ranging from high mountains, southern boreal forests, frozen peatlands and Pleistocene ice complexes (yedoma) up to several hundred meters deep, which vary widely in soil composition, soil organic matter (SOM) quality, hydrology and thermal regimes (Figure 1). Permafrost degradation can occur in many forms: thaw can progress downward from seasonally-thawed active layer soils in warming climates or laterally because of changes in surface or groundwater flow paths (Grosse et al., 2011). Permafrost degradation can sometimes lead to dramatic changes in ecosystem structure and function

  5. Presence of rapidly degrading permafrost plateaus in south-central Alaska

    NASA Astrophysics Data System (ADS)

    Jones, Benjamin M.; Baughman, Carson A.; Romanovsky, Vladimir E.; Parsekian, Andrew D.; Babcock, Esther L.; Stephani, Eva; Jones, Miriam C.; Grosse, Guido; Berg, Edward E.

    2016-11-01

    Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0 °C. In this study, we document the presence of residual permafrost plateaus in the western Kenai Peninsula lowlands of south-central Alaska, a region with a MAAT of 1.5 ± 1 °C (1981-2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (-0.04 to -0.08 °C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but at some locations was as shallow as 0.53 m. Late winter surveys (augering, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to > 6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60.0 %, with lateral feature degradation accounting for 85.0 % of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing

  6. Ecosystem history of southern and central Biscayne Bay; summary report on sediment core analyses

    USGS Publications Warehouse

    Wingard, G.L.; Cronin, T. M.; Dwyer, G.S.; Ishman, S.E.; Willard, D.A.; Holmes, C.W.; Bernhardt, C.E.; Williams, C.P.; Marot, M.E.; Murray, J.B.; Stamm, R.G.; Murray, J.H.; Budet, C.

    2003-01-01

    of inter-decadal salinity extremes or periods of hypersalinity. o\tFreshwater and mesohaline salinities have had a minor influence on No Name bank throughout the time of deposition. At Featherbed Bank, the influence is reduced to mesohaline salinities. ?\tCard Bank has experienced relatively large swings in salinity over multi-decadal and centennial timescales, compared to central Biscayne Bay, but marine influence at the site has increased over the last century. ?\tIndications of regional scale patterns have been found, especially in the shell chemistry data and the pollen assemblages. These regional patterns indicate that the changes are not site specific and may not be limited to Biscayne Bay. ?\tSub-aquatic vegetation has undergone bay-wide patterns of change over the last 200-500 years, which includes expansion prior to 1900 and declines during the last century in central Biscayne Bay. o\tThalassia appears to have increased at all three core sites sometime between 1550 and 1750 AD. o\tA decline in Thalassia appears to have occurred after 1950 at No Name Bank and slightly earlier in the 20th century at Featherbed Bank. o\tCard Bank does not appear to have experienced any declines in vegetation on an inter-decadal scale during the 20th century. ?\tMolluscan faunal abundance and diversity have undergone significant changes in central Biscayne Bay. ?\tIndicators of increased organic-rich sediments at No Name occur between 1869 to 1888 and between the 1930's to 1975. These changes may correlate to human activities (settlement, population growth). These findings represent a first step towards the project's goal to reconstruct the history of Biscayne Bay and they provide us with a working model to be tested at other sites. It is clear from our findings that Biscayne Bay has been a dynamic environment over the last 500 years, with natural changes occurring in salinity and benthic habitats. However, several significant changes have occurred in the 20th ce

  7. A 600,000-year record of Antarctic Bottom Water activity inferred from sediment textures and structures in a sediment core from the Southern Brazil Basin

    NASA Astrophysics Data System (ADS)

    Massé, Laurent; FaugèRes, Jean-Claude; Bernat, Michel; Pujos, Annick; MéZerais, Marie-Laure

    1994-12-01

    At the northern exit of the Vema Channel, in the Southern Brazil Basin, deep currents linked with Antarctic Bottom Water flow (AABW, below 4200 m) have formed contouritic accumulations along the continental rise. Lithologic and textural investigations were carried out on a Kullenberg core in order to establish a chronology of late Pleistocene-Holocene fluctuations in AABW flow. The core, spanning the last 600,000 years, was recovered from a field of sediment waves. The deposits consist of fine grained muds. Carbonate contents are very low because deposition takes place near the present-day carbonate compensation depth. The core stratigraphic framework is based on calcareous nannofossil and excess 230Th analyses. Two main types of facies can be identified: (1) yellowish brown muds, with frequent manganese enrichments forming dark laminae, and (2) homogeneous gray-green muds. Two indicators of paleocurrent activity have been considered: (1) erosional sediment features that give evidence for high amplitude and short-term current events, and (2) grain size fluctuations (percentage of panicles greater than 10 µm), indicating low amplitude and long-term variations. Two periods can be defined. The first one (circa 600 to circa 350 kyr B.P.) is characterized by an instability in current activity, with strong flow events recorded as erosional surfaces. Long-term fluctuations reveal the existence of several episodes of increased velocity occurring approximately every 50 kyr. The second period (350 kyr B.P. to present) is marked by globally weaker current activity and long-term fluctuations of lower amplitude and longer duration. Maximum velocities occur preferentially during periods of climatic cooling. These fluctuations might be correlated with the 100 kyr eccentricity cycle of the Earth's orbit.

  8. On the connection of permafrost and debris flow activity in Austria

    NASA Astrophysics Data System (ADS)

    Huber, Thomas; Kaitna, Roland

    2016-04-01

    Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.

  9. Relocation of the Yellow River estuary in 1855 AD recorded in the sediment core from the northern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Jia, Nan; Cheng, Wenhan; Wang, Yuhong; Sun, Liguang

    2013-12-01

    Relocation of the Yellow River estuary has significant impacts on not only terrestrial environment and human activities, but also sedimentary and ecological environments in coastal seas. The responses of regional geochemical characteristics to the relocation event, however, have not been well studied. In the present study, we performed detailed geochemical elemental analyses of a sediment core from the northern Yellow Sea and studied their geochemical responses to the 1855 AD relocation of the Yellow River estuary. The results show that TOC/TN, Co/Al2O3, Cr/Al2O3, Ni/Al2O3 and Se/Al2O3 ratios all decreased abruptly after 1855 AD, and similar decreases are observed in the sediments of the mud area southwest off the Cheju Island. These abrupt changes are very likely caused by the changes in source materials due to the relocation of the Yellow River estuary from the southern Yellow Sea to the Bohai Sea, which the corresponding decreasing trends caused by the changes in main source materials from those transported by the Liaohe River, the Haihe River and the Luanhe River to those by the Yellow River. Because the events have precise ages recorded in historical archives, these obvious changes in elemental geochemistry of sediments can be used to calibrate age models of related coastal sea sediments.

  10. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey)

    PubMed Central

    Glombitza, Clemens; Stockhecke, Mona; Schubert, Carsten J.; Vetter, Alexandra; Kallmeyer, Jens

    2013-01-01

    As part of the International Continental Drilling Program deep lake drilling project PaleoVan, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4‰, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65–75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (≤22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. PMID:23908647

  11. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements.

    PubMed

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-02-19

    A study coupling sedimentcore incubation and microelectrode measurement was performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19-1.41 g/(m²·d) with an average of 0.62 g/(m²·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15-1.38 g/(m²·d) with an average of 0.51 g/(m²·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R² = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water.

  12. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements

    PubMed Central

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-01-01

    A study coupling sedimentcore incubation and microelectrode measurementwas performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19–1.41 g/(m2·d) with an average of 0.62 g/(m2·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15–1.38 g/(m2·d) with an average of 0.51 g/(m2·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R2 = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water. PMID:26907307

  13. Chemical quality of sediment cores from the Laguna Madre, Laguna Atascosa and Arroyo Colorado, Texas

    USGS Publications Warehouse

    Van Metre, Peter C.

    1999-01-01

    Many contaminants introduced into the environment by human activities are hydrophobic, meaning they are relatively insoluble in water and, thus, are associated primarily with sediments. These contaminants include the organochlorine pesticides DOT and chlordane, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from industrial facilities and urban areas, and heavy metals such as arsenic, lead, mercury, and zinc. Understanding the occurrence of these contaminants in the environment requires sampling the sediments where the contaminants might be detected.

  14. [The structure of micromycete complexes in permafrost and cryopegs of the Arctic].

    PubMed

    Ozerskaia, S M; Kochkina, G A; Ivanushkina, N E; Kniazeva, E V; Gilichinskiĭ, D A

    2008-01-01

    A comparative study of the structure of micromycete complexes has been performed. The samples of micromycetes were taken by boring from unique habitats: cryopegs (lenses of non-freezing hypersaline water in ancient permafrost horizons) and permafrost Arctic sediments of different age enclosing these cryopegs. The possibility of characterizing the above habitats by the structure of specific complexes of microscopic fungi using qualitative and quantitative indices at extremely low numbers of these organisms was demonstrated.

  15. Microbes in Thawing Permafrost: The Unknown Variable in the Climate Change Equation

    SciTech Connect

    Graham, David E; Wallenstein, Matthew D; Vishnivetskaya, T.; Waldrop, Mark P.; Phelps, Tommy Joe; Pfiffner, Susan M.; Onstott, T. C.; Whyte, Lyle; Rivkina, Elizaveta; Gilichinsky, David A; Elias, Dwayne A; Mackelprang, Rachel; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Wagner, Dirk; Wullschleger, Stan D; Jansson, Janet

    2012-01-01

    Considering that 25% of Earth's terrestrial surface is underlain by permafrost (ground that has been continuously frozen for at least 2 years), our understanding of the diversity of microbial life in this extreme habitat is surprisingly limited. Taking into account the total mass of perennially frozen sediment (up to several hundred meters deep), permafrost contains a huge amount of buried, ancient organic carbon (Tarnocai et al., 2009).

  16. Nutrient, trace-element, and ecological history of Musky Bay, Lac Courte Oreilles, Wisconsin, as inferred from sediment cores

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Garrison, Paul J.; Fitzgerald, Sharon A.; Elder, John F.

    2003-01-01

    Sediment cores were collected from Musky Bay, Lac Courte Oreilles, and from surrounding areas in 1999 and 2001 to determine whether the water quality of Musky Bay has declined during the last 100 years or more as a result of human activity, specifically cottage development and cranberry farming. Selected cores were analyzed for sedimentation rates, nutrients, minor and trace elements, biogenic silica, diatom assemblages, and pollen over the past several decades. Two cranberry bogs constructed along Musky Bay in 1939 and the early 1950s were substantially expanded between 1950?62 and between 1980?98. Cottage development on Musky Bay has occurred at a steady rate since about 1930, although currently housing density on Musky Bay is one-third to one-half the housing density surrounding three other Lac Courte Oreilles bays. Sedimentation rates were reconstructed for a core from Musky Bay by use of three lead radioisotope models and the cesium-137 profile. The historical average mass and linear sedimentation rates for Musky Bay are 0.023 grams per square centimeter per year and 0.84 centimeters per year, respectively, for the period of about 1936?90. There is also limited evidence that sedimentation rates may have increased after the mid-1990s. Historical changes in input of organic carbon, nitrogen, phosphorus, and sulfur to Musky Bay could not be directly identified from concentration profiles of these elements because of the potential for postdepositional migration and recycling. Minor- and trace-element profiles from the Musky Bay core possibly reflect historical changes in the input of clastic material over time, as well as potential changes in atmospheric deposition inputs. The input of clastic material to the bay increased slightly after European settlement and possibly in the 1930s through 1950s. Concentrations of copper in the Musky Bay core increased steadily through the early to mid-1900s until about 1980 and appear to reflect inputs from atmospheric

  17. Diverse plant and animal genetic records from Holocene and Pleistocene sediments.

    PubMed

    Willerslev, Eske; Hansen, Anders J; Binladen, Jonas; Brand, Tina B; Gilbert, M Thomas P; Shapiro, Beth; Bunce, Michael; Wiuf, Carsten; Gilichinsky, David A; Cooper, Alan

    2003-05-02

    Genetic analyses of permafrost and temperate sediments reveal that plant and animal DNA may be preserved for long periods, even in the absence of obvious macrofossils. In Siberia, five permafrost cores ranging from 400,000 to 10,000 years old contained at least 19 different plant taxa, including the oldest authenticated ancient DNA sequences known, and megafaunal sequences including mammoth, bison, and horse. The genetic data record a number of dramatic changes in the taxonomic diversity and composition of Beringian vegetation and fauna. Temperate cave sediments in New Zealand also yielded DNA sequences of extinct biota, including two species of ratite moa, and 29 plant taxa characteristic of the prehuman environment. Therefore, many sedimentary deposits may contain unique, and widespread, genetic records of paleoenvironments.

  18. Structural identification of long-chain polyamines associated with diatom biosilica in a Southern Ocean sediment core

    NASA Astrophysics Data System (ADS)

    Bridoux, Maxime C.; Ingalls, Anitra E.

    2010-07-01

    Long-chain polyamines (LCPAs) constitute a new family of natural organic compounds that have recently been isolated and characterized from the biosilicified cell walls of diatom cultures. To date, diatom-specific polyamines have not been investigated from the marine environment and their fate in the environment is entirely unknown. Here, we report a series of LCPAs in a diatom frustule-rich sediment core (TNO57-13 PC4), originating from the Atlantic sector of the Southern Ocean and spanning from the Holocene to the Last Glacial Maximum (LGM). Liquid chromatography with electrospray ionization mass spectrometry (LC-ESI-MS) revealed a complex mixture of linear polyamines with at least 28 individual molecular species. Ion trap mass fragmentation studies, combined with high resolution Time of Flight (TOF) mass spectrometry showed that the polyamine pool consisted of a series of N-methylated propylamine compounds attached to a putrescine moiety, with individual LCPAs varying in chain length and degree of methylation. The structural similarity between LCPAs extracted from the diatom-rich sediment core and those extracted from the frustules of cultured diatoms suggests that sedimentary LCPAs are derived from diatom frustules. We hypothesize that these intrinsically labile organic molecular fossils are protected from diagenesis by encapsulation within the frustule. These compounds constitute a new class of biomarkers that could potentially be indicators of diatom species distribution. Isotopic analysis of LCPAs could be used to improve age models for sediment cores that lack calcium carbonate and to improve current interpretations of diatom-based paleoproxies, including diatom-bound nitrogen isotopes.

  19. Palaeohydrology of the Southwest Yukon Territory, Canada, based on multiproxy analyses of lake sediment cores from a depth transect

    USGS Publications Warehouse

    Anderson, L.; Abbott, M.B.; Finney, B.P.; Edwards, M.E.

    2005-01-01

    Lake-level variations at Marcella Lake, a small, hydrologically closed lake in the southwestern Yukon Territory, document changes in effective moisture since the early Holocene. Former water levels, driven by regional palaeohydrology, were reconstructed by multiproxy analyses of sediment cores from four sites spanning shallow to deep water. Marcella Lake today is thermally stratified, being protected from wind by its position in a depression. It is alkaline and undergoes bio-induced calcification. Relative accumulations of calcium carbonate and organic matter at the sediment-water interface depend on the location of the depositional site relative to the thermocline. We relate lake-level fluctuations to down-core stratigraphic variations in composition, geochemistry, sedimentary structures and to the occurrence of unconformities in four cores based on observations of modern limnology and sedimentation processes. Twenty-four AMS radiocarbon dates on macrofossils and pollen provide the lake-level chronology. Prior to 10 000 cal. BP water levels were low, but then they rose to 3 to 4 m below modern levels. Between 7500 and 5000 cal. BP water levels were 5 to 6 m below modern but rose by 4000 cal. BP. Between 4000 and 2000 cal. BP they were higher than modern. During the last 2000 years, water levels were either near or 1 to 2 m below modern levels. Marcella Lake water-level fluctuations correspond with previously documented palaeoenvironmental and palaeoclimatic changes and provide new, independent effective moisture information. The improved geochronology and quantitative water-level estimates are a framework for more detailed studies in the southwest Yukon. ?? 2005 Edward Arnold (Publishers) Ltd.

  20. Relationship between polycyclic aromatic hydrocarbons (PAHs) and particle size in dated core sediments in Lake Lianhuan, Northeast China.

    PubMed

    Sun, Li; Zang, Shuying

    2013-09-01

    Atmospheric particle associated with pyrogenic polycyclic aromatic hydrocarbons (PAHs) poses serious threats to human health by inhalation exposure, especially in semiarid areas. Hence, the distributions of PAHs and particle size in two core sediments collected from Lake Lianhuan, Northeast China were studied. The sediments were dated radiometrically, and particle size distribution and PAH concentration were evaluated and potential human health risk was assessed. From 1980 to 2007, the dominant PAHs in the two cores were 2- and 3-ring PAHs, and the concentrations of 3-6 ring PAHs gradually increased from the early 1990s. Diagnostic ratios indicated that pyrogenic PAHs were the main sources of PAHs which changed over time from combustions of wood and coal to liquid fossil fuel sources. Fine particles (<65 μm) were the predominant particle size (56-97%). Lacustrine source (with the peak towards 200-400 μm) and eolian sources derived from short (2.0-10 and 30-65 μm) and long (0.4-1.0 μm) distance suspension were indentified from frequency distribution pattern of particle size. Significant correlations between 3-6 ring PAHs (especially carcinogenic 5-6 ring PAHs) and 10-35 μm particulate fractions indicated that eolian particles played an important role in adsorbing pyrogenic PAHs. Petroleum source of PAHs was only identified during the 1980s in one core sediments, in which positive correlations between 2-ring PAHs and particulate fractions of >125 μm were found. Future research should focus on the seven carcinogenic pyrogenic PAHs due to a rapidly increasing trend since 1995 based on the assessment of toxic equivalency factors.

  1. The carbonate profile of two recent Ionian Sea cores: Evidence that the sedimentation rate is constant over the last millennia

    SciTech Connect

    Castagnoli, G.C.; Bonino, G.; Caprioglio, F.; Provenzale, A.; Serio, M.; Guang-Mei, Zhu Istituto di Fisica Generale dell'Universiat', Torino )

    1990-10-01

    The authors confirm and extend the results previously reported on the carbonate profile of the GT14 Ionian Sea core (Cini Castagnoli et al., 1990). A second, much longer core (2.81 meters) named GT89/3, has been taken about 1 km apart from the previous one. The carbonate profiles of the two cores are impressively similar; the details of the CaCO{sub 3} variations in the two sediments match on the scale of the sampling interval {Delta}d = 2.5 mm used for both cores. The authors show that {Delta}d corresponds to the mud deposited in a time interval {Delta}t = 3.87 {plus minus} 0.04 years, a value which is constant throughout the entire length of the cores. This precision is achieved by the tephroanalysis of the two cores. In this approach the markers of well-known historical eruptions in the Vesuvius area are recognized (Pompei, AD 79, Pollena, AD 472, Ischia, AD 1301), providing a precise dating which accurately tunes that obtained by the radiometric method. The correlation between the carbonate profile of the GT14 core and the tree-ring radiocarbon record has been discussed in (Cini Castagnoli et al., 1990); here the authors extend these results and show that the same correlation holds at least up to 1690 BC. Due to the longer length of the GT89/3 time series, they also show that three periodic components at about 206 yr, 228 yr and 179 yr may now be resolved in the carbonate series, in close agreement with the results already found for the radiocarbon record.

  2. Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada

    NASA Astrophysics Data System (ADS)

    Kokelj, S. V.; Tunnicliffe, J.; Lacelle, D.; Lantz, T. C.; Chin, K. S.; Fraser, R.

    2015-06-01

    It is anticipated that an increase in rainfall will have significant impacts on the geomorphology of permafrost landscapes. Field observations, remote sensing and historical climate data were used to investigate the drivers, processes and feedbacks that perpetuate the growth of large retrogressive thaw slumps. These "mega slumps" (5-40 ha) are now common in formerly glaciated, fluvially incised, ice-cored terrain of the Peel Plateau, NW Canada. Individual thaw slumps can persist for decades and their enlargement due to ground ice thaw can displace up to 106 m3 of materials from slopes to valley bottoms reconfiguring slope morphology and drainage networks. Analysis of Landsat images (1985-2011) indicate that the number and size of active slumps and debris tongue deposits has increased significantly with the recent intensification of rainfall. The analyses of high resolution climatic and photographic time-series for summers 2010 and 2012 shows strong linkages amongst temperature, precipitation and the downslope sediment flux from active slumps. Ground ice thaw supplies meltwater and sediments to the slump scar zone and drives diurnal pulses of surficial flow. Coherence in the timing of down valley debris tongue deposition and fine-scaled observations of sediment flux indicate that heavy rainfall stimulates major mass flow events. Evacuation of sediments from the slump scar zone can help to maintain a headwall of exposed ground ice, perpetuating slump growth and leading to larger disturbances. The development of debris tongue deposits divert streams and increase thermoerosion to initiate adjacent slumps. We conclude that higher rainfall can intensify thaw slump activity and rapidly alter the slope-sediment cascade in regions of ice-cored glaciogenic deposits.

  3. Characterization of organic matter in sediment cores of the Todos os Santos Bay, Bahia, Brazil, by elemental analysis and 13C NMR.

    PubMed

    Costa, A B; Novotny, E H; Bloise, A C; de Azevedo, E R; Bonagamba, T J; Zucchi, M R; Santos, V L C S; Azevedo, A E G

    2011-08-01

    The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and 13C Nuclear Magnetic Resonance (13C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Autoregressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the 13C NMR spectra clearly differentiates sediment samples closer to the Subaé estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay.

  4. Holocene paleoclimate history of Fallen Leaf Lake, CA., from geochemistry and sedimentology of well-dated sediment cores

    NASA Astrophysics Data System (ADS)

    Noble, Paula J.; Ball, G. Ian; Zimmerman, Susan H.; Maloney, Jillian; Smith, Shane B.; Kent, Graham; Adams, Kenneth D.; Karlin, Robert E.; Driscoll, Neal

    2016-01-01

    Millennial-scale shifts in aridity patterns have been documented during the Holocene in the western United States, yet the precise timing, severity, and regional extent of these shifts prompts further study. We present lake sediment core data from Fallen Leaf Lake, a subalpine system at the southern end of the Lake Tahoe basin for which 80% of the contemporary inflow is derived from snowpack delivered by Pacific frontal storm systems. A high quality age model has been constructed using 14C ages on plant macrofossils, 210Pb, and the Tsoyowata tephra datum (7.74-7.95 cal kyr BP). One core captures the transition from the Late Tioga-younger Dryas glaciolacustrine package to laminated opaline clay at 11.48 cal kyr BP. Early Holocene sedimentation rates are relatively high (∼1.9 mm/year) and cooler winter temperatures are inferred by the presence of pebbles interpreted to be transported out into the lake via shore ice. There is a geochemically distinct interval from ∼4.71 to 3.65 cal kyr BP that is interpreted as a late Holocene neopluvial, characterized by depleted δ13C and lower C:N that point to reduced runoff of terrigenous organic matter, increased winter precipitation, and increased algal productivity. The largest Holocene signal in the cores occurs at the end of the neopluvial, at 3.65 cal kyr BP, and marks a shift into a climate state with variable precipitation, yet is overall more arid than the neopluvial. This new climate state persists for ∼3 ka, until the Little Ice Age. Low sedimentation rates (0.5 mm/year), the homogeneous opaline sediment, and steadily increasing contributions of terrestrial vs. algal organic matter in these cores suggest that the lowstand state of Fallen Leaf Lake may have been the norm from 3.65 to 0.55 cal kyr BP, punctuated by short term high precipitation years or multi-year intervals capable of rapid short duration lake level rise. Fallen Leaf Lake is strongly influenced by changes in winter precipitation and temperature

  5. Identifying the source of petroleum pollution in sediment cores of southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2017-02-15

    In this study, the concentration and sources of aliphatic and petroleum markers were investigated in 105 samples of Anzali, Rezvanshahr and Astara cores from the southwest of Caspian Sea. Petroleum importation was diagnosed as a main source in most depths of cores by the results of unresolved complex mixture, carbon preference index and hopanes and steranes. From the chemical diagnostic parameters, petroleum inputs in sediment of cores were determined to be different during years and the sources of hydrocarbons in some sections differed than Anzali and Turkmenistan and Azerbaijan oils. Diagenic ratios in most sediments of upper and middle sections in Astara core were determined to be highly similar to those of Azerbaijan oil, while the presence of Turkmenistan and Anzali oils were detected in a few sections of Anzali and Rezvanshahr cores and only five layers of downer section in Anzali core, respectively.

  6. Historical trends of organochlorine pesticides in a sediment core from the Gulf of Batabanó, Cuba.

    PubMed

    Alonso-Hernández, C M; Tolosa, I; Mesa-Albernas, M; Díaz-Asencio, M; Corcho-Alvarado, J A; Sánchez-Cabeza, J A

    2015-10-01

    Sediments can be natural archives to reconstruct the history of pollutant inputs into coastal areas. This is important to improve management strategies and evaluate the success of pollution control measurements. In this work, the vertical distribution of organochlorine pesticides (DDTs, Lindane, HCB, Heptachlor, Aldrin and Mirex) was determined in a sediment core collected from the Gulf of Batabanó, Cuba, which was dated by using the (210)Pb dating method and validated with the (239,240)Pu fallout peak. Results showed significant changes in sediment accumulation during the last 40 years: recent mass accumulation rates (0.321 g cm(-2) yr(-1)) double those estimated before 1970 (0.15 g cm(-2) yr(-1)). This change matches closely land use change in the region (intense deforestation and regulation of the Colon River in the late 1970s). Among pesticides, only DDTs isomers, Lindane and HCB were detected, and ranged from 0.029 to 0.374 ng g(-1) dw for DDTs, from<0.006 to 0.05 ng g(-1) dw for Lindane and from<0.04 to 0.134 ng g(-1) dw for HCB. Heptachlor, Aldrin and Mirex were below the detection limits (∼0.003 ng g(-1)), indicating that these compounds had a limited application in the Coloma watershed. Pesticide contamination was evident since the 1970s. DDTs and HCB records showed that management strategies, namely the banning the use of organochlorine contaminants, led to a concentration decline. However, Lindane, which was restricted in 1990, can still be found in the watershed. According to NOAA guidelines, pesticides concentrations encountered in these sediments are low and probably not having an adverse effect on sediment dwelling organisms.

  7. Degrading permafrost and gas hydrate under the Beaufort Shelf and marine gas hydrate on the adjacent continental slope

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S. R.; Hughes Clarke, J. E.; Blasco, S.; Melling, H.; Lundsten, E.; Vagle, S.; Collett, T. S.

    2011-12-01

    The sub-seafloor under the Arctic Shelf is arguably the part of the Earth that is undergoing the most dramatic warming. In the southern Beaufort Sea, the shelf area was terrestrially exposed during much of the Quaternary period when sea level was ~120m lower than present. As a consequence, many areas are underlain by >600m of ice-bonded permafrost that conditions the geothermal regime such that the base of the methane hydrate stability can be >1000m deep. Marine transgression has imposed a change in mean annual surface temperature from -15°C or lower during periods of terrestrial exposure, to mean annual sea bottom temperatures near 0°C. The thermal disturbance caused by transgression is still influencing the upper km of subsurface sediments. Decomposition of gas hydrate is inferred to be occurring at the base and the top of the gas hydrate stability zone. As gas hydrate and permafrost intervals degrade, a range of processes occur that are somewhat unique to this setting. Decomposition of gas hydrate at depth can cause sediment weakening, generate excess pore water pressure, and form free gas. Similarly, thawing permafrost can cause thaw consolidation, liberate trapped gas bubbles in ice bonded permafrost. Understanding the connection between deep subsurface processes generated by transgression, surficial sediment processes near the seafloor, and gas flux into the ocean and atmosphere is important to assessing geohazard and environmental conditions in this setting. In contrast, conditions for marine gas hydrate formation occur on the adjacent continental slope below ~270m water depths. In this paper, we present field observations of gas venting from three geologically distinct environments in the Canadian Beaufort Sea, two on the shelf and one on the slope. A complimentary paper by Dallimore et al reviews the geothermal changes conditioning this environment. Vigorous methane venting is occurring over Pingo-Like-Features (PLF) on the mid-shelf. Diffuse venting of

  8. Holocene climate change in Newfoundland reconstructed using oxygen isotope analysis of lake sediment cores

    NASA Astrophysics Data System (ADS)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Steinman, Byron A.

    2016-08-01

    Carbonate minerals that precipitate from open-basin lakes can provide archives of past variations in the oxygen isotopic composition of precipitation (δ18Oppt). Holocene δ18Oppt records from the circum- North Atlantic region exhibit large fluctuations during times of rapid ice sheet deglaciation, followed by more stable conditions when interglacial boundary conditions were achieved. However, the timing, magnitude, and climatic controls on century to millennial-scale variations in δ18Oppt in northeastern North America are unclear principally because of a dearth of paleo-proxy data. Here we present a lacustrine sediment oxygen isotope (δ18O) record spanning 10,200 to 1200 calendar years before present (cal yr BP) from Cheeseman Lake, a small, alkaline, hydrologically open lake basin located in west-central Newfoundland, Canada. Stable isotope data from regional lakes, rivers, and precipitation indicate that Cheeseman Lake water δ18O values are consistent with the isotopic composition of inflowing meteoric water. In light of the open-basin hydrology and relatively short water residence time of the lake, we interpret down-core variations in calcite oxygen isotope (δ18Ocal) values to primarily reflect changes in δ18Oppt and atmospheric temperature, although other factors such as changes in the seasonality of precipitation may be a minor influence. We conducted a series of climate sensitivity simulations with a lake hydrologic and isotope mass balance model to investigate theoretical lake water δ18O responses to climate change. Results from these experiments suggest that Cheeseman Lake δ18O values are primarily controlled by temperature and to a much lesser extent, the seasonality of precipitation. Increasing and more positive δ18Ocal values between 10,200 and 8000 cal yr BP are interpreted to reflect the waning influence of the Laurentide Ice Sheet on atmospheric circulation, warming temperatures, and rapidly changing surface ocean δ18O from the input of

  9. Magnetotactic bacteria in marine sediments: clues from recent cores from Brazilian Coast

    NASA Astrophysics Data System (ADS)

    Jovane, L.; Pellizari, V. H.; Brandini, F. P.; Braga, E. D. S.; Freitas, G. R.; Benites, M.; Rodelli, D.; Giorgioni, M.; Iacoviello, F.; Ruffato, D. G.; Lins, U.

    2014-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of marine magnetotactic bacteria, in conjunction with geophysical, geochemical and oceanographic data from the Brazilian Coast, provide interesting insights regarding the primary productivity distribution in oceans. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a "magnetic fingerprint" for the presence of magnetotactic bacteria. The use of those magnetic properties is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We will also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We studied magnetotactic bacterial concentration and geophysical, geochemical and oceanographic results in marine settings measuring crucially nutrients availability in the water column and in sediments, on particulate delivery to the seafloor, to understand the environmental condition that allow the presence of magnetotactic bacteria and magnetosomes in sediments.

  10. Microorganisms Trapped Within Permafrost Ice In The Fox Permafrost Tunnel, Alaska

    NASA Astrophysics Data System (ADS)

    Katayama, T.; Tanaka, M.; Douglas, T. A.; Cai, Y.; Tomita, F.; Asano, K.; Fukuda, M.

    2008-12-01

    Several different types of massive ice are common in permafrost. Ice wedges are easily recognized by their shape and foliated structure. They grow syngenetically or epigenetically as a result of repeated cycles of frost cracking followed by the infiltration of snow, melt water, soil or other material into the open frost cracks. Material incorporated into ice wedges becomes frozen and preserved. Pool ice, another massive ice type, is formed by the freezing of water resting on top of frozen thermokarst sediment or melting wedges and is not foliated. The Fox Permafrost Tunnel in Fairbanks was excavated within the discontinuous permafrost zone of central Alaska and it contains permafrost, ice wedges, and pool ice preserved at roughly -3°C. We collected samples from five ice wedges and three pool ice structures in the Fox Permafrost Tunnel. If the microorganisms were incorporated into the ice during its formation, a community analysis of the microorganisms could elucidate the environment in which the ice was formed. Organic material from sediments in the tunnel was radiocarbon-dated between 14,000 and 30,000 years BP. However, it is still not clear when the ice wedges were formed or subsequently deformed because they are only partially exposed and their upper surfaces are above the tunnel walls. The objectives of our study were to determine the biogeochemical conditions during massive ice formation and to analyze the microbial community within the ices by incubation-based and DNA-based analyses. The geochemical profile and the PCR-DGGE band patterns of bacteria among five ice wedge and 3 portions of pool ice samples were markedly different. The DGGE band patterns of fungi were simple with a few bands of fungi or yeast. The dominant bands of ice wedge and pool ice samples were affiliated with the genus Geomyces and Doratomyces, respectively. Phylogenetic analysis using rRNA gene ITS regions indicated isolates of Geomyces spp. from different ice wedges were affiliated

  11. Spatial variations in archaeal lipids of surface water and core-top sediments in the South china sea and their implications for paleoclimate studies.

    PubMed

    Wei, Yuli; Wang, Jinxiang; Liu, Jie; Dong, Liang; Li, Li; Wang, Hui; Wang, Peng; Zhao, Meixun; Zhang, Chuanlun L

    2011-11-01

    The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX₈₆-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX₈₆-derived temperatures were also calculated for these samples. The surface water had extremely low abundances of CL (average of 0.05 ± 0.13 ng/liter; n = 75), with higher values present in regions where upwelling is known to occur. The core-top sediments had CL values of 0.1 to 0.9 μg/g, which are on the low end of CL concentrations reported for other marine sediments and may reflect the oligotrophic nature of the open SCS. The IPL of Archaea accounted for 6 to 36.4% of total lipids (CL plus IPL), indicating that the majority of archaeal lipids in core-top sediments were derived from nonliving cells. The TEX₈₆-based temperatures of surface water were overall lower than satellite-based sea surface temperatures or CTD-measured in situ temperatures. The core-top sediment samples, however, had TEX₈₆ temperatures very close to the mean annual sea surface temperatures, except for samples with water depths of less than 100 m. Our results demonstrated low and heterogeneous distributions of archaeal lipids in surface water and core-top sediments of the SCS, which may reflect local or regional differences in productivity of Archaea. While TEX₈₆-based temperatures for core-top marine sediments at deep water depths (>100 m) generally reflected mean annual sea surface temperatures, TEX₈₆ temperatures in surface water varied basin wide and underestimated sea surface temperatures in most locations for the season when surface water samples were collected.

  12. Spatial Variations in Archaeal Lipids of Surface Water and Core-Top Sediments in the South China Sea and Their Implications for Paleoclimate Studies▿†

    PubMed Central

    Wei, Yuli; Wang, Jinxiang; Liu, Jie; Dong, Liang; Li, Li; Wang, Hui; Wang, Peng; Zhao, Meixun; Zhang, Chuanlun L.

    2011-01-01

    The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX86-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX86-derived temperatures were also calculated for these samples. The surface water had extremely low abundances of CL (average of 0.05 ± 0.13 ng/liter; n = 75), with higher values present in regions where upwelling is known to occur. The core-top sediments had CL values of 0.1 to 0.9 μg/g, which are on the low end of CL concentrations reported for other marine sediments and may reflect the oligotrophic nature of the open SCS. The IPL of Archaea accounted for 6 to 36.4% of total lipids (CL plus IPL), indicating that the majority of archaeal lipids in core-top sediments were derived from nonliving cells. The TEX86-based temperatures of surface water were overall lower than satellite-based sea surface temperatures or CTD-measured in situ temperatures. The core-top sediment samples, however, had TEX86 temperatures very close to the mean annual sea surface temperatures, except for samples with water depths of less than 100 m. Our results demonstrated low and heterogeneous distributions of archaeal lipids in surface water and core-top sediments of the SCS, which may reflect local or regional differences in productivity of Archaea. While TEX86-based temperatures for core-top marine sediments at deep water depths (>100 m) generally reflected mean annual sea surface temperatures, TEX86 temperatures in surface water varied basin wide and underestimated sea surface temperatures in most locations for the season when surface water samples were collected. PMID:21890672

  13. Chronicling a century of lead pollution in Mexico: stable lead isotopic composition analyses of dated sediment cores.

    PubMed

    Soto-Jimenez, Martin F; Hibdon, Sharon A; Rankin, Charley W; Aggarawl, Jugdeep; Ruiz-Fernandez, A Carolina; Paez-Osuna, Federico; Flegal, A Russell

    2006-02-01

    Analyses of lead isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of dated sediment cores from two coastal estuaries and two inland lakes chronicle the predominance of industrial lead emissions in Mexico over the past century. These isotopic ratios exhibit a shift in composition from the turn of the previous century (1900) that corresponds with measurable increases (from 2- to 10-fold) in lead concentrations in the cores above their baseline values (3-22 microg/g)--both changes are consistent with the development of Mexican lead production for export and the manufacture of tetraethyl lead additives for Mexican gasolines. While subsequent changes in lead concentrations in the cores correspond with calculated emissions from the combustion of leaded gasoline in Mexico, isotopic compositions of the cores remain relatively constant throughout most of the 1900s (e.g., 206Pb/207Pb = 1.200 +/- 0.003; 208Pb/207Pb = 2.463 +/- 0.004). That isotopic constancy is attributed to the widespread pollution from lead production in Mexico and the dispersion of some of that lead used as an additive in Mexican gasolines.

  14. Permafrost in Space: first results of experiment "EXOBIOFROST"

    NASA Astrophysics Data System (ADS)

    Spirina, Elena; Rivkina, Elizaveta; Shmakova, Lubov; Mironov, Vasiliy; Shatilovich, Anastasiya

    Experiment "EXOBIOFROST" was conducted as part of BION-M project of Russian Space Agency. We investigated a response of microbial complexes, including the pure cultures of microorganisms isolated from permafrost and the initial permafrost samples of different origin and age on space conditions. Duration of experiment was 1 month, from April, 19 to May, 19, 2013. All samples were investigated before and after the space flight. For the experiment we selected five samples of permafrost soil from Kolyma-Indigirka Lowland and Antarctica, and also the cultures of microorganisms: Exiguobacterium sibiricum - gram negative bacteria; Colpoda Steinii and Exocolpoda augustini — ciliates, and two strains of Acanthamoeba castelliane. Studies have revealed differences in structure and composition of microbial communities in control and in post-flight samples. All Arctic samples were characterized by a significant, 3-5 orders of magnitude, increase in the number of microorganisms compared to the control samples. However, there is a marked reduction in the amount of extracted DNA in post-flight permafrost samples. Post-flight analysis of ciliates, Colpoda Steinii and Exocolpoda augustini, revealed that 70-97% of cysts are damaged. In general, the primary post-flight analysis and a comparison with the control samples showed that the modern tundra colpoda more resistant to space conditions than they from the ancient permafrost sediments and strain of Colpoda steinii more resistant than the strain Exocolpoda augustini. Post-flight analysis of Acanthamoeba castelliane showed presence of viable cysts capable of excystation. Thus, we can conclude that the experiment "EXOBIOFROST" conducted in open space on the apparatus BION-M №1 does not prove fatal to permafrost microorganisms.

  15. First application of time-domain electromagnetic technology (TEM) for permafrost mapping on the Arctic shelf.

    NASA Astrophysics Data System (ADS)

    Koshurnikov, A.; Gunar, A.; Tumskoy, V. E.; Shakhova, N. E.; Semiletov, I. P.; Valuyskiy, S.

    2015-12-01

    Different geophysical methods are used to study and map submarine permafrost on the Arctic Shelf. Due to specific features of submarine permafrost, none of geophysical methods can provide conclusive data when gas-charged sediments and taliks occur within permafrost. Experimental data show that electrical properties of frozen grounds change significantly. For example, depending on ground lithology and wetness, electrical resistivity can increase up to 103 times upon freezing. Thus, electromagnetic methods could be considered more informative and valuable tool for characterizing subsea permafrost. Investigation of submarine permafrost on the shallow Arctic Shelf requires modifications of electromagnetic methods to cover specific needs of working from the fast ice. Winter expeditions devoted to subsea permafrost investigations were performed in March-April of 2012-2015 in the near-shore area of the Laptev Sea. TEM was applied to predict permafrost down to 1 km depth. TEM systems are advantageous when many stations are required, because many short deployments can be performed in a single survey. Working from the fast ice allowed collection of few tens of stations to cover the entire polygon. Interpretation of data collected in 2012 allowed to predict position of the permafrost table near-shore near Muostakh Island, which was validated by followed up permafrost drilling. Surveys performed in 2013-2015 also confirmed good agreement between electromagnetic data and observational data obtained by drilling. Accuracy of the methods reached 3.5%. Note, that in March-April of 2014 and 2015, we used the modified TEM which allows obtaining continuous subsea permafrost table profiles.

  16. International Field School on Permafrost, Polar Urals, 2012

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Grebenets, V.; Ivanov, M.; Sheinkman, V.; Shiklomanov, N. I.; Shmelev, D.

    2012-12-01

    The international field school on permafrost was held in the Polar Urals region from June, 30 to July 9, 2012 right after the Tenth International Conference on Permafrost which was held in Salekhard, Russia. The travel and accommodation support generously provided by government of Yamal-Nenets Autonomous Region allowed participation of 150 permafrost young research scientists, out of which 35 students from seven countries participated in the field school. The field school was organized under umbrella of International Permafrost Association and Permafrost Young Research Network. The students represented diverse educational backgrounds including hydrologists, engineers, geologists, soil scientists, geocryologists, glaciologists and geomorphologists. The base school camp was located near the Harp settlement in the vicinity of Polar Urals foothills. This unique location presented an opportunity to study a diversity of cryogenic processes and permafrost conditions characteristic for mountain and plain regions as well as transition between glacial and periglacial environments. A series of excursions was organized according to the following topics: structural geology of the Polar Urals and West Siberian Plain (Chromite mine "Centralnaya" and Core Storage in Labitnangy city); quaternary geomorphology (investigation of moraine complexes and glacial conditions of Ronamantikov and Topographov glaciers); principles of construction and maintains of structures built on permafrost (Labitnangy city and Obskaya-Bovanenkovo Railroad); methods of temperature and active-layer monitoring in tundra and forest-tundra; cryosols and soil formation in diverse landscape condition; periglacial geomorphology; types of ground ice, etc. Every evening students and professors gave a series of presentations on climate, vegetation, hydrology, soil conditions, permafrost and cryogenic processes of the region as well as on history, economic development, endogenous population of the Siberia and the

  17. Collaboration in Education: International Field Class on Permafrost

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Shiklomanov, N. I.; Grebenets, V. I.

    2011-12-01

    from the position of technogenic impact which required knowledge of historical, political and socio-economic aspects of development. Students learned how to conduct meteorological observations; describe vegetation, soil and permafrost conditions, and cryogenic processes, such as ice-wedges, solifluction, pingoes, thermokarst etc; and use temperature logging and core drilling devices. In urbanized areas, students learned how to apply different construction methods and foundation designs in permafrost regions; use techniques of permafrost temperature monitoring under building and structures; and apply mitigation strategies to prevent permafrost from warming under different types of technogenic pressure. The experience gained by students in the field cannot be adequately replaced by any classroom demonstrations, which is why it is critically important to conduct such classes in the future. We thank administration of Igarka, Igarka Geocryological Station, Norilsk Nickel, Norilsk Geologiya, and Funamentproekt Norilsk for help in the organization of this class.

  18. Paleoenvironmental records from newly recovered sediment cores at the southeast margin of the Salar de Atacama, Chile

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Munk, L. A.; Hynek, S. A.; Corenthal, L.; Huff, H. A.

    2014-12-01

    A suite of new cores recovered from recent boreholes in the southeastern margin of the Salar de Atacama, Chile span a modern environmental gradient from distal alluvial fans, groundwater discharge marshes, sulfate-rich playas, saline lagoons, and the halite nucleus of the salar. These same environments are preserved as stratigraphic records of environmental change in the cores. Cores from the salar nucleus are dominated by halite, and similarly alluvial cores provide a poor paleoenvironmental record. However, the cores from the transition zone between the salar margin and the halite nucleus document alluvial, lagoonal, and evaporite environments. Cores near the halite nucleus record inter-bedded carbonate, gypsum, and halite. Finely laminated carbonates inter-bedded with cm-thick halite beds are a target for U-series geochronology. Cores near modern lagoons contain 2-6 m thick diatomites in addition to microbially-mediated carbonate, organic-rich mud, and minor alluvium. The uppermost 20 cm of diatomite deposits are commonly rooted with vascular plant material which is being processed for 14C geochronology. Ignimbrite and tephra deposits are also encountered and will provide important chronological control. The presence and absence of the 3.5-4.0 Ma Tucucaro ignimbrite in various cores documents a complex pattern of subsidence near the salar margin, some areas have accumulated little sediment since its deposition while in other areas the cores likely record only late Pleistocene deposition. Preliminary interpretations of the stratigraphic records within a paleohydrologic context are tenable. The specific control on this paleohydrologic record is likely to be a combination of increased inflow due to wetter climates and migration of the freshwater/brine interface which underlies the margins of the Salar de Atacama. Stratigraphic variations in the lithium content of evaporite minerals is being explored as a potential indicator of water balance. Lithium concentrations

  19. Historical lead isotope record of a sediment core from the Derwent River (Tasmania, Australia): a multiple source environment.

    PubMed

    Townsend, Ashley T; Seen, Andrew J

    2012-05-01

    A 105 cm sediment core from the Derwent River (Tasmania, Australia) was collected in 2004 and was characterised considering both physical (loss on ignition at 550 °C and grain size) and chemical (Fe, Cu, Zn, Cd and Pb concentrations, Pb isotope ratios and (210)Pb dating) properties. The core was analysed to (i) investigate the historical profiles of some important elements associated with the Risdon zinc refinery adjacent to the Derwent River, (ii) determine Pb isotopic signatures of sediment samples, and (iii) assess the veracity of Pb isotope ratios as indicators of contaminant Pb input. Extractable metal concentrations were (all values as mgkg(-1), non-normalised for grain size) Fe: 20,000-35,000, Zn: 42-4500, Pb: 5-1090, Cu: 13-141, and Cd: 1-31; with a close correlation between Cu, Zn, Cd and Pb. Metal enrichment factors (normalised to Al) were Pb: 0.9-144, Zn: 0.8-93, Cd: 0.8-30, Cu: 0.8-8.9 and Fe: 0.9-1.3, confirming anthropogenic contributions of Cu, Zn, Pb and Cd to the sediments. The onset of metal contamination above background levels occurred at a depth between 43 and 49 cm, with maximum concentrations noted near 20 cm for Cu, Zn, Cd and Pb. Lead isotope ratios were determined in sediments using sector field ICP-MS, and were found to be 36.5-38.8, 16.5-18.7 and 1.07-1.20 for (208)Pb/(204)Pb, (206)Pb/(204)Pb and (206)Pb/(207)Pb ratios, respectively. Major Australian ores processed at the refinery over the previous ~90 years include those from Broken Hill, Rosebery, Mt Isa, Elura, Hellyer and Century deposits. Anthropogenic impact by Pb with Broken Hill type isotopic ratio was initially evident in the core at 43-49 cm. The introduction of Rosebery and Elura ores to the refinery was also clearly noted. Pb isotope ratios further highlight that the Derwent River has been exposed to a greater impact by anthropogenic Pb in comparison to other major Tasmanian rivers, namely the Huon and Tamar.

  20. Magnetostratigraphy in three Arctic Ocean sediment cores; arguments for geomagnetic excursions within oxygen-isotope stage 2-3

    NASA Astrophysics Data System (ADS)

    Løvlie, Reidar; Markussen, Berit; Sejrup, Hans Petter; Thiede, Jørn

    1986-06-01

    Two zones with shallow to steep negative palaeomagnetic directions have been detected within similar lithological units in three high latitude gravity cores from the Arctic Ocean. Coinciding azimuthal distributions of declinations relative to arbitrary oriented sub-sampling surfaces are attributed to the systematic acquisition of magnetic components by frictional deformation of the unconsolidated sediment during the sub-sampling procedure. Alternating field demagnetization to 50 mT was only partly successful in obtaining stable single component directions. Magnetic polarity zones are deduced by extrapolation of directional trends of inclinations during progressive af-demagnetization. High delta δ 18O values in sinistrally coiled N. pachyderma range between 4.30-4.68‰ PDB (mean values), reflecting sediment accumulation during continental glaciation. Amino acid ratios of N. pachyderma suggest ages less than approximately 60 000 years ago. When seen in conjunction, these observations suggest that the sediments were deposited within oxygen isotope stages 2-3. The reversed palaeomagnetic polarity zones are concluded to represent two short duration excursions of the geomagnetic field which occurred less than 60 000 years ago. Likely known candidates are the Lake Mungo (28 000-30 000 years ago) and Laschamp/Olby (35 000-40 000 years ago) excursions all confined within oxygen isotope stage 3 (24 000-59 000 years ago).

  1. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  2. Post-thaw carbon stock variation in a permafrost peatland of the boreal zone.

    NASA Astrophysics Data System (ADS)

    Pelletier, N.; Olefeldt, D.; Turetsky, M. R.; Blodau, C.; Talbot, J.

    2014-12-01

    The current acceleration of permafrost thaw in the discontinuous permafrost of the boreal zone induces large uncertainties regarding the fate of soil carbon. Peatlands are believed to contain about 277 Pg of the total 1670 Pg stored in permafrost soils. In the discontinuous permafrost zone, the thawing of permafrost causes thermokarst features, leading to a succession from forested peat plateaus to non-forested sphagnum bogs. The changes in organic matter accumulation and deep carbon decomposition rates following thaw in permafrost peatlands could have an important impact on the climate system. We measured the total carbon content of peat cores along a thaw chronosequence from forested permafrost peat plateau to collapse-scar bogs. Four transect of four cores each were collected to expose the variations in carbon content at the collapse-scar feature scale as well as at the catchment scale. Loss on ignition, bulk density, carbon content of the organic matter and radiocarbon dating data reveal variability in the response of the total carbon content with time. Contrary to previous studies of this type, preliminary results do not seem to indicate an initial raise in total carbon stock following thaw. The increase in surface peat accumulation of this peatland seems to be largely offset by an increase in deep carbon loss from anaerobic decomposition.

  3. Triolein embedded cellulose acetate membrane as a tool to evaluate sequestration of PAHs in lake sediment core at large temporal scale.

    PubMed

    Tao, Yuqiang; Xue, Bin; Yao, Shuchun; Deng, Jiancai; Gui, Zhifan

    2012-04-03

    Although numerous studies have addressed sequestration of hydrophobic organic compounds (HOCs) in laboratory, little attention has been paid to its evaluation method in field at large temporal scale. A biomimetic tool, triolein embedded cellulose acetate membrane (TECAM), was therefore tested to evaluate sequestration of six PAHs with various hydrophobicity in a well-dated sediment core sampled from Nanyi Lake, China. Properties of sediment organic matter (OM) varying with aging time dominated the sequestration of PAHs in the sediment core. TECAM-sediment accumulation factors (MSAFs) of the PAHs declined with aging time, and significantly correlated with the corresponding biota-sediment accumulation factors (BSAFs) for gastropod (Bellamya aeruginosa) simultaneously incubated in the same sediment slices. Sequestration rates of the PAHs in the sediment core evaluated by TECAM were much lower than those obtained from laboratory study. The relationship between relative availability for TECAM (MSAF(t)/MSAF(0)) and aging time followed the first order exponential decay model. MSAF(t)/MSAF(0) was well-related to the minor changes of the properties of OM varying with aging time. Compared with chemical extraction, sequestration reflected by TECAM was much closer to that by B. aeruginosa. In contrast to B. aeruginosa, TECAM could avoid metabolism and the influences from feeding and other behaviors of organisms, and it is much easier to deploy and ready in laboratory. Hence TECAM provides an effective and convenient way to study sequestration of PAHs and probably other HOCs in field at large temporal scale.

  4. The Geologic History of Lake of the Woods, Minnesota, Reconstructed Using Seismic-Reflection Imaging and Sediment Core Analysis

    NASA Astrophysics Data System (ADS)

    Hougardy, Devin D.

    only near the margins of the basin, suggesting that water occupied much of the middle of the southern basin after lake level drawdown. The reflection character and configuration of SU-C and SU-D are genetically different indicating that the depositional environment had changed following the formation of UNCF-2. Piston-type sediment cores collected from the southern basin of LOTW at depths that correspond to the middle of SU-D contain high amounts of organic material and charcoal fragments and sediment that are probably not related to Lake Agassiz. Instead, they were likely deposited during a transitional phase between when Lake Agassiz left the LOTW basin (UNCF-2) and inundation of LOTW from the northern basin due to differential isostatic rebound (UNCF-3). All sediment cores collected from the southern basin of LOTW record the uppermost unconformity, analogous in depth to UNCF-3 in the seismic images, which separates modern sediments from mid to late-Holocene sediments. The lithology of sediments below this unconformity varies across the basin from gray clay to laminated silt and clay. Radiocarbon ages from two peat layers immediately below the unconformity indicate that subaerial conditions had existed prior to the formation of UNCF-1, at about 7.75 ka cal BP. The timing correlates well with other lakes in the upper Midwest that record a prolonged dry climate during the mid-Holocene. UNCF-3 is planar and erosional across the entire survey area but erosion is greatest in the northern part of the basin as the result of a southward transgressing wave base driven by differential isostatic rebound. Deposition in the southern basin probably resumed around 3.3 ka cal BP, though no radiocarbon dates were collected directly above UNCF-3. The lithology of sediment above UNCF-3 is highly uniform across the basin and represents modern sedimentation. Late-Holocene sedimentation rates were calculated at about 0.9 mm year-1 and are roughly double the sedimentation rates in the NW

  5. A chronicle of organochlorine contamination in Clear Creek, Galveston and Harris Counties, Texas, 1960-2002, as recorded in sediment cores

    USGS Publications Warehouse

    Mahler, Barbara J.; Van Metre, Peter

    2003-01-01

    Clear Creek flows through the Texas Coastal Plain from its headwaters southeast of Houston, Texas, to Clear Lake, which empties into Galveston Bay. Segments of Clear Creek were on the State of Texas 303(d) list for 1998, 1999, and 2000 as a result of a fish consumption advisory issued by the Texas Department of Health. One of the contaminants for which the fish consumption advisory was issued is the organochlorine pesticide chlordane. Chlordane is a hydrophobic (“waterfearing”) contaminant; that is, it adsorbs to sediment at concentrations much greater than those found in water. The study described here sought to answer three questions:Does chlordane occur in Clear Creek sediments at present?Is there current loading of chlordane to Clear Creek?How has occurrence of chlordane in Clear Creek changed over time?To answer these questions, the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA), collected and analyzed sediment cores from Clear Creek (fig. 1). Sediment cores sometimes can be used to reconstruct historical trends in concentrations of hydrophobic contaminants (Eisenreich and others, 1989; Van Metre and others, 1997). Cores were collected from five ponds connected to Clear Creek but out of the main channel (fig. 1). Cesium-137 (137Cs) was analyzed in the cores to determine if the sediments in the cores were undisturbed and if the cores reached sediment predating 1964. The two cores that appeared most undisturbed on the basis of 137Cs profiles (see sidebar, p. 2) were further subsampled and additional samples analyzed for 137Cs, organic carbon, selected organochlorine pesticides (including chlordane), and total polychlorinated biphenyls (PCB).

  6. Magnetostratigraphy of a greigite-bearing core from the South Yellow Sea: Implications for remagnetization and sedimentation

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Shi, Xuefa; Liu, Qingsong; Ge, Shulan; Liu, Yanguang; Yao, Zhengquan; Zhao, Quanhong; Jin, Chunsheng; Jiang, Zhaoxia; Liu, Shengfa; Qiao, Shuqing; Li, Xiaoyan; Li, Chuanshun; Wang, Chunjuan

    2014-10-01

    Sediments from the continental shelf are sensitive to sea level, climatic changes, and local tectonic history. In this study, we carried out a high-resolution magnetostratigraphic investigation on the longest core (NHH01, 125.64 m) recovered from the South Yellow Sea (SYS). An abnormal interval dominated by negative inclinations was discovered by applying alternating field demagnetization (AFD) on samples from a greigite-bearing layer (44.90-51.80 m). In contrast, the inclinations of most greigite-bearing samples changed from negative to positive when heated to ~360°C. This strongly indicates that this inclination anomaly revealed by the AFD alone is not a true negative subchron. After neglecting the effects of greigite-bearing layers, the straightforward correlation of the interpreted magnetostratigraphy defines the Matuyama-Brunhes boundary (781 ka) and the Jaramillo top (990 ka) at 68.64 m and 101.54 m, respectively. The linearly extrapolated basal age of the core is ~1.10 Ma. In addition, several short-lived inclination anomalies can be tentatively assigned to magnetic excursions, which indicates that the sedimentation could be continuous even at the millennial time scale at depth intervals bracketing these fast geomagnetic events. Moreover, the excellent correspondence between clay content variations of the core and the marine oxygen isotope record indicates the potential of clay content as a paleoclimatic proxy in the studied region in the past ~1 Ma. In brief, our study provides not only a robust age model in the SYS but also a methodological guide for paleomagnetic studies in continental shelf region.

  7. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    PubMed

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.

  8. Comparison of historical record of PCDD/Fs, dioxin-like PCBs, and PCNs in sediment cores from Jiaozhou Bay and coastal Yellow Sea: implication of different sources.

    PubMed

    Pan, Jing; Yang, Yongliang; Taniyasu, Sachi; Yeung, Leo Wai Yin; Falandysz, Jerzy; Yamashita, Nobuyoshi

    2012-12-01

    The concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs) were measured in two sediment cores collected from Jiaozhou Bay. The concentrations of PCDD/Fs, dioxin-like PCBs, and PCNs in the cores were in the range of 2.8-26.3, 7.1-82.4 and 3.9-56.4 pg/g dw, respectively. The depth profiles of total concentrations PCDD/Fs and dioxin-like PCBs were similar in the sediment core J37 inside Jiaozhou Bay, but different from those in the sediment core J94 outside the bay, suggesting the different sources. In both cores Tri-CNs and Tetra-CNs were dominant, similar to the PCNs composition of some Halowax technical products. The maximal PCNs contamination occurred in the mid-1970s (outside the Bay) and early-1990s (inside the Bay). An increase of the indicator CN congeners characteristic for thermal source in the top layers of the sediment core inside the bay indicated that the contribution from the municipal solid waste incineration has been more important in recent years.

  9. Estimation of Mercury Storage in Permafrost and Potential Release to the Environment by Thaw

    NASA Astrophysics Data System (ADS)

    Schuster, P. F.; Kamark, B. L.; Striegl, R. G.; Aiken, G.

    2011-12-01

    Changing climatic conditions in northern regions are causing perennially frozen soils (permafrost) to thaw. This thawing may have major implications for the cycling of carbon and metals, particularly mercury (Hg) in arctic and subarctic ecosystems. Hg is a ubiquitous pollutant that can impact aquatic resources and pose serious threat to human health. Northern regions of the world have the potential to contribute substantially to the global Hg cycling pool due to 1) enhanced deposition as a result of arctic springtime Hg depletion events, 2) increasing atmospheric Hg sources from rapidly expanding Asian industrialization, and perhaps most significantly, 3) the release of Hg historically sequestered in permafrost due to recent and potential future thawing. Total Hg concentrations (THg) were measured in three permafrost cores collected within the Yukon River basin of Alaska. Core 1, averaging 38 percent organic matter, was collected in a low-lying region of black spruce underlain by continuous permafrost; Core 2, a mineral-rich core averaging 8 percent organic matter, was collected in an upland region on a north facing slope of white spruce underlain by discontinuous permafrost; Core 3, also an organic-rich core, was collected in a low-lying collapsed bog region of discontinuous permafrost. All three cores were subsampled for THg at 1-2 cm intervals and represent a large range of permafrost soil conditions extending back about 10,000 years. Preliminary results show THg concentrations were highly variable ranging from 67 to 207 ng per g of soil (dry weight, n=94). Core 1 exhibited elevated Hg concentrations (50% above the mean) spanning several thousand years. Core 2 contained a lens of lightly-colored material (likely volcanic ash known as the White River Tephra based on XRD analysis) coincident with the some of the highest Hg concentrations in all three cores. Studies have shown that volcanic ash may have elevated concentrations of Hg. Preliminary estimates for the

  10. Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an Urban Lake

    USGS Publications Warehouse

    Thapalia, A.; Borrok, D.M.; Van Metre, P.C.; Musgrove, M.; Landa, E.R.

    2010-01-01

    In this work, we use stable Zn and Cu isotopes to identify the sources and timing of the deposition of these metals in a sediment core from Lake Ballinger near Seattle, Washington, USA. The base of the Lake Ballinger core predates settlement in the region, while the upper sections record the effects of atmospheric emissions from a nearby smelter and rapid urbanization of the watershed. ??66Zn and ??65Cu varied by 0.50% and 0.29%, respectively, over the 500 year core record. Isotopic changes were correlated with the presmelter period (~1450 to 1900 with ??66Zn = +0.39% ?? 0.09% and ??65Cu = +0.77% ?? 0.06%), period of smelter operation (1900 to 1985 with ??66Zn = +0.14 ?? 0.06% and ??65Cu = +0.94 ?? 0.10%), and postsmelting/stable urban land use period (post 1985 with ??66Zn = 0.00 ?? 0.10% and ??65Cu = +0.82% ?? 0.12%). Rapid early urbanization during the post World War II era increased metal loading to the lake but did not significantly alter the ??66Zn and ??65Cu, suggesting that increased metal loads during this time were derived mainly from mobilization of historically contaminated soils. Urban sources of Cu and Zn were dominant since the smelter closed in the 1980s, and the (??66Zn measured in tire samples suggests tire wear is a likely source of Zn. ?? 2010 American Chemical Society.

  11. Biogeochemistry of methane and methanogenic archaea in permafrost.

    PubMed

    Rivkina, Elizaveta; Shcherbakova, Viktoria; Laurinavichius, Kestas; Petrovskaya, Lada; Krivushin, Kirill; Kraev, Gleb; Pecheritsina, Svetlana; Gilichinsky, David

    2007-07-01

    This study summarizes the findings of our research on the genesis of methane, its content and distribution in permafrost horizons of different age and origin. Supported by reliable data from a broad geographical sweep, these findings confirm the presence of methane in permanently frozen fine-grained sediments. In contrast to the omnipresence of carbon dioxide in permafrost, methane-containing horizons (up to 40.0 mL kg(-1)) alternate with strata free of methane. Discrete methane-containing horizons representing over tens of thousands of years are indicative of the absence of methane diffusion through the frozen layers. Along with the isotopic composition of CH(4) carbon (delta(13)C -64 per thousand to -99 per thousand), this confirms its biological origin and points to in situ formation of this biogenic gas. Using (14)C-labeled substrates, the possibility of methane formation within permafrost was experimentally shown, as confirmed by delta(13)C values. Extremely low values (near -99 per thousand) indicate that the process of CH(4) formation is accompanied by the substantial fractionation of carbon isotopes. For the first time, cultures of methane-forming archaea, Methanosarcina mazei strain JL01 VKM B-2370, Methanobacterium sp. strain M2 VKM B-2371 and Methanobacterium sp. strain MK4 VKM B-2440 from permafrost, were isolated and described.

  12. Overview on Hydrate Coring, Handling and Analysis

    SciTech Connect

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  13. Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska.

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.; Marshall, B.V.; Moses, T.H.

    1982-01-01

    Temperature measurements through permafrost in the oil field at Prudhoe Bay, Alaska, combined with laboratory measurements of the thermal conductivity of drill cutting permit an evaluation of in situ thermal properties and an understanding of the general factors that control the geothermal regime. A sharp contrast in temperatire gradient at c600m represents a contrast in thermal conductivity caused by the downward change from interstitial ice to interstitial water at the base of permafrost under near steady state conditions. These results yield a heat flow of c1.3HFU, which is similar to other values on the Alaskan Arctic Coast: the anomalously deep permafrost is a result of the anomalously high conductivity of the siliceous ice-rich sediments. With confirmation of the permafrost configuration by offshore drilling, heat conduction models can yield reliable new information on the chronology of arctic shoreline. -from Authors

  14. Hg Deposition to Lakes in Northern New England Inferred at Multiple Scales From 210Pb-Dated Sediment Cores

    NASA Astrophysics Data System (ADS)

    Kamman, N. C.; Engstrom, D.

    2004-05-01

    Mercury (Hg) contamination of aquatic systems is recognized to be a problem of global consequence, and Hg bioaccumulation poses significant risks to piscivorous animals and humans who consume gamefish. In order to quantify historical and current Hg deposition to the northern New England landscape, we dated and performed Hg analyses on sediments cores from various lakes at local and regional scales. In this presentation, we contrast results of three studies: a regional assessment of Hg deposition to the VT-NH landscape (10 lakes); a localized study of deposition to the Lye Brook Wilderness of southern VT (four lakes); and the first-ever dated assessment of sediment Hg deposition history for Lake Champlain (three sites + one adjacent inland lake). At the VT-NH scale, total Hg (HgT) fluxes to sediments ranged from 5 to 17 μ g.m-2.yr-1 during pre-industrial times, and from 21 to 83 μ g.m-2.yr-1 presently. Present-day HgT fluxes are between 2.1 to 6.9 times greater than pre-1850 fluxes, and atmospheric Hg deposition to the VT-NH region was estimated at 21 μ g.m-2.yr-1. This agrees well with measured HgT deposition, when re-evasion of Hg is accounted for. Hg fluxes to lake sediments have declined in recent decades, owing to reductions in atmospheric Hg deposition to the lake surfaces. In the high-elevation Lye Brook Wilderness landscape, baseline, peak, and present accumulations were higher than those estimated from the VT-NH dataset, a finding that highlights the roles of elevation, watershed size, and dissolved organic carbon export in mediating Hg transport. Available data from the Lake Champlain Basin show the influence of historical and current watershed sediment delivery due to land cultivation, and more recently to land-use conversion. These studies jointly indicate that watershed export of legacy Hg continues despite declines in present-day deposition rates, contributing to the impression that Hg retention by watershed soils has declined.

  15. Integrated sequence stratigraphy of the postimpact sediments from the Eyreville core holes, Chesapeake Bay impact structure inner basin

    USGS Publications Warehouse

    Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Edwards, L.E.; Kulpecz, A.A.; Powars, D.S.; Wade, B.S.; Feigenson, M.D.; Wright, J.D.

    2009-01-01

    The Eyreville core holes provide the first continuously cored record of postimpact sequences from within the deepest part of the central Chesapeake Bay impact crater. We analyzed the upper Eocene to Pliocene postimpact sediments from the Eyreville A and C core holes for lithology (semiquantitative measurements of grain size and composition), sequence stratigraphy, and chronostratigraphy. Age is based primarily on Sr isotope stratigraphy supplemented by biostratigraphy (dinocysts, nannofossils, and planktonic foraminifers); age resolution is approximately ??0.5 Ma for early Miocene sequences and approximately ??1.0 Ma for younger and older sequences. Eocene-lower Miocene sequences are subtle, upper middle to lower upper Miocene sequences are more clearly distinguished, and upper Miocene- Pliocene sequences display a distinct facies pattern within sequences. We recognize two upper Eocene, two Oligocene, nine Miocene, three Pliocene, and one Pleistocene sequence and correlate them with those in New Jersey and Delaware. The upper Eocene through Pleistocene strata at Eyreville record changes from: (1) rapidly deposited, extremely fi ne-grained Eocene strata that probably represent two sequences deposited in a deep (>200 m) basin; to (2) highly dissected Oligocene (two very thin sequences) to lower Miocene (three thin sequences) with a long hiatus; to (3) a thick, rapidly deposited (43-73 m/Ma), very fi ne-grained, biosiliceous middle Miocene (16.5-14 Ma) section divided into three sequences (V5-V3) deposited in middle neritic paleoenvironments; to (4) a 4.5-Ma-long hiatus (12.8-8.3 Ma); to (5) sandy, shelly upper Miocene to Pliocene strata (8.3-2.0 Ma) divided into six sequences deposited in shelf and shoreface environments; and, last, to (6) a sandy middle Pleistocene paralic sequence (~400 ka). The Eyreville cores thus record the fi lling of a deep impact-generated basin where the timing of sequence boundaries is heavily infl uenced by eustasy. ?? 2009 The Geological

  16. Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada)

    NASA Astrophysics Data System (ADS)

    Fritz, Michael; Wolter, Juliane; Rudaya, Natalia; Palagushkina, Olga; Nazarova, Larisa; Obu, Jaroslav; Rethemeyer, Janet; Lantuit, Hugues; Wetterich, Sebastian

    2016-09-01

    Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, δ13C), stable water isotopes (δ18O, δD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at

  17. High risk of permafrost thaw

    SciTech Connect

    Schuur, E.A.G.; Abbott, B.; Koven, C.D,; Riley, W.J.; Subin, Z.M.; al, et

    2011-11-01

    In the Arctic, temperatures are rising fast, and permafrost is thawing. Carbon released to the atmosphere from permafrost soils could accelerate climate change, but the likely magnitude of this effect is still highly uncertain. A collective estimate made by a group of permafrost experts, including myself, is that carbon could be released more quickly than models currently suggest, and at levels that are cause for serious concern. While our models of carbon emission from permafrost thaw are lacking, experts intimately familiar with these landscapes and processes have accumulated knowledge about what they expect to happen, based on both quantitative data and qualitative understanding of these systems. We (the authors of this piece) attempted to quantify this expertise through a survey developed over several years, starting in 2009. Our survey asked experts what percentage of surface permafrost they thought was likely to thaw, how much carbon would be released, and how much of that would be methane, for three time periods and under four warming scenarios that are part of the new IPCC Fifth Assessment Report.

  18. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India.

    PubMed

    Ayyamperumal, T; Jonathan, M P; Srinivasalu, S; Armstrong-Altrin, J S; Ram-Mohan, V

    2006-09-01

    An acid leachable technique is employed in core samples (C1, C2 and C3) to develop a baseline data on the sediment quality for trace metals of River Uppanar, Cuddalore, southeast coast of India. Acid leachable metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd) indicate peak values at the sulphidic phase and enrichment of metals in the surface layers are due to the anthropogenic activities. Association of trace metals with Fe, Mn indicates their adsorption onto Fe-Mn oxyhydroxides and their correlation with S indicate that they are precipitated as metal sulphides. Factor analysis identified three possible types of geochemical associations and the supremacy of trace metals along with Fe, Mn, S and mud supports their geochemical associations. Factor analysis also signifies that anthropogenic activities have affected both the estuarine and fresh water regions of River Uppanar.

  19. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    SciTech Connect

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  20. Collection, analysis, and age-dating of sediment cores from 56 U.S. lakes and reservoirs sampled by the U.S. Geological Survey, 1992-2001

    USGS Publications Warehouse

    Van Metre, Peter; Wilson, Jennifer T.; Fuller, Christopher C.; Callender, Edward; Mahler, Barbara J.

    2004-01-01

    The U.S. Geological Survey Reconstructed Trends National Synthesis study collected sediment cores from 56 lakes and reservoirs between 1992 and 2001 across the United States. Most of the sampling was conducted as part of the National Water-Quality Assessment (NAWQA) Program. The primary objective of the study was to determine trends in particle-associated contaminants in response to urbanization; 47 of the 56 lakes are in or near one of 20 U.S. cities. Sampling was done with gravity, piston, and box corers from boats and push cores from boats or by wading, depending on the depth of water and thickness of sediment being sampled. Chemical analyses included major and trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, cesium-137, and lead-210. Age-dating of the cores was done on the basis of radionuclide analyses and the position of the pre-reservoir land surface in the reservoir and, in a few cases, other chemical or lithologic depth-date markers. Dates were assigned in many cores on the basis of assumed constant mass accumulation between known depth-date markers. Dates assigned were supported using a variety of other date markers including first occurrence and peak concentrations of DDT and polychlorinated biphenyls and peak concentration of lead. A qualitative rating was assigned to each core on the basis of professional judgment to indicate the reliability of age assignments. A total of 122 cores were collected from the 56 lakes and age dates were assigned to 113 of them, representing 54 of the 56 lakes. Seventy-four of the 122 cores (61 percent) received a good rating for the assigned age dates, 28 cores (23 percent) a fair rating, and 11 cores (9 percent) a poor rating; nine cores (7 percent) had no dates assigned. An analysis of the influence of environmental factors on the apparent quality of age-dating of the cores concluded that the most important factor was the mass accumulation rate (MAR) of sediment: the

  1. Historical Associations of Molecular Measurements of Escherichia coli and Enterococci to Anthropogenic Activities and Climate Variables in Freshwater Sediment Cores.

    PubMed

    Brooks, Yolanda M; Baustian, Melissa M; Baskaran, Mark; Ostrom, Nathaniel E; Rose, Joan B

    2016-07-05

    This study investigated the long-term associations of anthropogenic (sedimentary P, C, and N concentrations, and human population in the watershed), and climatic variables (air temperature, and river discharge) with Escherichia coli uidA and enterococci 23S rRNA concentrations in sediment cores from Anchor Bay (AB) in Lake St. Clair, and near the mouth of the Clinton River (CR), Michigan. Calendar year was estimated from vertical abundances of (137)Cs. The AB and CR cores spanned c.1760-2012 and c.1895-2012, respectively. There were steady state concentrations of enterococci in AB during c.1760-c.1860 and c.1910-c.2003 at ∼0.1 × 10(5) and ∼2.0 × 10(5) cell equivalents (CE) per g-dry wt, respectively. Enterococci concentrations in CR increased toward present day, and ranged from ∼0.03 × 10(5) to 9.9 × 10(5) CE/g-dry wt. The E. coli concentrations in CR and AB increased toward present day, and ranged from 0.14 × 10(7) to 1.7 × 10(7) CE/g-dry wt, and 1.8 × 10(6) to 8.5 × 10(6) CE/g-dry wt, respectively. Enterococci was associated with population and river discharge, while E. coli was associated with population, air temperature, and N and C concentrations (p < 0.05). Sediments retain records of the abundance of fecal indicator bacteria, and offer a way to evaluate responses to increased population, nutrient loading, and environmental policies.

  2. Metal binding in soil cores and sediments in the vicinity of a dammed agricultural and industrial watershed.

    PubMed

    Kanbar, Hussein Jaafar; Hanna, Nour; El Samrani, Antoine G; Kazpard, Véronique; Kobaissi, Ahmad; Harb, Nafez; Amacha, Nabil

    2014-12-01

    The environment is witnessing a downgrade caused by the amelioration of the industrial and agricultural sectors, namely, soil and sediment compartments. For those reasons, a comparative study was done between soil cores and sediments taken from two locations in the Qaraaoun reservoir, Lebanon. The soil cores were partitioned into several layers. Each layer was analyzed for several physicochemical parameters, such as functional groups, particle size distribution, ζ-potential, texture, pH, electric conductivity, total dissolved solids, organic matter, cation exchange capacity, active and total calcareous, available sodium and potassium, and metal content (cadmium, copper, and lead). The metal content of each site was linked to soil composition and characteristics. The two sites showed distinguishable characteristics for features such as organic matter, pH, mineral fraction, calcareous, and metal content. The samples taken toward the south site (Q1), though contain lower organic matter than the other but are more calcareous, showed higher metal content in comparison to the other site (Q2) (average metal content of Q1 > Q2; for Cd 3.8 > 1.8 mg/kg, Cu 28.6 > 21.9 mg/kg, Pb 26.7 > 19 mg/kg). However, the metal content in this study did not correlate as much to the organic matter; rather, it was influenced by the location of the samples with respect to the dam, the reservoir's hydrodynamics, the calcareous nature of the soil, and the variation of the industrial and agricultural influence on each site.

  3. Periglacial Landscape Stabilization Following Rapid Permafrost Degradation by Thermo-erosion, Bylot Island, Nunavut, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Godin, E.; Perreault, N.; Levesque, E.

    2010-12-01

    The Byam Martin Mountains that run southeast-northwest across Bylot Island are covered by an ice cap which is flowing towards the lowlands into valleys. The bottom of these valleys is filled with sediments shaped into various periglacial landforms that developed during the Holocene such as ice-wedge polygons, pingos, and thermokarst lakes (Fortier and Allard, 2004). At the study site (N 73° 09’ - W 79° 53’), snow-melt run-off driven processes of thermo-erosion have recently drastically modified the periglacial landscape by creating extensive network of gullies in ice-wedge polygons. In the valley of glacier C-79, thirty five gullies, hundreds of meters to kilometers long, were identified and studied in the field. The formation of these gullies has changed the local hydrographic network by connecting the valley walls to a proglacial river flowing in the valley. The gully heads were characterized by active thermo-erosion processes operating underground and at the surface for a number of years (Fortier et al. 2007). Downstream, the gully walls were affected by various permafrost degradation processes such as active-layer detachment, retrogressive thaw slumping, drainage of the active layer of the polygons into the gully channel and differential thaw settlement of the surface (Godin and Fortier, 2010). It was observed that after a few years the downstream parts of the gully systems were stabilized and the gully walls partially colonized by vegetation. Drilling and coring operations into stabilized areas revealed the presence of ground ice a few decimeters below the surface with cryostructures indicative of permafrost aggradation. On stabilized gully walls, the sediments were aligned parallel to the slope and showed ice-rich reticulate to suspended cryostructures. Down to about one meter, the sediments were separated by centimeters-thick ice lenses which contained air bubbles aligned perpendicular to the slope. We propose that drainage of the soils on the slope

  4. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA

    USGS Publications Warehouse

    Gray, John E.; Pribil, Michael J.; Van Metre, Peter C.; Borrok, David M.; Thapalia, Anita

    2013-01-01

    Concentrations and isotopic compositions of Hg and Pb were measured in a sediment core collected from Lake Ballinger, near Seattle, Washington, USA. Lake Ballinger has been affected by input of metal contaminants emitted from the Tacoma smelter, which operated from 1887 to 1986 and was located about 53 km south of the lake. Concentrations and loadings of Hg and Pb in Lake Ballinger increased by as much as three orders of magnitude during the period of smelting as compared to the pre-smelting period. Concentrations and loadings of Hg and Pb then decreased by about 55% and 75%, respectively, after smelting ended. Isotopic compositions of Hg changed considerably during the period of smelting (δ202Hg = −2.29‰ to −0.38‰, mean −1.23‰, n = 9) compared to the pre-smelting period (δ202Hg = −2.91‰ to −2.50‰, mean −2.75‰, n = 4). Variations were also observed in 206Pb/207Pb and 208Pb/207Pb isotopic compositions during these periods. Data for Δ199Hg and Δ201Hg indicate mass independent fractionation (MIF) of Hg isotopes in Lake Ballinger sediment during the smelting and post-smelting period and suggest MIF in the ore smelted, during the smelting process, or chemical modification at some point in the past. Negative values for Δ199Hg and Δ201Hg for the pre-smelting period are similar to those previously reported for soil, peat, and lichen, likely suggesting some component of atmospheric Hg. Variations in the concentrations and isotopic compositions of Hg and Pb were useful in tracing contaminant sources and the understanding of the depositional history of sedimentation in Lake Ballinger.

  5. Shallow-marine sediment cores record climate variability and earthquake activity off Lisbon (Portugal) for the last 2000 years

    NASA Astrophysics Data System (ADS)

    Abrantes, F.; Lebreiro, S.; Rodrigues, T.; Gil, I.; Bartels-Jónsdóttir, H.; Oliveira, P.; Kissel, C.; Grimalt, J. O.

    2005-12-01

    Sea Surface Temperature (SST), river discharge and biological productivity have been reconstructed from a multi-proxy study of a high-temporal-resolution sedimentary sequence recovered from the Tagus deposition center off Lisbon (Portugal) for the last 2000 years. SST shows 2 °C variability on a century scale that allows the identification of the Medieval Warm Period (MWP) and the Little Ice Age (LIA). High Iron (Fe) and fine-sediment deposition accompanied by high n-alkane concentrations and presence of freshwater diatoms during the LIA (1300-1900 AD) (Science 292 (2001) 662) suggest augmented river discharge, whereas higher total-alkenone concentrations point to increased river-induced productivity. During the MWP (550-1300 AD) (Science 292 (2001) 662) larger mean-grain size and low values of magnetic susceptibility, and concentrations of Fe, n-alkanes, and n-alcohols are interpreted to reflect decreased runoff. At the same time, increased benthic and planktonic foraminifera abundances and presence of upwelling related diatoms point to increased oceanic productivity. On the basis of the excellent match found between the negative phases of the North Atlantic Oscillation (NAO) index and the intensified Tagus River discharge observed for the last century, it is hypothesized that the increased influx of terrigenous material during the LIA reflects a negative NAO-like state or the occurrence of frequent extreme NAO minima. During the milder few centuries of the MWP, stronger coastal upwelling conditions are attributed to a persistent, positive NAO-like state or the frequent occurrence of extreme NAO maxima. The peak in magnetic susceptibility, centered at 90 cm composite core depth (ccd), is interpreted as the result of the well-known 1755 AD Lisbon earthquake. The Lisbon earthquake and accompanying tsunami are estimated to have caused the loss of 39 cm of sediment (355 years of record—most of the LIA) and the instantaneous deposition of a 19-cm sediment bed.

  6. Anthropogenic impact on the Swartvlei lake system in the Wilderness area (South Africa) as reflected in a sediment core

    NASA Astrophysics Data System (ADS)

    Haberzettl, Torsten; Kirsten, Kelly; Franz, Sarah; Reinwarth, Bastian; Baade, Jussi; Daut, Gerhard; Kasper, Thomas; Meadows, Michael; Su, Youliang; Mäusbacher, Roland

    2016-04-01

    Swartvlei is one of the most thoroughly investigated lacustrine coastal systems in South Africa. However, studies focussing on anthropogenic impacts on sediment deposition in the most recent past (i.e., the last 30-40 years) are rare. A 96 cm long sediment core, covering the past two centuries, provides evidence for intense changes over the last few decades probably related to anthropogenic activities, such as farming, water abstraction etc. A decrease in marine influence is observed starting somewhat earlier but was potentially supported by human management activities. The development of the age-depth model turned out to be a serious issue, as old marine carbon affected samples impacted the robustness of the chronology, hence further investigations are required in most coastal geoarchives from South Africa. A multi-dating approach using several methods is suggested as errors in the chronology distinctly impact paleoenvironmental reconstructions (timing, flux rates etc.). In this context initial paleomagnetic secular variation data are presented, which needs further exploration and inclusion in the future.

  7. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments.

    PubMed

    Konno, Yoshihiro; Jin, Yusuke; Uchiumi, Takashi; Nagao, Jiro

    2013-06-01

    We present a novel setup for measuring the effective gas-water permeability of methane-hydrate-bearing sediments. We developed a core holder with multiple pressure taps for measuring the pressure gradient of the gas and water phases. The gas-water flooding process was simultaneously detected using an X-ray computed tomography scanner. We successfully measured the effective gas-water permeability of an artificial sandy core with methane hydrate during the gas-water flooding test.

  8. Extensive lake sediment coring survey on Sub-Antarctic Indian Ocean Kerguelen Archipelago (French Austral and Antarctic Lands)

    NASA Astrophysics Data System (ADS)

    Arnaud, Fabien; Fanget, Bernard; Malet, Emmanuel; Poulenard, Jérôme; Støren, Eivind; Leloup, Anouk; Bakke, Jostein; Sabatier, Pierre

    2016-04-01

    Recent paleo-studies revealed climatic southern high latitude climate evolution patterns that are crucial to understand the global climate evolution(1,2). Among others the strength and north-south shifts of westerlies wind appeared to be a key parameter(3). However, virtually no lands are located south of the 45th South parallel between Southern Georgia (60°W) and New Zealand (170°E) precluding the establishment of paleoclimate records of past westerlies dynamics. Located around 50°S and 70°E, lost in the middle of the sub-Antarctic Indian Ocean, Kerguelen archipelago is a major, geomorphologically complex, land-mass that is covered by hundreds lakes of various sizes. It hence offers a unique opportunity to reconstruct past climate and environment dynamics in a region where virtually nothing is known about it, except the remarkable recent reconstructions based on a Lateglacial peatbog sequence(4). During the 2014-2015 austral summer, a French-Norwegian team led the very first extensive lake sediment coring survey on Kerguelen Archipelago under the umbrella of the PALAS program supported by the French Polar Institute (IPEV). Two main areas were investigated: i) the southwest of the mainland, so-called Golfe du Morbihan, where glaciers are currently absent and ii) the northernmost Kerguelen mainland peninsula so-called Loranchet, where cirque glaciers are still present. This double-target strategy aims at reconstructing various independent indirect records of precipitation (glacier advance, flood dynamics) and wind speed (marine spray chemical species, wind-borne terrigenous input) to tackle the Holocene climate variability. Despite particularly harsh climate conditions and difficult logistics matters, we were able to core 6 lake sediment sites: 5 in Golfe du Morbihan and one in Loranchet peninsula. Among them two sequences taken in the 4km-long Lake Armor using a UWITEC re-entry piston coring system by 20 and 100m water-depth (6 and 7m-long, respectively). One

  9. Lake Chad sedimentation and environments during the late Miocene and Pliocene: New evidence from mineralogy and chemistry of the Bol core sediments

    NASA Astrophysics Data System (ADS)

    Moussa, Abderamane; Novello, Alice; Lebatard, Anne-Elisabeth; Decarreau, Alain; Fontaine, Claude; Barboni, Doris; Sylvestre, Florence; Bourlès, Didier L.; Paillès, Christine; Buchet, Guillaume; Duringer, Philippe; Ghienne, Jean-François; Maley, Jean; Mazur, Jean-Charles; Roquin, Claude; Schuster, Mathieu; Vignaud, Patrick; Brunet, Michel

    2016-06-01

    This study presents mineralogical and geochemical data from a borehole drilled near the locality of Bol (13°27‧N, 14°44‧E), in the eastern archipelago of the modern Lake Chad (Chad). Samples were taken from a ∼200 m long core section forming a unique sub-continuous record for Central Africa. Among these samples, 25 are dated between 6.4 and 2.4 Ma. Dominant minerals are clays (66% average) mixed with varying amounts of silt and diatomite. The clay fraction consists of Fe-beidellite (87% average), kaolinite, and traces of illite. Clay minerals originate from the erosion of the vertisols that surrounded the paleolake Chad. Sedimentological data indicate that a permanent lake (or recurrent lakes) existed from 6.7 until 2.4 Ma in the vicinity of Bol. By comparison with modern latitudinal distribution of vertisols in Africa the climate was Sudanian-like. Changes in the sedimentation rate suggest a succession of wetter and dryer periods during at least six million years in the region during the critical time period covering the Miocene-Pliocene transition.

  10. Event layers in the Japanese Lake Suigetsu 'SG06' sediment core: description, interpretation and climatic implications

    NASA Astrophysics Data System (ADS)

    Schlolaut, Gordon; Brauer, Achim; Marshall, Michael H.; Nakagawa, Takeshi; Staff, Richard A.; Bronk Ramsey, Christopher; Lamb, Henry F.; Bryant, Charlotte L.; Naumann, Rudolf; Dulski, Peter; Brock, Fiona; Yokoyama, Yusuke; Tada, Ryuji; Haraguchi, Tsuyoshi

    2014-01-01

    Event layers in lake sediments are indicators of past extreme events, mostly the results of floods or earthquakes. Detailed characterisation of the layers allows the discrimination of the sedimentation processes involved, such as surface runoff, landslides or subaqueous slope failures. These processes can then be interpreted in terms of their triggering mechanisms. Here we present a 40 ka event layer chronology from Lake Suigetsu, Japan. The event layers were characterised using a multi-proxy approach, employing light microscopy and μXRF for microfacies analysis. The vast majority of event layers in Lake Suigetsu was produced by flood events (362 out of 369), allowing the construction of the first long-term, quantitative (with respect to recurrence) and well dated flood chronology from the region. The flood layer frequency shows a high variability over the last 40 ka, and it appears that extreme precipitation events were decoupled from the average long-term precipitation. For instance, the flood layer frequency is highest in the Glacial at around 25 ka BP, at which time Japan was experiencing a generally cold and dry climate. Other cold episodes, such as Heinrich Event 1 or the Late Glacial stadial, show a low flood layer frequency. Both observations together exclude a simple, straightforward relationship with average precipitation and temperature. We argue that, especially during Glacial times, changes in typhoon genesis/typhoon tracks are the most likely control on the flood layer frequency, rather than changes in the monsoon front or snow melts. Spectral analysis of the flood chronology revealed periodic variations on centennial and millennial time scales, with 220 yr, 450 yr and a 2000 yr cyclicity most pronounced. However, the flood layer frequency appears to have not only been influenced by climate changes, but also by changes in erosion rates due to, for instance, earthquakes.

  11. Thermal regime of permafrost at Prudhoe Bay, Alaska

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.; Marshall, B.V.; Moses, T.H.

    1982-01-01

    Temperature measurements through permafrost in the oil field at Prudhoe Bay, Alaska, combined with laboratory measurements of the thermal conductivity of drill cuttings permit an evaluation of in situ thermal properties and an understanding of the general factors that control the geothermal regime. A sharp contrast in temperature gradient at ~600 m represents a contrast in thermal conductivity caused by the downward change from interstitial ice to interstitial water at the base of permafrost under near steady-state conditions. Interpretation of the gradient contrast in terms of a simple model for the conductivity of an aggregate yields the mean ice content and thermal conductivities for the frozen and thawed sections (8.1 and 4.7 mcal/cm sec ?C, respectively). These results yield a heat flow of ~1.3 HFU which is similar to other values on the Alaskan Arctic Coast; the anomalously deep permafrost is a result of the anomalously high conductivity of the siliceous ice-rich sediments. Curvature in the upper 160 m of the temperature profiles represents a warming of ~1.8?C of the mean surface temperature, and a net accumulation of 5-6 kcal/cm 2 by the solid earth surface during the last 100 years or so. Rising sea level and thawing sea cliffs probably caused the shoreline to advance tens of kilometers in the last 20,000 years, inundating a portion of the continental shelf that is presently the target of intensive oil exploration. A simple conduction model suggests that this recently inundated region is underlain by near-melting ice-rich permafrost to depths of 300-500 m; its presence is important to seismic interpretations in oil exploration and to engineering considerations in oil production. With confirmation of the permafrost configuration by offshore drilling, heat-conduction models can yield reliable new information on the chronology of arctic shorelines.

  12. Spatial and Temporal Variations in the Geomagnetic Field Determined From the Paleomagnetism of Sediment Cores From Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Acton, G.

    2014-12-01

    Quantifying the spatial and temporal variations of the main geomagnetic field at Earth's surface is important for understanding underlying geodynamo processes and conditions near the core-mantle boundary. Much of the geomagnetic variability, known as secular variation, occurs on timescales of tens of years to many thousands of years, requiring the use of paleomagnetic observations to derive continuous records of the ancient field, referred to as paleosecular variation (PSV) records. Marine depositional systems where thick sedimentary sections accumulate at high sedimentation rates provide some of the best locations for obtaining long continuous PSV records that can reveal both the short- and long-term changes in the field. Scientific ocean drilling has been successful at recovering many such sections and the paleomagnetic records from these reveal how the amplitude of PSV differs between sites and through time. In this study, several such records cored during Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (IODP), and other cruises from high, mid, and low latitudes will be used to quantify time intervals of low and high PSV, to examine time-average properties of the field, to map spatial variations in the angular dispersion of the virtual geomagnetic pole (VGP), and to assess whether the spatial variation in angular dispersion changes with time.

  13. The Influence of CaCO3 Dissolution on Core Top Radiocarbon Ages for Deep-Sea Sediments

    NASA Astrophysics Data System (ADS)

    Broecker, Wallace S.; Klas, Mieczyslawa; Clark, Elizabeth; Bonani, Georges; Ivy, Susan; Wolfli, Willy

    1991-10-01

    Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.

  14. Conversion of GISP2-based sediment core age models to the GICC05 extended chronology for coherent spatial analysis

    NASA Astrophysics Data System (ADS)

    Obrochta, Stephen; Yokoyama, Yusuke; Morén, Jan; Crowley, Thomas

    2014-05-01

    Marine and lacustrine sediment-based paleoclimate records are often not comparable within the early to middle portion of the last glacial cycle. This is due in part to significant revisions over the past 15 years to the Greenland ice core chronologies commonly used to assign ages outside of the range of radiocarbon dating, which results in temporal offsets of up to 4,000 years between recently published and classical proxy data. Therefore, creation of a compatible chronology is required prior to analysis of the spatial and temporal nature of climate variability at multiple locations. This is accomplished with an automated mathematical function that updates GISP2-based chronologies to the newer, NGRIP GICC05 age scale between 8.24 and 103.74 ka b2k. The script uses, to the extent currently available, climate-independent volcanic synchronization of these two ice cores, supplemented by oxygen isotope alignment. Results of quantitative synthesis that fail to account for offset may produce spurious results.

  15. Late Quaternary accretion and decline of syngenetic ice-rich permafrost

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Strauss, Jens; Fuchs, Margret C.; Schirrmeister, Lutz

    2016-04-01

    The region of perennially frozen ground constitutes one quarter of the northern hemisphere landmass. Negative annual mean air temperatures and ground freezing periods exceeding ground thaw periods are the prerequisites for downward freezing of loose deposits and bedrock in non-glaciated regions. Hence, permafrost distribution and thickness on Earth are closely related to late Quaternary climate variations and ecosystem modifications. Generally, glacial stages are expected to promote permafrost accretion and ground ice formation in accumulating sediments, whereas interglacial stages lead to intense permafrost thaw and ground-ice melt. Deep freezing synchronous with ongoing sedimentation is termed as syngenetic while epigenetic freezing occurs in pre-existing deposits. Typical landforms of syngenetic permafrost are ice-wedge polygons of past tundra environments. Ice-rich silty and/or peaty deposits intersected by large ice wedges (up to several decameters in height and meters in with) build-up unique Ice Complex (IC) strata, which are aligned to mid- and late Pleistocene stadial and interstadial stages. The most prominent example for such formations is the Yedoma IC of MIS 3 interstadial age. Increasing air and ground temperatures during warm stages disturbed the thermal equilibrium at the upper permafrost boundary and subsequently led to permafrost thaw, ground-ice melt and surface subsidence. Typical permafrost degradation processes are thermokarst and thermo-erosion that result in large lake-filled basins (up to kilometers in diameter) and valley structures, respectively. The modern periglacial surface in Alaskan and East Siberian lowlands preserves Yedoma IC remnants in uplands and hills next to widely-distributed thermokarst basins since lateglacial and Holocene warming affected up to 70% of the original IC distribution on an area of more than 1,000,000 km2. The overarching climate-driven pattern of cold-stage IC permafrost accretion and warm-stage IC permafrost

  16. Apollo 11 drive-tube core samples: an initial physical analysis of lunar surface sediment.

    PubMed

    Fryxell, R; Anderson, D; Carrier, D; Greenwood, W; Heiken, G

    1970-01-30

    Two drive-tube core samples were obtained at Tranquillity Base. Fines include much glass, are unweathered, medium gray, loose, nonstructured, very weakly coherent, and demonstrate both accumulation and mixing in a waterless vacuum environment. In contrast to chemical weathering characteristic on the earth, lunar alteration processes are primarily mechanical. We infer that environmental processes of the lunar surface may be expressed as follows: R (regolith) = f(cl, p, r, t, b, a, . . .), in which climate (cl) is constant and the time (t)-de-pendent processes of bombardment (b) and accumulation (a) assume significance unparalleled on the earth because of their effects on parent material (p) and relief (r).

  17. Controls on the distribution and fractionation of yttrium and rare earth elements in core sediments from the Mandovi estuary, western India

    NASA Astrophysics Data System (ADS)

    Prajith, A.; Rao, V. Purnachandra; Kessarkar, Pratima M.

    2015-01-01

    Mineralogy, major elements (Fe, Mn and Al), rare earths and yttrium (REY) of bulk sediments were analyzed in four gravity cores recovered along the main channel of the Mandovi estuary, western India, to determine the sources and controls on REY distribution. The accelerator mass spectrometer (AMS) ages of total organic carbon indicated modern age for the sediments of the upper estuary and, maximum mean ages of 1588 years AD and 539 years AD for the bottom sediments of the cores in the lower estuary and bay, respectively. The sediments of the upper/middle estuary showed abundant hematite, magnetite and goethite and high Fe, Mn, total-REE (ΣREE) and Y, while those in the lower estuary/bay showed abundant silicate minerals and relatively low Fe, Mn, ΣREE and Y. ΣREE showed significant correlation with clay and silt fractions and Y, Al and organic carbon (OC) content of the sediments. The light to heavy REE ratios (LREE/HREE) of sediments were lower than in Post-Archean Australian Shale (PAAS). The PAAS-normalized rare earths and yttrium (REY; Y inserted between Dy and Ho) patterns of sediments showed middle REE (MREE)- and HREE-enrichment with positive Eu anomaly (Eu/Eu*) and variable Ce anomaly (Ce/Ce*). The REY of sediments is primarily controlled by its texture and REE of source sediment, which is ore material-dominated in the upper/middle estuary and silicate material-dominated in the lower estuary/bay. Low LREE/HREE ratios suggest that very fine-grained sediments were carried away from the estuary because of high-energy conditions. Fractionations of REY (Y/Ho, Sm/Nd, Ce/Ce* and Eu/Eu*) are controlled by different mechanisms. High Y/Ho ratios in clayey silts are due to redistribution of Y and Ho by adsorption onto organic-rich, clays. Variations in Sm/Nd ratios are similar to that of Eu/Eu* in cores from the lower estuary/bay and are controlled by mineral constituents of the sediments. Positive Ce and Eu anomalies are inherited from ore material, and ore

  18. Carbon Stocks in Permafrost-Affected Soils of the Lena River Delta

    NASA Astrophysics Data System (ADS)

    Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.

    2012-12-01

    The soil organic carbon stock (SSOC) of soils in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies report mainly the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 29) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 7 kg m-2 and 48 kg m-2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 29 kg m-2 (n = 22) for the first terrace and 14 kg m-2 (n = 7) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions a mean SSOC of 27 kg m-2 (min: 0.1 kg m-2, max: 126 kg m-2) for a depth of 1 m was reported [1]. For up-scaling solely over the soil-covered areas of the Lena River Delta, we excluded all water bodies >3,600 m2 from the geomorphological units studied (first river terrace and the active floodplains) and

  19. Problems with the dating of sediment core using excess (210)Pb in a freshwater system impacted by large scale watershed changes.

    PubMed

    Baskaran, Mark; Nix, Joe; Kuyper, Clark; Karunakara, N

    2014-12-01

    Pb-210 dating of freshwater and coastal sediments have been extensively conducted over the past 40 years for historical pollution reconstruction studies, sediment focusing, sediment accumulation and mixing rate determination. In areas where there is large scale disturbance of sediments and the watershed, the vertical profiles of excess (210)Pb ((210)Pbxs) could provide erroneous or less reliable information on sediment accumulation rates. We analyzed one sediment core from Hendrix Lake in southwestern Arkansas for excess (210)Pb and (137)Cs. There is no decrease in excess (210)Pb activity with depth while the (137)Cs profile indicates sharp peak corresponding to 1963 and the (137)Cs penetration depth of (137)Cs corresponds to 1952. The historical data on the accelerated mercury mining during 1931-1944 resulted in large-scale Hg input to this watershed. Using the peak Hg activity as a time marker, the obtained sediment accumulation rates agree well with the (137)Cs-based rates. Four independent evidences (two-marker events based on (137)Cs and two marker events based on Hg mining activity) result in about the same sedimentation rates and thus, we endorse earlier suggestion that (210)Pb profile always needs to be validated with at least one another independent method. We also present a concise discussion on what important factors that can affect the vertical profiles of (210)Pbxs in relatively smaller lakes.

  20. Pb Concentration and Stable PB Isotopes in Dated-Core Sediments in the Ulleung Basin, East/japan Sea

    NASA Astrophysics Data System (ADS)

    Woo, J.; Choi, M.; Kim, D.

    2008-12-01

    This study investigated temporal and spatial variation of Pb and stable Pb isotopes accumulated in Ulleung Basin core sediments (12) using MC ICP/MS in order to identify the sources of anthropogenic Pb in the East/Japan Sea. Leached (1M HCl) Pb concentration and isotope ratios (207Pb/206Pb and 208Pb/206Pb) ware constant at around 20 mg/kg and 0.845 and 2.092 from 1700 to 1930 year, respectively and increased steadily up to 40 mg/kg and 0.873 to 2.129 at the beginning of 2000s, increased up to twice in concentration and as much as 3.31% and 1.64%. On the other hand, residual Pb concentrations were nearly constant for past 400 yrs. From the vertical profiles of Pb concentration and two end-members mixing model, anthropogenic Pb concentration and isotope ratios were estimated. The transport pathways of anthropogenic Pb could be estimated from 1) the comparison between the inventories of excess 210Pb in each sediment column and the input fluxes from the atmosphere and seawater column, 2) between the accumulation rate of anthropogenic Pb and mass accumulation rate of sediments. From the detailed evaluation for the pathways and isotope ratios of anthropogenic Pb, we proposed probable source of anthropogenic Pb. Pb emission by coal burning from the China and Korea initiated the accumulation of anthropogenic Pb in the sediments of East/Japan Sea from 1930s. The accumulation of Pb increased by the addition of anti-nocking agents from both countries untill beginning of 1990s, but from the middle of 1990s to the present, the phase-out of gasoline additives and the rapid increase of coal burning from China maintained the atmospheric Pb levels in the Ulleung basin nearly similar to before. However the local sources (e.g. ocean dumping) within this basin might take an important role in the rapid increase of anthropogenic Pb accumulation in slope areas from the middle of 1990s.

  1. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    USGS Publications Warehouse

    Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R

    2014-01-01

    Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions

  2. ESA DUE Permafrost: Evaluation of remote sensing derived products using ground data from the Global Terrestrial Network of Permafrost (GTN-P)

    NASA Astrophysics Data System (ADS)

    Elger, K. K.; Heim, B.; Lantuit, H.; Boike, J.; Bartsch, A.; Paulik, C.; Duguay, C. R.; Hachem, S.; Soliman, A. S.

    2011-12-01

    The task of the ESA DUE Permafrost project is to build up an Earth observation service for high-latitudinal permafrost applications with extensive involvement of the permafrost research community. The DUE Permafrost products derived from remote sensing are land surface temperature (LST), surface soil moisture (SSM), surface frozen and thawed state (freeze/ thaw), terrain, land cover, and surface waters. Weekly and monthly averages for most of the DUE Permafrost products will be made available for the years 2007-2010. The DUE Permafrost products are provided for the circumpolar permafrost area (north of 55°N) with 25 km spatial resolution. In addition, regional products with higher spatial resolution (300-1000 m/ pixel) were developed for five case study regions. These regions are: (1) the Laptev Sea and Eastern Siberian Sea Region (RU, continuous very cold permafrost/ tundra), (2) the Yakutsk Region (RU, continuous cold permafrost/ taiga), (3) the Western Siberian transect including Yamal Peninsula and Ob Region (RU, continuous to discontinuous/ taiga-tundra), (4) the Alaska Highway Transect (US, continuous to discontinuous/ taiga-tundra), and (5) the Mackenzie Delta and Valley Transect (CA, continuous to discontinuous/ taiga-tundra). The challenge of the programme is to adapt remote sensing products that are well established and tested in agricultural low and mid-latitudinal areas for highly heterogeneous taiga/ tundra permafrost landscapes in arctic regions. Ground data is essential for the evaluation of DUE Permafrost products and is provided by user groups and global networks. A major part of the DUE Permafrost core user group is contributing to GTN-P, the Global Terrestrial Network of Permafrost. Its main programmes, the Circumpolar Active Layer Monitoring (CALM) and the Thermal State of Permafrost (TSP) have been thoroughly overhauled during the last International Polar Year (2007-2008). Their spatial coverage has been extended to provide a true circumpolar

  3. Zn and Cu Isotopes as Tracers of Anthropogenic Contamination in a Sediment Core from an Urban Lake

    USGS Publications Warehouse

    Thapalia, Anita; Borrok, David M.; Van Metre, Peter C.; Musgrove, MaryLynn; Landa, Edward R.

    2010-01-01

    In this work, we use stable Zn and Cu isotopes to identify the sources and timing of the deposition of these metals in a sediment core from Lake Ballinger near Seattle, Washington, USA. The base of the Lake Ballinger core predates settlement in the region, while the upper sections record the effects of atmospheric emissions from a nearby smelter and rapid urbanization of the watershed. δ66Zn and δ65Cu varied by 0.50%o and 0.29%o, respectively, over the 500 year core record. Isotopic changes were correlated with the presmelter period (~1450 to 1900 with δ66Zn = +0.39%o ± 0.09%o and δ65Cu = +0.77%o ± 0.06%o), period of smelter operation (1900 to 1985 with δ66Zn = +0.14 ± 0.06%o and δ65Cu = +0.94 ± 0.10%o), and postsmelting/stable urban land use period (post 1985 with δ66Zn = 0.00 ± 0.10%o and δ65Cu = +0.82%o ± 0.12%o). Rapid early urbanization during the post World War II era increased metal loading to the lake but did not significantly alter the δ66Zn and δ65Cu, suggesting that increased metal loads during this time were derived mainly from mobilization of historically contaminated soils. Urban sources of Cu and Zn were dominant since the smelter closed in the 1980s, and the δ66Zn measured in tire samples suggests tire wear is a likely source of Zn.

  4. Permafrost on Mars: distribution, formation, and geological role

    NASA Technical Reports Server (NTRS)

    Nummedal, D.

    1984-01-01

    The morphology of channels, valleys, chaotic and fretted terrains and many smaller features on Mars is consistent with the hypothesis that localized deterioration of thick layers of ice-rich permafrost was a dominant geologic process on the Martian surface. Such ground ice deterioration gave rise to large-scale mass movement, including sliding, slumping and sediment gravity flowage, perhaps also catastropic floods. In contrast to Earth, such mass movement processes on Mars lack effective competition from erosion by surface runoff. Therefore, Martian features due to mass movement grew to reach immense size without being greatly modified by secondary erosional processes. The Viking Mission to Mars in 1976 provided adequate measurements of the relevant physical parameters to constrain models for Martian permafrost.

  5. RECENT DECLINES IN PAH, PCB, AND TOXAPHENE LEVELS IN THE NORTHERN GREAT LAKES AS DETERMINED FROM HIGH RESOLUTION SEDIMENT CORES. (R825151)

    EPA Science Inventory

    Sediment cores were collected from two sites in Grand Traverse Bay, Lake
    Michigan in May 1998, dated using 210Pb geochronology, and analyzed
    for polychlorinated biphenyl (PCB) congeners, polycyclic aromatic hydrocarbons
    (PAHs), and toxaphene. The extraor...

  6. Mercury accumulation in sediment cores from three Washington state lakes: evidence for local deposition from a coal-fired power plant.

    PubMed

    Furl, Chad V; Meredith, Callie A

    2011-01-01

    Mercury accumulation rates measured in age-dated sediment cores were compared at three Washington state lakes. Offutt Lake and Lake St. Clair are located immediately downwind (18 and 28 km, respectively) of a coal-fired power plant and Lake Sammamish is located outside of the immediate area of the plant (110 km). The sites immediately downwind of the power plant were expected to receive increased mercury deposition from particulate and reactive mercury not deposited at Lake Sammamish. Mercury accumulation in cores was corrected for variable sedimentation, background, and sediment focusing to estimate the anthropogenic contribution (Hg(A,F)). Results indicated lakes immediately downwind of the power plant contained elevated Hg(A,F) levels with respect to the reference lake. Estimated fluxes to Lake Sammamish were compared to measured values from a nearby mercury wet deposition collector to gauge the efficacy of the core deconstruction techniques. Total deposition calculated through the sediment core (20.7 μg/m²/year) fell just outside of the upper estimate (18.9 μg/m²/year) of total deposition approximated from the wet deposition collector.

  7. Simultaneous determination of mercury and organic carbon using a direct mercury analyzer: Mercury profiles in sediment cores from oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed for total-mercury (Hg) using a direct mercury analyzer (DMA). In the process we evaluated the feasibility of simultaneously determining organic matter content by...

  8. A promising tool for subsurface permafrost mapping-An application of airborne geophysics from the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Abraham, Jared

    2011-01-01

    In the area of Fort Yukon, the AEM survey shows elevated resistivities extending to depth, likely indicative of thick permafrost. This depth corresponds well to observations from a borehole drilled in the area in the late 1990s, which detected permafrost to a depth of about 100 meters (Clark and others, 2009). In contrast to the area of Fort Yukon, the Yukon River and its floodplain are not associated with deep resistive sediments, suggesting a lack of deep permafrost, at least within the depth range of the AEM mapping (fig. 3).

  9. Aspartic Acid Racemization and Age-Depth Relationships for Organic Carbon in Siberian Permafrost

    NASA Astrophysics Data System (ADS)

    Brinton, Karen L. F.; Tsapin, Alexandre I.; Gilichinsky, David; McDonald, Gene D.

    2002-03-01

    We have analyzed the degree of racemization of aspartic acid in permafrost samples from Northern Siberia, an area from which microorganisms of apparent ages up to a few million years have previously been isolated and cultured. We find that the extent of aspartic acid racemization in permafrost cores increases very slowly up to an age of ~25,000 years (around 5 m in depth). The apparent temperature of racemization over the age range of 0-25,000 years, determined using measured aspartic acid racemization rate constants, is -19°C. This apparent racemization temperature is significantly lower than the measured environmental temperature (-11 to -13°C) and suggests active recycling of D-aspartic acid in Siberian permafrost up to an age of around 25,000 years. This indicates that permafrost organisms are capable of repairing some molecular damage incurred while in a "dormant" state over geologic time.

  10. Hydrothermal energy transfer and contribution to autotrophic CO2 fixation down sediment core in Central Indian Basin

    NASA Astrophysics Data System (ADS)

    Das, Anindita; LokaBharathi P., A.

    2014-05-01

    Hydrothermal Energy Transfer is not only restricted to active vents sites but also to the passive ones. These passive sources could include the sub-seafloor hydrothermal fluid flux derived from distant sources like erupting vents or from deep-mantle. The contribution from such fluxes in stimulating autotrophic carbon fixation could be measurable. In this paper an attempt is made to measure the autotrophic CO2 fixation down a siliceous sediment core (Core 20, 75?30'E, 12?S) adjoining Trace of Rodrigues Triple Junction in the Central Indian Basin (CIB) with a fluid flux influence at 15-20 cms bsf (below sea-floor) which is quite distinct from the pelagic influence on the overlying 0-15 cms bsf. This work assumes that NH4+and S2- are major e-donors/reductants to fuel C-Fixation. The down-core carbon fixation varied from 0.032-0.122μmol C g-1day-1 with the larger peak at 15-20 cms bsf. This coincides with the dips in pore-water concentrations of NH4+ and S2-. Therefore the corresponding standard free energy change (ΔG?') down-core varied from -97 at 4-6 cms bsf to -375 J μmol-1 C fixed m-3 day-1 at 12-14 cms bsf in case of NH4+. In case of S2- the values varied from -42 at 4-6 cms bsf to -162 J μmol-1 m-3 day-1at 12-14 cms bsf. Integrated down-core estimate of ΔG?' is calculated to be -26.97 J μmol-1 C fixation m-2 day-1 during CO2 fixation using NH4+ and -11.7 J μmol-1 C fixation m-2 day-1 using S2-. This fluid-flow influenced layer appears physically as a brown-green transition zone in the core at a depth of 15-20 cm bsf. Interestingly similar observations have been made in >15 such cores around the present test core. These observations suggest that this spreading bed at this depth could be due to the upward fluid flow that then spreads laterally. This spread could perhaps be more than the area that the current observations permit. So the Hydrothermal Energy Transfer is equivalent to -11.70 to -26.97 J μmol-1 C fixation m-2 day-1and corresponds to 88 μmol of

  11. Paleoclimatic record of the late Quaternary from a gravity core sediment of Lake Hovsgol in northern Mongolia

    NASA Astrophysics Data System (ADS)

    Cheong, D.; Kim, B.

    2007-12-01

    Gravity core sediment (HS 7) from Lake Hovsgol(Mongolia) is divided into three sedimentary units on the basis of sediments texture, water contents, occurrence of fossils and sediment color. Unit 1(27¢¦128§¯) is generally massive and is crudely stratified. Ostracods are well preserved over the all interval of Unit1, but diatoms are not well preserved. At Unit2(9¢¦27§¯), mud content is slightly low and lamination is well developed. It is dark greenish gray in the upper part, and dark greenish gray is alternating with light brownish gray in the lower part. Diatom contents increase towards the top and ostracods fragments disappear at the top of Unit 2. Unit3(0¢¦9§¯) is laminated mud in olive gray color. Diatom contents are high but ostracods are not observed in this unit. According to 14C age dating results, we assumed that Unit1 is Pleistocene sediment, Unit2 is sediment of a transitional stage and Unit 3 is Holocene sediment. Chemical composition of trace elements from ostracods show variations through Unit1, especially showing a distinct change at 95¢¦100§¯ interval. It matches to the distribution of ostracod at this interval. Contents of ostracod decrease at the interval and contents of Cytherissa lacustris decrease, but Limnocythere inopinata increase. It was interpreted that warm air was supplied to Lake Hovsgol after LGM(Last Glacial Maximum), causing ice melting. Consequently the bottom environment of Lake Hovsgol experienced some changes as the lake level increased little bit. At the top of Unit 1 appear a lots of pyrite which are arranged in line, and diatoms occure but ostracods are not observed toward the top of Unit 2, and lamination is developed in Unit 2. It means the bottom environment of Lake Hovsgol changed to anoxic condition. At that time, plenty of water was supplied into the lake, resulting in water stratification and cutting off oxygen supply to the bottom of Lake Hovsgol. It made the lake level rise higher, so that the bottom

  12. The rare earth element geochemistry on surface sediments, shallow cores and lithological units of Lake Acıgöl basin, Denizli, Turkey

    NASA Astrophysics Data System (ADS)

    Budakoglu, Murat; Abdelnasser, Amr; Karaman, Muhittin; Kumral, Mustafa

    2015-11-01

    The sediments in Lake Acıgöl, located in SW Anatolia, Turkey, were formed under tectono-sedimentary events. REE geochemical investigations of the Lake Acıgöl sediments, from surface and shallow core sediments at different depths (0-10 cm, 10-20 cm and 20-30 cm) are presented to clarify the characteristics of REE and the nature of source rocks in the lake sediments' and to deduce their paleoenvironmental proxies. The chondrite-normalized REE patterns of these sediments are shown as light enrichment in LREE and flat HREE with a negative Eu anomaly that is close to the continental collision basin (CCB) in its profile; this is not comparable with PAAS and UCC. Inorganic detrital materials control the REE characteristics of the Lake Acıgöl sediments and these sediments were accumulated in oxic and dysoxic depositional conditions and/or at passive margins derived from oceanic island arc rocks. They were affected by low chemical weathering, either at the original source or during transport, before deposition under arid or subtropical humid climatic conditions. In addition, we used GIS techniques (such as Inverse Distance Weighted (IDW) and Geographically Weighted Regression (GWR)) to investigate the spatial interpolation and spatial correlation of the REEs from the lake surface sediments in Lake Acıgöl and its surrounding lithological units. GIS techniques showed that the lithological units (e.g., Hayrettin Formation) north of Lake Acıgöl have high REE contents; however, Eu/Eu∗ values were higher in some lake surface sediments than in lithological units, and that refers to a negative Eu-anomaly. Therefore, Lake Acıgöl sediments are derived from the weathered products, mainly from local, highly basic bedrock around the lake from the Archean crust. The chronology of Lake Acıgöl sediment was conducted using the Constant Rate of Supply (CRS) model. Using the CRS methods for the calculation of sedimentation rate, we obtained a 0.012 g/cm2/year value which is an

  13. Late-Holocene climate andecosystem history from Chesapeake Bay sediment cores, USA

    USGS Publications Warehouse

    Willard, D.A.; Cronin, T. M.; Verardo, S.

    2003-01-01

    Palaeoclimate records from late-Holocene sediments in Chesapeake Bay, the largest estuary in the USA, provide evidence that both decadal to centennial climate variability and European colonization had severe impacts on the watershed and estuary. Using pollen and dinoflagellate cysts as proxies for mid-Atlantic regional precipitation, estuarine salinity and dissolved oxygen (DO) during the last 2300 years, we identified four dry intervals, centred on AD 50 (P1/D1), AD 1000 (P2/D2), AD 1400 (P3) and AD 1600 (P4). Two centennial-scale events, P1/D1 and P2/D2, altered forest composition and led to increased salinity and DO levels in the estuary. Intervals P3 and P4 lasted several decades, leading to decreased production of pine pollen. Periods of dry mid-Atlantic climate correspond to 'megadroughts' identified from tree-ring records in the southeastern and central USA. The observed mid-Atlantic climate variability may be explained by changes in atmospheric circulation resulting in longer-term, perhaps amplified, intervals of meridional flow. After European colonization in the early seventeenth century, forest clearance for agriculture, timber and urbanization altered estuarine water quality, with dinoflagellate assemblages indicating reduced DO and increased turbidity.

  14. Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments

    SciTech Connect

    Spain, J.C.; Pritchard, P.H.; Bourquin, A.W.

    1980-10-01

    Experiments were devised to determine whether exposure to xenobiotics would cause microbial populations to degrade the compounds more rapidly during subsequent exposures. Studies were done with water/sediment systems (ecocores) taken from a salt marsh and a river. Systems were tested for adaptation to the model compounds methyl parathion and p-nitrophenol. /sup 14/CO/sub 2/ released from radioactive parent compounds was used as a measure of mineralization. River populations preexposed to p-nitrophenol at concentrations as low as 60 ..mu..g/liter degraded the nitrophenol much faster than did control populations. River populations preexposed to methyl parathion also adapted to degrade the pesticide more rapidly, but higher concentrations were required. Salt marsh populations did not adapt to degrade methyl parathion. p-nitrophenol-degrading bacteria were isolated from river samples but not from salt marsh samples. Numbers of nitrophenol-degrading bacteria increased 4 to 5 orders of magnitude during adaptation. Results indicate that the ability of populations to adapt depends on the presence of specific microorganisms. Biodegradation rates in laboratory systems can be affected by concentration and prior exposure; therefore, adaptation must be considered when such systems are used to predict the fate of xenobiotics in the environment.

  15. Ground ice formed after underground thermo-erosion of the permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Kanevskiy, M.; Yuri, S.

    2007-12-01

    Cryostratigraphic studies realized in the CRREL permafrost tunnel (¡Ö 64 57 N, 147 37 W) located near Fairbanks, Alaska revealed the presence of multi-directional reticulate ice veins and massive ice bodies in the permafrost. We propose that this reticulate-chaotic cryostructure and the massive ice bodies were formed by inward closed-system freezing of pools of water and saturated sediments trapped in underground tunnels cut in the permafrost by thermo-erosion. The massive ice and the multi-directional reticulate ice veins were likely formed after the cessation of the underground flow, either by tunnel blockage or collapse, or cessation of runoff infiltration in the permafrost. The observed tunnels were slightly inclined and could often be traced for several meters. The properties of the sediments filling these tunnels differed from the enclosing original syngenetic Pleistocene permafrost. The latter was made of ice-rich loess with abundant rootlets and was characterized by a well developed micro-lenticular cryostructure whereas the tunnels were filled with massive ice and/or organic- poor, stratified silts, sands and gravels sediments. The water content of the original syngenetic loess was about twice the water content of the sediments in the underground tunnels. The contact between the original syngenetic loess and the sediments in the tunnels was manifestly discordant and outlined by erosion lag. Release of latent heat from the poll of water and water of the saturated sediments created thaw unconformities at the tunnel boundary. Similar types of massive ice and reticulate-chaotic cryostructures were observed in Holocene to Pleistocene permafrost exposures along the Beaufort Sea Coast, on the Seward Peninsula, on the North Slope and in the Alaskan interior. The massive ice bodies and reticulate-chaotic cryostructures were always associated with, or incorporated within, ice wedges that showed signs of thermo-erosion. This indicates that the process of

  16. Late Quaternary sediment deposition of core MA01 in the Mendeleev Ridge, the western Arctic Ocean: Preliminary results

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyu; Kim, Sunghan; Khim, Boo-Keun; Xiao, Wenshen; Wang, Rujian

    2014-05-01

    Late Quaternary deep marine sediments in the Arctic Ocean are characterized by brown layers intercalated with yellowish to olive gray layers (Poore et al., 1999; Polyak et al., 2004). Previous studies reported that the brown and gray layers were deposited during interglacial (or interstadial) and glacial (or stadial) periods, respectively. A 5.5-m long gravity core MA01 was obtained from the Mendeleev Ridge in the western Arctic Ocean by R/V Xue Long during scientific cruise CHINARE-V. Age (~450 ka) of core MA01 was tentatively estimated by correlation of brown layers with an adjacent core HLY0503-8JPC (Adler et al., 2009). A total of 22 brown layers characterized by low L* and b*, high Mn concentration, and abundant foraminifera were identified. Corresponding gray layers are characterized by high L* and b*, low Mn concentration, and few foraminiferal tests. Foraminifera abundance peaks are not well correlated to CaCO3 peaks which occurred with the coarse-grained (>0.063 mm) fractions (i.e., IRD) both in brown and gray layers. IRDs are transported presumably by sea ice for the deposition of brown layers and by iceberg for the deposition of gray layers (Polyak et al., 2004). A strong correlation coefficient (r2=0.89) between TOC content and C/N ratio indicates that the major source of organic matter is terrestrial. The good correlations of CaCO3 content to TOC (r2=0.56) and C/N ratio (r2=0.69) imply that IRDs contain detrital CaCO3 which mainly originated from the Canadian Arctic Archipelago. In addition, high kaolinite/chlorite (K/C) ratios mostly correspond to CaCO3 peaks, which suggests that the fine-grained particles in the Mendeleev Ridge are transported from the north coast Alaska and Canada where Mesozoic and Cenozoic strata are widely distributed. Thus, the Beaufort Gyre, the predominant surface current in the western Arctic Ocean, played an important role in the sediment delivery to the Mendeleev Ridge. It is worthy of note that the TOC and CaCO3 peaks are

  17. Hominin Sites and Paleolakes Drilling Project. Chew Bahir, southern Ethiopia: How to get from three tonnes of sediment core to > 500 ka of continuous climate history?

    NASA Astrophysics Data System (ADS)

    Foerster, Verena; Asrat, Asfawossen; Cohen, Andrew S.; Gromig, Raphael; Günter, Christina; Junginger, Annett; Lamb, Henry F.; Schaebitz, Frank; Trauth, Martin H.

    2016-04-01

    In search of the environmental context of the evolution and dispersal of Homo sapiens and our close relatives within and beyond the African continent, the ICDP-funded Hominin Sites and Paleolakes Drilling Project (HSPDP) has recently cored five fluvio-lacustrine archives of climate change in East Africa. The sediment cores collected in Ethiopia and Kenya are expected to provide valuable insights into East African environmental variability during the last ~3.5 Ma. The tectonically-bound Chew Bahir basin in the southern Ethiopian rift is one of the five sites within HSPDP, located in close proximity to the Lower Omo River valley, the site of the oldest known fossils of anatomically modern humans. In late 2014, the two cores (279 and 266 m long respectively, HSPDP-CHB14-2A and 2B) were recovered, summing up to nearly three tonnes of mostly calcareous clays and silts. Deciphering an environmental record from multiple records, from the source region of modern humans could eventually allow us to reconstruct the pronounced variations of moisture availability during the transition into Middle Stone Age, and its implications for the origin and dispersal of Homo sapiens. Here we present the first results of our analysis of the Chew Bahir cores. Following the HSPDP protocols, the two parallel Chew Bahir sediment cores have been merged into one single, 280 m long and nearly continuous (>90%) composite core on the basis of a high resolution MSCL data set (e.g., magnetic susceptibility, gamma ray density, color intensity transects, core photographs). Based on the obvious cyclicities in the MSCL, correlated with orbital cycles, the time interval covered by our sediment archive of climate change is inferred to span the last 500-600 kyrs. Combining our first results from the long cores with the results from the accomplished pre-study of short cores taken in 2009/10 along a NW-SE transect across the basin (Foerster et al., 2012, Trauth et al., 2015), we have developed a hypothesis

  18. Analysis of the La:P ratio in lake sediments - Vertical and spatial distribution assessed by a multiple-core survey.

    PubMed

    Yasseri, Said; Epe, Tim S

    2016-06-15

    In recent years, lanthanum modified bentonite has been increasingly applied to eutrophic lakes with the aim of converting potentially bio-available forms of phosphorus in sediments into biologically unavailable forms. In many of these applications, however, no attempts have been made to assess the efficiency and efficacy of the measure in terms of its effect on the sediment. In this study, we collected sediment cores from a heavily eutrophied lake that has previously been treated with lanthanum modified clay. This restoration method is based on the strong ionic bond formed between lanthanum and phosphate which results in the formation of LaPO4 (Rhabdophane) in the sediment. In order to determine the changes that had occurred in the sediments as a result of the addition of the clay, we measured the vertical distribution of lanthanum in the collected cores, calculated La:P ratios of the different sediment layers and used the ratios to determine whether or not the applied dosage was sufficient. By means of the geostatistical method of kriging these values were transferred into maps of different depth intervals to visualize the results. The results indicate that the La:P ratio may be a useful tool which allows lake managers to measure the vertical distribution of lanthanum in sediments following treatments and determine whether or not dosages are sufficient to permanently render sediment phosphorus biologically unavailable. The method may also provide a basis on which to decide whether or not smaller reapplications are needed and can be used to control the dispersion of the material.

  19. Deriving a High-Resolution - Continuous Record of Climate Change for the Past 15,000 cal BP, Maxwell Bay Sediment Core, South Shetland Islands

    NASA Astrophysics Data System (ADS)

    Milliken, K. T.; Anderson, J. B.; Wellner, J. S.; Manley, P.; Bohaty, S.

    2005-12-01

    In the Antarctic Peninusla area, a climatic gradient, created by orographic and oceanographic effects, is manifested in extreme temperature and precipitation patterns. Thus, the area provides a natural laboratory to study the nature and timing of climate change at high southern latitudes during the past several thousand years. Two benchmark long term continuous records can now be compared; Maxwell Bay, situated in a warm wet subpolar climate setting and Palmer Deep, located in a cold wet subpolar climatic regime. Both of these records span the past 14000 years, document the LGM ice pullback and provide the means to contrast climate fluctuations in two different area. This paper presents the preliminary results from a 108 m sediment core (93 % recovery) recovered from Maxwell Bay (South Shetland islands). The pre-existing Palmer Deep cores sampled 50 m of structureless diatom ooze/mud, rhythmically interbedded diatom ooze and pebbly mud and muddy diatomicton (Domack et. al., 2001). The alternation of diatom ooze and diatomaceous mud is interpreted to represent climate driven oscillations of biogenic productivity. Magnetic susceptibility and other paleoenvironmental proxies track biogenic productivity and provide a means to quantify decadal, century, and millennia scales of climate change. Additionally, five global climate intervals are noted including, deglaciation, climatic reversal, Hypsithermal (Holocene Climatic Optimum), Neoglacial, and Little Ice Age. Several radiocarbon dates are used to establish an age model and show significant variations in sedimentation rates through time. The sedimentation rate variations correspond to sediment facies changes within the core. High sedimentation rates (10 to 30 mm/yr) correspond to silty diatomaceous mud with abundant sand laminae interpreted as proximal glaciomarine facies. Lower sedimentation rates (4 mm/yr) are associated with diatomaceous mud with few sand laminae and abundant bioturbation, interpreted to represent

  20. Thin Film XRF measurements (Wet and dry) of Black Sea Sediment Samples And Their Elemental Comparisons With Same Core U Channel Sample.

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Eris, Kadir; Sarı, Erol; Genc, S. Can

    2015-04-01

    This paper presents the XRF data from about 0.3mm thin film sediment core. We prepared 3 different model from same sediment core. The main aim is the finding for elemental changing of spectra variety and their comparison with physical changes of samples about mass and water content. Our XRF measurements were carried out by ITRAX (Cox System), and we have documented the some useful and more precision tricks; a) the first point is that the wet or dry nature of the core, b) the second is the use of U channel sample or thin film sample. For base referencing for the selected elements, we prepared normal wet U channel sample with the thickness of 1.5 cm. We used thin material (film) for keeping the humidty of every core sample's surface. Because humidity loss very high on thin film core sample and very effective to get bad results related to changing of topography and beam emission related to loss of pore water. Our XRF measurements have revealed that the Zn, Ti, Si, V,S, Cr, Mn, Ba, K and Ca elements were measured more precisely and accurate using by the dry thin film sample than those of wet U channel and wet thin sediment sample experiments. Beside this, Y, Zr, Nb, Rb, Sr, Ir, Fe,Co, Ni and Al elements were measured from the wet U channeled core more reliable with respect to the former. Lead (Pb) and Cd elements have behaved constantly during the three types of measurements. Keywords: Thin film XRF, U channel, Elements, Sediment, Measurement

  1. Ultra-high-resolution paleoenvironmental records via direct laser-based analysis of lipid biomarkers in sediment core samples

    PubMed Central

    Wörmer, Lars; Elvert, Marcus; Fuchser, Jens; Lipp, Julius Sebastian; Buttigieg, Pier Luigi; Zabel, Matthias; Hinrichs, Kai-Uwe

    2014-01-01

    Marine microorganisms adapt to their habitat by structural modification of their membrane lipids. This concept is the basis of numerous molecular proxies used for paleoenvironmental reconstruction. Archaeal tetraether lipids from ubiquitous marine planktonic archaea are particularly abundant, well preserved in the sedimentary record and used in several molecular proxies. We here introduce the direct, extraction-free analysis of these compounds in intact sediment core sections using laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LDI FTICR-MS can detect the target lipids in single submillimeter-sized spots on sediment sections, equivalent to a sample mass in the nanogram range, and could thus pave the way for biomarker-based reconstruction of past environments and ecosystems at subannual to decadal resolution. We demonstrate that ratios of selected archaeal tetraethers acquired by LDI FTICR-MS are highly correlated with values obtained by conventional liquid chromatography/MS protocols. The ratio of the major archaeal lipids, caldarchaeol and crenarchaeol, analyzed in a 6.2-cm intact section of Mediterranean sapropel S1 at 250-µm resolution (∼4-y temporal resolution), provides an unprecedented view of the fine-scale patchiness of sedimentary biomarker distributions and the processes involved in proxy signal formation. Temporal variations of this lipid ratio indicate a strong influence of the ∼200-y de Vries solar cycle on reconstructed sea surface temperatures with possible amplitudes of several degrees, and suggest signal amplification by a complex interplay of ecological and environmental factors. Laser-based biomarker analysis of geological samples has the potential to revolutionize molecular stratigraphic studies of paleoenvironments. PMID:25331871

  2. Record of the North American southwest monsoon from Gulf of Mexico sediment cores

    USGS Publications Warehouse

    Poore, R.Z.; Pavich, M.J.; Grissino-Mayer, H. D.

    2005-01-01

    Summer monsoonal rains (the southwest monsoon) are an important source of moisture for parts of the southwestern United States and northern Mexico. Improved documentation of the variability in the southwest monsoon is needed because changes in the amount and seasonal distribution of precipitation in this semiarid region of North America influence overall water supply and fire severity. Comparison of abundance variations in the planktic foraminifer Globigerinoides sacculifer in marine cores from the western and northern Gulf of Mexico with terrestrial proxy records of precipitation (tree-ring width and packrat-midden occurrences) from the southwestern United States indicate that G. sacculifer abundance is a proxy for the southwest monsoon on millennial and submillennial time scales. The marine record confirms the presence of a severe multicentury drought centered ca. 1600 calendar (cal.) yr B.P. as well as several multidecadal droughts that have been identified in a long tree-ring record spanning the past 2000 cal. yr from westcentral New Mexico. The marine record further suggests that monsoon circulation, and thus summer rainfall, was enhanced in the middle Holocene (ca. 6500-4500 14C yr B.P.; ca. 6980-4710 cal. yr B.P.). The marine proxy provides the potential for constructing a highly resolved, well-dated, and continuous history of the southwest monsoon for the entire Holocene. ?? 2005 Geological Society of America.

  3. Historical trend in heavy metal pollution in core sediments from the Masan Bay, Korea.

    PubMed

    Cho, Jinhyung; Hyun, Sangmin; Han, J-H; Kim, Suhyun; Shin, Dong-Hyeok

    2015-06-15

    The spatiotemporal distribution and their mass accumulation rate (MAR) of heavy metals were investigated to evaluate the time-dependent historical trends of heavy metal concentration. The three short cores used for this study were collected from the catchment area (MS-PC5, 60cm length), the central part (MS-PC4, 40cm length) and the offshore (MS-PC2, 60cm length) of the Masan Bay, Korea. The concentration of heavy metals (Co, Ni, Cu, Zn, Cr and Pb) in catchment area is as much as 1.5-2 times higher than central part of the Bay, and about 2 times higher than offshore area approximately. In particular, MAR of metals (Cu, Zn and Pb) show clear spatiotemporal variation, so that MAR's of heavy metal may provide more accurate information in evaluating the degree of pollution. Temporally, the heavy metal concentration had been increased since the late 1970s, but it seems to decrease again since the 2004yr in catchment area. This may came from concentrated efforts for the government to reduce industrial waste release.

  4. Hg Isotope Ratios of a Sediment Core from Plastic Lake, Ontario: Implications for Hg Cycle in Aquatic Environment

    NASA Astrophysics Data System (ADS)

    Xie, Q.; Dillon, P.; Evans, D.; Lu, S.

    2004-12-01

    Hg isotope ratios in a sediment core obtained in Plastic Lake, Ontario, Canada, have been measured by coupling a gold trap with an MC-ICP-MS. The core is about 30 cm in depth and corresponds to a time period of about 250 years, based on 210Pb dating. The samples were combusted at high temperature and the Hg collected onto a gold trap. The gold trap was subsequently heated to release Hg directly into the MC-ICP-MS. An in-house sample introduction system was employed to extend Hg signal duration in order to obtain high precision in isotope ratio measurement. The instrumental mass bias was corrected using Tl introduced simultaneously via an Aridus membrane desolvation nebulizer. Based on long term measurement of a NIST-2225 elemental Hg standard (over 120 measurements since Oct. 2002), the external reproducibility ranges from 45 ppm for 201Hg/202Hg to 100 ppm for 199Hg/202Hg (2 sigma relative standard error). Hg in the sediments shows an increase in light isotope enrichment at about 10 cm depth. The total Hg also displays an increase at the same depth. The depth corresponds to approximately the 1920s, a time period when there was a major increase in coal-burning power generation. Limited Hg isotope data for other terrestrial samples appears to indicate that Hg bound to organic carbon is enriched in light isotopes relative to elemental Hg. For example, the DOLT-3, a dogfish liver standard reference material with half of its Hg as MeHg, has the lightest Hg isotope composition among measured terrestrial samples. It is not clear at this stage whether the increase in total Hg and light Hg isotope enrichment in recent years represent a change in methylation rate of the lake, or an increase in atmospheric deposition of Hg combined with a change in source. Discussions based on available Hg isotope data of terrestrial samples together with other chemical data for the lake will be presented.

  5. A detailed record of the Lower Jaramillo Polarity Transition from a southern hemisphere, deep-sea sediment core

    NASA Astrophysics Data System (ADS)

    Clement, Bradford M.; Kent, Dennis V.

    1984-02-01

    A detailed record of the lower Jaramillo (reversed to normal) polarity transition was obtained from a southern hemisphere, deep-sea sediment core (latitude = 35.91°E, longitude = 59.97°E) The record consists of over 850 samples taken across 140 cm of section. The transition itself is recorded across approximately 70 cm and is represented by more than 475 specimens from about 160 levels giving intermediate directions. The transition is identified by a nearly 180° shift from directions in good agreement with a reversed, axial dipole field to those closely aligned with a normal, axial dipole field for the core site latitude. The inclinations shallow gradually early in the reversal and pass through very steep negative values (-80°) late in the transition. The declinations show little appreciable variation until the inclinations have moved through the near vertical, and then slowly approach values in agreement with a normal polarity field. An intensity low accompanies the directional change during which the intensity drops to less than 15% of the maximum values observed in this sample interval. The intensity fluctuation spans a wider interval than the directional change, decreasing prior to any systematic change in the directions and then increasing to pre-transition levels by the same depth at which the directions have stabilized. The VGP path constructed for this reversal is longitudinally constrained to a certain extent, between 140° and 230° for intermediate VGP latitudes and is roughly centered 120° from the site longitude. This path is therefore a far-sided VGP path in Hoffman's [1977] terminology. Assuming a constant sedimentation rate (67m/Ma) through the Jaramillo Subchron, the duration of the transition is estimated to be 11,200 years to 4,500 years (depending on the criteria) for the directional change, whereas the associated intensity variation occurred over 15,000 to 20,000 years. Considered together with records of the most recent reversal

  6. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska

    USGS Publications Warehouse

    Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.

    2007-01-01

    Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.

  7. CSciBox: An Intelligent Assistant for Dating Ice and Sediment Cores

    NASA Astrophysics Data System (ADS)

    Finlinson, K.; Bradley, E.; White, J. W. C.; Anderson, K. A.; Marchitto, T. M., Jr.; de Vesine, L. R.; Jones, T. R.; Lindsay, C. M.; Israelsen, B.

    2015-12-01

    CSciBox is an integrated software system for the construction and evaluation of age models of paleo-environmental archives. It incorporates a number of data-processing and visualization facilities, ranging from simple interpolation to reservoir-age correction and 14C calibration via the Calib algorithm, as well as a number of firn and ice-flow models. It employs modern database technology to store paleoclimate proxy data and analysis results in an easily accessible and searchable form, and offers the user access to those data and computational elements via a modern graphical user interface (GUI). In the case of truly large data or computations, CSciBox is parallelizable across modern multi-core processors, or clusters, or even the cloud. The code is open source and freely available on github, as are one-click installers for various versions of Windows and Mac OSX. The system's architecture allows users to incorporate their own software in the form of computational components that can be built smoothly into CSciBox workflows, taking advantage of CSciBox's GUI, data importing facilities, and plotting capabilities. To date, BACON and StratiCounter have been integrated into CSciBox as embedded components. The user can manipulate and compose all of these tools and facilities as she sees fit. Alternatively, she can employ CSciBox's automated reasoning engine, which uses artificial intelligence techniques to explore the gamut of age models and cross-dating scenarios automatically. The automated reasoning engine captures the knowledge of expert geoscientists, and can output a description of its reasoning.

  8. Ice-Rich Yedoma Permafrost: A Synthesis of Circum-Arctic Distribution and Thickness

    NASA Astrophysics Data System (ADS)

    Strauss, J.; Fedorov, A. N.; Fortier, D.; Froese, D. G.; Fuchs, M.; Grosse, G.; Günther, F.; Harden, J. W.; Hugelius, G.; Kanevskiy, M. Z.; Kholodov, A. L.; Kunitsky, V.; Laboor, S.; Lapointe Elmrabti, L.; Rivkina, E.; Robinson, J. E.; Schirrmeister, L.; Shmelev, D.; Shur, Y.; Spektor, V.; Ulrich, M.; Veremeeva, A.; Walter Anthony, K. M.; Zimov, S. A.

    2015-12-01

    Vast portions of Arctic and sub-Arctic Siberia, Alaska and the Yukon Territory are covered by ice-rich silts that are penetrated by large ice wedges, resulting from syngenetic sedimentation and freezing. Accompanied by wedge-ice growth, the sedimentation process was driven by cold continental climatic and environmental conditions in unglaciated regions during the late Pleistocene, inducing the accumulation of the unique Yedoma permafrost deposits up to 50 meter thick. Because of fast incorporation of organic material into permafrost during formation, Yedoma deposits include low-decomposed organic matter. Moreover, ice-rich permafrost deposits like Yedoma are especially prone to degradation triggered by climate changes or human activity. When Yedoma deposits degrade, large amounts of sequestered organic carbon as well as other nutrients are released and become part of active biogeochemical cycling. This could be of global significance for the climate warming, as increased permafrost thaw is likely to cause a positive feedback loop. Therefore, a detailed assessment of the Yedoma deposit volume is of importance to estimate its potential future climate response. Moreover, as a step beyond the objectives of this synthesis study, our coverage (see figure for the Yedoma domain) and thickness estimation will provide critical data to refine the Yedoma permafrost organic carbon inventory, which is assumed to have freeze-locked between 83±12 and 129±30 gigatonnes (Gt) of organic carbon. Hence, we here synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma permafrost (see figure for the Yedoma domain) in the framework of an Action Group funded by the International Permafrost Association (IPA). The quantification of the Yedoma coverage is conducted by the digitization of geomorphological and Quaternary geological maps. Further data on Yedoma thickness is contributed from boreholes and exposures reported in the scientific literature.

  9. Chemical gradients in sediment cores from an EPA reference site off the Farallon Islands - Assessing chemical indicators of dredged material disposal in the deep sea

    USGS Publications Warehouse

    Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.

    1998-01-01

    Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.

  10. Geophysical mapping of palsa peatland permafrost

    NASA Astrophysics Data System (ADS)

    Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S. W.

    2015-03-01

    Permafrost peatlands are hydrological and biogeochemical hotspots in the discontinuous permafrost zone. Non-intrusive geophysical methods offer a possibility to map current permafrost spatial distributions in these environments. In this study, we estimate the depths to the permafrost table and base across a peatland in northern Sweden, using ground penetrating radar and electrical resistivity tomography. Seasonal thaw frost tables (at ~0.5 m depth), taliks (2.1-6.7 m deep), and the permafrost base (at ~16 m depth) could be detected. Higher occurrences of taliks were discovered at locations with a lower relative height of permafrost landforms, which is indicative of lower ground ice content at these locations. These results highlight the added value of combining geophysical techniques for assessing spatial distributions of permafrost within the rapidly changing sporadic permafrost zone. For example, based on a back-of-the-envelope calculation for the site considered here, we estimated that the permafrost could thaw completely within the next 3 centuries. Thus there is a clear need to benchmark current permafrost distributions and characteristics, particularly in under studied regions of the pan-Arctic.

  11. Geophysical mapping of palsa peatland permafrost

    NASA Astrophysics Data System (ADS)

    Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S. W.

    2014-10-01

    Permafrost peatlands are hydrological and biogeochemical hotspots in the discontinuous permafrost zone. Non-intrusive geophysical methods offer possibility to map current permafrost spatial distributions in these environments. In this study, we estimate the depths to the permafrost table surface and base across a peatland in northern Sweden, using ground penetrating radar and electrical resistivity tomography. Seasonal thaw frost tables (at ~0.5 m depth), taliks (2.1-6.7 m deep), and the permafrost base (at ~16 m depth) could be detected. Higher occurrences of taliks were discovered at locations with a lower relative height of permafrost landforms indicative of lower ground ice content at these locations. These results highlight the added value of combining geophysical techniques for assessing spatial distribution of permafrost within the rapidly changing sporadic permafrost zone. For example, based on a simple thought experiment for the site considered here, we estimated that the thickest permafrost could thaw out completely within the next two centuries. There is a clear need, thus, to benchmark current permafrost distributions and characteristics particularly in under studied regions of the pan-arctic.

  12. Preliminary Results of the Permafrost Carbon Study in the Lower Kolyma Lowland (Eastern Siberia) Based on Drilling Record

    NASA Astrophysics Data System (ADS)

    Spektor, V. V.; Kholodov, A. L.; Bulygina, E. B.; Andreeva, V.; Broderick, D.; Spawn, S.; Natali, S.; Davydova, A.

    2012-12-01

    In 2012, the Polaris Project (thepolarisproject.org, Director R.M. Holmes) has conducted the permafrost drilling on the Kolyma Lowland for a complex study of permafrost carbon as a potential source for microbial decomposition. In July 2012, the first two boreholes, 15.1 and 13.4 m in depth, were drilled. The first borehole (BH 12/1) was drilled in the stratum of ice complex (yedoma) on the local watershed near the Schuch'e lake in the vicinity of the town Chersky (N68°44.7' E161°23'). The depth of active layer is 45 cm. The permafrost to the depth of 15.1 m represents grey and brown silts with predominant homogeneous structure. Silts contain numerous thread-like roots, scarce plant macrofossils, and in places are colored with unclear spots of ferrugination. Cryostructure is mainly pore ice or thin lense-like ice layers. Wedge ice is observed in the interval 12.5-12.9 m. The moisture volumetric percentage of silts varies along the stratum, mainly, between 40-50%. The organic content, defined in every 20 cm of the core as a loss on ignition, varies between 2-4%. The second borehole (BH 12/2), located in the Pleistocene Park (N68°30.8' E161°30') was drilled through modern floodplain sediments (0-0.6 m) of the Kolyma River with polygonal network at the surface, underlain by peat (0.6-1.3 m), silt deposits of thermokarst lake (1.3-12.0 m), and river grey sands (12.0-13.4 m). The active layer thickness is 65 cm. The cryostructure is predominantly lattice-like. Silts contain modern wedge ice at the depth of 2.5-2.7 m. Mollusk shells and large amount of plant macrofossils are observed in the interval 5.7-8.0 m. The organic content in the thermokarst deposits varies in average within 2-3 %, but is about 1% in the underlying river sands. To investigate permafrost carbon, samples for microbial and enzyme activities, as well as samples of trapped gases were collected from different horizons of frozen cores. Samples for palynological, diatom, and lithological analyses, as

  13. Geologic columns for the ICDP-USGS Eyreville A and B cores, Chesapeake Bay impact structure: Sediment-clast breccias, 1096 to 444 m depth

    USGS Publications Warehouse

    Edwards, L.E.; Powars, D.S.; Gohn, G.S.; Dypvik, H.

    2009-01-01

    The Eyreville A and B cores, recovered from the "moat" of the Chesapeake Bay impact structure, provide a thick section of sediment-clast breccias and minor stratified sediments from 1095.74 to 443.90 m. This paper discusses the components of these breccias, presents a geologic column and descriptive lithologic framework for them, and formalizes the Exmore Formation. From 1095.74 to ??867 m, the cores consist of nonmarine sediment boulders and sand (rare blocks up to 15.3 m intersected diameter). A sharp contact in both cores at ??867 m marks the lowest clayey, silty, glauconitic quartz sand that constitutes the base of the Exmore Formation and its lower diamicton member. Here, material derived from the upper sediment target layers, as well as some impact ejecta, occurs. The block-dominated member of the Exmore Formation, from ??855-618.23 m, consists of nonmarine sediment blocks and boulders (up to 45.5 m) that are juxtaposed complexly. Blocks of oxidized clay are an important component. Above 618.23 m, which is the base of the informal upper diamicton member of the Exmore Formation, the glauconitic matrix is a consistent component in diamicton layers between nonmarine sediment clasts that decrease in size upward in the section. Crystalline-rock clasts are not randomly distributed but rather form local concentrations. The upper part of the Exmore Formation consists of crudely fining-upward sandy packages capped by laminated silt and clay. The overlap interval of Eyreville A and B (940-??760 m) allows recognition of local similarities and differences in the breccias. ?? 2009 The Geological Society of America.

  14. Historical deposition of mercury and selected trace elements to high-elevation National Parks in the Western U.S. inferred from lake-sediment cores

    NASA Astrophysics Data System (ADS)

    Mast, M. Alisa; Manthorne, David J.; Roth, David A.

    2010-07-01

    Atmospheric deposition of Hg and selected trace elements was reconstructed over the past 150 years using sediment cores collected from nine remote, high-elevation lakes in Rocky Mountain National Park in Colorado and Glacier National Park in Montana. Cores were age dated by 210Pb, and sedimentation rates were determined using the constant rate of supply model. Hg concentrations in most of the cores began to increase around 1900, reaching a peak sometime after 1980. Other trace elements, particularly Pb and Cd, showed similar post-industrial increases in lake sediments, confirming that anthropogenic contaminants are reaching remote areas of the Rocky Mountains via atmospheric transport and deposition. Preindustrial (pre-1875) Hg fluxes in the sediment ranged from 5.7 to 42 μg m -2 yr -1 and modern (post-1985) fluxes ranged from 17.7 to 141 μg m -2 yr -1. The average ratio of modern to preindustrial fluxes was 3.2, which is similar to remote lakes elsewhere in North America. Estimates of net atmospheric deposition based on the cores were 3.1 μg m -2 yr -1 for preindustrial and 11.7 μg m -2 yr -1 for modern times. Current-day measurements of wet deposition range from 5.0 to 8.6 μg m -2 yr -1, which are lower than the modern sediment-based estimate of 11.7 μg m -2 yr -1, perhaps owing to inputs of dry-deposited Hg to the lakes.

  15. Historical deposition of mercury and selected trace elements to high-elevation National Parks in the Western U.S. inferred from lake-sediment cores

    USGS Publications Warehouse

    Mast, M. Alisa; Manthorne, David J.; Roth, David A.

    2010-01-01

    Atmospheric deposition of Hg and selected trace elements was reconstructed over the past 150 years using sediment cores collected from nine remote, high-elevation lakes in Rocky Mountain National Park in Colorado and Glacier National Park in Montana. Cores were age dated by 210Pb, and sedimentation rates were determined using the constant rate of supply model. Hg concentrations in most of the cores began to increase around 1900, reaching a peak sometime after 1980. Other trace elements, particularly Pb and Cd, showed similar post-industrial increases in lake sediments, confirming that anthropogenic contaminants are reaching remote areas of the Rocky Mountains via atmospheric transport and deposition. Preindustrial (pre-1875) Hg fluxes in the sediment ranged from 5.7 to 42 μg m−2 yr−1 and modern (post-1985) fluxes ranged from 17.7 to 141 μg m−2 yr−1. The average ratio of modern to preindustrial fluxes was 3.2, which is similar to remote lakes elsewhere in North America. Estimates of net atmospheric deposition based on the cores were 3.1 μg m−2 yr−1 for preindustrial and 11.7 μg m−2 yr−1for modern times. Current-day measurements of wet deposition range from 5.0 to 8.6 μg m−2 yr−1, which are lower than the modern sediment-based estimate of 11.7 μg m−2 yr−1, perhaps owing to inputs of dry-deposited Hg to the lakes.

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  17. Climate-sensitive subsea permafrost and related gas expulsions on the South Kara Sea shelf. Field studies and modeling results.

    NASA Astrophysics Data System (ADS)

    Portnov, Alexey; Mienert, Jurgen; Serov, Pavel

    2015-04-01

    Thawing subsea permafrost controls methane release bearing a considerable impact on the climate-sensitive Arctic environment. Significant expulsion of methane into shallow Russian shelf areas may continue to rise into the atmosphere on the Arctic shelves in response to intense degradation of relict subsea permafrost. The release of formerly trapped gas, essentially methane, is linked to the permafrost evolution. Modeling of the permafrost at the West Yamal shelf allowed describing its evolution from the Late Pleistocene to Holocene. During the previous work we detected extensive emissions of free gas into the water column at the boundary between today's shallow water permafrost and deeper water non-permafrost areas. These gas expulsions formed seismic and hydro-acoustic anomalies on the high-resolution seismic records. We supposed that in the water depths <20m continuous ice-bearing permafrost plays a role of a seal through which gas can not migrate. We integrate 1D modeling results of relict permafrost distributions with these field data from the South Kara Sea. Modeling results suggest a highly-dynamic permafrost system that directly responds to even minor variations of lower and upper boundary conditions, e.g. heat flux from below and/or bottom water temperature changes from above. We present several scenarios of permafrost evolution and show that potentially minimal modern extent of the permafrost at the West Yamal shelf is limited by ~17 m isobaths, whereas maximal probable extent coincides with ~100 m isobaths. The model also predicts seaward tapering of relict permafrost with its maximal thickness 275-390 m near the shore line. We also present sensitivity analysis which define the wider range of modeling results depending on the changing input parameters (e.g. geothermal heat flux, bottom water temperature, porosity of the sediments). The model adapts well to corresponding field data, providing crucial information about the modern permafrost conditions

  18. Mid-Pleistocene Orbital and Millennial Scale Climate Change in a 200 ky lacustrine sediment core from SW North America

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Werne, J. P.; Anderson, R. S.; Heikoop, J. M.; Brown, E. T.; Berke, M. A.; Smith, S.; Goff, F. E.; Hurley, L. L.; Cisneros Dozal, L. M.; Schouten, S.; Sinninghe Damsté, J. S.; Huang, Y.; Toney, J. L.; Fessenden, J. E.; Woldegabriel, G. W.; Geissman, J. W.; Allen, C. D.

    2009-12-01

    How anthropogenic climate change will affect hydroclimate of the arid regions of SW North America over the next century is a concern. Model projections suggest permanent “dust bowl-like” conditions; however, any anthropogenic change will be superimposed on long-term natural climate variability. We use the paleoclimatic record from an 82-m deep lacustrine sediment core (VC-3) from the Valles Caldera, New Mexico to examine continental climate variations spanning two glacial cycles through the middle Pleistocene from MIS 14 to MIS 10 (552 ka to ~360 ka). Both orbital and millennial-scale variations are evident in multiple proxies, and a strong relationship occurs between the warmest temperatures in the record and periods of extended aridity. We suggest that these periods of aridity are characterized by decreased winter as well as summer precipitation amounts. A new group of organic geochemical proxies (MBT and CBT) allow us to reconstruct the annual mean air temperature (MAT) of the Valles Caldera watershed as well as the watershed soil pH down the length of the core. We compare these proxies to climatically sensitive pollen taxa and other core properties. The MAT record of VC-3 shows considerable glacial-interglacial variation and significant variability within individual glacial and interglacial periods. The warmest interglacial MATs (5 to 7°C) compare favorably with modern MATs of ~5°C in the Valle Grande. MIS 11 has three warm substages, based on MAT estimates (2°C warmer than the cool substages), warm (Juniperus, Quercus, Rosaceae) vs. cool (Abies, Picea, Artemisia) pollen taxa and variation in aquatic productivity proxies (TOC, Si:Ti). The three warm substages of MIS 11 appear to correspond to the three precessional peaks that occur during this interval. Glacial MATs range from -5 to +2°C, with multiple millennial-scale temperature oscillations evident. Several of the interstadials show a distinct pattern of relatively slower temperature increases and

  19. Linking Sediment Microbial Communities to Carbon Cycling in High-Latitude Lakes

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Varner, R. K.; Johnson, J. E.; Owusu-Dommey, A.; Binder, M.; Woodcroft, B. J.; Wik, M.; Freitas, N. L.; Boyd, J. A.; Crill, P. M.; Saleska, S. R.; Tyson, G. W.; Rich, V. I.

    2015-12-01

    It is well recognized that thawing permafrost peatlands are likely to provide a positive feedback to climate change via CH4 and CO2 emissions. High-latitude lakes in these landscapes have also been identified as sources of CH4 and CO2 loss to the atmosphere. To investigate microbial contributions to carbon loss from high-latitude lakes, we characterized sediment geochemistry and microbiota via cores collected from deep and shallow regions of two lakes (Inre Harrsjön and Mellersta Harrsjön) in Arctic Sweden in July, 2012. These lakes are within the Stordalen Mire long-term ecological area, a focal site for investigating the impacts of climate change-related permafrost thaw, and the lakes in this area are responsible for ~55% of the CH4 loss from this hydrologically interconnected system. Across 40 samples from 4 to 40 cm deep within four sediment cores, Illumina 16S rRNA gene sequencing revealed that the sedimentary microbiota was dominated by candidate phyla OP9 and OP8 (Atribacteria and Aminicenantes, respectively, including putative fermenters and anaerobic respirers), predicted methanotrophic Gammaproteobacteria, and predicted methanogenic archaea from the Thermoplasmata Group E2 clade. We observed some overlap in community structure with nearby peatlands, which tend to be dominated by methanogens and Acidobacteria. Sediment microbial communities differed significantly between lakes, by overlying lake depth (shallow vs. deep), and by depth within a core, with each trend corresponding to parallel differences in biogeochemical measurements. Overall, our results support the potential for significant microbial controls on carbon cycling in high-latitude lakes associated with thawing permafrost, and ongoing metagenomic analyses of focal samples will yield further insight into the functional potential of these microbial communities and their dominant members.

  20. Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan: Implications on arsenic primary source and release mechanisms.

    PubMed

    Yang, Huai-Jen; Lee, Chi-Yu; Chiang, Yu-Ju; Jean, Jiin-Shuh; Shau, Yen-Hong; Takazawa, Eiichi; Jiang, Wei-Teh

    2016-11-01

    High arsenic abundance of 50-700μg/L in the groundwater from the Chianan Plain in southwestern Taiwan is a well-known environmental hazard. The groundwater-associated sediments, however, have not been geochemically characterized, thus hindering a comprehensive understanding of arsenic cycling in this region. In this study, samples collected from a 250m sediment core at the centre of the Chianan Plain were analyzed for arsenic and TOC concentrations (N=158), constituent minerals (N=25), major element abundances (N=105), and sequential arsenic extraction (N=23). The arsenic data show a prevalence of >10mg/kg with higher concentrations of 20-50mg/kg concentrated at 60-80 and 195-210m. Arsenic was extracted mainly as an adsorbate on clay minerals, as a co-precipitate in amorphous iron oxyhydroxide, and as a structural component in clay minerals. Since the sediments consist mainly of quartz, chlorite, and illite, the correlations between arsenic concentration and abundances of K2O and MgO pinpoint illite and chlorite as the major arsenic hosts. The arsenic-total iron correlation reflects the role of chlorite along with the contribution from amorphous iron oxyhydroxide as indicated by arsenic extraction data. Organic matter is not the dominant arsenic host for low TOC content, low arsenic abundance extracted from it, and a relatively low R(2) of the arsenic-TOC correlation. The major constituent minerals in the sediments are the same as those of the upriver metapelites, establishing a sink-source relationship. Composition data from two deep groundwater samples near the sediment core show Eh values and As(V)/As(III) ratios of reducing environments and high arsenic, K, Mg, and Fe contents necessary for deriving arsenic from sediments by desorption from clay and dissolution of iron oxyhydroxide. Therefore, groundwater arsenic was mainly derived from groundwater-associated sediments with limited contributions from other sources, such as mud volcanoes.

  1. Stability of permafrost and gas hydrates in Arctic coastal lowlands and on the Eurasian shelf

    NASA Astrophysics Data System (ADS)

    Hubberten, H. W.; Lantuit, H.; Overduin, P. P.; Romanovskii, N.; Wetterich, S.

    2011-12-01

    During the last Glacial period thick continuous permafrost developed on the Siberian coastal lowlands and large shelf areas due to the up to 120 m lower sea level and the exposure of these areas to cold temperatures. With the beginning of the Holocene transgression, complex interaction processes of sea water with the permafrost landscape occurred. The occurrence of gas hydrates captured in permafrost is a characteristic feature of the the Eurasian Arctic shelf areas, especially on the shelf of the Kara, Laptev and East Siberia seas. In some of the shelf areas oceanic rift zones stretch to the continent, as for example in the Laptev Sea area where the Gakkel Ridge continues into the land. Great differences in geothermal heat flow values and in the properties of the sediments and rocks have to be assumed in undisturbed lithosphere block and in fault zones like as in continental rifts (such as Momskii and Baikalskii rifts, etc.). As a result differences in the thickness of permafrost and the gas hydrate stability zone (GHSZ) within these structures are expected. The thickness of permafrost and the GHSZ change essentially and irregularly in the stages of regressions and transgressions of the sea. Models show that the thickness of offshore (subsea) permafrost in the stages of climatic warming and transgressions essentially decrease however, rather irregular. The possibilities and the boundary conditions for the occurrence of open taliks, which may result in an emission of greenhouse gases from sub-permafrost gases and hydrates, have been estimated. Ice-bearing and ice-bonded permafrost in the northern regions of Arctic lowlands and in the inner shelf zone, have been preserved during at least four Pleistocene climatic and glacial-eustatic cycles. Presently, they are subjected to degradation from the bottom under the impact of geothermal heat flux as well as from interaction with warmer sea water at the top. Subsea permafrost formed on the arctic continental shelves that

  2. Water-quality trends in White Rock Creek Basin from 1912-1994 identified using sediment cores from White Rock Lake Reservoir, Dallas, Texas

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1997-01-01

    Historical trends in selected water-quality variables from 1912 to 1994 in White Rock Creek Basin were identified by dated sediment cores from White Rock Lake. White Rock Lake is a 4.4-km2 reservoir filled in 1912 and located on the north side of Dallas, Texas, with a drainage area of 259 km2. Agriculture dominated land use in White Rock Creek Basin before about 1950. By 1990, 72% of the basin was urban. Sediment cores were dated using cesium-137 and core lithology. Major element concentrations changed, and sedimentation rates and percentage of clay-sized particles in sediments decreased beginning in about 1952 in response to the change in land use. Lead concentrations, normalized with respect to aluminum, were six times larger in sediment deposited in about 1978 than in pre-1952 sediment. Following the introduction of unleaded gasoline in the 1970s, normalized lead concentrations in sediment declined and stabilized at about two and one-half times the pre-1952 level. Normalized zinc and arsenic concentrations increased 66 and 76%, respectively, from before 1952 to 1994. No organochlorine compounds were detected in sediments deposited prior to about 1940. Concentrations of polychlorinated biphenyls (PCB) and DDE (a metabolite of DDT) increased rapidly beginning in the 1940s and peaked in the 1960s at 21 and 20 ??g kg-1, respectively, which is coincident with their peak use in the United States. Concentrations of both declined about an order of magnitude from the 1960s to the 1990s to 3.0 and 2.0 ??g kg-1, respectively. Chlordane and dieldrin concentrations increased during the 1970s and 1980s. The largest chlordane concentration was 8.0 ??g kg-1 and occurred in a sediment sample deposited in about 1990. The largest dieldrin concentration was 0.7 ??g kg-1 and occurred in the most recent sample deposited in the early 1990s. Agricultural use of chlordane and dieldrin was restricted in the 1970s; however, both were used as termiticides, and urban use of chlordane

  3. Permafrost Meta-Omics and Climate Change

    NASA Astrophysics Data System (ADS)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.

  4. δ 18Osw estimate for Globigerinoides ruber from core-top sediments in the East China Sea

    NASA Astrophysics Data System (ADS)

    Horikawa, Keiji; Kodaira, Tomohiro; Zhang, Jing; Murayama, Masafumi

    2015-12-01

    The paired analyses of the Mg/Ca ratio and oxygen isotopic composition ( δ 18Oc) of surface-dwelling planktonic foraminifera have become a widely used method for reconstructing the oxygen isotopic composition of ambient seawater ( δ 18Osw) as a robust proxy for surface salinity. Globigerinoides ruber ( G. ruber) is a mixed-layer dweller, and its fossil shell is an ideal archive for recording past sea surface water conditions, such as those caused by variability in the East Asian summer monsoon (EASM). Here, we investigate the validity of shell-derived δ 18Osw estimates for G. ruber using core-top sediments from the East China Sea (ECS). First, we determined a local δ 18Osw-salinity equation for the eastern part of the ECS in July [ δ 18Osw = -7.74 + 0.23 × salinity]. Then, we calculated δ 18Osw from core-top δ 18Oc and Mg/Ca values in G. ruber using the δ 18Oc-temperature equation of Bemis et al. (Paleoceanography 13(2):150-160, 1998) and the Mg/Ca-temperature equation of Hastings et al. (EOS 82:PP12B-10, 2001). The core-top δ 18Osw and salinity were estimated to be in the ranges of -0.2 to +0.39 ‰ and 33.7 to 34.5, respectively, which fall close to the local δ 18Osw-salinity regression line. The core-top data showed that the Mg/Ca-temperature calibration by Hastings et al. (EOS 82:PP12B-10, 2001) and the δ 18Oc-temperature equation by Bemis et al. (Paleoceanography 13(2):150-160, 1998) are appropriate for calculating δ 18Osw in the ECS. Furthermore, we measured core-top Ba/Ca ratios of G. ruber (Ba/Ca G. ruber ), which ranged from 0.66 to 2.82 μmol mol-1. There was not a significant relationship between the salinity and Ba/Ca G. ruber ratios due to the highly variable Ba/Ca G. ruber data. Given the seawater Ba/Ca data and the published partition coefficient for Ba ( D Ba = 0.15-0.22), pristine Ba/Ca G. ruber ratios at northern Okinawa Trough sites should be less than 0.84 μmol mol-1. Anomalously high Ba/Ca G. ruber ratios (>0.84 μmol mol-1) might

  5. A new sediment core from the early Aptian OAE1a: the Cau section (Prebetic Zone, Spain)

    NASA Astrophysics Data System (ADS)

    Alejandro Ruiz-Ortiz, Pedro; Castro, José Manuel; de Gea, Ginés A.; Jarvis, Ian; Loeser, Hannes; Molina, José Miguel; Nieto, Luis Miguel; Pancost, Richard; Quijano, María Luisa; Reolid, Matías; Skelton, Peter; Weissert, Helmut

    2016-04-01

    The occurrence of time intervals of enhanced deposition of organic matter (OM) during the Cretaceous, defined as Oceanic Anoxic Events (OAE), reflect abrupt changes in global carbon cycling. The exemplary Aptian OAE1a (120 Ma), is recorded in all the main ocean basins and associated with massive burial of OM in marine sediments [1]. OAE1a is concomitant with the 'nannoconid crisis', which represents a major biotic turnover [2], and also with widespread demise of carbonate platforms [1]. Much research has been done on the OAE1a from different sections in the world over the last decades, since the definition of the C-isotope stratigraphy of the event [3]. Notwithstanding, high-resolution studies across the entire event will be crucial to elucidate the precise timing and rates of the different environmental and biotic changes involved. In order to perform high-resolution studies, drill-cores can represent the best option. Previous cores with successful scientific results has been performed in two reference sections, the Cismon Apti-core [4], and more recently in La Bédoule [5]. Here we present a new drill-core from southern Spain, the Cau section core, drilled in the last quarter of 2015. The Cau section is located in the easternmost part of the Prebetic Zone (Betic Cordillera), which represents the platform deposits of the Southern Iberian Palaeomargin. The lower Aptian of the Cau section is represented by an hemipelagic unit (Almadich Formation, ca. 200 m thick), deposited in a highly subsiding sector of a tilted block, located in the distal parts of the Prebetic Platform. Previous studies of the early Aptian of the Cau section have focused on the stratigraphy, bioevents, C-isotope stratigraphy, and organic and elemental geochemistry [6], [7], among others. A recent study on the Cau section based on biomarkers has presented a detailed record of the PCO2, [8]. All these studies reveal that the Cau section represents an excellent site to investigate the OAE1a, based

  6. Volcanic time-markers for Marine Isotopic Stages 6 and 5 in Southern Ocean sediments and Antarctic ice cores: implications for tephra correlations between palaeoclimatic records

    NASA Astrophysics Data System (ADS)

    Hillenbrand, C.-D.; Moreton, S. G.; Caburlotto, A.; Pudsey, C. J.; Lucchi, R. G.; Smellie, J. L.; Benetti, S.; Grobe, H.; Hunt, J. B.; Larter, R. D.

    2008-03-01

    Three megascopic and disseminated tephra layers (which we refer to as layers A, B, and C) occur in late Quaternary glaciomarine sediments deposited on the West Antarctic continental margin. The stratigraphical positions of the distal tephra layers in 28 of the 32 studied sediment cores suggest their deposition during latest Marine Isotopic Stage (MIS) 6 and MIS 5. One prominent tephra layer (layer B), which was deposited subsequent to the penultimate deglaciation (Termination II), is present in almost all of the cores. Geochemical analyses carried out on the glass shards of the layers reveal a uniform trachytic composition and indicate Marie Byrd Land (MBL), West Antarctica, as the common volcanic source. The geochemical composition of the marine tephra is compared to that of ash layers of similar age described from Mount Moulton and Mount Takahe in MBL and from ice cores drilled at Dome Fuji, Vostok and EPICA Dome C in East Antarctica. The three tephra layers in the marine sediments are chemically indistinguishable. Also five englacial ash layers from Mt. Moulton, which originated from highly explosive Plinian eruptions of the Mt. Berlin volcano in MBL between 142 and 92 ka ago, are chemically very similar, as are two tephra layers erupted from Mt. Takahe at ca 102 ka and ca 93 ka. Statistical analysis of the chemical composition of the glass shards indicates that the youngest tephra (layer A) in the marine cores matches the ash layer that erupted from Mt. Berlin at 92 ka, which was previously correlated with tephra layers in the EPICA Dome C and the Dome Fuji ice cores. A tephra erupted from Mt. Berlin at 136 ka seems to correspond to a tephra layer deposited at 1733 m in the EPICA Dome C ice core. Additionally, the oldest tephra (layer C) in the marine sediments resembles an ash layer deposited at Vostok around 142 ka, but statistical evidence for the validity of this correlation is inconclusive. Although our results underscore the potential of

  7. Erodibility of permafrost exposures in the coasts of Eastern Chukotka

    NASA Astrophysics Data System (ADS)

    Maslakov, Alexey; Kraev, Gleb

    2016-09-01

    Coastal retreat caused by coastal erosion decreases the territory of Russia by 50 km2 annually. Erosion of the Arctic coasts composed by fine-grained permafrost turns coastlines into badlands dozens of meters wide and is harmful to the coastal infrastructure. Regional-level variations in the coastal retreat rate in the Arctic tend to follow the climate change dynamics and its consequences, mainly the shrinkage of the perennial sea ice area. This study considers the lower level local-scale variability linked to permafrost features, lithology, and morphology of the coasts in the remote region on the western shore of the Bering Sea within Lorino settlement (Chukotka, Russia). The coastal dynamics was tracked by means of geodesy and remote sensing in 2012-14, and the archival engineering survey data available since 1967. We have derived the erodibility of sediments from the conventional soil properties measured by engineers, and linked the coastal retreat rates to erodibility of the sediments, so that it could be extrapolated to other coastal areas of Eastern Chukotka with similar sediment structure.

  8. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska

    NASA Astrophysics Data System (ADS)

    Edwards, Mary; Grosse, Guido; Jones, Benjamin M.; McDowell, Patricia

    2016-07-01

    Thermokarst processes characterize a variety of ice-rich permafrost terrains and often lead to lake formation. The long-term evolution of thermokarst landscapes and the stability and longevity of lakes depend upon climate, vegetation and ground conditions, including the volume of excess ground ice and its distribution. The current lake status of thermokarst-lake landscapes and their future trajectories under climate warming are better understood in the light of their long-term development. We studied the lake-rich southern marginal upland of the Yukon Flats (northern interior Alaska) using dated lake-sediment cores, observations of river-cut exposures, and remotely-sensed data. The region features thick (up to 40 m) Quaternary deposits (mainly loess) that contain massive ground ice. Two of three studied lakes formed 11,000-12,000 cal yr BP through inferred thermokarst processes, and fire may have played a role in initiating thermokarst development. From 9000 cal yr BP, all lakes exhibited steady sedimentation, and pollen stratigraphies are consistent with regional patterns. The current lake expansion rates are low (0 to < 7 cm yr- 1 shoreline retreat) compared with other regions ( 30 cm yr- 1 or more). This thermokarst lake-rich region does not show evidence of extensive landscape lowering by lake drainage, nor of multiple lake generations within a basin. However, LiDAR images reveal linear "corrugations" (> 5 m amplitude), deep thermo-erosional gullies, and features resembling lake drainage channels, suggesting that highly dynamic surface processes have previously shaped the landscape. Evidently, widespread early Holocene permafrost degradation and thermokarst lake initiation were followed by lake longevity and landscape stabilization, the latter possibly related to establishment of dense forest cover. Partial or complete drainage of three lakes in 2013 reveals that there is some contemporary landscape dynamism. Holocene landscape evolution in the study area

  9. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Iwahana, Go; Harada, Koichiro; Uchida, Masao; Tsuyuzaki, Shiro; Saito, Kazuyuki; Narita, Kenji; Kushida, Keiji; Hinzman, Larry D.

    2016-09-01

    Geomorphological and thermohydrological changes to tundra, caused by a wildfire in 2002 on the central Seward Peninsula of Alaska, were investigated as a case study for understanding the response from ice-rich permafrost terrain to surface disturbance. Frozen and unfrozen soil samples were collected at burned and unburned areas, and then water isotope geochemistry and cryostratigraphy of the active layer and near-surface permafrost were analyzed to investigate past hydrological and freeze/thaw conditions and how this information could be recorded within the permafrost. The development of thermokarst subsidence due to ice wedge melting after the fire was clear from analyses of historical submeter-resolution remote sensing imagery, long-term monitoring of thermohydrological conditions within the active layer, in situ surveys of microrelief, and geochemical signals recorded in the near-surface permafrost. The resulting polygonal relief coincided with depression lines along an underground ice wedge network, and cumulative subsidence to 2013 was estimated as at least 10.1 to 12.1 cm (0.9-1.1 cm/year 11 year average). Profiles of water geochemistry in the ground indicated mixing or replenishment of older permafrost water with newer meteoric water, as a consequence of the increase in active layer thickness due to wildfire or past thaw event. Our geocryological analysis of cores suggests that permafrost could be used to reconstruct the permafrost degradation history for the study site. Distinct hydrogen and oxygen isotopic compositions above the Global Meteoric Water Line were found for water from these sites where permafrost degradation with geomorphological change and prolonged surface inundation were suggested.

  10. Airborne Electromagnetic Surveys for Baseline Permafrost Mapping and Potential Long-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Walvoord, M. A.; Cannia, J. C.; Voss, C. I.

    2010-12-01

    of the loess hills on the margins of the Yukon River has very high electrical resistivity. Since loess normally has low resistivity, the results suggest that the loess hills contain a relatively large proportion of frozen water, which is consistent with observations. In the area of Fort Yukon, the HFEM survey shows high resistivities extending to depth, likely indicative of thick permafrost; this corresponds well to observations from a borehole drilled in the area in the late 1990s that detected permafrost to a depth of about 100 m. In contrast, the Yukon River and its floodplain are not associated with deep resistive sediment