Science.gov

Sample records for permanent-magnet machines based

  1. Feedback-based mitigation of torque harmonics in interior permanent magnet synchronous machines

    NASA Astrophysics Data System (ADS)

    Vaks, Nir

    Harmonics in the electromagnetic torque are a source of concern in permanent magnet synchronous machine (PMSM) drives. The harmonics are created by non-idealities in the electromagnetic fields produced by the magnets and the stator excitation. They lead to vibration that can cause premature wear of the drivetrain components as well as acoustic noise that may be bothersome to users. In this research, current- and voltage-based control schemes have been developed to mitigate the harmonics in a class of PMSMs in which the magnets are placed interior to the rotor iron. Interior permanent magnet synchronous machines (IPMSMs) have recently gained popularity for applications including hybrid electric vehicles and robot joint control. In the current-based control, a low-cost piezoelectric sensor is used to measure torque harmonics. A conjugate gradient algorithm is then applied to search for harmonics in the stator current that produce a commanded average torque while eliminating the measured torque harmonics. The algorithm is based upon analytical closed-form expressions for the average and harmonic components of torque that have been derived for IPMSMS with arbitrary back-emf waveforms. In the voltage-based control, a time-domain model of the machine is used to map the outputs of the conjugate gradient algorithm to commanded stator voltages. Since both utilize feedback, the controls are insensitive to changes in machine parameters that result from magnetic saturation, temperature, or parameter drift. In addition, the user has flexibility to select the harmonic(s) of torque to be eliminated.

  2. Analytical prediction for electromagnetic performance of interior permanent magnet machines based on subdomain model

    NASA Astrophysics Data System (ADS)

    Shin, Kyung-Hun; Park, Hyung-II; Cho, Han-Wook; Choi, Jang-Young

    2017-05-01

    This paper presents an analytical model for the computation of the electromagnetic performance in interior permanent magnet (IPM) machines that accounts for the stator and the complex rotor structure. Using the subdomain method, we propose a simplified analytical model that considers the magnetic properties of the IPM machine. The analytical solutions are derived by solving the field-governing equations in each simple and regular subdomain, i.e., magnet, barrier, air gap, slot opening, and slot, and then applying the boundary conditions to the interfaces between these subdomains. The analytical model accurately accounts for the influence of the interaction between the slots, the relative recoil permeability of the magnets, and the boundary conditions. The magnetic field and electromagnetic performance obtained using the analytical method are compared with those obtained using finite element analysis. Finally, the analytical predictions are compared with the measured data in order to confirm the validity of the methods proposed in this paper.

  3. Some Considerations on Simple Non-Linear Magnetic Analysis-Based Optimum Design of Multi-Pole Permanent Magnet Machines

    NASA Astrophysics Data System (ADS)

    Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki

    This paper presents a simple non-linear magnetic analysis-based optimum design of a multi-pole permanent magnet machine as an assistant design tool of 3D-FEM. The proposed analysis is based on the equivalent magnetic circuit and the air gap permeance model between the stator and rotor teeth of the motor, taking into account the local magnetic saturation in the pointed end of teeth. The availability of the proposed analysis is verified by comparing with 3D-FEM analysis from the standpoints of the torque calculation accuracy for the variations of design free parameter and the computation time. After verification, the proposed analysis-based optimum design of the dimensions of permanent magnet is examined, by which the minimization of magnet volume is realized while keeping torque/current ratio at the specified value.

  4. Developments in electrical machines using permanent magnets

    NASA Astrophysics Data System (ADS)

    Chalmers, B. J.

    1996-05-01

    The availability of high-field permanent-magnet materials has created opportunities for the development of electrical machines with advantageous properties including high efficiency, compact size, low weight and brushless operation. The paper reports the design and performance of a number of motors and generators which have recently been developed and demonstrated.

  5. Dovetail spoke internal permanent magnet machine

    DOEpatents

    Alexander, James Pellegrino; EL-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Shah, Manoj Ramprasad; VanDam, Jeremy Daniel

    2011-08-23

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.

  6. Evaluation of parameter sensitivities for flux-switching permanent magnet machines based on simplified equivalent magnetic circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Gan; Hua, Wei; Cheng, Ming

    2017-05-01

    Most of the published papers regarding the design of flux-switching permanent magnet machines are focused on the analysis and optimization of electromagnetic or mechanical behaviors, however, the evaluate of the parameter sensitivities have not been covered, which contrarily, is the main contribution of this paper. Based on the finite element analysis (FEA) and simplified equivalent magnetic circuit, the method proposed in this paper enables the influences of parameters on the electromagnetic performances, i.e. the parameter sensitivities, to be given by equations. The FEA results are also validated by experimental measurements.

  7. Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang

    2017-05-01

    This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.

  8. Design synthesis and optimization of permanent magnet synchronous machines based on computationally-efficient finite element analysis

    NASA Astrophysics Data System (ADS)

    Sizov, Gennadi Y.

    In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow

  9. New Cogging Torque Reduction Methods for Permanent Magnet Machine

    NASA Astrophysics Data System (ADS)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    Permanent magnet type motors (PMs) especially permanent magnet synchronous motor (PMSM) are expanding its limbs in industrial application system and widely used in various applications. The key features of this machine include high power and torque density, extending speed range, high efficiency, better dynamic performance and good flux-weakening capability. Nevertheless, high in cogging torque, which may cause noise and vibration, is one of the threat of the machine performance. Therefore, with the aid of 3-D finite element analysis (FEA) and simulation using JMAG Designer, this paper proposed new method for cogging torque reduction. Based on the simulation, methods of combining the skewing with radial pole pairing method and skewing with axial pole pairing method reduces the cogging torque effect up to 71.86% and 65.69% simultaneously.

  10. Statistic-based spectral indicator for bearing fault detection in permanent-magnet synchronous machines using the stator current

    NASA Astrophysics Data System (ADS)

    Picot, A.; Obeid, Z.; Régnier, J.; Poignant, S.; Darnis, O.; Maussion, P.

    2014-06-01

    In this paper, an original method for bearing fault detection in high speed synchronous machines is presented. This method is based on the statistical process of Welch's periodogram of the stator currents in order to obtain stable and normalized fault indicators. The principle of the method is to statistically compare the current spectrum to a healthy reference so as to quantify the changes over the time. A statistic-based indicator is then constructed by monitoring specific harmonic family. The proposed method was tested on two experimental test campaigns for four different speeds and compared to a vibration indicator. The method was evaluated using a rigorous performance evaluation metric. A threshold evaluation was performed and shows that the proposed method is very tolerant to the machine speed. Thus, the use of a unique fault threshold whatever the speed can be considered. Results showed excellent agreement as compared with the vibration indicator, with an overall correlation of r=0.74 and only 4% of false alarms. Performance demonstrated by this novel method was superior to those of a classical energy-based indicator in terms of correlation with the vibration indicator and detection stability. Moreover, results also showed a better robustness of the proposed method since good performance can be obtained with the same detection threshold whatever the speed or the measure campaign whereas it needs to be redefined for each case with the classical indicator. This work shows the advantages of a statistic-based approach in order to increase the robustness of bearing fault detection in permanent-magnet synchronous machines.

  11. A Double-Sided Linear Primary Permanent Magnet Vernier Machine

    PubMed Central

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250

  12. A double-sided linear primary permanent magnet vernier machine.

    PubMed

    Du, Yi; Zou, Chunhua; Liu, Xianxing

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.

  13. Effect of Side Permanent Magnets for Reluctance Interior Permanent Magnet Reluctance Machines

    SciTech Connect

    Hsu, John S; Lee, Seong T; Wiles, Randy H; Coomer, Chester; Lowe, Kirk T

    2007-01-01

    A traditional electric machine uses two dimensional magnetic flux paths in its rotor. This paper presents the development work on the utilization of the third dimension of a rotor. As an example, the air gap flux of a radial gap interior permanent magnet motor can be significantly enhanced by additional permanent magnets (PM) mounted at the sides of the rotor. A prototype motor built with this concept provided higher efficiency and required a shorter stator core length for the same power output as the Toyota/Prius traction drive motor.

  14. Power distribution of a co-axial dual-mechanical-port flux-switching permanent magnet machine for fuel-based extended range electric vehicles

    NASA Astrophysics Data System (ADS)

    Zhou, Lingkang; Hua, Wei; Zhang, Gan

    2017-05-01

    In this paper, power distribution between the inner and outer machines of a co-axial dual-mechanical-port flux-switching permanent magnet (CADMP-FSPM) machine is investigated for fuel-based extended range electric vehicle (ER-EV). Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced, which consist of an inner FSPM machine used for high-speed, an outer FSPM machine for low-speed, and a magnetic isolation ring between them. Then, the magnetic field coupling of the inner and outer FSPM machines is analyzed with more attention paid to the optimization of the isolation ring thickness. Thirdly, the power-dimension (PD) equations of the inner and outer FSPM machines are derived, respectively, and thereafter, the PD equation of the whole CADMP-FSPM machine can be given. Finally, the PD equations are validated by finite element analysis, which supplies the guidance on the design of this type of machines.

  15. Prospects for nanoparticle-based permanent magnets

    SciTech Connect

    Balamurugan, B; Sellmyer, DJ; Hadjipanayis, GC; Skomski, R

    2012-09-01

    Magnetic nanoparticles smaller than similar to 15 nm in diameter and with high magnetocrystalline anisotropies K-1 >= 1 MJ m(-3) can be used as building blocks for next-generation permanent magnets. Advances in processing steps are discussed, such as self-assembly, alignment of the easy axes and appropriate nanostructuring that will enable the fabrication of densely packed nanopartide assemblies with improved permanent-magnet properties. This study also proposes an idealized nanocomposite structure for nanoparticle-based future permanent magnets with enhanced energy products. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2011-06-14

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  17. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2010-01-12

    A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  18. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2012-02-21

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  19. Design variants of modular permanent magnet brushless machine

    NASA Astrophysics Data System (ADS)

    Ede, Jason D.; Atallah, Kais; Howe, David

    2002-05-01

    The article describes an analytical technique for determining all possible slot-number and pole-number combinations, of modular permanent magnet brushless machines. It is shown that a large number of design variants exist. Furthermore, typical performance parameters, such as back-emf and cogging torque wave forms, for selected fault-tolerant designs are presented.

  20. High speed operation of permanent magnet machines

    NASA Astrophysics Data System (ADS)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been

  1. Hybrid-secondary uncluttered permanent magnet machine and method

    DOEpatents

    Hsu, John S.

    2005-12-20

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  2. Permanent magnet machine with windings having strand transposition

    DOEpatents

    Qu, Ronghai; Jansen, Patrick Lee

    2009-04-21

    This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.

  3. Experimental validation of a distribution theory based analysis of the effect of manufacturing tolerances on permanent magnet synchronous machines

    NASA Astrophysics Data System (ADS)

    Boscaino, V.; Cipriani, G.; Di Dio, V.; Corpora, M.; Curto, D.; Franzitta, V.; Trapanese, M.

    2017-05-01

    An experimental study on the effect of permanent magnet tolerances on the performances of a Tubular Linear Ferrite Motor is presented in this paper. The performances that have been investigated are: cogging force, end effect cogging force and generated thrust. It is demonstrated that: 1) the statistical variability of the magnets introduces harmonics in the spectrum of the cogging force; 2) the value of the end effect cogging force is directly linked to the values of then remanence field of the external magnets placed on the slider; 3) the generated thrust and its statistical distribution depend on the remanence field of the magnets placed on the translator.

  4. Permanent magnet based dipole magnets for next generation light sources

    NASA Astrophysics Data System (ADS)

    Watanabe, Takahiro; Taniuchi, Tsutomu; Takano, Shiro; Aoki, Tsuyoshi; Fukami, Kenji

    2017-07-01

    We have developed permanent magnet based dipole magnets for the next generation light sources. Permanent magnets are advantageous over electromagnets in that they consume less power, are physically more compact, and there is a less risk of power supply failure. However, experience with electromagnets and permanent magnets in the field of accelerators shows that there are still challenges to replacing main magnets of accelerators for light sources with permanent magnets. These include the adjustability of the magnetic field, the temperature dependence of permanent magnets, and the issue of demagnetization. In this paper, we present a design for magnets for future light sources, supported by experimental and numerical results.

  5. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    NASA Astrophysics Data System (ADS)

    Gündoğdu, Tayfun; Kömürgöz, Güven

    2012-08-01

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted.

  6. A microcomputer-based control and simulation of an advanced IPM (Interior Permanent Magnet) synchronous machine drive system for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Bose, B. K.; Szczesny, P. M.

    Advanced digital control and computer-aided control system design techniques are playing key roles in the complex drive system design and control implementation. The paper describes a high performance microcomputer-based control and digital simulation of an inverter-fed Interior Permanent Magnet (IPM) synchronous machine which uses a neodymium-iron-boron magnet. The fully operational four-quadrant drive system includes constant-torque region with zero speed operation and high speed field-weakening constant-power region. The control uses vector or field-oriented technique in constant-torque region with the direct axis aligned to the stator flux, whereas the constant-power region control is based on torque angle orientation of the impressed square-wave voltage. All the key feedback signals for the control are estimated with precision. The drive system is basically designed with an outer torque control loop for electric vehicle appliation, but speed and position control loops can be added for other industrial applications. The distributed microcomputer-based control system is based on Intel-8096 microcontroller and Texas Instruments TMS32010 type digital signal processor. The complete drive system has been simulated using the VAX-based simulation language SIMMON.

  7. Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation

    SciTech Connect

    Wiles, R.H.

    2005-10-07

    In a conventional permanent magnet (PM) machine, the air-gap flux produced by the PM is fixed. It is difficult to enhance the air-gap flux density due to limitations of the PM in a series-magnetic circuit. However, the air-gap flux density can be weakened by using power electronic field weakening to the limit of demagnetization of the PMs. This paper presents the test results of controlling the PM air-gap flux density through the use of a stationary brushless excitation coil in a reluctance interior permanent magnet with brushless field excitation (RIPM-BFE) motor. Through the use of this technology the air-gap flux density can be either enhanced or weakened. There is no concern with demagnetizing the PMs during field weakening. The leakage flux of the excitation coil through the PMs is blocked. The prototype motor built on this principle confirms the concept of flux enhancement and weakening through the use of excitation coils.

  8. Method and system for controlling a permanent magnet machine

    DOEpatents

    Walters, James E.

    2003-05-20

    Method and system for controlling the start of a permanent magnet machine are provided. The method allows to assign a parameter value indicative of an estimated initial rotor position of the machine. The method further allows to energize the machine with a level of current being sufficiently high to start rotor motion in a desired direction in the event the initial rotor position estimate is sufficiently close to the actual rotor position of the machine. A sensing action allows to sense whether any incremental changes in rotor position occur in response to the energizing action. In the event no changes in rotor position are sensed, the method allows to incrementally adjust the estimated rotor position by a first set of angular values until changes in rotor position are sensed. In the event changes in rotor position are sensed, the method allows to provide a rotor alignment signal as rotor motion continues. The alignment signal allows to align the estimated rotor position relative to the actual rotor position. This alignment action allows for operating the machine over a wide speed range.

  9. Permanent magnet energy conversion machine with magnet mounting arrangement

    DOEpatents

    Hsu, John S.; Adams, Donald J.

    1999-01-01

    A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.

  10. Permanent magnet energy conversion machine with magnet mounting arrangement

    SciTech Connect

    Hsu, J.S.; Adams, D.J.

    1999-09-14

    A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.

  11. Method and system for controlling start of a permanent magnet machine

    DOEpatents

    Walters, James E.; Krefta, Ronald John

    2003-10-28

    Method and system for controlling a permanent magnet machine are provided. The method provides a sensor assembly for sensing rotor sector position relative to a plurality of angular sectors. The method further provides a sensor for sensing angular increments in rotor position. The method allows starting the machine in a brushless direct current mode of operation using a calculated initial rotor position based on an initial angular sector position information from the sensor assembly. Upon determining a transition from the initial angular sector to the next angular sector, the method allows switching to a sinusoidal mode of operation using rotor position based on rotor position information from the incremental sensor.

  12. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  13. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S [Oak Ridge, TN

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  14. Rotor for a line start permanent magnet machine

    DOEpatents

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    2017-07-11

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  15. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine

    DOEpatents

    Qu, Ronghai; Lipo, Thomas A.

    2005-08-02

    The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.

  16. A novel flux-switching permanent magnet machine with v-shaped magnets

    NASA Astrophysics Data System (ADS)

    Zhao, Guishu; Hua, Wei

    2017-05-01

    In this paper, firstly a novel 6-stator-coil/17-rotor-pole (6/17) flux-switching permanent magnet (FSPM) machine with V-shaped magnets, deduced from conventional 12/17 FSPM machines is proposed to achieve more symmetrical phase back-electromotive force (back-EMF), and smaller torque ripple by comparing with an existing 6/10 V-shaped FSPM machine. Then, to obtain larger electromagnetic torque, less torque ripple, and easier mechanical processing, two improved variants based on the original 6/17 V-shaped topology are proposed. For the first variant, the separate stator-core segments located on the stator yoke are connected into a united stator yoke, while for the second variant the stator core is a whole entity by adding magnetic bridges at the ends of permanent magnets (PMs). Consequently, the performances of the three 6/17 V-shaped FSPM machines, namely, the original one and the two variants, are conducted by finite element analysis (FEA). The results reveal that the first variant exhibits significantly larger torque and considerably improved torque per magnet volume, i.e., the magnet utilization ratio than the original one, and the second variant exhibits the smallest torque ripple, least total harmonic distribution (THD) of phase back-EMF, and easiest mechanical processing for manufacturing.

  17. Superconducting Electric Machine with Permanent Magnets and Bulk HTS Elements

    NASA Astrophysics Data System (ADS)

    Levin, A. V.; Vasich, P. S.; Dezhin, D. S.; Kovalev, L. K.; Kovalev, K. L.; Poltavets, V. N.; Penkin, V. T.

    Theoretical methods of calculating of two-dimensional magnetic fields, inductive parameters and output characteristics of the new type of high-temperature superconducting (HTS) synchronous motors with a composite rotor are presented. The composite rotor has the structure containing HTS flat elements, permanent magnets and ferromagnetic materials. The developed calculation model takes into account the concentrations and physical properties of these rotor elements. The simulation results of experimental HTS motor with a composite rotor are presented. The application of new type of HTS motor in different constructions of industrial high dynamic drivers is discussed.

  18. Design of permanent magnet synchronous motor speed control system based on SVPWM

    NASA Astrophysics Data System (ADS)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  19. A model predictive current control of flux-switching permanent magnet machines for torque ripple minimization

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Hua, Wei; Yu, Feng

    2017-05-01

    Due to high airgap flux density generated by magnets and the special double salient structure, the cogging torque of the flux-switching permanent magnet (FSPM) machine is considerable, which limits the further applications. Based on the model predictive current control (MPCC) and the compensation control theory, a compensating-current MPCC (CC-MPCC) scheme is proposed and implemented to counteract the dominated components in cogging torque of an existing three-phase 12/10 FSPM prototyped machine, and thus to alleviate the influence of the cogging torque and improve the smoothness of electromagnetic torque as well as speed, where a comprehensive cost function is designed to evaluate the switching states. The simulated results indicate that the proposed CC-MPCC scheme can suppress the torque ripple significantly and offer satisfactory dynamic performances by comparisons with the conventional MPCC strategy. Finally, experimental results validate both the theoretical and simulated predictions.

  20. Design and experimental validation for direct-drive fault-tolerant permanent-magnet vernier machines.

    PubMed

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  1. Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines

    PubMed Central

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis. PMID:25045729

  2. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  3. Texture determinations in rare-earth-based permanent magnets

    SciTech Connect

    Lewis, L.H.; Welch, D.O.; Thurston, T.R.; Panchanathan, V.

    1996-08-01

    Quantifying the relationship between crystallographic texture and magnetic properties is highly desirable for the engineering high (BH){sub max} magnets. Existing techniques for the evaluation of texture in permanent magnets often rely upon magnetic remanence measurements. However, such determinations are strictly applicable only to assemblies of non-interacting particles, which nullifies the use of the Stoner-Wohlfarth criteria in texture determinations of ``exchange-spring`` magnets. New techniques in the determination of texture of bulk permanent magnets are being developed to overcome these inherent experimental difficulties. Crystallographic alignment studied by transmission synchrotron x-ray diffraction as a function of position within the sample reveals insights into the development of texture with deformation level in thermomechanically-processed magnets. Information concerning texture may also be obtained by a different method based on paramagnetic susceptibility measurements. Such measurements also provide Curie temperature data, which is sensitive to chemical changes that may have occurred in the magnetic phase during processing.

  4. Dy-Free Nd-Fe-B Based Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun; Khan, Mahmud; Gschneidner, Karl, Jr.; McCallum, Ralph; Pecharsky, Vitalij

    2015-03-01

    Nd2Fe14B based permanent magnets are the current state of the art for high performance magnets. The prototype crystallize in the P42 / mnm tetragonal crystal structure, where the Nd atoms occupy the 4f and 4gsites, Fe atoms occupy six different atomic sites (16k1, 16k2, 8j1, 8j2, 4e, 4c), and B occupies only the 4g site. The leading contribution to the magnetocrystalline anisotropy in Nd2Fe14B energy comes from the Nd ions, which strongly prefer a c-axis alignment at ambient temperature. Nd2Fe14B permanent magnet has excellent magnetic properties at room temperature but has poor high temperature properties (T>400 K). A small amount of Dy (up to 10%) is substituted for Nd in Nd2Fe14B to increase the high temperature performance. Although Dy containing Nd2Fe14B magnets are desired for high temperature applications, the high price and limited supply of Dy urges the development of Dy-free permanent magnets. Here, we discuss the magnetic properties of several Dy-free Nd-Fe-B based nanostructured magnets and propose alternatives for Dy-based Nd2Fe14B permanent magnets for high temperature applications such as electric drive motors and wind turbines. This work was supported by the U.S.DOE, ARPA-E, Rare Earth Alternatives in Critical Technologies for Energy (REACT). The research was performed at the Ames Laboratory which is operated for the U.S. DOE by Iowa State University under contract #DE-AC02-07CH11358.

  5. High speed internal permanent magnet machine and method of manufacturing the same

    DOEpatents

    Alexander, James Pellegrino; EL-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Shah, Manoj Ramprasad; VanDam, Jeremy Daniel

    2011-09-13

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.

  6. Design and analysis of an unconventional permanent magnet linear machine for energy harvesting

    NASA Astrophysics Data System (ADS)

    Zeng, Peng

    This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof

  7. Direct control of air gap flux in permanent magnet machines

    DOEpatents

    Hsu, John S.

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  8. A high performance inverter-fed drive system of an interior permanent magnet synchronous machine

    NASA Astrophysics Data System (ADS)

    Bose, B. K.

    A high performance fully operational four-quadrant control scheme of an interior permanent magnet synchronous machine is described. The machine operates smoothly with full performance in constant-torque region, as well as in flux-weakening constant-power region in both directions of motion. The transition between constant-torque region and constant-power region is very smooth at all conditions of operation. The control in constant-torque region is based on vector or field-oriented technique with the direct-axis aligned to the total stator flux, whereas the constant-power region control is implemented by orientation of torque angle of the impressed square-wave voltage through the feedforward vector rotator. The control system is implemented digitally using distributed microcomputer system and all the essential feedback signals, such as torque, flux, etc., are estimated with precision. The control has been described with an outer torque control loop primarily for traction type applications, but speed and position control loops can be easily added to extend its application to other industrial drives. A 70 hp drive system using a Neodymium-Iron-Boron PM machine and transistor PWM inverter has been designed and extensively tested in laboratory on a dynamometer, and performances are found to be excellent.

  9. Permanent magnetic ferrite based power-tunable metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  10. Method for providing slip energy control in permanent magnet electrical machines

    DOEpatents

    Hsu, John S.

    2006-11-14

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  11. Optimal current control strategies for surface-mounted permanent-magnet synchronous machine drives

    SciTech Connect

    Chapman, P.L.; Sudhoff, S.D.; Whitcomb, C.A.

    1999-12-01

    The current waveforms for optimal excitation of surface-mounted permanent-magnet synchronous machines are set forth. Four different modes are considered, involving varying degrees of minimization of rms current and torque ripple. The optimized waveforms are markedly different than the traditional sinusoidal or rectangular excitation schemes. Inclusion of cogging torque and arbitrary degree of torque ripple minimization generalize this work over that of previous authors. An experimental drive and a detailed computer simulation verify the proposed control schemes.

  12. Monocoil reciprocating permanent magnet electric machine with self-centering force

    NASA Technical Reports Server (NTRS)

    Bhate, Suresh K. (Inventor); Vitale, Nicholas G. (Inventor)

    1989-01-01

    A linear reciprocating machine has a tubular outer stator housing a coil, a plunger and an inner stator. The plunger has four axially spaced rings of radially magnetized permanent magnets which cooperate two at a time with the stator to complete first or second opposite magnetic paths. The four rings of magnets and the stators are arranged so that the stroke of the plunger is independent of the axial length of the coil.

  13. Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof

    DOEpatents

    Reddy, Patel Bhageerath; EL-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang; Alexander, James Pellegrino

    2016-03-15

    An internal permanent magnet machine includes a rotor assembly having a shaft comprising a plurality of protrusions extending radially outward from a main shaft body and being formed circumferentially about the main shaft body and along an axial length of the main shaft body. A plurality of stacks of laminations are arranged circumferentially about the shaft to receive the plurality of protrusions therein, with each stack of laminations including a plurality of lamination groups arranged axially along a length of the shaft and with permanent magnets being disposed between the stacks of laminations. Each of the laminations includes a shaft protrusion cut formed therein to receive a respective shaft protrusion and, for each of the stacks of laminations, the shaft protrusion cuts formed in the laminations of a respective lamination group are angularly offset from the shaft protrusion cuts formed in the laminations in an adjacent lamination group.

  14. Analysis and identification of influential phenomena on iron losses in embedded permanent magnet synchronous machine

    NASA Astrophysics Data System (ADS)

    Breznik, Mitja; Goričan, Viktor; Hamler, Anton; Čorović, Selma; Miljavec, Damijan

    2017-01-01

    This paper presents magnetic flux density behaviour in laminated electrical sheets which affects the results and precision of iron losses calculation in imbedded permanent magnet (IPM) machine. Objective of the research was to analyse all the influential phenomena that were identified through iron loss models analysis, finite element method simulations and iron loss measurements. The presence of phenomena such as harmonic content and rotational magnetic fields are confirmed with finite element method analysis of concentrated and distributed winding IPM machine. A significant magnetic flux density ripple in the rotor of concentrated winding IPM machine in comparison to distributed winding IPM machine is revealed and analysed. Behaviour that affects iron loss in the rotor of synchronous machines in the absence of first order harmonic is analysed. The DC level added to alternating magnetic flux density was used in experiment to mimic magnetic behaviour on the rotor of IPM machine and further to calculate iron losses.

  15. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  16. A Machine Approach for Field Weakening of Permanent-Magnet Motors

    SciTech Connect

    Hsu, J.S.

    2000-04-02

    The commonly known technology of field weakening for permanent-magnet (PM) motors is achieved by controlling the direct-axis current component through an inverter, without using mechanical variation of the air gap, a new machine approach for field weakening of PM machines by direct control of air-gap fluxes is introduced. The demagnetization situation due to field weakening is not an issue with this new method. In fact, the PMs are strengthened at field weakening. The field-weakening ratio can reach 1O:1 or higher. This technology is particularly useful for the PM generators and electric vehicle drives.

  17. Method and system for controlling a permanent magnet machine during fault conditions

    DOEpatents

    Krefta, Ronald John; Walters, James E.; Gunawan, Fani S.

    2004-05-25

    Method and system for controlling a permanent magnet machine driven by an inverter is provided. The method allows for monitoring a signal indicative of a fault condition. The method further allows for generating during the fault condition a respective signal configured to maintain a field weakening current even though electrical power from an energy source is absent during said fault condition. The level of the maintained field-weakening current enables the machine to operate in a safe mode so that the inverter is protected from excess voltage.

  18. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  19. Control of Two Permanent Magnet Machines Using a Five-Leg Inverter for Automotive Applications

    SciTech Connect

    Su, Gui-Jia; Tang, Lixin; Huang, Xianghui

    2006-01-01

    This paper presents digital control schemes for control of two permanent magnet (PM) machines in an integrated traction and air-conditioning compressor drive system for automotive applications. The integrated drive system employs a five-leg inverter to power a three-phase traction PM motor and a two-phase compressor PM motor by tying the common terminal of the two-phase motor to the neutral point of the three-phase motor. Compared to a three-phase or a standalone two-phase inverter, it eliminates one phase leg and shares the control electronics between the two drives, thus significantly reducing the component count of the compressor drive. To demonstrate that the speed and torque of the two PM motors can be controlled independently, a control strategy was implemented in a digital signal processor, which includes a rotor flux field orientation based control (RFOC) for the three-phase motor, a similar RFOC and a position sensorless control in the brushless dc (BLDC) mode for the two-phase motor. Control implementation issues unique to a two-phase PM motor are also discussed. Test results with the three-phase motor running in the ac synchronous (ACS) mode while the two-phase motor either in the ACS or the BLDC mode are included to verify the independent speed and torque control capability of the integrated drive.

  20. Zeeman slowers for strontium based on permanent magnets

    NASA Astrophysics Data System (ADS)

    Hill, Ian R.; Ovchinnikov, Yuri B.; Bridge, Elizabeth M.; Curtis, E. Anne; Gill, Patrick

    2014-04-01

    We present the design, construction, and characterization of longitudinal- and transverse-field Zeeman slowers, based on arrays of permanent magnets, for slowing thermal beams of atomic Sr. The slowers are optimized for operation with deceleration related to the local laser intensity (by the parameter ɛ), which uses more effectively the available laser power, in contrast to the usual constant deceleration mode. Slowing efficiencies of up to ≈18% are realized and compared to those predicted by modelling. We highlight the transverse-field slower, which is compact, highly tunable, light-weight, and requires no electrical power, as a simple solution to slowing Sr, well-suited to space-borne application. For 88Sr we achieve a slow-atom flux of around 6 × 109 atoms s-1 at 30 ms-1, loading approximately 5 × 108 atoms in to a magneto-optical-trap, and capture all isotopes in approximate relative natural abundances.

  1. Performance Prediction of a Hybrid-Excitation Synchronous Machine with Axially Arranged Excitation Poles and Permanent-Magnet Poles

    NASA Astrophysics Data System (ADS)

    Matsuuchi, Kotaro; Fukami, Tadashi; Naoe, Nobuyuki; Hanaoka, Ryoichi; Takata, Shinzo; Miyamoto, Toshio

    This paper presents a method of predicting the steady-state performance of a new hybrid-excitation synchronous machine (HESM) theoretically. The field pole of this HESM is axially divided into two parts; one is an excitation part and the other a permanent-magnet (PM) part. A nonlinear equivalent circuit, which can include the saliency of the rotor and the magnetic saturation due to iron core, is derived. Based on this equivalent circuit, the steady-state performance of the HESM is calculated, and the results are confirmed through experiments.

  2. Permanent magnet excitation of axial flow synchronous machines with high rotation moment

    NASA Astrophysics Data System (ADS)

    Mayer, Rolf

    Computation of axial magnetic flux machines under consideration of radial dependant geometric, and electric and magnetic properties is presented. A three-dimensional permanent magnet flux model provides the conditions for the establishment of a programmable design algorithm. Analytical magnetic field study leads to the prediction of torque oscillations generated by harmonic effects of air gap field and permits their reduction. Calculus results obtained are used for the design and fabrication of a traction motor of 200 kW with a torque of 3.8 kNm at 500 t/min.

  3. Design Enhancement and Performance Examination of External Rotor Switched Flux Permanent Magnet Machine for Downhole Application

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.

    2017-08-01

    The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.

  4. Design and analysis of linear fault-tolerant permanent-magnet vernier machines.

    PubMed

    Xu, Liang; Ji, Jinghua; Liu, Guohai; Du, Yi; Liu, Hu

    2014-01-01

    This paper proposes a new linear fault-tolerant permanent-magnet (PM) vernier (LFTPMV) machine, which can offer high thrust by using the magnetic gear effect. Both PMs and windings of the proposed machine are on short mover, while the long stator is only manufactured from iron. Hence, the proposed machine is very suitable for long stroke system applications. The key of this machine is that the magnetizer splits the two movers with modular and complementary structures. Hence, the proposed machine offers improved symmetrical and sinusoidal back electromotive force waveform and reduced detent force. Furthermore, owing to the complementary structure, the proposed machine possesses favorable fault-tolerant capability, namely, independent phases. In particular, differing from the existing fault-tolerant machines, the proposed machine offers fault tolerance without sacrificing thrust density. This is because neither fault-tolerant teeth nor the flux-barriers are adopted. The electromagnetic characteristics of the proposed machine are analyzed using the time-stepping finite-element method, which verifies the effectiveness of the theoretical analysis.

  5. Design and Analysis of Linear Fault-Tolerant Permanent-Magnet Vernier Machines

    PubMed Central

    Xu, Liang; Liu, Guohai; Du, Yi; Liu, Hu

    2014-01-01

    This paper proposes a new linear fault-tolerant permanent-magnet (PM) vernier (LFTPMV) machine, which can offer high thrust by using the magnetic gear effect. Both PMs and windings of the proposed machine are on short mover, while the long stator is only manufactured from iron. Hence, the proposed machine is very suitable for long stroke system applications. The key of this machine is that the magnetizer splits the two movers with modular and complementary structures. Hence, the proposed machine offers improved symmetrical and sinusoidal back electromotive force waveform and reduced detent force. Furthermore, owing to the complementary structure, the proposed machine possesses favorable fault-tolerant capability, namely, independent phases. In particular, differing from the existing fault-tolerant machines, the proposed machine offers fault tolerance without sacrificing thrust density. This is because neither fault-tolerant teeth nor the flux-barriers are adopted. The electromagnetic characteristics of the proposed machine are analyzed using the time-stepping finite-element method, which verifies the effectiveness of the theoretical analysis. PMID:24982959

  6. APPLICATION III: Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Gotoh, Satoshi

    The following sections are included: * Introduction * Superconducting permanent magnet using pinned type superconductor * Magnetization process based on the critical state * Demagnetizing curve and permanent magnetic properties * Demagnetizing field of pinned type II superconductor * Samples and experiments * Sample preparation * Magnetization measurements * Permanent magnetic properties of the melt processed YBCO * QMG processed YBCO * MPMG processed YBCO * Summary * References

  7. Back-EMF waveform optimization of flux-reversal permanent magnet machines

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaofeng; Hua, Wei

    2017-05-01

    Due to the special doubly-salient structure, flux-reversal permanent magnet (FRPM) machines typically suffer from relatively large torque and speed ripples, as well as acoustic noise and vibration, especially at low speeds. As one of the main sources of torque ripples, harmonics in phase back electro-motive-force (EMF) should be suppressed as much as possible in order to produce a smooth torque. In this paper, an improved configuration of FRPM machine is proposed by introducing a small space-gap between the two adjacent magnets belonging to the same stator tooth to improve the symmetry of phase back-EMF waveform. The influence of the small space-gap on phase back-EMF waveform is evaluated by employing 2D finite element analysis (FEA), and consequently, an optimal value of space-gap for a more sinusoidal back-EMF waveform is obtained.

  8. A flux-mnemonic permanent magnet brushless machine for wind power generation

    NASA Astrophysics Data System (ADS)

    Yu, Chuang; Chau, K. T.; Jiang, J. Z.

    2009-04-01

    In this paper, the concept of flux mnemonics is newly extended to the wind power generator. By incorporating a small magnetizing winding into an outer-rotor doubly salient AlNiCo permanent magnet (PM) machine, a new flux-mnemonic PM brushless wind power generator is proposed and implemented. This generator can offer effective and efficient air-gap flux control. First, the characteristics of the proposed generator are analyzed by using the finite element method. Second, the closed-loop flux control is devised to achieve a constant generated voltage under time-varying wind speeds. Finally, the experimental results are given to verify the validity of the proposed generator and control system.

  9. Coupling characteristics and control of dual mechanical port machine with spoke type permanent magnet arrangement

    NASA Astrophysics Data System (ADS)

    Zhuang, Xingming; Song, Qiang; Wen, Xuhui; Zhao, Feng; Fan, Tao

    2014-11-01

    Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several types of DMPM, has been of interest recently. The unique coupling characteristics of STPM-DMPM are beneficial to improving system performance, but these same characteristics increase the difficulties of control. Now there has been little research about the control of STPM-DMPM, and this has hindered its practical application. Based on a mathematical model of STPM-DMPM, the coupling characteristics and the merits and demerits of such devices are analyzed as applied to a hybrid system. The control strategies for improving the disadvantages and for utilizing the advantage of coupling are researched. In order to weaken the interaction effect of torque outputs in the inner motor and the outer motor that results from coupling in STPM-DMPM, a decoupling control method based on equivalent current control is proposed, and independent torque control for the inner motor and outer motor is achieved. In order to solve address the problem of adequately utilization of coupling, minimizing the overall copper loss of the inner motor and the outer motor of STPM-DMPM is taken as the optimization objective for optimal control, and the purpose of utilizing the coupling adequately and reasonably is achieved. The verification tests of the proposed decoupling control and optimal control strategies are carried out on a prototype STPM-DMPM, and the experimental results show that the interaction effect of torque outputs in the inner motor and the outer motor can be markedly weakened through use of the control method. The overall copper loss of the inner motor and the outer motor can be markedly reduced through use of the optimal control method, while the power output remains unchanged. A breakthrough in the control problem of STPM-DMPM is accomplished by combining the control

  10. 16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation

    SciTech Connect

    Hsu, J.S.; Burress, T.A.; Lee, S.T.; Wiles, R.H.; Coomer, C.L.; McKeever, J.W.; Adams, D.J.

    2007-10-31

    The reluctance interior permanent magnet (RIPM) motor is currently used by many leading auto manufacturers for hybrid vehicles. The power density for this type of motor is high compared with that of induction motors and switched reluctance motors. The primary drawback of the RIPM motor is the permanent magnet (PM) because during high-speed operation, the fixed PM produces a huge back electromotive force (emf) that must be reduced before the current will pass through the stator windings. This reduction in back-emf is accomplished with a significant direct-axis (d-axis) demagnetization current, which opposes the PM's flux to reduce the flux seen by the stator wires. This may lower the power factor and efficiency of the motor and raise the requirement on the alternate current (ac) power supply; consequently, bigger inverter switching components, thicker motor winding conductors, and heavier cables are required. The direct current (dc) link capacitor is also affected when it must accommodate heavier harmonic currents. It is commonly agreed that, for synchronous machines, the power factor can be optimized by varying the field excitation to minimize the current. The field produced by the PM is fixed and cannot be adjusted. What can be adjusted is reactive current to the d-axis of the stator winding, which consumes reactive power but does not always help to improve the power factor. The objective of this project is to avoid the primary drawbacks of the RIPM motor by introducing brushless field excitation (BFE). This offers both high torque per ampere (A) per core length at low speed by using flux, which is enhanced by increasing current to a fixed excitation coil, and flux, which is weakened at high speed by reducing current to the excitation coil. If field weakening is used, the dc/dc boost converter used in a conventional RIPM motor may be eliminated to reduce system costs. However, BFE supports a drive system with a dc/dc boost converter, because it can further extend

  11. Investigation of fault modes in permanent magnet synchronous machines for traction applications

    NASA Astrophysics Data System (ADS)

    Choi, Gilsu

    Over the past few decades, electric motor drives have been more widely adopted to power the transportation sector to reduce our dependence on foreign oil and carbon emissions. Permanent magnet synchronous machines (PMSMs) are popular in many applications in the aerospace and automotive industries that require high power density and high efficiency. However, the presence of magnets that cannot be turned off in the event of a fault has always been an issue that hinders adoption of PMSMs in these demanding applications. This work investigates the design and analysis of PMSMs for automotive traction applications with particular emphasis on fault-mode operation caused by faults appearing at the terminals of the machine. New models and analytical techniques are introduced for evaluating the steady-state and dynamic response of PMSM drives to various fault conditions. Attention is focused on modeling the PMSM drive including nonlinear magnetic behavior under several different fault conditions, evaluating the risks of irreversible demagnetization caused by the large fault currents, as well as developing fault mitigation techniques in terms of both the fault currents and demagnetization risks. Of the major classes of machine terminal faults that can occur in PMSMs, short-circuit (SC) faults produce much more dangerous fault currents than open-circuit faults. The impact of different PMSM topologies and parameters on their responses to symmetrical and asymmetrical short-circuit (SSC & ASC) faults has been investigated. A detailed investigation on both the SSC and ASC faults is presented including both closed-form and numerical analysis. The demagnetization characteristics caused by high fault-mode stator currents (i.e., armature reaction) for different types of PMSMs are investigated. A thorough analysis and comparison of the relative demagnetization vulnerability for different types of PMSMs is presented. This analysis includes design guidelines and recommendations for

  12. A sensorless initial rotor position's estimation for permanent magnet synchronous machines

    NASA Astrophysics Data System (ADS)

    Krasnov, I.; Langraf, S.; Odnolopylov, I.; Koltun, V.

    2015-10-01

    Permanent magnet synchronous motors for the effective start require information about the initial position of a rotor. In this regard, most systems use position sensors, which substantially increase entirely a cost of an electrical drive [1-3]. The aim of this article is to develop a new method, allowing determining the absolute angular position of the permanent magnet synchronous motors’ rotor [4,5]. With a certain voltage pulses applied to the motor, its stator is magnetized by currents leakage in the windings. This allows using a special algorithm to calculate the absolute position of the rotor without using any motor parameters [6]. Simulation results prove the simplicity and efficiency of this method for determining an initial position of the permanent magnet synchronous motors’ rotor. Thus, this method can be widely used in the electrical industry.

  13. Design Comparison of Inner and Outer Rotor of Permanent Magnet Flux Switching Machine for Electric Bicycle Application

    NASA Astrophysics Data System (ADS)

    Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.

    2017-08-01

    Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.

  14. Real-time optimal torque control of fault-tolerant permanent magnet brushless machines

    NASA Astrophysics Data System (ADS)

    Max, L.; Wang, J.; Atallah, K.; Howe, D.

    2005-05-01

    The paper describes issues that are pertinent to control system hardware and software design for the real-time implementation of an optimal torque control strategy for fault-tolerant permanent magnet brushless ac drives, and reports experimental results. The influence of the current control loop bandwidth and pulse width modulation on the torque ripple are investigated and quantified.

  15. Passivity-based current controller design for a permanent-magnet synchronous motor.

    PubMed

    Achour, A Y; Mendil, B; Bacha, S; Munteanu, I

    2009-07-01

    The control of a permanent-magnet synchronous motor is a nontrivial issue in AC drives, because of its nonlinear dynamics and time-varying parameters. Within this paper, a new passivity-based controller designed to force the motor to track time-varying speed and torque trajectories is presented. Its design avoids the use of the Euler-Lagrange model and destructuring since it uses a flux-based dq modelling, independent of the rotor angular position. This dq model is obtained through the three-phase abc model of the motor, using a Park transform. The proposed control law does not compensate the model's workless force terms which appear in the machine's dq model, as they have no effect on the system's energy balance and they do not influence the system's stability properties. Another feature is that the cancellation of the plant's primary dynamics and nonlinearities is not done by exact zeroing, but by imposing a desired damped transient. The effectiveness of the proposed control is illustrated by numerical simulation results.

  16. Negative and near zero refraction metamaterials based on permanent magnetic ferrites

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Guo, Yunsheng; Zhou, Ji; Dong, Guoyan; Zhao, Hongjie; Zhao, Qian; Xiao, Zongqi; Liu, Xiaoming; Lan, Chuwen

    2014-02-01

    Ferrite metamaterials based on the negative permeability of ferromagnetic resonance in ferrites are of great interest. However, such metamaterials face a limitation that the ferromagnetic resonance can only take place while an external magnetic field applied. Here, we demonstrate a metamaterial based on permanent magnetic ferrite which exhibits not only negative refraction but also near zero refraction without applied magnetic field. The wedge-shaped and slab-shaped structures of permanent magnetic ferrite-based metamaterials were prepared and the refraction properties were measured in a near-field scanning system. The negative and near zero refractive behaviors are confirmed by the measured spatial electric field maps. This work offers new opportunities for the development of ferrite-based metamaterials.

  17. Negative and near zero refraction metamaterials based on permanent magnetic ferrites

    PubMed Central

    Bi, Ke; Guo, Yunsheng; Zhou, Ji; Dong, Guoyan; Zhao, Hongjie; Zhao, Qian; Xiao, Zongqi; Liu, Xiaoming; Lan, Chuwen

    2014-01-01

    Ferrite metamaterials based on the negative permeability of ferromagnetic resonance in ferrites are of great interest. However, such metamaterials face a limitation that the ferromagnetic resonance can only take place while an external magnetic field applied. Here, we demonstrate a metamaterial based on permanent magnetic ferrite which exhibits not only negative refraction but also near zero refraction without applied magnetic field. The wedge-shaped and slab-shaped structures of permanent magnetic ferrite-based metamaterials were prepared and the refraction properties were measured in a near-field scanning system. The negative and near zero refractive behaviors are confirmed by the measured spatial electric field maps. This work offers new opportunities for the development of ferrite-based metamaterials. PMID:24553188

  18. Negative and near zero refraction metamaterials based on permanent magnetic ferrites.

    PubMed

    Bi, Ke; Guo, Yunsheng; Zhou, Ji; Dong, Guoyan; Zhao, Hongjie; Zhao, Qian; Xiao, Zongqi; Liu, Xiaoming; Lan, Chuwen

    2014-02-20

    Ferrite metamaterials based on the negative permeability of ferromagnetic resonance in ferrites are of great interest. However, such metamaterials face a limitation that the ferromagnetic resonance can only take place while an external magnetic field applied. Here, we demonstrate a metamaterial based on permanent magnetic ferrite which exhibits not only negative refraction but also near zero refraction without applied magnetic field. The wedge-shaped and slab-shaped structures of permanent magnetic ferrite-based metamaterials were prepared and the refraction properties were measured in a near-field scanning system. The negative and near zero refractive behaviors are confirmed by the measured spatial electric field maps. This work offers new opportunities for the development of ferrite-based metamaterials.

  19. Permanent-Magnet Meissner Bearing

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  20. Permanent-Magnet Meissner Bearing

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  1. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi

    2017-05-01

    A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  2. A novel five-phase fault-tolerant modular in-wheel permanent-magnet synchronous machine for electric vehicles

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Wu, Fan; Wang, Pengfei; Cheng, Luming; Zhu, Jianguo

    2015-05-01

    This paper describes a five-phase fault-tolerant modular in-wheel permanent-magnet synchronous machine (PMSM) for electric vehicles. By adopting both the analytical and finite-element methods, the magnetic isolation abilities of some typical slot/pole combinations are analyzed, and a new fractional-slot concentrated winding topology that features hybrid single/double-layer concentrated windings and modular stator structure is developed. For the proposed hybrid single/double-layer concentrated windings, feasible slot/pole combinations are studied for three-, four-, and five-phase PMSMs. A five-phase in-wheel PMSM that adopts the proposed winding topology is designed and compared with the conventional PMSM, and the proposed machine shows advantages of large output torque, zero mutual inductances, low short-circuit current, and high magnetic isolation ability. Some of the analysis results are verified by experiments.

  3. Design and development of permanent magnet based focusing lens for J-Band Klystron

    SciTech Connect

    Singh, Kumud; Itteera, Janvin; Ukarde, Priti; Malhotra, Sanjay; Taly, Y.K.; Bandyopadhay, Ayan; Meena, Rakesh; Rawat, Vikram; Joshi, L.M

    2014-07-01

    Applying permanent magnet technology to beam focusing in klystrons can reduce their power consumption and increase their reliability of operation. Electromagnetic design of the beam focusing elements, for high frequency travelling wave tubes, is very critical. The magnitude and profile of the magnetic field need to match the optics requirement from beam dynamics studies. The rise of the field from cathode gun region to the uniform field region (RF section) is important as the desired transition from zero to peak axial field must occur over a short axial distance. Confined flow regime is an optimum choice to minimize beam scalloping but demands an axial magnetic field greater than 2 - 3 times the Brillouin flow field. This necessitates optimization in the magnet design achieve high magnetic field within given spatial constraints. Electromagnetic design and simulations were done using 3D Finite element method (FEM) analysis software. A permanent magnet based focusing lens for a miniature J-Band klystron has been designed and developed at Control Instrumentation Division, BARC. This paper presents the design, simulation studies, beam transmission and RF tests results for J Band klystron with permanent magnet focusing lens. (author)

  4. Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets.

    PubMed

    Duerrschnabel, M; Yi, M; Uestuener, K; Liesegang, M; Katter, M; Kleebe, H-J; Xu, B; Gutfleisch, O; Molina-Luna, L

    2017-07-04

    A higher saturation magnetization obtained by an increased iron content is essential for yielding larger energy products in rare-earth Sm2Co17-type pinning-controlled permanent magnets. These are of importance for high-temperature industrial applications due to their intrinsic corrosion resistance and temperature stability. Here we present model magnets with an increased iron content based on a unique nanostructure and -chemical modification route using Fe, Cu, and Zr as dopants. The iron content controls the formation of a diamond-shaped cellular structure that dominates the density and strength of the domain wall pinning sites and thus the coercivity. Using ultra-high-resolution experimental and theoretical methods, we revealed the atomic structure of the single phases present and established a direct correlation to the macroscopic magnetic properties. With further development, this knowledge can be applied to produce samarium cobalt permanent magnets with improved magnetic performance.Understanding the factors that determine the properties of permanent magnets, which play a central role in many industrial applications, can help in improving their performance. Here, the authors study how changes in the iron content affect the microstructure of samarium cobalt magnets.

  5. Design of a Permanent Magnet Synchronous Machine for a Flywheel Energy Storage System within a Hybrid Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Jiang, Ming

    As an energy storage device, the flywheel has significant advantages over conventional chemical batteries, including higher energy density, higher efficiency, longer life time, and less pollution to the environment. An effective flywheel system can be attributed to its good motor/generator (M/G) design. This thesis describes the research work on the design of a permanent magnet synchronous machine (PMSM) as an M/G suitable for integration in a flywheel energy storage system within a large hybrid electric vehicle (HEV). The operating requirements of the application include wide power and speed ranges combined with high total system efficiency. Along with presenting the design, essential issues related to PMSM design including cogging torque, iron losses and total harmonic distortion (THD) are investigated. An iterative approach combining lumped parameter analysis with 2D Finite Element Analysis (FEA) was used, and the final design is presented showing excellent performance.

  6. A Practical Torque Estimation Method for Interior Permanent Magnet Synchronous Machine in Electric Vehicles

    PubMed Central

    Zhu, Yuan

    2015-01-01

    The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment. PMID:26114557

  7. A Practical Torque Estimation Method for Interior Permanent Magnet Synchronous Machine in Electric Vehicles.

    PubMed

    Wu, Zhihong; Lu, Ke; Zhu, Yuan

    2015-01-01

    The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment.

  8. Evaluation of performance and magnetic characteristics of a radial-radial flux compound-structure permanent-magnet synchronous machine used for hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Liu, Ranran; Shen, Lin; Li, Lina; Fan, Weiguang; Wu, Qian; Zhao, Jing

    2008-04-01

    A breed of compound-structure permanent-magnet synchronous machine (CS-PMSM) is used for power-split hybrid electric vehicles (HEVs). It can help to fulfill both the speed and torque control of the internal combustion engine and, thus, realize the optimum operation of the HEV. In this paper, a radial-radial flux CS-PMSM, which is integrated by two machines radially [one stator machine (SM) and one double-rotor machine (DRM)], is designed and investigated. The machine performance is evaluated with finite-element method (FEM) and satisfactory results are obtained. The back electromotive force curves of the two machines are somewhat similar to sinusoidal ones; the average torques both meet the requirements; and due to the adoption of skewed slots, the cogging torques and torque ripples are quite small. The inductance parameter is calculated with a phasor diagram based two-dimensional FEM and the magnetic saturation and cross-magnetization effect are discussed. It is concluded that the SM is slightly saturated with no or little cross-magnetization phenomenon, whereas the DRM has deep-degree magnetic saturation and the cross-magnetization effect is notable.

  9. Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements

    SciTech Connect

    2012-01-01

    REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today’s most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

  10. Factors affecting coercivity in rare-earth based advanced permanent magnet materials

    SciTech Connect

    Lewis, L.H.; Sellers, C.H.; Panchanathan, V.

    1997-02-01

    The relationships that link microstructural properties of advanced permanent magnet materials with magnetic properties such as the coercivity are often difficult to quantify, especially in materials with nano-scale structures. Recent work on RE{sub 2}Fe{sub 14}B-based powders fabricated with rapid-solidification techniques such as inert gas atomization (IGA) and melt-spinning provide insight into the nanostructural features which affect the acquisition and stability of coercivity. In all cases the coercivity is found to be a function of both the scale of the constituent microstructure and of the presence and distribution of minor phases.

  11. Deep X-Ray Lithography Based Fabrication of Rare-Earth Based Permanent Magnets and their Applications to Microactuators

    SciTech Connect

    Christenson, T.R.; Garino, T.J.; Venturini, E.L.

    1999-01-27

    Precision high aspect-ratio micro molds constructed by deep x-ray lithography have been used to batch fabricate accurately shaped bonded rare-earth based permanent magnets with features as small as 5 microns and thicknesses up to 500 microns. Maximum energy products of up to 8 MGOe have been achieved with a 20%/vol. epoxy bonded melt-spun isotropic Nd2Fe14b powder composite. Using individually processed sub- millimeter permanent sections multipole rotors have been assembled. Despite the fact that these permanent magnet structures are small, their magnetic field producing capability remains the same as at any scale. Combining permanent magnet structures with soft magnetic materials and micro-coils makes possible new and more efficient magnetic microdevices.

  12. Free-run Startup Techniques for Sensorless Drive Systems of Permanent Magnet Machine with Phase Current or DC-bus Current Detection

    NASA Astrophysics Data System (ADS)

    Toba, Akio; Sato, Michihiko-; Inatama, Shigeki; Fujita, Kouetsu

    Starting methods for the inverter that drives a permanent magnet machine with only current sensors, while the rotor is rotating, (“free-run startup techniques") are proposed. The proposed methods are based on whether current flows or does not when one switch of the inverter is turned on, which depends on the electrical angle of the emf and the reverse blocking function of the freewheeling diodes. The merit of the proposed methods is that the calculation to determine the rotor position is simple. The variety of the methods is with the types of current detection. Proposed are the methods not only for the phase current detection but also for the DC-bus line current detection that are utilized in low-cost drive systems. Theoretical analysis, design issues, and experimental verifications of the proposed methods are set forth.

  13. A chiral-based magnetic memory device without a permanent magnet

    PubMed Central

    Dor, Oren Ben; Yochelis, Shira; Mathew, Shinto P.; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices. PMID:23922081

  14. Evolution of microstructure and defect structure in manganese-aluminum-based permanent magnet alloys

    NASA Astrophysics Data System (ADS)

    Yanar, Cagatay

    In this study, the transformation behavior of MnAl-based ferromagnetic alloys was investigated. The low-cost and availability of the Mn-Al base metals along with their high mechanical strength, machineability and high magnetic energy product (BH) per unit weight make these materials attractive candidates for permanent magnet applications. These alloys derive their magnetic properties from the metastable L10 tau-phase, which generally appears towards the Mn-rich side of the near equiatomic composition. The magnetic properties of these materials are strongly influenced by the microstructure and characteristic defect structure of the tau-phase. The tau-phase exhibits a unique defect structure, which includes twins, stacking faults, anti-phase domain boundaries and dislocations. Understanding the true nature of defect generation is necessary in order to be able to develop processing techniques to enhance and optimize the properties of these materials. The tau-phase derives from a phase mixture of ε(hcp) and ε '(B19) phases through various heat treatment processes. Controversial mechanisms are reported in the literature regarding the nature of the ε + ε' → tau transformation. Phase transformation mechanisms that are displacive and those involving a massive transformation have been reported. In this study, the true nature of the tau-phase formation was investigated experimentally by utilizing techniques such as transmission electron microscopy (TEM), high-resolution electron microscopy (HREM) and in-situ TEM heating experiments. It was shown that both of the transformation modes, i.e. massive and displacive mechanisms, can operate and result in tau-phase formation. The atomic nature of the displacive transformation was studied in detail to elucidate the viability of transformation of a two-phase mixture into a single phase through a shear transformation. In the absence of stress, the massive mode was shown to dominate microstructural evolution in bulk materials

  15. Adaptive PIF control for permanent magnet synchronous motors based on GPC.

    PubMed

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2012-12-24

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.

  16. Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC

    PubMed Central

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2013-01-01

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results. PMID:23262481

  17. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets

    SciTech Connect

    Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J; Long, Christian; Takeuchi, Ichiro

    2014-09-15

    Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet.

  18. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets

    SciTech Connect

    Kusne, AG; Gao, TR; Mehta, A; Ke, LQ; Nguyen, MC; Ho, KM; Antropov, V; Wang, CZ; Kramer, MJ; Long, C; Takeuchi, I

    2014-09-15

    Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet.

  19. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets.

    PubMed

    Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J; Long, Christian; Takeuchi, Ichiro

    2014-09-15

    Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet.

  20. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets

    PubMed Central

    Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J.; Long, Christian; Takeuchi, Ichiro

    2014-01-01

    Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet. PMID:25220062

  1. Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.

    2002-01-01

    This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.

  2. Genetic algorithm based design optimization of a permanent magnet brushless dc motor

    NASA Astrophysics Data System (ADS)

    Upadhyay, P. R.; Rajagopal, K. R.

    2005-05-01

    Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.

  3. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection

    PubMed Central

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  4. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong

    2015-07-01

    This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.

  5. Suspension force control of bearingless permanent magnet slice motor based on flux linkage identification.

    PubMed

    Zhu, Suming; Zhu, Huangqiu

    2015-07-01

    The control accuracy and dynamic performance of suspension force are confined in the traditional bearingless permanent magnet slice motor (BPMSM) control strategies because the suspension force control is indirectly achieved by adopting a closed loop of displacement only. Besides, the phase information in suspension force control relies on accurate measurement of rotor position, making the control system more complex. In this paper, a new suspension force control strategy with displacement and radial suspension force double closed loops is proposed, the flux linkage of motor windings is identified based on voltage-current model and the flexibility of motor control can be improved greatly. Simulation and experimental results show that the proposed suspension force control strategy is effective to realize the stable operation of the BPMSM.

  6. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  7. A nonlinear controller design for permanent magnet motors using a synchronization-based technique inspired from the Lorenz system

    NASA Astrophysics Data System (ADS)

    Zaher, Ashraf A.

    2008-03-01

    The dynamic behavior of a permanent magnet synchronous machine (PMSM) is analyzed. Nominal and special operating conditions are explored to show that the PMSM can experience chaos. A nonlinear controller is introduced to control these unwanted chaotic oscillations and to bring the PMSM to a stable steady state. The designed controller uses a pole-placement approach to force the closed-loop system to follow the performance of a simple first-order linear system with zero steady-state error to a desired set point. The similarity between the mathematical model of the PMSM and the famous chaotic Lorenz system is utilized to design a synchronization-based state observer using only the angular speed for feedback. Simulation results verify the effectiveness of the proposed controller in eliminating the chaotic oscillations while using a single feedback signal. The superiority of the proposed controller is further demonstrated by comparing it with a conventional PID controller. Finally, a laboratory-based experiment was conducted using the MCK2812 C Pro—MS(BL) motion control kit to confirm the theoretical results and to verify both the causality and versatility of the proposed controller.

  8. Predictive current control of permanent magnet synchronous motor based on linear active disturbance rejection control

    NASA Astrophysics Data System (ADS)

    Li, Kunpeng

    2017-01-01

    The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.

  9. Perspectives of Increasing Efficiency and Productivity of Electromagnetic Induction Pumps for Mercury Basing on Permanent Magnets

    SciTech Connect

    Bucenieks, I.

    2006-07-01

    In the next generation neutron sources the HLM (heavy liquid metals) such as lead, lead based eutectic alloys and mercury will be used both as spallation target material and simultaneously as the cooling liquid. In this aspect the design of safe and effective pumps for HLM recirculation at high pressure heads and big flow rates becomes important. For this purpose electromagnetic inductions pumps having no problems of hydraulic seals being in contact with liquid metal (electromagnetic forces in the liquid metal are induced by magnetic system located outside of the channel of pump) are more perspective from the point of view of their safety for operation at high temperature and radiation conditions in comparison with mechanical pumps. At the Institute of Physics of University of Latvia (IPUL) the design concept of electromagnetic induction pumps basing on the principle of rotating permanent magnets (PMP) have been developed. Such design concept of electromagnetic induction pumps has many advantages in comparison with traditionally used electromagnetic induction pumps basing on 3-phase linear flat or cylindrical inductors. The estimations of parameters of powerful pumps (such as overall dimensions of the active magnetic system, power of motor needed for pump drive, the efficiency of pump) for mercury for the developed by pump pressure heads in the range up to 10.0 bar and provided flow rates in the range up to 20 litres per second are demonstrated. (author)

  10. Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique.

    PubMed

    Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng

    2013-07-01

    In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance.

  11. TetraMag: A compact magnetizing device based on eight rotating permanent magnets

    NASA Astrophysics Data System (ADS)

    Gilbert, M.; Mertins, H.-Ch.; Tesch, M.; Berges, O.; Feilbach, Herbert; Schneider, C. M.

    2012-02-01

    In this paper we describe a novel magnetizing device based on eight rotatable permanent magnets arranged in a quadrupolar configuration, which is termed the TetraMag. TetraMag creates stable and homogeneous magnetic fields at the sample position with a resolution of 0.02 mT tunable between -570 mT and +570 mT. The field direction is continuously rotatable between 0° and 360° within the sample plane, while the field strength is maintained. A simplified mathematical description of TetraMag is developed leading to magnetic field calculations which are in good agreement with the experimental results. This versatile device avoids electrical energy dissipation, cooling mechanisms, and hysteresis effects known from classical electromagnets. It is ultrahigh vacuum compatible and it offers a completely free optical path over 180° for magneto-optical experiments. It is suitable for scattering experiments with synchrotron radiation and neutrons and may be employed in a large class of magnetization experiments.

  12. Permanent magnet-based guided-wave magnetooptic Bragg cell modules

    NASA Astrophysics Data System (ADS)

    Wang, C. L.; Pu, Y.; Tsai, C. S.

    1992-05-01

    Compact magnetostatic forward volume wave-based guided-wave magnetooptic (MO) Bragg cell modules have been realized by utilizing a pair of small samarium-cobalt permanent magnets together with a pair of current-carrying coils. A highly uniform dc magnetic field has been obtained in the air gap where yttrium iron garnet-gadolinium gallium garnet (YIG-GGG) waveguide samples are inserted. Tunable dc magnetic field as large as 2446 Oe corresponding to a tunable carrier frequency band of 6.85 GHz has been achieved. The resulting MO Bragg cell modules, at the optical wavelength of 1.303 micron, with carrier frequencies ranging from 2.0 to 12.0 GHz have provided performance characteristics comparable to those obtained by using a bulk electromagnet. Compact MO Bragg cell modules of even higher carrier frequency, larger range of tunable carrier frequency, and smaller sizes can be constructed to facilitate their potential applications such as modulation, scanning, and switching of light beam as well as real-time processing of wide-band microwave signals without requiring frequency down-conversion.

  13. HfCo7-Based Rare-Earth-Free Permanent-Magnet Alloys

    SciTech Connect

    Das, B; Balamurugan, B; Kumar, P; Skomski, R; Shah, VR; Shield, JE; Kashyap, A; Sellmyer, DJ

    2013-07-01

    This study presents the structural and magnetic properties of melt-spun HfCo7, HfCo7-xFex (0.25 <= x <=), and HfCo7Six (0.2 <= x <= 1.2) alloys. Appreciable permanent-magnet properties with a magnetocrystalline anisotropy of about 9.6-16.5, Mergs/cm(3), a magnetic polarization J(s) approximate to 7.2-10.6 kG, and coercivities H-c = 0.5-3.0 kOe were obtained by varying the composition of these alloys. Structural analysis reveals that the positions of x-ray diffraction peaks of HfCo7 show good agreement with those corresponding to an orthorhombic structure having lattice parameters of about a = 4.719 angstrom, b = 4.278 angstrom, and c = 8.070 angstrom. Based on these results, a model crystal structure for HfCo7 is developed and used to estimate the magnetic properties of HfCo7 using density-functional calculations, which agree with the experimental results.

  14. TetraMag: a compact magnetizing device based on eight rotating permanent magnets.

    PubMed

    Gilbert, M; Mertins, H-Ch; Tesch, M; Berges, O; Feilbach, Herbert; Schneider, C M

    2012-02-01

    In this paper we describe a novel magnetizing device based on eight rotatable permanent magnets arranged in a quadrupolar configuration, which is termed the TetraMag. TetraMag creates stable and homogeneous magnetic fields at the sample position with a resolution of 0.02 mT tunable between -570 mT and +570 mT. The field direction is continuously rotatable between 0° and 360° within the sample plane, while the field strength is maintained. A simplified mathematical description of TetraMag is developed leading to magnetic field calculations which are in good agreement with the experimental results. This versatile device avoids electrical energy dissipation, cooling mechanisms, and hysteresis effects known from classical electromagnets. It is ultrahigh vacuum compatible and it offers a completely free optical path over 180° for magneto-optical experiments. It is suitable for scattering experiments with synchrotron radiation and neutrons and may be employed in a large class of magnetization experiments.

  15. Rare earth permanent magnets

    SciTech Connect

    Major-Sosias, M.A.

    1993-10-01

    Permanent magnets were discovered centuries ago from what was known as {open_quotes}lodestone{close_quotes}, a rock containing large quantities of the iron-bearing mineral magnetite (Fe{sub 3}O{sub 4}). The compass was the first technological use for permanent magnetic materials; it was used extensively for navigational purposes by the fifteenth century. During the twentieth century, as new applications for permanent magnets were developed, interest and research in permanent magnetic materials soared. Four major types of permanent magnets have been developed since the turn of the century.

  16. System frequency support of permanent magnet synchronous generator-based wind power plant

    NASA Astrophysics Data System (ADS)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based

  17. Development of High Performance Permanent Magnets Based on Nd-Fe-B System

    NASA Astrophysics Data System (ADS)

    Pourarian, F.

    2000-09-01

    Rare earth iron boron magnets based on Nd2Fe14B type is the most powerful permanent magnets, which have outstanding magnetic properties in the vicinity of room temperature. Production of NdFeB is carried out by two distinctly different processes. These include the conventional powder - sintering process and consolidation of rapidly solidified powders. The latter is used to produce both bonded and anisotropic bulk magnets. NdFeB sintered magnets essentially consist of three basic phases; Nd2Fe14B(Φ) Nd1Fe4B4 phase (η) and Nd-rich phase (n). Therefore, the magnetic properties of the magnets strongly depend on their microstructure. The current focus of NdFeB magnet research and development is on improvement of the magnetic properties such as the magnetic remanence (Br) and intrinsic coercivity (Hci), corrosion resistance and temperature characteristics of sintered magnets and rapidly solidified (melt spinning) magnets. Since the discovery of NdFeB magnets, their performance has been continuously enhanced and the current maximum energy product is achieved to be 444 kJ/m3 (55.8 MGOe). Other processes also have been used for improving microstructure for developing high energy product NdFeB magnets. These processes include: i) mechanical alloying process of metals which uses an inter-diffusional reaction magnet, ii) HDDR process (hydrogenation, disprorportionation, desorption, recombination) of magnet powder, and iii) nanocrystalline composite magnet (exchange-coupled) which are composed of magnetically hard and soft grains. The negative side of the NdFeB magnet is their low corrosion resistance. They are sensitive to attack by both climatic and corrosive environments, resulting in deterioration of the hard magnetic properties of the magnet. In this paper the development of the high-energy product NdFeB based magnets in terms of improved microstructure and magnet processing methods is reviewed.

  18. Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators

    NASA Astrophysics Data System (ADS)

    Kramer, M. J.; McCallum, R. W.; Anderson, I. A.; Constantinides, S.

    2012-07-01

    With the advent of high-flux density permanent magnets based on rare earth elements such as neodymium (Nd) in the 1980s, permanent magnet-based electric machines had a clear performance and cost advantage over induction machines when weight and size were factors such as in hybrid electric vehicles and wind turbines. However, the advantages of the permanent magnet-based electric machines may be overshadowed by supply constraints and high prices of their key constituents, rare earth elements, which have seen nearly a 10-fold increase in price in the last 5 years and the imposition of export limits by the major producing country, China, since 2010. We outline the challenges, prospects, and pitfalls for several potential alloys that could replace Nd-based permanent magnets with more abundant and less strategically important elements.

  19. Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators

    SciTech Connect

    Kramer, Matthew; McCallum, Kendall; Anderson, Iver; Constantinides, Steven

    2012-06-29

    With the advent of high-flux density permanent magnets based on rare earth elements such as neodymium (Nd) in the 1980s, permanent magnet-based electric machines had a clear performance and cost advantage over induction machines when weight and size were factors such as in hybrid electric vehicles and wind turbines. However, the advantages of the permanent magnet-based electric machines may be overshadowed by supply constraints and high prices of their key constituents, rare earth elements, which have seen nearly a 10-fold increase in price in the last 5 years and the imposition of export limits by the major producing country, China, since 2010. We outline the challenges, prospects, and pitfalls for several potential alloys that could replace Nd-based permanent magnets with more abundant and less strategically important elements.

  20. Modeling and simulation of permanent magnet synchronous motor based on neural network control strategy

    NASA Astrophysics Data System (ADS)

    Luo, Bingyang; Chi, Shangjie; Fang, Man; Li, Mengchao

    2017-03-01

    Permanent magnet synchronous motor is used widely in industry, the performance requirements wouldn't be met by adopting traditional PID control in some of the occasions with high requirements. In this paper, a hybrid control strategy - nonlinear neural network PID and traditional PID parallel control are adopted. The high stability and reliability of traditional PID was combined with the strong adaptive ability and robustness of neural network. The permanent magnet synchronous motor will get better control performance when switch different working modes according to different controlled object conditions. As the results showed, the speed response adopting the composite control strategy in this paper was faster than the single control strategy. And in the case of sudden disturbance, the recovery time adopting the composite control strategy designed in this paper was shorter, the recovery ability and the robustness were stronger.

  1. Oscillating Permanent Magnets.

    ERIC Educational Resources Information Center

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  2. Comparison Study of Electromagnet and Permanent Magnet Systems for an Accelerator Using Cost-Based Failure Modes and Effects Analysis.

    SciTech Connect

    Spencer, C

    2004-02-19

    The next generation of particle accelerators will be one-of-a-kind facilities, and to meet their luminosity goals they must have guaranteed availability over their several decade lifetimes. The Next Linear Collider (NLC) is one viable option for a 1 TeV electron-positron linear collider, it has an 85% overall availability goal. We previously showed how a traditional Failure Modes and Effects Analysis (FMEA) of a SLAC electromagnet leads to reliability-enhancing design changes. Traditional FMEA identifies failure modes with high risk but does not consider the consequences in terms of cost, which could lead to unnecessarily expensive components. We have used a new methodology, ''Life Cost-Based FMEA'', which measures risk of failure in terms of cost, in order to evaluate and compare two different technologies that might be used for the 8653 NLC magnets: electromagnets or permanent magnets. The availabilities for the two different types of magnet systems have been estimated using empirical data from SLAC's accelerator failure database plus expert opinion on permanent magnet failure modes and industry standard failure data. Labor and material costs to repair magnet failures are predicted using a Monte Carlo simulation of all possible magnet failures over a 30-year lifetime. Our goal is to maximize up-time of the NLC through magnet design improvements and the optimal combination of electromagnets and permanent magnets, while reducing magnet system lifecycle costs.

  3. Permanent magnet assembly

    DOEpatents

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  4. Systematics of Permanent Magnet Film Texturing and the Limits of Film Synthesized 1-12 and 2-17 Iron Based Rare Earth Transition Metal Permanent Systems

    DTIC Science & Technology

    1998-01-21

    onto a separate substrate was used to saturate the magnetization of the Bi- YIG waveguide. The TbCu7 SmCo based film magnet was 22 urn thick in this case...structure. Microwave circulators using ferrite disks and external bulk permanent magnets are an example of such devices. Magnetoresistive heads are...tested. In a preliminary device configuration consisting of a waveguide etched into a Bi- YIG film, a SmCo based permanent magnet film deposited

  5. Additive manufacturing of permanent magnets

    SciTech Connect

    Paranthaman, M. P.; Nlebedim, I. C.; Johnson, F.; McCall, S. K.

    2016-10-28

    Here, permanent magnets enable energy conversion. Motors and generators are used to convert both electrical to mechanical energy and mechanical to electrical energy, respectively. They are precharged (magnetized) prior to being used in an application and must remain magnetized during operation. In addition, they should generate sufficient magnetic flux for a given application. Nevertheless permanent magnets can be demagnetized (discharged of their magnetization) by other magnetic materials in their service vicinity, temperature changes (thermal demagnetization), microstructural degradations and the magnet’s internal demagnetizing field. Therefore a permanent magnet can be qualified based on the properties that measure its ability to withstand demagnetization and to supply sufficient magnetic flux required for a given application. Some of those properties are further discussed below. Additive manufacturing followed by exchange spring magnets will be discussed afterwards.

  6. Additive manufacturing of permanent magnets

    DOE PAGES

    Paranthaman, M. P.; Nlebedim, I. C.; Johnson, F.; ...

    2016-10-28

    Here, permanent magnets enable energy conversion. Motors and generators are used to convert both electrical to mechanical energy and mechanical to electrical energy, respectively. They are precharged (magnetized) prior to being used in an application and must remain magnetized during operation. In addition, they should generate sufficient magnetic flux for a given application. Nevertheless permanent magnets can be demagnetized (discharged of their magnetization) by other magnetic materials in their service vicinity, temperature changes (thermal demagnetization), microstructural degradations and the magnet’s internal demagnetizing field. Therefore a permanent magnet can be qualified based on the properties that measure its ability to withstandmore » demagnetization and to supply sufficient magnetic flux required for a given application. Some of those properties are further discussed below. Additive manufacturing followed by exchange spring magnets will be discussed afterwards.« less

  7. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  8. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  9. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets

    PubMed Central

    Deng, Dongge; Wu, Xinjun; Zuo, Su

    2016-01-01

    A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible. PMID:27782062

  10. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets.

    PubMed

    Deng, Dongge; Wu, Xinjun; Zuo, Su

    2016-10-06

    A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  11. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, BiTao; Pi, YouGuo; Luo, Ying

    2012-09-01

    A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations.

  12. Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer.

    PubMed

    Ren, Jun-Jie; Liu, Yan-Cheng; Wang, Ning; Liu, Si-Yuan

    2015-01-01

    This paper proposes a sensorless speed control strategy for ship propulsion interior permanent magnet synchronous motor (IPMSM) based on a new sliding-mode observer (SMO). In the SMO the low-pass filter and the method of arc-tangent calculation of extended electromotive force (EMF) or phase-locked loop (PLL) technique are not used. The calculation of the rotor speed is deduced from the Lyapunov function stability analysis. In order to reduce system chattering, sigmoid functions with switching gains being adaptively updated by fuzzy logic systems are innovatively incorporated into the SMO. Finally, simulation results for a 4.088 MW ship propulsion IPMSM and experimental results from a 7.5 kW IPMSM drive are provided to verify the effectiveness of the proposed SMO method.

  13. Crystallization and atomic diffusion behavior of high coercive Ta/Nd-Fe-B/Ta-based permanent magnetic thin film

    NASA Astrophysics Data System (ADS)

    Tian, Na; Zhang, Xiao; You, Caiyin; Fu, Huarui; Shen, Qianlong

    2017-06-01

    A high coercivity of about 20.4 kOe was obtained through post-annealing the sputtered Ta/Nd-Fe-B/Ta-based permanent magnetic thin films. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses were performed to investigate the crystallization and atomic diffusion behaviors during post-annealing. The results show that the buffer and capping Ta layers prefered to intermix with Fe and B atoms, and Nd tends to be combined with O atoms. The preferred atomic combination caused the appearance of the soft magnetic phase of Fe-Ta-B, resulting in a kink of the second quadratic magnetic hysteresis loop. The preferred atomic diffusion and phase formation of the thin films were well explained in terms of the formation enthalpy of the various compounds.

  14. Hysteretic properties of Nd2Fe14B-based permanent magnets: First principles and micromagnetic modeling

    NASA Astrophysics Data System (ADS)

    Wysocki, Aleksander; Kukusta, Denis; Ke, Liqin; Antropov, Vladimir

    2014-03-01

    We combine ab initio electronic structure calculations with micromagnetic simulations to investigate permanent magnet properties of Nd2Fe14B-based systems. First, magnetic moments, anisotropy constants and exchange interactions of bulk Nd2Fe14B are calculated from first principles. These parameters are then used to construct a micromagnetic model for realistic samples and evaluate hysteresis loop at finite temperatures using Monte Carlo method. Several generic microstructures are considered including randomly oriented grains, hard/soft multilayers, and core/shell geometries. We find optimal grain sizes and hard phase/soft phase volume ratio which maximize maximum energy products of the systems. Further, we discuss the nature of the thermal spin reorientation effect in the bulk material and how it affects the finite temperature hysteretic properties.

  15. Transient performance of permanent magnet synchronous motors

    NASA Astrophysics Data System (ADS)

    Borger, W. U.

    The performance of a permanent magnet synchronous machine is presented for transient conditions including: starting, load application and load removal. The machine studied possesses asynchronous torque for starting as well as synchronous torque for high efficiency and high power factor during normal operation. The transient performance of the synchronous machine is compared with a high efficiency induction machine of the same rating. The comparison presented is strictly analytical and is approached by developing the required equations for the idealized synchronous and induction machines. Solutions for the equations are approximated on the digital computer. Although the study is not universal in scope, it shows that the permanent magnet synchronous motor rivals the induction machine in weight and in transient performance while at the same time besting the induction machine from an efficiency and power factor standpoint.

  16. High-Performance Control of Two Three-Phase Permanent-Magnet Synchronous Machines in an Integrated Drive for Automotive Applications

    SciTech Connect

    Tang, Lixin; Su, Gui-Jia

    2008-01-01

    The closed-loop control of an integrated dual AC drive system is presented to control two three-phase permanent-magnet motors. A five-leg inverter is employed in the drive system; three of the inverter legs are for a main traction motor, but only two are needed for a three-phase auxiliary motor by utilizing the neutral point of the traction motor. An integrated drive with reduced component count is therefore achieved by eliminating one inverter leg and its gate drivers. A modified current control scheme based on the rotor flux orientation principle is presented. Simulation and experimental results are included to verify the independent control capability of the integrated drive.

  17. Permanent magnet machine and method with reluctance poles and non-identical PM poles for high density operation

    DOEpatents

    Hsu, John S.

    2010-05-18

    A method and apparatus in which a stator (11) and a rotor (12) define a primary air gap (20) for receiving AC flux and at least one source (23, 40), and preferably two sources (23, 24, 40) of DC excitation are positioned for inducing DC flux at opposite ends of the rotor (12). Portions of PM material (17, 17a) are provided as boundaries separating PM rotor pole portions from each other and from reluctance poles. The PM poles (18) and the reluctance poles (19) can be formed with poles of one polarity having enlarged flux paths in relation to flux paths for pole portions of an opposite polarity, the enlarged flux paths communicating with a core of the rotor (12) so as to increase reluctance torque produced by the electric machine. Reluctance torque is increased by providing asymmetrical pole faces. The DC excitation can also use asymmetric poles and asymmetric excitation sources. Several embodiments are disclosed with additional variations.

  18. Variable Permanent Magnet Quadrupole

    SciTech Connect

    Mihara, T.; Iwashita, Y.; Kumada, M.; Spencer, C.M.; /SLAC

    2007-05-23

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.

  19. Permanent magnet design methodology

    NASA Technical Reports Server (NTRS)

    Leupold, Herbert A.

    1991-01-01

    Design techniques developed for the exploitation of high energy magnetically rigid materials such as Sm-Co and Nd-Fe-B have resulted in a revolution in kind rather than in degree in the design of a variety of electron guidance structures for ballistic and aerospace applications. Salient examples are listed. Several prototype models were developed. These structures are discussed in some detail: permanent magnet solenoids, transverse field sources, periodic structures, and very high field structures.

  20. Thyristor-based current-fed drive with direct power control for permanent magnet-assisted synchronous reluctance generator

    NASA Astrophysics Data System (ADS)

    Baek, J.; Kwak, S.-S.; Toliyat, H. A.

    2015-03-01

    This paper proposes a robust and simple direct power control (DPC) of a thyristor-based current-fed drive for generator applications. A current-fed drive and permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) are investigated to deliver 3 kW power using a combustion engine. The current-fed drive utilises a thyristor-based three-phase rectifier to convert generator power to DC-link power and a single-phase current-fed inverter to supply a single-phase inductive load. In addition, a new control algorithm is developed based on DPC for the current-fed drive. The DC-link voltage-based DPC is proposed in order to directly control the output power. The goal of the DPC is to maintain the DC-link voltage at the required output power operating point. The DPC has advantages such as a simple algorithm for constant speed operation. Another feature of the developed current-fed drive is its inherent capability to provide generating action by making the PMa-SynRG operates as a generator, rectifying the phase voltages by means of the three-phase rectifier and feeding the power into the load. These features make the current-fed drive a good candidate for driving any type of synchronous generators including the proposed PMa-SynRG.

  1. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    PubMed

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-24

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  2. The simulation of low core loss high speed permanent magnet motor based on soft-magnetic ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Fang, Xue; Guo, Yingjie; Wang, Xiuhe

    2006-11-01

    High core loss is the most outstanding problem in high speed permanent magnet motors. To solve this problem, water cooling or oil cooling is usually adopted, which increase the complexity and cost. Considering the characters of high permeability, high resistivity, low loss and low cost for soft magnetic ferrite, this paper proposes a novel high speed PM motor based on soft magnetic ferrite. Soft magnetic ferrite ring is used as stator core, rare earth PM ring serves as the rotor poles, and the slotless configuration with long effective air gap is adopted. The size matching design between the stator magnetic ring and the PM magnetic ring can make themselves work in their best operating points respectively, lower core loss and higher power density will be ensured in the motor. The results of magnetic field analysis, core loss analysis and the prototype test prove that the core loss can be greatly reduced, which verifies that the high speed PM BLDC motor based on soft magnetic ferrite is feasible.

  3. Analytical model and design of spoke-type permanent-magnet machines accounting for saturation and nonlinearity of magnetic bridges

    NASA Astrophysics Data System (ADS)

    Liang, Peixin; Chai, Feng; Bi, Yunlong; Pei, Yulong; Cheng, Shukang

    2016-11-01

    Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization.

  4. Adaptive two-degree-of-freedom PI for speed control of permanent magnet synchronous motor based on fractional order GPC.

    PubMed

    Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao

    2016-09-01

    In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy.

  5. Cryogenic Permanent Magnet Undulators

    SciTech Connect

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-06-23

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm{sub 2}Co{sub 17} or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  6. Predictive control strategies for wind turbine system based on permanent magnet synchronous generator.

    PubMed

    Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba

    2016-05-01

    In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies.

  7. Influence of phase transformation on the permanent-magnetic properties of Fe-Pt based alloys

    NASA Astrophysics Data System (ADS)

    Brück, E.; Xiao, Q. F.; Thang, P. D.; Toonen, M. J.; de Boer, F. R.; Buschow, K. H. J.

    2001-07-01

    We have studied the effect of the atomic disorder-order transformation on remanence enhancement and coercivity in Fe-Pt-based materials by isothermal annealing at temperatures well below the transformation point. We also investigated the effect of the annealing temperature and the effect of various types of additives. The relative amount of the low-temperature hard-magnetic face-centered-tetragonal (FCT) phase precipitated in the high-temperature magnetically soft face-centered-cubic (FCC) phase was determined by means of X-ray diffraction. As a function of annealing time and annealing temperature, particle size and relative amount of the FCT phase increased at the cost of the FCC phase. These changes were followed by means of magnetic measurements. We observed a continuous increase in coercivity with increasing annealing time, eventually reaching a maximum. The Kneller-Hawig model was used to explain the occurrence of remanence enhancement and the continuously changing degree of exchange coupling between the magnetically soft and hard phase. The suitability of Fe-Pt based alloys in dental applications is discussed.

  8. Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions.

    PubMed

    Brumfield, Brian; Wysocki, Gerard

    2012-12-31

    A low-power Faraday rotation spectroscopy system that uses permanent rare-earth magnets has been developed for detection of O₂ at 762 nm. The experimental signals are generated using laser wavelength modulation combined with a balanced detection scheme that permits quantum shot noise limited performance. A noise equivalent polarization rotation angle of 8 × 10⁻⁸ rad/Hz¹/² is estimated from the experimental noise, and this agrees well with a theoretical model based on Jones calculus. A bandwidth normalized minimum detection limit to oxygen of 6 ppmv/Hz¹/² with an ultimate minimum of 1.3 ppmv at integration times of ~1 minute has been demonstrated.

  9. Phase composition and magnetic properties in nanocrystalline permanent magnets based on misch-metal

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Wang, J.; Zhang, Z. Y.; Zhang, X. F.; Liu, F.; Liu, Y. L.; Jv, X. M.; Li, Y. F.; Wang, G. F.

    2017-09-01

    The magnetic properties and phase composition of magnets based on misch-metal (MM) with nominal composition of MM13+xFe84-xB6.5 with x = 0.5, 1, 1.5, 2 and 2.5 using melt-spinning method were investigated. For x = 1.5, it could exhibit best magnetic properties (Hcj = 753.02 kA m-1, (BH)max = 70.77 kJ m-3). X-ray diffraction and energy dispersive spectroscopy show that the multi hard magnetic phase of RE2Fe14B (RE = La, Ce, Pr, Nd) existed in the magnets. The domain wall pinning effect and the exchange coupling interaction between grains are dependent on the abnormal RE-rich phase composition. Optimizing the phase constitution is necessary to improve magnetic properties in MM-Fe-B magnets for utilizing the rare earth resource in a balanced manner.

  10. High-performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Goll, D.; Kronmüller, H.

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE=Nd, Pr, Sm) with transition metals (TM=Fe, Co), in particular magnets based on (Nd,Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of >15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  11. High-performance permanent magnets.

    PubMed

    Goll, D; Kronmüller, H

    2000-10-01

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE = Nd, Pr, Sm) with transition metals (TM = Fe, Co), in particular magnets based on (Nd.Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of > 15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  12. Position Sensorless Vector Control for Permanent Magnet Synchronous Motors Based on Maximum Torque Control Frame

    NASA Astrophysics Data System (ADS)

    Hida, Hajime; Tomigashi, Yoshio; Kishimoto, Keiji

    High efficiency drive can be achieved by the maximum torque-per-ampere (MTPA) control which used reluctance torque effectively. However, the calculations for estimating rotor position and for controlling the d-axis current are required. The motor parameters of inductance etc. that are easily affected by magnetic saturation are included in those calculations. This paper proposes a new MTPA control method, which is robust against changes of motor parameters caused by magnetic saturation. In addition, complex calculation for d-axis current or reference to the table is not necessary. In this method, we define a novel coordinate frame, which has one axis aligned with the current vector of the MTPA control, and estimate the frame directly. Because the parameter Lqm for estimating the frame is less affected by the magnetic saturation than the conventional Lq, the effect of magnetic saturation on the position estimation can be greatly suppressed. First, an extended electromotive force model based on the proposed frame and a parameter Lqm for an estimation of the frame are derived. Next, the effectiveness of this proposed method is confirmed by simulations and experiments.

  13. Practical Aspects of Modern and Future Permanent Magnets

    NASA Astrophysics Data System (ADS)

    McCallum, R. W.; Lewis, L.; Skomski, R.; Kramer, M. J.; Anderson, I. E.

    2014-07-01

    The mandate to reduce greenhouse gases will require highly efficient electric machines for both power generation and traction motor applications. Although permanent magnet electric machines utilizing Nd2Fe14B-based magnets provide obvious power-to-weight advantages over induction machines, the limited availability and high price of the rare earth (RE) metals make these machines less favorable. Of particular concern is the cost and supply criticality of Dy, a key RE element that is required to improve the high-temperature performance of Nd-based magnetic alloys for use in generators and traction motors. Alternatives to RE-based alloys do exist, but they currently lack the energy density necessary to replace Nd-based magnets. Many of these compounds have been known for decades, but serious interest in their development waned once compounds based on RE elements were discovered. In this review, intrinsic and extrinsic materials factors that impact the optimization of both existing and potential future permanent magnets for energy applications are examined in light of new insights gained from renewed examination.

  14. Investigation of permanent magnets in low-cost position tracking

    NASA Astrophysics Data System (ADS)

    Anderson, Ryan; Lasso, Andras; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Low cost portable ultrasound systems could see improved utility if similarly low cost portable trackers were developed. Permanent magnet based tracking systems potentially offer adequate tracking accuracy in a small workspace suitable for ultrasound image reconstruction. In this study the use of simple permanent magnet tracking techniques is investigated to determine feasibility for use in an ultrasound tracking system. METHODS: Permanent magnet tracking requires finding a position input into a field model which minimizes the error between the measured field, and the field expected from the model. A simulator was developed in MATLAB to determine the effect of sources of error in permanent magnet tracking systems. Insights from the simulations were used to develop a calibration and tracking experiment to determine the accuracy of a simple and low cost permanent magnet tracking system. RESULTS: Simulation and experimental results show permanent magnet based tracking to be highly sensitive to errors in sensor measurements, calibration and experimental setup. The reduction in field strength of permanent magnets lowers with the cube of distance, which leads to very poor signal-to-noise ratios at distances above 20 cm. Small errors in experimental setup also led to high tracking error. CONCLUSION: Permanent magnet tracking was found to be less accurate than is clinically useful, and highly sensitive to errors in sensors and experimental setup. Sensor and calibration limitations make simple permanent magnet tracking systems a poor choice given the present state of sensor technology.

  15. New permanent magnets; manganese compounds.

    PubMed

    Coey, J M D

    2014-02-12

    The exponential growth of maximum energy product that prevailed in the 20th century has stalled, leaving a market dominated by two permanent magnet materials, Nd2Fe14B and Ba(Sr)Fe12O19, for which the maximum theoretical energy products differ by an order of magnitude (515 kJ m(-3) and 45 kJ m(-3), respectively). Rather than seeking to improve on optimized Nd-Fe-B, it is suggested that some research efforts should be devoted to developing appropriately priced alternatives with energy products in the range 100-300 kJ m(-3). The prospects for Mn-based hard magnetic materials are discussed, based on known Mn-based compounds with the tetragonal L10 or D022 structure or the hexagonal B81 structure.

  16. Electric Machines with Non-Radially Mounted Rectangular Permanent Magnets / Elektriskās Mašīnas Ar Prizmatiskiem Neradiāli Novietotiem Pastāvīgajiem Magnētiem

    NASA Astrophysics Data System (ADS)

    Levin, N.; Pugachev, V.; Dirba, J.; Lavrinovicha, L.

    2013-04-01

    The authors analyze the advantages and disadvantages of brushless synchronous electric machines with radially and non-radially mounted rectangular permanent magnets. The results show that the proposed nonradial mounting of permanent magnets considered in the paper, in several cases (e.g. multi-pole brushless generators with tooth windings of the armature) allows achievement of the following advantages: better technology of manufacturing the electric machine owing to simple packing of the stator winding in the stator open slots, which also increases the copper slot fillfactor; reduction in the mass-and-size of permanent magnets at least twice; significantly lower cost of the electric machine; and, finally, its greater specific power. Darbā tiek analizētas priekšrocības un trūkumi sinhronām bezkontaktu mašīnām ar radiāli un neradiāli novietotiem prizmatiskiem pastāvīgajiem magnētiem. Parādīts, ka vairākos gadījumos, piemēram, daudzpolu bezkontaktu sinhronajos ģeneratoros ar zobu tinumiem, neradiāls pastāvīgo magnētu izvietojums nodrošina vairākas priekšrocības: uzlabojas mašīnas izgatavošanas tehnoloģija, jo statora atvērtajās rievās vieglāk novietot tinumus un iespējams sasniegt augstāku rievas aizpildījuma koeficientu; samazinās pastāvīgo magnētu masa un izmaksas; palielinās mašīnas īpatnēja jauda.

  17. A discrete time model of a power conditioner fed permanent magnet brushless dc motor system for aerospace and electric vehicle applications for design purpose using finite elements for machine parameter determination

    NASA Astrophysics Data System (ADS)

    Nehl, T. W.

    1980-12-01

    A discrete state space model of a power conditioner fed permanent magnet brushless dc motor for aerospace and electric vehicle applications is developed. The parameters which describe that machine portion of this model are derived from a two dimensional nonlinear magnetic field analysis using the finite element method. The model predicts the instantaneous mechanical and electrical behavior of a prototype electromechanical actuator for possible use on board the shuttle orbiter. The model is also used to simulate the instantaneous performance of an advanced electric vehicle propulsion unit. The results of the computer simulations are compared with experimental test data and excellent agreement between the two is found in all cases.

  18. Periodic permanent magnet focused klystron

    DOEpatents

    Ferguson, Patrick; Read, Michael; Ives, R Lawrence

    2015-04-21

    A periodic permanent magnet (PPM) klystron has beam transport structures and RF cavity structures, each of which has permanent magnets placed substantially equidistant from a beam tunnel formed about the central axis, and which are also outside the extent of a cooling chamber. The RF cavity sections also have permanent magnets which are placed substantially equidistant from the beam tunnel, but which include an RF cavity coupling to the beam tunnel for enhancement of RF carried by an electron beam in the beam tunnel.

  19. Topology optimized permanent magnet systems

    NASA Astrophysics Data System (ADS)

    Bjørk, R.; Bahl, C. R. H.; Insinga, A. R.

    2017-09-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a Λcool figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  20. The effect of Cu-based core-sheath configurations on the processing of Nd-Fe-B-based permanent magnets via equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Besley, L.; Zhang, H.; Molotnikov, A.; Kishimoto, H.; Kato, A.; Davies, C.; Suzuki, K.

    2017-05-01

    Equal channel angular pressing (ECAP) has been used as an alternative manufacturing route for preparation of Nd2Fe14B-based anisotropic magnets, facilitating processing temperatures much lower than conventional die upsetting. While this method can produce a suitable texture and microstructure in permanent magnetic materials, it still remains novel; involving extremely high pressures which present a high risk of both process failure and die and tooling damage. Powder metallurgical processes frequently incorporate an external layer of secondary material (commonly an outer foil layer or can) for separation between the primary material and die as well as the control of surface effects such as friction through appropriate choice of secondary material. This work implements such modifications to this manufacturing route by incorporation of an outer layer of Cu foil, the addition of which negatively affected both the powder compaction and strength of texture produced via ECAP. Also investigated was the incorporation of solid Cu bar as part of the sample cross section. This modification facilitated processing without any compromise on observed magnetic properties, whilst also reducing damage to both the die and tooling. This type of methodology may aid in improving the reliability of producing bulk anisotropic permanent magnets via ECAP.

  1. Method and apparatus for assembling a permanent magnet pole assembly

    DOEpatents

    Carl, Jr., Ralph James; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Dawson, Richard Nils; Qu, Ronghai; Avanesov, Mikhail Avramovich

    2009-08-11

    A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.

  2. Experimental Approach of a High Performance Control of Two PermanentMagnet Synchronous Machines in an Integrated Drive for Automotive Applications

    SciTech Connect

    Tang, Lixin; Su, Gui-Jia

    2006-01-01

    The close-loop digital signal processor (DSP) control of an integrated-dual inverter, which is able to drive two permanent magnet (PM) motors independently, is presented and evaluated experimentally. By utilizing the neutral point of the main traction motor, only two inverter poles are needed for the two-phase auxiliary motor. The modified field-oriented control scheme for this integrated inverter was introduced and employed in real-time control. The experimental results show the inverter is able to control two drives independently. An integrated, component count reduced drive is achieved.

  3. Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets

    SciTech Connect

    2012-01-01

    REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to today’s best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

  4. Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm.

    PubMed

    Zheng, Weijia; Pi, Youguo

    2016-07-01

    A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Development and operation of a Pr2 Fe14 B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, C.; Valléau, M.; Ghaith, A.; Berteaud, P.; Chapuis, L.; Marteau, F.; Briquez, F.; Marcouillé, O.; Marlats, J.-L.; Tavakoli, K.; Mary, A.; Zerbib, D.; Lestrade, A.; Louvet, M.; Brunelle, P.; Medjoubi, K.; Herbeaux, C.; Béchu, N.; Rommeluere, P.; Somogyi, A.; Chubar, O.; Kitegi, C.; Couprie, M.-E.

    2017-03-01

    Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE2 Fe14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr2 Fe14B instead of Nd2 Fe14B , which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K). We describe here the development of a full scale (2 m), 18 mm period Pr2 Fe14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.

  6. Decomposition-based multi-objective differential evolution particle swarm optimization for the design of a tubular permanent magnet linear synchronous motor

    NASA Astrophysics Data System (ADS)

    Wang, Guanghui; Chen, Jie; Cai, Tao; Xin, Bin

    2013-09-01

    This article proposes a decomposition-based multi-objective differential evolution particle swarm optimization (DMDEPSO) algorithm for the design of a tubular permanent magnet linear synchronous motor (TPMLSM) which takes into account multiple conflicting objectives. In the optimization process, the objectives are evaluated by an artificial neural network response surface (ANNRS), which is trained by the samples of the TPMSLM whose performances are calculated by finite element analysis (FEA). DMDEPSO which hybridizes differential evolution (DE) and particle swarm optimization (PSO) together, first decomposes the multi-objective optimization problem into a number of single-objective optimization subproblems, each of which is associated with a Pareto optimal solution, and then optimizes these subproblems simultaneously. PSO updates the position of each particle (solution) according to the best information about itself and its neighbourhood. If any particle stagnates continuously, DE relocates its position by using two different particles randomly selected from the whole swarm. Finally, based on the DMDEPSO, optimization is gradually carried out to maximize the thrust of TPMLSM and minimize the ripple, permanent magnet volume, and winding volume simultaneously. The result shows that the optimized TPMLSM meets or exceeds the performance requirements. In addition, comparisons with chosen algorithms illustrate the effectiveness of DMDEPSO to find the Pareto optimal solutions for the TPMLSM optimization problem.

  7. Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line

    DOE PAGES

    Benabderrahmane, C.; Valleau, M.; Ghaith, A.; ...

    2017-03-02

    Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE2Fe14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr2Fe14B instead of Nd2Fe14B, which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77more » K). We describe here the development of a full scale (2 m), 18 mm period Pr2Fe14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. In conclusion, the commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.« less

  8. Final Technical Report for the project titled "Manganese Based Permanent Magnet with 40 MGOe at 200°C"

    SciTech Connect

    Cui, Jun

    2015-12-31

    The objective of project was to develop MnBi based permanent magnet for high temperature application (~150°C). This objective is derived based on MnBi’s unique positive temperature dependence of coercivity, which is doubled from ~1 T at RT to ~2.5 T at 200°C. Because of its limited magnetization (<0.9 T at RT), the MnBi magnet is best suited to fill in the gap between rare earth based NdFeB-Dy or SmCo magnet (20 MGOe) and the AlNiCo magnet (10 MGOe) at 150°C. It is expected that if successfully developed, MnBi will effectively mitigate the world’s demand on Dy. Before this project, the highest LTP content in MnBi powder is about 90% if the quantity of the powder is less than 5 gram (using melt-spin method); or 80% if the quantity is greater than 100 gram (using conventional powder metallurgical method such as arc melting and annealing). After this project, large quantities (5kg/batch) with high LPT phase content (>92 wt%) can be routinely synthesized. This achievement is made possible by the newly developed synthesis method based on conventional metallurgical processing technique involving arc melting, two-stage ingot annealing, grinding, sieving, and vacuum annealing. Before this project, the finest powder particle size is about 35 μm with overall powder composition maintaining at about 85% LTP phase. The reason why LTP phase content is listed along with particle size is because LTP MnBi is easy to decompose when exposed to temperature higher than 350 °C. As result, only low energy ball milling can be used to refine the particle size; moreover, the ball milling time cannot exceed 4 hrs, or else the decomposed LTP MnBi phase will exceed 10%. After this project, the finest powder size is reduced to 1~5 μm while maintain the 90% LTP MnBi phase content. This achievement is made possible by a newly developed cryogenic ball milling system, which provides -70 °C ambient for the rolling container. Before this project, it is not clear if MnBi will

  9. Lodestone: Nature's own permanent magnet

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1976-01-01

    Magnetic hysteresis and microstructural details are presented which explain why the class of magnetic iron ores defined as proto-lodestones, can behave as permanent magnets, i.e. lodestones. Certain of these proto-lodestones which are not permanent magnets can be made into permanent magnets by charging in a field greater than 1000 oersted. This fact, other experimental observations, and field evidence from antiquity and the middle ages, which seems to indicate that lodestones are found as localized patches within massive ore bodies, suggests that lightning might be responsible for the charging of lodestones. The large remanent magnetization, high values of coercive force, and good time stability for the remanent magnetization are all characteristics of proto-lodestone iron ores which behave magnetically as fine scale ( 10 micrometer) intergrowths when subjected to magnetic hysteresis analysis. The magnetic results are easily understood by analysis of the complex proto lodestone microstructural patterns observable at the micrometer scale and less.

  10. An enhanced Z-source inverter topology-based permanent magnet brushless DC motor drive speed control

    NASA Astrophysics Data System (ADS)

    Geno Peter, P.; Rajaram, M.

    2015-08-01

    In this paper, an enhanced Z-source inverter (ZSI) is introduced for controlling the speed of permanent magnet brushless DC motor (PMBLDCM) drive. It is the extension of the conventional ZSI and the elements used in the circuit are the same as those of the conventional ZSI, except that the position of Inverter Bridge and diode would be exchanged from the classical circuit diagram. This exchanged circuit avoids the startup path of the inrush current and hence reduces the inrush current and improves the motor efficiency. Different modes of enhanced ZSI are studied with PMBLDCM. The voltage polarity of Z-source capacitors in the proposed circuit is the same as that of the input voltage polarity. Furthermore, to get the same voltage boost, the capacitor voltage stress is reduced to a significant extent. The speed control capability of the proposed brushless DC motor drive is compared with that of the conventional ZSI. The proposed ZSI is implemented in MATLAB/Simulink working platform and the output performance is evaluated. Also, the performance of voltage ratio is analysed both by simulation and mathematical models. All these analyses are known to express the innovative features of the proposed system.

  11. Hybrid high gradient permanent magnet quadrupole

    NASA Astrophysics Data System (ADS)

    N'gotta, P.; Le Bec, G.; Chavanne, J.

    2016-12-01

    This paper presents an innovative compact permanent magnet quadrupole with a strong gradient for potential use in future light source lattices. Its magnetic structure includes simple mechanical parts, rectangular permanent magnet blocks and soft iron poles. It has a wide aperture in the horizontal plane to accommodate an x-ray beam port, a common constraint in storage ring-based light sources. This specificity introduces field quality deterioration because of the resulting truncation of the poles; a suitable field quality can be restored with an optimized pole shape. A 82 T /m prototype with a bore radius of 12 mm and a 10 mm vertical gap between poles has been constructed and magnetically characterized. Gradient inhomogeneities better than 10-3 in the good field region were obtained after the installation of special shims.

  12. Torque analysis and measurements of a permanent magnet type Eddy current brake with a Halbach magnet array based on analytical magnetic field calculations

    NASA Astrophysics Data System (ADS)

    Park, Min-Gyu; Choi, Jang-Young; Shin, Hyeon-Jae; Jang, Seok-Myeong

    2014-05-01

    This paper presents the torque analysis and measurements of a permanent magnet (PM) type eddy current brake (ECB) with a Halbach magnet array based on analytical magnetic field calculations. On the basis of a magnetic vector potential and using a two-dimensional (2D) polar coordinate system, the analytical solution for magnetic flux density, including the eddy current reaction is evaluated. Based on these solutions, the magnetic torque is also determined analytically. A 2D finite element analysis is employed to validate the method used. Practical issues in the analytical study of the PM type ECBs, such as the maximum braking torque, the required rotor speed, and the segment-dependent, are fully discussed. Finally, the braking torque as a function of the rotor speed is measured to verify the results of the analytical study.

  13. Magnet pole shape design for reduction of thrust ripple of slotless permanent magnet linear synchronous motor with arc-shaped magnets considering end-effect based on analytical method

    NASA Astrophysics Data System (ADS)

    Shin, Kyung-Hun; Park, Hyung-Il; Kim, Kwan-Ho; Jang, Seok-Myeong; Choi, Jang-Young

    2017-05-01

    The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM) because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region) is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.

  14. 21 CFR 886.4445 - Permanent magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Permanent magnet. 886.4445 Section 886.4445 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4445 Permanent magnet. (a) Identification. A permanent magnet is a nonelectric device that generates a magnetic field intended to find and remove...

  15. 21 CFR 886.4445 - Permanent magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Permanent magnet. 886.4445 Section 886.4445 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4445 Permanent magnet. (a) Identification. A permanent magnet is a nonelectric device that generates a magnetic field intended to find and remove...

  16. 21 CFR 886.4445 - Permanent magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Permanent magnet. 886.4445 Section 886.4445 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4445 Permanent magnet. (a) Identification. A permanent magnet is a nonelectric device that generates a magnetic field intended to find and remove...

  17. System and method for preventing stator permanent magnet demagnetization during vacuum pressure impregnation

    DOEpatents

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; EL-Refaie, Ayman Mohamed Fawzi

    2017-06-06

    A permanent magnet electrical machine includes a stator having conductive windings wound thereon and one or more permanent magnets embedded in the stator. A magnetic keeper element is positioned on the stator so as to form a magnetic flux path with the permanent magnets, with the magnetic keeper element closing the magnetic flux path of the permanent magnets by providing a low reluctance flux path to magnetic flux generated by the permanent magnets. A vacuum pressure impregnation (VPI) process is performed on the stator to increase a thermal conductivity of the windings, with the VPI process including a curing step that is performed at a selected temperature. The magnetic keeper element sets an operating point of the permanent magnets to an internal flux density level above a demagnetization threshold associated with the selected temperature at which the curing step is performed.

  18. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    DOEpatents

    Roesler, Alexander W.; Christenson, Todd R.

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  19. Manganese-Based Magnets: Manganese-Based Permanent Magnet with 40 MGOe at 200°C

    SciTech Connect

    2012-01-01

    REACT Project: PNNL is working to reduce the cost of wind turbines and EVs by developing a manganese-based nano-composite magnet that could serve as an inexpensive alternative to rare-earth-based magnets. The manganese composite, made from low-cost and abundant materials, could exceed the performance of today’s most powerful commercial magnets at temperature higher than 200°C. Members of PNNL’s research team will leverage comprehensive computer high-performance supercomputer modeling and materials testing to meet this objective. Manganese-based magnets could withstand higher temperatures than their rare earth predecessors and potentially reduce the need for any expensive, bulky engine cooling systems for the motor and generator. This would further contribute to cost savings for both EVs and wind turbines.

  20. Levitation forces in bearingless permanent magnet motors

    SciTech Connect

    Amrhein, W.; Silber, S.; Nenninger, K.

    1999-09-01

    Bearingless motors combine brushless AC-motors with active magnetic bearings by the integration of two separate winding systems (torque and radial levitation force windings with different pole pairs) in one housing. This paper gives an insight into the influences of the motor design on the levitation force and torque generation. It is shown that especially for machines with small air gaps it can be very important to choose the right design parameters. Increasing the permanent magnet height in order to increase the motor torque can result in a remarkable reduction of radial forces. The interrelationships are discussed on the basis of Maxwell and Lorentz forces acting upon the stator surface. The investigations are presented for a bearingless low cost motor, suited for pump, fan or blower applications. The presented motor needs only four coils for operation.

  1. Trends in rare earth permanent magnets

    SciTech Connect

    Buschow, K.H.J.

    1994-03-01

    A brief description is given of trends in research and development of permanent magnet materials, these trends being dictated on the one hand by industrial needs, on the other hand by limitations of the physical and crystal chemical properties of the intermetallic phases concerned. Recent results are discussed of materials based on Nd{sub 2}Fe{sub 14}B, solid solutions of interstitial N and C atoms in Sm{sub 2}Fe{sub 17}, ThMn{sub 12} type compounds and alloys consisting primarily of Fe{sub 3}B.

  2. Method of making permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles. Wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties. 13 figures.

  3. Method of making permanent magnets

    DOEpatents

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.

  4. Enhanced robust fractional order proportional-plus-integral controller based on neural network for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, Bitao; Pi, YouGuo

    2013-07-01

    The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation.

  5. Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Nan, Yu-Rong; Zheng, Heng-Huo; Ren, Xue-Mei

    2015-11-01

    A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61403343 and 61433003), the Scientific Research Foundation of Education Department of Zhejiang Province, China (Grant No. Y201329260), and the Natural Science Foundation of Zhejiang University of Technology, China (Grant No. 1301103053408).

  6. Steady-state permanent magnet MPD thruster

    SciTech Connect

    Arakawa, Y.; Sasoh, A.

    1987-01-01

    A steady-state MPD arc thruster with permanent magnets has been made. The effect of the permanent magnets on thruster performance and the plasma acceleration mechanism was examined through measurements of thrust, chamber pressure, current densities, and plasma properties in the exhaust plume. Experimental results show that the use of the permanent magnets is desirable in steady-state MPD thrusters of the greater than 10 kW power range. 7 references.

  7. Augmented railgun using a permanent magnet

    SciTech Connect

    Katsuki, S.; Akiyama, H.; Eguchi, N.; Sueda, T.; Soejima, M.; Maeda, S.; Sato, K.N.

    1995-08-01

    The use of a permanent magnet instead of an electromagnet has been proposed for the augmentation of the magnetic field of a railgun driven by a current of approximately 20 kA. A permanent magnet has the following advantages in comparison with conventional augmentations using additional turns: (1) simple configuration of the system, (2) temporally and spatially constant magnetic fields, and (3) high efficiency. Here, the operation of a conventional railgun and that of an augmented railgun using a permanent magnet are compared experimentally, and the usefulness of the permanent magnet is described. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Carbon-Based Magnets: Discovery & Design of Novel Permanent Magnets using Non-strategic Elements having Secure Supply Chains

    SciTech Connect

    2012-01-01

    REACT Project: VCU is developing a new magnet for use in renewable power generators and EV motors that requires no rare earth minerals. Rare earths are difficult and expensive to process, but they make electric motors and generators smaller, lighter, and more efficient. VCU would replace the rare earth minerals in EV motor magnets with a low-cost and abundant carbon-based compound that resembles a fine black powder. This new magnet could demonstrate the same level of performance as the best commercial magnets available today at a significantly lower cost. The ultimate goal of this project is to demonstrate this new magnet in a prototype electric motor.

  9. A supported liquid membrane system for the selective recovery of rare earth elements from neodymium-based permanent magnets

    DOE PAGES

    Kim, Daejin; Powell, Lawrence; Delmau, Lætitia H.; ...

    2016-04-04

    We present that the rare earth elements (REEs) play a vital role in the development of green energy and high-tech industries. In order to meet the fast-growing demand and to ensure sufficient supply of the REEs, it is essential to develop an efficient REE recovery process from post-consumer REE-containing products. In this research effort, we have developed a supported liquid membrane system utilizing polymeric hollow fiber modules to extract REEs from neodymium-based magnets with neutral extractants such as tetraoctyl digylcol amide (TODGA). The effect of process variables such as REE concentration, molar concentration of acid, and membrane area on REEmore » recovery was investigated. We have demonstrated the selective extraction and recovery of REEs such as Nd, Pr, and Dy without co-extraction of non-REEs from permanent NdFeB magnets through the supported liquid membrane system. The extracted REEs were then recovered by precipitation followed by the annealing step to obtain crystalline REE powders in nearly pure form. Finally, the recovered REE oxides were characterized by X-ray diffraction, scanning electron microscope coupled with energy-dispersive X-ray spectroscopy, and inductively coupled plasma–optical emission spectroscopy.« less

  10. A supported liquid membrane system for the selective recovery of rare earth elements from neodymium-based permanent magnets

    SciTech Connect

    Kim, Daejin; Powell, Lawrence; Delmau, Lætitia H.; Peterson, Eric S.; Herchenroeder, Jim; Bhave, Ramesh R.

    2016-04-04

    We present that the rare earth elements (REEs) play a vital role in the development of green energy and high-tech industries. In order to meet the fast-growing demand and to ensure sufficient supply of the REEs, it is essential to develop an efficient REE recovery process from post-consumer REE-containing products. In this research effort, we have developed a supported liquid membrane system utilizing polymeric hollow fiber modules to extract REEs from neodymium-based magnets with neutral extractants such as tetraoctyl digylcol amide (TODGA). The effect of process variables such as REE concentration, molar concentration of acid, and membrane area on REE recovery was investigated. We have demonstrated the selective extraction and recovery of REEs such as Nd, Pr, and Dy without co-extraction of non-REEs from permanent NdFeB magnets through the supported liquid membrane system. The extracted REEs were then recovered by precipitation followed by the annealing step to obtain crystalline REE powders in nearly pure form. Finally, the recovered REE oxides were characterized by X-ray diffraction, scanning electron microscope coupled with energy-dispersive X-ray spectroscopy, and inductively coupled plasma–optical emission spectroscopy.

  11. Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors.

    PubMed

    Chi, Wen-Chun; Cheng, Ming-Yang

    2014-03-01

    Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method.

  12. Results of using permanent magnets to suppress Josephson noise in the KAPPa SIS receiver

    NASA Astrophysics Data System (ADS)

    Wheeler, Caleb H.; Neric, Marko; Groppi, Christopher E.; Underhill, Matthew; Mani, Hamdi; Weinreb, Sander; Russell, Damon S.; Kooi, Jacob W.; Lichtenberger, Arthur W.; Walker, Christopher K.; Kulesa, Craig

    2016-07-01

    We present the results from the magnetic field generation within the Kilopixel Array Pathfinder Project (KAPPa) instrument. The KAPPa instrument is a terahertz heterodyne receiver using a Superconducting-Insulating- Superconducting (SIS) mixers. To improve performance, SIS mixers require a magnetic field to suppress Josephson noise. The KAPPa test receiver can house a tunable electromagnet used to optimize the applied magnetic field. The receiver is also capable of accommodating a permanent magnet that applies a fixed field. Our permanent magnet design uses off-the-shelf neodymium permanent magnets and then reshapes the magnetic field using machined steel concentrators. These concentrators allow the use of an unmachined permanent magnet in the back of the detector block while two small posts provide the required magnetic field across the SIS junction in the detector cavity. The KAPPa test receiver is uniquely suited to compare the permanent magnet and electromagnet receiver performance. The current work includes our design of a `U' shaped permanent magnet, the testing and calibration procedure for the permanent magnet, and the overall results of the performance comparison between the electromagnet and the permanent magnet counterpart.

  13. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Qu, Zheng; Tang, Shaofei; Pang, Mingqi; Zhang, Mingju

    2017-08-01

    In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  14. A Discovery-Based Experiment Involving Rearrangement in the Conversion of Alcohols to Alkyl Halides: Permanent Magnet [to the thirteenth power]C NMR in the First-Semester Organic Chemistry Lab

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Tucker, Ryand J. F.

    2008-01-01

    The use of permanent magnet [to the thirteenth power]C NMR in large-section first-semester organic chemistry lab courses is limited by the availability of experiments that not only hinge on first-semester lecture topics, but which also produce at least 0.5 mL of neat liquid sample. This article reports a discovery-based experiment that meets both…

  15. Permanent magnet multipole with adjustable strength

    DOEpatents

    Halbach, Klaus

    1985-01-01

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  16. Permanent-magnet multipole with adjustable strength

    DOEpatents

    Halbach, K.

    1982-09-20

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  17. Finite element modeling of permanent magnet devices

    NASA Astrophysics Data System (ADS)

    Brauer, J. R.; Larkin, L. A.; Overbye, V. D.

    1984-03-01

    New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.

  18. Research on Magnetic Model of Low Resistance Permanent Magnet Pipe Belt Conveyor

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Li, De-yong; Guo, Yong-cun

    2016-09-01

    In view of the feasibility of a new type of low resistance permanent magnet pipe belt conveyor, the magnetic properties of the permanent magnet magnetic pipe conveyor belt system are studied. Based on the molecular current hypothesis, the mathematical model of the three dimensional radial magnetic force of permanent magnet pipe conveyor belt was established. The mathematical model of the radial magnetic force was derived, and the influence factors of the radial magnetic force were derived. The finite element simulation of permanent magnet-magnetic pipe conveyor belt magnetic model was carried out, then the magnetic flux density distribution chart under the conditions of different remanence intensity of different permanent magnet and different lengths of the permanent magnets (along the transport direction) were obtained. The simulation results are consistent with the calculation results, which shows that the permanent magnet pipe belt conveyor is feasible. Under certain conditions, the radial magnetic force has nonlinear increase relations with residual magnetism of permanent magnet and the length of the permanent magnet (along the transport direction).

  19. A feasibility study on a new brushless and gearless contra-rotating permanent magnet wind power generator

    NASA Astrophysics Data System (ADS)

    Niu, Shuangxia; Ho, S. L.; Fu, W. N.; Chau, K. T.; Lin, F.

    2014-05-01

    In this paper, a novel fully integrated contra-rotating permanent magnet (PM) generator is proposed. In order to efficiently capture wind energy, two contra-rotating rotors are integrated, based on magnetic field modulating principle, into a single PM machine. A relatively high angular velocity is created and the torque density is improved. The steady-state and transient performance of the machine is simulated using time-stepping finite-element method. The computation results are used to showcase the validity of the proposed machine design.

  20. Scholarly Research Program Delivery Order 0011: Concept Design for a 1 MW Generator Based on a Permanent Magnet Rotor (Turbine Driven)

    DTIC Science & Technology

    2005-01-24

    Phase Resistance 6 3.5 Required Turns Per Coil 6 3.6 Flux Per Pole Calculation 7 3.7 Slot Area 7 3.8 Stator Core Volume 8...PM) B - Conventional wound radial field C – Conventional surface PM rotor (developed by Gene Aha) D - PM flux squeezing radial field (developed...permanent magnet pole arc and the soft iron poles between the magnets are critical in the design to achieve the balance between the Reluctance and the

  1. Electromagnetic analysis and experimental testing of a light switchwith a permanent magnet generator for energy harvesting based on three dimensional finite element model

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon-Jae; Choi, Jang-Young; Kim, Il-Jung; Choi, Yeon-Suk

    2014-05-01

    This paper presents a small-size permanent magnet generator for an energy harvester. The generator is suitable for a switch, as it uses a magnetic force as the retention force and the force of motion to recognize switch operation. In addition, the induced voltages have positive or negative values depending on the switching direction. It is possible to monitor switch operation for achieving intelligent power consumption. Finally, measurements of the generated voltage are presented to reveal the effectiveness of the energy harvester.

  2. Forces between permanent magnets: experiments and model

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  3. Macroscopic simulation of isotropic permanent magnets

    NASA Astrophysics Data System (ADS)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-03-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  4. Classification and synthesis of permanent magnet bearing configurations

    SciTech Connect

    Delamare, J.; Rulliere, E.; Yonnet, J.P.

    1995-11-01

    Quite a number of configurations allow one to get passive permanent magnet thrust or radial bearings. However, most of existing devices are based on the same two or three structures. In many cases, a different geometrical structure keeping the same magnetic and mechanical characteristics would allow a simple and cheaper realization. The authors present her a synthesis of passive bearings allowing original structures.

  5. A low cost MRI permanent magnet prototype

    NASA Astrophysics Data System (ADS)

    Esparza-Coss, Emilio; Cole, David M.

    1998-08-01

    Here we present the proceedings in designing and constructing a low cost, friendly use, Magnetic Resonance Imaging (MRI) prototype magnet; 55 cm×45 cm×30 cm in size scaleable to full body; with a C-shaped assembly to provide open access to the 10 cm C-gap; operational at 0.22 Tesla where the low field increments the tissue contrast; structured with methodically selected and strategically positioned permanent magnets to reach the required field homogeneity as well as to be practically free of maintenance; and having iron flux return to leave an extremely low fringe field. The magnetic flux is funneled through the iron and focused by carefully designed and finely machined iron pole faces of 8.9 cm radius to create a homogeneity of less than 20 parts per million (PPM), without shimming, in a roughly 1.3 cm by 2 cm main axes oval region. An image of an okra plant was taken to test its performance.

  6. A low cost MRI permanent magnet prototype

    SciTech Connect

    Esparza-Coss, Emilio; Cole, David M.

    1998-08-28

    Here we present the proceedings in designing and constructing a low cost, friendly use, Magnetic Resonance Imaging (MRI) prototype magnet; 55 cmx45 cmx30 cm in size scaleable to full body; with a C-shaped assembly to provide open access to the 10 cm C-gap; operational at 0.22 Tesla where the low field increments the tissue contrast; structured with methodically selected and strategically positioned permanent magnets to reach the required field homogeneity as well as to be practically free of maintenance; and having iron flux return to leave an extremely low fringe field. The magnetic flux is funneled through the iron and focused by carefully designed and finely machined iron pole faces of 8.9 cm radius to create a homogeneity of less than 20 parts per million (PPM), without shimming, in a roughly 1.3 cm by 2 cm main axes oval region. An image of an okra plant was taken to test its performance.

  7. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  8. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  9. Design improvement of permanent magnet flux switching motor with dual rotor structure

    NASA Astrophysics Data System (ADS)

    Soomro, H. A.; Sulaiman, E.; Kumar, R.; Rahim, N. S.

    2017-08-01

    This paper presents design enhancement to reduce permanent magnet (PM) volume for 7S-6P-7S dual rotor permanent magnet flux-switching machines (DRPMFSM) for electric vehicle application. In recent years, Permanent magnet flux switching (PMFS) motor and a new member of brushless permanent magnet machine are prominently used for the electric vehicle. Though, more volume of Rare-Earth Permanent Magnet (REPM) is used to increase the cost and weight of these motors. Thus, to overcome the issue, new configuration of 7S-6P- 7S dual rotor permanent magnet flux-switching machine (DRPMFSM) has been proposed and investigated in this paper. Initially proposed 7S-6P-7S DRPMFSM has been optimized using “deterministic optimization” to reduce the volume of PM and to attain optimum performances. In addition, the performances of initial and optimized DRPMFSM have been compared such that back-emf, cogging torque, average torque, torque and power vs speed performances, losses and efficiency have been analysed by 2D-finite element analysis (FEA) using the JMAG- Designer software ver. 14.1. Consequently, the final design 7S-6P-7S DRPMFSM has achieved the efficiency of 83.91% at reduced PM volume than initial design to confirm the better efficient motor for HEVs applications.

  10. Micromachined permanent magnets and their MEMS applications

    NASA Astrophysics Data System (ADS)

    Cho, Hyoung Jin

    2002-01-01

    In this research, new micromachined permanent magnets have been proposed, developed and characterized for MEMS applications. In realizing micromachined permanent magnets, a new electroplating technique using external magnetic field and a bumper filling technique using a photolithographically defined mold with resin bonded magnetic particles have been developed. The newly developed micromachining techniques allow thick film-type permanent magnet components to be integrated to magnetic MEMS devices with dimensional control and alignment. Permanent magnet arrays with the dimensions ranging from 30 mum to 200 mum have been developed with an energy density up to 2.7 kJ/m3 in precisely defined forms in the micro scale. For the applications of the permanent magnets developed in this work, three novel magnetic MEMS devices such as a bi-directional magnetic actuator, a magnetically driven optical scanner, and a magnetic cell separator have been successfully realized. After design and modeling, each device has been fabricated and fully characterized. The bi-directional actuator with the electroplated permanent magnet array has achieved bi-directional motion clearly and shown good agreement with the analytical and simulated models. The optical scanner has shown linear bi-directional response under static actuation and stable bi-directional scanning performance under dynamic actuation. As a potential BioMEMS application of the developed permanent magnet, the prototype magnetic cell separator using the electroplated permanent magnet strip array has been proposed and demonstrated for magnetic bead patterning. In conclusion, new thick film-type, electroplated CoNiMnP and epoxy resin bonded Sr-ferrite permanent magnets have been developed and characterized, and then, three new magnetic MEMS devices using the permanent magnets such as a bi-directional magnetic actuator, an optical scanner and a magnetic cell separator have been realized in this research. The new micromachined

  11. Comparing superconducting and permanent magnets for magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Bjørk, R.; Nielsen, K. K.; Bahl, C. R. H.; Smith, A.; Wulff, A. C.

    2016-05-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoid with a permanent magnet (PM) Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 /m2 and a price of the permanent magnet of 100 /kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  12. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  13. Cylindrical Hall thrusters with permanent magnets

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-11-01

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction in both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  14. Cylindrical Hall Thrusters with Permanent Magnets

    SciTech Connect

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-10-18

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT. __________________________________________________

  15. Permanent magnet materials and their application

    SciTech Connect

    Campbell, P.

    1994-12-31

    Permanent magnets are of great industrial importance in industrial drives, consumer products, computers, and automobiles. Since 1970, new classes of magnet materials have been developed. This book reviews the older and newer materials and is presented as a comprehensive design text for permanent magnets and their applications. After an initial chapter on the fundamentals of magnetism, the author discusses magnetic physics considerations specific to permanent magnets and describes the fabrications and characteristics of commercial materials: alnico, samarium-cobalt, ferrite, and neodymium-iron-boron. Thermal stability, magnet design procedures, magnetic field analysis methods, and measurement methods are discussed in subsequent chapters, followed by a concluding chapter reviewing commercial and industrial products that use permanent magnets. The chapter on thermal properties of magnet materials is of particular interest, bringing together information not readily found elsewhere. The review of applications is also deserving of attention, specifically the sections on motors and actuators. Although particle accelerator applications are discussed, the use of permanent magnet sextuples in modern ECR ion sources is not mentioned.

  16. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  17. Rare-earth free permanent magnets and permanent magnet synchronous motors

    NASA Astrophysics Data System (ADS)

    Park, Jihoon

    In this dissertation, basic and applied research programs are engaged that range from the fundamental magnetism and magnetic properties of ferro- and ferrimagnetic materials to the design and fabrication of rare earth (RE) free permanent and soft magnetic materials for an interior permanent magnet synchronous motor (IPMSM) (i.e., motor for electric vehicles and plug-in electric vehicles) and heat assisted magnetic recording media (HAMR) with 4 Tb/in 2 information storage applications. The applied research program emphasizes the design and synthesis of new RE-free permanent magnetic materials and magnetic exchange coupled core(hard)-shell(soft) particles to achieve a high maximum energy product [(BH) max], and the design of an advanced IPMSM based on RE free permanent magnets. The electronic structures of hard magnetic materials such as Mn-Al, Mn-Bi, Mn-Bi-X, Fe-Pt, Fe-Pt-X, SrFe12O19, and SrFe12 O19-X (X = transition elements) and soft magnetic materials such as nanocrystalline and Mn-B were calculated based on the density functional theory (DFT), and their exchange coupled magnetic properties with soft magnets were designed according to the size and shape of the particles. The calculated magnetic and electronic properties were used to obtain the temperature dependence of saturation magnetization Ms(T) and anisotropy constant K(T) within the mean field theory. Thereby, the temperature dependence of the maximum energy product [(BH)max(T)] is calculated using the calculated Ms(T) and K(T). The experimental approaches were based on chemical and ceramic processes to synthesize hard and soft magnetic materials. Prior to synthesis, material design parameters were optimized by first-principles calculations and micromagnetic simulations. Lastly, performance of RE-free MnAl, MnBi, SrFe12O19 , and Alnico IPMSMs, designed with the finite element method (FEM), at 23 and 200 °C were evaluated and compared to a RE Nd Fe B IPMSM. The performance parameters include torque

  18. Rare earth elements and permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  19. Permanent Magnetic Bearing for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Morales, Winfredo; Fusaro, Robert; Kascak, Albert

    2008-01-01

    A permanent, totally passive magnetic bearing rig was designed, constructed, and tested. The suspension of the rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm using an air impeller. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  20. Effects of toothless stator design on dynamic model parameters of permanent magnet generators

    SciTech Connect

    Arkadan, A.A.; Vyas, R. . Electrical and Computer Engineering Dept.)

    1993-06-01

    The effects of toothless stator design on the dynamic model parameters of permanent magnet (PM) generators are presented. These parameters which include inductances and induced back emfs are determines for a 75 kVA, 208 V, 400 Hz, two-pole, permanent magnet generator. Two particular stator designs, a toothless stator and a conventional type stator (with iron teeth), are considered. The method which is used to determine these parameters is general in nature and is based on the use of a series of magnetic field solutions. A validation of the computed emf and inductance values based on experimentally obtained data is given in the paper. The results of using these parameters in a state space model in the abc frame of reference to study the effects of a toothless stator design on the PM generator synchronous inductances are presented. Based on that, it is demonstrated that the effects of rotor saliency and armature loading on the machine parameters are minimized in the case of the toothless design.

  1. Torque Characteristics of Saturated Permanent-Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Takahashi, Akeshi; Kikuchi, Satoshi; Wakui, Shinichi; Mikami, Hiroyuki; Ide, Kazumasa; Shima, Kazuo

    The evaluation of torque characteristics in a saturated magnetic field for permanent-magnet (PM) synchronous motors is presented. The torque saturation characteristics of non-salient and salient pole machines are investigated by finite element analysis and measurement. Thus, it is found that the torque saturation originates in the magnetic saturation in both the stator teeth, which are located on the leading position toward the direct axis, and in the stator back yoke, which is located on the lagging position toward the direct axis. This mechanism can also explain the reason for the significant torque saturation in the salient-pole machine; the higher inductance of the quadrature axis of the salient-pole machine causes a significant magnetic saturation in the stator back yoke. Therefore, less saliency or a wider back yoke can improve the torque saturation.

  2. Rational design of the exchange-spring permanent magnet.

    PubMed

    Jiang, J S; Bader, S D

    2014-02-12

    The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH)max, while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH)max. The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication.

  3. The history of permanent-magnet materials

    NASA Astrophysics Data System (ADS)

    Livingston, J. D.

    1990-02-01

    From lodestones and carbon steels to today's rare-earth magnets, a steady improvement in magnetic properties has expanded the technological importance of permanent-magnet materials. These materials have progressed through several major developmental stages, with a bit of serendipity contributing to the discovery process.

  4. Permanent magnet system to guide superparamagnetic particles

    NASA Astrophysics Data System (ADS)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  5. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  6. The Overheating Cause Analysis of Permanent Magnet Governor and Countermeasures

    NASA Astrophysics Data System (ADS)

    Hou, Xiang-Ni; Zhou, San-Ping; Wang, Yan-Jie

    2016-05-01

    The problem of overheating is the main factor to limit the serviceable range of permanent magnet governor, in order to find out the reason of overheating and its influencing factors, the numerical simulation of the cylindrical permanent magnet governor is carried out by using the computational fluid dynamics method. Results show that the internal high temperature fluid in the rotor of the Permanent magnet governor cannot flow is the main factor causing the overheating of the permanent magnet governor, opened air convection holes, and equipped with cooling fins in conductor rotor and permanent magnet rotor's outer circumference direction of the permanent magnet governor. The results of the study show that the internal air flow of the optimized permanent magnet governor is effective and the air flow rate is increased, the heat transfer effect is enhanced, the maximum temperature of the permanent magnet governor is decreased from 120.2 to 72.6, so the cooling effect is obvious.

  7. Novel design configurations for permanent magnet wind generators

    NASA Astrophysics Data System (ADS)

    Chen, Yicheng

    2004-12-01

    The aim of this research is to search for optimal designs of permanent magnet (PM) wind generators of different topologies. The dissertation deals with the development of analytical design equations and formulas for PM wind generators of different topologies, including equivalent magnetic circuit model for magnets, calculation of leakage flux, influence of d-q axis armature reaction, flux waveform analysis, as well as performance verification. 3-D and simplified 2-D finite element analysis is used to enhance the design precision, by which analytical formulas are modified. A new and improved formula is proposed for lamination loss calculations, based on a large experimental data set provided by steel manufacturers. The temperature stability of NdFeB magnets is analyzed and some proposals for eliminating irreversible demagnetization are presented. Two existing experimental machines are used to validate the design equations. The genetic algorithms are used to investigate the multi-objective design optimization of PM wind generators for a high efficiency and light-weight design. The reasoning behind the selection of the objective functions, design variables and constraints are given as guidance for the PM wind generator optimum design. The implementation of the genetic algorithm is also given. A comparison of PM wind generators of different topologies is presented. Conclusions are drawn for topology selections of PM wind generators. The group of soft magnetic composites (SMC) has recently been expanded by the introduction of new materials with significantly improved frequency properties. This has made SMC a viable alternative to steel laminations for a range of new applications, especially axial-flux wind generators. The isotropic nature of the SMC combined with the unique shaping possibilities opens up new design solutions for axial-flux wind generators. Through careful design, an axial-flux PM wind generator with SMC core is built and tested, demonstrating the

  8. Permanent magnet design for high-speed superconducting bearings

    DOEpatents

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-09-10

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.

  9. Permanent magnet design for high-speed superconducting bearings

    DOEpatents

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  10. Counterrotating brushless DC permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.; Bailey, J. M.

    1990-07-01

    A brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of embedded permanent magnets. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and the drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs, and rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  11. Remote temperature distribution sensing using permanent magnets

    SciTech Connect

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; Roberts, Christine C.; Van Bloemen Waanders, Bart G.; Nemer, Martin B.

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of nine magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.

  12. Relevance of 4f-3d exchange to finite-temperature magnetism of rare-earth permanent magnets: An ab-initio-based spin model approach for NdFe{sub 12}N

    SciTech Connect

    Matsumoto, Munehisa; Akai, Hisazumi; Doi, Shotaro; Harashima, Yosuke; Miyake, Takashi

    2016-06-07

    A classical spin model derived ab initio for rare-earth-based permanent magnet compounds is presented. Our target compound, NdFe{sub 12}N, is a material that goes beyond today's champion magnet compound Nd{sub 2}Fe{sub 14}B in its intrinsic magnetic properties with a simpler crystal structure. Calculated temperature dependence of the magnetization and the anisotropy field agrees with the latest experimental results in the leading order. Having put the realistic observables under our numerical control, we propose that engineering 5d-electron-mediated indirect exchange coupling between 4f-electrons in Nd and 3d-electrons from Fe would most critically help enhance the material's utility over the operation-temperature range.

  13. High-field permanent-magnet structures

    SciTech Connect

    Leupoid, H.A.

    1989-08-29

    This patent describes a permanent magnet structure. It comprises an azimuthally circumscribed section of a hollow hemispherical magnetic flux source, the magnetic orientation in the section with respect to the polar axis being substantially equal to twice the polar angle, a superconducting planar sheet abutting one flat face of the section along a longitudinal meridian, and at least one other planar sheet of selected material abutting another flat face of the section and perpendicular to the first-mentioned sheet.

  14. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials

    NASA Astrophysics Data System (ADS)

    Hirosawa, Satoshi; Nishino, Masamichi; Miyashita, Seiji

    2017-03-01

    High-performance permanent magnets are indispensable in the production of high-efficiency motors and generators and ultimately for sustaining the green earth. The central issue of modern permanent magnetism is to realize high coercivity near and above room temperature on marginally hard magnetic materials without relying upon the critical elements such as heavy rare earths by means of nanostructure engineering. Recent investigations based on advanced nanostructure analysis and large-scale first principles calculations have led to significant paradigm shifts in the understandings of coercivity mechanism in Nd–Fe–B permanent magnets, which includes the discovery of the ferromagnetism of the thin (2 nm) intergranular phase surrounding the Nd2Fe14B grains, the occurrence of negative (in-plane) magnetocrystalline anisotropy of Nd ions and some Fe atoms at the interface which degrades coercivity, and visualization of the stochastic behaviors of magnetization in the magnetization reversal process at high temperatures. A major change may occur also in the motor topologies, which is currently overwhelmed by the magnetic flux weakening interior permanent magnet motor type, to other types with variable flux permanent magnet type in some applications to open up a niche for new permanent magnet materials. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.

  15. Design and analysis of a novel doubly salient permanent- magnet generator

    NASA Astrophysics Data System (ADS)

    Sarlioglu, Bulent

    Improvements in permanent magnets and power electronics technologies have made it possible to devise different configurations of electrical machines which were not previously possible to implement. In this dissertation, a novel Doubly Salient Permanent Magnet (DSPM) generator has been designed, analyzed, and tested. The DSPM generator has four stator poles and six rotor poles. Two high density permanent magnets are located in the stator yoke. Since there are no windings or permanent magnets in the rotor, the DSPM generator has several advantages: the rotor has low inertia, no copper loss, no PM attachments, no brushes, and no slip rings. This type of rotor can be manufactured easily, and can be run at very high speeds as in the case of a switched reluctance machine. Compared to induction and switched reluctance machines, the DSPM generator can produce more power from the same geometry. Moreover, the efficiency of the DSPM generator is higher, since there is no copper loss associated with excitation of the machine. Another advantage of the DSPM generator is that the output AC voltage can easily be rectified by a diode bridge rectifier, while in the case of the switched reluctance machine one needs to use active semiconductor switches for power generation. If greater utilization and control of power production capability are desired, the AC output of the DSPM generator can be rectified using an active converter. In this dissertation, a novel doubly salient permanent magnet generator is introduced. First, the theory of the DSPM generator is given. Later, this novel generator is investigated using conventional magnetic circuits, nonlinear finite element analysis, and simulations with first order approximations and nonlinear modeling. It is compared with other generators. Static and no-load testing of the prototype DSPM generator are presented, and generator performance is evaluated with various power electronic circuits.

  16. Electric machine

    DOEpatents

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  17. Multipole shimming of permanent magnets using harmonic corrector rings.

    PubMed

    Jachmann, R C; Trease, D R; Bouchard, L-S; Sakellariou, D; Martin, R W; Schlueter, R D; Budinger, T F; Pines, A

    2007-03-01

    Shimming systems are required to provide sufficient field homogeneity for high resolution nuclear magnetic resonance (NMR). In certain specialized applications, such as rotating-field NMR and mobile ex situ NMR, permanent magnet-based shimming systems can provide considerable advantages. We present a simple two-dimensional shimming method based on harmonic corrector rings which can provide arbitrary multipole order shimming corrections. Results demonstrate, for example, that quadrupolar order shimming improves the linewidth by up to an order of magnitude. An additional order of magnitude reduction is in principle achievable by utilizing this shimming method for z-gradient correction and higher order xy gradients.

  18. Three-Dimensional Finite Element Magnetic Field Computations and Performance Simulation of Brushless DC Motor Drives with Skewed Permanent Magnet Mounts.

    NASA Astrophysics Data System (ADS)

    Alhamadi, Mohd A. Wahed

    1992-01-01

    A three dimensional finite element (3D-FE) method for the computation of global distributions of 30 magnetic fields in electric machines containing permanent magnets is presented. The formulation of this 3D-FE method is based on a coupled magnetic vector potential - magnetic scalar potential (CMVP-MSP) approach. In this CMVP-MSP method, the modeling and formulations of permanent magnet volumes, suited to first and second order MVP 3D-FE environments as well as first order MSP 3D-FE environment, are developed in this dissertation. The development of the necessary 3D-FE grids and algorithms for the application of the CMVP -MSP method to an example brushless dc motor, whose field is three dimensional due to the skewed permanent magnet mounts on its rotor, is also given here. It should be mentioned that the entire volume of the case-study machine from one end to another is considered in the global magnetic field computations. A complete set of results of application of the CMVP-MSP method to the computation of the global 3D field distributions and associated motor parameters under no-load and load conditions are presented in this dissertation. In addition, a complete simulation of the dynamic performance of the motor drive system using the parameters obtained from the 3D-FE field solutions are presented for no-load and various other load conditions. All the above mentioned results are experimentally verified by corresponding oscillograms obtained in the laboratory. These results are also compared with results obtained from motor parameters based on various 2D-FE approaches, showing that for certain types of skewed permanent magnet mounts, 3D-FE based parameters can make significant qualitative and quantitative improvements in motor-drive simulation results.

  19. A multi-gap magnetorheological clutch with permanent magnet

    NASA Astrophysics Data System (ADS)

    Rizzo, R.; Musolino, A.; Bucchi, F.; Forte, P.; Frendo, F.

    2015-07-01

    This paper describes the design and testing of a novel permanent magnet clutch based on a magnetorheological fluid. It was inspired by a prototype previously developed by the authors and contains a novel gap shape conceived to reduce torque loss in the disengaged operating mode. Several geometries and material arrangements were investigated and the performance in terms of transmissible torque in different operating conditions was assessed using finite element numerical models. The prototype was manufactured and some experimental tests were performed. The new prototype was rated on the basis of performance indices and the design effectiveness was proven by a higher value of efficiency in the disengaged operating mode.

  20. Anisotropy and microstructure of rare earth permanent magnet materials

    NASA Astrophysics Data System (ADS)

    Fidler, J.; Groessinger, R.; Kirchmayr, H.; Skalicky, P.

    1984-06-01

    Recently a new family of hard magnetic materials based on Nd-Fe-B was developed. With these compounds permanent magnets with energy products up to 40 MGOe were produced. The greater abundance of Nd combined with the low price for Fe are a hope for producing high qualitative, low cost magnets in the future. Therefore large scale applications are proposed for Nd-Fe-B magnetic. The aim of the scientific part of the present report will be the investigation of the low temperature physical properties of this new family of compounds.

  1. Strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  2. Advances in nanostructured permanent magnets research

    SciTech Connect

    Poudyal, N; Liu, JP

    2012-12-14

    This paper reviews recent developments in research in nanostructured permanent magnets ( hard magnetic materials) with emphasis on bottom-up approaches to fabrication of hard/soft nanocomposite bulk magnets. Theoretical and experimental findings on the effects of soft phase and interface conditions on interphase exchange interactions are given. Synthesis techniques for hard magnetic nanoparticles, including chemical solution methods, surfactant-assisted ball milling and other physical deposition methods are reviewed. Processing and magnetic properties of warm compacted and plastically deformed bulk magnets with nanocrystalline morphology are discussed. Prospects of producing bulk anisotropic hard/soft nanocomposite magnets are presented.

  3. Batch fabrication of precision miniature permanent magnets

    DOEpatents

    Christenson, Todd R.; Garino, Terry J.; Venturini, Eugene L.

    2002-01-01

    A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

  4. Permanent-magnet-less synchronous reluctance system

    DOEpatents

    Hsu, John S

    2012-09-11

    A permanent magnet-less synchronous system includes a stator that generates a magnetic revolving field when sourced by an alternating current. An uncluttered rotor is disposed within the magnetic revolving field and spaced apart from the stator to form an air gap relative to an axis of rotation. The rotor includes a plurality of rotor pole stacks having an inner periphery biased by single polarity of a north-pole field and a south-pole field, respectively. The outer periphery of each of the rotor pole stacks are biased by an alternating polarity.

  5. Evaluation of Iron Loss in Interior Permanent Magnet Synchronous Motor with Consideration of Rotational Field

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki

    Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.

  6. Remote temperature distribution sensing using permanent magnets

    DOE PAGES

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; ...

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of ninemore » magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.« less

  7. Effects of magnetic resonance imaging on implantable permanent magnets.

    PubMed

    Schneider, M L; Walker, G B; Dormer, K J

    1995-09-01

    Implantable permanent magnets are increasingly used in devices for otolaryngologic applications. It is likely that at least some of the patients with implanted magnets will be in need of magnetic resonance imaging (MRI). The effect of an MRI scan on the magnetic properties of implanted permanent magnets has not been previously demonstrated. Some of the basic concepts and descriptive terminology used in industry regarding permanent magnets are reviewed. Experiments presented show that the MRI scan is capable of demagnetizing permanent magnets. A case history is also presented that demonstrates demagnetizing of an implanted Audiant magnet by an MRI scan.

  8. Detecting of Multi Phase Inter Turn Short Circuit in the Five Permanent Magnet Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Yassa, N.; Rachek, M.; Djerdir, A.; Becherif, M.

    2016-10-01

    This paper proposes a general model of five phase permanent magnet synchronous machine (PMSM) which is capable of representing the multiphase Inter Turn Short Circuit (ITSC) occurring in several phase simultaneously this model is based on a coupled magnetic circuit approach leading to a differential equations system goveming the induction machine behavior. The obtained time-differential state equations system is implemented under Matlab environment and numerically solved using the fourth order Rung-Kutta method with variable step time corrected at each rotor displacement through the electromagnetic torque. Also, Fast Fourier Transform and (FFT) analysis is performed to the phase current signal to detect the frequency spectrum, Power Spectral Density (PSD) is chosen as a classification method. Its efficiency depends on its ability to discriminate between various faults generating the same range of harmonics in the stator current spectrum and on its ability to evaluate the fault severity. So, in order to improve the efficiency of these diagnosis methods, one needs a relatively accurate model to simulate the five-phase PMSM in the case of inter-tum short circuit fault helping to predict performances andor to extract fault signature in the machine main quantities. Simulation work has been carried out using MATLAB to verify the performance of the proposed detection/diagnosis method.

  9. Variable-field permanent magnet dipole

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Meyer, R.E.

    1993-10-01

    A new concept for a variable-field permanent-magnet dipole (VFPMD) has been designed, fabricated, and tested at Los Alamos. The VFPMD is a C-shaped sector magnet with iron poles separated by a large block of magnet material (SmCo). The central field can be continuously varied from 0.07 T to 0.3 T by moving an iron shunt closer or further away from the back of the magnet. The shunt is specially shaped to make the dependence of the dipole field strength on the shunt position as linear as possible. The dipole has a 2.8 cm high by 8 cm wide aperture with {approximately}10 cm long poles.

  10. Experience with the SLC permanent magnet multipoles

    SciTech Connect

    Gross, G.; Spencer, J.

    1994-06-01

    Permanent magnets have been used in the SLC Damping Rings and their injection and extraction lines since 1985. Recent upgrades of the DR vacuum chambers provided an opportunity to check DR magnets prior to higher beam current operation. Several PM sextupoles downstream of the injection kickers in the electron ring had exceeded their thermal stabilization values of 80{degrees}C and some showed serious mechanical deformations and radiation >1 R at contact. We discuss our observations, measurements and a few inexpensive modifications that should improve these magnets under such conditions. A new, block matching algorithm allowed us to use magnet blocks that had been considered unusable because of very different remament field strengths and easy axis errors.

  11. DNA-based machines.

    PubMed

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  12. Permanent Magnet Synchronous Condenser with Solid State Excitation: Preprint

    SciTech Connect

    Hsu, P.; Muljadi, E.; Wu, Z.; Gao, W.

    2015-04-07

    A typical synchronous condenser (SC) consists of a free-spinning, wound-field synchronous generator and a field excitation controller. In this paper, we propose an SC that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage converter controller connected in series to the PMSG. The controller varies the phase voltage of the PMSG and creates the same effect on the reactive power flow as that of an over- or underexcited wound-field machine. The controller’s output voltage magnitude controls the amount of the reactive power produced by the SC. The phase of the controller’s output is kept within a small variation from the grid voltage phase. This small phase variation is introduced so that a small amount of power can be drawn from the grid into the controller to maintain its DC bus voltage. Because the output voltage of the controller is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulations.

  13. Permanent Magnet Synchronous Condenser with Solid State Excitation

    SciTech Connect

    Hsu, Ping; Muljadi, Eduard; Wu, Ziping; Gao, Wenzhong

    2015-10-05

    A synchronous condenser consists of a free-spinning wound-field synchronous generator and a field excitation controller. In this paper, we propose a synchronous generator that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage source converter connected in series with the PMSG and the grid. The converter varies the phase voltage of the PMSG so as to create the same effect of over or under excitation in a wound-field machine. The converter output voltage level controls the amount and the direction of the produced reactive power and the voltage's phase is kept in-phase with the grid voltage except a slight phase can be introduced so that some power can be drawn from the grid for maintaining the DC bus voltage level of the converter. Since the output voltage of the converter is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulation.

  14. Sensorless sliding mode observer for a five-phase permanent magnet synchronous motor drive.

    PubMed

    Hosseyni, Anissa; Trabelsi, Ramzi; Mimouni, Med Faouzi; Iqbal, Atif; Alammari, Rashid

    2015-09-01

    This paper deals with the sensorless vector controlled five-phase permanent magnet synchronous motor (PMSM) drive based on a sliding mode observer (SMO). The observer is designed considering the back electromotive force (EMF) of five-phase permanent magnet synchronous motor. The SMO structure and design are illustrated. Stability of the proposed observer is demonstrated using Lyapunov stability criteria. The proposed strategy is asymptotically stable in the context of Lyapunov theory. Simulated results on a five-phase PMSM drive are displayed to validate the feasibility and the effectiveness of the proposed control strategy.

  15. Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.

    1983-01-01

    A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.

  16. A permanent magnet system for Kibble balances

    NASA Astrophysics Data System (ADS)

    Li, Shisong; Bielsa, Franck; Stock, Michael; Kiss, Adrien; Fang, Hao

    2017-10-01

    The magnet is one of the fundamental elements in Kibble balances. The Kibble balance group at the Bureau International des Poids et Mesures (BIPM) proposed a permanent magnet with a radial field, which has been widely employed in other Kibble balance experiments. In this paper, we discuss a different method of operation for the BIPM-type magnet, i.e. only the lower half of the magnetic circuit is closed. The merit of such a magnet is its convenience for opening the air gap and adjusting the coil. A disadvantage is that it can yield a lower and sloped magnetic field profile with less shielding. In the approach described, high permeability yokes are used to flatten the magnetic profile, which has proven to be a novel and convenient approach for removing the nonuniformity of the magnetic profile due to magnet magnetization asymmetries. The performance of the half-closed BIPM magnet is evaluated using experimental measurements. The results show that the half-closed magnetic circuit retains most of the main features of the fully-closed magnet and is a good option for the early stages of Kibble balance operations. In addition, the profile change due to the coil current is predicted and experimentally verified with a bifilar coil. Related systematic effects are discussed for the Planck constant measurement.

  17. A Novel Permanent Magnetic Angular Acceleration Sensor.

    PubMed

    Zhao, Hao; Feng, Hao

    2015-07-03

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  18. A Novel Permanent Magnetic Angular Acceleration Sensor

    PubMed Central

    Zhao, Hao; Feng, Hao

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217

  19. Analysis and decoupling control of a permanent magnet spherical actuator

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Chen, Weihai; Liu, Jingmeng; Wu, Xingming

    2013-12-01

    This paper presents the analysis and decoupling control of a spherical actuator, which is capable of performing three degree-of-freedom motion in one joint. The proposed actuator consists of a rotor with multiple PM (Permanent Magnet) poles in a circle and a stator with circumferential coils in three layers. Based on this actuator design, a decoupling control approach is developed. Unlike existing control methods that each coil is responsible for both the spinning and tilting motion, the proposed control strategy specifies the function of each coil. Specifically, the spinning motion is governed by the middle layer coils with a step control approach; while the tilting motion is regulated by upper and lower coils with a computed torque control method. Experiments have been conducted on the prototype to verify the validity of the design procedure, and the experimental results demonstrate the effectiveness of the analysis and control strategy.

  20. Study of Permanent Magnet Focusing for Astronomical Camera Tubes

    NASA Technical Reports Server (NTRS)

    Long, D. C.; Lowrance, J. L.

    1975-01-01

    A design is developed of a permanent magnet assembly (PMA) useful as the magnetic focusing unit for the 35 and 70 mm (diagonal) format SEC tubes. Detailed PMA designs for both tubes are given, and all data on their magnetic configuration, size, weight, and structure of magnetic shields adequate to screen the camera tube from the earth's magnetic field are presented. A digital computer is used for the PMA design simulations, and the expected operational performance of the PMA is ascertained through the calculation of a series of photoelectron trajectories. A large volume where the magnetic field uniformity is greater than 0.5% appears obtainable, and the point spread function (PSF) and modulation transfer function(MTF) indicate nearly ideal performance. The MTF at 20 cycles per mm exceeds 90%. The weight and volume appear tractable for the large space telescope and ground based application.

  1. Inspired by nature: investigating tetrataenite for permanent magnet applications.

    PubMed

    Lewis, L H; Mubarok, A; Poirier, E; Bordeaux, N; Manchanda, P; Kashyap, A; Skomski, R; Goldstein, J; Pinkerton, F E; Mishra, R K; Kubic, R C; Barmak, K

    2014-02-12

    Chemically ordered L10-type FeNi, also known as tetrataenite, is under investigation as a rare-earth-free advanced permanent magnet. Correlations between crystal structure, microstructure and magnetic properties of naturally occurring tetrataenite with a slightly Fe-rich composition (~ Fe55Ni44) obtained from the meteorite NWA 6259 are reported and augmented with computationally derived results. The tetrataenite microstructure exhibits three mutually orthogonal crystallographic variants of the L10 structure that reduce its remanence; nonetheless, even in its highly unoptimized state tetrataenite provides a room-temperature coercivity of 95.5 kA m(-1) (1200 Oe), a Curie temperature of at least 830 K and a largely temperature-independent anisotropy that preliminarily point to a theoretical magnetic energy product exceeding (BH)max = 335 kJ m(-3) (42 MG Oe) and approaching those found in today's best rare-earth-based magnets.

  2. Performance of An Adjustable Strength Permanent Magnet Quadrupole

    SciTech Connect

    Gottschalk, S.C.; DeHart, T.E.; Kangas, K.W.; Spencer, C.M.; Volk, J.T.; /Fermilab

    2006-03-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic CL and field quality made using an air bearing rotating coil system. The magnetic CL stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic CL. Calibration procedures as well as CL measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  3. Pure-type superconducting permanent-magnet undulator.

    PubMed

    Tanaka, Takashi; Tsuru, Rieko; Kitamura, Hideo

    2005-07-01

    A novel synchrotron radiation source is proposed that utilizes bulk-type high-temperature superconductors (HTSCs) as permanent magnets (PMs) by in situ magnetization. Arrays of HTSC blocks magnetized by external magnetic fields are placed below and above the electron path instead of conventional PMs, generating a periodic magnetic field with an offset. Two methods are presented to magnetize the HTSCs and eliminate the field offset, enabling the HTSC arrays to work as a synchrotron radiation source. An analytical formula to calculate the peak field achieved in a device based on this scheme is derived in a two-dimensional form for comparison with synchrotron radiation sources using conventional PMs. Experiments were performed to demonstrate the principle of the proposed scheme and the results have been found to be very promising.

  4. Application of permanent magnets in accelerators and electron storage rings

    NASA Astrophysics Data System (ADS)

    Halbach, K.

    1985-04-01

    The use of permanent-magnet systems in high-energy accelerators and as sources of synchrotron radiation in electron-storage rings is discussed in a review of recent experimental investigations. Consideration is given to the generic advantages of permanent magnets over electromagnets (higher field strength per magnet size) in small-scale configurations; the magnetic properties of some charge-sheet-equivalent-permanent-magnet materials (CSEMs); and the design of pure-CSEM and CSEM-Fe-hybrid multipole magnetic lenses, dipoles, and undulator/wiggler systems for use in free-electron lasers and the production of elliptically polarized synchrotron light. Drawings and diagrams are provided.

  5. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  6. Toroidal-Core Microinductors Biased by Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Blaes, Brent

    2003-01-01

    The designs of microscopic toroidal-core inductors in integrated circuits of DC-to-DC voltage converters would be modified, according to a proposal, by filling the gaps in the cores with permanent magnets that would apply bias fluxes (see figure). The magnitudes and polarities of the bias fluxes would be tailored to counteract the DC fluxes generated by the DC components of the currents in the inductor windings, such that it would be possible to either reduce the sizes of the cores or increase the AC components of the currents in the cores without incurring adverse effects. Reducing the sizes of the cores could save significant amounts of space on integrated circuits because relative to other integrated-circuit components, microinductors occupy large areas - of the order of a square millimeter each. An important consideration in the design of such an inductor is preventing magnetic saturation of the core at current levels up to the maximum anticipated operating current. The requirement to prevent saturation, as well as other requirements and constraints upon the design of the core are expressed by several equations based on the traditional magnetic-circuit approximation. The equations involve the core and gap dimensions and the magnetic-property parameters of the core and magnet materials. The equations show that, other things remaining equal, as the maximum current is increased, one must increase the size of the core to prevent the flux density from rising to the saturation level. By using a permanent bias flux to oppose the flux generated by the DC component of the current, one would reduce the net DC component of flux in the core, making it possible to reduce the core size needed to prevent the total flux density (sum of DC and AC components) from rising to the saturation level. Alternatively, one could take advantage of the reduction of the net DC component of flux by increasing the allowable AC component of flux and the corresponding AC component of current

  7. Characteristics analysis of a high speed permanent magnet synchronous generator using the transfer relations theorem and equivalent circuit method

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Ko, Kyoung-Jin; Park, Ji-Hoon; Cho, Han-Wook; Hong, Jung-Pyo

    2008-04-01

    This paper presents analytical methods to predict the magnetic field distribution, electrical parameters, and output characteristics of a high speed synchronous generator equipped with surface-mounted permanent magnet. In order to analyze the magnetic field distribution and to estimate the electrical parameters, electromagnetic transfer relation (TR) theorem is employed. Moreover, output characteristics for variable resistive load and the operating speed are also obtained by solving the permanent magnet machine's equivalent circuit equation. The analytical results are validated extensively by nonlinear finite element analysis and experimental results.

  8. A design for improved performance of interior permanent magnet synchronous motor for hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Lim, Seong Yeop; Lee, Ju

    2006-04-01

    This paper investigates the layout of a magnet shape on the performance of an interior permanent magnet (IPM) synchronous motor. The motor is used in a hybrid electric vehicle. The IPM motor is a pancake shaped motor that has permanent magnets inside the rotor. The motor acts as a rotational electrodynamic machine between the engine and transmission. The main purpose of redesigning the shape of the magnet is to improve the motor performance, especially the back-emf wave form, the efficiency, and the rated torque, within a restricted volume. The electromagnetic performance of the conventional model and the proposed design is analyzed using the finite element method. The theoretical results have been confirmed by comparing them with experimental results for the back-emf wave form, the torque versus current characteristics, and the motor efficiency.

  9. Method and apparatus for assembling permanent magnet rotors

    DOEpatents

    Hsu, J.S.; Adams, D.J.

    1999-06-22

    A permanent magnet assembly for assembly in large permanent magnet motors and generators includes a two-piece carrier that can be slid into a slot in the rotor and then secured in place using a set screw. The invention also provides an auxiliary carrier device with guide rails that line up with the teeth of the rotor, so that a permanent magnet assembly can be pushed first into a slot, and then down the slot to its proper location. An auxiliary tool is provided to move the permanent magnet assembly into position in the slot before it is secured in place. Methods of assembling and disassembling the magnet assemblies in the rotor are also disclosed. 2 figs.

  10. Method and apparatus for assembling permanent magnet rotors

    DOEpatents

    Hsu, John S.; Adams, Donald J.

    1999-01-01

    A permanent magnet assembly (22) for assembly in large permanent magnet (PM) motors and generators includes a two-piece carrier (23, 24) that can be slid into a slot (13) in the rotor (10) and then secured in place using a set screw (37). The invention also provides an auxiliary carrier device (50) with guide rails (51) that line up with the teeth (12) of the rotor, so that a permanent magnet assembly (22) can be pushed first into a slot (13), and then down the slot (13) to its proper location. An auxiliary tool (50) is provided to move the permanent magnet assembly (22) into position in the slot (13) before it is secured in place. Methods of assembling and disassembling the magnet assemblies (22) in the rotor (10) are also disclosed.

  11. Adjustable permanent magnet assembly for NMR and MRI

    SciTech Connect

    Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard

    2013-10-29

    System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.

  12. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    SciTech Connect

    Hajima, Ryoichi

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  13. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    PubMed

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  14. Lattice Monte Carlo Simulation Study Atomic Structure of Alnico 5-7 Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-03-01

    The fluctuations and increases in price and the issues in supply recently of rare earth metals re-heated the sought for non-rare earth permanent magnets. Alnico permanent magnets have been considered as promising replacements for rare earth-based permanent magnets due to the superiors in the magnetic performance at high temperature and the abundances of the constituent elements. Using lattice Monte Carlo simulation in combination with cluster expansion method we study the atomic structure of alnico 5-7 permanent magnets. We observed the phase separation into FeCo-rich and NiAl-rich phases in alnico 5-7 at low temperature, which is consistent with experiment. The phase boundary between these two phases is quite sharp. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al sitting on ?-site and Ni and Co sitting on ?-site. The degree of order of NiAl-rich phase is quite higher than that of FeCo-rich phase and it decreases with temperature slower than that of FeCo-rich phase. We also observed a small and increasing with annealing temperature magnetic moment in NiAl-rich phase, implying that the magnetic properties of alnico 5-7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase.

  15. Study on Optimum Design of Multi-Pole Interior Permanent Magnet Motor with Concentrated Windings

    NASA Astrophysics Data System (ADS)

    Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki

    Interior Permanent Magnet Synchronous Motors (IPMSM) have been found in many applications because of their high-power density and high-efficiency. The existence of a complex magnetic circuit, however, makes the design of this machine quite complicated. Although FEM is commonly used in the IPMSM design, one of disadvantages is long CPU times. This paper presents a simple non-linear magnetic analysis for a multi-pole IPMSM as a preliminary design tool of FEM. The proposed analysis consists of the geometric-flux-tube-based equivalent-magnetic-circuit model. The model includes saturable permeances taking into account the local magnetic saturation in the core. As a result, the proposed analysis is capable of calculating the flux distribution and the torque characteristics in the presence of magnetic saturation. The effectiveness of the proposed analysis is verified by comparing with FEM in terms of the analytical accuracy and the computation time for two IPMSMs with different specifications. After verification, the proposed analysis-based optimum design is examined, by which the minimization of motor volume is realized while satisfying the necessary maximum torque for target applications.

  16. Electric propulsion using the permanent magnet synchronous motor without rotor position transducers

    NASA Astrophysics Data System (ADS)

    Batzel, Todd Douglas

    The permanent magnet synchronous motor (PMSM) is increasingly playing an important role in electric propulsion systems due to its many advantages over competing technologies. For successful operation of the PMSM, rotor position and speed information is required. A resolver or encoder attached to the shaft of the machine usually provides this information. Many applications, however, cannot tolerate the use of the position sensor because of space and weight limitations, reliability concerns, or packaging issues. Thus, there has been an intense interest in the development of a so-called position sensorless drive, where the PMSM stator itself is used as the rotor position sensor. In this work, a sensorless electric drive is developed for various undersea propulsion applications, where the rotor position sensor is often undesirable due to the harsh operating environment as well as space and weight limitations. In this work, an observer is developed which enables sensorless operation of the PMSM over a wide speed range. In addition, a method is presented for estimating the standstill rotor angle, an operating condition at which the rotor position observers are typically ill conditioned. In this work two design methodologies are applied to the sensorless electric drive application, including a model-based and a neural network-based approach. Implementation issues for the sensorless electric drive are discussed, and experimental results are presented in order to demonstrate the effectiveness of the proposed techniques to the sensorless PMSM.

  17. A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui

    2012-04-01

    The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.

  18. Effect of toothless stator design on the dynamic performance characteristics of high speed permanent magnet generator-load systems

    SciTech Connect

    Vyas, R.; Arkadan, A.A. . Electrical and Computer Engineering Dept.)

    1994-06-01

    The results of a study on the effect of toothless stator design on the dynamic performance characteristics of high speed permanent magnet generator-load systems are presented. This study is base don the use of magnetic field solutions and state space models which account for saturation due to magnetic material nonlinearities and space harmonics due to machine geometry. Two particular stator designs, a toothless stator and a conventional type stator (with iron teeth), are considered din this study when feeding ac and dc rectified loads. Based on this study, it is demonstrated that the toothless design for this class of PM generators could result in lower levels of harmonics in the various machine voltages and currents waveforms as well as the power delivered to the loads. In addition, some design modifications are discussed to boost the output power level of the toothless machine which are inherently lower than the conventional machine due to the larger effective airgap that exists in the toothless design.

  19. Wide operation frequency band magnetostrictive vibration power generator using nonlinear spring constant by permanent magnet

    NASA Astrophysics Data System (ADS)

    Furumachi, S.; Ueno, T.

    2016-04-01

    We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.

  20. Magnetism of nanostructured permanent-magnet materials

    NASA Astrophysics Data System (ADS)

    Zhou, Jian

    Sm2Co17-type high-temperature permanent magnets with composition Sm(Co, Fe, Cu, Ti)z are investigated. The effects of Ti (or Zr), Cu, Fe and z value, as well as the effect of heat treatment on the magnetic properties are reported. Ti is found a necessity to form the cellular microstructure with grain size less than 100 nm. The Cu-rich Sm(Co, Cu)5 phase forms the grain-boundary which pins the magnetic domain-wall motion. Low Cu content makes the high-temperature coercivity vary in an abnormal way. A record-high high-temperature coercivity of 12.3 kOe at 500°C has been obtained. Granular SmCoz (z = 3--7.5) and Sm-Co-Cu-Ti thin films were produced by thermal processing of sputtered Sm-Co single layers and SmCo 5/(CuTi) multilayers. Inplane anisotropy was found in SmCoz for the composition range of z < 5.5, whereas for z > 5.5 the films exhibits three-dimensional random anisotropy. Sm-Co-Cu-Ti films were sputtered onto Si substrates with a Cr underlayer and coverlayer. X-ray diffraction patterns show that the hexagonal 1:5 phase forms after annealing. Electron micrographs of the processed films show that grains with diameters of 5 to 10 nm are embedded in a matrix. Both the grains and the matrix phase exhibit the CaCu5 Structure. The hysteresis loops show that these films have large coercivities of up to 50.4 kOe. FePt single layer and FePt/Fe multilayer thin films are prepared by magnetron sputtering. The single-phase behavior of the hysteresis loops of FePt/Fe multilayers indicates the existence of exchange coupling in these materials. An energy product of 19 MGOe has been obtained. Nanocrystalline Sm12(Co, Cu, Ti)88 powders are produced by mechanical alloying and are investigated using X-ray diffraction analysis and magnetization measurements. Different heat treatments are performed to investigate the influence on the magnetic properties and crystal structures. The intrinsic coercivity of the powders increases with an increasing amount of Cu. Short annealing time

  1. Isomap based supporting vector machine

    NASA Astrophysics Data System (ADS)

    Liang, W. N.

    2015-12-01

    This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.

  2. Conceptual Study of Permanent Magnet Machine Ship Propulsion Systems

    DTIC Science & Technology

    1977-12-01

    the consequent neel for load sharing. Higher voltages up to 5 kV can be obtained by use of higher voltage cells or by connecting several cells in...in the crash reverse operation only and are rated for full regenerative power. The resistor concept utilizes high- temperature resistor material and...neutral and 31 750 A per phase (three-phase basis) result in a umit impedance of Xpu = 0. 01008 S or 10. 08 ma. That means a leakage reactance of 0. 7 mn

  3. Impacts of Interior Permanent Magnet Machine Technology for Electric Vehicles

    DTIC Science & Technology

    2012-01-01

    Nickel Cobalt magnet with (BH) max at around 5 MG Oe. Next, Barium Ferrite magnets came by 1960s, and Samarium Cobalt magnets appeared in the 1970s...focused IPM motor using ferrite PM materials in 1978. Rahman designed and built the first large 45 kW high efficiency IPM motor utilizing NdBFe

  4. Effect of air gap variation on the performance of single stator single rotor axial flux permanent magnet generator

    NASA Astrophysics Data System (ADS)

    Kasim, Muhammad; Irasari, Pudji; Hikmawan, M. Fathul; Widiyanto, Puji; Wirtayasa, Ketut

    2017-02-01

    The axial flux permanent magnet generator (AFPMG) has been widely used especially for electricity generation. The effect of the air gap variation on the characteristic and performances of single rotor - single stator AFPMG has been described in this paper. Effect of air gap length on the magnetic flux distribution, starting torque and MMF has been investigated. The two dimensional finite element magnetic method has been deployed to model and simulated the characteristics of the machine which is based on the Maxwell equation. The analysis has been done for two different air gap lengths which were 2 mm and 4 mm using 2D FEMM 4.2 software at no load condition. The increasing of air gap length reduces the air-gap flux density. For air gap 2 mm, the maximum value of the flux density was 1.04 T while 0.73 T occured for air gap 4 mm.. Based on the experiment result, the increasing air gap also reduced the starting torque of the machine with 39.2 Nm for air gap 2 mm and this value decreased into 34.2 Nm when the air gap increased to 4 mm. Meanwhile, the MMF that was generated by AFPMG decreased around 22% at 50 Hz due to the reduction of magnetic flux induced on stator windings. Overall, the research result showed that the variation of air gap has significant effect on the machine characteristics.

  5. A Review of Permanent Magnet Stirring During Metal Solidification

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander

    2017-08-01

    Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

  6. Two cylinder permanent magnet stirrer for liquid metals

    NASA Astrophysics Data System (ADS)

    Bojarevičs, A.; Baranovskis, R.; Kaldre, I.; Milgrāvis, M.; Beinerts, T.

    2017-07-01

    To achieve a uniform liquid metal composition and temperature distribution, stirring is often necessary for industrial processes. Here, a novel permanent magnet system for liquid melt stirring is proposed. It promises very low energy consumption and options for multiple different flow types compared to traditional travelling magnetic field inductors or mechanical stirrers. The proposed system has a simple design: it consists of two rotating permanent magnet cylinders, which are magnetized transversely to the axis of the cylinders. The experimental device was developed and tested under various regimes using GaInSn alloy in a cylindrical crucible. Aluminum stirring by permanent magnets in laboratory scale is tested, and stirring impact on directional solidification of metallic alloys is experimentally investigated.

  7. Design Study Of Cyclotron Magnet With Permanent Magnet

    SciTech Connect

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 and the All field calculations had been performed by OPERA-3D TOSCA. The self-made beam dynamics program OPTICY is used for making isochronous field and other calculations.

  8. Globally Optimal Segmentation of Permanent-Magnet Systems

    NASA Astrophysics Data System (ADS)

    Insinga, A. R.; Bjørk, R.; Smith, A.; Bahl, C. R. H.

    2016-06-01

    Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective functional that is linear in the magnetic field. This approach, however, yields a continuously varying remanent flux density, while in practical applications, magnetic assemblies are realized by combining uniformly magnetized segments. The problem of determining the optimal shape of each of these segments remains unsolved. We show that the problem of optimal segmentation of a two-dimensional permanent-magnet assembly with respect to a linear objective functional can be reduced to the problem of piecewise linear approximation of a plane curve by perimeter maximization. Once the problem has been cast into this form, the globally optimal solution can be easily computed employing dynamic programming.

  9. Method of making bonded or sintered permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-08-31

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  10. Method of making bonded or sintered permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1995-11-28

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density. 14 figs.

  11. Method of making bonded or sintered permanent magnets

    DOEpatents

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1995-11-28

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  12. Special-Purpose High-Torque Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  13. A novel self-shielding permanent-magnet rotor assembly

    NASA Astrophysics Data System (ADS)

    Potenziani, E., II; Leupold, H. A.; Basarab, D. J.

    1988-11-01

    The use of permanent magnets in brushless motors and generators is highly desirable in that they have great potential for reducing weight and increasing efficiency. A self-shielding cylindrical permanent-magnet assembly has been designed and was found to produce high fields at the outer magnet surface and very little flux leakage into the interior rotor space. Construction of this assembly is simplified because it is composed of magnets of simple triangular cross sections, which have only four distinct orientations. The self-shielding nature of the design obviates any need for ferromagnetic material for flux shaping or shielding, thus simplifying greatly the mathematical analysis of the design and reducing its weight and bulk. Finite element methods are used to analyze a hypothetical permanent-magnet rotor assembly with regard to various design parameters.

  14. Special-Purpose High-Torque Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  15. Design Study Of Cyclotron Magnet With Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  16. Hybrid permanent magnet quadrupoles for the Recycler Ring at Fermilab

    SciTech Connect

    Brown, B.C.; Pruss, S.M.; Foster, G.W.; Glass, H.D.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.

    1997-10-01

    Hybrid Permanent Magnet Quadrupoles are used in several applications for the Fermilab Recycler Ring and associated beam transfer lines. Most of these magnets use a 0.6096 m long iron shell and provide integrated gradients up to 1.4 T-m/m with an iron pole tip radius of 41.6 mm. A 58.4 mm pole radius design is also required. Bricks of 25. 4 mm thick strontium ferrite supply the flux to the back of the pole to produce the desired gradients (0.6 to 2.75 T/m). For temperature compensation, Ni-Fe alloy strips are interspersed between ferrite bricks to subtract flux in a temperature dependent fashion. Adjustments of the permeance of each pole using iron between the pole and the flux return shell permits the matching of pole potentials. Magnetic potentials of the poles are adjusted to the desired value to achieve the prescribed strength and field uniformity based on rotating coil harmonic measurements. Procurement, fabrication, pole potential adjustment, and measured fields will be reported.

  17. Additive Manufacturing of Near-net Shaped Permanent Magnets

    SciTech Connect

    Paranthaman, M. Parans; Sridharan, Niyanth; List, Fred A.; Babu, S. S.; Dehoff, Ryan R.; Constantinides, Steve

    2016-07-26

    The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd2Fe14B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets is significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd2Fe17Bx solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd2Fe14B phase during fabrication.

  18. The low-field permanent magnet electrostatic plasma lens

    NASA Astrophysics Data System (ADS)

    Goncharov, A.; Gorshkov, V.; Maslov, V.; Zadorozhny, V.; Brown, I.

    2004-05-01

    We describe the status of ongoing research and development of the electrostatic plasma lens as used for the manipulation of high current broad beams of heavy ions of moderate energy. In some collaborative work at Lawrence Berkeley National Laboratory the lens was used to good effect for carrying out high dose ion implantation processing. In the process of this work a very narrow range of low magnetic field was found for which the ion-optical characteristics of the lens improved markedly. Subsequent theoretical analysis and computer modeling has led to an understanding of this phenomenon. These serendipitous results open up some attractive possibilities for the development of a new compact and low cost plasma lens based on permanent magnets rather than on current-driven field coils surrounding the lens volume. The development of this kind of lens, including both very low noise and minimal spherical aberration effects, may lead to a tool suitable for use in the injection beam lines of high current heavy ion linear accelerators. Here we briefly review the lens fundamentals, some characteristics of focusing heavy ion beams at low magnetic fields, and summarize recent theoretical and experimental developments, with emphasis on the relevance and suitability of the lens for accelerator injection application.

  19. Improved Nonambipolar Electron Source operation with permanent magnets

    NASA Astrophysics Data System (ADS)

    Gudmundson, Jesse; Hershkowitz, Noah

    2008-10-01

    The Nonambipolar Electron Source (NES), is a Radio Frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface. All electrons are extracted at an electron sheath through a biased ring and all ions are lost radially to a biased Faraday shield. The electromagnetic B field in the original NES has been replaced by a NdFeB permanent magnet array. The magnet array consists of a ring of radially aligned magnets followed by a ring of axially aligned magnets producing a peak field of approximately 850 Gauss. Measurement of the magnetic field was in good agreement with field predicted by the FEMM code. Optimization of the single turn antenna and biased ring will be discussed. Operating with argon, at least 15 A of electron current was extracted using a flow rate of 15 sccm Ar at approximately 10 mTorr and 600 W of RF power at 13.56 MHz. For comparison, the original NES required 1200 W of power to achieve 15 A of extracted current. Compared to the previous coil design, the NdFeB magnets are lighter weight, require no power, and provide a greater peak magnetic field.

  20. Improved Nonambipolar Electron Source Operation with Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Gudmundson, Jesse; Hershkowitz, Noah

    2008-11-01

    The Nonambipolar Electron Source (NES) is a Radio Frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface. All electrons are extracted at an electron sheath through a biased ring and all ions are lost radially to a biased Faraday shield. An electromagnet in the original NES has been replaced by a NdFeB permanent magnet array. A portion of the magnet array consists of a ring of radially aligned magnets followed by a ring of axially aligned magnets that produce a peak field of approximately 800 Gauss. Axial magnetic field strength at the extraction ring was increased using an additional ring of axially aligned magnets. Measurement of the magnetic field was in good agreement with field predicted by the FEMM (Finite Element Method Magnetics) code. Optimization of the single turn antenna and biased ring position in the magnetic field will be discussed. At least 15 A of electron current was extracted using a flow rate of 15 sccm Ar at 600 W of rf power at 13.56 MHz. For comparison, the original NES required 1200 W of power to achieve 15 A of extracted current. Compared to the previous coil design, the NdFeB magnets are lighter weight and require no power.

  1. Complementary analyses of hollow cylindrical unioriented permanent magnet (HCM) with high permeability external layer.

    PubMed

    Lobo, Carlos M S; Tosin, Giancarlo; Baader, Johann E; Colnago, Luiz A

    2017-09-01

    In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Miniature high speed compressor having embedded permanent magnet motor

    NASA Technical Reports Server (NTRS)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  3. A portable high power microwave source with permanent magnets

    SciTech Connect

    Li, Wei; Zhang, Jun; Li, Zhi-qiang; Yang, Jian-Hua

    2016-06-15

    A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.

  4. Use of permanent magnets in accelerator technology: Present and future

    SciTech Connect

    Halbach, K.

    1987-05-01

    This report is a collection of viewgraphs discussing accelerator magnets. Permanent magnet systems have some generic properties that, under some circumstances, make them not only mildly preferable over electromagnets, but make it possible to do things that can not be done with any other technology. After a general discussion of these generic advantages, some specific permanent magnet systems will be described. Special emphasis will be placed on systems that have now, or are likely to have in the future, a significant impact on how some materials research is conducted. 4 refs., 33 figs.

  5. Miniature cyclotron resonance ion source using small permanent magnet

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Huntress, W. T., Jr. (Inventor)

    1980-01-01

    An ion source using the cyclotron resonance principle is described. A miniaturized ion source device is used in an air gap of a small permanent magnet with a substantially uniform field in the air gap of about 0.5 inch. The device and permanent magnet are placed in an enclosure which is maintained at a high vacuum (typically 10 to the minus 7th power) into which a sample gas can be introduced. The ion beam end of the device is placed very close to an aperture through which an ion beam can exit into the apparatus for an experiment.

  6. Feasibility Study of Jupiter Icy Moons Orbiter Permanent Magnet Alternator Start Sequence

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Tokars, Roger P.

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission was a proposed, (recently cancelled) long duration science mission to study three moons of Jupiter: Callisto, Ganymede, and Europa. One design of the JIMO spacecraft used a nuclear heat source in conjunction with a Brayton rotating machine to generate electrical power for the electric thrusters and the spacecraft bus. The basic operation of the closed cycle Brayton system was as follows. The working fluid, a heliumxenon gas mixture, first entered a compressor, then went through a recuperator and hot-side heat exchanger, then expanded across a turbine that drove an alternator, then entered the cold-side of the recuperator and heat exchanger and finally returned to the compressor. The spacecraft was to be launched with the Brayton system off-line and the nuclear reactor shut down. Once the system was started, the helium-xenon gas would be circulated into the heat exchangers as the nuclear reactors were activated. Initially, the alternator unit would operate as a motor so as to drive the turbine and compressor to get the cycle started. This report investigated the feasibility of the start up sequence of a permanent magnet (PM) machine, similar in operation to the alternator unit, without any position or speed feedback sensors ("sensorless") and with a variable load torque. It is found that the permanent magnet machine can start with sensorless control and a load torque of up to 30 percent of the rated value.

  7. New Fe-Co-Ni-Cu-Al-Ti Alloy for Single-Crystal Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Bazhenov, V. E.; Moiseev, A. V.; Kireev, A. V.

    2016-03-01

    A new alloy intended for single-crystal permanent magnets has been suggested. The new alloy has been designed based on the well-known Fe-Co-Ni-Cu-Al-Ti system and contains to 1 wt % Hf. The alloy demonstrates an enhanced potential ability for single-crystal forming in the course of unidirectional solidification of ingot. Single-crystal permanent magnets manufactured from this alloy are characterized by a high level of magnetic properties. When designing the new alloy, computer simulation of the phase composition and calculations of solidification parameters of complex metallic systems have been performed using the Thermo-Calc software and calculation and experimental procedures based on quantitative metallographic analysis of quenched structures. After the corresponding heat treatment, the content of high-magnetic phase in the alloy is 10% higher than that in available analogous alloys.

  8. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  9. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  10. Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets.

    PubMed

    Pathak, Arjun K; Khan, Mahmud; Gschneidner, Karl A; McCallum, Ralph W; Zhou, Lin; Sun, Kewei; Dennis, Kevin W; Zhou, Chen; Pinkerton, Frederick E; Kramer, Matthew J; Pecharsky, Vitalij K

    2015-04-24

    Replacement of Dy and substitution of Nd in NdFeB-based permanent magnets by Ce, the most abundant and lowest cost rare earth element, is important because Dy and Nd are costly and critical rare earth elements. The Ce, Co co-doped alloys have excellent high-temperature magnetic properties with an intrinsic coercivity being the highest known for T ≥ 453 K.

  11. Decoupling analysis of a novel bearingless flux-switching permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyin; Zhu, Huangqiu; Qin, Yuemei

    2017-05-01

    In this paper, a novel 12/10 stator/rotor pole bearingless flux-switching permanent magnet (BFSPM) motor is proposed to overcome the drawbacks of rotor permanent magnet type bearingless motors. The basic motor configuration, including motor configuration and winding configuration, is introduced firstly. Then, based on the principle of reverse direction magnetization for symmetrical rotor teeth, the radial suspension forces generation principle is analyzed in detail. Finally, decoupling performances between suspension force windings and torque windings are investigated. The results show that the proposed BFSPM not only ensures the merits of high torque output capability compared with conventional 12/10 stator/rotor pole FSPM motor, but also achieves stable radial suspension forces which have little mutual effect with torque. The validity of the proposed structure has been verified by finite element analysis (FEA).

  12. Design formulas for the strength, compensation and trimming of hybrid permanent magnets

    SciTech Connect

    Brown, B.C.

    1996-12-31

    Hybrid permanent magnets provide an economical source of fixed- strength magnets. The field shape is controlled by the shape and condition of iron pole tips while the strength is determined by geometry and the quantity and quality of the permanent magnetic materials. We will derive here simple formulas for calculating the strength of simple hybrid magnets when driven by materials with linear {bold B-H} curves in the region of interest ( SEM). We will also show how to tune the strength by shunting flux with iron shims to change gap heights. The same calculational techniques will allow design of temperature compensation based on shunting flux in a temperature dependent fashion using ferromagnetic materials with a low Curie temperature.

  13. Permanent magnet Hall Thrusters development and applications on future brazilian space missions

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Martins, Alexandre A.; Miranda, Rodrigo; Schelling, Adriane; de Souza Alves, Lais; Gonçalves Costa, Ernesto; de Oliveira Coelho Junior, Helbert; Castelo Branco, Artur; de Oliveira Lopes, Felipe Nathan

    2015-10-01

    The Plasma Physics Laboratory (PPLUnB) has been developing a Permanent Magnet Hall Thruster (PHALL) for the Space Research Program for Universities (UNIESPAÇO), part of the Brazilian Space Activities Program (PNAE) since 2004. The PHALL project consists on a plasma source design, construction and characterization of the Hall type that will function as a plasma propulsion engine and characterized by several plasma diagnostics sensors. PHALL is based on a plasma source in which a Hall current is generated inside a cylindrical annular channel with an axial electric field produced by a ring anode and a radial magnetic field produced by permanent magnets. In this work it is shown a brief description of the plasma propulsion engine, its diagnostics instrumentation and possible applications of PHALL on orbit transfer maneuvering for future Brazilian geostationary satellite space missions.

  14. PERMANENT MAGNET DESIGNS WITH LARGE VARIATIONS IN FIELD STRENGTH.

    SciTech Connect

    GUPTA,R.

    2004-01-21

    The use of permanent magnets has been investigated as an option for electron cooling ring for the proposed luminosity upgrade of RHIC. Several methods have been developed that allow a large variation in field strength. These design concepts were verified with computer simulations using finite element codes. It will be shown that the field uniformity is maintained while the field strength is mechanically adjusted.

  15. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    PubMed Central

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG. PMID:25050388

  16. Didactic Considerations on Magnetic Circuits Excited by Permanent Magnets

    ERIC Educational Resources Information Center

    Barmada, S.; Rizzo, R.; Sani, L.

    2009-01-01

    In this paper, the authors focus their attention on the way magnetic circuits and permanent magnets are usually treated in most textbooks and electrical engineering courses. This paper demonstrates how this important topic is too often presented simplistically. This simplistic treatment does not allow the students to develop a complete…

  17. Design and analysis of tubular permanent magnet linear wave generator.

    PubMed

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  18. Didactic Considerations on Magnetic Circuits Excited by Permanent Magnets

    ERIC Educational Resources Information Center

    Barmada, S.; Rizzo, R.; Sani, L.

    2009-01-01

    In this paper, the authors focus their attention on the way magnetic circuits and permanent magnets are usually treated in most textbooks and electrical engineering courses. This paper demonstrates how this important topic is too often presented simplistically. This simplistic treatment does not allow the students to develop a complete…

  19. Permanent-magnet flowmeter having improved output-terminal means

    DOEpatents

    August, C.; Myers, H.J.

    1981-10-26

    Disclosed is an improved permanent magnet flowmeter capable of withstanding bending stresses in the direction of induced emf signals. The flowmeter includes a unique terminal arrangement integrally formed with the flowmeter by trepanning opposing wall sections of the flowmeter body. The terminal arrangement provides increased flowmeter sensitivity by increasing the strength of the induced emf signals.

  20. Dovetail Rotor Construction For Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Kintz, Lawrence J., Jr.; Puskas, William J.

    1988-01-01

    New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.

  1. Permanent magnet flowmeter having improved output terminal means

    DOEpatents

    August, Charles; Myers, Harry J.

    1984-01-01

    Disclosed is an improved permanent magnet flowmeter capable of withstanding bending stresses in the direction of induced emf signals. The flowmeter includes a unique terminal arrangement integrally formed with the flowmeter by trepanning opposing wall sections of the flowmeter body. The terminal arrangement provides increased flowmeter sensitivity by increasing the strength of the induced emf signals.

  2. On the Motion of the Field of a Permanent Magnet

    ERIC Educational Resources Information Center

    Leus, Vladimir; Taylor, Stephen

    2011-01-01

    A description is given of a series of recent experiments using a rotating magnetic circuit comprising a permanent magnet ring and yoke, and a stationary conductor in the air gap between the ring and yoke. The EMF induced in this case cannot be described by a simple application of Faraday's flux law. This is because the magnetic flux in the air gap…

  3. On the Motion of the Field of a Permanent Magnet

    ERIC Educational Resources Information Center

    Leus, Vladimir; Taylor, Stephen

    2011-01-01

    A description is given of a series of recent experiments using a rotating magnetic circuit comprising a permanent magnet ring and yoke, and a stationary conductor in the air gap between the ring and yoke. The EMF induced in this case cannot be described by a simple application of Faraday's flux law. This is because the magnetic flux in the air gap…

  4. A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields.

    PubMed

    Manz, B; Benecke, M; Volke, F

    2008-05-01

    A new portable, pocket-size NMR probe based on a novel permanent magnet arrangement is presented. It is based on a Halbach-type magnet design which mimics the field of a spherical dipole by using cylindrical bar and ring magnets. The magnet system is made up of only three individual magnets, and most field calculations and optimisations can be performed analytically. A prototype system has been built using a set of small, off the shelf commercially available permanent magnets. Proton linewidths of 50 ppm FWHM could be achieved at a field strength of 1T. Calculations show that with custom-sized permanent magnets, linewidths of less than 1 ppm can be achieved over sample volumes of up to 1 mm3, which would in theory enable chemical shift resolved proton spectroscopy on mass-limited samples. But even with the achieved linewidth of 50 ppm, this can be a useful portable sensor for small amounts of liquid samples with restricted molecular mobility, like gels, polymers or high viscosity liquids.

  5. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice.

    PubMed

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Yang, Xiuhong

    2016-01-01

    The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B 0) inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained.

  6. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice

    PubMed Central

    Wang, Guangxin; Xie, Huantong; Hou, Shulian; Chen, Wei; Yang, Xiuhong

    2016-01-01

    The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B 0) inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained. PMID:27034951

  7. A Novel Current Angle Control Scheme in a Current Source Inverter Fed Permanent Magnet Synchronous Motor Drive for Automotive Applications

    SciTech Connect

    Tang, Lixin; Su, Gui-Jia

    2011-01-01

    This paper describes a novel speed control scheme to operate a current source inverter (CSI) driven surface-mounted permanent magnet synchronous machine (SPMSM) for hybrid electric vehicles (HEVs) applications. The idea is to use the angle of the current vector to regulate the rotor speed while keeping the two dc-dc converter power switches on all the time to boost system efficiency. The effectiveness of the proposed scheme was verified with a 3 kW CSI-SPMSM drive prototype.

  8. Deformation of ferrofluid marbles in the presence of a permanent magnet.

    PubMed

    Nguyen, Nam-Trung

    2013-11-12

    This paper investigates the deformation of ferrofluid marbles in the presence of a permanent magnet. Ferrofluid marbles are formed using a water-based ferrofluid and 1 μm hydrophobic polytetrafluoride particles. A marble placed on a Teflon coated glass plate deforms under gravity. In the presence of a permanent magnet, the marble is further deformed with a larger contact area. The geometric parameters are normalized by the radius of an undistorted spherical marble. The paper first discusses a scaling relationship between the dimensionless radius of the contact area as well as the dimensionless height and the magnetic Bond number. The dimensionless contact radius is proportional to the fourth root of the magnetic bond number. The dimensionless height scales with the inverse square root of the magnetic Bond number. In the case of a moving marble dragged by a permanent magnet, the deformation is evaluated as the difference between advancing and receding curvatures of the top view. The dimensionless height and the contact diameter of the marble do not significantly depend on the speed or the capillary number. The scaling analysis and experimental data show that the deformation is proportional to the capillary number.

  9. A General Analytical Method for a Three-Phase Line-Start Permanent-Magnet Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Tsuboi, Kazuo; Takegami, Tsuneo; Hirotsuka, Isao; Nakamura, Masanori

    A line-start permanent-magnet synchronous motor (LSPMM) consists of a stator with symmetrical three-phase armature windings and a salient pole rotor with a permanent magnet for excitation and a starting winding similar to the squirrel-cage winding of an induction motor. In this paper, a general analytical method based on tensor analysis is proposed for practical performance calculation of a three-phase LSPMM. The general equation for the currents of the three-phase LSPMM is derived from the transient impedance tensor expressed in polyphase symmetrical axes, and the general equation for vibratory and non-vibratory torques is derived from the current equation.

  10. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  11. Disc rotors with permanent magnets for brushless DC motor

    DOEpatents

    Hawsey, Robert A.; Bailey, J. Milton

    1992-01-01

    A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  12. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field

    PubMed Central

    Tee, Sui Seng; DiGialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L.; Miloushev, Vesselin; Poot, Alex J.; Truong, Steven; Alvarez, Julio A.; Aldeborgh, Hannah N.; Keshari, Kayvan R.

    2016-01-01

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting 13C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength. PMID:27597137

  13. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field

    NASA Astrophysics Data System (ADS)

    Tee, Sui Seng; Digialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L.; Miloushev, Vesselin; Poot, Alex J.; Truong, Steven; Alvarez, Julio A.; Aldeborgh, Hannah N.; Keshari, Kayvan R.

    2016-09-01

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting 13C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength.

  14. Photovoltaic-wind hybrid system for permanent magnet DC motor

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  15. System Cost Analysis for an Interior Permanent Magnet Motor

    SciTech Connect

    Peter Campbell

    2008-08-01

    The objective of this program is to provide an assessment of the cost structure for an interior permanent magnet ('IPM') motor which is designed to meet the 2010 FreedomCAR specification. The program is to evaluate the range of viable permanent magnet materials for an IPM motor, including sintered and bonded grades of rare earth magnets. The study considers the benefits of key processing steps, alternative magnet shapes and their assembly methods into the rotor (including magnetization), and any mechanical stress or temperature limits. The motor's costs are estimated for an annual production quantity of 200,000 units, and are broken out into such major components as magnetic raw materials, processing and manufacturing. But this is essentially a feasibility study of the motor's electromagnetic design, and is not intended to include mechanical or thermal studies as would be done to work up a selected design for production.

  16. Iron free permanent magnet systems for charged particle beam optics

    SciTech Connect

    Lund, S.M.; Halbach, K.

    1995-09-03

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability.

  17. Super Strong Permanent Magnet Quadrupole for a Linear Collider

    SciTech Connect

    Mihara, Takanori

    2004-02-19

    The field strength generated by permanent magnets has been further extended by the introduction of saturated iron. A permanent magnet quadrupole (PMQ) lens with such saturated iron is one of the candidates for the final focus lens for an e{sup +}e{sup -} Linear Collider accelerator, because of its compactness and low power consumption. The first prototype of the PMQ has been fabricated and demonstrated to have an integrated strength of 28.5T with an overall length of 10 cm and a 7mm bore radius. Two drawbacks should be considered: its negative temperature coefficient of field strength and its fixed strength. A thermal compensation material is being tested to cure the first problem. The other problem may be solved by rotating sectioned magnet bricks, but that may lead to movement of the magnetic center and introduction of multipoles beyond some strict requirements.

  18. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  19. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  20. Characterization of rare earth permanent magnets

    SciTech Connect

    Huetten, A.; Thomas, G.

    1991-06-01

    Recently developed alloys based either on ternary phases such as Nd{sub 2}Fe{sub 14}B (2--14) or on iron-rich pseudobinaries with the ThMn{sub 12}-structure combine excellent intrinsic magnetic properties with the appropriate microstructure for applications as hard magnetic materials. In order to understand the magnetic behavior of these materials, systematic microstructural characterization has been performed using microdiffraction, x-ray microanalyses and high resolution electron microscopy. The magnetic behavior of three types of NdFeB specimens, namely sintered, mechanically alloyed and melt-spun, is correlated to their microstructure. The effect of minority phases on the magnetization and the coercivity in these materials is investigated. The ease with which the nonmagnetic Nd-rich grain boundary phase decouples hard magnetic 2--14'' matrix grains depends on their average grain size which is related to the different preparation processes. 20 refs., 5 figs., 1 tab.

  1. Corridor guided transport system utilizing permanent magnet levitation

    SciTech Connect

    Geraghty, J.J.; Poland, A.P.; Lombardi, J.A.

    1995-07-01

    The invention relates to a corridor guided transport system including a guided goods conveyance container utilizing permanent magnet levitation. The transport system of the invention eliminates the need for the wheel and track arrangement presently required by known and utilized conventional train systems and also required by some conventional magnetic levitation transport systems and, as a result, is safer to operate and maintain than either of these known transportation systems.

  2. UCLA-KIAE focusing permanent magnet undulator for SASE experiment

    NASA Astrophysics Data System (ADS)

    Osmanov, N.; Tolmachev, S.; Varfolomeev, A.; Varfolomeev, A. A.; Frigola, P.; Hogan, M.; Pellegrini, C.; Carr, R.; Lidia, S.

    1998-02-01

    A description of a new 2 m undulator is presented which was specially designed and manufactured for a SASE mode FEL experiment. It is a one section two plane focusing permanent magnet construction. The uniform period length is 2.06 cm, total number of periods is 98. The peak field on the axis is 5.4 kG for a 5 mm gap.

  3. Studies Directed Toward New and Improved Permanent Magnet Materials.

    DTIC Science & Technology

    1994-09-28

    electric motors and generators. At present there are only 3 permanent magnet materials in widespread use - SmCo5, Nd2Fe14B and SmCo5-Sm2Co17. Each has...a third of the effort has been devoted to effecting improvements in existing materials which occur in the SmCo5 or Nd2Fe14B structures. Materials

  4. Interaction of a permanent magnet with a superconducting hollow cylinder

    SciTech Connect

    Wojtowicz, P.J. )

    1990-06-01

    The Meissner-effect interaction of a small permanent magnet with a superconducting hollow cylinder has been investigated by solving the Laplace equation numerically using a finite-difference method. The calculations reveal the existence of stable equilibrium configurations for a range of shapes and sizes of the cylinder. The computed magnitude of the Hooke's law force constant is close to those measured for small magnets levitated above superconducting disks.

  5. Performance characterization of a permanent-magnet helicon plasma thruster

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod

    2012-10-01

    Helicon plasma thrusters operated at a few kWs of rf power is an active area of an international research. Recent experiments have clarified part of the thrust-generation mechanisms. Thrust components which have been identified include an electron pressure inside the source region and a Lorentz force due to an electron diamagnetic drift current and a radial component of the applied magnetic field. The use of permanent magnets (PMs) instead of solenoids is one of the solutions for improving the thruster efficiency because it does not require electricity for the magnetic nozzle formation. Here the thrust imparted from a permanent-magnet helicon plasma thruster is directly measured using a pendulum thrust balance. The source consists of permanent magnet (PM) arrays, a double turn rf loop antenna powered by a 13.56 MHz rf generator and a glass source tube. The PM arrays provide a magnetic nozzle near the open exit of the source and two configurations, which have maximum field strengths of about 100 and 270 G, are tested. A thrust of 15 mN, specific impulse of 2000 sec and a thrust efficiency of 8 percent are presently obtained for 2 kW of input power, 24 sccm flow rate of argon and the stronger magnetic field configuration.

  6. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  7. Rotating permanent magnet excitation for blood flow measurement.

    PubMed

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  8. Bonded permanent magnets: Current status and future opportunities (invited)

    NASA Astrophysics Data System (ADS)

    Ormerod, John; Constantinides, Steve

    1997-04-01

    Permanent magnets play a vital role in modern society as a component in a wide range of devices utilized by many industries and consumers. In 1995, the world production of permanent magnets was estimated to be valued at 3.6 billion and growing at an annual rate of 12%. Bonded permanent magnets are the fastest growing segment of this market. Bonded magnet technology enables a wide variety of magnetic powders to be combined with several polymer and binder systems to produce magnetic components utilizing several processing options. In this article, we review the development of bonded magnet technology. The major classes of magnetic powders, binder systems, and processing technologies are described. Recent developments in magnetic material grades, e.g., anisotropic NdFeB, rare earth lean NdFeB, SmFe(N,C) are outlined. The current status of processing and binder options aimed at increasing the upper application temperature limit of these materials is highlighted. Finally, the improvements and future opportunities for bonded magnets are discussed.

  9. Model-based machine learning

    PubMed Central

    Bishop, Christopher M.

    2013-01-01

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications. PMID:23277612

  10. Model-based machine learning.

    PubMed

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  11. Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples

    NASA Astrophysics Data System (ADS)

    Hsu, Liang-Yi; Tsai, Mi-Ching

    2004-11-01

    This paper presents a tooth shape optimization method based on a generic algorithm to reduce the torque ripple of brushless permanent magnet motors under two different magnetization directions. The analysis of this design method mainly focuses on magnetic saturation and cogging torque and the computation of the optimization process is based on an equivalent magnetic network circuit. The simulation results, obtained from the finite element analysis, are used to confirm the accuracy and performance. Finite element analysis results from different tooth shapes are compared to show the effectiveness of the proposed method.

  12. Design and Performance Improvement of AC Machines Sharing a Common Stator

    NASA Astrophysics Data System (ADS)

    Guo, Lusu

    With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be

  13. Combinatorial investigation of rare-earth free permanent magnets

    NASA Astrophysics Data System (ADS)

    Fackler, Sean Wu

    The combinatorial high throughput method allows one to rapidly study a large number of samples with systematically changing parameters. We apply this method to study Fe-Co-V alloys as alternatives to rare-earth permanent magnets. Rare-earth permanent magnets derive their unmatched magnetic properties from the hybridization of Fe and Co with the f-orbitals of rare-earth elements, which have strong spin-orbit coupling. It is predicted that Fe and Co may also have strong hybridization with 4d and 5d refractory transition metals with strong spin-orbit coupling. Refractory transition metals like V also have the desirable property of high temperature stability, which is important for permanent magnet applications in traction motors. In this work, we focus on the role of crystal structure, composition, and secondary phases in the origin of competitive permanent magnetic properties of a particular Fe-Co-V alloy. Fe38Co52V10, compositions are known as Vicalloys. Fe-CoV composition spreads were sputtered onto three-inch silicon wafers and patterned into discrete sample pads forming a combinatorial library. We employed highthroughput screening methods using synchrotron X-rays, wavelength dispersive spectroscopy, and magneto-optical Kerr effect (MOKE) to rapidly screen crystal structure, composition, and magnetic properties, respectively. We found that in-plane magnetic coercive fields of our Vicalloy thin films agree with known bulk values (300 G), but found a remarkable eight times increase of the out-of-plane coercive fields (˜2,500 G). To explain this, we measured the switching fields between in-plane and out-of-plane thin film directions which revealed that the Kondorsky model of 180° domain wall reversal was responsible for Vicalloy's enhanced out-of-plane coercive field and possibly its permanent magnetic properties. The Kondorsky model suggests that domain-wall pinning is the origin of Vicalloy's permanent magnetic properties, in contrast to strain, shape, or

  14. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Rossing, T. D.; Mulcahy, T. M.; Uherka, K. L.

    1992-10-01

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss 'coefficient of friction' for thrust bearings of this type can be as low as 8 x 10(exp -6). While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K (Delta B)(sup 3)/J(sub c) where K is a geometric coefficient, Delta B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J(sub c) is the critical current density of the HTS. It is clear that a small decrease in Delta B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of Delta B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing Delta B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  15. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    SciTech Connect

    Hull, J.R.; Rossing, T.D.; Mulcahy, T.M.; Uherka, K.L.

    1992-10-23

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss coefficient of friction'' for thrust bearings of this type can be as low as 8 [times] 10[sup [minus]6]. While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K ([Delta]B[sup 3]/J[sub c]) where K is a geometric coefficient, [Delta]B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J[sub c] is the critical current density of the HTS. It is clear that a small decrease in [Delta]B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of [Delta]B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing [Delta]B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  16. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    SciTech Connect

    Hull, J.R.; Rossing, T.D.; Mulcahy, T.M.; Uherka, K.L.

    1992-10-23

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss``coefficient of friction`` for thrust bearings of this type can be as low as 8 {times} 10{sup {minus}6}. While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K ({Delta}B{sup 3}/J{sub c}) where K is a geometric coefficient, {Delta}B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J{sub c} is the critical current density of the HTS. It is clear that a small decrease in {Delta}B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of {Delta}B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing {Delta}B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  17. Development of a Direct Drive Permanent Magnet Generator for Small Wind Turbines

    SciTech Connect

    Chertok, Allan; Hablanian, David; McTaggart, Paul; DOE Project Officer - Keith Bennett

    2004-11-16

    In this program, TIAX performed the conceptual design and analysis of an innovative, modular, direct-drive permanent magnet generator (PMG) for use in small wind turbines that range in power rating from 25 kW to 100 kW. TIAX adapted an approach that has been successfully demonstrated in high volume consumer products such as direct-drive washing machines and portable generators. An electromagnetic model was created and the modular PMG design was compared to an illustrative non-modular design. The resulting projections show that the modular design can achieve significant reductions in size, weight, and manufacturing cost without compromising efficiency. Reducing generator size and weight can also lower the size and weight of other wind turbine components and hence their manufacturing cost.

  18. A Salient-Pole Synchronous Generator with Permanent Magnets between the Field Poles

    NASA Astrophysics Data System (ADS)

    Matsui, Yasuhiro; Hayamizu, Takahito; Shima, Kazuo; Fukami, Tadashi; Hanaoka, Ryoichi; Takata, Shinzo

    In this paper, a new salient-pole synchronous generator (SG) termed the PMa-SG is presented. In the PMa-SG, permanent magnets (PMs) are placed between the pole shoes to reduce the magnetic saturation in the field poles. By using finite element analysis (FEA), the internal magnetic fields and basic characteristics of a 2.8-MVA PMa-SG were compared with those of a conventional SG of the same size, and the reduction effect of the magnetic saturation of the PMs was examined. The FEA simulations were also validated by experiments on a 2.0-kVA prototype machine. The PMs placed between the pole shoes reduce the magnetic saturation in the pole bodies and pole tips and effectively increase the terminal voltage and output power.

  19. Direct thrust measurement of a permanent magnet helicon double layer thruster

    SciTech Connect

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  20. An adaptive fuzzy controller for permanent-magnet AC servo drives

    SciTech Connect

    Le-Huy, H.

    1995-12-31

    This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.

  1. Field Quality And Magnetic Center Stability Achieved in a Variable Permanent Magnet Quadrupole for the ILC

    SciTech Connect

    Iwashita, Y.; Mihara, T.; Kumada, M.; Spencer, C.; /SLAC

    2006-02-06

    A superstrong permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens for the International Linear Collider (ILC). Our prototype PMQ can produce variable strengths from 3.5T to 24.2T in 1.4T steps. The magnetic center of the PMQ must not move more than a few microns during a 20% strength change to enable a Beam-Based Alignment (BBA) process to work. Our PMQ can be mechanically adjusted to suppress the center movement from more than 30{micro}m to less than 10{micro}m during strength changes.

  2. Atmospheric Pressure Ionization Permanent Magnet Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.

    2007-01-01

    A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594

  3. Magnetic lumped parameter modeling of rotor eccentricity in brushless permanent-magnet motors

    SciTech Connect

    Wang, J.P.; Lieu, D.K.

    1999-09-01

    Vibration, giving rise to acoustical noise, is an important index of motor performance. The unbalanced force due to rotor eccentricity caused by manufacturing imprecision or bearing defects is one possible source of excitation to vibration. The previously developed fast design package for permanent magnet motors, based on magnetic lumped parameter modeling, is modified to predict the influence of rotor eccentricity. Both static and dynamic cases are investigated. Magnetic material nonlinearity is taken into consideration. A two-dimensional relative permeance function is derived by conformal transformation followed by the modification of permeances modeling the air gap. Static and dynamic rotor eccentricity bring different effects to symmetric and asymmetric motors and are discussed separately.

  4. A clip-on Zeeman slower using toroidal permanent magnets

    SciTech Connect

    Krzyzewski, S. P.; Akin, T. G.; Dahal, Parshuram; Abraham, E. R. I.

    2014-10-15

    We present the design of a zero-crossing Zeeman slower for {sup 85}Rb using rings of flexible permanent magnets. The design is inexpensive, requires no power or cooling, and can be easily attached and removed for vacuum maintenance. We show theoretically that such a design can reproduce a magnetic field profile of a standard zero-crossing Zeeman slower. Experimental measurements of a prototype and comparisons to theoretical simulations demonstrate the feasibility of the design and point toward future improvements. Simulations show an atom flux similar to other Zeeman slowers.

  5. Effect of permanent-magnet irregularities in levitation force measurements.

    SciTech Connect

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  6. A strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  7. Low power valve actuation using trans-permanent magnetics

    NASA Astrophysics Data System (ADS)

    Duval, Luis Denit

    The subject of magnetic actuators is very broad, and encompasses a wide range of technologies, magnetic circuit topologies, and performance characteristics for an ever-increasing spectrum of applications. As a consequence of recent advances in soft and hard magnetic materials and developments in power electronics, microprocessors and digital control strategies, and the continuing demand for higher performance motion control systems, there appears to be more research and development activity in magnetic actuators for applications spanning all market sectors than at any time. In this dissertation, a rational approach for switching the states of permanent magnets through an on-board magnetization process is presented. The resulting dynamic systems are referred to as trans-permanent magnetic systems (T-PM). The first part of this research focuses on the governing equations needed for the analysis of T-PM systems. Their feasibility is demonstrated experimentally. In doing so, a method that has the potential of leading to new ultra-low power designs for electromechanical devices is introduced. In the second part of this research, the aforementioned developments in T-PM are applied to the problem of low power valves. Whereas alternate approaches to low power valve control may utilize latching mechanisms to maintain valve position during inactive periods, an approach that eliminates latching mechanisms is presented. Instead, the principles of T-PM are employed to switch the states of permanent magnets; the used of permanent magnets instead of electromagnets eliminates power consumption during inactive periods, thereby reducing power consumption to ultra-low levels. The magnets in a T-PM actuator are configured in a stack. The relationships between the strength and number of magnets in the stack and the stroke and resolution of the actuator are developed. This dissertation reports on the design and testing of a prototype valve actuator that uses a stack pf T-PM with

  8. Effect of permanent-magnet irregularities in levitation force measurements

    NASA Astrophysics Data System (ADS)

    Hull, John R.

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM.

  9. A clip-on Zeeman slower using toroidal permanent magnets.

    PubMed

    Krzyzewski, S P; Akin, T G; Dahal, Parshuram; Abraham, E R I

    2014-10-01

    We present the design of a zero-crossing Zeeman slower for (85)Rb using rings of flexible permanent magnets. The design is inexpensive, requires no power or cooling, and can be easily attached and removed for vacuum maintenance. We show theoretically that such a design can reproduce a magnetic field profile of a standard zero-crossing Zeeman slower. Experimental measurements of a prototype and comparisons to theoretical simulations demonstrate the feasibility of the design and point toward future improvements. Simulations show an atom flux similar to other Zeeman slowers.

  10. Anisotropy and Microstructure of Rare Earth Permanent Magnet Materials.

    DTIC Science & Technology

    1984-06-01

    applications. 4.2) Scientific proposals High temperature hysteresis measurements on commer- cial permanent magnets especially on that of Shin - Etsu are in...and Nd15.5 Fe66 .5 Colo B8, supplied by various producers (SUMITOMO Spec.Met., SHIN - ETSU Chem. Corp. and VACUUM- SCHMELZE Hanau), were investigated...Quantitative analysis of precipitation hardened magnets of the type Sm(Co,Fe,Cu,Zr) 7 .5 as provided by the 0 Shin - Etsu Company. This will be done using high

  11. Alternatives to Rare Earth Permanent Magnets for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    Direct-drive permanent magnet generators (DDPMGs) offer increased reliability and efficiency over the more commonly used geared doubly-fed induction generator, yet are only employed in less than 1 percent of utility scale wind turbines in the U.S. One major barrier to increased deployment of DDPMGs in the U.S. wind industry is NdFeB permanent magnets (PMs), which contain critical rare earth elements Nd and Dy. To allow for the use of rare earth free PMs, the magnetic loading, defined as the average magnetic flux density over the rotor surface, must be maintained. Halbach cylinders are employed in 3.5kW Halbach PMGs (HPMGs) of varying slot-to-pole ratio to concentrate the magnetic flux output by a lower energy density PM over the rotor surface. We found that for high pole and slot number, the increase in magnetic loading is sufficient to allow for the use of strontium iron oxide hard ferrite PMs and achieved rated performance. Joule losses in the stator windings were found to increase for the hard ferrite PMs due to increased inductance in the stator windings. However, for scaling of the HPMG designs to 3MW, rated performance and high efficiency were achieved, demonstrating the potential for elimination for rare earth PMs in commercial scale wind turbines. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  12. Permanent magnet with MgB{sub 2} bulk superconductor

    SciTech Connect

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  13. Radiation effects on rare earth permanent magnets. Master's thesis

    SciTech Connect

    Luna, H.B.

    1988-06-01

    With continuing improvements in rare earth permanent magnet (REPM) technology, applications for their use are being discovered that were previously not possible. Two such applications for permanent magnets are in focusing elements for linear accelerators and ion sources, and in insertion devices (wigglers and undulators) used to produce synchrotron radiation. However, these magnetic transport elements are subjected to high radiation levels. Consequently, there is considerable interest in the United States and abroad to discover and quantify the effects of radiation on REPMs. Using the Lawrence Livermore National Laboratory (LLNL) 100-MeV Linac, four different samples of REPM were irradiated to one to two gigarads of exposed dose from a bremsstrahlung production target in an attempt to simulate the consequences of beam spills of a high energy primary electron beam. Of the samples irradiated, Sm2Co17 proved to be the most resistant to gamma radiation. The electron transport code CYLTRAN of the Integrated Tiger Series (ITS), which is an electron and photon Monte Carlo simulation code, was used to determine the angular and energy spectra for both electrons and photons produced by the target used at the LLNL Linac.

  14. Compact ECR ion source with permanent magnets for carbon therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, Y.; Yamada, S.; Ogawa, H.; Drentje, A. G.; Biri, S.; Yoshida, Y.

    2004-05-01

    Ion sources for the medical facilities should have the following characteristics of easy maintenance, low electric power, good stability, and long operation time without trouble (1 year or longer). For this, a 10 GHz compact electron cyclotron resonance ion source (ECRIS) with all permanent magnets was developed. The beam intensity and stability for C4+ were 280 e μA and better than 6% during 20 h with no adjustment of any source parameters. These results were acceptable for the medical requirements. Recently, many plans were proposed to construct the next generation cancer treatment facility. For such a facility we have designed an all permanent magnet ECRIS, in which a high magnetic field is chosen for increasing the beam intensity. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, while the minimum B strength is 0.25 T. The source has a diameter of 32 cm and a length of 29.5 cm. Details of the design of this source and its background are described in this article.

  15. Compact Permanent Magnet Microwave-Driven Neutron Generator

    SciTech Connect

    Ji Qing

    2011-06-01

    Permanent magnet microwave-driven neutron generators have been developed at Lawrence Berkeley National Laboratory. The 2.45 GHz microwave signal is directly coupled into the plasma chamber via a microwave window. Plasma is confined in an axial magnetic field produced by the permanent magnets surrounding the plasma chamber. The source chamber is made of aluminum with a diameter of 4 cm and length of 5 cm. A stack of five alumina discs, which are 3 cm in diameter and total length of 3 cm, works as microwave window. Three permanent ring magnets are used to generate the axial magnetic field required for the microwave ion source. Both hydrogen and deuterium plasma have been successfully ignited. With 330W of microwave power, source chamber pressure of 5 mTorr, and an extraction aperture of 2 mm in diameter, the deuterium ion beam measured on the target was approximately 2.5 mA. Over 90% of the ions are atomic. With the ion source at ground potential and titanium target at -40 kV, the analysis of the activated gold foil and calibrated neutron dose monitor both indicated that roughly 10{sup 7} n/s of D-D neutrons have been produced. The D-D neutron yield can be easily scaled up to 10{sup 8} n/s when the titanium target is biased at -100 kV.

  16. Radial-Gap Permanent Magnet Motor and Drive Research FY 2004

    SciTech Connect

    McKeever, J.W.

    2005-02-11

    The objective of this task was to study permanent magnet (PM) radial-gap traction drive systems that could meet the U.S. Department of Energy FreedomCAR Program's 2010 goals to expose weaknesses or identify strengths. Initially, the approach was to compare attributes such as physical deformations during operation, performance (torque, power, efficiency versus speed), material requirements (strength), material costs, manufacturability, weight, power density, specific power, reliability, and drivability for specific motors. Three motors selected were the commercially available 60-kW radial-gap surface-mounted PM motor manufactured by UQM Technologies, Inc.; a hypothetical PM motor with rotor-supported magnets similar to the Honda MCF-21; and Delphi's automotive electric machine drive motor, whose rotor is a ferromagnetic cylinder, held at one end by a shaft that supports the magnets on its inner surface. Potential problems have appeared related to PM motors, such as (1) high no-load spin losses and high operational power losses, probably from eddy current losses in the rotor; (2) the undemonstrated dual mode inverter control (DMIC) for driving a brushless dc motor (BDCM) (UQM and Delphi motors); (3) uncertainty about the potential for reducing current with DMIC; and (4) uncertainty about the relation between material requirements and maximum rotor speed. Therefore, the approach was changed to study in detail three of the comparison attributes: drivability, performance, and material requirements. Drivability and related problems were examined by demonstrating that DMIC may be used to drive an 18-pole 30-kW PM motor to 6000 rpm, where the maximum electrical frequency is 900 Hz. An available axial-gap test motor with 18 poles was used because its control is identical to that of a radial gap PM motor. Performance was analytically examined, which led to a derivation showing that DMIC controls a PM motor so that the motor uses minimum current to produce any power

  17. Development of Permanent Magnet Reluctance Motor Suitable for Variable-Speed Drive for Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu

    Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.

  18. A new permanent magnetic friction damper device for passive energy dissipation

    NASA Astrophysics Data System (ADS)

    Dai, Hongzhe; Huang, Zuojian; Wang, Wei

    2014-10-01

    This paper summarizes the development of a new permanent magnetic friction damper (PMFD) device designed to protect structures during earthquakes. The device is based on the concept that when two permanent magnetic strips are osculated, magnetic attraction is produced and the magnitude can be adjusted and predicted by changing the area of the contact surface of the strips. Thus, the controlling force of the PMFD device varies continuously with the response of the structure and thereby overcomes the drawbacks of conventional friction dampers, the force models for which are invariable. We performed shaking table tests and numerical studies for a five-story steel frame structure fitted with PMFD devices; the results demonstrate that the new device effectively reduces the seismic response of a structure due to its excellent energy dissipation capacity. Moreover, the controlling force supplied by the new PMFD device can be adaptively adjusted according to the magnitude of the excitations. Therefore, the new PMFD device presents a viable alternative to conventional friction-based earthquake-resistant designs both for new construction and for upgrading existing structures.

  19. Preparation and characterization of Fe-Mn-doped Barium Hexaferrite permanent magnet

    NASA Astrophysics Data System (ADS)

    Kurniawan, C.; Nainggolan, M. M.; Sebayang, K.; Ginting, M.; Sebayang, P.

    2017-04-01

    Barium Hexaferrite-based permanent magnets (BaFe12O19) was known for its high magnetic anisotropy and suitability in broad applications. Some dopants and atomic substitutions have been utilized to improve its properties for special purposes. In this paper, the Fe-Mn system was used as a dopant for preparing Fe-Mn-doped barium hexaferrite permanent magnet using mechanical alloying method. The physical properties of the samples, such as bulk density, and porosity were examined to study the effect of the dopant. In addition, the crystal structure and magnetic properties of the samples were analyzed using X-Ray Diffractometer (XRD) and Vibrating Sample Magnetometer (VSM), respectively. It is found that the addition of Fe-Mn into barium hexaferrite contributes on the appearance of minor phases such as iron oxide-based magnetite and hematite. In addition, the XRD peak shifted to smaller angle which is likely due to Mn ion substitution and lattice strain within the hexaferrite crystal. It is also observed that the magnetic properties of Fe-Mn-doped barium hexaferrite was inferior to that of the undoped samples. It means that the formation of magnetite and hematite from Fe-Mn dopant during the sintering process is dominant and results to the reduction of hard magnetic properties of the samples.

  20. Chemical Synthesis of Next Generation High Energy Product Hybrid SmCo Permanent Magnets for High Temperature Applications

    DTIC Science & Technology

    2010-08-01

    cobalt , copper and sometimes titanium) and ceramic magnets (typically strontium- doped barium hexaferrites). The magnets containing rare earth...Nd- Fe-B in the early 1980s. Here, we report a ferromagnetic material based upon nanoscale cobalt carbide particles that provide a rare-earth free...alternative to high performance permanent magnets. The cobalt carbide-based magnets described herein are processed by chemical polyol reduction of

  1. Design optimization of an axial gap permanent magnet brushless dc motor for electric vehicle applications

    SciTech Connect

    Wijenayake, A.H.; Bailey, J.M.; McCleer, P.J.

    1995-12-31

    This paper describes a method of design and multiobjective optimization of an axial field permanent magnet brushless dc machine (BDCM), primarily aimed for electric vehicle propulsion applications. The disc type permanent magnet brushless dc motor has two stator windings connected in parallel with its rotor sandwiched between them. The simplified design equations for an axial gap trapezoidal back emf motor are obtained and programmed using the software package QPRO. Then using classical design approach, design parameters for a 100 Hp, 3,200 Rpm, 216 Volts BDCM are obtained. This design configuration is then used as the starting design point for the multiobjective optimization process, where the objective is to maximize the efficiency and the specific power.The feasibility frontier is obtained as a set of optimal solutions, from which a most suitable design parameters can be selected depending on the user preferences. A specific power as high as 4.54 Hp/Lb. (at 94% efficiency) and an efficiency as high as 98.06% (at specific power of 0.69 Hp/Lb.) have been achieved during the optimization process. The cost factors in the respective cases being 223$ and 649$. A very high and relatively flat efficiency curve over the torque speed plane is also achieved during the process, especially when the weighting coefficient related to efficiency function is made bigger. Advantage of this method is that much time is saved in developing the optimization program. Also, the motor design engineer does not have to be an expert in optimization theory in order to obtain a superior design with a very short time.

  2. Dense arrays of cobalt nanorods as rare-earth free permanent magnets.

    PubMed

    Anagnostopoulou, E; Grindi, B; Lacroix, L-M; Ott, F; Panagiotopoulos, I; Viau, G

    2016-02-21

    We demonstrate in this paper the feasibility to elaborate rare-earth free permanent magnets based on cobalt nanorods assemblies with energy product (BH)max exceeding 150 kJ m(-3). The cobalt rods were prepared by the polyol process and assembled from wet suspensions under a magnetic field. Magnetization loops of dense assemblies with remanence to a saturation of 0.99 and squareness of 0.96 were measured. The almost perfect M(H) loop squareness together with electron microscopy and small angle neutron scattering demonstrate the excellent alignment of the rods within the assemblies. The magnetic volume fraction was carefully measured by coupling magnetic and thermogravimetric analysis and found in the range from 45 to 55%, depending on the rod diameter and the alignment procedure. This allowed a quantitative assessment of the (BH)max values. The highest (BH)max of 165 kJ m(-3) was obtained for a sample combining a high magnetic volume fraction and a very large M(H) loop squareness. This study shows that this bottom-up approach is very promising to get new hard magnetic materials that can compete in the permanent magnet panorama and fill the gap between the ferrites and the NdFeB magnets.

  3. Magnetizing of permanent magnets using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  4. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    SciTech Connect

    Young, A.T.; Clark, D.J.; Kunkel, W.B.; Leung, K.N.; Li, C.Y.

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show that it has a uniformity on the order of 2 parts in 10{sup 4}.

  5. Quantum Hall effect in epitaxial graphene with permanent magnets

    NASA Astrophysics Data System (ADS)

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-12-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  6. Quantum Hall effect in epitaxial graphene with permanent magnets

    PubMed Central

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-01-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications. PMID:27922114

  7. Design and characterization of permanent magnetic solenoids for REGAE

    NASA Astrophysics Data System (ADS)

    Hachmann, M.; Flöttmann, K.; Gehrke, T.; Mayet, F.

    2016-09-01

    REGAE is a small electron linear accelerator at DESY. In order to focus short and low charged electron bunches down to a few μm permanent magnetic solenoids were designed, assembled and field measurements were done. Due to a shortage of space close to the operation area an in-vacuum solution has been chosen. Furthermore a two-ring design made of wedges has been preferred in terms of beam dynamic issues. To keep the field quality of a piecewise built magnet still high a sorting algorithm for the wedge arrangement including a simple magnetic field model has been developed and used for the construction of the magnets. The magnetic field of these solenoids has been measured with high precision and compared to simulations.

  8. Permanent magnet electron cyclotron resonance plasma source with remote window

    SciTech Connect

    Berry, L.A.; Gorbatkin, S.M. )

    1995-03-01

    An electron cyclotron resonance (ECR) plasma has been used in conjunction with a solid metal sputter target for Cu deposition over 200 mm diameters. The goal is to develop a deposition system and process suitable for filling submicron, high-aspect ratio ULSI features. The system uses a permanent magnet for creation of the magnetic field necessary for ECR, and is significantly more compact than systems equipped with electromagnets. A custom launcher design allows remote microwave injection with the microwave entrance window shielded from the copper flux. When microwaves are introduced at an angle with respect to the plasma, high electron densities can be produced with a plasma frequency significantly greater than the electron cyclotron frequency. Copper deposition rates of 1000 A/min have been achieved.

  9. Predicting the Future of Permanent-Magnet Materials

    SciTech Connect

    Skomski, R; Manchanda, P; Kumar, P; Balamurugan, B; Kashyap, A; Sellmyer, DJ

    2013-07-01

    There are two main thrusts towards new permanent-magnet materials: improving extrinsic properties by nanostructuring and intrinsic properties by atomic structuring. Theory-both numerical and analytical-plays an important role in this ambitious research. Our analysis of aligned hard-soft nanostructures shows that soft-in-hard geometries are better than hard-in-soft geometries and that embedded soft spheres are better than sandwiched soft layers. Concerning the choice of the hard phase, both a high magnetization and a high anisotropy are necessary. As an example of first-principle research, we consider interatomic Mn exchange in MnAl and find strongly ferromagnetic intralayer exchange, in spite of the small Mn-Mn distances.

  10. Quantum Hall effect in epitaxial graphene with permanent magnets.

    PubMed

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  11. Sm-Co-Cu-Ti high-temperature permanent magnets

    SciTech Connect

    Zhou, J.; Skomski, R.; Chen, C.; Hadjipanayis, G. C.; Sellmyer, D. J.

    2000-09-04

    A class of promising permanent-magnet materials with an appreciable high-temperature coercivity of 8.6 kOe at 500 degree sign C is reported. The Sm-Co-Cu-Ti magnets are prepared by arc melting and require a suitable heat treatment. Magnetization measurements as a function of temperature and x-ray diffraction patterns indicate that the samples are two-phase mixtures of 2:17 and 1:5 structures. Depending on heat treatment and composition, some of the magnets exhibit a positive temperature coefficient of coercivity. The promising high-temperature behavior of the coercivity is ascribed to the temperature dependence of the domain-wall energy, which affects the curvature of the walls and the pinning behavior. (c) 2000 American Institute of Physics.

  12. Initial Experiments of a New Permanent Magnet Helicon Thruster

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, Benjamin

    2013-09-01

    A new design for a permanent magnet helicon thruster is presented. Its small plasma volume (~10 cm-3) and low power requirements (<100 W) make it ideal for propelling nanosatellites (<10 kg). The magnetic field reached a maximum of 500 G in the throat of a converging-diverging nozzle and decreased to 0.5 G, the strength of earth's magnetic field, within 50 cm allowing the entire exhaust plume to develop in the vacuum chamber without being affected by the chamber walls. Low gas flow rates (~4 sccm) and high pumping speeds (~10,000 l/s) were used to more closely approximate the conditions of space. A parametric study of the thruster operational parameters was performed to determine its capabilities as both a thruster and as a plasma source for magnetic nozzle experiments. The plasma density, electron temperature, and plasma potential were measured in the plume to characterize the ion acceleration mechanism.

  13. Sm-Co-Cu-Ti high-temperature permanent magnets

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Skomski, R.; Chen, C.; Hadjipanayis, G. C.; Sellmyer, D. J.

    2000-09-01

    A class of promising permanent-magnet materials with an appreciable high-temperature coercivity of 8.6 kOe at 500 °C is reported. The Sm-Co-Cu-Ti magnets are prepared by arc melting and require a suitable heat treatment. Magnetization measurements as a function of temperature and x-ray diffraction patterns indicate that the samples are two-phase mixtures of 2:17 and 1:5 structures. Depending on heat treatment and composition, some of the magnets exhibit a positive temperature coefficient of coercivity. The promising high-temperature behavior of the coercivity is ascribed to the temperature dependence of the domain-wall energy, which affects the curvature of the walls and the pinning behavior.

  14. Bremsstrahlung radiation effects in rare earth permanent magnets

    SciTech Connect

    Luna, H.; Maruyama, X.; Colella, N.; Hobbs, J.; Hornady, R.; Kulke, B.; Palomar, J.

    1988-12-15

    Advances in rare earth permanent magnet (REPM) technology have made possible new applications. Two such applications are the use of permanent magnetic lenses for accelerator and beam transport systems and the expanding use in undulators and wigglers of synchrotron radiation and free electron laser systems. Both applications involve potential exposure of REPM's to high radiation fields. We have investigated the radiation hardness of several different varieties of REPM's up to 2 gigarads of absorbed dose from a mixed electron-photon (bremsstrahlung) field. Sm/sub 2/Co/sub 17/, Nd/sub 2/Fe/sub 14/B and an experimental REPM, Pr/sub 15/Fe/sub 79/B/sub 6/, from several different manufacturers have been investigated. Of the samples irradiated, Sm/sub 2/Co/sub 17/ proved to be the most resistant to bremsstrahlung radiation. However, details of manufacturing techniques produced significantly different results. We observed that REPM's of nominally identical stoichiometric composition from different manufacturers did not show the same rate of remanence loss. We present details of our experiment and absorbed dose modeling and a summary of radiation effects measurements of which we are aware. Our study of these radiation damage experiments lead us to the empirical observation that the order of radiation hardness is Sm/sub 2/Co/sub 17/, SmCo/sub 5/ and Nd/sub 2/Fe/sub 14/B, regardless of the source of radiation, i.e., gammas, electrons, protons or neutrons. 8 refs., 2 figs., 4 tabs.

  15. High-Performance Permanent Magnets for Energy-Efficient Devices

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George

    2012-02-01

    Permanent magnets (PMs) are indispensable for many commercial applications including the electric, electronic and automobile industries, communications, information technologies and automatic control engineering. In most of these applications, an increase in the magnetic energy density of the PM, usually presented via the maximum energy product (BH)max, immediately increases the efficiency of the whole device and makes it smaller and lighter. Worldwide demand for high performance permanent magnets has increased dramatically in the past few years driven by hybrid and electric cars, wind turbines and other power generation systems. New energy challenges in the world require devices with higher energy efficiency and minimum environmental impact. The potential of 3d-4f compounds which revolutionized the PM science and technology is almost fully utilized, and the supply of 4f rare earth elements does not seem to be much longer assured. This talk will address the major principles guiding the development of PMs and overview state-of-the-art theoretical and experimental research. Recent progress in the development of nanocomposite PMs, consisting of a fine (at the scale of the magnetic exchange length) mixture of phases with high magnetization and large magnetic hardness will be discussed. Fabrication of such PMs is currently the most promising way to boost the (BH)max, while simultaneously decreasing, at least partially, the reliance on the rare earth elements. Special attention will be paid to the impact which the next-generation high-(BH)max magnets is expected to have on existing and proposed energy-saving technologies.

  16. Permanent Magnet Temperature Analysis Considering PWM Carrier Harmonics for Interior Permanent Magnet Synchronous Generator in Hybrid Vehicles

    NASA Astrophysics Data System (ADS)

    Kamiya, Munehiro; Awata, Hideya; Miura, Tetsuya; Yagyu, Yasuhide; Kosaka, Takashi; Matsui, Nobuyuki

    In this paper, we investigate into an approach to predict the magnet temperature in interior permanent magnet synchronous generator for mass-produced front engine rear drive hybrid vehicles. To achieve an accurate thermal analysis, the generator losses under PWM converter drive are firstly calculated by 3D-FEM using measured current waveform including PWM carrier harmonics. As an approach for thermal analysis, a lumped capacitance model is proposed, which makes it possible to estimate the magnet temperature with fast computation. The thermal analysis is executed using the calculated losses and the experimentally obtained thermal resistance as the inputs. The calculated magnet temperature characteristics are in good agreement with the measured ones. As a result, it is verified that the proposed thermal analysis is effective for estimating the magnet temperature in this kind of application.

  17. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    SciTech Connect

    Yu, S.; Sessler, A.

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  18. Temperature based Restricted Boltzmann Machines

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping

    2016-01-01

    Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view.

  19. Temperature based Restricted Boltzmann Machines.

    PubMed

    Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping

    2016-01-13

    Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view.

  20. High energy product permanent magnet having improved intrinsic coercivity and method of making same

    DOEpatents

    Ramesh, Ramamoorthy; Thomas, Gareth

    1990-01-01

    A high energy rare earth-ferromagnetic metal permanent magnet is disclosed which is characterized by improved intrinsic coercivity and is made by forming a particulate mixture of a permanent magnet alloy comprising one or more rare earth elements and one or more ferromagnetic metals and forming a second particulate mixture of a sintering alloy consisting essentially of 92-98 wt. % of one or more rare earth elements selected from the class consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and mixtures of two or more of such rare earth elements, and 2-8 wt. % of one or more alloying metals selected from the class consisting of Al, Nb, Zr, V, Ta, Mo, and mixtures of two or more of such metals. The permanent magnet alloy particles and sintering aid alloy are mixed together and magnetically oriented by immersing the mixture in an axially aligned magnetic field while cold pressing the mixture. The compressed mixture is then sintered at a temperature above the melting point of the sintering aid and below the melting point of the permanent magnet alloy to thereby coat the particle surfaces of the permanent magnetic alloy particles with the sintering aid while inhibiting migration of the rare earth element in the sintering aid into the permanent magnet alloy particles to thereby raise the intrinsic coercivity of the permanent magnet alloy without substantially lowering the high energy of the permanent magnet alloy.

  1. High-gradient permanent magnet apparatus and its use in particle collection

    DOEpatents

    Cheng, Mengdawn; Ludtka, Gerard Michael; Avens, Larry R.

    2016-07-12

    A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanent magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.

  2. Field weakening for a doubly salient motor with stator permanent magnets

    SciTech Connect

    Lipo, T.A.; Liao, Y.; Liang, F.

    1995-10-03

    A device for field weakening in a doubly-salient variable reluctance motor having permanent magnets in the stator. The field weakening increases the constant power range of the motor and is accomplished by controlled movement of steel insets toward and away from the sides of the stator proximate the permanent magnets to provide a controllable by-pass flux path thereabout. Alternatively, the field weakening may be accomplished by a flux by-pass collar which may be angularly positioned around the stator to bridge the permanent magnets of the motor with discrete magnetic sections, thereby providing an alternate by-pass flux path around the permanent magnets in addition to the main air gap flux path. A third alternative means for maintaining a constant power range is accomplished by controlled axial sliding of the permanent magnets themselves into and out from the stator. 5 figs.

  3. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  4. Nerve–muscle activation by rotating permanent magnet configurations

    PubMed Central

    Nicholson, Graham M.

    2016-01-01

    Key points The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling.Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W).A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies.Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve.These results, employing the first prototype device, suggest the opportunity for a new class of small low‐cost magnetic nerve and/or muscle stimulators. Abstract Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high‐speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets’ own magnetic field and three‐phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m−2 Hz−1 near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad

  5. Experimental verification of hopping mechanism using permanent magnets for an asteroid rover at drop tower

    NASA Astrophysics Data System (ADS)

    Kurisu, Masamitsu; Yano, Hajime; Yoshimitsu, Tetsuo; Kubota, Takashi; Adachi, Tadashi; Kuroda, Yoji

    Verification of the hopping mechanism using permanent magnets by microgravity experiments at ZARM drop tower will be presented in this report. The mechanism, which is called HMPM (Hopping Mechanism with Permanent Magnets) was developed for a small asteroid exploration rover to replace with conventional locomotion mechanism such as wheels and crawlers. The main part of HMPM consists of three permanent magnets which are two stationary magnets and one movable magnet aligned between them. HMPM itself hops by utilizing the impact force generated when the movable magnet sticks to one of the stationary magnets. The features of HMPM are that the large impact force can be generated in spite of low-power consumption, and that it can be easily miniaturized and modularized. On the other hand, the weak point of HMPM is that the performance of the mechanism cannot be controlled directly, since the performance is decided by its design. Therefore, it is significant to evaluate the performance of HMPM before it is mounted on a flight model of rover. On the microgravity experiments at the drop tower, an imitation rover with 0.8kg weight is tested to hop with the operation of a prototype HMPM mounted on the rover. The prototype module weighs only 0.03kg with dimension 0.033 m in width, 0.046 m in height, and 0.012 m in depth, except the drive circuit and power source. Experimental results show the availability of HMPM. Also, the hopping performance of HMPM which is evaluated from the motion of rover recorded by cameras equipped inside the dropping capsule is compared with the estimated performance derived from the theoretical model. From the investigation, validity of the evaluation method based on the theoretical model is discussed. In order that the potential ability of HMPM is fully derived, optimal design of HMPM will require the evaluation method. The experiments at ZARM drop tower were accomplished based on the agreement on the Hayabusa-2 project by DLR-JAXA. And we received

  6. Sensorless position estimation and control of permanent-magnet synchronous motors using a saturation model

    NASA Astrophysics Data System (ADS)

    Kassem Jebai, Al; Malrait, François; Martin, Philippe; Rouchon, Pierre

    2016-03-01

    Sensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach.

  7. Electromagnetophoretic migration velocity of organic microdroplets with surfactants using permanent magnets.

    PubMed

    Iiguni, Yoshinori; Ohtani, Hajime

    2013-01-01

    By using the electromagnetophoretic migration technique with permanent magnets, the electromagnetophoretic migration velocimetry in a droplet-based system was demonstrated for organic droplets dispersed in an aqueous solution. Migration of 2-fluorotoluene droplets with a diameter of 8 - 16 μm dispersed in 1.0 M KCl aqueous solution could be achieved in the same manner as for solid particles. The effect of cetyltrimethylammonium bromide (CTAB) on the electromagnetophoretic migration velocity of the droplets was also investigated. When the concentration of CTAB was in the range from 10(-6) to 10(-4) M, the electromagnetophoretic migration velocity of 2-fluorotoluene droplets decreased as the concentration of CTAB increased. With this measurement, we could successfully characterize organic droplets in terms of the amount of adsorbing surfactants by evaluating the surface conductivity of organic droplets calculated based on their electromagnetophoretic migration velocity.

  8. Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection

    SciTech Connect

    J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg

    2006-09-30

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure. The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces low-frequency eddy

  9. Stability tests of permanent magnets built with strontium ferrite

    SciTech Connect

    Glass, H.D.; Brown, B.C.; Foster, G.W.; Fowler, W.B.; Gustafson, R.; Jackson, G.P.; Ostiguy, J.F.; Volk, J.T.

    1997-06-01

    Permanent magnets built using strontium ferrite bricks have been tested for stability against demagnetization. Ten test dipoles were built to monitor ferrite behavior under a variety of stressing conditions, including irradiation, mechanical shock, extreme thermal excursions, and long term magnetization stability. The test magnets were geometrically similar to, but much shorter than, the magnets built for the 8 GeV transfer line at FNAL. No loss of magnetization was observed for bricks exposed to a proton beam, and a magnet exposed to several Gigarads of Co{sup 60} gamma radiation suffered no measurable demagnetization. The magnet strength was observed to decrease logarithmically with time, consistent with the expected effect of thermal fluctuations. Irreversible demagnetization of {approx}0.1% was seen in cooling magnets to 0{degree}C, and the loss was {approx}0.2% for magnets cooled to -20{degree}C. No additional demagnetization was seen on subsequent cycling to 0{degree}C. Finally, one of the long dipoles built for the 8 GeV line was periodically tested over the course of 3 months, and showed no measurable demagnetization.

  10. Self-suspended permanent magnetic FePt ferrofluids.

    PubMed

    Dallas, Panagiotis; Kelarakis, Antonios; Sahore, Ritu; DiSalvo, Francis J; Livi, Sebastien; Giannelis, Emmanuel P

    2013-10-01

    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70 wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8 emu/g respectively). At lower FePt loading (12 wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2 emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Optimal current waveforms for brushless permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  12. Permanent magnets for vehicle-propulsion motors: Cost/availability

    SciTech Connect

    Oman, H.; Simpson-Clark, R.

    1996-12-31

    Alternating-current induction motors have been used for fuel-pumping and air-conditioning in airplanes. Series and shunt dc motors have propelled vehicles. The power received by motors goes into producing output torque and magnetic fields. Today these fields can be produced with rare-earth permanent magnets which do not consume input power. Dramatic improvements in motor efficiency can result. Furthermore, with efficient variable-speed controllers using MOSFET and IGBT semiconductors, electric motors can replace the hydraulic actuators that move aircraft surfaces and retract landing gear. The 1993 cost for the magnets in a 100 kW motor was $1,500. Improved production processes are expected to drop this cost to around $400. However, today`s rare-earth magnet-materials are by-products of mines that produce other metals and minerals. The authors explore the effect on cost of increased demand for the pertinent rare-earth elements, neodymium, cobalt, and samarium. A higher price will cause more elements to be extracted from existing mines. The opening of new rare-earth-element mines is another possibility. In 1993 the $250-per-kg cost for neodymium-iron-boron magnets included $190 for processing. Processing cost can drop to $30 per kg of magnet when production reaches 60 tons per month. The cost of the raw material for the magnets will be affected by man factors in a complex scenario.

  13. Wide gap, permanent magnet biased magnetic bearing system

    NASA Technical Reports Server (NTRS)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  14. Fringe fields for the N channel permanent magnet array

    SciTech Connect

    Lee, E.P.

    1996-04-01

    Analytical expressions are obtained for fringe field multipoles of an N channel permanent magnet quadrupole array. It is assumed that the system of magnetic wedges starts at some transverse (x, y) plane located at z = 0, and it continues to a magnet length z = l, where it stops. The iron yoke continues to z = {+-} {infinity}, but it will be shown that only a small overhang is actually required to maintain the quadrupole and translational symmetries. Recall the 2-d solution for the magnetic potential (H = {del}{phi}): {phi}{sub 2} = A [(x-x{sub i}){sup 2} - (y-y{sub i}){sub 2}], where A = -M{sub 0}/4b, M{sub 0} is the remnant field of the wedges, and (x{sub i}, y{sub i}) are the coordinates for the center of box (i). Boxes have dimensions 2b x 2b and alternate between vacuum fill (for beams) and magnetic wedge fill. The 2-d system looks like a portion of an infinite transverse lattice with periodicity lengthy = 4b in both the x and y directions. For the magnetic potential {phi}, the periodicity length is 2b.

  15. Optimum magnetic circuit configurations for permanent magnet aerospace generators

    NASA Astrophysics Data System (ADS)

    Amaratunga, G. A. J.; Acarnley, P. P.; McLaren, P. G.

    1985-03-01

    In the design of generators for aerospace applications, it is crucial that the specific output power (power/volume) is as high as possible. In such cases, other factors are relatively minor considerations. As specific output increases with operating speed, many aerospace generators operate at speeds in excess of 12,000 rev/min. Brush wear problems at high speeds, lead to the selection of the permanent magnet (pm) field alternator, which does not use brushes. This alternator has bipolar flux variation in the stator iron and so can be expected to have a high specific output. Magnetic circuit configurations for pm generators are related to radial-field, axial-field, and flux-switching types. The choice of the magnetic circuit configuration is a vital element of the design process. The present paper has the objective to provide for the first time quantitative comparisons of the specific output available from each of several magnetic circuit configurations. It is found that the flux-squeezing configuration has advantages for small sizes.

  16. Dysprosium-free melt-spun permanent magnets.

    PubMed

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  17. Wide gap, permanent magnet biased magnetic bearing system

    NASA Technical Reports Server (NTRS)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  18. Analysis of an Adjustable Field Permanent Magnet Solenoid

    DOE PAGES

    Burris-Mog, Trevor John; Burns, Michael James; Chavez, Mark Anthony; ...

    2017-07-12

    A feasibility study has been performed on an adjustable-field permanent magnet (PM) solenoid concept in an effort to reduce the dependence that linear induction accelerators have on large direct current power supplies and associated cooling systems. The concept relies on the ability to reorient sections of the PMs and thus redirect their magnetization vector to either add to or subtract from the on-axis magnetic field. This study concentrated on the focal strengths and emittance growths for two different designs, both with 19 cm bore diameters extending 53 cm in length. The first design is expected to produce peak magnetic fieldsmore » ranging from 260 to 900 G (0.026 to 0.09 T) while the second design is expected to produce peak magnetic fields ranging from 580 to 2100 G (0.058 to 0.21 T). Finally, although the PM configuration generates a variable magnetic field and the torques acting on PMs within the assembly appear manageable, the emittance growth is larger than that of a DC solenoid.« less

  19. Magnetic forces produced by rectangular permanent magnets in static microsystems.

    PubMed

    Gassner, Anne-Laure; Abonnenc, Mélanie; Chen, Hong-Xu; Morandini, Jacques; Josserand, Jacques; Rossier, Joel S; Busnel, Jean-Marc; Girault, Hubert H

    2009-08-21

    Finite element numerical simulations were carried out in 2D geometries to map the magnetic field and force distribution produced by rectangular permanent magnets as a function of their size and position with respect to a microchannel. A single magnet, two magnets placed in attraction and in repulsion have been considered. The goal of this work is to show where magnetic beads are preferentially captured in a microchannel. These simulations were qualitatively corroborated, in one geometrical case, by microscopic visualizations of magnetic bead plug formation in a capillary. The results show that the number of plugs is configuration dependent with: in attraction, one plug in the middle of the magnets; in repulsion, two plugs near the edges of the magnets; and with a single magnet, a plug close to the center of the magnet. The geometry of the magnets (h and l are the height and length of the magnets respectively) and their relative spacing s has a significant impact on the magnetic flux density. Its value inside a magnet increases with the h/l ratio. Consequently, bar magnets produce larger and more uniform values than flat magnets. The l/s ratio also influences the magnetic force value in the microchannel, both increasing concomitantly for all the configurations. In addition, a zero force zone in the middle appears in the attraction configuration as the l/s ratio increases, while with a single magnet, the number of maxima and minima goes from one to two, producing two focusing zones instead of only one.

  20. Superconducting Solenoid and Press for Permanent Magnet Fabrication

    NASA Astrophysics Data System (ADS)

    Mulcahy, T. M.; Hull, J. R.

    2002-08-01

    For the first time, a superconducting solenoid (SCM) was used to increase the remnant magnetization of sintered NdFeB permanent magnets (PMs). In particular, improved magnetic alignment of commercial-grade PM powder was achieved, as it was axial die pressed into 12.7-mm diameter cylindrical compacts in the 76.2-mm warm bore of a 9-T SCM. The press used to compact the powder is unique and was specifically designed for use with the SCM. Although the press was operated in the batch mode for this proof of concept study, its design is intended to enable automated production. In operation, a simple die and punch set made of nonmagnetic materials was filled with powder and loaded into a nonmagnetic press tube. The cantilevered press tube was inserted horizontally, on a carrier manually advanced along a track, into the SCM. The robustness of the mechanical components and the SCM, in its liquid helium dewar, were specifically designed to allow for insertion and extraction of the magnetic powder and compacts, while operating at 9 T.

  1. Characterization of the ELIMED prototype permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  2. Study and review of permanent magnets for electric vehicle propulsion motors

    NASA Technical Reports Server (NTRS)

    Strnat, K. J.

    1983-01-01

    A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.

  3. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  4. A magnetic filter with permanent magnets on the basis of rare earths

    NASA Astrophysics Data System (ADS)

    Žežulka, Václav; Straka, Pavel; Mucha, Pavel

    2004-01-01

    The article presents the development and construction of a magnetic filter based on the HGMS principle with permanent magnets. It is aimed especially at the assembly of the magnetic circuit using magnets from the material NdFeB. The way of the construction of large magnetic blocks, their magnetization and assembly are described. Further, it contains the measured values of magnetic induction in the middle of the air gap as a function of the width of this gap and of the height of the magnetic blocks in question, as well as the corresponding graphic representation. The high values of the magnetic induction obtained together with favourable price are sufficient reasons for the employment of this type of magnetic circuit in various applications.

  5. Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field

    SciTech Connect

    Oikawa, Kohei Saito, Yuta; Komizunai, Shota; Takahashi, Kazunori; Ando, Akira

    2014-02-15

    Uniform axial magnetic field of about 70 G is applied to a radiofrequency (rf) hydrogen ion source by arrays of permanent magnets. The plasma density and electron temperature downstream of the source and near the magnetic filter are compared with those in the previously described ion source, where the axial field has been applied by two solenoids. The source is operated at ∼350 kHz and above 10 kW rf power with a field-effect-transistor-based invertor power supply in 1.5 Pa hydrogen. The results show that the plasma density of ∼10{sup 19} m{sup −3} near the source exit and ∼10{sup 18} m{sup −3} near the magnetic filter can be obtained, which are higher than those with the solenoids.

  6. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    PubMed Central

    Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress. PMID:25177717

  7. Indirect rotor position sensing in real time for brushless permanent magnet motor drives

    SciTech Connect

    Ertugrul, N.; Acarnley, P.P.

    1998-07-01

    This paper describes a modern solution to real-time rotor position estimation of brushless permanent magnet (PM) motor drives. The position estimation scheme, based on flux linkage and line-current estimation, is implemented in real time by using the abc reference frame, and it is tested dynamically. The position estimation model of the test motor, development of hardware, and basic operation of the digital signal processor (DSP) are discussed. The overall position estimation strategy is accomplished with a fast DSP (TMS320C30). The method is a shaft position sensorless method that is applicable to a wide range of excitation types in brushless PM motors without any restriction on the motor model and the current excitation. Both rectangular and sinewave-excited brushless PM motor drives are examined, and the results are given to demonstrate the effectiveness of the method with dynamic loads in closed estimated position loop.

  8. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    PubMed

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method.

  9. Estimation of the iron loss in deep-sea permanent magnet motors considering seawater compressive stress.

    PubMed

    Xu, Yongxiang; Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  10. Design of permanent magnet eddy current brake for a small scaled electromagnetic launch model

    NASA Astrophysics Data System (ADS)

    Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei

    2012-04-01

    A variable pole-pitch double-sided permanent magnet (PM) linear eddy current brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and eddy current skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.

  11. Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field.

    PubMed

    Oikawa, Kohei; Saito, Yuta; Komizunai, Shota; Takahashi, Kazunori; Ando, Akira

    2014-02-01

    Uniform axial magnetic field of about 70 G is applied to a radiofrequency (rf) hydrogen ion source by arrays of permanent magnets. The plasma density and electron temperature downstream of the source and near the magnetic filter are compared with those in the previously described ion source, where the axial field has been applied by two solenoids. The source is operated at ∼350 kHz and above 10 kW rf power with a field-effect-transistor-based invertor power supply in 1.5 Pa hydrogen. The results show that the plasma density of ∼10(19) m(-3) near the source exit and ∼10(18) m(-3) near the magnetic filter can be obtained, which are higher than those with the solenoids.

  12. A Super Strong Permanent Magnet Quadrupole for the Final Focus in a Linear Collider

    SciTech Connect

    Mihara, T.

    2004-12-06

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. Two drawbacks should be considered to this NdFeB based PMQ: the negative temperature coefficient of its field strength and its fixed strength. A thermal compensation material was added and tested to cure the first problem. The correct amount was determined to compensate the PMQ's temperature coefficient. The required field variability can be obtained by slicing magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied.

  13. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    NASA Astrophysics Data System (ADS)

    Xu, Peifeng; Shi, Kai; Sun, Yuxin; Zhua, Huangqiu

    2017-05-01

    Dual rotor permanent magnet (DRPM) wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF), cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA). The results show that the slot and pole number combinations have an important impact on the generator properties.

  14. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  15. Temperature based Restricted Boltzmann Machines

    PubMed Central

    Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping

    2016-01-01

    Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view. PMID:26758235

  16. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  17. Development of Rare-Earth Free Mn-Al Permanent Magnet Employing Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Singh, N.; Shyam, R.; Upadhyay, N. K.; Dhar, A.

    2015-02-01

    Most widely used high-performance permanent magnets are currently based on intermetallics of rare-earths in combination with Fe and Co. Rare-earth elements required for these magnets are getting expensive by the day. Consequently, there is a thrust worldwide to develop economical rare-earth free permanent magnets. It is acknowledged that the phase in Mn-Al alloys possesses magnetic properties without the presence of ferromagnetic elements such as Fe, Co, and Ni. In the present study, we report the synthesis of magnetic phase of Mn54Al46 alloy synthesized using mechanical alloying followed by solutionizing and annealing to obtain the desired magnetic phase. It is well known that Al dissolves partially in Mn matrix hence supersaturated solid solution of Mn54Al46 alloy powder was obtained by mechanical alloying using a planetary high-energy ball mill. For this purpose elemental Mn and Al powders were ball-milled in Argon atmosphere at 400 rpm using stainless steel bowl with ball to powder ratio of 15:1. These mechanically alloyed Mn54Al46 powders were then consolidated using spark plasma sintering at 550°C for 20 min. followed by solution treatment at 1050°C for 5 hrs and then water quenched to retain high temperature phase. Subsequently, the Mn54Al46 samples were annealed in the temperature range 450°C-650°C to obtain the magnetic phase. These samples were characterized by XRD and SEM and the magnetic properties were measured using a vibrating sample magnetometer (VSM). It was observed that the magnetization and coercivity of MnAl magnets exhibited strong dependence on annealing temperature and annealing time.

  18. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children.

    PubMed

    Terada, Y; Kono, S; Ishizawa, K; Inamura, S; Uchiumi, T; Tamada, D; Kose, K

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  19. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Kono, S.; Ishizawa, K.; Inamura, S.; Uchiumi, T.; Tamada, D.; Kose, K.

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  20. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  1. Prediction of Torque Pulsations in Brushless Permanent-Magnet Motors Using Improved Analytical Technique

    NASA Astrophysics Data System (ADS)

    Kiyoumarsi, Arash

    2010-01-01

    Torque pulsations have prominent effects on the performance of brushless permanent- magnet (PM) machines. There are different sources of torque ripples in PM motors. These torque pulsations depend on the shape of the flux density distribution in the airgap region. For predicting the open-circuit airgap field distribution in brushless PM motors, a two dimensional (2-D) analytical method, in which the direction of magnetization, either radial or parallel and the effect of the stator slot-openings are taken into account, is used. The method uses an improved 2-D permeance model. In order to evaluate the accuracy of this method, a 2-D time-stepping FEM coupled with the two motion equations is used. A 3-phase, 36-slot, 4-pole, 5 HP, brushless PM motor is modeled by two methods. In this analysis both, the radial and parallel magnetization of the brushless motor are considered. The results obtained by the analytical method are compared with those obtained by FE analysis that shows the valuable accuracy of the analytical method for performance calculations in design and optimization processes.

  2. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    PubMed

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  3. Advanced Control of Permanent Magnet Synchronous Generators for Variable Speed Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Hostettler, Jacob

    Various environmental and economic factors have lead to increased global investment in alternative energy technologies such as solar and wind power. Although methodologies for synchronous generator control are well researched, wind turbines present control systems challenges not presented by traditional generation. The varying nature of wind makes achieving synchronism with the existing electrical power grid a greater challenge. Departing from early use of induction machines, permanent magnet synchronous generators have become the focus of power systems and control systems research into wind energy systems. This is due to their self excited nature, along with their high power density. The problem of grid synchronism is alleviated through the use of high performance power electronic converters. In achievement of the optimal levels of efficiency, advanced control systems techniques oer promise over more traditional approaches. Research into sliding mode control, and linear matrix inequalities with nite time boundedness and Hinfinity performance criteria, when applied to the dynamical models of the system, demonstrate the potential of these control methodologies as future avenues for achieving higher levels of performance and eciency in wind energy.

  4. Experimental Performance Evaluation of a High Speed Permanent Magnet Synchronous Motor and Drive for a Flywheel Application at Different Frequencies

    NASA Technical Reports Server (NTRS)

    Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David

    2007-01-01

    This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.

  5. Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo

    2015-05-01

    This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.

  6. Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field

    NASA Astrophysics Data System (ADS)

    Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.

    2017-08-01

    Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.

  7. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  8. [Mechanical Shimming Method and Implementation for Permanent Magnet of MRI System].

    PubMed

    Xue, Tingqiang; Chen, Jinjun

    2015-03-01

    A mechanical shimming method and device for permanent magnet of MRI system has been developed to meet its stringent homogeneity requirement without time-consuming passive shimming on site, installation and adjustment efficiency has been increased.

  9. Damage Analysis of Internal Faults in Flux Concentrating Permanent Magnet Motors

    DTIC Science & Technology

    1994-06-01

    6 1.1 Ship Propulsion Systems...11 1.4 Faults in Permanent Magnet Ship Propulsion Motors...124 5 Chapter 1. Introduction The use of electric ship propulsion offers significant advantages in ship design

  10. [A new permanent magnet for removal of intra-ocular ferromagnetic foreign bodies].

    PubMed

    Kuhn, F; Heimann, K

    1991-04-01

    The permanent-magnet (Sm-Co-Magnet) is described with a length of 35 mm and a diameter of 18 gauge. This magnet enables a controlled atraumatic removal of small or even larger intraocular ferromagnetic foreign bodies.

  11. The overview and history of permanent magnet devices in accelerator technology

    SciTech Connect

    Kraus, R.H. Jr.

    1993-10-01

    This paper reviews the early history of accelerator development with a particular focus on the important discoveries that opened the door for the application of permanent-magnet materials to this area of science. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, that showed magnetic fields could be used to control the transverse envelope of charged-particle beams. Since that time, permanent-magnet materials have found wide application in the modern charged particle accelerator. The history of permanent-magnet use in accelerator physics and technology is outlined, general design considerations are presented, and material properties of concern for particle accelerator applications are discussed.

  12. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Concentrated Windings

    SciTech Connect

    Lawler, J.S.

    2005-12-21

    It is well known that the ability of the permanent magnet synchronous machine (PMSM) to operate over a wide constant power speed range (CPSR) is dependent upon the machine inductance [1,2,3,4,5]. Early approaches for extending CPSR operation included adding supplementary inductance in series with the motor [1] and the use of anti-parallel thyristor pairs in series with the motor-phase windings [5]. The increased inductance method is compatible with a voltage-source inverter (VSI) controlled by pulse-width modulation (PWM) which is called the conventional phase advance (CPA) method. The thyristor method has been called the dual mode inverter control (DMIC). Neither of these techniques has met with wide acceptance since they both add cost to the drive system and have not been shown to have an attractive cost/benefit ratio. Recently a method has been developed to use fractional-slot concentrated windings to significantly increase the machine inductance [6]. This latest approach has the potential to make the PMSM compatible with CPA without supplemental external inductance. If the performance of such drive is acceptable, then the method may make the PMSM an attractive option for traction applications requiring a wide CPSR. A 30 pole, 6 kW, 6000 maximum revolutions per minute (rpm) prototype of the fractional-slot PMSM design has been developed [7]. This machine has significantly more inductance than is typical of regular PMSMs. The prototype is to be delivered in late 2005 to the Oak Ridge National Laboratory (ORNL) for testing and development of a suitable controller. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study the steady-state performance of high-inductance PMSM machines with a view towards control issues. The detailed steady-state model developed includes all motor and inverter-loss mechanisms and will be useful in assessing the performance of the dynamic controller to be

  13. Processing of alnico permanent magnets by advanced directional solidification methods

    NASA Astrophysics Data System (ADS)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  14. Large-Area Permanent-Magnet ECR Plasma Source

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [<10(exp -4) torr (less than about 1.3 10(exp -2) Pa)] and input power <200 W at a frequency of 2.45 GHz. Though the prototype model operates at 2.45 GHz, operation at higher frequencies can be achieved by straightforward modification to the input microwave waveguide. Higher frequency operation may be desirable in those applications that require even higher background plasma densities. In the design of this ECR plasma source, there are no cumbersome, power-hungry electromagnets. The magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired

  15. Slot-Antenna/Permanent-Magnet Device for Generating Plasma

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma

  16. Processing of alnico permanent magnets by advanced directional solidification methods

    SciTech Connect

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying

  17. Processing of alnico permanent magnets by advanced directional solidification methods

    SciTech Connect

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying

  18. Processing of alnico permanent magnets by advanced directional solidification methods

    DOE PAGES

    Zou, Min; Johnson, Francis; Zhang, Wanming; ...

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yieldedmore » anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  19. A survey of machine readable data bases

    NASA Technical Reports Server (NTRS)

    Matlock, P.

    1981-01-01

    Forty-two of the machine readable data bases available to the technologist and researcher in the natural sciences and engineering are described and compared with the data bases and date base services offered by NASA.

  20. Study of Various Slanted Air-Gap Structures of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    SciTech Connect

    Tolbert, Leon M; Lee, Seong T

    2010-01-01

    This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as a result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).

  1. Machine Learning Based Malware Detection

    DTIC Science & Technology

    2015-05-18

    researchers have used machine learning to classify malware. Three types of features that have been popular in experiments to date are n- grams over machine...code instructions, API call sequences, and PE32 header data. N- gram analysis involves splitting a program’s code into chunks of size “n”—the n- grams ...File features are derived from frequencies of certain n- grams . Some studies have achieved modest success with this technique [6], [7]. However, it

  2. Machine vision based teleoperation aid

    NASA Technical Reports Server (NTRS)

    Hoff, William A.; Gatrell, Lance B.; Spofford, John R.

    1991-01-01

    When teleoperating a robot using video from a remote camera, it is difficult for the operator to gauge depth and orientation from a single view. In addition, there are situations where a camera mounted for viewing by the teleoperator during a teleoperation task may not be able to see the tool tip, or the viewing angle may not be intuitive (requiring extensive training to reduce the risk of incorrect or dangerous moves by the teleoperator). A machine vision based teleoperator aid is presented which uses the operator's camera view to compute an object's pose (position and orientation), and then overlays onto the operator's screen information on the object's current and desired positions. The operator can choose to display orientation and translation information as graphics and/or text. This aid provides easily assimilated depth and relative orientation information to the teleoperator. The camera may be mounted at any known orientation relative to the tool tip. A preliminary experiment with human operators was conducted and showed that task accuracies were significantly greater with than without this aid.

  3. Power-Factor Calculation under Consideration of Cross Saturation of the Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    SciTech Connect

    Lee, Seong T; Burress, Timothy A; Hsu, John S

    2009-01-01

    This paper introduces a new method for calculating the power factor with consideration of the cross saturation between the direct-axis (d-axis) and the quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross-saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux at high speed, which was developed for the traction motor of a hybrid electric vehicle.

  4. Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: a robust backstepping approach

    NASA Astrophysics Data System (ADS)

    Şeker, Murat; Zergeroğlu, Erkan; Tatlicioğlu, Enver

    2016-01-01

    In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the proposed controller.

  5. Design and Evaluation of a Planar Single-Channel Shim Coil for a Permanent Magnetic Resonance Imaging Magnet

    NASA Astrophysics Data System (ADS)

    Tamada, Daiki; Terada, Yasuhiko; Kose, Katsumi

    2011-06-01

    We propose a straightforward method of designing a planar single-channel shim coil for magnetic resonance imaging (MRI) using a narrow-gap permanent magnet. The design method is based on the superposition of the current densities produced by planar second-order shim coil elements and optimization of the coefficients used for the superposition. The magnetic field homogeneity was improved from 13 to 3.3 ppm (root mean square) in the central spherical area (diameter = 18 mm), revealing that the planar single-channel shim coil is a useful device for narrow-gap permanent MRI magnets.

  6. Fault tolerance control of phase current in permanent magnet synchronous motor control system

    NASA Astrophysics Data System (ADS)

    Chen, Kele; Chen, Ke; Chen, Xinglong; Li, Jinying

    2014-08-01

    As the Photoelectric tracking system develops from earth based platform to all kinds of moving platform such as plane based, ship based, car based, satellite based and missile based, the fault tolerance control system of phase current sensor is studied in order to detect and control of failure of phase current sensor on a moving platform. By using a DC-link current sensor and the switching state of the corresponding SVPWM inverter, the failure detection and fault control of three phase current sensor is achieved. Under such conditions as one failure, two failures and three failures, fault tolerance is able to be controlled. The reason why under the method, there exists error between fault tolerance control and actual phase current, is analyzed, and solution to weaken the error is provided. The experiment based on permanent magnet synchronous motor system is conducted, and the method is proven to be capable of detecting the failure of phase current sensor effectively and precisely, and controlling the fault tolerance simultaneously. With this method, even though all the three phase current sensors malfunction, the moving platform can still work by reconstructing the phase current of the motor.

  7. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  8. Critical Machine Based Scheduling -A Review

    NASA Astrophysics Data System (ADS)

    Vivek, P.; Saravanan, R.; Chandrasekaran, M.; Pugazhenthi, R.

    2017-03-01

    This article aims to identify the natural occurrence of the critical machines in scheduling. The exciting scheduling in the real time manufacturing environment is focused on considering equal weight-age of all the machines, but very few researchers were considered the real time constraint(s) like processor/ machine/ workstation availability, etc.,. This article explores the gap between the theory and practices by identifying the critical machine in scheduling and helps the researcher to find the suitable problem in their case study environment. Through the literature survey, it is evident that, in scheduling the occurrence of the critical machine is in nature. The critical machine is found in various names and gives a various range of weight-age based on the particular manufacturing environment and it plays a vital role in scheduling which includes one or more circumstances of occurrence in the production environment. Very few researchers were reported that in manufacturing environment, the critical machine occurrence is in nature, but most of the researchers were focused to optimize the manufacturing environment by only reducing the cycle time. In real-time manufacturing environment, the scheduling of critical machine(s) was keenly monitored and some weight-age was considered.

  9. Study and Developement of Compact Permanent Magnet Hall Thrusters for Future Brazillian Space Missions

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo

    2016-07-01

    The Plasma Physics Laboratory of UnB has been developing a Permanent Magnet Hall Thruster (PHALL) for the UNIESPAÇO program, part of the Space Activities Program conducted by AEB- The Brazillian Space Agency since 2004. Electric propulsion is now a very successful method for primary and secondary propulsion systems. It is essential for several existing geostationary satellite station keeping systems and for deep space long duration solar system missions, where the thrusting system can be designed to be used on orbit transfer maneuvering and/or for satellite attitude control in long term space missions. Applications of compact versions of Permanent Magnet Hall Thrusters on future brazillian space missions are needed and foreseen for the coming years beginning with the use of small divergent cusp field (DCFH) Hall Thrusters type on CUBESATS ( 5-10 kg , 1W-5 W power consumption) and on Micro satellites ( 50- 100 kg, 10W-100W). Brazillian (AEB) and German (DLR) space agencies and research institutions are developing a new rocket dedicated to small satellite launching. The VLM- Microsatellite Launch Vehicle. The development of PHALL compact versions can also be important for the recently proposed SBG system, a future brazillian geostationary satellite system that is already been developed by an international consortium of brazillian and foreign space industries. The exploration of small bodies in the Solar System with spacecraft has been done by several countries with increasing frequency in these past twenty five years. Since their historical beginning on the sixties, most of the Solar System missions were based on gravity assisted trajectories very much depended on planet orbit positioning relative to the Sun and the Earth. The consequence was always the narrowing of the mission launch window. Today, the need for Solar System icy bodies in situ exploration requires less dependence on gravity assisted maneuvering and new high precision low thrust navigation methods

  10. Permanent-Magnet Motors and Generators for Aircraft

    NASA Technical Reports Server (NTRS)

    Echolds, E. F.

    1983-01-01

    Electric motors and generators that use permarotating machinery, but aspects of control and power conditioning are also considered. The discussion is structured around three basic areas: rotating machine design considerations presents various configuration and material options, generator applications provides insight into utilization areas and shows actual hardware and test results, and motor applications provides the same type of information for drive systems.

  11. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making

    DOEpatents

    McCallum, R.W.; Branagan, D.J.

    1996-01-23

    A method of making a permanent magnet is disclosed wherein (1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and (2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties. 33 figs.

  12. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making

    DOEpatents

    McCallum, R. William; Branagan, Daniel J.

    1996-01-23

    A method of making a permanent magnet wherein 1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and 2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties.

  13. Performance comparison of three-phase flux reversal permanent magnet motors in BLDC and BLAC operation mode

    NASA Astrophysics Data System (ADS)

    Štumberger, B.; Štumberger, G.; Hadžiselimović, M.; Hamler, A.; Goričan, V.; Jesenik, M.; Trlep, M.

    The paper presents a comparison of torque capability and flux-weakening performance of three-phase flux reversal permanent magnet motors with surface and inset permanent magnets. Finite element analysis is employed to determine the performance of each motor in BLDC and BLAC operation mode. It is shown that the torque capability and flux-weakening performance of surface or inset permanent magnet configuration is strongly dependent on the stator teeth number/rotor pole number combination.

  14. Improved inertial control for permanent magnet synchronous generator wind turbine generators

    SciTech Connect

    Wu, Ziping; Gao, Wenzhong; Wang, Xiao; Kang, Moses; Hwang, Min; Kang, Yong Cheol; Gevogian, Vahan; Muljadi, Eduard

    2016-05-31

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response through the inherent kinetic energy stored in their rotating masses and fast power converter control. In this study, an improved inertial control method based on the maximum power point tracking operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and alleviate the secondary frequency dip while imposing no negative impact on the major mechanical components of the wind turbine.

  15. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    NASA Astrophysics Data System (ADS)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  16. Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet.

    PubMed

    Nguyen, Nam-Trung; Zhu, Guiping; Chua, Yong-Chin; Phan, Vinh-Nguyen; Tan, Say-Hwa

    2010-08-03

    Motion of a droplet on a planar surface has applications in droplet-based lab on a chip technology. This paper reports the experimental results of the shape, contact angles, and motion of ferrofluid droplets driven by a permanent magnet on a planar homogeneous surface. The water-based ferrofluid in use is a colloidal suspension of single-domain magnetic nanoparticles. The effect of the magnetic field on the apparent contact angle of the ferrofluid droplet was first investigated. The results show that an increasing magnetic flux decreases the apparent contact angle of a sessile ferrofluid droplet. Next, the dynamic contact angle was investigated by observing the shape and the motion of a sessile ferrofluid droplet. The advancing and receding contact angles of the moving ferrofluid were measured at different moving speeds and magnetic field strengths. The measured contact angles were used to estimate the magnitude of the forces involved in the sliding motion. Scaling analysis was carried out to derive the critical velocity, beyond which the droplet is not able to catch up with the moving magnet.

  17. A new repulsive magnetic levitation approach using permanent magnets and air-core electromagnets

    SciTech Connect

    Wang, I.Y.A.; Busch-Vishniac, I. . Dept. of Mechanical Engineering)

    1994-07-01

    This paper introduces a new repulsive magnetic levitation approach using permanent magnets and air-core electromagnets as primary actuating components. The permanent magnets, which are attached to the bottom of a carrier, are repulsively levitated above and by oblong shaped electromagnets, which constitute one part of the guide tracks. Due to the lateral unstable nature of repulsive levitation, the stability of the levitated permanent magnets is regulated by another part of the guide tracks, electromagnetic stabilizers, which are strands of straight wires running through the entire length of the guide tracks above the levitation coils. A state feedback controller with integral compensator is designed for the stability control. The entire levitation system is divided into three subsystems: levitation, stabilization and propulsion. Al the control works with respect to each subsystem are executed extrinsic to the carrier, i.e., there is no electrical circuit on board the carrier.

  18. Ion acceleration in a solenoid-free plasma expanded by permanent magnets

    SciTech Connect

    Takahashi, K.; Oguni, K.; Yamada, H.; Fujiwara, T.

    2008-08-15

    Ion acceleration is achieved in a low-pressure solenoid-free plasma expanded by permanent magnet arrays. Although a permanent magnet normally forms cusp magnetic fields which prevents plasma diffusion and double layer formation, by employing double concentric arrays of permanent magnets, a constant field area, and a diverging magnetic field can be generated near the outlet of the plasma source. In the source, a rapid potential drop with 4 cm thickness from 50 V to 20 V is generated at the diverging field area for 0.35 mTorr and a supersonic ion beam accelerated through the potential drop is observed in the diffusion chamber. The beam energy can be increased up to over 40 eV with a decrease in gas pressure.

  19. Experience with measuring magnetic moments of permanent magnet blocks at Lawrence Berkeley Laboratory

    SciTech Connect

    Nelson, D.H.; Barale, P.J.; Green, M.I.; Van Dyke, D.A.

    1987-09-01

    Since May 1985, The Magnetic Measurements Engineering Group at LBL has measured and sorted a total of 3834 permanent magnet blocks. These magnetic blocks have been used in the construction of various successful beam-line elements including dipoles, quadrupoles, and wigglers. We report on observed variations in magnetic moments among blocks supplied by five manufacturers, describe the operational capabilities (accuracy, precision, and resolution) of the LBL Magnetic-moment Measurement and Sorting System (MMSS), cite the results of comparative calibrations by permanent-magnet manufacturers and other National Laboratories, and suggest criteria for automating the MMSS for measuring the large number of permanent-magnet blocks required for the insertion devices for the projected LBL 1-2 GeV Synchrotron Radiation Source. 14 refs., 2 figs., 2 tabs.

  20. Modeling and analysis of magnetic field distribution of square pane permanent magnet for intelligent ball joint

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Hu, Penghao; Yang, Wenguo; Dang, Xueming; Zhang, Lisong

    2016-01-01

    The reasonable permanent magnetic field distribution has an important influence on improving the measuring accuracy in intelligent ball joint. In view of the defects on the ring permanent magnet in the previous experiment scheme, a new method on Square Pane Permanent Magnet (SPPM) is put forward. It possesses distinct advantages on orientation identification and model simplification. This paper proposes an optimized theory model of the magnetic field distribution of SPPM and gives the magnetic field theoretical expressions. The experiments have shown that the experimental data basically agreed with the theory value which is less than 4.3% error in full scale. This result verified the correctness of the analytic work and paves the way for improving the measurement accuracy in intelligent ball joint.

  1. Simple quadratic magneto-optic Kerr effect measurement system using permanent magnets.

    PubMed

    Pradeep, A V; Ghosh, Sayak; Anil Kumar, P S

    2017-01-01

    In recent times, quadratic magneto-optic Kerr effect (QMOKE) is emerging as an important experimental tool to investigate higher-order spin-orbit interactions in magnetic thin films and heterostructures. We have designed and constructed a simple, cost-effective QMOKE measurement system using permanent magnets. The permanent magnets are mounted on the inner surface of a cylindrical ferromagnetic yoke which can be rotated about its axis. Our system is sensitive to both the quadratic and linear MOKE signals. We use rotating field method to extract the QMOKE components in saturation. This system is capable of extracting the QMOKE signal from single crystals and thin film samples. Here we present the construction and working of the QMOKE measurement system using permanent magnets and report, for the first time, the QMOKE signal from Fe3O4 single crystal.

  2. Simple Non-regenerative Deceleration Control of Permanent Magnetic Synchronous Motor for Vibration Control in Drum-type Washer/Dryer

    NASA Astrophysics Data System (ADS)

    Tomigashi, Yoshio; Okonogi, Akira; Kishimoto, Keiji

    Drum-type washer/dryers are becoming more common in Japan, but the vibration created by unequally distributed clothes is a significant problem in this type of machine. We have developed a vibration control that prevents this imbalance by re-arranging the balancer fluid on the opposite side of the heavier distribution when there is unequal distribution. The drum, which has a large inertia, must be decelerated rapidly to enable the balancer fluid to shift. When a permanent magnetic synchronous motor is decelerated using an inverter, the machine's energy is converted into electrical energy, which regenerates the power supply. A control method has been developed that adjusts the input power of the motor to zero, thereby eliminating the need for a discharge circuit. However, it is not easy to achieve this method with an inexpensive microcomputer. In this paper, a practical braking method in which energy does not regenerate the power supply is examined. First, a simple method in which non-regenerative braking is possible with low input power is proposed, even though the input power is not zero. The effectiveness of this non-regenerative deceleration control is verified by theoretical numerical analysis and by an experiment. The borderline of the voltage vector for the non-generative braking is affected by dead time, and the experimental results differ from the theoretically calculated results. However, it is experimentally confirmed that the proposed non-regenerative deceleration control can be achieved by correcting the impressed voltage vector based on experimental results. Finally, this control is applied to the vibration control of the drum-type washer/dryer, and it is confirmed that the balancer fluid moves as designed.

  3. A magnetic probe equipped with small-tip permanent magnet for sentinel lymph node biopsy

    NASA Astrophysics Data System (ADS)

    Kaneko, Miki; Ohashi, Kaichi; Chikaki, Shinichi; Kuwahata, Akihiro; Shiozawa, Mikio; Kusakabe, Moriaki; Sekino, Masaki

    2017-05-01

    We previously developed a magnetic probe equipped with a ring-shaped permanent magnet for detecting magnetic nanoparticle tracer accumulating in the sentinel lymph nodes (SLNs). The magnetic probe enables us to identify SLNs objectively, without the risk of radiation exposure, unlike the conventional technique using dye and radioisotope. A technical challenge of the probe is to reduce the tip diameter of magnet to identify smaller SLNs. In this study, we optimized the size of smaller-tip magnet based on numerical analyses using the finite element method and evaluated the expected sensitivity. According to the analysis results, the optimum tip diameter and length of convex-shaped magnet were 16 mm and 12 mm, respectively. The experimental results showed that the sensitivity of the probe with smaller-tip magnet was comparable to the previous one. We successfully developed a smaller tip magnet, maintaining the sensitivity to magnetic nanoparticles. The proposed probe will be capable of identifying the location of SLNs more easily.

  4. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    NASA Astrophysics Data System (ADS)

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour.

  5. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    PubMed

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Measuring air gap width of permanent magnet linear generators using search coil sensor

    SciTech Connect

    Waters, R.; Danielsson, O.; Leijon, M.

    2007-01-15

    A concept for a wave power plant is being developed at the Centre for Renewable Electric Energy Conversion at the Angstroem Laboratory at Uppsala University. The concept is based on a permanent magnet linear generator placed on the seabed, directly driven by a surface following buoy. Critical for the survival of the generator is that the air gap between the moving and static parts of the generator is constantly fixed at the designed width to prevent the moving and static parts from connecting during operation. This paper shows the design and evaluation of an inductive sensor for measuring the air gap width during generator operation. In order to survive during years on the seafloor inside the wave power plants, the sensor has deliberately been chosen to be a passive component, as well as robust and compact. A coil etched on a printed circuit board, i.e., a search coil, was the chosen basis for the sensor. The sensor has been tested on an existing test rig of a wave power plant and the results have been compared with finite element simulations.The results show that a search coil magnetic sensor etched on a printed circuit board is a suitable concept for measuring the air gap width. Experimentally measured and theoretically calculated sensor signals show very good agreement. The setup has a sensitivity of {+-}0.4 mm in the range of 4-9.5 mm air gap. The potential for future improvements of the sensitivity is considerable.

  7. Numerical study of a permanent magnet linear generator for ship motion energy conversion

    NASA Astrophysics Data System (ADS)

    Mahmuddin, Faisal; Gunadin, Indar Chaerah; Akhir, Anshar Yaumil

    2017-02-01

    In order to harvest kinetic energy of a ship moving in waves, a permanent magnet linear generator is designed and simulated in the present study. For the sake of simplicity, only heave motion which will be considered in this preliminary study. The dimension of the generator is designed based on the dimension of the ship. Moreover, in order to designed an optimal design of rotor and stator, the average vertical displacement of heave motion is needed. For this purpose, a numerical method called New Strip Method (NSM) is employed to compute the motions of the ship. With NSM, the ship hull is divided into several strips and the hydrodynamics forces are computed on each strip. Moreover, because the ship is assumed to be slender, the total forces are obtained by integrating the force on each strip. After the motions can be determined, the optimal design of the generator is designed and simulated. The performance of the generator in terms of force, magnetic flux, losses, current and induced voltage which are the primary parameters of the linear generator performance, are evaluated using a finite element analysis software named Maxwell. From the study, a linear generator for converting heave motions is designed so that the produced power from the designed generator can be determined.

  8. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  9. Slanted and saw-toothed stator poles for improved performance of doubly salient permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Babu, A. R. C. Sekhar; Rajagopal, K. R.

    2005-05-01

    This paper presents the results of extensive finite element analyses conducted on doubly salient permanent magnet motor (DSPM) for improving the torque characteristics by novel methods; namely (i) slanted stator pole and (ii) saw-toothed stator pole. In the first method, stator poles are given a slant at the pole face; the slant in a direction opposite to the rotation of the motor has resulted in 7.33% and 71.45% increase in the average and maximum torques, respectively, when compared with the motor with original stator poles. With appropriate saw-tooth shaped stator poles, various permanent magnet torque and static torque profiles can be achieved.

  10. Prediction and analysis of magnetic forces in permanent magnet brushless dc motor with rotor eccentricity

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, J. T.; Jabbar, M. A.

    2006-04-01

    In design of permanent magnet motors for high-precision applications, it is sometimes necessary, early in the design stage, to have a detailed analysis of the effect of rotor eccentricity that may result from manufacturing imperfectness or use of fluid dynamic or aerodynamic bearings. This paper presents an analytical model for electromagnetic torque and forces in permanent magnet motors with rotor eccentricity. The model gives an insight to the relationship between the effect of the eccentricity and the other motor design parameters on the electromagnetic forces. It is shown that the calculated magnetic forces obtained from this model agree well with those obtained from numerical simulations that are very computationally demanding.

  11. Levitation force on a permanent magnet over a superconducting plane: Modified critical-state model

    SciTech Connect

    Yang, Z.J.

    1997-08-01

    The authors consider a model system of a permanent magnet above a semi-infinite superconductor. They introduce a modified critical-state model, and carry out derivations of the levitation force acting on the magnet. A key feature of the modification allows the current density to be less than the critical value. The theoretical results show an exponential relationship between the force and the distance. Analytical expressions are developed for permanent magnets in the form of a point dipole, a tip of a magnetic force microscope, and a cylindrical magnet. In the latter case, the exponential relationship has been observed in numerous experiments but without previous interpretation.

  12. Permanent magnets for Faraday rotators inspired by the design of the magic sphere.

    PubMed

    Trénec, Gérard; Volondat, William; Cugat, Orphée; Vigué, Jacques

    2011-08-20

    Faraday polarization rotators are commonly used in laser experiments. Most Faraday materials have a nonnegligible absorption, which is a limiting factor for high power laser optical isolators or for intracavity optical diodes. By using a stronger magnetic field and a shorter length of Faraday material, one can obtain the same polarization rotation and a reduced absorption. In this paper, we describe two permanent magnet arrangements that are easy to build and produce magnetic fields up to 1.7 T, substantially more than commonly used. The field homogeneity is largely sufficient for a 30 dB isolation ratio. We finally discuss the prospects for producing even larger fields with permanent magnets.

  13. Optimization of Magnet Arrangement in Double-Layer Interior Permanent-Magnet Motors

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi; Kitayuguchi, Kazuya

    The arrangement of permanent magnets in double-layer interior permanent-magnet motors is optimized for variable-speed applications. First, the arrangement of magnets is decided by automatic optimization. Next, the superiority of the optimized motor is discussed by the d- and q-axis equivalent circuits that consider the magnetic saturation of the rotor core. Finally, experimental verification is carried out by using a prototype motor. It is confirmed that the maximum torque of the optimized motor under both low speed and high speed conditions are higher than those of conventional motors because of relatively large q-axis inductance and small d-axis inductance.

  14. Fabrication of bulk nanostructured permanent magnets with high energy density: challenges and approaches.

    PubMed

    Yue, Ming; Zhang, Xiangyi; Liu, J Ping

    2017-03-17

    Nanostructured permanent magnetic materials, including exchange-coupled nanocomposite permanent magnets, are considered as the next generation of high-strength magnets for future applications in energy-saving and renewable energy technologies. However, fabrication of bulk nanostructured magnets remains very challenging because conventional compaction and sintering techniques cannot be used for nanostructured bulk material processing. In this paper we review recent efforts at producing bulk nanostructured single-phase and composite magnetic materials with emphasis on grain size control, anisotropy generation and interface modification.

  15. Nature and measurements of torque ripple of permanent-magnet adjustable-speed motors

    SciTech Connect

    Hsu, J.S.; Scoggins, B.P.; Scudiere, M.B.; Marlino, L.D.; Adams, D.J.; Pillay, P.

    1995-08-01

    Torque ripple of permanent-magnet motors can be classified into four types depending on the nature of their origin. The four types are pulsating torque, fluctuating torque, reluctance cogging torque, and inertia and mechanical system torque. Pulsating torques are inherently produced by the trapezoidal back-emf`s and trapezoidal currents used in certain permanent-magnet adjustable-speed motors. The torque ripples caused by pulsating torques may be reduced by purposely produced fluctuating counter torques. Air-gap torque measurements are conducted on a sample motor. Experimental results agree with theoretical expectations.

  16. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  17. Micromagnetic simulation for the magnetization reversal process of Nd-Fe-B hot-deformed nanocrystalline permanent magnets

    NASA Astrophysics Data System (ADS)

    Tsukahara, Hiroshi; Iwano, Kaoru; Mitsumata, Chiharu; Ishikawa, Tadashi; Ono, Kanta

    2017-05-01

    We numerically demonstrated the magnetization reversal process inside a hot-deformed nanocrystalline permanent magnet. We performed large-scale micromagnetics simulation based on the Landau-Lifshitz-Gilbert equation with 0.1 billion calculation cells. The simulation model for the hot-deformed nanocrystalline permanent magnet consists of 2622 tabular grains that interact with each other by inter-grain exchange and dipole interactions. When the strength of the external field approached a coercive force, nucleation cores were created at the grain surface. The magnetization reversal was propagated by the inter-grain and dipole interactions. When the grains had overlapping regions parallel to the external field, the magnetization reversal propagated quickly between the grains due to the dipole interaction. In contrast, the motion of the magnetic domain wall was inhibited at interfaces between the grains perpendicular to the external field. Reversal magnetic domains had a pillar-shaped structure that is parallel to the external field. In the perpendicular direction, the reversal magnetic domain expanded gradually because of the inhibition of the domain wall motion.

  18. Analysis and design of asymmetrical reluctance machine

    NASA Astrophysics Data System (ADS)

    Harianto, Cahya A.

    Over the past few decades the induction machine has been chosen for many applications due to its structural simplicity and low manufacturing cost. However, modest torque density and control challenges have motivated researchers to find alternative machines. The permanent magnet synchronous machine has been viewed as one of the alternatives because it features higher torque density for a given loss than the induction machine. However, the assembly and permanent magnet material cost, along with safety under fault conditions, have been concerns for this class of machine. An alternative machine type, namely the asymmetrical reluctance machine, is proposed in this work. Since the proposed machine is of the reluctance machine type, it possesses desirable feature, such as near absence of rotor losses, low assembly cost, low no-load rotational losses, modest torque ripple, and rather benign fault conditions. Through theoretical analysis performed herein, it is shown that this machine has a higher torque density for a given loss than typical reluctance machines, although not as high as the permanent magnet machines. Thus, the asymmetrical reluctance machine is a viable and advantageous machine alternative where the use of permanent magnet machines are undesirable.

  19. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Motors with Concentrated Windings

    SciTech Connect

    McKeever, John W; Patil, Niranjan; Lawler, Jack

    2007-07-01

    A 30 pole, 6 kW, and 6000 maximum revolutions per minute (rpm) prototype of the permanent magnet synchronous motor (PMSM) with fractional-slot concentrated windings (FSCW) has been designed, built, and tested at the University of Wisconsin at Madison (UWM). This machine has significantly more inductance than that of regular PMSMs. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a controller that will achieve maximum efficiency. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study how steady state performance of high inductance PMSM machines relates to control issues. This report documents the results of this research. The amount of inductance that enables the motor to achieve infinite constant power speed ratio (CPSR) is given by L{sub {infinity}} = E{sub b}/{Omega}{sub b}I{sub R}, where E{sub b} is the root-mean square (rms) magnitude of the line-to-neutral back-electromotive force (emf) at base speed, {Omega}{sub b} is the base speed in electrical radians per second, and I{sub R} is the rms current rating of the motor windings. The prototype machine that was delivered to ORNL has about 1.5 times as much inductance as a typical PMSM with distributed integral slot windings. The inventors of the FSCW method, who designed the prototype machine, remarked that they were 'too successful' in incorporating inductance into their machine and that steps would be taken to modify the design methodology to reduce the inductance to the optimum value. This study shows a significant advantage of having the higher inductance rather than the optimal value because it enables the motor to develop the required power at lower current thereby reducing motor and inverter losses and improving efficiency. The main problem found with high inductance machines driven by a conventional phase advance (CPA) method is that the motor current at high

  20. Halbach array motor/generators: A novel generalized electric machine

    SciTech Connect

    Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A.

    1994-10-28

    In August 1979, Halbach submitted a paper entitled ``Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material.`` In this paper, he presented a novel method of generating multipole magnetic fields using non-intuitive geometrical arrangements of permanent magnets. In subsequent publications, he further defined these concepts. Of particular interest to one of the authors (RFP) was the special magnet array that generated a uniform dipole field. In 1990 Post proposed the construction of an electric machine (a motor/generator) using a dipole field based on Klaus Halbach`s array of permanent magnets. He further proposed that such a system should be employed as an integral part of ``an electromechanical battery`` (EMB), i.e., a modular flywheel system to be used as a device for storing electrical energy, as an alternative to the electrochemical storage battery. This paper reviews Halbach`s theory for the generation of a dipole field using an array of permanent magnet bars, presents a simple analysis of a family of novel ``ironless`` electric machines designed using the dipole Halbach array, and describes the results obtained when they were tested in the laboratory.