Sample records for permanganates

  1. Suicidal ingestion of potassium permanganate crystals: a rare encounter.

    PubMed

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A C; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ingestion of potassium permanganate crystals. After treatment, the patient was discharged home on the 8(th) day after admission. So we conclude that Emergency endoscopy has a significant role in diagnosis and management of potassium permanganate ingestion.

  2. Suicidal Ingestion of Potassium Permanganate Crystals: A Rare Encounter

    PubMed Central

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A. C.; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ingestion of potassium permanganate crystals. After treatment, the patient was discharged home on the 8th day after admission. So we conclude that Emergency endoscopy has a significant role in diagnosis and management of potassium permanganate ingestion. PMID:25948978

  3. Permanganate with a double-edge role in photodegradation of sulfamethoxazole: Kinetic, reaction mechanism and toxicity.

    PubMed

    Gong, Han; Chu, Wei

    2018-01-01

    In this study, the double-edge role of permanganate in sulfamethoxazole (SMX) photodegradation with a recyclable catalyst was revealed for the first time. The role of the catalyst under different UV wavelength, the role of permanganate in the treatment process, the effects of permanganate dosage and solution pH on the removal efficiency were investigated. Moreover, the transformation products, TOC reduction and the toxicity of the treated final product to Chlorella vulgaris and Artemia salina were determined. Sole permanganate showed no effect in SMX degradation, while its introduction to the photocatalytic process doubled the reaction rate at the optimal dosage. It is interesting to find that the reaction rate showed a fluctuation trend in terms of permanganate dosage due to the summation of positive effect of permanganate oxidation and the negative effect of the formed MnO 2 at the surface of the catalyst, as well as the light attenuation due to overdosed permanganate. The determined intermediates, the higher inorganic ions release and TOC reduction provided a clue on a higher mineralization compared to SMX degradation in the same process without permanganate. Permanganate above 1 μM may pose a threat to the algae growth, therefore a good monitoring and control of residual permanganate dosage should be incorporated into the process design. A good toxicity reduction to A. salina was observed in the treated effluent; a longer detention is suggested for the complete removal of toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 75 FR 23298 - Potassium Permanganate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on potassium permanganate from China. SUMMARY: The... on potassium permanganate from China would be likely to lead to continuation or recurrence of...

  5. 75 FR 51112 - Potassium Permanganate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Scheduling of an expedited five-year review concerning the antidumping duty order on potassium permanganate from China... of the antidumping duty order on potassium permanganate from China would be likely to lead to...

  6. 75 FR 63856 - Potassium Permanganate From China Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Permanganate From China Determination On the basis of the record \\1\\ developed in the subject five-year review... potassium permanganate from China would be likely to lead to continuation or recurrence of material injury... Commission are contained in USITC Publication 4183 (September 2010), entitled Potassium Permanganate from...

  7. 21 CFR 250.108 - Potassium permanganate preparations as prescription drugs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Potassium permanganate preparations as... or Prescription Status of Specific Drugs § 250.108 Potassium permanganate preparations as... women resulting from the misuse of potassium permanganate in an effort to induce abortion. Reports from...

  8. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.

    PubMed

    He, Di; Guan, Xiaohong; Ma, Jun; Yu, Min

    2009-11-01

    The effects of humic acid (HA) and its different nominal molecular weight (NMW) fractions on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA at pH 4-8, while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios. The high NMW fractions of HA enhanced phenol oxidation by permanganate at pH 7 more significantly than the low fractions of HA. The apparent second-order rate constants of phenol oxidation by permanganate in the presence of HA correlated well with their specific ultraviolet absorption (SUVA) at 254 nm and specific violet absorption (SVA) at 465 or 665 nm. High positive correlation coefficients (R(2) > 0.72) implied that pi-electrons of HA strongly influenced the reactivity of phenol towards permanganate oxidation which agreed well with the information provided by fluorescence spectroscopy. The FTIR analysis indicated that the HA fractions rich in aliphatic character, polysaccharide-like substances, and the amount of carboxylate groups had less effect on phenol oxidation by permanganate. The negative correlation between the rate constants of phenol oxidation by permanganate and O/C ratios suggested that the oxidation of phenol increased with a decrease in the content of oxygen-containing functional groups.

  9. Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH.

    PubMed

    Zhang, Jing; Zhang, Ying; Wang, Hui; Guan, Xiaohong

    2014-07-01

    Ru(III) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(III) could significantly improve the oxidation rate of aniline by 5-24 times with its concentration increasing from 2.5 to 15 μmol/L. The reaction of Ru(III) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(III), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(III) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)⁻¹sec⁻¹ with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC-MS/MS analysis. Ru(III), as an electron shuttle, was oxidized by permanganate to Ru(VI) and Ru(VII), which acted the co-oxidants for decomposition of aniline. Although Ru(III) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(III) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(III) toward permanganate oxidation in our future study. Copyright © 2014. Published by Elsevier B.V.

  10. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 0.3 milligram per square inch of surface tested. (2) Potassium permanganate oxidizable distilled... permanganate test shall be determined by preparing duplicate permanganate test blanks according to paragraph (c... permanganate test determinations shall be run on samples of distilled water and 8 and 50 percent alcohol...

  11. 75 FR 65448 - Potassium Permanganate From the People's Republic of China: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-001] Potassium Permanganate From... Trade Commission (``ITC'') that revocation of the antidumping duty order on potassium permanganate from... order on potassium permanganate from the PRC pursuant to section 751(c) of the Tariff Act of 1930, as...

  12. Polymer-Enhanced Subsurface Delivery and Distribution of Permanganate

    DTIC Science & Technology

    2013-02-01

    Subsurface Delivery and Distribution of Permanganate February 2013 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...SUBTITLE Polymer-Enhanced Subsurface Delivery and Distribution of Permanganate 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...SAMPLING RESULTS ........................................................................................ 28 5.6.1 Permanganate Distribution and Sweep

  13. 75 FR 52509 - Potassium Permanganate from the People's Republic of China: Final Results of Expedited Sunset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-001] Potassium Permanganate from...'') initiated a sunset review of the antidumping duty order on potassium permanganate from the People's Republic... antidumping duty order on potassium permanganate from the PRC pursuant to section 751(c) of the Tariff Act of...

  14. Reinvestigation of the role of humic acid in the oxidation of phenols by permanganate.

    PubMed

    Sun, Bo; Zhang, Jing; Du, Juanshan; Qiao, Junlian; Guan, Xiaohong

    2013-12-17

    Humic acid (HA) affects the oxidation of phenolic compounds by permanganate, but the role of HA in the oxidation of phenols by permanganate is far from clear. The mechanisms by which HA influences the oxidation of phenols by permanganate at pH 5.0-9.0 were systematically examined in this study. The presence of HA enhanced the oxidation of phenolic compounds by permanganate at pH ≤7.0, with greater enhancement at lower pH values. The presence of HA facilitated the in situ formation of MnO2, implying the importance of reductive moieties of HA in this reaction. This was supported by the finding that HA preoxidized by ozone showed enhancements in the oxidation of phenols by permanganate at pH 5.0-6.0 smaller than those seen with pristine HA. The good correlation between HA-induced improvement in the oxidation rates of phenols by permanganate and those by preformed colloidal MnO2 at pH 5.0 confirmed that contribution of MnO2 formed in situ for the oxidation of phenols under this condition. The differences in the influence of Na2S2O3 and HA on the oxidation of phenol by permanganate revealed the fact that the continuous generation of fresh MnO2 and stabilization of the MnO2 formed in situ by HA were crucial for the HA-induced enhancement of the oxidation of phenols by permanganate at pH ≤7.0. The consumption of permanganate by HA and the poor oxidation ability of in situ-generated MnO2 under alkaline conditions resulted in the slightly negative effect of HA on the degradation rates of phenols by permanganate at pH >7.0.

  15. Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben.

    PubMed

    Zhang, Jing; Sun, Bo; Guan, Xiaohong; Wang, Hui; Bao, Hongliang; Huang, Yuying; Qiao, Junlian; Zhou, Gongming

    2013-11-19

    This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.

  16. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate.

    PubMed

    Du, Juanshan; Sun, Bo; Zhang, Jing; Guan, Xiaohong

    2012-08-21

    Oxidation of phenols by permanganate in the pH range of 5.0-9.0 generally exhibits a parabola-like shape with the maximum reaction rate obtained at pH close to phenols' pK(a). However, a monotonic increase or decrease is observed if phenols' pK(a) is beyond the pH range of 5.0-9.0. A proton transfer mechanism is proposed in which the undissociated phenol is directly oxidized by permanganate to generate products while a phenolate-permanganate adduct, intermediate, is formed between dissociated phenol and permanganate ion and this is the rate-limiting step for phenolates oxidation by permanganate. The intermediate combines with H(+) and then decomposes to products. Rate equations derived based on the steady-state approximation can well simulate the experimentally derived pH-rate profiles. Linear free energy relationships (LFERs) were established among the parameters obtained from the modeling, Hammett constants, and oxygen natural charges in phenols and phenolates. LFERs reveal that chlorine substituents have opposite influence on the susceptibility of phenols and phenolates to permanganate oxidation and phenolates are not necessarily more easily oxidized than their neutral counterparts. The chlorine substituents regulate the reaction rate of chlorophenolates with permanganate mainly by influencing the natural charges of the oxygen atoms of dissociated phenols while they influence the oxidation of undissociated chlorophenols by permanganate primarily by forming intramolecular hydrogen bonding with the phenolic group.

  17. Development of a Protocol and a Screening Tool for Selection of DNAPL Source Area Remediation

    DTIC Science & Technology

    2012-05-01

    sensitivity study completed to investigate the potential influence of manganese dioxide rind formation during permanganate treatment... permanganate as the oxidant. This evaluation is specific to permanganate treatment and the corresponding manganese dioxide rind formation; however...forms within close proximity of the DNAPL phase, as occurs when permanganate reacts with the DNAPL. 1.4 IMPLEMENTATION ISSUES DNAPL TEST has been

  18. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    PubMed

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity.

    PubMed

    Le Bihan, Yann-Vaï; Matot, Béatrice; Pietrement, Olivier; Giraud-Panis, Marie-Josèphe; Gasparini, Sylvaine; Le Cam, Eric; Gilson, Eric; Sclavi, Bianca; Miron, Simona; Le Du, Marie-Hélène

    2013-03-01

    Repressor activator protein 1 (Rap1) is an essential factor involved in transcription and telomere stability in the budding yeast Saccharomyces cerevisiae. Its interaction with DNA causes hypersensitivity to potassium permanganate, suggesting local DNA melting and/or distortion. In this study, various Rap1-DNA crystal forms were obtained using specifically designed crystal screens. Analysis of the DNA conformation showed that its distortion was not sufficient to explain the permanganate reactivity. However, anomalous data collected at the Mn edge using a Rap1-DNA crystal soaked in potassium permanganate solution indicated that the DNA conformation in the crystal was compatible with interaction with permanganate ions. Sequence-conservation analysis revealed that double-Myb-containing Rap1 proteins all carry a fully conserved Arg580 at a position that may favour interaction with permanganate ions, although it is not involved in the hypersensitive cytosine distortion. Permanganate reactivity assays with wild-type Rap1 and the Rap1[R580A] mutant demonstrated that Arg580 is essential for hypersensitivity. AFM experiments showed that wild-type Rap1 and the Rap1[R580A] mutant interact with DNA over 16 successive binding sites, leading to local DNA stiffening but not to accumulation of the observed local distortion. Therefore, Rap1 may cause permanganate hypersensitivity of DNA by forming a pocket between the reactive cytosine and Arg580, driving the permanganate ion towards the C5-C6 bond of the cytosine.

  20. Quantifying Life-Cycle Environmental Footprints of Soil and Groundwater Remedies

    DTIC Science & Technology

    2013-07-01

    Greensand filters and permanganate injection for metals removal • Air stripping via two packed tower air strippers in series • Treatment of air...wants to use material (e.g., potassium permanganate ) and notices that the electricity blend used in the Ecoinvent process of manufacturing potassium... permanganate is different than the actual electricity blend for manufacturing the potassium permanganate used at their particular site, the user can

  1. Oscillations in the reduction of permanganate by hydrogen peroxide or by ninhydrin in a batch reactor and mixed-mode oscillations in a continuous-flow stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Tóthová, Mária; Nagy, Arpád; Treindl, Ľudovít.

    1999-01-01

    The periodical reduction of permanganate by hydrogen peroxide or by ninhydrin with transient oscillations in a closed system has been observed and discussed in relation to the first two permanganate oscillators described earlier. The mixed-mode oscillations of the permanganate-H 2O 2 oscillating system in a continuous-flow stirred tank reactor have been described.

  2. Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment.

    PubMed

    Rodríguez, Eva; Majado, María E; Meriluoto, Jussi; Acero, Juan L

    2007-01-01

    A few genera of cyanobacteria produce toxins which contaminate drinking water resources. Microcystins (MC), widely reported cyanotoxins, cause acute and chronic toxicity effects in living beings including humans and warrant removal from drinking water. In the present study, unknown second-order rate constants for the reactions of microcystin-LR (MC-LR), -RR and -YR with potassium permanganate were determined at pH 6.2-8.2 and temperature 10-25 degrees C. The reaction of permanganate with MCs is second-order overall and first-order with respect to both permanganate and toxin. The second-order rate constant for the reaction of MC-LR with permanganate at pH 7 and 20 degrees C was 357.2+/-17.5M(-1)s(-1). The influence of pH on the oxidation process was not appreciable and the activation energy was 28.8 kJ mol(-1). Slightly higher reactivity with permanganate was found for MC-RR (418.0M(-1)s(-1)) and MC-YR (405.9M(-1)s(-1)). According to the results obtained, permanganate likely attacks the Adda moiety of the MC molecule. The oxidation of MCs in a natural surface water was also investigated. A permanganate dose of 1-1.25mgL(-1) was enough to reduce MCs concentration below the guideline value of 1microgL(-1). Permanganate oxidation is therefore a feasible option for microcystin removal during preoxidation processes. However, the oxidant dose must be carefully optimized in order to remove extracellular MCs without causing cell lysis (due to chemical stress) and further release of MCs.

  3. A Spectrophotometric Study of the Permanganate-Oxalate Reaction: An Analytical Laboratory Experiment

    ERIC Educational Resources Information Center

    Kalbus, Gene E.; Lieu, Van T.; Kalbus, Lee H.

    2004-01-01

    The spectrophotometric method assists in the study of potassium permanganate-oxalate reaction. Basic analytical techniques and rules are implemented in the experiment, which can also include the examination of other compounds oxidized by permanganate.

  4. Oxidation of thymidylate synthase by inorganic compounds.

    PubMed

    Aull, J L; Ivery, T C; Daron, H H

    1984-10-01

    Thymidylate synthase from methotrexate-resistant Lactobacillus casei was rapidly and completely inactivated by low concentrations of permanganate, periodate, or potassium triiodide at 0 degree C. The enzyme was not inactivated to any appreciable extent by iodate, iodide, ferricyanate, iodosobenzoate, or hydrogen peroxide. The inactivation by permanganate was retarded by the substrate 2'-deoxyuridylate and, to a lesser extent, by phosphate. Titration of enzyme activity with permanganate showed that two moles of permanganate were required to completely inactivate one mole of thymidylate synthase.

  5. A Replacement for the Silt Density Index: Permanganate Demand to Predict Reverse Osmosis Membrane Fouling.

    DTIC Science & Technology

    1983-10-13

    Acid, Tannin , and Lignin in Natural Waters. Water Res. 14, 373 (1980). 85. Willard,H.,Furman,N.H.,Bacon,E.K. A Short Course in Quantitative Analysis , Van...63 c. Experimental Procedure 64 2. Results of the Preliminary Investigation of the SDI 74 a. Results of Before and After Membrane Filtration Analysis ...Permanganate Demand Test A. Literature Review 1. Permanganate to Predict Fouling 81 2. Detection and Analysis of Permanganate 83 a. Spectrophotometry

  6. Semi-Passive Oxidation-Based Approaches for Control of Large, Dilute Groundwater Plumes of Chlorinated Ethylenes

    DTIC Science & Technology

    2014-04-01

    Permanganate gel (PG) for groundwater remediation: Compatibility, gelation, and release characteristics...26 4.4. Development and characterization of slow-release permanganate gel (SRP-G) for groundwater remediation...34 4.6. Geopolymers as slow-release materials for potassium permanganate

  7. A new method of auxiliary purification for motor vehicle exhaust.

    PubMed

    Li, Dingqi

    2018-07-01

    As a result of the limitations of current purification technologies, purification efficiency is relatively low, particularly during startup or in the case of other abnormal automobile exhaust. Therefore, a new method of auxiliary purification is proposed in this paper. The acidic solution of potassium permanganate can oxidize carbon monoxide, nitrogen oxides and sulfur dioxide at relatively high temperatures and the alkaline solution of potassium permanganate can selectively absorb nitrogen oxide and sulfur dioxide. Therefore, we carried out the experiment using a solution of potassium permanganate and sulfuric acid as well as a solution of sodium carbonate and potassium permanganate, which served as the reagents for the auxiliary purification. The results of the test showed that after auxiliary purification by the acidic solution of potassium permanganate and the alkaline solution of potassium permanganate, the concentrations of carbon monoxide, hydrocarbons, nitrogen oxides and solid particles in the emissions were considerably lower than the concentrations prior to purification. It is possible to reduce the motor vehicle exhaust by the auxiliary purification of the solutions.

  8. Removal of Anabaena spiroides by potassium permanganate pre-oxidation: effect on photosynthetic capacity and molecular weight distribution.

    PubMed

    Qiao, Junlian; Zhang, Xiaodong; Lv, Liping

    2017-11-01

    Bench scale tests were conducted to investigate the effect of potassium permanganate pre-oxidation on the photosynthetic activity and molecular weight distribution of Anabaena spiroides. Different concentrations of potassium permanganate were added into the suspension of Anabaena spiroides, one of the dominant algae in water bloom, and after pre-oxidation of permanganate for 1 h, the results show that the removal rate significantly increases by 33.99~36.35% compared to direct coagulation. Then, the algal characteristics, including photosynthetic ability, the changes in extracellular organic matter three-dimensional fluorescence, and the distribution of molecular weight were conducted and the results show that along with increasing concentration of potassium permanganate, the photosynthetic ability of algae decreases, more extracellular organic matter is secreted, and large molecular weight matter (humic-like and fulvic-like substances) are generated. Therefore, this study demonstrates that potassium permanganate could be used in addressing the algae-rich water.

  9. Polymer-Enhanced Subsurface Delivery and Distribution of Permanganate

    DTIC Science & Technology

    2013-02-01

    C-0006 Polymer-Enhanced Subsurface Delivery and Distribution of Permanganate 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...this project was to demonstrate and validate the use of a water-soluble polymer with permanganate for in situ chemical oxidation (ISCO) of organic

  10. Development of a Design Tool for Planning Aqueous Amendment Injection Systems

    DTIC Science & Technology

    2012-08-01

    Chemical Oxidation with Permanganate (MnO4- ) ...................................... 2 1.4 IMPLEMENTATION ISSUES...17 6.4 SS DESIGN TOOL DEVELOPMENT AND EVALUATION ........................... 19 7.0 CHEMICAL OXIDATION WITH PERMANGANATE ...21 7.1 NUMERICAL MODELING OF PERMANGANATE DISTRIBUTION ........... 21 7.2 CDISCO DEVELOPMENT AND EVALUATION

  11. 21 CFR 178.1010 - Sanitizing solutions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... permanganate (CAS Reg. No. 7722-64-7). Magnesium oxide (CAS Reg. No. 1309-48-4) and potassium bromide (CAS Reg... permanganate. (ii) The solution identified in paragraph (b)(37) of this section with potassium bromide shall... potassium permanganate. (iii) Magnesium oxide when used in paragraph (c)(32) (i) or (ii) of this section...

  12. Coupled Diffusion and Reaction Processes in Rock Matrices: Impact on Dilute Groundwater Plumes

    DTIC Science & Technology

    2015-12-28

    28 Figure 3.5.6 Plastic dish used for permanganate diffusion experiment ........................................ 32 Figure 3.6.5...Manganese profiles following permanganate experiments ................................... 78 Figure 4.4.4.3 Carbon profiles...Figure A.3 SEM images and EDS spectra of permanganate -reacted surfaces ........................... 107

  13. Method for rapidly determining a pulp kappa number using spectrophotometry

    DOEpatents

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  14. The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation.

    PubMed

    Naceradska, Jana; Pivokonsky, Martin; Pivokonska, Lenka; Baresova, Magdalena; Henderson, Rita K; Zamyadi, Arash; Janda, Vaclav

    2017-05-01

    The study investigates the effect of permanganate pre-oxidation on the coagulation of peptides/proteins of Microcystis aeruginosa which comprise a major proportion of the organic matter during cyanobacterial bloom decay. Four different permanganate dosages (0.1, 0.2, 0.4 and 0.6 mg KMnO 4 mg -1 DOC) were applied prior to coagulation by ferric sulphate. Moreover, changes in sample characteristics, such as UV 254 , DOC content and molecular weight distribution, after pre-oxidation were monitored. The results showed that permanganate pre-oxidation led to a reduction in coagulant dose, increased organic matter removals by coagulation (by 5-12% depending on permanganate dose), microcystin removal (with reductions of 91-96%) and a shift of the optimum pH range from 4.3 to 6 without to 5.5-7.3 with pre-oxidation. Degradation of organic matter into inorganic carbon and adsorption of organic matter onto hydrous MnO 2 are suggested as the main processes responsible for coagulation improvement. Moreover, permanganate prevented the formation of Fe-peptide/protein complexes that inhibit coagulation at pH about 6.2 without pre-oxidation. The study showed that carefully optimized dosing of permanganate improves cyanobacterial peptide/protein removal, with the benefit of microcystin elimination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A long-term bench-scale investigation of permanganate consumption by aquifer materials.

    PubMed

    Xu, Xiuyuan; Thomson, Neil R

    2009-11-20

    In situ chemical oxidation (ISCO) applications using permanganate involve the injection or release of permanganate into the subsurface to destroy various target contaminants. Naturally occurring reduced components associated with aquifer materials can exert a significant oxidant demand thereby reducing the amount of permanganate available for the destruction of contaminants as well as reducing the overall rate of oxidation. Quantification of this natural oxidant demand (NOD) is a requirement for site-specific assessment and the design of cost-effective oxidant delivery systems. To further our understanding of the interaction between permanganate and aquifer materials, aerobic and anaerobic aquifer materials from eight representative sites throughout North America were tested in a series of systematic bench-scale experiments. Various permanganate to aquifer solids mass loading ratios at different initial permanganate concentrations in well-mixed batch reactors were monitored for >300 days. All NOD temporal profiles demonstrated an initial fast consumption rate followed by a persistent slower consumption rate. The data generated show that the mass loading ratio, the initial permanganate concentration, and the nature and quantity of reduced aquifer material species are the main factors controlling permanganate consumption rates. A higher initial permanganate concentration or a larger mass loading ratio produced a larger fast NOD consumption rate and generated a corresponding higher maximum NOD value. Hence, both the NOD temporal profile and the maximum NOD are not single-valued but are heavily dependent on the experimental conditions. Predictive relationships were developed to estimate the maximum NOD and the NOD at 7 days based on aquifer material properties. The concentration of manganese oxides deposited on the aquifer solids was highly correlated with the mass of permanganate consumed suggesting that passivation of NOD reaction sites occurred due to the formation of manganese oxide coating on the grains. A long-term NOD kinetic model was developed assuming a single fast and slow reacting oxidizable aquifer material species, passivation of NOD reaction sites, and the presence of an autocatalytic reaction. The developed model was able to successfully capture the observed NOD temporal profiles, and can be used to estimate in situ NOD behavior using batch reactor experimental data. The use of batch tests to provide data representative of in situ conditions should be used with caution.

  16. Using slow-release permanganate candles to remediate PAH-contaminated water.

    PubMed

    Rauscher, Lindy; Sakulthaew, Chainarong; Comfort, Steve

    2012-11-30

    Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin-KMnO(4)) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2-4 h. Using (14)C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO(2)), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet-dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide proof-of-concept that permanganate candles could potentially provide a low-cost, low-maintenance approach to remediating PAH-contaminated water. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Management of Contaminants Stored in Low Permeability Zones - A State of the Science Review

    DTIC Science & Technology

    2013-10-01

    Tank  3:     Permanganate  ...................................................................................................  193...Treatment options explored include steady water flushing (control), enhance water flushing, flushing permanganate , a dechlorinating culture (KB1...Remediation Tank Experiments (OoM: Order of Magnitude. PV: Pore Volume) 2. Enhanced flushing (79 PVs after loading) 3. Permanganate (45 PVs

  18. IN SITU OXIDATION AND ASSOCIATED MASS-FLUX-REDUCTION/MASS-REMOVAL BEHAVIOR FOR SYSTEMS WITH ORGANIC LIQUID LOCATED IN LOWER-PERMEABILITY SEDIMENTS

    PubMed Central

    Marble, Justin C.; Carroll, Kenneth C.; Janousek, Hilary; Brusseau, Mark L.

    2010-01-01

    The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment. PMID:20685008

  19. [Influence of pH on Kinetics of Anilines Oxidation by Permanganate].

    PubMed

    Wang, Hui; Sun, Bo; Guan, Xiao-hong

    2016-02-15

    To investigate the effect of pH on the oxidation of anilines by potassium permanganate, aniline and p-Chloroaniline were taken as the target contaminants, and the experiments were conducted under the condition with potassium permanganate in excess over a wide pH range. The reaction displayed remarkable autocatalysis, which was presumably ascribed to the formation of complexes by the in situ generated MnOx and the target contaminants on its surface, and thereby improved the oxidation rate of the target contaminants by permanganate. The reaction kinetics was fitted with the pseudo-first-order kinetics at different pH to obtain the pseudo-first-order reaction constants (k(obs)). The second-order rate constants calculated from permanganate concentration and k,b, increased with the increase of pH and reached the maximum near their respective pKa, after which they decreased gradually. This tendency is called parabola-like shaped pH-rate profile. The second-order rate constants between permanganate and anilines were well fitted by the proton transfer model proposed by us in previous work.

  20. N-nitrosodimethylamine (NDMA) as a product of potassium permanganate reaction with aqueous solutions of dimethylamine (DMA).

    PubMed

    Andrzejewski, Przemysław; Nawrocki, Jacek

    2009-03-01

    The reactivity of permanganate with dimethylamine, as possible path of NDMA formation, has been investigated. The results have shown that potassium permanganate reaction with aqueous solutions of dimethylamine (DMA) leads to the formation of N-nitrosodimethylamine (NDMA). The contact time, the molar ratio of permanganate and DMA, pH and presence of nitrite are the key factors influencing the efficiency of NDMA formation. Significant conversion rates of DMA to NDMA were observed only for the high doses of permanganate, which were many times higher than those typically used in water treatment. This reaction however is of importance for water treatment technology, since it shows the possibility of NDMA formation as a result of oxidation of DMA. It is likely that nitrosation is the main path of the reaction. An important role of MnO2 suspension, formed as a result of permanganate reduction in NDMA formation is emphasized. Significant influence of MnO2 suspension on NDMA formation should draw our attention to the potential impact of MnO2 activated filtration beds on NDMA formation.

  1. Permanganate oxidation of sulfur compounds to prevent poisoning of Pd catalysts in water treatment processes.

    PubMed

    Angeles-Wedler, Dalia; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2008-08-01

    The practical application of Pd-catalyzed water treatment processes is impeded by catalyst poisoning by reduced sulfur compounds (RSCs). In this study, the potential of permanganate as a selective oxidant for the removal of microbially generated RSCs in water and as a regeneration agent for S-poisoned catalysts was evaluated. Hydrodechlorination using Pd/Al2O3 was carried out as a probe reaction in permanganate-pretreated water. The activity of the Pd catalysts in the successfully pretreated reaction medium was similar to that in deionized water. The catalyst showed no deactivation behavior in the presence of permanganate at a concentration level < or = 0.07 mM. With a residual oxidant concentration of > or = 0.08 mM, a significant but temporary inhibition of the catalytic dechlorination was observed. Unprotected Pd/Al2O3, which had been completely poisoned by sulfide, was reactivated by a combined treatment with permanganate and hydrazine. However, the anthropogenic water pollutants thiophene and carbon disulfide were resistant against permanganate. Together with the preoxidation of catalyst poisons, hydrophobic protection of the catalysts was studied. Pd/zeolite and various hydrophobically coated catalysts showed a higher stability against ionic poisons and permanganate than the uncoated catalyst. By means of a combination of oxidative water pretreatment and hydrophobic catalyst protection, we provide a new tool to harness the potential of Pd-catalyzed hydrodehalogenation for the treatment of real waters.

  2. Kinetic and Mechanistic Aspects of the Reactions of Iodide and Hypoiodous Acid with Permanganate: Oxidation and Disproportionation.

    PubMed

    Zhao, Xiaodan; Salhi, Elisabeth; Liu, Huiling; Ma, Jun; von Gunten, Urs

    2016-04-19

    Oxidation kinetics of iodide and HOI/OI(-) by permanganate were studied in the pH range of 5.0-10.0. Iodide oxidation and iodate formation were faster at lower pH. The apparent second-order rate constants (k(obs)) for iodide oxidation by permanganate decrease with increasing pH from 29 M(-1) s(-1) at pH 5.0 and 6.9 M(-1) s(-1) at pH 7.0 to 2.7 M(-1) s(-1) at pH 10.0. k(obs) for HOI abatement are 56 M(-1) s(-1) at pH 5.0, 2.5 M(-1) s(-1) at pH 7.0, and 173 M(-1) s(-1) at pH 10.0. Iodate yields over HOI abatement decrease from 98% at pH 6.0 to 33% for pH ≥ 9.5, demonstrating that HOI disproportionation dominates HOI transformation by permanganate at pH ≥ 8.0. MnO2 formed as a product from permanganate reduction, oxidizes HOI to iodate for pH < 8.0, and promotes HOI disproportionation for pH ≥ 8.0. The rate of HOI oxidation or disproportionation induced by MnO2 is much lower than for permanganate. During treatment of iodide-containing waters, the potential for iodinated disinfection byproducts (I-DBPs) formation is highest at pH 7.0-8.0 due to the long lifetime of HOI. For pH < 6.0, HOI/I2 is quickly oxidized by permanganate to iodate, whereas for pH ≥ 8.0, HOI/OI(-) undergoes a fast permanganate-mediated disproportionation.

  3. Fabrication of a Mechanically Robust Carbon Nanofiber Foam

    DTIC Science & Technology

    2015-06-01

    Erlenmeyer exhaust trap utilizing zeolite and permanganate . ........................ 11   Figure 9.   Early CFF experimental mold...containing zeolite and permanganate to dilute the exhaust gases and trap unreacted ethylene prior to their release. Figure 7. MKS mass flow...controller (model MKS 647a). Figure 8. Erlenmeyer exhaust trap utilizing zeolite and permanganate . 12 c. Gas Mixture A flow of pure compressed

  4. Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation.

    PubMed

    Xie, Pengchao; Ma, Jun; Fang, Jingyun; Guan, Yinghong; Yue, Siyang; Li, Xuchun; Chen, Liwei

    2013-12-17

    Aqueous suspensions of Microcystis aeruginosa were preoxidized with either ozone or permanganate and then subjected to chlorination under conditions simulating drinking water purification. The impacts of the two oxidants on the algal cells and on the subsequent production of dissolved organic matter and disinfection byproducts were investigated. Preozonation dramatically increased disinfection byproduct formation during chlorination, especially the formation of haloaldehydes, haloacetonitriles, and halonitromethanes. Preoxidation with permanganate had much less effect on disinfection byproduct formation. Preozonation destroyed algal cell walls and cell membranes to release intracellular organic matter (IOM), and less than 2.0% integrated cells were left after preozonation with the dosage as low as 0.4 mg/L. Preoxidation with permanganate mainly released organic matter adsorbed on the cells' surface without causing any damage to the cells' integrity, so the increase in byproduct formation was much less. More organic nitrogen and lower molecular weight precursors were produced in a dissolved phase after preozonation than permanganate preoxidation, which contributes to the significant increase of disinfection byproducts after preozonation. The results suggest that permanganate is a better choice than ozone for controlling algae derived pollutants and disinfection byproducts.

  5. The effect of high concentration potassium permanganate on protein contamination from metallic and synthetic rubber airway equipment.

    PubMed

    Laupu, W; Brimacombe, J

    2007-08-01

    We tested the hypothesis that supplementary cleaning using potassium permanganate 8 mg.l(-1) eliminates protein deposits from the reusable metallic and synthetic rubber airway equipment. Twenty Macintosh laryngoscope blades (surgical steel), 20 pairs of Magill's forceps (surgical steel) and 20 Guedel airways (synthetic rubber) were allocated to two groups for supplementary cleaning. In group A, the device was immersed in potassium permanganate 8 mg.l(-1). In group B (controls), the device was immersed in sterile water. The devices were then immersed in a protein staining solution, rinsed and the severity of staining was scored. In addition, the devices were inspected for tissue and then tested for occult blood. Protein contamination was lower in the potassium permanganate group for all devices (each device: p < 0.0001). There was no staining detected in the permanganate group. In the permanganate group, dried tissue was detected in the teeth of one pair of forceps, which was not detected following supplementary cleaning. Additionally, occult blood was detected on two pairs of forceps and a laryngoscope blade, which was not detected following supplementary cleaning. In the control group, no tissue was detected but one pair of forceps and two laryngoscope blades tested positive for occult blood before and after supplementary cleaning. We conclude that supplementary cleaning using potassium permanganate 8 mg.l(-1) eliminates protein deposits from re-usable metallic and synthetic rubber airway equipment.

  6. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    NASA Astrophysics Data System (ADS)

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  7. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    USGS Publications Warehouse

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-01-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  8. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate.

    PubMed

    He, Di; Guan, Xiaohong; Ma, Jun; Yang, Xue; Cui, Chongwei

    2010-10-15

    The influences of humic acids (HAs) of different origins, including two commercial HAs, three soil HAs and one aquatic HA, on phenols oxidation by permanganate were studied. The apparent second-order rate constants of 2-chlorophenol (2-CP)/phenol oxidation by permanganate in the presence of HAs at pH 7 followed the order of commercial HA (Shanghai)>soil HAs>commercial HA (Fluka)>aquatic HA. Moreover, the commercial HA (Shanghai) could accelerate the oxidation of different chlorophenols (CP) significantly under neutral condition. The FTIR analysis demonstrated greater content of CC moieties and less amount of carboxylate, aliphatic groups and polysaccharide-like substances in soil HAs than in aqueous HA, suggesting that the increase of aromaticity in HA was beneficial to the oxidation of phenols by permanganate. The apparent second-order rate constants of 2-CP/phenol oxidation by permanganate in the presence of HAs correlated well with specific visible absorption (SVA) at 665 nm of HAs. High positive correlation coefficients (R(2)>0.75) implied that pi-electrons of HA strongly influenced the reactivity of 2-CP/phenol towards permanganate oxidation, which agreed well with positive correlation between Fluorescence Regional Integration (FRI) and the apparent second-order rate constants. The pi-pi interaction between HAs and phenols, the steric hindrance effect and the dissociation of phenols may affect the oxidation of phenols by permanganate in the presence of HA at pH=7.0. 2010 Elsevier B.V. All rights reserved.

  9. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA.

    PubMed

    Harte, Philip T; Smith, Thor E; Williams, John H; Degnan, James R

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment. Published by Elsevier B.V.

  10. Histopathological and bacterial study of skin and gill of grass carp, Ceteopharyngodon idella, (Valenciennes 1844) exposed to copper sulfate and potassium permanganate.

    PubMed

    Jooyandeh, Fatemeh; Sadeghpour, Ali; Khara, Hossein; Pajand, Zabihollah

    2016-09-01

    The gill histology and bacterial load of skin of the grass carp juveniles were investigated in relation to various concentrations of copper sulfate and potassium permanganate. For this purpose, the sublethal doses were determined after a pre-test and then the experiment was done in five treatments (for copper sulfate: 1, 1.94, 3.71, 7.07 and 15 mg/l and for potassium permanganate: 0.25, 0.52, 1.91, 2.27 and 5 mg/l) with three replicates inside the glass aquaria. Also, one group without disinfecting product was considered as control for each experiment. The microbial and histopathological investigations were done after 96 h exposure. According to results, the lowest bacterial load (CFU/g) of skin was observed in 15 mg/l copper sulfate treatment and 0.25 mg/l potassium permanganate treatment (P < 0.05). Also, the histological investigation showed a range of histopathological alternations in gills tissue including lamellar necrosis, hyperplasia, lamellar adhesion, haemorrhage, clubbing of gill lamellae. The severity of these alternations increased with increasing of the doses of the copper sulfate and potassium permanganate. In this regard, the highest histological damages were observed in 15 mg/l copper sulfate and 5 mg/l potassium permanganate respectively. Our results showed that low dosage of potassium permanganate has best effect on reducing of bacterial load of skin with lowest adverse effects on gill tissue.

  11. USAF Inorganic Coating Successes

    DTIC Science & Technology

    2012-08-01

    Sodium dichromate solution, 50 parts per million Benchmark Permanganate Seal Candidate 1 Low Nickel Seal (with a hot water seal) Candidate 2A Low...requested by OO-ALC • Continue assisting OO-ALC with implementing permanganate sealer – Received approval from Engineering Review Board (ERB...to use the permanganate seal for Type II anodizing operations • Position OO-ALC for a completely Cr-free surface finishing operation – Anodizing

  12. A Rare Case of Anal and Perianal Chemical Burn in a Child due to Potassium Permanganate Crystals.

    PubMed

    Dash, Suvashis; Bhojani, Jatin; Sharma, Sharadendu

    2018-02-09

    Many chemicals used as medical treatments can cause chemical burns as an untoward side effect. One of such chemicals is potassium permanganate. It is a caustic chemical used as a disinfectant. The most common sites of burn by potassium permanganate are exposed sites like the face and hands. Chemical burns in the perianal and anal region are rare in clinical practice and even sparser in the pediatric age group. In this article, we report a case of perianal and anal chemical burn in an 18-month-old, male child, caused by potassium permanganate crystal applied wrongly for the treatment of pinworm infestation. As a chemical burn in this region can have serious complications, it is necessary to be vigilant when using such chemicals in these cases. Early and timely management in such cases leads to good outcomes. This is the first of such cases of chemical burn caused by potassium permanganate in the anal and perianal region.

  13. "Too good to be true": the controversy over the use of permanganate of potash as an antidote to snake poison and the circulation of Brazilian physiology in the nineteenth century.

    PubMed

    Vimieiro Gomes, Ana Carolina

    2012-01-01

    This article examines an international controversy over the most visible scientific event of Brazilian physiology in the nineteenth century. In 1881, Brazilian scientist João Baptista Lacerda stated that he had found an efficient antidote to the poison of Brazilian snakes: permanganate of potash (nowadays, potassium permanganate). His findings were given great publicity in Brazil and traveled rapidly around the world. Scientists, especially in France, contradicted Lacerda's claims. They argued that permanganate of potash could not be a genuine antidote to snake bites since it could not neutralize snake venom when diffused in the body. Lacerda turned down such criticism, claiming that clinical observation provided solid evidence for the drug's local action, on the spot surrounding the bite. The controversy over the use of permanganate of potash as an antidote to snake bite illustrates different regimes of proof that could be mobilized in favor of a physiological discovery.

  14. Enhanced Amendment Delivery to Low Permeability Zones for Chlorinated Solvent Source Area Bioremediation

    DTIC Science & Technology

    2014-09-01

    suspend manganese dioxide particles produced from oxidation of permanganate in aqueous phase (Crimi and Ko, 2009). Xanthan gum is a biopolymer that...shear-thinning fluids for improving treatment of low-k zones. This study established that combinations of xanthan gum and potassium permanganate ...flow cell experiments using xanthan gum solution to deliver permanganate , Chokejaroenrat et al. (2013, 2014) presented a set of data supporting that

  15. Environmental Assessment for Watershed Enhancements at Joint Base Elmendorf-Richardson

    DTIC Science & Technology

    2013-07-03

    Potassium permanganate would be utilized to prevent lethal dose of rotenone migrating beyond the largest beaver dam on Otter Creek. Lowering the lake level...Finding of No Significant Impact JBER Joint Base Elmendorf-Richardson KMnO4 potassium permanganate MOA Municipality of Anchorage NEPA National...Potassium permanganate would be utilized to prevent lethal dose of rotenone migrating beyond the largest beaver dam on Otter Creek. Lowering the lake

  16. Development of an Expanded, High Reliability Cost and Performance Database for In Situ Remediation Technologies

    DTIC Science & Technology

    2016-03-01

    Performance Metrics University of Waterloo Permanganate Treatment of an Emplaced DNAPL Source (Thomson et al., 2007) Table 5.6 Remediation Performance Data... permanganate vs. peroxide/Fenton’s for chemical oxidation).  Poorer performance was generally observed when the Total CVOC was the contaminant metric...using a soluble carbon substrate (lactate), chemical oxidation using Fenton’s reagent, and chemical oxidation using potassium permanganate . At

  17. Oxidative degradation of pentachlorophenol by permanganate for ISCO application.

    PubMed

    Matta, Roger; Chiron, Serge

    2018-03-01

    Potassium permanganate (KMnO 4 ) has been an effective technology for the in situ chemical oxidation (ISCO) of many organic compounds including chlorinated alkanes and alkenes, but it has rarely been applied for oxidizing aromatic organochlorines. This study confirms the ability of permanganate to oxidize an aromatic chlorinated compound, pentachlorophenol (PCP), in an efficient manner at neutral pH. The rate of the reaction between KMnO 4 and PCP was calculated and the results indicated that the reaction between PCP and permanganate is relatively fast with a second-order rate constant k″ ∼ 30 M -1  s -1 . Besides the kinetic aspect, the authors identified the main reaction by-products, and proposed a possible reaction mechanism scheme. The general pathway shows the formation of chlorinated intermediates, and ultimately, the complete mineralization to chloride, water, and CO 2 confirmed by total organic carbon and chloride measurement in solution. Flow-through column experiments, consisting of flushing a PCP-contaminated sandy or natural soil with oxidant, showed the good ability of permanganate to eliminate the pollutant. After 24 h of treatment, 77% and 56% of PCP abatement were obtained for sandy and natural soil, respectively. These findings show the high potential of permanganate for the in situ remediation of aromatic organochlorine contaminated soils.

  18. Permanganate diffusion and reaction in sedimentary rocks.

    PubMed

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles.

    PubMed

    Zhang, Jing; Sun, Bo; Huang, Yuying; Guan, Xiaohong

    2015-12-01

    This study developed a heterogeneous catalytic permanganate oxidation system with three molecular sieves, i.e., nanosized ZSM-5 (ZSM-5A), microsized ZSM-5 (ZSM-5B) and MCM-41, supported ruthenium nanoparticles as catalyst, denoted as Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41, respectively. The presence of 0.5gL(-1) Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41 increased the oxidation rate of sulfamethoxazole (SMX) by permanganate at pH 7.0 by 27-1144 times. The catalytic performance of Ru catalysts toward SMX oxidation by permanganate was strongly dependent on Ru loading on the catalysts. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses confirmed that Ru catalyst acted as an electron shuttle in catalytic permanganate oxidation process. Ru(III) deposited on the surface of catalysts was oxidized by permanganate to its higher oxidation state Ru(VII), which could work as a co-oxidant with permanganate to decompose SMX and was then reduced to its initial tri-valence. During the successive runs, Ru/ZSM-5A could not maintain its catalytic activity due to the deposition of MnO2, which was the reductive product of permanganate, onto the surface of Ru/ZSM-5A. Thus, the regeneration of partially deactivated Ru catalysts by reductant NH2OH⋅HCl or ascorbic acid was proposed. Ru/ZSM-5A regenerated by NH2OH⋅HCl displayed comparable catalytic ability to its virgin counterpart, while ascorbic acid could not completely remove the deposited MnO2. A trace amount of leaching of Ru into the reaction solution was also observed, which would be ameliorated by improving the preparation conditions in the future study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A new halogen-free chemical oscillator: the reaction between permanganate ion and ninhydrin in a continuously stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Treindl, Ľudovít; Nagy, Arpád

    1987-07-01

    The reaction between permanganate ion and ninhydrin in the presence of phosphoric acid in aqueous solution shows sustained oscillations in a continuously stirred tank reactor (CSTR). It exhibits a kinetic bistability between an oscillatory and a stationary state. Our new oscillating system seems to be a second permanganate chemical oscillator, thus broadening the small group of non-halogen-based chemical oscillators.

  1. Geophysical Imaging for Investigating the Delivery and Distribution of Amendments in the Heterogeneous Subsurface of the F.E. Warren AFB

    DTIC Science & Technology

    2012-11-01

    e.g., purple potassium permanganate ). For the SS7 RA, the location of fractures and the migration of byproducts associated with HRC® were difficult...distribution, were based upon observations of potassium permanganate diffusion observed at neighboring groundwater plumes where hydraulic...fracturing with potassium permanganate was used as a groundwater remedy. Although such assumptions are not uncommon, they contribute to significant

  2. Geophysical Imaging for Investigating the Delivery and Distribution of Amendments in the Heterogeneous Subsurface of the F.E. Warren AFB

    DTIC Science & Technology

    2012-12-01

    especially if the amendments are colored (e.g., purple potassium permanganate ). For the SS7 RA, the location of fractures and the migration of...to develop the conceptual model of HRC® distribution, were based upon observations of potassium permanganate diffusion observed at neighboring...groundwater plumes where hydraulic fracturing with potassium permanganate was used as a groundwater remedy. Although such assumptions are not uncommon

  3. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    NASA Astrophysics Data System (ADS)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  4. Enhanced monitoring of hazardous waste site remediation: Electrical conductivity tomography and citizen monitoring of remediation through the EPA's community advisory group program

    NASA Astrophysics Data System (ADS)

    Hort, Ryan D.

    In situ chemical oxidation using permanganate has become a common method for degrading trichloroethene (TCE) in contaminated aquifers. Its effectiveness, however, is dependent upon contact between the oxidant and contaminant. Monitoring permanganate movement after injection is often hampered by aquifer heterogeneity and insufficient well coverage. Time lapse electrical conductivity tomography increases the spatial extent of monitoring beyond well locations. This technique can create two- or three-dimensional images of the electrical conductivity within the aquifer to monitor aquifer chemistry changes caused by permanganate injection and oxidation reactions. In-phase and quadrature electrical conductivity were measured in homogeneous aqueous and porous media samples to determine the effects of TCE and humate oxidation by permanganate on both measures of conductivity. Further effects of clean sand, 10% kaolinite (v/v), and 10% smectite (v/v) on both types of conductivity were studied as well. Finally, in-phase electrical conductivity was measured over time after injecting permanganate solution into two-dimensional tanks containing artificial groundwater with and without TCE to observe the movement of the permanganate plume and its interaction with TCE and to examine the effectiveness of time-lapse conductivity tomography for monitoring the plume's movement. In-phase electrical conductivity after oxidation reactions involving permanganate, TCE, and humate could be accurately modeled in homogeneous batch samples. Use of forward modeling of in-phase conductivity from permanganate concentrations may be useful for improving recovery of conductivity values during survey inversion, but further work is needed combining the chemistry modeling with solute transport models. Small pH-related quadrature conductivity decreases were observed after TCE oxidation, and large quadrature conductivity increases were observed as a result of sodium ion addition; however, quadrature conductivity could not be related to concentrations of permanganate or reaction products. Additionally, EPA Superfund sites participating in the Community Advisory Group (CAG) program were examined to determine how communities may have benefitted from the program. While CAG participation was correlated with slower achievement of EPA cleanup milestones, many CAGs successfully achieved five standardized social goals. CAGs that achieved these social goals varied in composition but were similar in their focus on community outreach and ability to extend their influence beyond CAG meetings.

  5. Histopathological and bacterial study of Persian sturgeon fry, Acipenser persicus (Borodin, 1897) exposed to copper sulfate and potassium permanganate.

    PubMed

    Moshtaghi, Batol; Khara, Hossein; Pazhan, Zabiyollah; Shenavar, Alireza

    2016-09-01

    Persian sturgeon frys were exposed to different concentrations of copper sulfate and potassium permanganate in order to the evaluation of their impacts on bacterial load of skin, gill and surrounding water and also the histopathological alternations of gill tissue. For this purpose, the sublethal doses were determined after a pre-test and then the experiment was done in 4 (for copper sulfate: 0.07, 0.14, 026 and 0.5 mg/l) and 5 (for potassium permanganate: 0.07, 0.14, 026, 0.5 and 1 mg/l) treatments with three replicates inside the glass aquaria. Also, one group without disinfecting drug was considered as control for each experiment. The microbial and histopathological investigations were done after 96 h exposure. According to our results, a range of histopathological alternations were observed in gills tissue including mucus coagulation and secretion, hyperplasia, lamellar necrosis, hyperplasia, lamellar adhesion, haemorrhage, thickening of secondary lamellae, hypertrophy of supporter cartilage, clubbing of gill lamellae and sliming of primary lamellae. The severity of these alternations increased with increasing of the doses of the copper sulfate and potassium permanganate. The bacterial load (CFU/g) of gill, skin and surrounding water was lower in 0.07 mg/l copper sulfate treatment and 1 mg/l potassium permanganate treatment (P < 0.05) than in other treatments. In conclusion, our results showed that the certain doses of the copper sulfate and potassium permanganate have disinfecting effects on bacterial load of gill, skin and surrounding water, although this is along with some histopathological alternations. Also, it seems that the copper sulfate has higher disinfecting power than potassium permanganate.

  6. Kinetics of natural oxidant demand by permanganate in aquifer solids.

    PubMed

    Urynowicz, Michael A; Balu, Balamurali; Udayasankar, Umamaheshwari

    2008-02-19

    During in situ chemical oxidation with permanganate, natural organic matter and other reduced species in the subsurface compete with the target compounds for the available oxidant and can exert a significant natural oxidant demand. This competition between target and nontarget compounds can have a significant impact on the permeation, dispersal, and persistence of permanganate in the subsurface. The kinetics of natural oxidant demand by permanganate was investigated using a composite sample made up of aquifer material collected from three different sites. The study found that although the depletion of organic carbon increased with increased permanganate dosage and increased reaction period, the mass ratio of MnO(4)(-):OC (wt/wt) was relatively constant over time (11.4+/-0.9). The reaction order and rate with respect to permanganate were found to decrease with time suggesting a continuum of reactions with the slower reactions becoming more controlling with time. However, the data also suggests that this continuum of reactions can be simplified into short- and long-term kinetic expressions representing fast and slow reactions. An independent first-order kinetic model with separate fast and slow reaction rate constants was used to successfully describe the complete kinetic expression of natural oxidant demand. The kinetic parameters used in the model are easily determined and can be used to better understand the complex kinetics of natural oxidant demand.

  7. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate--a comparative study.

    PubMed

    Gao, Shanshan; Zhao, Zhiwei; Xu, Yongpeng; Tian, Jiayu; Qi, Hong; Lin, Wei; Cui, Fuyi

    2014-06-15

    Sulfamethoxazole (SMX), a typical sulfonamide antibiotic, has been widely detected in secondary wastewater effluents and surface waters. In this work we investigated the oxidative degradation of SMX by commonly used oxidants of chlorine, ozone and permanganate. Chlorine and ozone were shown to be more effective for the removal of SMX (0.05-5.0mg/L), as compared with permanganate. Higher pH enhanced the oxidation of SMX by ozone and permanganate, but decreased the removal by chlorine. Moreover, the ozonation of SMX was significantly influenced by the presence of humic acid (HA), which exhibited negligible influence on the oxidation by chlorine and permanganate. Fairly lower mineralization of SMX occurred during the oxidation reactions, with the highest dissolved organic carbon (DOC) removal of 13% (for ozone). By using LC-MS/MS, 7, 5 and 5 oxidation products were identified for chlorine, ozone and permanganate and possible transformation pathways were proposed. It was shown that different oxidants shared some common pathways, such as the cleavage of SN bond, the hydroxylation of the benzene ring, etc. On the other hand, each of the oxidants also exhibited exclusive degradation mechanisms, leading to the formation of different transformation products (TPs). This work may provide useful information for the selection of oxidants in water treatment processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of Permanganate Preoxidation to Natural Organic Matter and Disinfection by-Products Formation Potential Removal

    NASA Astrophysics Data System (ADS)

    Hidayah, E. N.; Yeh, H. H.

    2018-01-01

    Laboratory scale experiments was conducted to examine effect of permanganate (KMnO4) peroxidation in characterizing and to remove natural organic matter (NOM) in source water. The experimental results shows that increasing permanganate dosage could decreased aromatic matter, as indicated by decreasing UV254 and SUVA value about 23% and 28%, respectively. It seems that permanganate preoxidation caused the breakdown of high molecular weight (MW) organics into low MW ones, as represented by increasing NPDOC about 10%. Further, disinfection by-products formation potential (DBPFP) in terms of trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAP) decreased about 15% and 23%, respectively. HAAFP removal is higher than THMFP removal and that DPBFP removal is consistent with UV254 and NPDOC removal.

  9. Evaluation of Expedient Decontamination Options with Activated Peroxide-based Liquid Sporicides

    DTIC Science & Technology

    2013-02-05

    H2O2 (6% immediately post mixing) was verified by potassium permanganate titration (see Appendix B, DTRL MOP #3177) and then monitored throughout testing...H2O2 Concentration in AHP The concentration of H2O2 in the AHP solution was verified by analyzing with the potassium permanganate (KMnO4) titration...Concentration of H2O2 in the working decontamination solution was measured via permanganate titration in 24 samples of AHP taken from the backpack sprayer

  10. Artificial Neural Network Prediction of Chemical-Disease Relationships using Readily Available Chemical Properties

    DTIC Science & Technology

    2014-03-27

    C15H13N3O4S Potassium Bromide 0119000100 BrK Potassium Permanganate 0158030400 MnO4K Prazosin 0383410801 C19H21N5O4 Propranolol-HCl 0259350302...chemicals and correctly match it to a single disease category. Potassium permanganate and ethylene glycol can both be correctly linked to disease group...chemical is linked to the same disease, the network is unable to predict the same disease for the multiple chemicals. Potassium permanganate and

  11. Potassium Permanganate as an Alternative for Gold Mining Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Ordiales, M.; Fernández, D.; Verdeja, L. F.; Sancho, J.

    2015-09-01

    The feasibility of using potassium permanganate as a reagent for cyanide oxidation in wastewater was experimentally studied. Both artificial and production wastewater from two different gold mines were tested. The experiments had three goals: determine the optimum reagent concentration and reaction time required to achieve total cyanide removal, obtain knowledge of the reaction kinetics, and improve the management of the amount of reagent. The results indicate that potassium permanganate is an effective and reliable oxidizing agent for the removal of cyanide from gold mining wastewater.

  12. Redox Deposition of Nanoscale Metal Oxides on Carbon for Next-Generation Electrochemical Capacitors

    DTIC Science & Technology

    2013-01-01

    Nanoscale Metal Oxides Sassin et al. Redox Deposition Approaches to Nanoscale Coatings of Metal Oxides Manganese Oxides. Permanganate (MnO4 ) is a versa...scalability of the permanganate carbon redox reaction for generating MnOx coatings that store charge.21 The initial study per- formed on planar graphite...the carbon surface from the aqueous permanganate solu- tion (pH∼5),29,35 evidenced by a sharp increase in solution pH and a decrease in solution

  13. Potassium permanganate cleansing is an effective sanitary method for the reduction of bacterial bioload on raw Coriandrum sativum.

    PubMed

    Subramanya, Supram Hosuru; Pai, Vasudha; Bairy, Indira; Nayak, Niranjan; Gokhale, Shishir; Sathian, Brijesh

    2018-02-13

    Raw vegetables including flowers, leaves, stems, and roots are important carriers of food borne pathogens. We evaluated the bacteriological contamination of unwashed coriander leaves, and effectiveness of cleansing with 0.1% potassium permanganate solution as decontamination method. Significant bacterial contamination including pathogens like Salmonella species and Aeromonas species were isolated from unwashed coriander leaves. Decontamination with 0.1% potassium permanganate was found to be more effective than three steps wash with sterile water.

  14. High-Resolution Experimental Investigation of mass transfer enhancement by chemical oxidation from DNAPL entrapped in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Rajaram, H.; Detwiler, R. L.; Jones, T.

    2012-12-01

    Permanganate oxidation of DNAPL- contaminated fractured rock is an effective remediation technology. Permanganate ion reacts with dissolved DNAPL in a bi-molecular oxidation-reduction reaction. The consumption of dissolved DNAPL in this reaction results in increased concentration gradients away from the free-phase DNAPL, resulting in reaction-enhanced mass transfer, which accelerates contaminant removal. The specific objective of our research was to perform high-resolution non-intrusive experimental studies of permanganate oxidation in a 15.24 × 15.24 cm, transparent, analog, variable-aperture fracture with complex initial TCE entrapped phase geometry. Our experimental system uses light-transmission techniques to accurately measure both fracture aperture and the evolution of individual entrapped DNAPL blobs during the remediation experiments at high resolution (pixel size : 6.2×10-3 cm). Three experiments were performed with different flow rates and permanganate inflow concentrations to observe DNAPL-permanganate interactions across a broader range of conditions. Prior to initiating each experiment, the aperture field within the fracture was measured. The oxidation experiment was initiated by TCE injection into the water saturated fracture till the TCE reached the outflow end, followed by water re-injection through the fracture. The flowing water mobilized some TCE. We continued injection of water till TCE mobilization ceased, leaving behind the residual TCE entrapped within the variable-aperture fracture. Subsequently, permanganate injection through the fracture resulted in propagation of a fingered reaction front into the fracture. We developed image processing algorithms to analyze the evolution of DNAPL phase geometry over the duration of the experiment. The permanganate consumption rate varied significantly within the fracture due to the complex flow and DNAPL concentration fields. Precipitated MnO2 was clearly evident on the downstream side of DNAPL blobs near the inflow boundary indicating high reaction rates in these regions. This behavior is explained by the diversion of permanganate around entrapped DNAPL blobs and downstream advection of dissolved DNAPL. Our results indicate that the total rate of mass transfer from the DNAPL blobs is higher at early times, when not much MnO2 has formed and precipitated. With time, MnO2 precipitation in the fracture leads to changes the aperture field and flow field. Precipitated MnO2 around TCE blobs also decreases the DNAPL accessible surface area. By comparing the results of three experiments, we conclude that low permanganate concentrations and high flow rates lead to more efficient DNAPL remediation, resulting from the fact that under these conditions there would be slower MnO2 formation and less precipitation within the fracture. We also present results on the time-evolution of fracture-scale permanganate consumption and DNAPL removal rates. The experimental observations are being used to develop improved high-resolution numerical models of reactive transport in variable-aperture fractures. The overall goal is to relate the coupled processes of DNAPL removal, permanganate consumption, MnO2 formation and associated changes in aperture and interface area; to derive fracture-scale effective representations of these processes.

  15. 21 CFR 1310.02 - Substances covered.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 8519 (2) Acetone 6532 (3) Benzyl chloride 8570 (4) Ethyl ether 6584 (5) Potassium permanganate 6579 (6... Permanganate 6588 (c) The Administrator may add or delete a substance as a listed chemical by publishing a...

  16. 21 CFR 369.20 - Drugs; recommended warning and caution statements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., diabetes, or thyroid disease should use only as directed by physician. POTASSIUM PERMANGANATE AQUEOUS SOLUTIONS (CONTAINING NOT MORE THAN 0.04 PERCENT POTASSIUM PERMANGANATE). (See § 250.108 of this chapter...

  17. 21 CFR 1310.02 - Substances covered.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 8519 (2) Acetone 6532 (3) Benzyl chloride 8570 (4) Ethyl ether 6584 (5) Potassium permanganate 6579 (6... Permanganate 6588 (c) The Administrator may add or delete a substance as a listed chemical by publishing a...

  18. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, R. B.

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval ofmore » actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.« less

  19. Application of a Persistent Dissolved-phase Reactive Treatment Zone for Mitigation of Mass Discharge from Sources Located in Lower-Permeability Sediments

    PubMed Central

    Marble, J.C.; Brusseau, M.L.; Carroll, K.C.; Plaschke, M.; Fuhrig, L.; Brinker, F.

    2015-01-01

    The purpose of this study is to examine the development and effectiveness of a persistent dissolved-phase treatment zone, created by injecting potassium permanganate solution, for mitigating discharge of contaminant from a source zone located in a relatively deep, low-permeability formation. A localized 1,1-dichloroethene (DCE) source zone comprising dissolved- and sorbed-phase mass is present in lower permeability strata adjacent to a sand/gravel unit in a section of the Tucson International Airport Area (TIAA) Superfund Site. The results of bench-scale studies conducted using core material collected from boreholes drilled at the site indicated that natural oxidant demand was low, which would promote permanganate persistence. The reactive zone was created by injecting a permanganate solution into multiple wells screened across the interface between the lower-permeability and higher-permeability units. The site has been monitored for nine years to characterize the spatial distribution of DCE and permanganate. Permanganate continues to persist at the site, and a substantial and sustained decrease in DCE concentrations in groundwater has occurred after the permanganate injection.. These results demonstrate successful creation of a long-term, dissolved-phase reactive-treatment zone that reduced mass discharge from the source. This project illustrates the application of in-situ chemical oxidation as a persistent dissolved-phase reactive-treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass discharge into groundwater. PMID:26300570

  20. Role of ligands in permanganate oxidation of organics.

    PubMed

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2010-06-01

    We previously demonstrated that several ligands such as phosphate, pyrophosphate, EDTA, and humic acid could significantly enhance permanganate oxidation of triclosan (one phenolic biocide), which was explained by the contribution of ligand-stabilized reactive manganese intermediates in situ formed upon permanganate reduction. To further understand the underlying mechanism, we comparatively investigated the influence of ligands on permanganate oxidation of bisphenol A (BPA, one phenolic endocrine-disrupting chemical), carbamazepine (CBZ, a pharmaceutical containing the olefinic group), and methyl p-tolyl sulfoxide (TMSO, a typical oxygen-atom acceptor). Selected ligands exerted oxidation enhancement for BPA but had negligible influence for CBZ and TMSO. This was mainly attributed to the effects of identified Mn(III) complexes, which would otherwise disproportionate spontaneously in the absence of ligands. The one-electron oxidant Mn(III) species exhibited no reactivity toward CBZ and TMSO for which the two-electron oxygen donation may be the primary oxidation mechanism but readily oxidized BPA. The latter case was a function of pH, the complexing ligand, and the molar [Mn(III)]:[ligand] ratio, generally consistent with the patterns of ligand-affected permanganate oxidation. Moreover, the combination of the one-electron reduction of Mn(III) (Mn(III) + e(-) -->Mn(II)) and the Mn(VII)/Mn(II) reaction in excess ligands (Mn(VII) + 4Mn(II) ----> (ligands) 5Mn(III)) suggested a catalytic role of the Mn(III)/Mn(II) pair in permanganate oxidation of some phenolics in the presence of ligands.

  1. Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate.

    PubMed

    Crimi, Michelle; Ko, Saebom

    2009-02-01

    In situ chemical oxidation using permanganate is an approach to organic contaminant site remediation. Manganese dioxide particles are products of permanganate reactions. These particles have the potential to deposit in the subsurface and impact the flow-regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport and contact between the oxidant and contaminants of concern. The goals of this research were to determine if MnO(2) can be stabilized/controlled in an aqueous phase, and to determine the dependence of particle stabilization on groundwater characteristics. Bench-scale experiments were conducted to study the ability of four stabilization aids (sodium hexametaphosphate (HMP), Dowfax 8390, xanthan gum, and gum arabic) in maintaining particles suspended in solution under varied reaction conditions and time. Variations included particle and stabilization aid concentrations, ionic content, and pH. HMP demonstrated the most promising results, as compared to xanthan gum, gum arabic, and Dowfax 8390 based on results of spectrophotometric studies of particle behavior, particle filtration, and optical measurements of particle size and zeta potential. HMP inhibited particle settling, provided for greater particle stability, and resulted in particles of a smaller average size over the range of experimental conditions evaluated compared to results for systems that did not include HMP. Additionally, HMP did not react unfavorably with permanganate. These results indicate that the inclusion of HMP in a permanganate oxidation system improves conditions that may facilitate particle transport.

  2. Chemiluminescence evidence supporting the selective role of ligands in the permanganate oxidation of micropollutants.

    PubMed

    Roderick, Mark S; Adcock, Jacqui L; Terry, Jessica M; Smith, Zoe M; Parry, Samuel; Linton, Stuart M; Thornton, Megan T; Barrow, Colin J; Francis, Paul S

    2013-10-10

    The selective increase in the oxidation rate of certain organic compounds with permanganate in the presence of environmental "ligands" and reduced species has been ascribed to the different reactivity of the target compounds toward Mn(III), which bears striking similarities to recent independent investigations into the use of permanganate as a chemiluminescence reagent. In spite of the importance of Mn(III) in the light-producing pathway, the dependence of the oxidation mechanism for any given compound on this intermediate could not be determined solely through the emission intensity. However, target compounds susceptible to single-electron oxidation by Mn(III) (such as bisphenol A and triclosan) can be easily distinguished by the dramatic increase in chemiluminescence intensity when a permanganate reagent containing high, stable concentrations of Mn(III) is used. The differences are accentuated under the low pH conditions that favor the chemiluminescence emission due to the greater reactivity of Mn(III) and the greater influence of complexing agents. This study supports the previously postulated selective role of ligands and reducing agents in permanganate oxidations and demonstrates a new approach to explore the chemistry of environmental manganese redox processes.

  3. The Impact of DNAPL Source-Zone Architecture on Contaminant Mass Flux and Plume Evolution in Heterogeneous Porous Media

    DTIC Science & Technology

    2013-08-01

    remediation, ISCO, permanganate , persistence, DNAPL 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...focus on the lower-K zone 2 and surrounding higher-K matrix sand during the constant permanganate injection………………………… 45 Figure 5.1.3-3...Photographic image of the lower-K zone 2 and surrounding area after permanganate injection, exhibiting the shadow zone downgradient of the lower-K zone

  4. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RT Hallen; SA Bryan; FV Hoopes

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRUmore » removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).« less

  5. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    PubMed

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and <1 M -1 s -1 , respectively. The effect of buffer type and concentration was investigated with acetate, phosphate and borate. All tested buffers promote the HOI reactions with phenols. The percentage of iodine incorporation for various (hydroxyl)phenolic compounds and two NOM extracts ranges from 5% to 98%, indicating that electrophilic aromatic substitution and/or electron transfer can occur. The extent of these reactions depends on the number and relative position of the hydroxyl moieties on the phenolic compounds. Iodoform formation rates increase with increasing pH and iodoform yields increase from 9% to 67% for pH 6.0-10.0 for the HOI/3-OPA reactions. In the permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH < 8.0, iodoform formation is elevated compared to the HOI/3-OPA system in absence of permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation.

    PubMed

    Sutton, Nora B; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H M

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.

  7. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation

    PubMed Central

    Sutton, Nora B.; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H. M.

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2–4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation. PMID:26244346

  8. Beware of the Permanganate Volcano.

    ERIC Educational Resources Information Center

    Snyder, Ellie

    1980-01-01

    Discusses hazards associated with the permanganate demonstration of volcanic eruptions. Alternate demonstrations are described, including the ammonium dichromate reaction, lava flow demonstration with baking soda and vinegar, and punk to illustrate air pollution from volcanic ash and cinders. (CS)

  9. 27 CFR 24.247 - Materials authorized for the treatment of distilling material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... amount used shall not exceed 200 parts per million. 21 CFR 184.1366 (GRAS). Potassium permanganate... permanganate has been added must be free of chemical residue resulting from such treatment. (GRAS) Sodium...

  10. Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents.

    PubMed

    Fayad, Paul B; Zamyadi, Arash; Broseus, Romain; Prévost, Michèle; Sauvé, Sébastien

    2013-01-01

    This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M(-1) sec(-1) in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M(-1) sec(-1) in ultrapure water and 26 to 149 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M(-1) sec(-1) in ultrapure water and 180 to 368 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L(-1) after contact times of 10 to 60 min. This work presents the first results on the permanganate-promoted oxidation of progestagens, as a function of pH, temperature as well as NOM. Progestagen concentrations used to determine rate constants were analyzed using an ultrafast laser diode thermal desorption interface coupled to tandem mass spectrometry for the analysis of water sample for progestagens.

  11. Cyanobacterial Treatment Options: Permanganate and Powdered Activated Carbon

    EPA Science Inventory

    This presentation will begin with a brief overview of drinking water treatment options for cyanobacteria and their toxins. The treatment discussion will focus on the impacts of permanganate addition to suspensions of toxin-producing Microcystis aeruginosa, followed by powdered ac...

  12. Nitroamino and Nitro Energetics

    DTIC Science & Technology

    2012-09-13

    converted into the azo compound, 55, by treating with alkaline potassium permanganate . Compound 55 was reacted with mixed acids at room temperature to...aminotriazole 49 with potassium permanganate was converted to the corresponding trinitromethyl compound 56 by mixed acid nitration (Scheme 15) .22b

  13. Prerelease disease treatment with potassium permanganate for Fall Chinook salmon smolts

    USGS Publications Warehouse

    Smith, Stanley D.; Gould, Rowan W.; Zaugg, Wally S.; Harrell, Lee W.; Mahnken, Conrad V.W.

    1995-01-01

    Standard potassium permanganate treatment (2 mg KMnO4/L freshwater for 1 h on three consecutive days) was applied to presmolts (parr) and smolts of fall chinook salmon (Oncorhynchus tshawytscha). Smoltification was determined by gill Na+,K+-ATPase activity. Treatments were conducted 73, 59, 45, 31, 16, and 2 d prior to full-strength seawater entry in aquaria. Potassium permanganate did not affect either growth or survival in seawater over 25 d. We observed a delayed rise in gill Na+,K+-ATPase activity in fish treated 16 d prior to seawater entry.

  14. [Study of relationship between consumption of potassium permanganate and total organic carbon on plastic kitchen utensils, food packages and toys].

    PubMed

    Ohno, Hiroyuki; Suzuki, Masako; Mutsuga, Motoh; Kawamura, Yoko

    2009-10-01

    Consumption of potassium permanganate and total organic carbon (TOC) were investigated as indices of total organic matter migrated into water from plastic kitchen utensils, food packages and toys for children. The samples were soaked in water at 60 or 95 degrees C for 30 min for kitchen utensils and food packages, and at 40 degrees C for 30 min for toys and the eluates were examined, using the two indices. The quantitation limits were both 0.5 microg/mL. Among 97 kitchen utensils and food packages tested, consumption of potassium permanganate and TOC were 0.5-10.9 microg/mL and ND-18.9 microg/mL for polyvinyl chloride (PVC) tea-pot spouts and nylon kitchen utensils, respectively. Among 32 toys tested, the levels were 0.8-45.5 microg/mL and 0.5-8.9 microg/mL from PVC toys and block toys made by ethylene vinyl acetate resin. The levels for other samples were very low. There were large discrepancies between consumption of potassium permanganate and TOC for some PVC products and nylon kitchen utensils. The cause may be a marked difference of the oxidation decomposition rate by potassium permanganate, depending on the kind of organic matter that migrated from the plastics.

  15. Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment.

    PubMed

    Liu, Chao; Qiang, Zhimin; Adams, Craig; Tian, Fang; Zhang, Tao

    2009-08-01

    The degradation kinetics and mechanism of dichlorvos by permanganate during drinking water treatment were investigated. The reaction of dichlorvos with permanganate was of second-order overall with negligible pH dependence and an activation energy of 29.5 kJ x mol(-1). At pH 7.0 and 25 degrees C, the rate constant was 25.2+/-0.4M(-1)s(-1). Dichlorvos was first degraded to trimethyl phosphate (TMP) and dimethyl phosphate (DMP) simultaneously which approximately accounted for <5% and >or=95% with respect to phosphorus mass, respectively. Further oxidation of DMP generated a final byproduct, monomethyl phosphate (MMP). MMP was for the first time identified as a major byproduct in chemical oxidation of dichlorvos. The kinetic model based on degradation mechanism and determined reaction rate constants allowed us to predict the evolution of dichlorvos and its byproduct concentrations during permanganate pre-oxidation process at water treatment plants. These results suggest that even though the dichlorvos concentration in surface water complies with the surface water quality standards of China (50 microg L(-1)), its concentration after conventional water treatment will most probably exceed the drinking water quality standards (1 microg L(-1)). Moreover, luminescent bacteria test shows that the acute toxicity of dichlorvos solution evidently increased after permanganate oxidation.

  16. Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

    PubMed

    Perez-Benito, Joaquin F; Ferrando, Jordi

    2014-12-26

    The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

  17. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    PubMed

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. US federal cocaine essential (‘precursor’) chemical regulation impacts on US cocaine availability: an intervention time–series analysis with temporal replication

    PubMed Central

    Callaghan, Russell C.; Liu, Lon‐Mu

    2015-01-01

    Abstract Background and Aims Research shows that essential/precursor chemical controls have had substantial impacts on US methamphetamine and heroin availability. This study examines whether US federal essential chemical regulations have impacted US cocaine seizure amount, price and purity—indicators of cocaine availability. Design Autoregressive integrated moving average (ARIMA)‐intervention time–series analysis was used to assess the impacts of four US regulations targeting cocaine manufacturing chemicals: potassium permanganate/selected solvents, implemented October 1989 sulfuric acid/hydrochloric acid, implemented October 1992; methyl isobutyl ketone, implemented May 1995; and sodium permanganate, implemented December 2006. Of these chemicals, potassium permanganate and sodium permanganate are the most critical to cocaine production. Setting Conterminous United States (January 1987—April 2011). Measurements Monthly time–series: purity‐adjusted cocaine seizure amount (in gross weight seizures < 6000 grams), purity‐adjusted price (all available seizures), and purity (all available seizures). Data source: System to Retrieve Information from Drug Evidence. Findings The 1989 potassium permanganate/solvents regulation was associated with a seizure amount decrease (change in series level) of 28% (P < 0.05), a 36% increase in price (P < 0.05) and a 4% decrease in purity (P < 0.05). Availability recovered in 1–2 years. The 2006 potassium permanganate regulation was associated with a 22% seizure amount decrease (P < 0.05), 100% price increase (P < 0.05) and 35% purity decrease (P < 0.05). Following the 2006 regulation, essentially no recovery occurred to April 2011. The other two chemical regulations were associated with statistically significant but lesser declines in indicated availability. Conclusions In the United States, essential chemical controls from 1989 to 2006 were associated with pronounced downturns in cocaine availability. PMID:25559418

  19. US federal cocaine essential ('precursor') chemical regulation impacts on US cocaine availability: an intervention time-series analysis with temporal replication.

    PubMed

    Cunningham, James K; Callaghan, Russell C; Liu, Lon-Mu

    2015-05-01

    Research shows that essential/precursor chemical controls have had substantial impacts on US methamphetamine and heroin availability. This study examines whether US federal essential chemical regulations have impacted US cocaine seizure amount, price and purity-indicators of cocaine availability. Autoregressive integrated moving average (ARIMA)-intervention time-series analysis was used to assess the impacts of four US regulations targeting cocaine manufacturing chemicals: potassium permanganate/selected solvents, implemented October 1989 sulfuric acid/hydrochloric acid, implemented October 1992; methyl isobutyl ketone, implemented May 1995; and sodium permanganate, implemented December 2006. Of these chemicals, potassium permanganate and sodium permanganate are the most critical to cocaine production. Conterminous United States (January 1987-April 2011). Monthly time-series: purity-adjusted cocaine seizure amount (in gross weight seizures < 6000 grams), purity-adjusted price (all available seizures), and purity (all available seizures). System to Retrieve Information from Drug Evidence. The 1989 potassium permanganate/solvents regulation was associated with a seizure amount decrease (change in series level) of 28% (P < 0.05), a 36% increase in price (P < 0.05) and a 4% decrease in purity (P < 0.05). Availability recovered in 1-2 years. The 2006 potassium permanganate regulation was associated with a 22% seizure amount decrease (P < 0.05), 100% price increase (P < 0.05) and 35% purity decrease (P < 0.05). Following the 2006 regulation, essentially no recovery occurred to April 2011. The other two chemical regulations were associated with statistically significant but lesser declines in indicated availability. In the United States, essential chemical controls from 1989 to 2006 were associated with pronounced downturns in cocaine availability. © 2015 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  20. Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate.

    PubMed

    Hort, Ryan D; Revil, André; Munakata-Marr, Junko

    2014-09-01

    Time lapse resistivity surveys could potentially improve monitoring of permanganate-based in situ chemical oxidation (ISCO) of organic contaminants such as trichloroethene (TCE) by tracking changes in subsurface conductivity that result from injection of permanganate and oxidation of the contaminant. Bulk conductivity and pore fluid conductivity changes during unbuffered TCE oxidation using permanganate are examined through laboratory measurements and conductivity modeling using PHREEQC in fluid samples and porous media samples containing silica sand. In fluid samples, oxidation of one TCE molecule produces three chloride ions and one proton, resulting in an increase in fluid electrical conductivity despite the loss of two permanganate ions in the reaction. However, in saturated sand samples in which up to 8mM TCE was oxidized, at least 94% of the fluid conductivity associated with the presence of protons was removed within 3h of sand contact, most likely through protonation of silanol groups found on the surface of the sand grains. Minor conductivity effects most likely associated with pH-dependent reductive dissolution of manganese dioxide were also observed but not accounted for in pore-fluid conductivity modeling. Unaccounted conductivity effects resulted in an under-calculation of post-reaction pore fluid conductivity of 2.1% to 5.5%. Although small increases in the porous media formation factor resulting from precipitation of manganese dioxide were detected (about 3%), these increases could not be confirmed to be statistically significant. Both injection of permanganate and oxidation of TCE cause increases in bulk conductivity that would be detectable through time-lapse resistivity surveys in field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    PubMed

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ignition of Propellants Through Nanostructured Materials

    DTIC Science & Technology

    2016-03-31

    the solid oxidizer, potassium permanganate (KMnO4) and boron–potassium nitrate (BKNO3) were used. While technically BKNO3 is not merely an oxidizer...unpurified SWCNT) EDS Energy Dispersive Spectroscopy Fe iron FPS frames per second GO graphene oxide KMnO4 potassium permanganate MIE

  3. Status of potassium permanganate - 2008

    USDA-ARS?s Scientific Manuscript database

    This is a brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for potassium permanganate will be presented. Initial Label Claim (Columnaris on catfish/HSB): 1) Human Food Safety - Complete for all fin fish (June 1999). A hazard charac...

  4. Tested Demonstrations. The Stepwise Reduction of Permanganate in Alkaline Conditions: A Lecture Demonstration.

    ERIC Educational Resources Information Center

    Ruoff, Peter; Riley, Megan

    1987-01-01

    Describes a chemistry experiment where an alkaline ice-cold permanganate solution is reduced by adding dropwise a cold diluted hydrogen peroxide solution. Outlines the course of the reduction through the various oxidation states of manganese with their characteristic colors. (TW)

  5. LABORATORY STUDY ON THE OXIDATION OF ARSENIC III TO ARSENIC V

    EPA Science Inventory

    A one-year laboratory study was performed to determine the ability of seven oxidants to oxidize As(III) to As(V). These included chlorine, permanganate, ozone, chlorine dioxide, monochloramine, a solid-phase oxidizing media, and 254 nm ultraviolet light. Chlorine and permanganate...

  6. Oxidation of non-steroidal anti-inflammatory drugs with aqueous permanganate.

    PubMed

    Rodríguez-Álvarez, Tania; Rodil, Rosario; Quintana, José Benito; Triñanes, Sara; Cela, Rafael

    2013-06-01

    Potassium permanganate is a strong oxidant widely used in drinking water treatment, that can react with organic micropollutants. Thus, the oxidation kinetics and transformation route of seven non-steroidal anti-inflammatory drugs (NSAIDs) upon reaction with potassium permanganate was investigated. A liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) system was used to follow the time course of pharmaceuticals concentrations and for the identification of their by-products. Under strong oxidation conditions (2 mg L(-1) KMnO4, 24 h), only two NSAIDs were significantly degraded: indomethacine and diclofenac. The degradation kinetics of these two drugs was investigated at different concentrations of permanganate, chlorides, phosphates and sample pH by means of a full factorial experimental design. Depending on these factors, half-lives were in the range: 2-270 h for indomethacine and 3-558 h for diclofenac, equivalent to apparent second order constants between 0.65 and 9.5 M(-1) s(-1) and 0.27 and 7.4 M(-1) s(-1), respectively. Permanganate concentration was the most significant factor on NSAIDs oxidation kinetics, but the pH also played a significant role in diclofenac reaction, being faster at acidic pH. In the case of indomethacine, the dose of permanganate seemed also to play an autocatalytic effect. The use of an accurate-mass high resolution LC-Q-TOF-MS system permitted the identification of a total of 13 by-products. The transformation path of these drugs consisted mainly of hydroxylations, decarboxylations and oxidation of aromatic double bonds, with ring opening. The software predicted toxicity of these products indicates that they are expected not to be more toxic than the NSAIDs, with the exception of two indomethacine by-products. Reaction in real samples was slower and/or incomplete for both pharmaceuticals, depending on the organic matter content of the sample. However, still all transformation products could be detected for indomethacine in permanganate treated surface water samples, and two out of five in the case of diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Permanganate-assisted removal of PCR inhibitors during the DNA Chelex extraction from stained denim samples.

    PubMed

    Pîrlea, Sorina; Puiu, Mihaela; Răducan, Adina; Oancea, Dumitru

    2017-03-01

    In this study, it was demonstrated that the DNA Chelex extraction combined with the permanganate assisted-oxidation is highly efficient in removing the PCR inhibitors often found in clothing materials, such as phthalocyanine. The extraction assays were conducted in saliva, blood and epithelial cells samples mixed with three oxidation-resistant dye copper(II) α-phthalocyanine, copper(II) β-phthalocyanine and tetrasulfonated copper(II) β-phthalocyanine. After DNA amplification, all samples were able to provide full DNA profiles. The permanganate/Chelex system was tested further on denim-stained samples and displayed the same ability to remove the PCR inhibitors from the commercial textile materials.

  8. Potassium permanganate is not an effective pond disinfectant to control Dero digitata

    USDA-ARS?s Scientific Manuscript database

    Proliferative gill disease (PGD) is a major problem in cultured channel catfish, Ictalurus punctatus. This parasite requires Dero digitata to complete its life cycle. It is believed potassium permanganate disinfects ponds and reduces D. digitata populations, but this practice has not been verified...

  9. ADVANTAGES/DISADVANTAGES FOR ISCO METHODS IN-SITU FENTON OXIDATION IN-SITU PERMANGANATE OXIDATION

    EPA Science Inventory

    The advantages and disadvantages of in-situ Fenton oxidation and in-situ permanganate oxidation will be presented. This presentation will provide a brief overview of each technology and a detailed analysis of the advantages and disadvantages of each technology. Included in the ...

  10. Phenolic Wastewater Treatment Alternatives.

    DTIC Science & Technology

    1980-06-01

    15 Potassium Permanganate ................ 19 Iron (VI) Ferrate ..................... 22 Catalytic Oxidation ..................... 22...carbon dioxide, potassium hydroxide, and manganese dioxide which were readily handled by the existing system. d. Iron (VI) Ferrate Ferrate is iron in...the following systems/processes: Granular Activated Carbon (GAC) adsorption, ozone oxidation, hydrogen peroxide oxidation, potassium permanganate

  11. Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents

    PubMed Central

    2013-01-01

    Background This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. Results The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M-1 sec-1 in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M-1 sec-1 in ultrapure water and 26 to 149 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M-1 sec-1 in ultrapure water and 180 to 368 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L-1 after contact times of 10 to 60 min. Conclusion This work presents the first results on the permanganate-promoted oxidation of progestagens, as a function of pH, temperature as well as NOM. Progestagen concentrations used to determine rate constants were analyzed using an ultrafast laser diode thermal desorption interface coupled to tandem mass spectrometry for the analysis of water sample for progestagens. PMID:23675917

  12. Individual Reactions of Permanganate and Various Reductants - Student Report to the DOE ERULF Program for Work Conducted May to July 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauger, Amber M.; Hallen, Richard T.

    2012-09-15

    Tank waste on the Hanford Site contains radioactive elements that need to be removed from solution prior to disposal. One effective way to do this is to precipitate the radioactive elements with manganese solids, produced by permanganate oxidation. When added to tank waste, the permanganate reacts quickly producing manganese (IV) dioxide precipitate. Because of the speed of the reaction it is difficult to tell what exactly is happening. Individual reactions using non-radioactive reductants found in the tanks were done to determine reaction kinetics, what permanganate was reduced to, and what oxidation products were formed. In this project sodium formate, sodiummore » nitrite, glycolic acid, glycine, and sodium oxalate were studied using various concentrations of reductant in alkaline sodium hydroxide solutions. It was determined that formate reacted the quickest, followed by glycine and glycolic acid. Oxalate and nitrite did not appear to react with the permanganate solutions. The products of the oxidation reaction were examined. Formate was oxidized to carbonate and water. Glycolic acid was oxidized slower producing oxalate and water. Glycine reactions formed some ammonia in solution, oxalate, and water. The research reported by Amber Gauger in this report was part of a DOE ERULF student intern program at Pacific Northwest National Laboratory under the direction of Richard Hallen in the summer of 2000.« less

  13. [Reactivity of several classes of pesticides with UV, ozone and permanganate].

    PubMed

    Liu, Chao; Qiang, Zhi-min; Tian, Fang; Zhang, Tao

    2009-01-01

    The reactivity of eight classes of 26 extensively used pesticides, namely, organochlorines, thiadiazole, dinitroanaline, acetamides, triazines, uracil and carbamates, with three common disinfectants or oxidants including UV254 (average intensity of 10.8 mW x cm(-2)), ozone (dosage of 4.1 - 6.2 mg x L(-1)) and permanganate (dosage of 15.8 mg x L(-1)) was investigated. The reactions were allowed to proceed for 30 min at pH 7.0 and ambient temperature (25 degrees C +/- 3 degrees C). Results indicate that under the applied experimental conditions, more than 95% of chlorobenzilate, etridiazole, alachlor, butachlor, metolachlor, propachlor, atrazine, simazine, aldicarb, oxamyl and methiocarb could be effectively removed by UV254; and the removal efficiencies of other pesticides were in a range of 12.9%-77.7%. Ozone could completely degrade chloroneb, dichlorvos, bromacil, aldicarb, carbaryl, carbofuran, oxamyl and methiocarb; prometon and aldicarb sulfone were resistant to ozonation; and the removal efficiencies of other pesticides varied from 19.0% to 93.1%. Permanganate could fully degrade dichlorvos, aldicarb and methiocarb; organochlorines, dinitroanaline, thiadiazole, acetamides and other carbamates were resistant to permanganate oxidation; and the removal efficiencies of other pesticides ranged from 16.0% to 88.2%. If the practical dosage applied in drinking water treatment is considered, it is expected that most of the pesticides will be completely degraded by ozone, a few by permanganate, but probably none by UV254 .

  14. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    EPA Science Inventory

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  15. Design Tool for Planning Permanganate Injection Systems

    DTIC Science & Technology

    2010-08-01

    Chemical Spill 10 CSTR continuously stirred tank reactors CT contact time EDB ethylene dibromide ESTCP Environmental Security Technology...63 6.2 Simulating Oxidant Distribution Using a Series of CSTRs ...ER- 0625. 6.2 SIMULATING OXIDANT DISTRIBUTION USING A SERIES OF CSTRS 6.2.1 MODEL DEVELOPMENT The transport and consumption of permanganate

  16. BENCH-SCALE VISUALIZATION OF DNAPL REMEDIATION PROCESSES IN ANALOG HETEROGENEOUS AQUIFERS: SURFACTANT FLOODS, AND IN SITU OXIDATION USING PERMANGANATE

    EPA Science Inventory

    We have conducted well-controlled DNAPL remediation experiments using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Photographs and digital image analysis illustrate previously unobserved interactions b...

  17. 21 CFR 250.108 - Potassium permanganate preparations as prescription drugs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... crystals of potassium permanganate into the vagina. Experience with these cases shows that such use of... caustic, tissue-destroying chemical, and a poison. There are no circumstances under which crystals and... be restricted to prescription sale. Such drugs will be regarded as misbranded if at any time prior to...

  18. 21 CFR 250.108 - Potassium permanganate preparations as prescription drugs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... crystals of potassium permanganate into the vagina. Experience with these cases shows that such use of... caustic, tissue-destroying chemical, and a poison. There are no circumstances under which crystals and... be restricted to prescription sale. Such drugs will be regarded as misbranded if at any time prior to...

  19. 21 CFR 250.108 - Potassium permanganate preparations as prescription drugs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... crystals of potassium permanganate into the vagina. Experience with these cases shows that such use of... caustic, tissue-destroying chemical, and a poison. There are no circumstances under which crystals and... be restricted to prescription sale. Such drugs will be regarded as misbranded if at any time prior to...

  20. 21 CFR 250.108 - Potassium permanganate preparations as prescription drugs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... crystals of potassium permanganate into the vagina. Experience with these cases shows that such use of... caustic, tissue-destroying chemical, and a poison. There are no circumstances under which crystals and... be restricted to prescription sale. Such drugs will be regarded as misbranded if at any time prior to...

  1. Dual-Function Air Cathode for Metal-Air Batteries with Pulse-Power Capability

    DTIC Science & Technology

    2013-01-28

    surfaces of the nanofoam papers via reaction with aqueous permanganate solutions. [ 16–18 ] Because the deposition is performed under self...The MnO x weight loading can be varied based on exposure time in the permanganate solution; [ 17 ] for the present studies we examined carbon

  2. Quantification of soil permanganate oxidizable c (poxc) using infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Labile soil carbon is an important component of soil organic matter because it embodies the mineralizable material that is associated with short-term fertility and responds to management practices. Permanganate-oxidizable C (POXC) is a widely used method for the study of labile C dynamics in soils. ...

  3. Evaluation of potassium permanganate against an experimental subacute infection of Flavobacterium columnare in channel catfish, Icatlurus punctatus

    USDA-ARS?s Scientific Manuscript database

    The efficacy of potassium permanganate (KMnO4) as a prophylactic and therapeutic treatment for subacute infection of Flavobacterium columnare was demonstrated in experimentally infected channel catfish, Ictalurus punctatus. Catfish experimentally infected with F. columnare to mimic a subacute infec...

  4. Effects of Smallmouth Buffalo and Potassium Permanganate Treatment on Plankton ans Pond Water Quality

    USDA-ARS?s Scientific Manuscript database

    Removal of intermediate hosts is one option for control of disease in channel catfish production systems. We evaluated use of predaceous fish (smallmouth buffalo) and chemical treatment (potassium permanganate) to remove snails that serve as hosts protecting Dero worms. Both methods of treatment r...

  5. Effectiveness of copper sulfate and potassium permanganate on channel catfish infected with Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were evaluated for their effectiveness to curtail mortality and decrease bacterial load in fish tissues and water in channel catfish Ictalurus punctatus naturally infected with Flavobacterium columnare, the causative agent of columnaris. Fis...

  6. Synthesis and Characterization of Furanic Compounds

    DTIC Science & Technology

    2013-09-01

    trifluoroacetic acid, 1.6-M solution of BuLi in hexane, dichloromethane, sodium bicarbonate, pyridinium chlorochromate, potassium permanganate , sodium...intermediate, 2,5-diformylfuran (2.29 g, 18.47 mmol), was oxidized in a 100-mL round-bottom flask with potassium permanganate (4.47 g, 153.1 mmol) in a NaOH

  7. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  8. Passive Biobarrier for Treating Co-Mingled Perchlorate and RDX in Groundwater at an Active Range

    DTIC Science & Technology

    2016-12-31

    GAC (Parette et al., 2005), 2. ZVI PRBs, and 3. Mulch biowall. Additional technologies, including in situ chemical oxidation using permanganate ...contaminated groundwater with permanganate at the Nebraska Ordnance Plant. Ground Water Monitoring & Remediation 30:96-106. 2. Bell, C. F. 1996

  9. XPERT DESIGN AND DIAGNOSTICS' (XDD) IN-SITU CHEMICAL OXIDATION PROCESS USING POTASSIUM PERMANGANATE (KMNO4)

    EPA Science Inventory

    Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...

  10. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management

    USDA-ARS?s Scientific Manuscript database

    Permanganate oxidizable C (POXC; i.e., active C) is a relatively new method that can quantify labile soil C rapidly and inexpensively. Despite limited reports of positive correlations with particulate organic carbon (POC), microbial biomass carbon (MBC) and other soil carbon (C) fractions, little i...

  11. Characterization and Neutralization of Arsenical-Based WWII Era Chemical Munition Fills

    DTIC Science & Technology

    2006-08-01

    Fluorine 2.23 Hydroxyl Radical 2.06 Atomic Oxygen 1.78 Hydrogen Peroxide 1.31 Perhydroxyl Radical 1.25 Permanganate 1.24 Hypobromous Acid 1.17 Chlorine...containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile , the permanganate ion is strongly attracted to the

  12. Diethylpyrocarbonate and permanganate provide evidence for an unusual DNA conformation induced by binding of the antitumour antibiotics bleomycin and phleomycin.

    PubMed Central

    Fox, K R; Grigg, G W

    1988-01-01

    DNA structural changes induced by bleomycin have been investigated using diethylpyrocarbonate and permanganate as probes under conditions in which the antibiotic binds to, but does not cut the DNA. Diethyl-pyrocarbonate shows an enhanced reaction with adenines in the presence of the antibiotic in the sequences GTA greater than GCA greater than GAA, on the 3' side of the drug cutting site (GPy). Permanganate ions display an enhanced reactivity at the second pyrimidine of the sequence GPyPy. The results are consistent with a model in which bleomycin distorts the structure of the base pair on the 3' side of its binding site. Images PMID:2451809

  13. Comparative effects of copper sulfate or potassium permanganate on channel catfish concurrently infected with Flavobacterium columnare and Ichthyobodo necator

    USDA-ARS?s Scientific Manuscript database

    An opportunistic study was conducted to determine the effects of two chemical therapeutants on channel catfish (CCF) Ictalurus punctatus concurrently infected Flavobacterium columnare and Ichthyobodo necator. Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were investigated for their abil...

  14. Treating a natural outbreak of columnaris in channel catfish with copper sulfate and potassium permanganate

    USDA-ARS?s Scientific Manuscript database

    An F. Columnare-exclusive epizootic occurred in fingerling channel catfish (Ictalurus punctatus) during normal tank culture practices at SNARC. Fish were transferred to the ultra low-flow system and 2.1 mg/L copper sulfate or 3 mg/L potassium permanganate was administered; an untreated control was ...

  15. Preparation of Solvent-Dispersible Graphene and its Application to Nanocomposites

    DTIC Science & Technology

    2016-06-14

    sulfuric acid (H2SO4), hydrochloric acid (HCl), hydrogen peroxide (H2O2), potassium permanganate (KMnO4), and sodium nitrate (NaNO3) were...then added to reduce the unreacted permanganate . The mixture was then filtered through a cellulose filter and washed sequentially with dilute HCl and

  16. Development of an Expanded, High Reliability Cost and Performance Database for In Situ Remediation Technologies

    DTIC Science & Technology

    2016-03-01

    Tinker DRA-3 Chem. Ox. Potassium permanganate 10 2.2 Advantages and Limitations Potential advantages and disadvantages of our dataset, and...Washington DC. Thomson, N.R., E.D. Hood, and G.J. Farquhar, 2007. “ Permanganate Treatment of an Emplaced DNAPL Source,” Ground Water Monitoring

  17. Preparation and Analysis of Solid Solutions in the Potassium Perchlorate-Permanganate System.

    ERIC Educational Resources Information Center

    Johnson, Garrett K.

    1979-01-01

    Describes an experiment, designed for and tested in an advanced inorganic laboratory methods course for college seniors and graduate students, that prepares and analyzes several samples in the nearly ideal potassium perchlorate-permanganate solid solution series. The results are accounted for by a theoretical treatment based upon aqueous…

  18. The Oxidation of Terminal Alkenes by Permanganate: A Practical Demonstration of the Use of Phase Transfer Agents.

    ERIC Educational Resources Information Center

    Brown, Keith C.; And Others

    1982-01-01

    Use of phase transfer agents to facilitate/accelerate chemical reactions has become an established practice, particularly in organic chemistry. Describes an undergraduate laboratory procedure demonstrating the principles involved in the use of said agents. Includes student results from phase transfer assisted permanganate oxidations. (Author/JN)

  19. To postpone the precipitation of manganese oxides in the degradation of tetrachloroethylene by controlling the permanganate concentration.

    PubMed

    Yang, Weiwei; Qiu, Zhaofu; Zhao, Zhexuan; Lu, Shuguang; Sui, Qian; Gu, Xiaogang

    2017-01-01

    Controlled-release permanganate (CRP) is a relatively new technology used to treat contaminated groundwater. This study tested the encapsulation of permanganate using stearic acid to realize controlled-release properties. Batch experiments were conducted to investigate the performance of manganese oxides (MnO 2 ) in the reaction between CRP and the contaminant of interest: tetrachloroethylene (PCE). The results showed that higher ionic strengths (I = 0.1 mol/L) cause earlier precipitation of MnO 2 colloids. Using CRP to degrade PCE could decrease the amount of MnO 2 colloids produced and postpone precipitation compared to raw potassium permanganate (KMnO 4 ) under high ionic strength conditions by controlling the KMnO 4 concentration in the solution. The amount of MnO 2 colloids produced and the time of precipitation depended more on the CRP grain size than on the CRP mass ratio. Controlling the KMnO 4 concentration used in the reaction could control the formation of MnO 2 precipitates in the premise of guarantee the removal rate of PCE.

  20. UV-Vis spectrophotometric studies of self-oxidation/dissociation of quaternary ammonium permanganates (QAP) - impact of solvent polarity

    NASA Astrophysics Data System (ADS)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2015-05-01

    Self-oxidation/dissociation of some quaternary ammonium permanganates (QAPs), such as cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), have been studied spectrophotometrically in six different organic solvent media of different polarities wherein the compounds show good solubility and stability. The optical densities of the substrates at zero time (ODo) and first-order rate constants of dissociation (k1) have been determined from their successive scanning for 40 min. At comparable experimental conditions, absorption capabilities of the substrates are compared from the ODo values in various organic media; the stability of the solutions is compared from the successive scan spectra in those media. The ODo values and the k1 values have been plotted against some solvent parameters to understand their effects on the absorbance and reactivity of the QAPs. These data are also subjected to multiple regression analysis to explain the influence of various solvent parameters on the ion-pairing properties of the substrates, thus elucidating their effects on the process of self-oxidation/dissociation of the substrates.

  1. Kinetics and selectivity of permanganate chemiluminescence: a study of hydroxyl and amino disubstituted benzene positional isomers.

    PubMed

    Slezak, Teo; Smith, Zoe M; Adcock, Jacqui L; Hindson, Christopher M; Barnett, Neil W; Nesterenko, Pavel N; Francis, Paul S

    2011-11-30

    Examination of the chemiluminescence reactions of dihydroxybenzenes, aminophenols and phenylenediamines with acidic potassium permanganate has provided a new understanding of the relationships between analyte structure, reaction conditions, kinetics of the light-producing pathway and emission intensity, with broad implications for this widely utilised chemiluminescence detection system. Using a permanganate reagent prepared in a polyphosphate solution and adjusted to pH 2.5, large differences in the rate of reaction with different positional isomers were observed, with the meta-substituted forms reacting far slower and therefore exhibiting much lower chemiluminescence intensities in flow analysis systems. The preliminary partial reduction of permanganate to form significant concentrations of Mn(III) increased the rate of reaction with all analytes tested, resulting in comparable or (in the case of aminophenol and phenylenediamine) even greater emission intensities for the meta-isomers, demonstrating the opportunity to tune the selectivity of the reagent towards certain classes of compound or even specific positional isomers of the same compound. Using more acidic permanganate reagents, in which polyphosphates are not required, the discrepancy between the chemiluminescence intensities was still observed, but was less prominent due to the generally faster rates of reaction. The enhancement of these chemiluminescence reactions by on-line addition of formic acid or formaldehyde can in part also be attributed to the generation of significant pools of the key Mn(III) precursor to the emitting species. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Electrokinetic Enhanced Permanganate Delivery for Low Permeability Soil Remediation

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. I.; Gerhard, J.; Reynolds, D. A.; Sleep, B. E.; O'Carroll, D. M.

    2016-12-01

    Contaminant mass sequestered in low permeability zones (LPZ) in the subsurface has become a significant concern due to back diffusion of contaminants, leading to contaminant rebound following treatment of the high permeability strata. In-situ remediation technologies such as in-situ chemical oxidation (ISCO) are promising, however, successful delivery of oxidants into silts and clays remains a challenge. Electrokinetics (EK) has been proposed as a technique that can overcome this challenge by delivering oxidants into low permeability soils. This study demonstrates the ability of EK to facilitate permanganate delivery into silt for treatment of trichloroethene (TCE). A two-dimensional sandbox was packed with alternate vertical layers of coarse sand and silt contaminated with high concentrations of aqueous phase TCE. Nine experiments were conducted to compare EK-enhanced in-situ chemical oxidation (EK-ISCO) to ISCO alone or EK alone. Frequent groundwater sampling at multiple locations combined with image analysis provided detailed mapping of TCE, permanganate, and manganese dioxide mass distributions. EK-ISCO successfully delivered the permanganate throughout the silt cross-section while ISCO without EK resulted in permanganate delivery only to the edges of the silt layer. EK-ISCO resulted in a 4.4 order-of-magnitude (OoM) reduction in TCE concentrations in the coarse sand compared to a 3.5 OoM reduction for ISCO alone. This study suggests that electrokinetics coupled with ISCO can achieve enhanced remediation of lower permeability strata, where remediation technologies for successful contaminant mass removal would otherwise be limited.

  3. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  4. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.

    PubMed

    Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs

    2007-08-01

    As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.

  5. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.

    PubMed

    Li, Zhaohui; Hanlie, Hong

    2008-02-01

    A combination of surfactant solubilization with permanganate oxidation of trichloroethylene (TCE) was studied in batch, flow-through column, and three-dimensional (3-D) tank tests. Batch results showed that chloride production, an indication of TCE degradation, followed a pseudo-first-order reaction kinetics with respect to KMnO4 in the presence of free-phase TCE. A higher chloride production rate was achieved when anionic surfactants were present. The observed pseudo-first-order reaction rate constant increased as the concentrations of anionic surfactants Ninate 411 and Calfax increased from 0% to 0.1%, 0.3%, and 1.0%. Column experiments on TCE reduction by permanganate in the presence and absence of surfactants were carried out using well-sorted coarse Ottawa sand. The peak effluent TCE concentration reached 1700 mg/L due to enhanced solubilization when both sodium dodecyl sulfate (SDS) and permanganate were used, in contrast to less than 300 mg/L when only permanganate solution was used. In addition, the effluent TCE concentration decreased much faster when SDS was present in the permanganate solution, compared with the case when SDS was absent. With an initial 1 mL of TCE emplaced in the columns, the effluent TCE concentration dropped to <5mg/L after 29-31h of flushing with 1% SDS and 0.1% KMnO4 solution in contrast to 37-73 h when only 0.1% KMnO4 was used. Furthermore, KMnO4 breakthrough occurred after 21-25 h of injection when SDS was present compared with 45-70 h later when SDS was absent. A slightly higher chloride concentration was observed in the earlier stage of the column experiment and the chloride concentration decreased quickly once KMnO4 was seen in the effluent. The 3-D tank test showed that the MnO2 precipitation front formed more quickly when 1% SDS was present, which further confirmed the observation from the column study.

  6. Assessment of the Natural Attenuation of NAPL Source Zones and Post-Treatment NAPL Source Zone Residuals

    DTIC Science & Technology

    2013-11-15

    was conducted. As expected, a cylinder was formed similar to the one shown in Figure 5.9 using potassium permanganate , with slight elongation in the...clean water injections at 400 mg/L. This was not necessary during the ISCO disturbance test, as potassium permanganate (KMnO4), which forms a deep

  7. Plasticity and Ductility in Graphene Oxide Through a Mechanochemically Induced Damage Tolerance Mechanism

    DTIC Science & Technology

    2015-08-20

    potassium permanganate , absolute ethanol, con- centrated hydrochloric acid and n-butylamine (99.5%) were purchased from Sigma-Aldrich Co. LLC (Milwaukee, WI...40ml) was added to a mixture of graphite (3 g) and potassium permanganate (18 g). The reaction mixture was heated to 50 C and stirred for 12 h. The

  8. Evaluation of the therapeutic effect of potassium permanganate at early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus)

    USDA-ARS?s Scientific Manuscript database

    The efficacy of potassium permanganate (KMnO4) against early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus) was evaluated. Fish were experimentally challenged, by waterborne exposure for 2 h to F. columnare after cutaneous abrasion, an...

  9. DETERMINATION OF SULFUR DIOXIDE, NITROGEN OXIDES, AND CARBON DIOXIDE IN EMISSIONS FROM ELECTRIC UTILITY PLANTS BY ALKALINE PERMANGANATE SAMPLING AND ION CHROMATOGRAPHY

    EPA Science Inventory

    A manual 24-h integrated method for determining SO2, NOx, and CO2 in emissions from electric utility plants was developed and field tested downstream from an SO2 control system. Samples were collected in alkaline potassium permanganate solution contained in restricted-orifice imp...

  10. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.

    PubMed

    Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs

    2011-02-01

    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Topical 5% potassium permanganate solution accelerates the healing process in chronic diabetic foot ulcers.

    PubMed

    Delgado-Enciso, Iván; Madrigal-Perez, Violeta M; Lara-Esqueda, Agustin; Diaz-Sanchez, Martha G; Guzman-Esquivel, Jose; Rosas-Vizcaino, Luis E; Virgen-Jimenez, Oscar O; Kleiman-Trujillo, Juleny; Lagarda-Canales, Maria R; Ceja-Espiritu, Gabriel; Rangel-Salgado, Viridiana; Lopez-Lemus, Uriel A; Delgado-Enciso, Josuel; Lara-Basulto, Agustin D; Soriano Hernández, Alejandro D

    2018-02-01

    Potassium permanganate has been reported to be an effective treatment for certain types of wounds. The aim of the present study was to evaluate the use of potassium permanganate in the treatment of diabetic foot ulcers. A single-blind, randomized, controlled clinical trial was conducted on patients with type 2 diabetes mellitus that presented with a foot ulcer persisting for >3 months. The control group (n=10) was treated with the current standard treatment, which comprises of measures for reducing pressure in the ulcerated area, daily cleansing of the ulcer with potable water and antiseptic wash solution, and the application of a disinfectant solution on the entire surface area of the ulcer; while the intervention group (n=15) received the standard treatment plus 5% topical potassium permanganate solution applied once a day for 21 days. In the intervention group, 1 patient did not tolerate the treatment and was eliminated from the study on the first day. The remaining patients tolerated the interventions well. At the end of the treatment period, ulcers in the control group had decreased by 38% whereas those in the intervention group decreased by 73% (P<0.009). The degree of decrease was also investigated; the ulcer size was ≥50% decreased in 40% of patients in the control group and in 86% of patients in the intervention group (P=0.02). In conclusion, the results of the present study indicate that topical potassium permanganate is well tolerated and significantly accelerates the healing process of diabetic foot ulcers.

  12. Topical 5% potassium permanganate solution accelerates the healing process in chronic diabetic foot ulcers

    PubMed Central

    Delgado-Enciso, Iván; Madrigal-Perez, Violeta M.; Lara-Esqueda, Agustin; Diaz-Sanchez, Martha G.; Guzman-Esquivel, Jose; Rosas-Vizcaino, Luis E.; Virgen-Jimenez, Oscar O.; Kleiman-Trujillo, Juleny; Lagarda-Canales, Maria R.; Ceja-Espiritu, Gabriel; Rangel-Salgado, Viridiana; Lopez-Lemus, Uriel A.; Delgado-Enciso, Josuel; Lara-Basulto, Agustin D.; Soriano Hernández, Alejandro D.

    2018-01-01

    Potassium permanganate has been reported to be an effective treatment for certain types of wounds. The aim of the present study was to evaluate the use of potassium permanganate in the treatment of diabetic foot ulcers. A single-blind, randomized, controlled clinical trial was conducted on patients with type 2 diabetes mellitus that presented with a foot ulcer persisting for >3 months. The control group (n=10) was treated with the current standard treatment, which comprises of measures for reducing pressure in the ulcerated area, daily cleansing of the ulcer with potable water and antiseptic wash solution, and the application of a disinfectant solution on the entire surface area of the ulcer; while the intervention group (n=15) received the standard treatment plus 5% topical potassium permanganate solution applied once a day for 21 days. In the intervention group, 1 patient did not tolerate the treatment and was eliminated from the study on the first day. The remaining patients tolerated the interventions well. At the end of the treatment period, ulcers in the control group had decreased by 38% whereas those in the intervention group decreased by 73% (P<0.009). The degree of decrease was also investigated; the ulcer size was ≥50% decreased in 40% of patients in the control group and in 86% of patients in the intervention group (P=0.02). In conclusion, the results of the present study indicate that topical potassium permanganate is well tolerated and significantly accelerates the healing process of diabetic foot ulcers. PMID:29435274

  13. Development of a Design Tool for Planning Aqueous Amendment Injection Systems Permanganate Design Tool

    DTIC Science & Technology

    2010-08-01

    CSTR continuously stirred tank reactors CT contact time EDB ethylene dibromide ESTCP Environmental Security Technology Certification Program...63 6.2 Simulating Oxidant Distribution Using a Series of CSTRs -------------------- 63 6.2.1 Model...SIMULATING OXIDANT DISTRIBUTION USING A SERIES OF CSTRS 6.2.1 MODEL DEVELOPMENT The transport and consumption of permanganate are simulated within the

  14. Graphene Oxide and Thermally Exfoliated Graphene Cyanate Ester Resin Composites

    DTIC Science & Technology

    2013-05-01

    solution was cooled to 0 °C by placing the flask in an ice bath and 30 g of potassium permanganate was added slowly with stirring which caused the...suspension to turn to a thick paste. After the addition of potassium permanganate the solution was warmed to 35 °C and allowed to stir for 30 minutes. After

  15. Effectiveness of copper sulfate, potassium permanganate, and peracetic acid to reduce mortality and infestation of Ichthyobodo nector in channel catfish Ictalurus punctatus (Rafinesque 1818)

    USDA-ARS?s Scientific Manuscript database

    Ichthyobodo necator is a single celled bi-flagellate parasite, and in high density can causes significant mortality in young fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against ichthyobodosis. Treatments were: untreated con...

  16. Hydrazine-induced post-chemiluminescence phenomenon of permanganate-luminol reaction and its applications.

    PubMed

    Du, Jianxiu; Lu, Jiuru

    2004-01-01

    The post-chemiluminescence phenomenon arising from the permanganate-luminol reaction induced by hydrazine and isoniazid was investigated. When hydrazine or isoniazid was injected into the mixture after the end of the reaction of permanganate with alkaline luminol, a new chemiluminescence (CL) reaction was initiated and strong CL signal was detected. A possible CL mechanism is suggested, based upon the studies of the kinetic characteristics of the CL reaction, the UV-visible spectra, the CL spectra and some other experiments. The present reactions allow the determination of 0.1-10.0 mg/L hydrazine and 0.02-1.0 mg/L isoniazid, with detection limits of 0.03 mg/L and 0.006 mg/L, respectively. The method was applied to the determination of isoniazid in pharmaceutical preparations.

  17. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.

    2010-02-26

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effectmore » of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25°C or 45°C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on determining the effect of AFA on chromium oxidation by permanganate with Hanford sludge simulant.« less

  18. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan.

    PubMed

    Wu, Qihua; Shi, Honglan; Adams, Craig D; Timmons, Terry; Ma, Yinfa

    2012-11-15

    The potential occurrences of endocrine-disrupting compounds (EDCs), as well as pharmaceuticals, are considered to be emerging environmental problems due to their persistence and continuous input into the aquatic ecosystem, even at only trace concentrations. This study systematically investigated the oxidative removal of eight specially selected ECDs and pharmaceuticals by comparing their relative reactivity as a function of different oxidative treatment processes (i.e., free chlorine, ozone, monochloramine, and permanganate) under various pH conditions. For the oxidative removal study, EDC and pharmaceutical standards were spiked into both deionized water and natural water, followed by treatment using common oxidants at typical water treatment concentrations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for identification and quantification. The removal efficiency of the EDCs and pharmaceuticals varied significantly between oxidation processes. Free chlorine, permanganate, and ozone treatments were all highly effective at the elimination of triclosan and estrone, while they were not effective for removing ibuprofen, iopromide, and clofibric acid. Monochloramine (at a dose of 3mg/L) was mostly ineffective in eliminating any of the selected EDCs and pharmaceuticals under the tested conditions. pH also played an important role in the removal efficiency of the EDCs and pharmaceuticals during free chlorine, permanganate, and ozone treatments. Additionally, the study identified the oxidation products of triclosan by permanganate, and 2,4-dichlorophenol was identified as the major oxidation product of triclosan by permanganate in drinking water system treatment. Furthermore, 2,4-dichlorophenol was further degradated to 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol and/or 5,6-dichloro-2-(2,4-dichlorophenoxy)phenol. The kinetics for this reaction indicated that the reaction was first order in the drinking water system. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Contrasting dual (C, Cl) isotope fractionation offers potential to distinguish reductive chloroethene transformation from breakdown by permanganate.

    PubMed

    Doğan-Subaşı, Eylem; Elsner, Martin; Qiu, Shiran; Cretnik, Stefan; Atashgahi, Siavash; Shouakar-Stash, Orfan; Boon, Nico; Dejonghe, Winnie; Bastiaens, Leen

    2017-10-15

    cis-1,2-Dichloroethene (cis-DCE) and trichloroethene (TCE) are persistent, toxic and mobile pollutants in groundwater systems. They are both conducive to reductive dehalogenation and to oxidation by permanganate. In this study, the potential of dual element (C, Cl) compound specific isotope analyses (CSIA) for distinguishing between chemical oxidation and anaerobic reductive dechlorination of cis-DCE and TCE was investigated. Well-controlled cis-DCE degradation batch tests gave similar carbon isotope enrichment factors ε C (‰), but starkly contrasting dual element isotope slopes Δδ 13 C/Δδ 37 Cl for permanganate oxidation (ε C =-26‰±6‰, Δδ 13 C/Δδ 37 Cl≈-125±47) compared to reductive dechlorination (ε C =-18‰±4‰, Δδ 13 C/Δδ 37 Cl≈4.5±3.4). The difference can be tracked down to distinctly different chlorine isotope fractionation: an inverse isotope effect during chemical oxidation (ε Cl =+0.2‰±0.1‰) compared to a large normal isotope effect in reductive dechlorination (ε Cl =-3.3‰±0.9‰) (p≪0.05). A similar trend was observed for TCE. The dual isotope approach was evaluated in the field before and up to 443days after a pilot scale permanganate injection in the subsurface. Our study indicates, for the first time, the potential of the dual element isotope approach for distinguishing cis-DCE (and TCE) concentration drops caused by dilution, oxidation by permanganate and reductive dechlorination both at laboratory and field scale. Copyright © 2017. Published by Elsevier B.V.

  20. Novel application of vacuum sealing drainage with continuous irrigation of potassium permanganate for managing infective wounds of gas gangrene.

    PubMed

    Hu, Ning; Wu, Xing-Huo; Liu, Rong; Yang, Shu-Hua; Huang, Wei; Jiang, Dian-Ming; Wu, Qiang; Xia, Tian; Shao, Zeng-Wu; Ye, Zhe-Wei

    2015-08-01

    Traumatic gas gangrene is a fatal infection mainly caused by Clostridium perfringens. It is a challenge to manage gas gangrene in open wounds and control infection after debridement or amputation. The aim of the present study was to use vacuum sealing drainage (VSD) with continuous irrigation of potassium permanganate to manage infective wounds of gas gangrene and observe its clinical efficacy. A total of 48 patients with open traumatic gas gangrene infection were included in this study. Amputations were done for 27 patients, and limb salvage procedures were performed for the others. After amputation or aggressive debridement, the VSD system, including polyvinyl alcohol (PVA) foam dressing and polyurethane (PU) film, with continuous irrigation of 1:5000 potassium permanganate solutions, was applied to the wounds. During the follow-up, all the patients healed without recurrence within 8-18 months. There were four complications. Cardiac arrest during amputation surgery occurred in one patient who suffered from severe septic shock. Emergent resuscitation was performed and the patient returned to stable condition. One patient suffered from mixed infection of Staphylococcal aureus, and a second-stage debridement was performed. One patient suffered from severe pain of the limb after the debridement. Exploratory operation was done and the possible reason was trauma of a local peripheral nerve. Three cases of crush syndrome had dialysis treatment for concomitant renal failure. In conclusion, VSD can convert open wound to closed wound, and evacuate necrotic tissues. Furthermore, potassium permanganate solutions help eliminate anaerobic microenvironment and achieve good therapeutic effect on gas gangrene and mixed infection. VSD with continuous irrigation of potassium permanganate is a novel, simple and feasible alternative for severe traumatic open wounds with gas gangrene infection.

  1. A Neat Trick Using Oxalic Acid Dihydrate and Potassium Permanganate and Other Experiments with Small Organic Amine or Oxygenated Compounds

    ERIC Educational Resources Information Center

    Kelland, Malcolm A.

    2011-01-01

    Solid potassium permanganate (KMnO[subscript 4]) is shown to react in a variety of ways with small organic amines or oxygenated compounds depending on whether they are liquids or solids and whether water is present. In particular, its reaction with solid oxalic acid dihydrate can be initiated by the moisture in one's breath, making an intriguing…

  2. Enhanced degradation of Orange G by permanganate with the employment of iron anode.

    PubMed

    Bu, Lingjun; Shi, Zhou; Zhou, Shiqing

    2017-01-01

    Iron anode was employed to enhance the degradation of Orange G (OG) by permanganate (EC/KMnO 4 ). Continuously generated Fe 2+ from iron anode facilitated the formation of fresh MnO 2 , which plays a role in catalyzing permanganate oxidation. The EC/KMnO 4 system also showed a better performance to remove OG than Fe 2+ /KMnO 4 , indicating the importance of in situ formed fresh MnO 2 . Besides, the effects of applied current, KMnO 4 dosage, solution pH, and natural organics were evaluated and results demonstrated that high current and oxidant dosage are favorable for OG removal. And the application of iron anode has a promoting effect on the KMnO 4 oxidation over a wide pH range (5.0-9.0), while the Fe 2+ /KMnO 4 process does not. For natural organics, its presence could inhibit OG removal due to its competitive role. And the promoting effect of OG removal by the EC/KMnO 4 process in natural water was confirmed. At last, the EC/KMnO 4 process showed a satisfying performance on the decolorization and mineralization of OG. This study provides a potential technology to enhance permanganate oxidation and broadens the knowledge of azo dye removal.

  3. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy.

    PubMed

    Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart

    2017-11-15

    In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. CONTRAST BETWEEN OSMIUM-FIXED AND PERMANGANATE-FIXED TOAD SPINAL GANGLIA

    PubMed Central

    Rosenbluth, Jack

    1963-01-01

    Chains of vesicles are prominent near the plasma membranes of both the neurons and satellite cells of osmium-fixed toad spinal ganglia. In permanganate-fixed specimens, however, such vesicles are absent, and in their place are continuous invaginations of the plasma membranes of these cells. The discrepancy suggests that the serried vesicles seen in osmium-fixed preparations arise through disintegration of plasma membrane invaginations, and do not represent active pinocytosis, as has been suggested previously. A second difference between ganglia fixed by these two methods is that rows of small, disconnected cytoplasmic globules occur in the sheaths of permanganate-fixed ganglia, but not in osmium-fixed samples. It is suggested that these globules arise from the breakdown of thin sheets of satellite cell cytoplasm which occur as continuous lamellae in osmium-fixed specimens. Possible mechanisms of these membrane reorganizations, and the relevance of these findings to other tissues, are discussed. PMID:13990905

  5. Flow-injection chemiluminescent determination of estrogen benzoate using the tris(1,10-phenanthroline) ruthenium(II)-permanganate system.

    PubMed

    Ma, Yan; Cao, Wei; Qiao, Shuang; Liu, Wenwen; Yang, Jinghe

    2011-01-01

    Chemiluminescence (CL) detection for the determination of estrogen benzoate, using the reaction of tris(1,10-phenanthroline)ruthenium(II)-Na(2)SO(3)-permanganate, is described. This method is based on the CL reaction of estrogen benzoate (EB) with acidic potassium permanganate and tris(1,10-phenanthroline)ruthenium(II). The CL intensity is greatly enhanced when Na(2)SO(3) is added. After optimization of the different experimental parameters, a calibration graph for estrogen benzoate is linear in the range 0.05-10 µg/mL. The 3 s limit of detection is 0.024 µg/mL and the relative standard deviation was 1.3% for 1.0 µg/mL estrogen benzoate (n = 11). This proposed method was successfully applied to commercial injection samples and emulsion cosmetics. The mechanism of CL reaction was also studied. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Titrimetric and photometric methods for determination of hypochlorite in commercial bleaches.

    PubMed

    Jonnalagadda, Sreekanth B; Gengan, Prabhashini

    2010-01-01

    Two methods, simple titration and photometric methods for determination of hypochlorite are developed, based its reaction with hydrogen peroxide and titration of the residual peroxide by acidic permanganate. In the titration method, the residual hydrogen peroxide is estimated by titration with standard permanganate solution to estimate the hypochlorite concentration. The photometric method is devised to measure the concentration of remaining permanganate, after the reaction with residual hydrogen peroxide. It employs 4 ranges of calibration curves to enable the determination of hypochlorite accurately. The new photometric method measures hypochlorite in the range 1.90 x 10(-3) to 1.90 x 10(-2) M, with high accuracy and with low variance. The concentrations of hypochlorite in diverse commercial bleach samples and in seawater which is enriched with hypochlorite were estimated using the proposed method and compared with the arsenite method. The statistical analysis validates the superiority of the proposed method.

  7. Installation Restoration Program, Phase I: Records Search, Laughlin Air Force Base, Texas.

    DTIC Science & Technology

    1985-03-01

    and chemical * cleaning shops and consists of chromic acid, potassium permanganate, cadmium , and descaling solutions. The general trend in waste...0.016 Cadmium ɘ.010 mg/1 ɘ.010 Chromium 0.091 mg/l ɘ.050 Source: LAFB BES, 1984. STP Analysis Results, April 23, 1984. 3-33 -r --r - - - - 41 . N...consists of chromic acid, potassium permanganate, cadmium , and descaling solutions. The fire suppressants currently employed at LAFB and EPAux are AFFF

  8. Potentiometric flow injection system for determination of reductants using a polymeric membrane permanganate ion-selective electrode based on current-controlled reagent delivery.

    PubMed

    Song, Wenjing; Ding, Jiawang; Liang, Rongning; Qin, Wei

    2011-10-17

    A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Characteristics of permanganate oxidation of TCE at low reagent concentrations.

    PubMed

    Woo, N C; Hyun, S G; Park, W W; Lee, E S; Schwartz, F W

    2009-12-01

    A controlled-release technique using potassium permanganate (KMnO4) has been recently developed as a long-term and semi-passive remediation scheme for dilute groundwater plumes of chlorinated solvents such as trichloroethylene (TCE) and perchloroethylene. Batch experiments were performed to evaluate TCE removal efficiencies of a low concentration of permanganate (MnO4-) solution and to estimate the optimum dose of permanganate required to remove low levels of TCE from groundwater plumes without leaving intermediate organic forms. Experimental results indicated that when the molar ratio of [MnO4-]0/[TCE]0 was about 10, 95% of the TCE in the plume was removed within less than 90 min, and about 90% of the chloride in the organic forms was converted into inorganic ions, while the TCE removal rates and the chloride conversion rates were considerably lower when the [TCE]0/ [MnO4-]0 values were lower. These data suggested that the [MnO4-]0 and the [MnO4-]0/[TCE]0 values would have strong effects on the efficiency and completeness of TCE oxidation. Further detailed investigations of the effect of [MnO4-]0 and [MnO4-]0/[TCE]0 values on the removal efficiencies and completeness of the TCE oxidation are warranted for successful application of the controlled-release KMnO4 technique in practice.

  10. Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: evaluation in 1-D transport systems.

    PubMed

    Crimi, Michelle; Quickel, Mark; Ko, Saebom

    2009-02-27

    In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport, and contact between the oxidant and contaminants of concern. Sodium hexametaphosphate (HMP) has previously been identified as a promising aid to stabilize MnO2 in solution when included in the oxidizing solution, increasing the potential to inhibit particle deposition and impact subsurface flow. The goal of the experimental studies described herein was to investigate the ability of HMP to prevent particle deposition in transport studies using four different types of porous media. Permanganate was delivered to a contaminant source zone (trichloroethylene) located within four different media types with variations in sand, clay, organic carbon, and iron oxides (as goethite) content. Deposition of MnO2 within the columns was quantified with distance from the source zone. Experiments were repeated in replicate columns with the inclusion of HMP directly with the oxidant delivery solution, and MnO2 deposition was again quantified. While total MnO2 deposition within the 60 cm columns did not change significantly with the addition of HMP, deposition within the contaminant source zone decreased by 25-85%, depending on the specific media type. The greatest differences in deposition were observed in the goethite-containing and clay-containing columns. Columns containing these two media types experienced completely plugged flow in the oxidant-only delivery systems; however, the addition of HMP prevented this plugging within the columns, increasing the oxidant throughput.

  11. Cyanobacterial Treatment Options: Permanganate and ...

    EPA Pesticide Factsheets

    This presentation will begin with a brief overview of drinking water treatment options for cyanobacteria and their toxins. The treatment discussion will focus on the impacts of permanganate addition to suspensions of toxin-producing Microcystis aeruginosa, followed by powdered activated carbon (PAC) addition. Results will be presented that show changes in toxin concentrations, chlorophyll-a concentrations and cell membrane integrity. The EPA Small Systems Webinar Presentations allow the dissemination of the latest Agency guidance and research to a large geographically dispersed audience while minimizing taxpayer expense

  12. Effects of Potassium Permanganate Oxidation on Subsurface Microbial Activity

    NASA Technical Reports Server (NTRS)

    Rowland, Martin A.; Brubaker, Gaylen R.; Westray, Mark; Morris, Damon; Kohler, Keisha; McCool, Alex (Technical Monitor)

    2001-01-01

    In situ chemical oxidation has the potential for degrading large quantities of organic contaminants and can be more effective and timely than traditional ex situ treatment methods. However, there is a need to better characterize the potential effects of this treatment on natural processes. This study focuses on potential inhibition to anaerobic dechlorination of trichloroethene (TCE) in soils from a large manufacturing facility as a result of in situ oxidation using potassium permanganate (KMn04)Previous microcosm studies established that natural attenuation occurs on-site and that it is enhanced by the addition of ethanol to the system. A potential remediation scheme for the site involves the use of potassium permanganate to reduce levels of TCE in heavily contaminated areas, then to inject ethanol into the system to "neutralize" excess oxidant and enhance microbial degradation. However, it is currently unknown whether the exposure of indigenous microbial populations to potassium permanganate may adversely affect biological reductive dechlorination by these microorganisms. Consequently, additional microcosm studies were conducted to evaluate this remediation scheme and assess the effect of potassium permanganate addition on biological reductive dechlorination of TCE. Samples of subsurface soil and groundwater were collected from a TCE-impacted area of the site. A portion of the soil was pretreated with nutrients and ethanol to stimulate microbial activity, while the remainder of the soil was left unamended. Soil/groundwater microcosms were prepared in sealed vials using the nutrient-amended and unamended soils, and the effects of potassium permanganate addition were evaluated using two permanganate concentrations (0.8 and 2.4 percent) and two contact times (1 and 3 weeks). TCE was then re-added to each microcosm and TCE and dichloroethene (DCE) concentrations were monitored to determine the degree to which microbial dechlorination occurred following chemical oxidation. Evidence of microbial degradation was generally detected within four weeks after TCE addition. Increases in DCE concentrations were consistent with decreases in TCE. The concentration of TCE in the nutrient-amended samples exposed to 2.4% KMnO4 for one week degraded somewhat more slowly than the samples exposed to the 0.8% KMnO4. The rates of degradation did not correlate with the length of KMn04 exposure for the nutrient-amended microcosms. Microbial degradation of TCE in the unamended microcosms was generally similar to that observed in the nutrient-amended microcosms. One treatment condition (unamended, one week exposure, 2.4% KMnO4) was exposed to elevated levels of ethanol and showed little evidence of degradation. It is suspected that the high levels of ethanol were toxic to the microorganisms. The results of the study indicate that exposure of indigenous soil and groundwater microbial populations to KMnO4 at concentrations of 0.8 to 2.4% do not impair the ability of the microbial populations to dechlorinate TCE. Consequently, the combination of chemical oxidation followed by enhanced biological reductive dechlorination appears to be a viable remedial strategy for highly-impacted subsurface areas of the site.

  13. Estimation of the nitric oxide formed from hydroxylamine by Nitrosomonas

    PubMed Central

    Anderson, J. H.

    1965-01-01

    1. Nitric oxide that was produced by reducing nitrite with an excess of acidified potassium iodide under nitrogen in Warburg respirometer flasks was rapidly absorbed by a solution of permanganate in sodium hydroxide held in the side arm. A small amount of nitrous oxide (or nitrogen) that was also produced was not absorbed. 2. By using a quantitative method for the recovery of nitrite from samples of the alkaline permanganate, it was found that the sum of the nitrite N formed and the residual nitrous oxide N was equivalent to the nitrite N used to generate the gases. These results showed that alkaline permanganate completely oxidized nitric oxide to nitrite. The method was suitable for determining 0·4–20 μmoles of nitric oxide. 3. The technique was used to determine the nitric oxide content of the nitrogenous gas that was produced anaerobically from hydroxylamine by an extract of the autotrophic nitrifying micro-organism Nitrosomonas in the presence of methylene blue as electron acceptor. PMID:14342235

  14. Potassium permanganate for mercury vapor environmental control

    NASA Technical Reports Server (NTRS)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  15. Antioxidant capacity of cornelian cherry (Cornus mas L.) - comparison between permanganate reducing antioxidant capacity and other antioxidant methods.

    PubMed

    Popović, Boris M; Stajner, Dubravka; Slavko, Kevrešan; Sandra, Bijelić

    2012-09-15

    Ethanol extracts (80% in water) of 10 cornelian cherry (Cornus mas L.) genotypes were studied for antioxidant properties, using methods including DPPH(), ()NO, O(2)(-) and ()OH antiradical powers, FRAP, total phenolic and anthocyanin content (TPC and ACC) and also one relatively new, permanganate method (permanganate reducing antioxidant capacity-PRAC). Lipid peroxidation (LP) was also determined as an indicator of oxidative stress. The data from different procedures were compared and analysed by multivariate techniques (correlation matrix calculation and principal component analysis (PCA)). Significant positive correlations were obtained between TPC, ACC and DPPH(), ()NO, O(2)(-), and ()OH antiradical powers, and also between PRAC and TPC, ACC and FRAP. PCA found two major clusters of cornelian cherry, based on antiradical power, FRAP and PRAC and also on chemical composition. Chemometric evaluation showed close interdependence between PRAC method and FRAP and ACC. There was a huge variation between C. mas genotypes in terms of antioxidant activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob.

    PubMed

    Ma, Lijuan; Cui, Youzhi; Cai, Rui; Liu, Xueqiang; Zhang, Cuiying; Xiao, Dongguang

    2015-03-01

    Alkaline potassium permanganate solution (APP) was applied to the pretreatment of corncob with a simple and effective optimization of APP concentration, reaction time, temperature and solid to liquid ratio (SLR). The optimized pretreatment conditions were at 2% (w/v) potassium permanganate with SLR of 1:10 treating for 6h at 50°C. This simple one-step treatment resulted in significant 94.56% of the cellulose and 81.47% of the hemicellulose recoveries and 46.79% of the lignin removal of corncob. The reducing sugar in the hydrolysate from APP-pretreated corncob was 8.39g/L after 12h enzymatic hydrolysis, which was 1.44 and 1.29 folds higher than those from raw and acid pretreated corncobs. Physical characteristics, crystallinity and structure of the pretreated corncob were analyzed and assessed by SEM, XRD and FTIR. The APP pretreatment process was novel and enhanced enzymatic hydrolysis of lignocellulose by affecting composition and structural features. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. VALIDATION FOR THE PERMANGANATE DIGESTION OF REILLEX HPQ ANION RESIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E.

    2009-09-23

    The flowsheet for the digestion of Reillex{trademark} HPQ was validated both under the traditional alkaline conditions and under strongly acidic conditions. Due to difficulty in performing a pH adjustment in the large tank where this flowsheet must be performed, the recommended digestion conditions were changed from pH 8-10 to 8 M HNO{sub 3}. Thus, no pH adjustment of the solution is required prior to performing the permanganate addition and digestion and the need to sample the digestion tank to confirm appropriate pH range for digestion may be avoided. Neutralization of the acidic digestion solution will be performed after completion ofmore » the resin digestion cycle. The amount of permanganate required for this type of resin (Reillex{trademark} HPQ) was increased from 1 kg/L resin to 4 kg/L resin to reduce the amount of residual resin solids to a minimal amount (<5%). The length of digestion time at 70 C remains unchanged at 15 hours. These parameters are not optimized but are expected to be adequate for the conditions. The flowsheet generates a significant amount of fine manganese dioxide (MnO{sub 2}) solids (1.71 kg/L resin) and involves the generation of a significant liquid volume due to the low solubility of permanganate. However, since only two batches of resin (40 L each) are expected to be digested, the total waste generated is limited.« less

  18. In Vitro Synergism between Azithromycin or Terbinafine and Topical Antimicrobial Agents against Pythium insidiosum

    PubMed Central

    Itaqui, Sabrina R.; Verdi, Camila M.; Tondolo, Juliana S. M.; da Luz, Thaisa S.; Alves, Sydney H.; Santurio, Janio M.

    2016-01-01

    We describe here in vitro activity for the combination of azithromycin or terbinafine and benzalkonium, cetrimide, cetylpyridinium, mupirocin, triclosan, or potassium permanganate. With the exception of potassium permanganate, the remaining antimicrobial drugs were active and had an MIC90 between 2 and 32 μg∕ml. The greatest synergism was observed for the combination of terbinafine and cetrimide (71.4%). In vivo experimental evaluations will clarify the potential of these drugs for the topical treatment of lesions caused by Pythium insidiosum. PMID:27216049

  19. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    PubMed

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene

  20. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.

    PubMed

    Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik

    2011-01-01

    Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Chemiluminescence behaviour of CdTe-potassium permanganate enhanced by sodium hexametaphosphate and sensitized sensing of L-ascorbic acid.

    PubMed

    Chen, Hongqi; Ling, Bo; Yuan, Fei; Zhou, Cailing; Chen, Jingguo; Wang, Lun

    2012-01-01

    A highly sensitive flow-injection chemiluminescence (FIA-CL) method based on the CdTe nanocrystals and potassium permanganate chemiluminescence system was developed for the determination of L-ascorbic acid. It was found that sodium hexametaphosphate (SP), as an enhancer, could increase the chemiluminescence (CL) emission from the redox reaction of CdTe quantum dots with potassium permanganate in near-neutral pH conditions. L-ascorbic acid is suggested as a sensitive enhancer for use in the above energy-transfer excitation process. Under optimal conditions, the calibration graph of emission intensity against logarithmic l-ascorbic acid concentration was linear in the range 1.0 × 10(-9)-5.0 × 10(-6)  mol/L, with a correlation coefficient of 0.9969 and relative standard deviation (RSD) of 2.3% (n = 7) at 5.0 × 10(-7)  mol/L. The method was successfully used to determine L-ascorbic acid in vitamin C tablets. The possible mechanism of the chemiluminescence in the system is also discussed. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Oxidation of alkylarenes to the corresponding acids using aqueous potassium permanganate by hydrodynamic cavitation.

    PubMed

    Ambulgekar, G V; Samant, S D; Pandit, A B

    2004-05-01

    Oxidation of toluene using aqueous potassium permanganate was studied under heterogeneous condition in the presence of hydrodynamic cavitation and compared with the results of the reaction under acoustic cavitation. Various parameters, such as quantity of potassium permanganate, toluene to aqueous phase ratio, reaction time and cavitation parameters such as orifice plate, and pump discharge pressure were optimized. The reaction was found to be considerably accelerated at ambient temperature in the presence of cavitation. On comparison, it was found that when 1 kJ of energy was passed to the reaction mixture in the case of acoustic cavitation, the product obtained was 4.63 x 10(-6) mol, whereas when 1 kJ of energy was passed to the reaction mixture in the case of hydrodynamic cavitation the product obtained was 2.70 x 10(-5) mol. Hence, about six times more product would be obtained in the case of hydrodynamic cavitation than in the case of acoustic cavitation at same energy dissipation. It has been observed that further optimization is possible.

  3. Study of melanin bleaching after immunohistochemistry of melanin-containing tissues.

    PubMed

    Shen, Hongwu; Wu, Wenqiao

    2015-04-01

    Melanin may interfere with immunohistochemical staining. The goal of this study was to investigate the effects of trichloroisocyanuric acid (TCCA) bleaching, potassium permanganate bleaching, and potassium dichromate bleaching on melanin, tissue antigen, and 3,3'-diaminobenzidine (DAB) using melanin-containing and melanin-free tissue samples. Our results demonstrated that all 3 bleaching methods efficiently bleached melanin and partially destroyed tissue antigen. In addition, potassium permanganate bleaching and potassium dichromate bleaching clearly destroyed DAB, whereas TCCA bleaching had no significant effect on DAB. Therefore, neither potassium permanganate nor potassium dichromate is an ideal solution, whereas TCCA might be an ideal solution for melanin bleaching after the immunohistochemical staining of melanin-containing tissues. After immunostaining followed by TCCA bleaching, the melanin could be completely removed in all 120 malignant melanoma tissue sections. Compared with the control, the DAB intensity was clear, and the tissue structure and cellular nuclei were well maintained. It is worth noting that TCCA should be freshly prepared before each experiment, and used within 2 hours of its preparation. In addition, sections should not be incubated with TCCA for over 30 minutes.

  4. Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways.

    PubMed

    Jeong, Boyoung; Oh, Min-Seok; Park, Hyun-Mee; Park, Chanhyuk; Kim, Eun-Ju; Hong, Seok Won

    2017-05-01

    The oxidation of microcystin-LR (MC-LR) in deionized water (DI) and river water using potassium permanganate (KMnO 4 ) at a neutral pH and at 23 ± 2 °C was investigated. These two aqueous systems (i.e., DI and river water) gave comparable second-order rate constants (289.9 and 285.5 M -1 s -1 (r 2  > 0.99), respectively), which confirmed the effectiveness of this oxidation process for the treatment of natural surface water. The presence of either humic or fulvic acid reduced the removal efficiency of MC-LR, with the latter exhibiting a greater inhibitory effect. Monitoring of MC-LR and residual Mn 2+ levels with adding KMnO 4 (1 mg/L) and powdered activated carbon (PAC, 5-20 mg L -1 ) before and during coagulation, respectively, revealed that 60 min of permanganate pre-oxidation followed by coagulant addition with PAC was the most effective approach for reducing both levels below limits stated by WHO guidelines. The MC-LR degradation products were the result of oxidation occurring at the diene and aromatic moieties of the Adda (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid) side-chain, in addition to amine bond hydrolysis of the Mdha (N-methyldehydroalanine) moiety. Several toxic by-products with an intact Adda chain were observed during the reaction, but completely disappeared after 60 min. This further supports the conclusion that sufficient contact time with permanganate (i.e., >60 min) is essential to reducing the residual toxicity and maximizing the efficiency of MC-LR oxidation when treating raw water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate.

    PubMed

    Rodríguez, Eva; Sordo, Ana; Metcalf, James S; Acero, Juan L

    2007-05-01

    Cyanobacteria produce toxins that may contaminate drinking water sources. Among others, the presence of the alkaloid toxins cylindrospermopsin (CYN) and anatoxin-a (ANTX) constitutes a considerable threat to human health due to the acute and chronic toxicity of these compounds. In the present study, not previously reported second-order rate constants for the reactions of CYN and ANTX with chlorine and monochloramine and of CYN with potassium permanganate were determined and the influence of pH and temperature was established for the most reactive cases. It was found that the reactivity of CYN with chlorine presents a maximum at pH 7 (rate constant of 1265 M(-1)s(-1)). However, the oxidation of CYN with chloramine and permanganate are rather slow processes, with rate constants <1 M(-1)s(-1). The first chlorination product of CYN was found to be 5-chloro-CYN (5-Cl-CYN), which reacts with chlorine 10-20 times slower than the parent compound. The reactivity of ANTX with chlorine and chloramines is also very low (k<1M(-1)s(-1)). The elimination of CYN and ANTX in surface water was also investigated. A chlorine dose of 1.5 mg l(-1) was enough to oxidize CYN almost completely. However, 3 mg l(-1) of chlorine was able to remove only 8% of ANTX, leading to a total formation of trihalomethanes (TTHM) at a concentration of 150 microg l(-1). Therefore, chlorination is a feasible option for CYN degradation during oxidation and disinfection processes but not for ANTX removal. The permanganate dose required for CYN oxidation is very high and not applicable in waterworks.

  6. Comparison of Cross Flow Filtration Performance for Manganese Oxide/Sludge Mixtures and Monosodium Titanate/Sludge Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.R.

    2002-06-07

    Personnel performed engineering-scale tests at the Filtration Research Engineering Demonstration (FRED) to determine crossflow filter performance with a 5.6 M sodium solution containing varying concentrations of sludge and sodium permanganate. The work represents another in a series of collaborative efforts between the University of South Carolina and the Savannah River Technology Center in support of the process development efforts for the Savannah River Site. The current tests investigated filter performance with slurry containing simulated Tank 40H Sludge and sodium permanganate at concentrations between 0.070 weight percent and 3.04 weight percent insoluble solids.

  7. METHOD OF CHEMICAL DECONTAMINATION OF STAINLESS STEEL NUCLEAR FACILITIES

    DOEpatents

    Pancer, G.P.; Zegger, J.L.

    1961-12-19

    A chemical method is given for removing activated corrosion products on the primary system surfaces of a pressurized water reactor. The corrosion product deposits are composed chiefly of magnetite (Fe/sub 3/O/sub 4/) with small amounts of nickel and chromium oxides. The corroded surfaces are first flushed with a caustic permanganate primary solution consisting of sodium hydroxide and potassium permanganate followed by a secondary rinse solution of ammonium citrate and citric acid containing the complexing agent Versene in small amounts. Demineralized water is used to clean out the primary and secondary solutions and a 60-minute drying period precedes the rinse solution. (AEC)

  8. trans-2-Tritylcyclohexanol as a chiral auxiliary in permanganate-mediated oxidative cyclization of 2-methylenehept-5-enoates: application to the synthesis of trans-(+)-linalool oxide.

    PubMed

    Al Hazmi, Ali M; Sheikh, Nadeem S; Bataille, Carole J R; Al-Hadedi, Azzam A M; Watkin, Sam V; Luker, Tim J; Camp, Nicholas P; Brown, Richard C D

    2014-10-03

    The permanganate-mediated oxidative cyclization of a series of 2-methylenehept-5-eneoates bearing different chiral auxiliaries was investigated, leading to the discovery of trans-2-tritylcyclohexanol (TTC) as a highly effective chiral controller for the formation of the 2,5-substituted THF diol product with high diastereoselectivity (dr ∼97:3). Chiral resolution of (±)-TTC, prepared in one step from cyclohexene oxide, afforded (-)-(1S,2R)-TTC (er >99:1), which was applied to the synthesis of (+)-trans-(2S,5S)-linalool oxide.

  9. Acute toxicity of potassium permanganate to milkfish fingerlings, Chanos chanos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, E.R.; Tamse, C.T.

    Potassium permanganate (KMnO{sub 4}) is a strong oxidizing agent and is commonly used in aquatic systems to improve available oxygen, treat infectious diseases and parasites, detoxify fish poisons, and control algae. There have been some studies on the toxicity of KMnO{sub 4} to freshwater fishes, but none on brackish or marine water species. The following study was undertaken to determine the 24- and 96-h median lethal concentration (LC50) of milkfish fingerlings to KMnO{sub 4}. The study was also designed to evaluate the histopathological response of fish tissues to KMnO{sub 4} but was reported in another paper.

  10. Rapid spot tests for detecting the presence of adulterants in urine specimens submitted for drug testing.

    PubMed

    Dasgupta, Amitava; Wahed, Amer; Wells, Alice

    2002-02-01

    Several adulterants are used to mask tests for abused drugs in urine. Adulterants such as "Klear" and "Whizzies" contain potassium nitrite, and "Urine Luck" contains pyridinium chlorochromate (PCC). The presence of these adulterants cannot be detected by routine specimen integrity checks (pH, specific gravity, and temperature). We developed rapid spot tests for detecting these adulterants in urine. Addition of 3% hydrogen peroxide in urine adulterated with PCC caused rapid formation of a dark brown color. In contrast, unadulterated urine turned colorless when hydrogen peroxide was added. When urine contaminated with nitrite and 2 to 3 drops of 2N hydrochloric acid were added to 2% aqueous potassium permanganate solution, the dark pink permanganate solution turned colorless immediately with effervescence. Urine contaminated with nitrite liberated iodine from potassium iodide solution in the presence of 2N hydrochloric acid. Urine adulterated with PCC also liberated iodine from potassium iodide in acid medium but did not turn potassium permanganate solution colorless. Urine specimens from volunteers and random urine samples that tested negative for drugs did not cause false-positive results. These rapid spot tests are useful for detecting adulterated urine to avoid false-negative drug tests.

  11. Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application.

    PubMed

    Hassanzadeh, Javad; Amjadi, Mohammad; Manzoori, Jamshid L; Sorouraddin, Mohammad Hossein

    2013-04-15

    A novel enhanced chemiluminescence system was developed by applying gold nanorods (Au NRs) as catalysts in rhodamine B-permanganate reaction. Au NRs with three different aspect ratios were synthesized by seed mediated growth method and characterized by UV-Vis spectra and transmission electron microscopy. It was demonstrated that Au NRs have much higher catalytic effect than spherical nanoparticles on rhodamine B-permanganate chemiluminescence reaction. Among various sizes of Au NRs, those with average aspect ratio of 3.0 were found to have the most remarkable catalytic activity. As an analytical application of the new chemiluminescence system, albumin as a model protein was quantified based on its interaction with NRs. Albumin binds to Au NRs active surfaces and inhibits their catalytic action and therefore decreases the intensity of chemiluminescence. This diminution effect is linearly related to the concentration of the human and bovine serum albumin over the ranges of 0.45-90 and 0.75-123 nmol L(-1), respectively with the corresponding limits of detection of 0.18 and 0.30 nmol L(-1). The method was successfully applied to the determination of albumin in human and bovine serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The importance of chain length for the polyphosphate enhancement of acidic potassium permanganate chemiluminescence.

    PubMed

    Holland, Brendan J; Adcock, Jacqui L; Nesterenko, Pavel N; Peristyy, Anton; Stevenson, Paul G; Barnett, Neil W; Conlan, Xavier A; Francis, Paul S

    2014-09-09

    Sodium polyphosphate is commonly used to enhance chemiluminescence reactions with acidic potassium permanganate through a dual enhancement mechanism, but commercially available polyphosphates vary greatly in composition. We have examined the influence of polyphosphate composition and concentration on both the dual enhancement mechanism of chemiluminescence intensity and the stability of the reagent under analytically useful conditions. The average chain length (n) provides a convenient characterisation, but materials with similar values can exhibit markedly different distributions of phosphate oligomers. There is a minimum polyphosphate chain length (∼6) required for a large enhancement of the emission intensity, but no further advantage was obtained using polyphosphate materials with much longer average chain lengths. Providing there is a sufficient average chain length, the optimum concentration of polyphosphate is dependent on the analyte and in some cases, may be lower than the quantities previously used in routine detection. However, the concentration of polyphosphate should not be lowered in permanganate reagents that have been partially reduced to form high concentrations of the key manganese(III) co-reactant, as this intermediate needs to be stabilised to prevent formation of insoluble manganese(IV). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Kinetics and mechanism of permanganate oxidation of iota- and lambda-carrageenan polysaccharides as sulfated carbohydrates in acid perchlorate solutions.

    PubMed

    Hassan, Refat M; Fawzy, Ahmed; Ahmed, Gamal A; Zaafarany, Ishaq A; Asghar, Basim H; Takagi, Hideo D; Ikeda, Yasuhisa

    2011-10-18

    The kinetics of oxidation of iota- and lambda-carrageenan as sulfated carbohydrates by permanganate ion in aqueous perchlorate solutions at a constant ionic strength of 2.0 mol dm(-3) have been investigated spectrophotometrically. The pseudo-first-order plots were found to be of inverted S-shape throughout the entire courses of reactions. The initial rates were found to be relatively slow in the early stages, followed by an increase in the oxidation rates over longer time periods. The experimental observations showed first-order dependences in permanganate and fractional first-order kinetics with respect to both carrageenans concentration for both the induction and autoacceleration periods. The results obtained at various hydrogen ion concentrations showed that the oxidation processes in these redox systems are acid-catalyzed throughout the two stages of oxidation reactions. The added salts lead to the prediction that Mn(III) is the reactive species throughout the autoacceleration periods. Kinetic evidence for the formation of 1:1 intermediate complexes was revealed. The kinetic parameters have been evaluated and tentative reaction mechanisms in good agreement with the kinetic results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Transport with Bimolecular Reactions: Applications to In-Situ Chemical Oxidation of DNAPLs by Permanganate in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. Our objectives in this research were to carry out a sequence of experimental, computational and theoretical tasks aimed at improving current understanding of permanganate oxidation in fractured rock systems, and also develop modeling tools that can be used for preliminary design of oxidation schemes at field sites. Our research focused on both free-phase entrapped DNAPL in variable-aperture fractures and dissolved DNAPL in the rock matrix. In the first section of our research, we present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were measured quantitatively. We present results on the time-evolution of fracture-scale TCE consumption and DNAPL removal rates for all the experiments. In the next part of this work, we developed theoretical understanding of the reaction front dynamics in the case of chemical oxidation of aqueous-phase DNAPL within fracture-matrix system, backed up by numerical simulations. We also consider the influence of NOD consumption and contaminant sorption to solid aquifer materials in our models. Based on the results from this task we are able to propose simple strategies for remediation design (e.g. the time needed to degrade DNAPL inside the fracture-matrix system and the permanganate injection pattern) for a given set of conditions. Our numerical simulations of diffusion with bimolecular reaction in the rock matrix demonstrated a transition in the spatially integrated reaction rate - increasing with time initially, and transitioning to a decrease with time. We developed a general non-dimensionalization of the problem and a perturbation analysis to show that there is always an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the total reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients and initial concentrations of the two species.

  15. Energy generation by fermentation of glucose in a batch flow microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Badea, Silviu-Laurentiu; Enache, Stanica; Tamaian, Radu; Buga, Mihaela-Ramona; Pirvu, Cristian; Varlam, Mihai

    2016-04-01

    In the last years, microbial fuel cells (MFCs) have emerged like a novel research technologies for production of sustainable and clean electricity energy through bioxidation of organic materials, representing a promising alternative to combustion energy sources. In this study, production of bioelectricity in MFC in batch system (dual chambered MFC) was investigated. A dual chambered MFC from glass was built for this purpose. Saccharomyces cerevisiae as an active biocatalyst was explored for power generation. Graphite plates were used as electrodes and glucose as substrate. Saccharomyces cerevisiae was initially grown on a period of 72h at 30 degree Celsius, on medium of modified Sabouraud liquid medium containing 30 g glucose/L. A volume of inoculated medium (80 mL) was transferred in the anode compartment of MFC together with 20 mL glucose 1M, while neutral red was used as mediator (electron shuttle) in concentration of 200 μM in anaerobic anode chamber. Potassium permanganate (KMnO4) was used as oxidizing agent in the cathode in wide concentration range (400 μM-40 000 μM). Cathodic compartment was loaded initially with 40 mM potassium permanganate, and afterwards was supplied two times more with KMnO4 of the same concentration, in order to maintain MFC functionality. The MFC was operated on a water bath heated by a combined hot-plate magnetic-stirrer device at 30 degree Celsius and mixed at 180 rpm. The maximum open circuit potential (OCV) recorded of about 0.6 V was reached after the 3rd loading with 40 milimolles of potassium permanganate. Using a potentiostat, the polarization curve was recorded by varying the potential between 0.5 V and 0.0 V, while the intensity of current increased from 0.0 to about 1.5 mA respectively, corresponding to an anodic current density of about 0.81 A/m2. In order to optimize the design and performance of the MFC, the goal of the further research is to use variously concentrations of potassium permanganate. Furthermore, a dual chambered MFC of large volume (0.5 L), a nafion membrane between anodic and cathodic compartments, and recirculation flows of glucose and potassium permanganate are planned to be used for a longer operability of the MFC.

  16. Rx for H20

    ERIC Educational Resources Information Center

    Yapijakis, Costas

    1978-01-01

    Drinking water disinfectants are discussed. Disinfectants are chlorine, chlorine dioxide, ozone, potassium permanganate, iodine, bromine, hydrogen peroxide; silver, acids and bases, ultraviolet radiation. (MR)

  17. Activated carbon/manganese dioxide hybrid electrodes for high performance thin film supercapacitors

    NASA Astrophysics Data System (ADS)

    Jang, Yunseok; Jo, Jeongdai; Jang, Hyunjung; Kim, Inyoung; Kang, Dongwoo; Kim, Kwang-Young

    2014-06-01

    We combine the activated carbon (AC) and the manganese dioxide (MnO2) in a AC/MnO2 hybrid electrode to overcome the low capacitance of activated carbon and MnO2 by exploiting the large surface area of AC and the fast reversible redox reaction of MnO2. An aqueous permanganate (MnO4 -) is converted to MnO2 on the surface of the AC electrode by dipping the AC electrode into an aqueous permanganate solution. The AC/MnO2 hybrid electrode is found to display superior specific capacitance of 290 F/g. This shows that supercapacitors classified as electric double layer capacitors and pseudocapacitors can be combined together.

  18. Detection of single base mismatches of thymine and cytosine residues by potassium permanganate and hydroxylamine in the presence of tetralkylammonium salts.

    PubMed Central

    Gogos, J A; Karayiorgou, M; Aburatani, H; Kafatos, F C

    1990-01-01

    In the presence of tetramethylammonium chloride, potassium permanganate specifically modifies mismatched thymines. Similarly, the modification of mismatched cytosines by hydroxylamine was enhanced by tetraethylammonium chloride. Modification followed by piperidine cleavage permits specific identification of the T and C mismatches and by extension, when the opposite DNA strand is analyzed, of A and G mismatches as well. These reactions can be performed conveniently with DNA immobilized on Hybond M-G paper. We describe conditions that exploit these reactions to detect mismatches, e.g. point mutations or genetic polymorphisms, using either synthetic oligonucleotide probes or PCR amplification of specific genomic DNA sequences. Images PMID:2263445

  19. Acidity-controlled selective oxidation of alpha-pinene, isolated from Indonesian pine's turpentine oils (pinus merkusii)

    NASA Astrophysics Data System (ADS)

    Masruri; Farid Rahman, Mohamad; Nurkam Ramadhan, Bagus

    2016-02-01

    Alpha-pinene was isolated in high purity from turpentine oil harvested from Pinus merkusii plantation. The recent investigation on selective oxidation of alpha-pinene using potassium permanganate was undertaken under acidic conditions. The result taught the selective oxidation of alpha-pinene in acidic using potassium permanganate lead to the formation of 2-(3-acetyl-2,2-dimethylcyclobutyl)acetaldehyde or pinon aldehyde. The study method applied reaction in various different buffer conditions i.e. pH 3, 4, 5, and 6, respectively, and each reaction product was monitored using TLC every hour. Product determination was undertaken on spectrometry basis such as infrared, ultra violet-visible, gas chromatography- and liquid chromatography-mass spectrometry.

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Three demonstrations (a mechanical model of chemical equilibrium, a demonstration of Raoult's Law, and a demonstration of permanganate reduction) are presented. Materials and procedures are detailed. (CW)

  1. An analysis of alternative technologies for the removal of ethylene from the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1995-01-01

    A variety of technologies were analyzed for their potential to remove ethylene from the CELSS Biomass Production Chamber (BPC). During crop production (e.g., lettuce, wheat, soybean, potato) in the BPC ethylene can accumulate in the airspace and subsequently affect plant viability. The chief source of ethylene is the plants themselves which reside in plastic trays containing nutrient solution. The main sink for ethylene is chamber leakage. The removal technology can be employed when deleterious levels (e.g., 50 ppb for potato) of ethylene are exceeded in the BPC and perhaps to optimize the plant growth process once a better understanding is developed of the relationship between exogenous ethylene concentration and plant growth. The technologies examined were catalytic oxidation, molecular sieve, cryotrapping, permanganate absorption, and UV degradation. Upon analysis, permanganate was chosen as the most suitable method. Experimental data for ethylene removal by permanganate during potato production was analyzed in order to design a system for installation in the BPC air duct. In addition, an analysis of the impact on ethylene concentration in the BPC of integrating the Breadboard Scale Aerobic Bioreactor (BSAB) with the BPC was performed. The result indicates that this unit has no significant effect on the ethylene material balance as a source or sink.

  2. Injectable Silica–Permanganate Gel as a Slow-Release MnO 4 - Source for Groundwater Remediation. Rheological Properties and Release Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuo; Oostrom, Martinus; Truex, Michael J.

    2016-01-12

    Injectable slow-release permanganate gel (ISRPG), formed by mixing KMnO 4 solution with fumed silica powder, may have a potential application in remediating chlorinated solvent plumes in groundwater. A series of batch, column, and flow cell experiments has been completed to test the gel behavior under a variety of conditions. The experiments have provided information on ISRPG rheology, permanganate (MnO 4 - ) release dynamics and distribution, and trichloroethene (TCE) degradation by ISRPG-released oxidant. The gel possesses remarkable shear thinning characteristics, resulting in a relative low viscosity during mixing, and facilitating its subsurface injection and distribution. Batch tests revealed that MnOmore » 4 - was diffused out from ISRPG into water while the gel did not dissolve or disperse into water but maintained its initial shape. Column experiments showed that MnO 4 - release from ISRPG lasted considerably longer than the release from aqueous solution. TCE degradation by ISRPG-released MnO 4 - was much more effective than that when MnO 4 - was delivered using aqueous solution injection. In two-dimensional flow cell experiments, it was demonstrated that ISRPG slowly released a long-lasting low concentration MnO 4 - plume sufficient for remediation and sustainable in an aquifer for a long period of time.« less

  3. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NASA Astrophysics Data System (ADS)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  4. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.

    PubMed

    Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels

    2014-07-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile organic compounds studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Development and characterization of colloidal silica-based slow-release permanganate gel (SRP-G): laboratory investigations.

    PubMed

    Lee, Eung Seok; Gupta, Neha

    2014-08-01

    Slow-release permanganate (MnO4(-)) gel (SRP-G) is a hyper-saline KMnO4 solution that can be used for treating large, dilute, or deep plumes of chlorinated solvents in groundwater. Ideally, the SRP-G injected into aquifers will slowly gelate to form MnO4(-) gel in situ, and the gel will slowly releases MnO4(-). Objectives of this study were to develop SRP-G using colloidal silica as gelling solution, characterize its gelation and release kinetics, and delineate its dynamics in a saturated sandy media. The SRP-G exhibited a two-phase increase in viscosity: a lag phase characterized by little increase in viscosity followed by a short gelation phase. Gelation lag times of SRP-G solutions increased (from 0.5h to 13d) with decreasing KMnO4 concentrations (from 25 to 8 g L(-1)). Permanganate release from gelated SRP-G increased with increasing KMnO4 concentrations, and was characterized as asymptotic release with initial peak (0.9-2.2 mg min(-1)) followed by more attenuated release. Gelation lag times of SRP-G flowing in sands (linear velocity=2.1md(-1)) increased (1, 3, and 6h) with decreasing KMnO4 concentrations (25.0, 23.0, and 22.9 g L(-1)). Permanganate release from gelated SRP-Gs continued for up to 3d and was characterized as asymptotic release with an initial peak release (∼1.2 g min(-1)) followed by more attenuated release over 70h. Dilution of SRP-G by dispersion in porous media affects gelation and release kinetics. Increasing the silica concentration in the SRP-G may facilitate gelation and extend the duration of MnO4(-) release from emplaced SRP-G in porous media. Copyright © 2014. Published by Elsevier Ltd.

  6. Enhanced chemiluminescence for trazodone trace analysis based on acidic permanganate oxidation in concurrent presence of rhodamine 6G.

    PubMed

    Fujimori, Keiichi; Sakata, Yuta; Moriuchi-Kawakami, Takayo; Shibutani, Yasuhiko

    2017-11-01

    A new sensitized chemiluminescence method by acidic permanganate oxidation was developed for the sensitive determination of trazodone. A fluorescent dye as used rhodamine 6G to increase a chemiluminescence intensity. Under optimum conditions, the liner range of the calibration curve was obtained for 1-5000 nmol/L. The limit of detection was calculated from 3σ of a blank was 0.23 nmol/L. The coexistent ions and substances had no interference with the chemiluminescence measurement. The chemiluminescence spectra were measured to elucidate a possible mechanism for the system. The present method was satisfactorily used in the determination of the drugs in pharmaceutical samples and animal serums. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Permanganate ion oxidations. IX. Manganese intermediates (complexes) in the oxidation of 2,4(1H,3H)-pyrimidinediones.

    PubMed

    Freeman, F; Karchefski, E M

    1976-10-04

    Uniquely stable manganese intermediates (complexes) are formed from the permanganate ion oxidation of the 5,6-carbon-carbon double bond in several 2,4(1H,3H)-pyrimidinediones [uracil, (compound 7), 5-methyluracil (thymine, compound 5), and 6-methyluracil (compound 8)]. These manganese complexes, which represent some of the most stable intermediate manganese species observed thus far in the oxidation of carbon-carbon double bonds, show absorption maxima in the 285-296 nm region (epsilon max approximately 4500). The relative reactivities of 6-methyluracil: uracil: thymine are 1: 23 : 194 and the bimolecular oxidation process is characterized by relatively small deltaH++ values and large negative deltaS++ values.

  8. The Kinetic Rate Law for Autocatalytic Reactions.

    ERIC Educational Resources Information Center

    Mata-Perez, Fernando; Perez-Benito, Joaquin F.

    1987-01-01

    Presented is a method of obtaining accurate rate constants for autocatalytic reactions. The autocatalytic oxidation of dimethylamine by permanganate ion in aqueous solution is used as an example. (RH)

  9. Effect of the potassium permanganate during papaya fruit ripening: Ethylene production

    NASA Astrophysics Data System (ADS)

    Corrêa, S. F.; Filho, M. B.; da Silva, M. G.; Oliveira, J. G.; Aroucha, E. M. M.; Silva, R. F.; Pereira, M. G.; Vargas, H.

    2005-06-01

    The effect of potassium permanganate (KMnO4) on the ripening process of papaya fruits by monitoring the ethylene emission rates is reported. The ethylene emission was monitored by a photoacoustic spectrometer. Two experimental conditions were applied, being one of them just putting the fruit alone inside the sampling chamber and the second, modifying the atmosphere by the presence of KMnO4. The use of the ethylene absorber reduces the autocatalytic process of ethylene during papaya fruit ripening. For 20 g of KMnO4 the maximal intensity of the ethylene emission decreases by a factor two. Using the same amount of KMnO4, a reduction of about 2.2% in the concentration of ethylene for a mixture of 1ppmv of ethylene in synthetic air was observed.

  10. Flow injection chemiluminescence determination of 6-mercaptopurine based on a new system of potassium permanganate-thioacetamide-sodium hexametaphosphate.

    PubMed

    Wang, Lun; Ling, Bo; Chen, Hongqi; Liang, Ani; Qian, Binbin; Fu, Jie

    2010-01-01

    A novel chemiluminescence method for the determination of 6-mercaptopurine was established based on 6-mercaptopurine inhibition of the chemiluminescence emission of potassium permanganate-thioacetamide-sodium hexametaphosphate system. The peak height was proportional to log 6-mercaptopurine concentration in the range 7.0 × 10(-10) to 1.0 × 10(-7)  g/mL and the detection limit was 1.9 × 10(-11)  g/mL (S/N = 3). The relative standard deviation was 1.5% for the determination of 8.0 × 10(-8)  g/mL 6-mercaptopurine (n = 11). The proposed sensor was successfully applied to the analysis of 6-mercaptopurine in human serum samples. Copyright © 2009 John Wiley & Sons, Ltd.

  11. Experimental investigations on potassium permanganate doped polyvinyl alcohol - polyvinyl pyrrolidone blend

    NASA Astrophysics Data System (ADS)

    Veena, G.; Lobo, Blaise

    2018-04-01

    Potassium permanganate (KMnO4) doped polyvinyl alcohol (PVA) - polyvinyl pyrrolidone (PVP) blend films were prepared by solution casting technique, in the doping range varying from 0.01 wt % up to 4.70 wt %. The microstructural changes caused by doping, and the modified properties of these films were studied using Atomic Force Microscope (AFM) and temperature dependent direct current (DC) electrical measurements. Temperature variation of electrical resistivity was found to obey Arrhenius relation, from which activation energy was determined. The study was supported by AFM scans, which showed an increase in surface roughness and the presence of spike-like structures, due to interaction of dopant with the polymeric blend. Differential Scanning Calorimetry (DSC) scans revealed two stages of degradation in KMnO4 doped PVA - PVP blend films.

  12. Studies on the oxidation of hexamethylbenzene 2: Preparation of dimethylpyromellitic acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.

    1986-01-01

    Hexamethylbenzene (HMB) was difficult to be oxidized with an alkaline potassium permanganate solution, since HMB was insoluble in an aqueous alkaline solution. But, when HMB was warmed with 50% nitric acid for a short time, and then treated with aqueous potassium permanganate, the reaction occurred readily and dimethylpyromellitic acid was obtained. When HMB was warmed with 50% nitric acid for 1 to 2 minutes, a yellow material was produced, which was soluble in hot aqueous potassium hydroxide, though free from carboxylic acids. It contained a little amount of bis-(nitromethyl)prehnitene and several unknown compounds. Further, the heat stability of polyimide prepared by the reaction of tetramethyldimethylpyromellitate with 4,4 prime-diaminodiphenylmethane turned out to be nearly equal to that of polyimide prepared from tetramethylpyromellitate.

  13. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and testedmore » with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the testing needs for the permanganate precipitation process to be field-deployable. A more comprehensive listing of future testing needs to allow the process to be field deployable are contained in RPP-PLAN-51288, Development Test Plan for Sr/TRU Precipitation Process.« less

  14. An Undergraduate Thin-Layer Chromatography Experiment: Olfactory Delights

    NASA Astrophysics Data System (ADS)

    Lynch, Mary Anne; Gloffke, Wendy; Rauner, Richard A.

    1995-12-01

    Mixtures of flavors and fragrances were separated on silica gel sheets, employing toluene/ethyl acetate (90:10) as the solvent. Constituents were located using alkaline potassium permanganate and 2,4-dinitrophenylhydrazine.

  15. KSC00pp0100

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, Cape Canaveral Air Station, several studies are under way for groundwater cleanup of trichloroethylene at the site. Shown here is monitoring equipment for one of the methods, potassium permanganate oxidation. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program in the 60s. The environmental research project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA, who formed the Interagency NDAPL Consortium (IDC), to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies for representatives from environmental and federal agencies

  16. KSC-00pp0100

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, Cape Canaveral Air Station, several studies are under way for groundwater cleanup of trichloroethylene at the site. Shown here is monitoring equipment for one of the methods, potassium permanganate oxidation. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program in the 60s. The environmental research project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA, who formed the Interagency NDAPL Consortium (IDC), to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies for representatives from environmental and federal agencies

  17. Determination of total iodine and iodate in sea water and in various evaporites

    USGS Publications Warehouse

    Schnepfe, M.M.

    1972-01-01

    Iodine in sea water and evaporites is determined spectrophotometrically as the starch-iodine complex without prior separation or concentration of the iodine. In slightly alkaline solution, iodide is first oxidized to iodate with permanganate. Oxidized states of manganese are destroyed with iron(II) in phosphate medium without affecting the iodate. After acidification, iodide is added to react with the iodate in the presence of starch. The iodate content is determined by the same procedure, but without the addition of permanganate. As little as 0.1??g of iodine is determinable in the presence of 500 mg of chloride and 5 mg of bromide. The total iodine concentration in seven samples of sea water was found to vary from 50 ??3 to 84 ??6 ??g l-1 with 50-100% present as the iodate. ?? 1972.

  18. Analysis for nickel (3 and 4) in positive plates from nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Lewis, Harlan L.

    1994-01-01

    The NASA-Goddard procedure for destructive physical analysis (DPA) of nickel-cadmium cells contains a method for analysis of residual charged nickel as NiOOH in the positive plates at complete cell discharge, also known as nickel precharge. In the method, the Ni(III) is treated with an excess of an Fe(II) reducing agent and then back titrated with permanganate. The Ni(III) content is the difference between Fe(II) equivalents and permanganate equivalents. Problems have arisen in analysis at NAVSURFWARCENDIV, Crane because for many types of cells, particularly AA-size and some 'space-qualified' cells, zero or negative Ni(III) contents are recorded for which the manufacturer claims 3-5 percent precharge. Our approach to this problem was to reexamine the procedure for the source of error, and correct it or develop an alternative method.

  19. Oxidation of cefazolin by potassium permanganate: Transformation products and plausible pathways.

    PubMed

    Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo

    2016-04-01

    Cefazolin was demonstrated to exert high reactivity toward permanganate (Mn(VII)), a common oxidant in water pre-oxidation treatment. In this study, five transformation products were found to be classified into three categories according to the contained characteristic functional groups: three (di-)sulfoxide products, one sulfone product and one di-ketone product. Products analyses showed that two kinds of reactions including oxidation of thioether and the cleavage of unsaturated CC double bond occurred during transformation of cefazolin by Mn(VII). Subsequently, the plausible transformation pathways under different pH conditions were proposed based on the identified products and chemical reaction principles. More importantly, the simulation with real surface water matrix indicated that the proposed transformation pathways of cefazolin could be replayed in real water treatment practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Determination of ethanol using permanganate-CdS quantum dot chemiluminescence system.

    PubMed

    Abolhasani, Jafar; Hassanzadeh, Javad

    2015-08-01

    A novel and highly sensitive chemiluminescence (CL) method for the determination of ethanol was developed based on the CdS quantum dots (QDs)-permanganate system. It was found that KMnO4 could directly oxidize CdS QDs in acidic media resulting in relatively high CL emission. A possible mechanism was proposed for this reaction based on UV/Vis absorption, fluorescence and the generated CL emission spectra. However, it was observed that ethanol had a remarkable inhibition effect on this system. This effect was exploited in the determination of ethanol within the concentration range 12-300 µg/L, with detection at 4.3 µg/L. In order to evaluate the capability of presented method, it was satisfactorily utilized in the determination of alcohol in real samples. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Potassium permanganate-acridine yellow chemiluminescence system for the determination of fluvoxamine, isoniazid and ceftriaxone.

    PubMed

    Abolhasani, Jafar; Hassanzadeh, Javad

    2014-12-01

    Based on the oxidation of acridine yellow by permanganate in basic medium, a new chemiluminescence system was developed for the sensitive determination of some important drugs. The remarkable inhibiting effect of fluvoxamine, ceftriaxone and isoniazid on this reaction was applied to their detection. A possible mechanism was proposed for this system based on chemiluminescence emission wavelengths and experimental observations. Under optimum conditions, calibration graphs were obtained for 1 × 10(-9) to 1 × 10(-6) mol/L of fluvoxamine; 2 × 10(-8) to 8 × 10(-6) mol/L of ceftriaxone and 5 × 10(-8) to 4 × 10(-5) mol/L of isoniazid. This proposed method was satisfactorily used in the determination of these drugs in pharmaceutical samples and human urine and serum. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Comparative study on the removal technologies of 2-methylisoborneol (MIB) in drinking water.

    PubMed

    Liang, Cun-Zhen; Wang, Dong-Sheng; Ge, Xiao-Peng; Yang, Min; Sun, Wei

    2006-01-01

    Removal of 2-methylisoborneol (MIB) in drinking water by ozone, powdered activated carbon (PAC), potassium permanganate and potassium ferrate was investigated. The adsorption kinetics of MIB by both wood-based and coat-based PACs show that main removal of MIB occurs within contact time of 1 h. Compared with the wood-based PAC, the coat-based PAC evidently improved the removal efficiency of MIB. The removal percentage of trace MIB at any given time for a particular carbon dosage was irrelative to the initial concentration of MIB. A series of experiments were performed to determine the effect of pH on the ozonation of MIB. The results show that pH has a significant effect on the ozonation of MIB. It is conclusive that potassium permanganate and potassium ferrate are ineffective in removing the MIB in drinking water.

  3. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    PubMed

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  4. The effects of DNA supercoiling on G-quadruplex formation.

    PubMed

    Sekibo, Doreen A T; Fox, Keith R

    2017-12-01

    Guanine-rich DNAs can fold into four-stranded structures that contain stacks of G-quartets. Bioinformatics studies have revealed that G-rich sequences with the potential to adopt these structures are unevenly distributed throughout genomes, and are especially found in gene promoter regions. With the exception of the single-stranded telomeric DNA, all genomic G-rich sequences will always be present along with their C-rich complements, and quadruplex formation will be in competition with the corresponding Watson-Crick duplex. Quadruplex formation must therefore first require local dissociation (melting) of the duplex strands. Since negative supercoiling is known to facilitate the formation of alternative DNA structures, we have investigated G-quadruplex formation within negatively supercoiled DNA plasmids. Plasmids containing multiple copies of (G3T)n and (G3T4)n repeats, were probed with dimethylsulphate, potassium permanganate and S1 nuclease. While dimethylsulphate footprinting revealed some evidence for G-quadruplex formation in (G3T)n sequences, this was not affected by supercoiling, and permanganate failed to detect exposed thymines in the loop regions. (G3T4)n sequences were not protected from DMS and showed no reaction with permanganate. Similarly, both S1 nuclease and 2D gel electrophoresis of DNA topoisomers did not detect any supercoil-dependent structural transitions. These results suggest that negative supercoiling alone is not sufficient to drive G-quadruplex formation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Modeling the Kinetics of Contaminants Oxidation and the Generation of Manganese(III) in the Permanganate/Bisulfite Process.

    PubMed

    Sun, Bo; Dong, Hongyu; He, Di; Rao, Dandan; Guan, Xiaohong

    2016-02-02

    Permanganate can be activated by bisulfite to generate soluble Mn(III) (noncomplexed with ligands other than H2O and OH(-)) which oxidizes organic contaminants at extraordinarily high rates. However, the generation of Mn(III) in the permanganate/bisulfite (PM/BS) process and the reactivity of Mn(III) toward emerging contaminants have never been quantified. In this work, Mn(III) generated in the PM/BS process was shown to absorb at 230-290 nm for the first time and disproportionated more easily at higher pH, and thus, the utilization rate of Mn(III) for decomposing organic contaminant was low under alkaline conditions. A Mn(III) generation and utilization model was developed to get the second-order reaction rate parameters of benzene oxidation by soluble Mn(III), and then, benzene was chosen as the reference probe to build a competition kinetics method, which was employed to obtain the second-order rate constants of organic contaminants oxidation by soluble Mn(III). The results revealed that the second-order rate constants of aniline and bisphenol A oxidation by soluble Mn(III) were in the range of 10(5)-10(6) M(-1) s(-1). With the presence of soluble Mn(III) at micromolar concentration, contaminants could be oxidized with the observed rates several orders of magnitude higher than those by common oxidation processes, implying the great potential application of the PM/BS process in water and wastewater treatment.

  6. Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material

    NASA Astrophysics Data System (ADS)

    Aprilliani, F.; Warsiki, E.; Iskandar, A.

    2018-03-01

    Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.

  7. Intricate Estimation and Assessment of Surface Conditioning of Posts to improve Interfacial Adhesion in Post-core Restorations: An in vitro Study.

    PubMed

    Gupta, Priyanka; Sharma, Amil; Pathak, Vivek K; Mankeliya, Saurabh; Bhardwaj, Shivanshu; Dhanare, Poorvasha

    2017-12-01

    Post and core restorations are routinely used for restoring grossly decayed tooth structures. Various chemical agents are known to affect the interfacial adhesions between the post and the core. Hence, we planned the present study to evaluate the effect of various post-surface treatments on the interfacial strength between the posts and composite materials that are used for building up the core portion. The present study included assessment of the effect of surface conditioning of posts on the interfacial adhesion in post-core restorations. A total of 80 clear post-tapers were included and were divided broadly into four study groups based on the type of chemical testing protocols used. Various chemical treatments included alkaline potassium permanganate, hydrogen peroxide, and phosphoric acid. The fourth group was the control group. The composite core material was used for building up the core. Testing of the tensile load was done on a universal testing machine. All the results were analyzed by the Statistical Package for the Social Sciences (SPSS) software. The highest bond strength was observed in the study group treated with alkaline potassium permanganate, while the lowest was observed in the control group followed by the hydrogen peroxide group. While comparing the mean bond strength in between various study groups, significant results were obtained. Chemical treatment protocol significantly alters the mean bond strength of the post and core restoration. Potassium permanganate significantly increases the bond strength between the fiber post and core restoration.

  8. A "Stationery" Kinetics Experiment.

    ERIC Educational Resources Information Center

    Hall, L.; Goberdhansingh, A.

    1988-01-01

    Describes a simple redox reaction that occurs between potassium permanganate and oxalic acid that can be used to prepare an interesting disappearing ink for demonstrating kinetics for introductory chemistry. Discusses laboratory procedures and factors that influence disappearance times. (CW)

  9. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations.

    PubMed

    Rufus, A L; Sathyaseelan, V S; Narasimhan, S V; Velmurugan, S

    2013-06-15

    Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    PubMed

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.

  11. A green method of graphene preparation in an alkaline environment.

    PubMed

    Štengl, Václav; Henych, Jiří; Bludská, Jana; Ecorchard, Petra; Kormunda, Martin

    2015-05-01

    We present a new, simple, quick and ecologically friendly method of exfoliating graphite to produce graphene. The method is based on the intercalation of a permanganate M2MnO4 (M=K, Na, Li), which is formed by the reaction of a manganate MMnO4 with an alkali metal hydroxide MOH. The quality of exfoliation and the morphology were determined using X-ray photoelectron spectroscopy, X-ray diffraction and microscopic techniques, including transmission electron microscopy and atomic force microscopy. We observed that a stable graphene suspension could be prepared under strongly alkaline conditions in the presence of permanganate and ultrasound assistance. The use of only an alkaline environment for the direct preparation of graphene from graphite structures has not been previously described or applied. It was found that such a method of preparation leads to surprisingly high yields and a stable product for hydrophilic graphene applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, Cape Canaveral Air Station, several studies are under way for groundwater cleanup of trichloroethylene at the site. Shown here is monitoring equipment for one of the methods, potassium permanganate oxidation. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program in the 60s. The environmental research project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA, who formed the Interagency NDAPL Consortium (IDC), to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies for representatives from environmental and federal agencies.

  13. Oscillations in the permanganate oxidation of glycine in a stirred flow reactor.

    PubMed

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós

    2013-09-19

    Oscillatory behavior is reported in the permanganate oxidation of glycine in the presence of Na2HPO4 in a stirred flow reactor. In near-neutral solutions, long-period sustained oscillations were recorded in the potential of a Pt electrode and in the light absorbance measured at λ = 418 and 545 nm, characteristic wavelengths for following the evolution of the intermediate [Mn(IV)] and reagent [MnO4(-) ] during the course of the reaction. No evidence of bistability was found. The chemical and physical backgrounds of the oscillatory phenomenon are discussed. In the oscillatory cycle, the positive feedback is attributed to the autocatalytic formation of a soluble Mn(IV) species, whereas the negative feedback arises from its removal from the solution in the form of solid MnO2. A simple model is suggested that qualitatively simulates the experimental observations in batch runs and the dynamics that appears in the flow system.

  14. A DFT study of permanganate oxidation of toluene and its ortho-nitroderivatives.

    PubMed

    Adamczyk, Paweł; Wijker, Reto S; Hofstetter, Thomas B; Paneth, Piotr

    2014-02-01

    Calculations of alternative oxidation pathways of toluene and its ortho-substituted nitro derivatives by permanganate anion have been performed. The competition between methyl group and ring oxidation has been addressed. Acceptable results have been obtained using IEFPCM/B3LYP/6-31+G(d,p) calculations with zero-point (ZPC) and thermal corrections, as validated by comparison with the experimental data. It has been shown that ring oxidation reactions proceed via relatively early transition states that become quite unsymmetrical for reactions involving ortho-nitrosubstituted derivatives. Transition states for the hydrogen atom abstraction reactions, on the other hand, are late. All favored reactions are characterized by the Gibbs free energy of activation, ΔG(≠), of about 25 kcal mol(-1). Methyl group oxidations are exothermic by about 20 kcal mol(-1) while ring oxidations are around thermoneutrality.

  15. Semiquantitative FMO Analysis of Substituent Effect on the Reaction of Permanganate Ion with Unsymmetrical Alkenes.

    PubMed

    Ogino, Toshio; Watanabe, Toru; Matsuura, Masato; Watanabe, Chikara; Ozaki, Hidetoshi

    1998-04-17

    The substituent effects on the reactions of permanganate ion with unsymmetrical alkenes are analyzed on the assumption of a concerted (3 + 2) cycloaddition model by using an equation obtained by approximation based on the FMO theory in which development and localization of the frontier molecular orbitals at the reaction sites with progress of the reaction are considered. The Hammett plots are successfully reproduced with the newly obtained rate data for the reactions of trans-chalcone and its derivatives and the data for methyl cinnamates, cinnamate ions, and alkyl vinyl ethers taken from the literature using FMO energies and orbital coefficients calculated by the PM3 method. It was indicated that a factor introduced to the basic equation in order to estimate the extent of localization of the molecular orbitals at the transition state is closely related to the position of the transition state along the reaction path.

  16. [Simultaneous removal of algae and its odorous metabolite dimethyl trisulfide in water by potassium ferrate].

    PubMed

    Ma, Xiao-yan; Zhang, Ze-hua; Wang, Hong-yu; Hu, Shi-fei; Li, Qing-song

    2013-05-01

    Co-removal of oscillatoria algae and its potential odorous metabolite dimethyl trisulfide (DMTS) in simulated algae-laden alkaline source water by potassium ferrate (K2FeO4) was investigated in contrast to potassium permanganate (KMnO4) pre-oxidation followed by polyferric chloride (PFC) under varying conditions, including pH, initial oxidant dosage and turbidity. Based on the pre-comparison with PFC, the optimal dosage of PFC in the combined KMnO4 pre-oxidation-PFC treatment was determined. Potassium ferrate resulted in 92.4% removal of algae, higher than PFC when the dosage was equivalent as measured by Fe and KMnO4 showed obviously positive effect as a coagulation aid. Degradation of dimethyl trisufide (92.5%) by potassium ferrate was better than the pre-oxidation of potassium permanganate (74.6%), and the treatment time was decreased from 10 min to 1 min.

  17. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Managing Ammonia Emissions From Screwworm Larval Rearing Media.

    PubMed

    Sagel, Agustin; Phillips, Pamela; Chaudhury, Muhammad; Skoda, Steven

    2016-02-01

    Mass production, sterilization, and release of screwworms (Cochliomyia hominivorax (Coquerel)) that were competitive in the field significantly contributed to the successful application of the sterile insect technique for eradication of screwworms from continental North America. Metabolic byproducts resulting from protein-rich diets required for larval screwworms lead to ammonia liberation, sometimes at high levels, within the mass rearing facility. Until recently a sodium polyacrylate gel bulking agent was used for the larval media and adsorbed much of the ammonia. A need to replace the gel with an environmentally "friendly" bulking agent, while not increasing ammonia levels in the rearing facility, led to a series of experiments with the objective of developing procedures to reduce ammonia emissions from the larval media bulked with cellulose fiber. Additives of ammonia-converting bacteria, potassium permanganate, and Yucca schidigera Roezl ex Otrgies powder extract, previously reported to reduce ammonia levels in organic environments, were evaluated. Ammonia-converting bacteria did not have a positive effect. Addition of Y. schidigera powder extract (∼1% of total volume), potassium permanganate (∼250 ppm), and a combination of these two additives (at these same concentrations) kept ammonia at equivalent levels as when larval media was bulked with gel. Potassium permanganate also had sufficient antimicrobial properties that the use of formaldehyde in the diet was not necessary. Further testing is needed, at a mass rearing level, before full implementation into the screwworm eradication program. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  19. High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor

    2015-04-01

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.

  20. Sodium perxenate permits rapid oxidation of manganese for easy spectrophotometric determination

    NASA Technical Reports Server (NTRS)

    Bane, R. W.

    1967-01-01

    Sodium perxenate oxidizes manganese to permanganate almost instantaneously in dilute acid solution and without a catalyst. A solution is prepared by dissolving 200 mg of sodium perxenate in distilled water and diluting to 100 ml.

  1. Organosilicon compounds. XVIII - Silicon-containing dianhydrides

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; Thames, S. F.

    1973-01-01

    Description of four new silicon-containing dianhydrides synthetized in an attempt to provide useful silicon-containing polyimide precursors. They were prepared by aqueous potassium permanganate-pyridine oxidations of corresponding tetramethyl intermediates to form tetracarboxylic acids, which were dehydrated to the dianhydrides.

  2. Determination of active oxygen in the presence of barium and lead

    USGS Publications Warehouse

    Fleischer, M.

    1943-01-01

    The method of Mrgudich and Clark is modified by substituting 5 per cent (by volume) perchloric acid for 50 per cent perchloric acid. Titration by potassium permanganate may be substituted for electrometric titration with ceric sulfate.

  3. Preservation of Mercury in Polyethylene Containers.

    ERIC Educational Resources Information Center

    Piccolino, Samuel Paul

    1983-01-01

    Reports results of experiments favoring use of 0.5 percent nitric acid with an oxidant (potassium dichromate or potassium permanganate) to preserve samples in polyethylene containers for mercury analysis. Includes procedures used and statistical data obtained from the experiments. (JN)

  4. Damn the Permanganate Volcanoes: Full Principles Ahead.

    ERIC Educational Resources Information Center

    Pilar, Frank L.

    1981-01-01

    Discusses whether chemistry should be taught using a purely descriptive approach or using the current "principles" approach. Considers what sort of background should be provided given the uses students are most apt to make of their general chemistry training. (SK)

  5. Identification of key factors affecting the water pollutant concentration in the sluice-controlled river reaches of the Shaying River in China via statistical analysis methods.

    PubMed

    Dou, Ming; Zhang, Yan; Zuo, Qiting; Mi, Qingbin

    2015-08-01

    The construction of sluices creates a strong disturbance in water environmental factors within a river. The change in water pollutant concentrations of sluice-controlled river reaches (SCRRs) is more complex than that of natural river segments. To determine the key factors affecting water pollutant concentration changes in SCRRs, river reaches near the Huaidian Sluice in the Shaying River of China were selected as a case study, and water quality monitoring experiments based on different regulating modes were implemented in 2009 and 2010. To identify the key factors affecting the change rates for the chemical oxygen demand of permanganate (CODMn) and ammonia nitrogen (NH3-N) concentrations in the SCRRs of the Huaidian Sluice, partial correlation analysis, principal component analysis and principal factor analysis were used. The results indicate four factors, i.e., the inflow quantity from upper reaches, opening size of sluice gates, water pollutant concentration from upper reaches, and turbidity before the sluice, which are the common key factors for the CODMn and NH3-N concentration change rates. Moreover, the dissolved oxygen before a sluice is a key factor for the permanganate concentration from CODMn change rate, and the water depth before a sluice is a key factor for the NH3-N concentration change rate. Multiple linear regressions between the water pollutant concentration change rate and key factors were established via multiple linear regression analyses, and the quantitative relationship between the CODMn and NH3-N concentration change rates and key affecting factors was analyzed. Finally, the mechanism of action for the key factors affecting the water pollutant concentration changes was analyzed. The results reveal that the inflow quantity from upper reaches, opening size of sluice gates, permanganate concentration from CODMn from upper reaches and dissolved oxygen before the sluice have a negative influence and the turbidity before the sluice has a positive influence on the permanganate concentration from CODMn change rates and that the opening size of sluice gates, NH3-N concentration from upper reaches, and water depth before the sluice have a negative influence and the inflow quantity from upper reaches and turbidity before the sluice have a positive influence on the NH3-N concentration change rates, which provides a scientific grounding for pollution control and sluice operations in SCRRs.

  6. CATALYTIC COMBUSTION OF ATMOSPHERIC CONTAMINANTS IN SPACE VEHICLE ATMOSPHERES.

    DTIC Science & Technology

    preheater were devised which allowed precise temperature control. Hopcalite , palladium supported on alumina, vanadium pentoxide, and silver permanganate...were the catalysts considered. Palladium was found to be more effective catalyst than Hopcalite for oxidizing methane. Palladium was also effective in

  7. Bioremediation/Natural Attenuation Continues after ISCO Treatment

    EPA Science Inventory

    Permanganate has been successfully used in in-situ chemical oxidation (ISCO) to transform a wide range of organic contaminants under diverse geologic and geochemical conditions. Here, a critical analysis is presented of several technical issues commonly raised during in-situ che...

  8. Modern Chemical Technology, Volume 5.

    ERIC Educational Resources Information Center

    Pecsok, Robert L., Ed.; Chapman, Kenneth, Ed.

    This volume contains chapters 26-31 for the American Chemical Society (ACS) "Modern Chemical Technology" (ChemTeC) instructional material intended to prepare chemical technologists. Chapter 26 reviews oxidation and reduction, including applications in titrations with potassium permanganate and iodometry. Coordination compounds are…

  9. SURFACE TREATMENT OF MOLYBDENUM METAL

    DOEpatents

    Coffer, C.O.

    1961-12-01

    A process of descaling molybdenum articles comprises first immersing them in an aqueous sodium hydroxide-potassium permanganate solution of between 60 and 85 deg C, rinsing, and then immersing them in an aqueous solution containing a mixture of sulfuric, hydrochloric, and chromic acids.

  10. Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.

    PubMed

    Thomson, N R; Fraser, M J; Lamarche, C; Barker, J F; Forsey, S P

    2008-11-14

    The long-term management of dissolved plumes originating from a coal tar creosote source is a technical challenge. For some sites stabilization of the source may be the best practical solution to decrease the contaminant mass loading to the plume and associated off-site migration. At the bench-scale, the deposition of manganese oxides, a permanganate reaction byproduct, has been shown to cause pore plugging and the formation of a manganese oxide layer adjacent to the non-aqueous phase liquid creosote which reduces post-treatment mass transfer and hence mass loading from the source. The objective of this study was to investigate the potential of partial permanganate treatment to reduce the ability of a coal tar creosote source zone to generate a multi-component plume at the pilot-scale over both the short-term (weeks to months) and the long-term (years) at a site where there is >10 years of comprehensive synoptic plume baseline data available. A series of preliminary bench-scale experiments were conducted to support this pilot-scale investigation. The results from the bench-scale experiments indicated that if sufficient mass removal of the reactive compounds is achieved then the effective solubility, aqueous concentration and rate of mass removal of the more abundant non-reactive coal tar creosote compounds such as biphenyl and dibenzofuran can be increased. Manganese oxide formation and deposition caused an order-of-magnitude decrease in hydraulic conductivity. Approximately 125 kg of permanganate were delivered into the pilot-scale source zone over 35 days, and based on mass balance estimates <10% of the initial reactive coal tar creosote mass in the source zone was oxidized. Mass discharge estimated at a down-gradient fence line indicated >35% reduction for all monitored compounds except for biphenyl, dibenzofuran and fluoranthene 150 days after treatment, which is consistent with the bench-scale experimental results. Pre- and post-treatment soil core data indicated a highly variable and random spatial distribution of mass within the source zone and provided no insight into the mass removed of any of the monitored species. The down-gradient plume was monitored approximately 1, 2 and 4 years following treatment. The data collected at 1 and 2 years post-treatment showed a decrease in mass discharge (10 to 60%) and/or total plume mass (0 to 55%); however, by 4 years post-treatment there was a rebound in both mass discharge and total plume mass for all monitored compounds to pre-treatment values or higher. The variability of the data collected was too large to resolve subtle changes in plume morphology, particularly near the source zone, that would provide insight into the impact of the formation and deposition of manganese oxides that occurred during treatment on mass transfer and/or flow by-passing. Overall, the results from this pilot-scale investigation indicate that there was a significant but short-term (months) reduction of mass emanating from the source zone as a result of permanganate treatment but there was no long-term (years) impact on the ability of this coal tar creosote source zone to generate a multi-component plume.

  11. ISCO'S LONG-TERM IMPACT ON AQUIFER CONDITIONS AND MICROBIAL ACTIVITY

    EPA Science Inventory

    Potential for lasting negative environmental effects has clouded remediation programs using permanganate and other oxidants. A major concern about using In-Situ Chemical Oxidation (ISCO) for remediation of CVOCs is that application of strong oxidants to subsurface systems may pe...

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Two demonstrations are described: (1) a variant of preparing purple benzene by phase transfer catalysis with quaternary ammonium salts and potassium permanganate in which crown ethers are used; (2) a corridor or "hallway" demonstration in which unknown molecular models are displayed and prizes awarded to students correctly identifying the…

  13. ISCO'S LONG-TERM IMPACT ON AQUIFER CONDITIONS AND MICROBIAL ACTIVITY

    EPA Science Inventory

    Permanganate has been successfully used in in-situ chemical oxidation (ISCO) to transform a wide range of organic contaminants under diverse geologic and geochemical conditions. Here, a critical analysis is presented of several technical issues commonly raised during in-situ che...

  14. Spectroscopy on the Overhead Projector.

    ERIC Educational Resources Information Center

    Solomon, Sally; And Others

    1994-01-01

    Any overhead projector easily can be converted into a simple spectrometer by placing a piece of diffraction grating over the projecting lens. A detailed description of the apparatus and suggested spectroscopy experiments are included. Demonstrations can utilize solutions of cobalt chloride, potassium permanganate, potassium dichromate, or…

  15. Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca

    2010-11-01

    Arsenic is widespread in soils, water and air. In natural water the main forms are arsenite (As(III)) and arsenate (As(V)). The consumption of water containing high concentration of arsenic produces serious effects on human health, like skin and lung cancer. In Italy, Legislative Decree 2001/31 reduced the limit of arsenic from 50 to 10 μg/L, in agreement with the European Directive 98/83/EC. As consequence, many drinking water treatment plant companies needed to upgrade the existing plants where arsenic was previously removed or to build up new plants for arsenic removal when this contaminant was not previously a critical parameter. Arsenic removal from water may occur through the precipitation with iron or aluminum salts, adsorption on iron hydroxide or granular activated alumina (AA), reverse osmosis and ion exchange (IE). Some of the above techniques, especially precipitation, adsorption with AA and IE, can reach good arsenic removal yields only if arsenic is oxidized. The aim of the present work is to investigate the efficiency of the oxidation of As(III) by means of four conventional oxidants (chlorine dioxide, sodium hypochlorite, potassium permanganate and monochloramine) with different test conditions: different type of water (demineralised and real water), different pH values (5.7-6-7 and 8) and different doses of chemicals. The arsenic oxidation yields were excellent with potassium permanganate, very good with hypochlorite and low with monochloramine. These results were observed both on demineralised and real water for all the tested reagents with the exception of chlorine dioxide that showed a better arsenic oxidation on real groundwater than demineralised water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. [Effects of Algicidal Substance on Phaeocystis globosa and Its Fatty Acids by the Simulation Experiment].

    PubMed

    Yang, Qiu-chan; Zhao, Ling; Yin, Ping-he; Tan, Shuo; Shu, Wan-jiao; Hou, Shao-ling

    2015-09-01

    In order to evaluate the effects of algicidal substance on Phaeocystis globosa (P. globosa) and its algal toxin-fatty acids, the changes of chlorophyll-a, pH, dissolved oxygen, permanganate index and N, P concentration were evaluated by the simulation experiment. Fatty acids composition in P. globosa was detected by GC-MS. After adding algicidal substance in simulative water with the volume ratio 1: 100, the levels of chlorophyll-a, pH and permanganate index were reduced, while the concentrations of dissolved oxygen and N, P were increased significantly within 14 days. Comparing with control group after 14 days, pH was reduced to 7. 51 from 8. 50, chlorophyll-a and permanganate index were reduced by 82. 3% (P < 0. 05) and 55. 2% (P < 0. 01), respectively. Dissolved oxygen was significantly increased by 29. 5% (P < 0. 05). The concentrations of NH4+ -N, NO2- -N, NO3- -N and PO(4)3- -P were respectively 0. 46, 1. 50 , 6. 24 and 1. 30 times higher than that in control group. 14 days after the addition of algicidal substance, the total fatty acids of P. globosa were reduced by 83. 4%. The major fatty acids C18:2, C16:0, and C18:1, were reduced by 100%, 97. 7% and 85. 4% (P <0. 01), respectively. Our results indicated that algicidal substance from Bacillus sp. BI can effectively inhibit the growth of P. globosa and reduce the concentration of algal toxin-fatty acid in the simulation experiment. This study provides a theoretical basis for ecological safety of algicidal substance form Bacillus sp. strain Bl.

  17. The Impact of In-situ Chemical Oxidation on Contaminant Mass Discharge: Linking Source-Zone and Plume-Scale Characterizations of Remediation Performance

    NASA Astrophysics Data System (ADS)

    Brusseau, M. L.; Carroll, K. C.; Baker, J. B.; Allen, T.; DiGuiseppi, W.; Hatton, J.; Morrison, C.; Russo, A. E.; Berkompas, J. L.

    2011-12-01

    A large-scale permanganate-based in-situ chemical oxidation (ISCO) effort has been conducted over the past ten years at a federal Superfund site in Tucson, AZ, for which trichloroethene (TCE) is the primary contaminant of concern. Remediation performance was assessed by examining the impact of treatment on contaminant mass discharge, an approach that has been used for only a very few prior ISCO projects. Contaminant mass discharge tests were conducted before and after permanganate injection to measure the impact at the source-zone scale. The results indicate that ISCO caused a significant reduction in mass discharge (approximately 75%). The standard approach of characterizing discharge at the source-zone scale was supplemented with additional characterization at the plume scale, which was evaluated by examining the change in contaminant mass discharge associated with the pump-and-treat system. The integrated contaminant mass discharge decreased by approximately 70%, consistent with the source-zone-scale measurements. The integrated mass discharge rebounded from 0.1 to 0.2 Kg/d within one year after cessation of permanganate injections, after which it has been stable for several years. Collection of the integrated contaminant mass discharge data throughout the ISCO treatment period provided a high-resolution, real-time analysis of the site-wide impact of ISCO, thereby linking source-zone remediation to impacts on overall risk. The results indicate that ISCO was successful in reducing contaminant mass discharge at this site, which comprises a highly heterogeneous subsurface environment. Analysis of TCE sediment concentration data for core material collected before and after ISCO supports the hypothesis that the remaining mass discharge is associated in part with poorly-accessible contaminant mass residing within lower-permeability zones.

  18. Impact of in situ chemical oxidation on contaminant mass discharge: linking source-zone and plume-scale characterizations of remediation performance.

    PubMed

    Brusseau, M L; Carroll, K C; Allen, T; Baker, J; Diguiseppi, W; Hatton, J; Morrison, C; Russo, A; Berkompas, J

    2011-06-15

    A large-scale permanganate-based in situ chemical oxidation (ISCO) effort has been conducted over the past ten years at a federal Superfund site in Tucson, AZ, for which trichloroethene (TCE) is the primary contaminant of concern. Remediation performance was assessed by examining the impact of treatment on contaminant mass discharge, an approach that has been used for only a very few prior ISCO projects. Contaminant mass discharge tests were conducted before and after permanganate injection to measure the impact at the source-zone scale. The results indicate that ISCO caused a significant reduction in mass discharge (approximately 75%). The standard approach of characterizing discharge at the source-zone scale was supplemented with additional characterization at the plume scale, which was evaluated by examining the change in contaminant mass discharge associated with the pump-and-treat system. The integrated contaminant mass discharge decreased by approximately 70%, consistent with the source-zone-scale measurements. The integrated mass discharge rebounded from 0.1 to 0.2 kg/d within one year after cessation of permanganate injections, after which it has been stable for several years. Collection of the integrated contaminant mass discharge data throughout the ISCO treatment period provided a high-resolution, real-time analysis of the site-wide impact of ISCO, thereby linking source-zone remediation to impacts on overall risk. The results indicate that ISCO was successful in reducing contaminant mass discharge at this site, which comprises a highly heterogeneous subsurface environment. Analysis of TCE sediment concentration data for core material collected before and after ISCO supports the hypothesis that the remaining mass discharge is associated in part with poorly accessible contaminant mass residing within lower-permeability zones.

  19. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements

    PubMed Central

    Christenson, Mark; Kambhu, Ann; Reece, James; Comfort, Steve; Brunner, Laurie

    2016-01-01

    In 2009, we identified a TCE plume at an abandoned landfill that was located in a low permeable silty-clay aquifer. To treat the TCE, we manufactured slow-release potassium permanganate cylinders (oxidant candles) that had diameters of either 5.1 or 7.6 cm and were 91.4 cm long. In 2010, we compared two methods of candle installation by inserting equal masses of the oxidant candles (7.6-cm vs 5.1-cm dia). The 5.1-cm dia candles were inserted with direct-push rods while the 7.6-cm candles were housed in screens and lowered into 10 permanent wells. Since installation, the 7.6-cm oxidant candles have been refurbished approximately once per year by gently scraping off surface oxides. In 2012, we reported initial results; in this paper, we provide a 5-yr performance review since installation. Temporal sampling shows oxidant candles placed in wells have steadily reduced migrating TCE concentrations. Moreover, these candles still maintain an inner core of oxidant that has yet to contribute to the dissolution front and should provide several more years of service. Oxidant candles inserted by direct-push have stopped reducing TCE concentrations because a MnO2 scale developed on the outside of the candles. To counteract oxide scaling, we fabricated a second generation of oxidant candles that contain sodium hexametaphosphate. Laboratory experiments (batch and flow-through) show that these second-generation permanganate candles have better release characteristics and are less prone to oxide scaling. This improvement should reduce the need to perform maintenance on candles placed in wells and provide greater longevity for candles inserted by direct-push. PMID:26901481

  20. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.

    PubMed

    de Weert, J P A; Keijzer, T J S; van Gaans, P F M

    2014-12-01

    In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements.

    PubMed

    Christenson, Mark; Kambhu, Ann; Reece, James; Comfort, Steve; Brunner, Laurie

    2016-05-01

    In 2009, we identified a TCE plume at an abandoned landfill that was located in a low permeable silty-clay aquifer. To treat the TCE, we manufactured slow-release potassium permanganate cylinders (oxidant candles) that had diameters of either 5.1 or 7.6 cm and were 91.4 cm long. In 2010, we compared two methods of candle installation by inserting equal masses of the oxidant candles (7.6-cm vs 5.1-cm dia). The 5.1-cm dia candles were inserted with direct-push rods while the 7.6-cm candles were housed in screens and lowered into 10 permanent wells. Since installation, the 7.6-cm oxidant candles have been refurbished approximately once per year by gently scraping off surface oxides. In 2012, we reported initial results; in this paper, we provide a 5-yr performance review since installation. Temporal sampling shows oxidant candles placed in wells have steadily reduced migrating TCE concentrations. Moreover, these candles still maintain an inner core of oxidant that has yet to contribute to the dissolution front and should provide several more years of service. Oxidant candles inserted by direct-push have stopped reducing TCE concentrations because a MnO2 scale developed on the outside of the candles. To counteract oxide scaling, we fabricated a second generation of oxidant candles that contain sodium hexametaphosphate. Laboratory experiments (batch and flow-through) show that these second-generation permanganate candles have better release characteristics and are less prone to oxide scaling. This improvement should reduce the need to perform maintenance on candles placed in wells and provide greater longevity for candles inserted by direct-push. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.

    PubMed

    Christenson, Mark D; Kambhu, Ann; Comfort, Steve D

    2012-10-01

    Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 μg L(-1)) was identified in a low permeable silty-clay aquifer (K(h)=0.5 md(-1)) that was within 6m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5. cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. ISCO'S LONG-TERM IMPACT ON AQUIFER CONDITIONS AND MICROBIAL ACTIVITY (ABSTRACT)

    EPA Science Inventory

    Permanganate has been successfully used in in-situ chemical oxidation (ISCO) to transform a wide range of organic contaminants under diverse geologic and geochemical conditions. Here, a critical analysis is presented of several technical issues commonly raised during in-situ che...

  4. Using a Dissecting Microscope in Teaching Introductory Chemistry.

    ERIC Educational Resources Information Center

    Winokur, Robert; Monroe, Manus

    1985-01-01

    To have students develop observational skills and acquire an excitement about chemistry, stereoscopic dissecting microscopes are used to observe the physical characteristics and chemical reactions of various substances. Several of these reactions (including dissolving potassium permanganate in deionized water and reactions between copper metal and…

  5. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    ERIC Educational Resources Information Center

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  6. Microbial screening test for lignite degradation. Quarterly progress report No. 1, January-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Potassium permanganate and sodium hypochlorite oxidation of lignitic coal were performed. Ion chromatography of low molecular weight carboxylic acids - oxalic acid, formic acid, and acetic acid - produced by potassium permanganate and sodium hypochlorite oxidation was executed. Oxalic acid was found to be the most predominant low molecular weight species. It was estimated that about 10% of the carbon present in the chemical structure of lignite was converted to oxalic acid by sodium hypochlorite oxidation. Ion chromatography analysis showed that about 43% of the lignite carbon was converted to carbon dioxide in all experiments. Biological degradation of lignite bymore » P. versicolor, a white-rot fungus, on lignite/agar and lignite slurry was attempted. Apparently, P. versicolor is capable of growing on lignite slurry. Acclimation of P. versicolor to lignite was proceeded. Biochemical reaction test for laccase production of P. versicolor was performed and found to be positive. 15 refs., 5 figs., 6 tabs.« less

  7. Potassium permanganate-glutaraldehyde chemiluminescence system catalyzed by gold nanoprisms toward selective determination of fluoride.

    PubMed

    Abolhasani, Jafar; Hassanzadeh, Javad; Ghorbani-Kalhor, Ebrahim

    2016-02-01

    Gold and silver nanoparticles (NPs) are shown to exert a positive effect on the chemiluminescence (CL) reaction of permanganate aldehydes. Interestingly, between various shapes examined, Au nanoprisms have the highest beneficial effect. This effect is even more notable in the presence of sodium dodecyl sulfate (SDS) surfactant. UV-vis spectra and transmission electron microscopy were used to characterize the NP shapes and sizes. Furthermore, it was observed that iron(III) ions can slightly increase CL emission of this system. This intensification is very effective in the presence of fluoride ions (F(-)). These observations form the basis of the method for the high sensitive determination of F(-) in the 6-1200 nmol L(-1) concentration range, with a detection limit of 2.1 nmol L(-1). The proposed method has good precision and was satisfactorily used in the selective determination of low concentrations of fluoride ion in real samples. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Antioxidation performance of poly(vinyl alcohol) modified poly(vinylidene fluoride) membranes

    NASA Astrophysics Data System (ADS)

    Wang, Daohui; Li, Xianfeng; Li, Qing; Liu, Zhen; Li, Nana; Huang, Qinglin; Zhang, Yufeng; Xiao, Changfa

    2018-03-01

    Commercial poly(vinylidene fluoride) (PVDF) membranes were modified by dip-coating and crosslinking hydrophilic poly(vinyl alcohol) (PVA) on the membrane surface. The antioxidation performance of the modified PVDF membranes was evaluated via exposing the modified membranes to sodium hypochlorite and potassium permanganate solutions for 5-30 days, respectively. The evaluation was based on the influences of the two oxidants on the permeability, rejection, and hydrophility of the modified membranes, which were characterized by water flux, ink rejection, water contact angle, x-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and x-ray diffraction (XRD) measurements. The XPS and water contact angle results show that the hydrophilicity of PVDF membranes was significantly improved when PVA was crosslinked on the surface of PVDF membranes. When the modified membranes had been treated with sodium hypochlorite or potassium permanganate for 30 days, the permeability and hydrophilicity were basically maintained and the rejection was slightly decreased. XPS and XRD indicated that some of PVAs coated on the membrane surface could be oxidized and peeled.

  9. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin

    NASA Astrophysics Data System (ADS)

    Olsen, Cameron R.; Smith, Trevor J.; Embley, Jacob S.; Maxfield, Jake H.; Hansen, Kameron R.; Peterson, J. Ryan; Henrichsen, Andrew M.; Erickson, Stephen D.; Buck, David C.; Colton, John S.; Watt, Richard K.

    2017-05-01

    This paper investigates the comproportionation reaction of MnII with {{{{MnO}}}4}- as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that {{{{MnO}}}4}- serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.

  10. Physicochemical properties of manganese oxides obtained via the sol-gel method: The reduction of potassium permanganate by polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Ivanets, A. I.; Prozorovich, V. G.; Krivoshapkina, E. F.; Kuznetsova, T. F.; Krivoshapkin, P. V.; Katsoshvili, L. L.

    2017-08-01

    Experimental data on the sol-gel synthesis of manganese oxides formed during the reduction of potassium permanganate by polyvinyl alcohol in an aqueous medium are presented. The physicochemical properties of the obtained manganese oxide systems that depend on the conditions of the synthesis are studied by means of DTA, XRD, SEM, and the low temperature adsorption-desorption of nitrogen. It is found that the obtained samples have a mesoporous structure and predominantly consist of double potassium-manganese oxide K2Mn4O8 with a tunnel structure and impurities of oxides such as α-MnO2, MnO, α-Mn2O3, and Mn5O8. It is shown that the proposed method of synthesis allows us to regulate the size and volume of mesopores and, to a lesser extent, the texture of the obtained oxides, which can be considered promising sorbents for the selective extraction of strontium and cesium ions from multicomponent aqueous solutions.

  11. Permanganate-bromide-silver nanoparticles as a new chemiluminescence system and its application to captopril determination.

    PubMed

    Amjadi, Mohammad; Manzoori, Jamshid L; Hassanzadeh, Javad; Sorouraddin, Mohammad H

    2013-10-15

    A novel chemiluminescence (CL) system based on the oxidation of bromide by permanganate in sulfuric acid medium is introduced. The enhancing effect of silver nanoparticles (NPs), synthesized by chemical reduction method, on this reaction was studied. It was demonstrated that spherical silver nanoparticles with average size of 18 nm had a most remarkable catalytic effect on this reaction. CL emission wavelengths and UV-vis spectra were used to characterize the system and propose a possible mechanism. Furthermore, it was found that captopril inhibits the action of NPs and decreases the intensity of CL. Based on this phenomenon, a new CL method was developed for the determination of captopril in the 3.0 × 10(-10) to 1.0 × 10(-7) mol L(-1) concentration range with a detection limit (3s) of 0.12 nmol L(-1). The method was successfully applied to the determination of captopril in pharmaceutical formulations, human urine and serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Determination of moxifloxacin and its oxidation products with kinetic evaluation under potassium permanganate treatment in acidic solution by ultra-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Hubicka, Urszula; Zmudzki, Paweł; Zajdel, Paweł; Krzek, Jan

    2013-01-01

    A simple, sensitive, and reproducible ultra-performance LC method for the determination of moxifloxacin (MOXI) oxidation stability under permanganate treatment in acidic conditions (pH 3.0-6.0) was developed. Besides the MOXI peak [retention time (RT) = 2.58], four additional products (RT = 0.86, 0.91, 1.42, and 1.89) were observed in all conditions tested. The oxidation process followed second-order reaction kinetics and depended upon solution acidity. The highest reaction rate constant was observed at pH 3.0, and this value decreased as the pH was increased to 6.0. The oxidation products were characterized, and their fragmentation pathways, derived from MS/MS data, were proposed. Two of these products were identified as hydroxyl derivatives of MOXI and two others as their oxidation product analogs with molecular ions of 418.4 and 416.4 m/z, respectively.

  13. [Curative effect of ozone hydrotherapy for pemphigus].

    PubMed

    Jiang, Fuqiong; Deng, Danqi; Li, Xiaolan; Wang, Wenfang; Xie, Hong; Wu, Yongzhuo; Luan, Chunyan; Yang, Binbin

    2018-02-28

    To determine clinical curative effects of ozone therapy for pemphigus vulgaris.
 Methods: Ozone hydrotherapy was used as an aid treatment for 32 patients with pemphigus vulgaris. The hydropathic compression of potassium permanganate solution for 34 patients with pemphigus vulgaris served as a control. The main treatment for both groups were glucocorticoids and immune inhibitors. The lesions of patients, bacterial infection, usage of antibiotics, patient's satisfaction, and clinical curative effect were evaluated in the 2 groups.
 Results: There was no significant difference in the curative effect and the average length of staying at hospital between the 2 groups (P>0.05). But rate for the usage of antibiotics was significantly reduced in the group of ozone hydrotherapy (P=0.039). The patients were more satisfied in using ozone hydrotherapy than the potassium permanganate solution after 7-day therapy (P>0.05).
 Conclusion: Ozone hydrotherapy is a safe and effective aid method for pemphigus vulgaris. It can reduce the usage of antibiotics.

  14. Quantitative evaluation of dermatological antiseptics.

    PubMed

    Leitch, C S; Leitch, A E; Tidman, M J

    2015-12-01

    Topical antiseptics are frequently used in dermatological management, yet evidence for the efficacy of traditional generic formulations is often largely anecdotal. We tested the in vitro bactericidal activity of four commonly used topical antiseptics against Staphylococcus aureus, using a modified version of the European Standard EN 1276, a quantitative suspension test for evaluation of the bactericidal activity of chemical disinfectants and antiseptics. To meet the standard for antiseptic effectiveness of EN 1276, at least a 5 log10 reduction in bacterial count within 5 minutes of exposure is required. While 1% benzalkonium chloride and 6% hydrogen peroxide both achieved a 5 log10 reduction in S. aureus count, neither 2% aqueous eosin nor 1 : 10 000 potassium permanganate showed significant bactericidal activity compared with control at exposure periods of up to 1 h. Aqueous eosin and potassium permanganate may have desirable astringent properties, but these results suggest they lack effective antiseptic activity, at least against S. aureus. © 2015 British Association of Dermatologists.

  15. Algal Toxin Removal Capabilities of Common Drinking Water ...

    EPA Pesticide Factsheets

    This presentation discusses the removal of cyanobacteria and cyanobacteria toxins through permanganate addition, powdered activated carbon addition, sedimentation, filtration and chlorination. The presentation is intended to help transfer the results of ORD research to state primacy agency personnel, practicing drinking water treatment personnel and consulting engineers.

  16. "Mud" + "Blood"--A Very Colorful Demonstration.

    ERIC Educational Resources Information Center

    Hambly, Gordon

    1998-01-01

    Describes a demonstration in which a bloodred-colored solution of hydrogen peroxide, sodium hydroxide, and phenolphthalein indicator is added to a mud-colored solution of potassium permanganate, hydrated manganous chloride, and sulfuric acid. The mixture turns clear when added together. Draws parallels between the demonstration and the Old…

  17. A Phase Transfer Catalyzed Permanganate Oxidation: Preparation of Vanillin from Isoeugenol Acetate.

    ERIC Educational Resources Information Center

    Lampman, Gary M.; Sharpe, Steven D.

    1983-01-01

    Background information, laboratory procedures, and results are provided for the preparation of vanillin from isoeugenol acetate. Reaction scheme used to prepare the vanillin and a table indicating the different oxidation experiments carried out on isoeugenol or isoeugenol acetate are also provided. (JN)

  18. IMPACT OF WATER CHEMISTRY ON MANGANESE REMOVAL DURING OXIDATION/FILTRATION TREATMENT

    EPA Science Inventory

    This is a poster showing the purpose and setup of our pilot plant experiments with manganese filtration. The focus is on the differences, effectiveness, and problems with using chlorine and potassium permanganate in oxidation/filtration. The poster will show the results and findi...

  19. GUIDELINES FOR MERCURY MEASUREMENTS FROM STATIONARY SOURCES: QUALITY ASSURANCE HANDBOOK, SECTION 3.19

    EPA Science Inventory

    Method 101A (M101A) is similar to Method 101 for the determination of mercury (Hg) from stationary sources. n M101A, however, acidic potassium permanganate solution is used for sample collection instead of acidic iodine monochloride solution. his method applies to the determinati...

  20. In vitro comparisons of the inhibitory activity of florfenicol copper sulfate and potassium permanganate towards Aeromonas hydrophila and Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Aeromonas hydrophila and Flavobacterium columnare, the etiological agents of motile aeromonas septicemia (MAS) and columnaris disease, respectively, have been recently causing crippling moralities to the sunshine bass, Morone chrysops female X Morone saxatilis male (Percichthyidae), industry in the ...

  1. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  2. Solution Calorimetry Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  3. MICROBIAL RESPONSES TO IN SITU CHEMICAL OXIDATION, SIX-PHASE HEATING, AND STEAM INJECTION REMEDIATION TECHNOLOGIES IN GROUND WATER

    EPA Science Inventory

    The evaluation of microbial responses to three in situ source removal remedial technologies including permanganate-based in-situ chemical oxidation (ISCO), six-phase heating (SPH), and steam injection (SI) was performed at Cape Canaveral Air Station in Florida. The investigatio...

  4. A Film Canister Colorimeter.

    ERIC Educational Resources Information Center

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-01-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The student-constructed colorimeter was used to show the Beer-Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for an LED. Makes comparisons between this instrument…

  5. 40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disinfectant or oxidant. (2) Use of chlorine dioxide as an alternate or supplemental disinfectant or oxidant... to reduce TTHM formation and, where necessary, substituting for the use of chlorine as a pre-oxidant chloramines, chlorine dioxide or potassium permanganate. (5) Use of powdered activated carbon for THM...

  6. Boron-doped manganese dioxide for supercapacitors.

    PubMed

    Chi, Hong Zhong; Li, Yuwei; Xin, Yingxu; Qin, Haiying

    2014-11-11

    The addition of boron as a dopant during the reaction between carbon fiber and permanganate led to significant enhancement of the growth-rate and formation of the porous framework. The doped MnO2 was superior to the pristine sample as electrode materials for supercapacitors in terms of the specific capacitance and rate capability.

  7. Relationship Between Redox Potential, Disinfectant, and pH in Drinking Water

    EPA Science Inventory

    This work will examine the effects of pH and oxidant type (chlorine [Cl2], oxygen [O2], hydrogen peroxide [H2O2], monochloramine [MCA], and potassium permanganate [KMnO4]) and concentration (mg/L) on the redox potential of buffered test water. Also, the effects of incrementing ir...

  8. An in vitro screening method to evaluate chemicals as potential chemotherapeutants to control Aeromonas hydrophila infection in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Using catfish gill cells G1B and four chemicals (hydrogen peroxide, sodium chloride, potassium permanganate, and D-mannose), the feasibility of using an in vitro screening method to identify potential effective chemotherapeutants was evaluated in this study. In vitro screening results revealed that,...

  9. Evaluating Mechanisms of Dihydroxylation by Thin-Layer Chromatography: A Microscale Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Burlingham, Benjamin T.; Rettig, Joseph C.

    2008-01-01

    A microscale experiment is presented in which cyclohexene is dihydroxylated under three sets of conditions: epoxidation-hydrolysis, permanganate oxidation, and the Woodward dihydroxylation. The products of the reactions are determined by the use of thin-layer chromatography. Teams of students are presented with proposed mechanisms for each…

  10. Melanin Biosynthesis in Cryptococcus neoformans

    PubMed Central

    Williamson, Peter R.; Wakamatsu, Kazumasa; Ito, Shosuke

    1998-01-01

    Pigment production by Cryptococcus neoformans is virulence associated. Dopamine- and 3,4-dihydroxyphenylalanine–melanin products were identified after acidic permanganate oxidation, alkaline hydrogen peroxide oxidation, or hydrolysis with hydriodic acid. These data provide direct chemical evidence for the formation of eumelanin polymers by catecholamine oxidation by laccase alone followed by oxidative coupling of dihydroxyindole. PMID:9515929

  11. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    EPA Science Inventory

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  12. In-Situ Chemical Reduction and Oxidation of VOCs in Groundwater: Groundwater Treatability Studies

    NASA Technical Reports Server (NTRS)

    Keith, Amy; Glasgow, Jason; McCaleh, Rececca C. (Technical Monitor)

    2001-01-01

    This paper presents NASA Marshall Space Flight Center's treatability studies for volatile organic compounds in groundwater. In-Situ groundwater treatment technologies include: 1) Chemical Reduction(Ferox); 2) Chemical Oxidation (Fenton Reagents, Permanganate, and Persulfate); and 3) Thermal (Dynamic Underground Stripping, Six-Phase Heating). This paper is presented in viewgraph form.

  13. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; King, W.; Hay, M.

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less

  14. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    PubMed Central

    Ibarra-Hernández, Adriana

    2018-01-01

    Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D) different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A). These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation. PMID:29438280

  15. Sensitive and selective determination of fluvoxamine maleate using a sensitive chemiluminescence system based on the alkaline permanganate-Rhodamine B-gold nanoparticles reaction.

    PubMed

    Hassanzadeh, Javad; Amjadi, Mohammad

    2015-06-01

    A high-yield chemiluminescence (CL) system based on the alkaline permanganate-Rhodamine B reaction was developed for the sensitive determination of fluvoxamine maleate (Flu). Rhodamine B is oxidized by alkaline KMnO4 and a weak CL emission is produced. It was demonstrated that gold nanoparticles greatly enhance this CL emission due to their interaction with Rhodamine B molecules. It is also observed that sodium dodecyl sulfate, an anionic surfactant, can strongly increase this enhancement. In addition, it was demonstrated that a notable decrease in the CL intensity is observed in the presence of Flu. This may be related to Flu oxidation with KMnO4 . There is a linear relationship between the decrease in CL intensity and the Flu concentration over a range of 2-300 µg/L. A new simple, rapid and sensitive CL method was developed for the determination of Flu with a detection limit (3s) of 1.35 µg/L. The proposed method was used for the determination of Flu in pharmaceutical and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Medication inhibits tolerance to seawater in coho salmon smolts

    USGS Publications Warehouse

    Bouck, Gerald R.; Johnson, David A.

    1979-01-01

    Applications of 10 therapeutic and two anesthetic agents to healthy smolts of coho salmon (Oncorhynchus kisutch) by conventional methods were followed by two different posttreatment circumstances. In condition I, fish were treated and then transferred directly to 28‰ seawater for 10 days; in condition II, fish were treated and held in fresh water for 4 days before their medium was gradually changed over a 4-hour period to 28‰ seawater. In condition I, no mortality occurred among fish treated with 2,4-D, trichlorofon, simazine, quinaldine, or light to moderate doses of MS-222. About 10% mortality occurred among fish treated with formalin and nifurpirinol. High mortality in seawater followed treatments with copper sulfate, hyamine 1622, potassium permanganate, malachite green (one protocol), and heavy doses of MS-222. In condition II, mortality was reduced but still high for copper sulfate and potassium permanganate, much lower for malachite green and hyamine 1622, and zero for the other agents. The results indicate that additional recovery time in fresh water is necessary between some treatments and exposure to salt water.

  17. Model creation of moving redox reaction boundary in agarose gel electrophoresis by traditional potassium permanganate method.

    PubMed

    Xie, Hai-Yang; Liu, Qian; Li, Jia-Hao; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-02-21

    A novel moving redox reaction boundary (MRRB) model was developed for studying electrophoretic behaviors of analytes involving redox reaction on the principle of moving reaction boundary (MRB). Traditional potassium permanganate method was used to create the boundary model in agarose gel electrophoresis because of the rapid reaction rate associated with MnO(4)(-) ions and Fe(2+) ions. MRB velocity equation was proposed to describe the general functional relationship between velocity of moving redox reaction boundary (V(MRRB)) and concentration of reactant, and can be extrapolated to similar MRB techniques. Parameters affecting the redox reaction boundary were investigated in detail. Under the selected conditions, good linear relationship between boundary movement distance and time were obtained. The potential application of MRRB in electromigration redox reaction titration was performed in two different concentration levels. The precision of the V(MRRB) was studied and the relative standard deviations were below 8.1%, illustrating the good repeatability achieved in this experiment. The proposed MRRB model enriches the MRB theory and also provides a feasible realization of manual control of redox reaction process in electrophoretic analysis.

  18. Absorption of Ethylene on Membranes Containing Potassium Permanganate Loaded into Alumina-Nanoparticle-Incorporated Alumina/Carbon Nanofibers.

    PubMed

    Tirgar, Ashkan; Han, Daewoo; Steckl, Andrew J

    2018-06-06

    Ethylene is a natural aging hormone in plants, and controlling its concentration has long been a subject of research aimed at reducing wastage during packaging, transport, and storage. We report on packaging membranes, produced by electrospinning, that act as efficient carriers for potassium permanganate (PPM), a widely used ethylene oxidant. PPM salt loaded on membranes composed of alumina nanofibers incorporating alumina nanoparticles outperform other absorber systems and oxidize up to 73% of ethylene within 25 min. Membrane absorption of ethylene generated by avocados was totally quenched in 21 h, and a nearly zero ethylene concentration was observed for more than 5 days. By comparison, the control experiments exhibited a concentration of 53% of the initial value after 21 h and 31% on day 5. A high surface area of the alumina nanofiber membranes provides high capacity for ethylene absorption over a long period of time. In combination with other properties, such as planar form, flexibility, ease of handling, and lightweight, these membranes are a highly desirable component of packaging materials engineered to enhance product lifetime.

  19. Evaluation of ultrasound assisted potassium permanganate pre-treatment of spent coffee waste.

    PubMed

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-Ghannam, Nissreen; Jaiswal, Amit K

    2017-01-01

    In the present study, novel pre-treatment for spent coffee waste (SCW) has been proposed which utilises the superior oxidising capacity of alkaline KMnO 4 assisted by ultra-sonication. The pre-treatment was conducted for different exposure times (10, 20, 30 and 40min) using different concentrations of KMnO 4 (1, 2, 3, 4, 5%w/v) at room temperature with solid/liquid ratio of 1:10. Pretreating SCW with 4% KMnO 4 and exposing it to ultrasound for 20min resulted in 98% cellulose recovery and a maximum lignin removal of 46%. 1.7 fold increase in reducing sugar yield was obtained after enzymatic hydrolysis of KMnO 4 pretreated SCW as compared to raw. SEM, XRD and FTIR analysis of the pretreated SCW revealed the various effects of pretreatment. Thermal behaviour of the pretreated substrate against the native biomass was also studied using DSC. Ultrasound-assisted potassium permanganate oxidation was found to be an effective pretreatment for SCW, and can be a used as a potential feedstock pretreatment strategy for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Preparation of antimicrobial MnO4--doped nylon-66 fibers with excellent laundering durability

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxing; Gao, Qianhong; Yang, Chenguang; Pang, Lijuan; Wang, Honglong; Li, Rong; Xing, Zhe; Hu, Jiangtao; Wu, Guozhong

    2017-11-01

    A highly effective antimicrobial nylon 66 fiber doped with permanganate ions was prepared via a simultaneous irradiation induced graft polymerization. The physicochemical properties of the fibers were carefully characterized by various techniques, including Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy, revealing that permanganate ions (about 1.48 mmol/g) have been successfully loaded onto the surface of the nylon 66 fibers. The antimicrobial activity of the modified nylon 66 fibers against Staphylococcus aureus and Candida albicans were investigated. Accelerated laundering tests and tensile tests were conducted to access the effect of laundering on the antimicrobial activity and the mechanical property of the modified nylon 66 fibers, respectively. All results indicate that we have prepared a new highly effective antimicrobial nylon 66 fiber (almost a 100% reduction in the number of S. aureus and C. albicans colonies). Furthermore, the modified nylon 66 fibers are durable, maintaining antimicrobial resistance after 100 commercial or domestic launderings and retaining its excellent mechanical property during preparation and laundering.

  1. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.

    PubMed

    Yuan, Baoling; Li, Fei; Chen, Yanmei; Fu, Ming-Lai

    2013-05-01

    A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.

  2. [Spatial Variability Characteristics of Water Quality and Its Driving Forces in Honghu Lake During High Water-level Period].

    PubMed

    Li, Kun; Wang, Ling; Li, Zhao-hua; Wang, Xiang-rong; Chen, Hong-bing; Wu, Zhong; Zhu, Peng

    2015-04-01

    Based on the high-density analysis of 139 monitoring points and samples in water of honghu lake with different degrees of eutrophication during the high water-level period, we could get the figures of spatial variability characteristics of pollution factors, the biomass of aquatic plants and water quality in Honghu Lake using the GIS interpolation methods. The result showed that the concentrations of TN, TP, NH4(+) -N, permanganate index gradually increased from south to north during this period, the trend of water pollution degree in Honghu Lake was the region of inflowing rivers > enclosure culture area > open water area > the lake protection area > region of the Yangtze river into the lake; and the contribution rate of water quality parameters was in the order of TN > TP > permanganate index > NH4(+), -N > DO; under the influence of industrial sewage, agricultural sewage, domestic sewage, bait, aquatic plants and water exchange, 59% of TN, 35.2% of TP, 13.7% of permanganate index, 4.3% of NH4(+)-N exceeded the water quality targets, respectively, accordingly, 66.2% of the water quality also exceeded the water quality target. Nonetheless, DO reached the water quality target due to the influences of monsoon climate and other environment factors. The spatial variation analysis could directly reflect the mutual interaction among human activity, land-use types and environment factors which had an enormous impact on Honghu Lake water environment. In order to ensure that the lake water environment is beneficial for human productions and livings, it is necessary for us to control the discharge of industrial sewage, agricultural sewage and domestic sewage, as well as the expanding area of aquaculture, all the above measures would be significant for gradually resuming the self-purification capacity of water body and finally achieving the ecological sustainable development of Honghu Lake water environment.

  3. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments

    NASA Astrophysics Data System (ADS)

    Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.

    2015-11-01

    Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity gradient.

  4. A Simple Alternative Method for Preservation of 2-Methylisoborneol in Water Samples

    PubMed Central

    Lin, Tsair-Fuh

    2018-01-01

    2-Methylisoborneol (2-MIB) is one of the most commonly observed taste and odor (T&O) compounds present in drinking water sources. As it is biodegradable, a preservation agent, typically mercury chloride, is needed if the water is not analyzed right after sampling. Since mercury is a toxic metal, an alternative chemical that is cheaper and less toxic is desirable. In this study, two chemicals commonly used in water treatment processes, chlorine (as sodium hypochlorite) and KMnO4 (potassium permanganate), are studied to determine their feasibility as preservation agents for 2-MIB in water. Preservation experiments were first conducted in deionized water spiked with 2-MIB and with chlorine or permanganate at 4 and 25 °C. The results indicate that 2-MIB concentrations in the water samples spiked with both chemicals remained almost constant within 14 days for all the tested conditions, suggesting that oxidation and volatilization did not cause the loss of 2-MIB in the system. The experiments were further conducted for three different reservoir water samples with 30–60 ng/L of indulgent 2-MIB. The experimental results demonstrated that preservation with permanganate may have underestimated the 2-MIB concentration in the samples as a result of the formation of manganese dioxide particles in natural water and adsorption of 2-MIB onto the particles. Chlorine was demonstrated to be a good preservation agent for all three tested natural waters since oxidation of 2-MIB was negligible and biodegradation was inhibited. When the residual chlorine concentrations were controlled to be higher than 0.5 mg/L on the final day (day 14) of the experiments, the concentration reduction of 2-MIB became lower than 13% at both of the tested temperatures. The results demonstrated that sodium hypochlorite can be used as an alternative preservation agent for 2-MIB in water before analysis. PMID:29783625

  5. Non-Chromate Aluminum Pretreatments

    DTIC Science & Technology

    2012-03-01

    2) Potassium permanganate, seal: polyacrylic acid, poly propylene glycol, fatty acid esters Two solution (coating and seal), elevated temp...OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of

  6. Study of volatile contaminants in reclaimed water. [by distillation from urine

    NASA Technical Reports Server (NTRS)

    Mckee, H. C.; Millar, J. D.; Swynnerton, N. F.

    1975-01-01

    Different methods were evaluated for reducing the volatile contaminants found in water recovered from urine by distillation. The use of activated carbon, addition of potassium permanganate, and the use of oxidation catalyst are described along with laboratory tests. It is concluded that catalytic decomposition appears to be feasible, and further investigation is recommended.

  7. Hexeneuronic acid content of chemical pulp

    Treesearch

    Junyong Zhu; X.S. Chai

    2007-01-01

    This method describes a procedure to determine hexeneuronic acid groups (HexA) in chemical pulps. HexA affects the kappa number determination by reaction with permanganate, and can react with certain bleaching chemicals, e.g. chlorine dioxide and ozone, but not with some others such as oxygen and peroxide. The method is based on the highly selective hydrolysis of HexA...

  8. Application of DRIFTS, NMR, and py-MBMS to characterize the effects of soil science oxidation assays on soil organic matter composition in a Mollic Xerofluvent

    USDA-ARS?s Scientific Manuscript database

    To evaluate whether commonly employed chemical treatments remove structurally distinct fractions of soil organic matter (SOM), a Mollic Xerofluvent under agricultural use was subjected to three distinct oxidation treatments: potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen p...

  9. Impacts of Early-Stage Drinking Water Treatment on Cyanobacterial Toxin Release and Degradation

    EPA Science Inventory

    This presentation summarizes the impact of potassium permanganate application to suspensions of intact, toxin-producing cyanobacterial cells at pH 7 and 9, oxidant doses of 1, 2.5 and 5 mg/L, turbidities of 0.1, 5 and 20 NTU, and powdered activated carbon doses of 0 and 10 mg/L

  10. Assessment of Aquaflor (c), copper sulfate and potassium permanganate for control of Aeromonas hydrophila and Flavobacterium columnare infection in sunshine bass, Morone chrysops female x Morone saxatilis male

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to assess different therapeutants against a mixed infection of Aeromonas hydrophila and Flavobacterium columnare in sunshine bass (SB) (Morone chrysops female x Morone saxatilis male). Experiment 1 assessed the efficacy of copper sulfate (CuSO4), florfenicol-medicated...

  11. Impact of Growth Conditions and Suspension Time on Toxin Release from M. aeruginosa Upon Exposure to Potassium Permanganate

    EPA Science Inventory

    The objective of this work was to assess the effects of KMnO4 on pure cultures of cyanobacteria (Microcystis aeruginosa) in a jar test. Of particular interest was the impact this oxidant has on the release of intracellular toxin from cells as a function of growth conditions in cu...

  12. The determination of psilocin and psilocybin in hallucinogenic mushrooms by HPLC utilizing a dual reagent acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection system.

    PubMed

    Anastos, Nicole; Lewis, Simon W; Barnett, Neil W; Sims, D Noel

    2006-01-01

    This paper describes a procedure for the determination of psilocin and psilocybin in mushroom extracts using high-performance liquid chromatography with postcolumn chemiluminescence detection. A number of extraction methods for psilocin and psilocybin in hallucinogenic mushrooms were investigated, with a simple methanolic extraction being found to be most effective. Psilocin and psilocybin were extracted from a variety of hallucinogenic mushrooms using methanol. The analytes were separated on a C12 column using a (95:5% v/v) methanol:10 mM ammonium formate, pH 3.5 mobile phase with a run time of 5 min. Detection was realized through a dual reagent chemiluminescence detection system of acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II). The chemiluminescence detection system gave improved detectability when compared with UV absorption at 269 nm, with detection limits of 1.2 x 10(-8) and 3.5 x 10(-9) mol/L being obtained for psilocin and psilocybin, respectively. The procedure was applied to the determination of psilocin and psilocybin in three Australian species of hallucinogenic mushroom.

  13. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  14. Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO)

    NASA Astrophysics Data System (ADS)

    Silva, Jeff A. K.; Crimi, Michelle; Palaia, Thomas; Ko, Saebom; Davenport, Sean

    2017-04-01

    The methods and results of the first field-scale demonstration of polymer-amended in situ chemical oxidation (PA-ISCO) are presented. The demonstration took place at MCB CAMLEJ (Marine Corps Base, Camp Lejeune) Operable Unit (OU) 15, Site 88, in Camp Lejeune, North Carolina between October and December 2010. PA-ISCO was developed as an alternative treatment approach that utilizes viscosity-modified fluids to improve the in situ delivery and distribution (i.e. sweep-efficiency) of chemical oxidants within texturally heterogeneous contaminated aquifers. The enhanced viscosity of the fluid mitigates the effects of preferential flows, improving sweep-efficiency and enhancing the subsurface contact between the injected oxidant and the target contamination within the treatment zone. The PA-ISCO fluid formulation used in this demonstration included sodium permanganate as oxidant, xanthan gum biopolymer as a shear-thinning viscosifier, and sodium hexametaphosphate (SHMP) as an anti-coagulant. It was the goal of this demonstration to validate the utility of PA-ISCO within a heterogeneous aquifer. An approximate 100% improvement in sweep-efficiency was achieved for the PA-ISCO fluid, as compared to a permanganate-only injection within an adjacent control plot.

  15. Permanganate gel (PG) for groundwater remediation: compatibility, gelation, and release characteristics.

    PubMed

    Lee, Eung Seok; Olson, Pamela R; Gupta, Neha; Solpuker, Utku; Schwartz, Franklin W; Kim, Yongje

    2014-02-01

    Permanganate (MnO4(-)) is a strong oxidant that is widely used for treating chlorinated ethylenes in groundwater. This study aims to develop hyper-saline MnO4(-) solution (MnO4(-) gel; PG) that can be injected into aquifers via wells, slowly gelates over time, and slowly release MnO4(-) to flowing water. In this study, compatibility and miscibility of gels, such as chitosan, aluminosilicate, silicate, and colloidal silica gels, with MnO4(-) were tested. Of these gels, chitosan was reactive with MnO4(-). Aluminosilicates were compatible but not readily miscible with MnO4(-). Silicates and colloidal silica were both compatible and miscible with MnO4(-), and gelated with addition of KMnO4 granules. Colloidal silica has low initial viscosity (<15cP), exhibited delayed gelation characteristics with the lag times ranging from 0 to 200min. Release of MnO4(-) from the colloidal silica-based PG gel occurred in a delayed fashion, with maximum duration of 24h. These results suggested that colloidal silica can be used to create PG or delayed-gelling forms containing other oxidants which can be used for groundwater remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. DEVELOPMENT OF AGENTS AND PROCEDURES FOR DECONTAMINATION OF THE YANKEE REACTOR PRIMARY COOLANT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, R.M.

    1959-03-01

    Developments relative to decontamination achieved under the Yankee Reasearch and Development program are reported. The decontamination of a large test loop which had been used to conduct corrosion rate studies for the Yankee reactor program is described. The basic permanganate-citrate decontamination procedure suggested for application in Yankee reactor primary system cleanup was used. A study of the chemistry of this decontamination operation is presented, together with conclusions pertaining to the effectiveness of the solutions under the conditions studied. In an attempt to further improve the efficiency of the procedure, an additional series of static and dynamic tests was performcd usingmore » contaminated sections of stainless steel tubing from the original SlW steam generator. Survival variables in the process (reagent composition, contact time, temperature, and flow velocity) were studied. The changes in decontamination efficiency produced by these variations are discussed and compared with results obtained throughthe use of similar procedures. Based on the observations made, conclusions are drawn concerning the optimum conditions for this cleanup process, a new set of suggested basic permanganate-citrate decontamination instructions is presented, and recommendations are made concerning future studies involving this procedure. (auth)« less

  17. Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants.

    PubMed

    Peings, Vanessa; Frayret, Jérôme; Pigot, Thierry

    2015-07-01

    The oxidative action of a solid and stable potassium sulfatoferrate(VI) material on phenol was studied in aqueous solution under different stoichiometries. The performance towards phenol and the total organic carbon is compared to that of potassium permanganate and calcium hypochlorite. The total mineralization of phenol is not completely achieved by the studied chemical oxidants, and some oxidation products have been identified by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector analysis. A radical reaction pathway, involving the formation of oxidation intermediates or by-products such as benzoquinone, phenoxyphenol and ring opening products, is proposed for the decomposition of phenol by ferrate(VI). Phenoxyphenol is also involved in the oxidation mechanism for permanganate whereas chlorinated phenols are produced by hypochlorite. The role of the chloride anion impurity of the potassium sulfatoferrate(VI) material has been highlighted in this study; no negative impact on the removal of phenol and its mineralization is observed compared to the use of a pure commercial ferrate(VI). The efficiency of sulfatoferrate(VI) for the oxidative removal of phenol from industrial wastewater is also confirmed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. New insights on ecosystem mercury cycling revealed by stable isotopes of mercury in water flowing from a headwater peatland catchment

    Treesearch

    Glenn E. Woerndle; Martin Tsz-Ki Tsui; Stephen D. Sebestyen; Joel D. Blum; Xiangping Nie; Randall K. Kolka

    2018-01-01

    Stable isotope compositions of mercury (Hg) were measured in the outlet stream and in soil cores at different landscape positions in a 9.7-ha boreal upland-peatland catchment. An acidic permanganate/persulfate digestion procedure was validated for water samples with high dissolved organic matter (DOM) concentrations through Hg spike addition analysis. We report a...

  19. REMOVAL OF FISSION PRODUCTS FROM WATER

    DOEpatents

    Rosinski, J.

    1961-12-19

    A process is given for precipitating fission products from a body of water having a pH of above 6.5. Calcium permanganate and ferrous sulfate are added in a molar ratio of l: 3, whereby a mixed precipitate of manganese dioxide, ferric hydroxide and calcium sulfate is formed; the precipitate carries the fisston products and settles to the bottom of the body of water. (AEC)

  20. Pilot-Scale Demonstration of In-Situ Chemical Oxidation Involving Chlorinated Volatile Organic Compounds - Design and Deployment Guidelines (Parris Island, SC, U.S. Marine Corp Recruit Depot, Site 45 Pilot Study)

    EPA Science Inventory

    A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroe...

  1. Improved Understanding of In Situ Chemical Oxidation Soil Reactivity

    DTIC Science & Technology

    2007-12-01

    solution (potassium dichromate (BDH Laboratories), sulfuric acid (EM Science), and mercury sulphate (EM Science)) and a sulfuric acid reagent solution... sulfuric acid (EM Science) and silver sulphate (Alfa Aesar)) were added to each reaction tube. The reagents ( sulfuric acid /potassium dichromate...example, under basic conditions, sulfide can be oxidized to sulfate by excess permanganate while sulfur and tetrathionate might also be produced due

  2. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.

  3. Reductions in DNAPL Longevity through Biological Flux Enhancement

    DTIC Science & Technology

    2009-01-01

    3 Phosphorus 2 Calcium 111 Magnesium 11 Sulfur 47 Bioavailable iron 31 Total iron 198 Porosity 0.32 Conductivity 0.97 mmohs cm-1 Organic...acetate, propionate, and lactate were analyzed by filtering aqueous samples (2.7 mL) through a syringe filter (0.22 μm) containing 0.3 M oxalic acid...acid Nitric acid, glycol, peroxides, permanganates Acetone Conc. nitric and sulfuric acids Ammonia, anhydrous Halogens, calcium hypochlorite (bleach

  4. Using Electrical Resistivity Imaging to Evaluate Permanganate Performance During an In Situ Treatment of a RDX-Contaminated Aquifer

    DTIC Science & Technology

    2009-08-01

    assess the performance of remedial efforts. These techniques are expensive and, by themselves, are effectively random samples guided by the training...technology should be further explored and developed for use in pre-amendment tracer tests and quantitative remedial assessments . 15. SUBJECT TERMS...and flow of injectate. Site assessment following groundwater remediation efforts typically involves discrete point sampling using wells or

  5. Decontamination of Casualties from Battlefield Under CW and BW Attack

    DTIC Science & Technology

    1984-11-15

    anion present. Thus the films containing periodide, perbromide, chlorochromate , permanganate, dichromate, and pyridinium azide each had a detectable...38 4. Preparation of Azide Films 38 5. Preparation of Hydroxide Films 39 6. Preparation of Thiosulfate Film 39 7. Preparation of Chlorochromate Films...dichromate, hypochlorite, m-chioroperbenzoaite and related polymers of BD-5-Q film. 𔄁. Preparation of Chlorochromate Films Chromium trioxide (CrO 3 , 9.8 g

  6. A Graduated Cylinder Colorimeter: An Investigation of Path Length and the Beer-Lambert Law

    NASA Astrophysics Data System (ADS)

    Gordon, James; Harman, Stephanie

    2002-05-01

    A 10-mL graduated cylinder was used to construct a colorimeter to investigate the relationship between absorbance and path length found in the Beer-Lambert law. Light-emitting diodes (LEDs) were used as the light sources and filter monochromators. The experiments were conducted on intensely colored permanganate and tetraamminecopper(II) solutions. The device also was useful for demonstrating the relationship between absorbance and concentration.

  7. Installation Restoration Program. Phase I. Records Search, Vance Air Force Base, Oklahoma.

    DTIC Science & Technology

    1984-07-01

    cadmium , and descaling solutions. The general trend in waste disposal over the years since VAFB first began operation has been from 3 largely unsegregated...generated at the jet engine shop and metal plating shops and consists of phosphoric acid, chromic acid, potassium permanganate, cadmium , and descaling...benzene, MIBK, carbon tetrachloride, MEK, methylene chloride, and acetone. The metal analytes should include cadmium , chromium, copper, iron, lead

  8. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  9. Efficacy of florfenicol, copper sulfate and potassium permanganate in controlling a natural infection of Aeromonas hydrophila and Flavobacterium columnare in sunshine bass, Morone chrysops female x Morone saxatilis male

    USDA-ARS?s Scientific Manuscript database

    Sunshine bass (Morone chrysops female ' Morone saxatilis male) naturally infected with Aeromonas hydrophila and Flavobacterium columnare were randomly assigned to six treatments: 1) two treatments of waterborne exposures to copper sulfate (CuSO4), at 2.1 and at 4.2 mg/L (approximately one and two pe...

  10. A novel system of galangin-potassium permanganate-polyphosphoric acid for the determination of tryptophan and its chemiluminescence mechanism.

    PubMed

    Li, Li; Guo, Ruibin; Zhang, Dongxia; Du, Xinzhen

    2015-08-01

    A novel galangin-potassium permanganate (KMnO4)-polyphosphoric acid (PPA) system was found to have an outstanding response to tryptophan (Trp). Trp determination using this KMnO4 -PPA system was enhanced significantly in the presence of galangin. A highly sensitive flow-injection chemiluminescence (CL) method to determine Trp was developed based on the CL reaction of galangin-KMnO4 -Trp in PPA media. The presence of galangin, a member of the flavonol class of flavonoid complexes, greatly increased the luminous intensity of Trp in KMnO4 -PPA systems. Under optimized conditions, Trp was determined in the 0.05-10 µg/mL range, with a detection limit (3σ) of 5.0 × 10(-3)  µg/mL. The relative standard deviation (RSD) was 1.0% for 11 replicate determinations of 1.0 µg/mL Trp. Two synthetic samples were determined selectively with recoveries of 98.4-100.1% in the presence of other amino acids. The possible mechanism is summarized as follows: excited states of Mn(II)(*) and Mn(III(*) types are the main means of generating chemical luminescent species, and Trp concentration and luminescence intensity have a linear relationship, which enables quantitative analysis. Copyright © 2014 John Wiley & Sons, Ltd.

  11. [First flush effects of storm events of Baoxiang River in Lake Dianchi Watershed].

    PubMed

    Guo, Huai-Cheng; Xiang, Nan; Zhou, Feng; Wang, Yong-Hua; Li, Fa-Rong; Zhu, Xiang; Mao, Guo-Zhu; Yu, Shu-Xia; Li, Na; Sheng, Hu; Yang, Yong-Hui; He, Cheng-Jie; Wang, Cui-Yu

    2013-04-01

    To understand riverine process of non-point source effectively, first flush effects of storm events were investigated at Baoxiang River of Lake Dianchi Watershed. Three sampling stations were selected along Baoxiang River for observing the flow rate and pollutant concentrations of the first three storm events from June 2009 to August 2009. Net discharged volume, net discharged loading, and net event mean concentration (EMC(n)) were proposed with their calculation methods. According to the analysis of three storm events at three stations, the following results colcd be extracted: (1) the larger the percent of impervious land and population density were, the higher EMC(n) of TSS, TN, TP, permanganate index and their cumulative curves [M(V)] were along the river; (2) TSS, TP loadings as well as their M (V) were positively correlated to the storm intensity, while TN and permanganate index loadings were consistent with the total rainfall of each storm event, where the percent of NO3(-) -N in total nitrogen decreased gradually when the number of storm events increased; (3) compared to tradition EMC, EMC(n) was proven to be a better indicator to accurately uncover and magnify the differences in first flush effects of storm events among different stations or storm events.

  12. Endotoxin inactivation by selected drinking water treatment oxidants.

    PubMed

    Anderson, William B; Mayfield, Colin I; Dixon, D George; Huck, Peter M

    2003-11-01

    Exposure to endotoxins in treated drinking water can occur through ingestion, dermal abrasions, inhalation of water vapor, intravenous injection or during dialysis. While the risks associated with endotoxin ingestion and entry through dermal abrasions are not well quantified, adverse effects of intravenous injection and dialysis are well known and some studies indicate that inhalation of moisture-laden air may impact human health. This study quantifies the inactivation of endotoxin derived from Escherichia coli O55:B5 by three substances used either as disinfectants or oxidants in drinking water treatment: chlorine, monochloramine and potassium permanganate. Inactivation rates were found to be 1.4, 1.0 and 0.7 endotoxin units (EU)/mL h, for free chlorine, potassium permanganate and monochloramine, respectively. These rates are relatively slow given that contact times in drinking water distribution systems are typically less than 48 h. While small amounts of endotoxin may be removed by oxidation the observed removals are much less than those provided by physical removal processes. The significance of this finding is important for dialysis considerations but is as yet unclear with regard to inhalation, as the risk of inhaling sufficient quantities of endotoxin-containing aerosolized water droplets to adversely affect human health has not yet been adequately quantified.

  13. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment.

    PubMed

    Chu, Wenhai; Yao, Dechang; Gao, Naiyun; Bond, Tom; Templeton, Michael R

    2015-12-01

    Pilot-scale tests were performed to reduce the formation of a range of carbonaceous and nitrogenous disinfection by-products (C-, N-DBPs), by removing or transforming their precursors, with an integrated permanganate oxidation and powdered activated carbon adsorption (PM-PAC) treatment process before conventional water treatment processes (coagulation-sedimentation-filtration, abbreviated as CPs). Compared with the CPs, PM-PAC significantly enhanced the removal of DOC, DON, NH3(+)-N, and algae from 52.9%, 31.6%, 71.3%, and 83.6% to 69.5%, 61.3%, 92.5%, and 97.5%, respectively. PM pre-oxidation alone and PAC pre-adsorption alone did not substantially reduce the formation of dichloroacetonitrile, trichloroacetonitrile, N-nitrosodimethylamine and dichloroacetamide. However, the PM-PAC integrated process significantly reduced the formation of both C-DBPs and N-DBPs by 60-90% for six C-DBPs and 64-93% for six N-DBPs, because PM oxidation chemically altered the molecular structures of nitrogenous organic compounds and increased the adsorption capacity of the DBP precursors, thus highlighting a synergistic effect of PM and PAC. PM-PAC integrated process is a promising drinking water technology for the reduction of a broad spectrum of C-DBPs and N-DBPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of the oxidation of enrofloxacin by permanganate and the antimicrobial activity of the products.

    PubMed

    Xu, Yongpeng; Liu, Shiyao; Guo, Fang; Zhang, Bo

    2016-02-01

    Permanganate [Mn(VII)] oxidation of the fluoroquinolone (FQ) antibiotic enrofloxacin (ENR) was investigated with respect to kinetics and mechanisms, and the products were evaluated for residual antibacterial activity. The degradation of ENR by Mn(VII) obeyed second-order kinetics. A modern liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer (LC-Q-TOF) was used to determine the accurate mass of the measured degradation products. The structures of nine oxidation products were identified at a neutral pH, one of which was an N-oxide product formed from the oxidation of tertiary amines. One proposed plausible reaction pathway was that the oxidation occurred on the piperazine ring; the C-H adjacent to the amine group was attacked by Mn(VII). The identified products from ENR arose through four pathways involving two mechanisms of N-dealkylation, C-hydroxylation and the reactions of amine oxides. The quinolone core remained intact for all of the products. The residual antibacterial activity of the oxidative reaction byproducts against the nonresistant Escherichia coli (G(-)) reference strain DH5ɑ was evaluated by quantifying the bacterial colonies. The oxidation products exhibited reduced antibacterial activity compared with their parent compound. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Permanganate oxidation of α-amino acids: kinetic correlations for the nonautocatalytic and autocatalytic reaction pathways.

    PubMed

    Perez-Benito, Joaquin F

    2011-09-08

    The reactions of permanganate ion with seven α-amino acids in aqueous KH(2)PO(4)/K(2)HPO(4) buffers have been followed spectrophotometrically at two different wavelengths: 526 nm (decay of MnO(4)(-)) and 418 nm (formation of colloidal MnO(2)). All of the reactions studied were autocatalyzed by colloidal MnO(2), with the contribution of the autocatalytic reaction pathway decreasing in the order glycine > l-threonine > l-alanine > l-glutamic acid > l-leucine > l-isoleucine > l-valine. The rate constants corresponding to the nonautocatalytic and autocatalytic pathways were obtained by means of either a differential rate law or an integrated one, the latter requiring the use of an iterative method for its implementation. The activation parameters for the two pathways were determined and analyzed to obtain statistically significant correlations for the series of reactions studied. The activation enthalpy of the nonautocatalytic pathway showed a strong, positive dependence on the standard Gibbs energy for the dissociation of the protonated amino group of the α-amino acid. Linear enthalpy-entropy correlations were found for both pathways, leading to isokinetic temperatures of 370 ± 21 K (nonautocatalytic) and 364 ± 28 K (autocatalytic). Mechanisms in agreement with the experimental data are proposed for the two reaction pathways.

  16. Slow-release Permanganate Gel (SRP-G) for Groundwater Remediation: Spreading, Gelation, and Release in Porous and Low-Permeability Media

    NASA Astrophysics Data System (ADS)

    Lee, E. S.; Hastings, J.; Kim, Y.

    2015-12-01

    Dense nonaqueous phase liquids (DNAPLs) like trichloroethylene (TCE) serve as the most common form of groundwater pollution in the world. Pore-plugging by the solid oxidation product MnO2 and limited lateral dispersion of the oxidant are two common problems with existing in-situ chemical oxidation (ISCO) schemes that could be alleviated through the development of a delayed gelation method for oxidant delivery. The objective of the current study was to further develop and optimize slow-release permanganate gel (SRP-G), a solution comprising colloidal silica and KMnO4, as a novel low-cost treatment option for large and dilute TCE plumes in groundwater. Batch tests showed that gelation could be delayed through manipulation of KMnO4 concentration, pH, and silica particle size of the SRP-G solution. In flow-through columns and flow-tanks filled with saturated sands, silica concentration had little effect on the gelation lag stage and release rate, but increasing silica concentration was associated with increasing release duration. When compared to a pure KMnO4 solution, visual observations and [MnO4-] measurements from flow tank tests demonstrated that the SRP-G prolonged the release duration and enhanced lateral spreading of the oxidant.

  17. Application of potassium permanganate to spectrophotometric assay of metoclopramide hydrochloride in pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Devi, O. Zenita; Basavaiah, K.; Vinay, K. B.

    2012-01-01

    Two simple, sensitive, and cost-effective spectrophotometric methods are described for the determination of metoclopramide hydrochloride (MCP) in pharmaceutical dosage forms. The methods are based on a redox reaction between MCP and KMnO4 in alkaline and acid media. Direct spectrophotometry (method A) involves treating MCP with permanganate in an NaOH medium and measuring a bluish green product at 610 nm. In indirect spectrophotometry (method B), MCP is treated with a fixed concentration of KMnO4 in an H2SO4 medium, and after a specified time, the unreacted KMnO4 is measured at 545 nm. Under optimum assay conditions, Beer's law is obeyed over the ranges of 0.75-12.0 and 2.5-30.0 g/ml for methods A and B, respectively. Molar absorptivity values are calculated to be 2.33•104 and 2.66•104 l/mol cm for methods A and B, respectively, and corresponding Sandell's sensitivity values are 0.015 and 0.013 g/cm2. Limits of detection (LOD) and quantification (LOQ) are also reported. The applicability of the developed methods was demonstrated by the determination of MCP in tablet and injection forms. The accuracy and reliability of the proposed methods were further ascertained by recovery studies via standard addition technique.

  18. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts.

  19. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling

    NASA Astrophysics Data System (ADS)

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2015-11-01

    Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices. Electronic supplementary information (ESI) available: Voltammograms of labelled GO at acidic vs. neutral pH; control experiment investigating effects of non-specific adsorption; X-ray photoelectron spectra and Fourier transform infrared spectra of GOs after functionalization and their corresponding controls; Coulombic charges passed from electrochemical redox of labels; detailed calculation of epoxyl content in GO; inherent electrochemistry of GOs; physical images of functionalized and control GOs. See DOI: 10.1039/c5nr05891k

  20. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    PubMed

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Control of Manganese Dioxide Particles Resulting From In Situ Chemical Oxidation Using Permanganate

    DTIC Science & Technology

    2008-09-01

    Study Description Impacts of MnO2 Reference Field evaluation: A 5-spot recirculation network was employed to deliver 3000 mg/L NaMnO4 to treat up...that affect particle interactions. It may (1) act as a coagulant, facilitating MnO2 aggregation and deposition, (2) convert to other iron hydroxide ...chemical characteristics of the porous media, including pHpzc, zeta potential, particle size (average and distribution), and mineralogy , dictate the extent

  2. A Designer Fluid For Aluminum Phase Change Devices: Aluminum Inorganic Aqueous Solutions (IAS) Chemistry and Experiments. Volume 2

    DTIC Science & Technology

    2016-11-17

    magnitude larger than necessary. Adding more permanganate into the solution can produce a thicker coating . Manganese oxide has a thermal conductivity ...void before sealing both ends. For terrestrial heat pipes, copper is the most commonly used casing material due to its high thermal conductivity ... thermal conductivity ; however, these were early results and the tubes that were obtained from the Chinese manufacturer appeared to be of inconsistent

  3. Improved Syntheses of Benzils

    DTIC Science & Technology

    1980-12-01

    earlier stage. Bis-acetylenes, 2a-c, were then oxidized with potassium permanganate, using a procedure reported by D. G. Lee and V. S. Chang, 5 to...THF, room temp. L L 4 I Mg Br 4 ph--C--Cl p--C--C---ph 5 of the reported synthesis of ketones by reaction of an acyltetracarbonyl- ferrate , 6, with an...preparing these bis-a-diketones, several variations in procedure were tried, Lithium amide in benzene and potassium t-butoxide in dichloromethane were base

  4. Degradation of landfill leachate compounds by persulfate for groundwater remediation

    PubMed Central

    Zhong, Hua; Tian, Yaling; Yang, Qi; Brusseau, Mark L; Yang, Lei; Zeng, Guangming

    2016-01-01

    In this study, batch and column experiments were conducted to evaluate the feasibility of using persulfate oxidation to treat groundwater contaminated by landfill leachate (CGW). In batch experiments, persulfate was compared with H2O2, and permanganate for oxidation of organic compounds in CGW. It was also compared with the potential of biodegradation for contaminant removal from CGW. Persulfate was observed to be superior to H2O2 and permanganate for degradation of total organic carbon (TOC) in the CGW. Conversely, biodegradation caused only partial removal of TOC in CGW. In contrast, persulfate caused complete degradation of the TOC in the CGW or aged CGW, showing no selectivity limitation to the contaminants. Magnetite (Fe3O4) enhanced degradation of leachate compounds in both CGW and aged CGW with limited increase in persulfate consumption and sulfate production. Under dynamic flow condition in 1-D column experiments, both biodegradation and persulfate oxidation of TOC were enhanced by Fe3O4. The enhancement, however, was significantly greater for persulfate oxidation. In both batch and column experiments, Fe3O4 by itself caused minimal consumption of persulfate and production of sulfate, indicating that magnetite is a good persulfate activator for treating CGW in heterogeneous systems The results of the study show that the persulfate-based in-situ chemical oxidation (ISCO) method has great potential to treat the groundwater contaminated by landfill leachate. PMID:28584519

  5. Destruction of humic substances by pulsed electrical discharge

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.; Davidenko, M. A.

    2017-01-01

    Currently, the water recourses in the territory of Tomsk region are groundwater which is limited to the high concentration of iron and manganese ions and organic substances. These impurities present in water in different forms such as soluble salts ant the colloid forms. Therefore, the present work is a part of a continuations researcher of the processes in natural waters containing humic substances at the influence of pulsed electrical discharges in a layer of iron pellets. It is shown that the main stage of water purification process of humic substances during treatment by pulsed electric discharge in the layer of iron granules is a difficult process including several stages such as formation of iron oxyhydroxide colloid particles, sorption and coagulation with humic macromolecules substances, growth of particle dispersed phase and precipitation. The reason for the formation and coagulation of the dispersed phase is a different state of charge of the colloid particles (zeta potentials of (Fe (OH)3) is +8 mV, zeta potentials of (Humic substances) is -70 mV. The most intense permanganate oxidation reduction to the maximum permissible concentration occurs at the processing time equal to 10 seconds. The contact time of active erosion products with sodium humate is established and it equals to 1 hour. The value of permanganate oxidation achieves maximum permissible concentration during this time and iron concentration in solution achieves maximum permissible concentration after filtration.

  6. Monitoring ethylene emissions from plants cultured for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1995-01-01

    Emission of hydrocarbons and other volatile compounds by materials and organisms in closed environments will be a major concern in the design and management of advanced life support systems with a bioregenerative component. Ethylene, a simple hydrocarbon synthesized by plants, is involved in the elicitation of a wide range of physiological responses. In closed environments, ethylene may build up to levels which become physiologically active. In several growouts of 'Yecora Rojo' wheat in Kennedy Space Center's Biomass Production Chamber (BPC), it was observed that leaf flecking and rolling occurred in the sealed environment and was virtually eliminated when potassium permanganate was used to scrub the atmospheric environment. It was suggested that ethylene, which accumulated to about 60 ppb in the chamber and which was effectively absorbed by potassium permanganate, was responsible for the symptoms. The objectives of this work were to: (1) determine rates of ethylene evolution from lettuce (Lactuca sativa cultivar Waldemann's Green) and wheat (Triticum aestivum cultivar Yecora Rojo) plants during growth and development; (2) determine the effects of exposure of whole, vegetative stage plants to exogenous ethylene concentrations in the range of what would develop in closed environment growth chambers; and (3) develop predictive functions for changes in ethylene concentration that would develop under different cropping and closed environment configurations. Results will lead to the development of management strategies for ethylene in bioregenerative life support systems.

  7. On quantifying active soil carbon using mid-infrared ...

    EPA Pesticide Factsheets

    Soil organic matter (SOM) is derived from plant or animal residues deposited to soil and is in various stages of decomposition and mineralization. Total SOM is a common measure of soil quality, although due to its heterogeneous composition SOM can vary dramatically in terms of its biochemical properties and residence times, which ultimately affect soil heath and function. One operationally defined SOM fraction is “active soil carbon” (ASC) which is thought to consist of readily oxidizable SOM that is responsive to management practices and may provide one measure of “soil health” closely associated with soil biological activity. ASC can be a useful indicator to assist farmers and land managers in their selection of soil management practices to maintain ASC or to build total SOM. ASC has generally been measured using permanganate oxidation, a costly and time-intensive procedure. Chemometric modeling using mid-infrared spectroscopy (MIR) has been successfully used to estimate a range of soil properties, including total organic carbon (TOC) and particulate organic carbon (POC). Consequently, we hypothesized that we could use MIR to estimate ASC. Here we report on a method that uses MIR and chemometric signal processing to quantify TOC and ASC on a variety of soils collected serially and seasonally from a maximum of 76 locations across the United States. TOC was measured using high temperature oxidation and ASC was measured as permanganate-oxidizabl

  8. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms

    PubMed Central

    Swearingen, Matthew C.; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J.; Falzarano, Anthony R.; Wozniak, Daniel J.; Hall-Stoodley, Luanne; Stoodley, Paul

    2015-01-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. PMID:26536894

  9. The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents.

    PubMed

    Sercu, Bram; Jones, Antony D G; Wu, Cindy H; Escobar, Mauricio H; Serlin, Carol L; Knapp, Timothy A; Andersen, Gary L; Holden, Patricia A

    2013-01-01

    In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO(4)) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO(4) exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray-Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO(4) was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO(4) exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.

  10. Quantitation of Pyrantel Pamoate in Pharmaceuticals Using Permanganate by Visible Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Rajendraprasad, N.; Basavaiah, K.

    2014-03-01

    Two simple, accurate and precise spectrophotometric methods are developed and validated for the assay of pyrantel pamoate (PP) in pharmaceuticals. The methods employ the oxidative property of potassium permanganate (KMnO4) in acidic and alkaline conditions. In the first method (method A), PP is converted into its free base, pyrantel (PR), and treated with known excess of KMnO4 in acidic condition followed by the measurement of unreacted KMnO4 at 550 nm. Method B is based on the registration of absorbance of green colored chromogen formed due to the reduction of KMnO4 by PP in alkaline condition. The methods obeyed Beer's law over a range of 1-20 μg/ml in inverse manner, and 0.75-15 μg/ml for method A and method B, respectively, with apparent molar absorptivity values of 1.05ṡ104 and 2.85ṡ104 lṡmol-1ṡcm-1. The optical parameters such as limits of detection (LOD), quantification (LOQ), and the Sandell sensitivity values are also reported. The accuracy and precision of the methods are assessed on intra- and inter-day basis. A recovery study by standard addition procedure is also carried out for further assurance of accuracy. The developed methods are successfully applied to determine PP in tablets. The results are more satisfactory as per current ICH guidelines.

  11. Hydrazine Blending and Storage Facility, Wastewater Treatment and Decommissioning Assessment. Technical Plan, Version 3.2

    DTIC Science & Technology

    1988-04-01

    o CHEMICAL TREATMENT - CHLORINE (VARIOUS FORMS) AND CHLORINE/ULTRAVIOLET LIGHT (UV) - OZONE AND OZONE/UV - PERMANGANATE - HYDROGEN PEROXIDE AND...and placed in drums, rail cars or trucks (Hazard 3 Abatement Plan, 1982). The existing hydrazine blending facility area is a limited access site which...Area 40’-0" x 26’-0" Volume 44,000 gallons Function Receive wastewater and stormwater runoff m Construction Material Concrete 7. Building 759 Size 40’-0

  12. Manganese(III) Formate: A Three-Dimensional Framework That Traps Carbon Dioxide Molecules.

    PubMed

    Cornia, Andrea; Caneschi, Andrea; Dapporto, Paolo; Fabretti, Antonio C; Gatteschi, Dante; Malavasi, Wanda; Sangregorio, Claudio; Sessoli, Roberta

    1999-06-14

    Carbon dioxide, formic acid, and water molecules are trapped in the crystal lattice of manganese(III) formate (see 1), which was obtained by reducing permanganate with formic acid. Each CO 2 guest molecule exhibits four C-H⋅⋅⋅O-C-O interactions with the three-dimensional host framework of Mn(HCOO) 3 units. Compound 1 undergoes an antiferromagnetic phase transition at 27 K. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  13. A Film Canister Colorimeter

    NASA Astrophysics Data System (ADS)

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-08-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The light source and filter monochromator was an interchangeable LED. The detector for this system was a voltage-divider circuit composed of a photoresistor in series with a fixed resistor. The student-constructed colorimeter was used to show the Beer–Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for the LED. Comparisons were made between this instrument and three commercial spectrometers and colorimeters.

  14. SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-04-22

    The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

  15. ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION

    DOEpatents

    Thunaes, A.; Brown, E.A.; Rabbitts, A.T.

    1957-11-12

    A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.

  16. Evaluation of Lime and Persulfate Treatment for Mixed Contaminant Soil from Plum Brook Ordnance Works (Sandusky, OH)

    DTIC Science & Technology

    2007-09-01

    sulfuric acid , and analyzed according to USEPA Method 8082 (1996) using a Hewlett Packard Series II 5890 Gas Chromatograph equipped with dual electron... sulfuric acid to reduce the slurry pH to approximately 4, and • 30 percent H2O2 to create a 100-mg/L final aqueous concentration. Cobble treatment...Wastes: Physical/Chemical Methods (USEPA SW 846). 1996. Method 3665A. Sulfuric acid /permanganate cleanup. Washington, DC. United States

  17. Testing a High-Sensitivity ATR FTIR Water Monitor for Ionic CWA Breakdown Products

    DTIC Science & Technology

    2003-12-31

    for ClO4− (perchlorate) 37 The Limits of Detection for ClO3− (chlorate) 41 The Limits of Detection for PFOS− ( perfluorooctanesulfonate ) 44 The... perfluorooctanesulfonate (PFOS−), C8F17SO3−, perfluorobutanesulfonate (PFBS−), C4F9SO3−, trifluoromethanesulfonate, CF3SO3−, permanganate, MnO4−, perrhenate, ReO4...become a significant environmental concern in many western states.3 Perfluorooctanesulfonate was, for decades a key ingredient in aqueous film

  18. Degradation kinetics and transformation products of chlorophene by aqueous permanganate.

    PubMed

    Xu, Xinxin; Chen, Jing; Wang, Siyuan; Ge, Jiali; Qu, Ruijuan; Feng, Mingbao; Sharma, Virender K; Wang, Zunyao

    2018-07-01

    This paper evaluates the oxidation of an antibacterial agent, chlorophene (4-chloro-2-(phenylmethyl)phenol, CP), by permanganate (Mn(VII)) in water. Second-order rate constant (k) for the reaction between Mn(VII) and CP was measured as (2.05 ± 0.05) × 10 1  M -1  s -1 at pH 7.0 for an initial CP concentration of 20.0 μM and Mn(VII) concentration of 60.0 μM. The value of k decreased with increasing pH in the pH range of 5.0-7.0, and then increased with an increase in solution pH from 7.0 to 10.0. The presence of MnO 2 and Fe 3+ in water generally enhanced the removal of CP, while the effect of humic acid was not obvious. Fourteen oxidation products of CP were identified by an electrospray time-of-flight mass spectrometer, and direct oxidation, ring-opening, and decarboxylation were mainly observed in the reaction process. The initial reaction sites of CP by Mn(VII) oxidation were rationalized by density functional theory calculations. Toxicity changes of the reaction solutions were assessed by the luminescent bacteria P. phosphoreum, and the intermediate products posed a relatively low ecological risk during the degradation process. The efficient removal of CP in secondary clarifier effluent and river water demonstrated the potential application of this Mn(VII) oxidation method in water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Directly oxidized chemiluminescence of 2-substituted-4,5-di(2-furyl)-1H -imidazole by acidic potassium permanganate and its analytical application for determination of albumin.

    PubMed

    Kang, Jing; Zhang, Yumin; Huang, Zhongxiu; Han, Lu; Tang, Jieli; Wang, Shuaijun; Zhang, Yihua

    2011-07-01

    In the paper, 2,4,5-tri(2-furyl)-1H-imidazole (TFI) and 2-phenyl-4,5-di(2-furyl)-1H-imidazole (PDFI), were chosen to investigate chemiluminescence (CL) properties of 2-substituted-4,5-di(2-furyl)-1H-imidazoles. The directly oxidized CL of analytes by potassium permanganate (KMnO(4)) was in detail studied. The KMnO(4) could directly oxidize TFI/PDFI to produce strong CL emission in acidic solution. The effects of experimental conditions were investigated. Under the optimal conditions, the effect of albumin on the TFI/PDFI-KMnO(4) system was investigated. It was found that the addition of albumin into the system could induce enhancement of CL signal, and the enhanced CL intensity is linearly related to the logarithm of concentration of albumin. Based on this study, a novel CL method has been developed for the determination of albumin with high sensitivity and good selectivity. The method was applied to the determination of albumin in human serum samples, and the results were in agreement with those obtained by the bromcresol green (BCG) method. The relative errors for the analytical results were from -5.8% to 4.2%. These new phenomena would further enable people to exploit more CL analytical application of the heterocyclic imidazole derivatives. © Springer Science+Business Media, LLC 2011

  20. [Research on the threshold of Chl-a in Lake Taihu based on microcystins].

    PubMed

    Wei, Dai-chun; Su, Jing; Ji, Dan-feng; Fu, Xiao-yong; Wang, Ji; Huo, Shou-liang; Cui, Chi-fei; Tang, Jun; Xi, Bei-dou

    2014-12-01

    Water samples were collected in Lake Taihu from June to October in 2013 in order to investigate the threshold of chlorophyll a (Chl-a). The concentrations of three microcystins isomers (MC-LR, MC-RR, MC-YR) were detected by means of solid phase extraction and high performance liquid chromatography-tandem mass spectrometry. The correlations between various MCs and eutrophication factors, for instance of total nitrogen (TN), total phosphorus (TP), chlorophyll a, permanganate index etc were analyzed. The threshold of Chl-a was studied based on the relationships between MC-LR, MCs and Chl-a. The results showed that Lake Taihu was severely polluted by MCs and its spatial distribution could be described as follows: the concentration in Meiliang Bay was the highest, followed by Gonghu Bay and Western Lake, and Lake Center; the least polluted areas were in Lake Xuhu and Southern Lake. The concentration of MC-LR was the highest among the 3 MCs. The correlation analysis indicated that MC-LR, MC-RR, MC-YR and MCs had very positive correlation with permanganate index, TN, TP and Chl-a (P < 0.01). The threshold value of Chl-a was 12.26 mg x m(-3) according to the standard thresholds of MC-LR and MCs in drinking water. The threshold value of Chl-a in Lake Taihu was very close to the standard in the State of North Carolina, which demonstrated that the threshold value provided in this study was reasonable.

  1. Effect of natural Bayah zeolite particle size reduction to physico-chemical properties and absortion against potassium permanganate (KMnO4)

    NASA Astrophysics Data System (ADS)

    Widayanti, Siti Mariana; Syamsu, Khaswar; Warsiki, Endang; Yuliani, Sri

    2016-02-01

    Recently, researches on nanotechnology have been developed very rapid, as well as the utilization of nano-zeolites. Nano-sized material has several advantages which are expanding absorptive surfaces so it will enhance the material absorption and shorten the absorption time. Zeolite as a KMnO4 binder, has been widely recognized for its ability to extend the shelf life of vegetables and fruits. This study was conducted to determine zeolites physico-chemical characters from different particle size and the effect on KMnO4 absorption. Potassium permanganate (KMnO4) is a strong oxidizer for reducing the quantity of ethylene in storage process of fresh horticultural products. The treatment consisted of (1) different length of milling time (10, 20, 30, 40, and 60 minutes) and (2) the duration of chemical activation with 1 N KOH solution. Physical and chemical characters of zeolite were analyzed using BET, PSA, XRD and SEM. The research design was randomized design. The result implied that milling time was significantly affecting the zeolite particle size, material surface area, and the size of pore diameter and volume. Milling treatment for 40 minutes produced higher zeolite surface area and pore volume than other treatments. While the duration of chemical activation using 1 N KOH solution gives different effect on zeolite absorption to KMnO4 solution. Milling time for 60 minutes and activated for 48 hours has higher initial adsorption than other treatments.

  2. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    PubMed

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes.

    PubMed

    Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di

    2016-05-01

    Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development.

    PubMed

    Chokejaroenrat, Chanat; Kananizadeh, Negin; Sakulthaew, Chainarong; Comfort, Steve; Li, Yusong

    2013-11-19

    The residual buildup and treatment of dissolved contaminants in low permeable zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate into LPZs to treat dissolved-phase TCE. This was accomplished by conducting transport experiments that quantified the ability of xanthan-MnO4(-) solutions to penetrate and cover (i.e., sweep) an LPZ that was surrounded by transmissive sands. By incorporating the non-Newtonian fluid xanthan with MnO4(-), penetration of MnO4(-) into the LPZ improved dramatically and sweeping efficiency reached 100% in fewer pore volumes. To quantify how xanthan improved TCE removal, we spiked the LPZ and surrounding sands with (14)C-lableled TCE and used a multistep flooding procedure that quantified the mass of (14)C-TCE oxidized and bypassed during treatment. Results showed that TCE mass removal was 1.4 times greater in experiments where xanthan was employed. Combining xanthan with MnO4(-) also reduced the mass of TCE in the LPZ that was potentially available for rebound. By coupling a multiple species reactive transport model with the Brinkman equation for non-Newtonian flow, the simulated amount of (14)C-TCE oxidized during transport matched experimental results. These observations support the use of xanthan as a means of enhancing MnO4(-) delivery into LPZs for the treatment of dissolved-phase TCE.

  5. [Effects of land use structure on water quality in Xin'anjiang River].

    PubMed

    Cao, Fang-Fang; Li, Xue; Wang, Dong; Zhao, Yue; Wang, Yu-Qiu

    2013-07-01

    Take Xin'anjiang upstream watershed as a case study. Based on data of interpreting TM orthophoto images and water quality monitoring in May 2010, the land use map of Xin'anjiang River, which was categorized to cultivated land, forestland, grassland, water body, building site, was obtained. Using ArcGIS hydrological and spatial analysis function, Xin'anjiang River was divided into eight sub-watersheds, and its watershed land use structure was analyzed. The water quality parameters such as TN, TP, permanganate index, fecal coliform bacteria were monitored from Jan 2010 to Dec 2010. The relations between water quality and land use were analyzed. The results showed that TN and NH4(+) -N had a significant temporal variation: dry season > wet season > normal river flow period, but other parameters did not vary significantly. In the space, Yuliang and Pukou were the most serious pollution sites. Cultivated land, water body, building site had a positive impact on water quality parameters, while there were negative correlation between the forestland and grassland. Annually, cultivated land had the most significantly important effect on TN, NH4(+) -N and permanganate index, and grassland had the most significantly important effect on TP. Cultivated land had the most prominently important impact on water quality parameters in dry season and wet season. What's more, in the normal river flow, cultivated land, grassland and forestland had the most remarkably important influence on TN, TP and fecal coliform bacteria respectively.

  6. [Coagulation and adsorption on treating the Yellow River and the impact on chlorine decay during chlorination process].

    PubMed

    Zhan, Xiao; Gao, Bao-yu; Liu, Bin; Xu, Chun-hua; Yue, Qin-yan

    2010-05-01

    Two types of inorganic polymer coagulants, polyferric chloride (PFC) and polyaluminum chloride (PAC), were chosen to treat the Yellow River water. Different dosages were investigated in order to investigate the turbidity, UV24, DOC and permanganate index removal efficiency and their coagulation mechanisms based on the Zeta potentials. The natural organic matter removal by the combination of coagulation and adsorption with powder activated carbon were analyzed based on different coagulant and adsorbent dosages and dosing orders. The effects of combination of coagulation and adsorption on the residual chlorine decay were analyzed. The results showed that the two coagulants had high turbidity removal efficiency ( > 90%). The UV254, DOC, permanganate index removal efficiency were 29.2%, 26.1% and 27.9% respectively for PAC coagulation and were 32.3%, 23.3% and 32.9% respectively for PFC. Electric neutralization played an important role in the PAC coagulation process while both adsorption bridging and electric neutralization performed when PFC was used. The removal percentage of organic matter increased with the increase coagulant and adsorbent. The adsorption after coagulation process gave the better UV254 and DOC removal efficiency than the coagulation after adsorption. The UV254 and DOC removal efficiency were 95.2% and 99.9% for PAC coagulation after adsorption and were 90.1% and 99.9% for PFC coagulation first. But adding powder activated carbon can improve floc settlement performance and maintained persistent disinfection effect.

  7. Heparin sodium compliance to the new proposed USP monograph: elucidation of a minor structural modification responsible for a process dependent 2.10 ppm NMR signal.

    PubMed

    Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Viskov, Christian

    2011-01-25

    Heparin is a highly sulfated hetero polysaccharide mixture found and extracted from mammalian tissues. It has been widely used as an anticoagulant drug during the past decades. In the new proposed USP heparin monograph, the ¹H NMR acceptance criteria to prevent contamination by over sulfated chondroitin sulfate (OSCS), or other persulfated glycosaminoglycans, specifies that no unidentified signals greater than 4% of the mean of signal height of 1 and 2 should be present in the following ranges: 0.10-2.00, 2.10-3.20, and 5.70-8.00 ppm. However, those criteria do not take into account the impact of potential structural modifications generated by the heparin manufacturing processes. In fact, starting from pig mucosa, heparin purification involves oxidizing reagents such as sodium peroxide, potassium permanganate and peracetic acid. In the present work, we demonstrate that potassium permanganate treated heparins show a small but characteristic extra signal at 2.10 ppm. Controlled heparinase I depolymerisation is used to target and excise the oligosaccharide responsible for this extra signal from the polysaccharide backbone. By using orthogonal chromatographic techniques, the fingerprint oligosaccharide was isolated and its structure elucidated. Without the identification of this structural moiety, such purified heparins may have been considered as non-compliant drug substance and not suitable for pharmaceutical use. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A systematic resolution of sulfur in reticulated vitreous carbon using X-ray absorption spectroscopy.

    PubMed

    Frank, Patrick; George, Serena DeBeer; Anxolabéhère-Mallart, Elodie; Hedman, Britt; Hodgson, Keith O

    2006-11-27

    Sulfur K-edge X-ray absorption spectroscopy (XAS) was used to characterize the approximately 0.1% sulfur found both in native reticulated vitreous carbon (RVC) foam and in RVC oxidatively modified using 0.2 M KMnO4 in 2 M H2SO4. Sulfur valences and functional groups were assessed using K-edge XAS spectral curve-fitting and employing explicit sulfur compounds as models. For native RVC, these were episulfide (approximately 3%), thianthrene (approximately 9%), disulfide (approximately 10%), sulfenate ester (approximately 12%), benzothiophene (approximately 24%), N,N'-thiobisphthalimide (approximately 30%), alkyl sulfonate (approximately 1.2%), alkyl sulfate monoester (approximately 6%), and sulfate dianion (approximately 6%). Permanganate oxidation of RVC diminished sulfenic sulfur to approximately 9%, thianthrenic sulfur to approximately 7%, and sulfate dianion to approximately 1% but increased sulfate monoester to approximately 12%, and newly produced sulfone (approximately 2%) and sulfate diester (approximately 5%). A simple thermodynamic model was derived that allows proportionate functional group comparisons despite differing (approximately +/-15%) total sulfur contents between RVC batches. The limits of accuracy in the XAS curve-fitting analysis are discussed in terms of microenvironments and extended structures in RVC carbon that cannot be exactly modeled by small molecules. Sulfate esters cover approximately 0.15% of the RVC surface, increasing to approximately 0.51% following permanganate/sulfuric acid treatment. The detection of episulfide directly corroborates a proposed mechanism for the migration of elemental sulfur through carbon.

  9. Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters.

    PubMed

    Jiang, Jin; Pang, Su-Yan; Ma, Jun; Liu, Huiling

    2012-02-07

    In this study, five selected environmentally relevant phenolic endocrine disrupting chemicals (EDCs), estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, and 4-n-nonylphenol, were shown to exhibit similarly appreciable reactivity toward potassium permanganate [Mn(VII)] with a second-order rate constant at near neutral pH comparable to those of ferrate(VI) and chlorine but much lower than that of ozone. In comparison with these oxidants, however, Mn(VII) was much more effective for the oxidative removal of these EDCs in real waters, mainly due to the relatively high stability of Mn(VII) therein. Mn(VII) concentrations at low micromolar range were determined by an ABTS [2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid diammonium] spectrophotometric method based on the stoichiometric reaction of Mn(VII) with ABTS [Mn(VII) + 5ABTS → Mn(II) + 5ABTS(•+)] forming a stable green radical cation (ABTS(•+)). Identification of oxidation products suggested the initial attack of Mn(VII) at the hydroxyl group in the aromatic ring of EDCs, leading to a series of quinone-like and ring-opening products. The background matrices of real waters as well as selected model ligands including phosphate, pyrophosphate, NTA, and humic acid were found to accelerate the oxidation dynamics of these EDCs by Mn(VII). This was explained by the effect of in situ formed dissolved Mn(III), which could readily oxidize these EDCs but would disproportionate spontaneously without stabilizing agents.

  10. Determination of iron: In the presence of chromium and titanium with the jones reductor

    USGS Publications Warehouse

    Grimaldi, F.S.; Stevens, R.E.; Carron, M.K.

    1943-01-01

    Sulfuric acid solutions of titanous and chromous sulfates, obtained by passage through the Jones reductor, are oxidized by aeration for from 5 to 10 minutes in the presence of a trace of copper sulfate as a catalyst. Ferrous sulfate is essentially unoxidized and is titrated with permanganate after aeration. Best results are obtained by using 0.0003 millimole of copper sulfate in about 300 ml. of solution. Larger quantities of copper sulfate lead to slightly low results when both chromium and titanium are present.

  11. Determination of chloramine T in dairy products.

    PubMed

    van Gils, W F; Visser, G; Hidskes, G G

    1975-08-28

    A method has been developed for the quantitative determination of traces of chloramine T (Activin, Halamid) in dairy products. Proteins are removed and the hydrolysis product toluene-4-sulphonamide is extracted with ether. After evaporation of the solvent, the residue is oxidized with an alkaline potassium permanganate solution. The oxidized product is isolated by ether extraction and the residue is subjected to reduction with Raney Nickel catalyst in a sodium hydroxide solution. The sulphonamide group is split off and the benzoic acid thus formed is subjected to a gas chromatographic analysis.

  12. [Surface water quality assessment in Miyun reservoir watershed, Beijing in the period 1980-2003].

    PubMed

    Zhang, Wei-wei; Sun, Dan-feng; Li, Hong; Zhou, Lian-di

    2010-07-01

    Single factor water quality identification index was adopted to assess the surface water quality of Miyun reservoir watershed in Beijing using nearly 20 years monitoring data of 4 sites, also the surface water quality pollution sources were analyzed. The results indicated TP had the largest temporal variation at every monitoring site, coefficients of variation were 93.86%, 86.08%, 50.56% and 139.47%, respectively. The following element was Hg, the coefficients of its variation were 86.08%, 25.75%, 56.52% and 47.01%, respectively. While TN, permanganate index, BOD5, Pb and Cr were relatively stable with small coefficient of temporal variation. The permanganate index, BOD5, Pb and Cr did not exceed to the Chinese surface drinking water standard limit in the study period, while Hg had high pollution risk in several years, such as monitoring sites S1 and S3 in 1992, monitoring sites S4 in 1996. The major pollutants of Miyun reservoir watershed in Beijing were TN and TP, and TN had larger pollution risk compared with TP in most years. Comparing to that before the 1990s, the decade average fertilizer, pesticide and agricultural plastic mulch inputs after the 1990s had increased by 46%, 173% and 359%, respectively. The husbandry proportion in agriculture rose from 24.4% to 39.8%, and the average gross industrial production by 424%. The upstream of Miyun reservoir had larger pollution risk than its downstream. In addition, Chaohe watershed contributed more TN and TP to the reservoir than Baihe watershed.

  13. Multicomponent kinetic spectrophotometric determination of pefloxacin and norfloxacin in pharmaceutical preparations and human plasma samples with the aid of chemometrics

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Wang, Yong; Kokot, Serge

    2008-10-01

    A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.

  14. Novel sequential process for enhanced dye synergistic degradation based on nano zero-valent iron and potassium permanganate.

    PubMed

    Wang, Xiangyu; Liu, Peng; Fu, Minglai; Ma, Jun; Ning, Ping

    2016-07-01

    A novel synergistic technology based on nano zero-valent iron (NZVI) and potassium permanganate (KMnO4) was developed for treatment of dye wastewater. The synergistic technology was significantly superior, where above 99% of methylene blue (MB) was removed, comparatively, removal efficiencies of MB with the sole technology of NZVI and KMnO4 at pH 6.39 being 52.9% and 63.1%, respectively. The advantages of this technology include (1) the in situ formed materials (manganese (hydr)oxides, iron hydroxides and MnFe oxide), resulting in the stable and high removal efficiency of MB and (2) high removal capacity in a wide range of pH value. Compared with simultaneous addition system of NZVI and KMnO4, MB removal was remarkably improved by sequential addition system, especially when KMnO4 addition time was optimized at 20 min. Analyses of crystal structure (XRD), morphological difference (FE-SEM), element valence and chemical groups (XPS) of NZVI before and after reaction had confirmed the formation of in situ materials, which obviously enhanced removal of MB by oxidation and adsorption. More importantly, the roles of in situ formed materials and degradation mechanism were innovatively investigated, and the results suggested that NCH3 bond of MB molecule was attacked by oxidants (KMnO4 and in situ manganese (hydr)oxides) at position C1 and C9, resulting in cleavage of chromophore. This study provides new insights about an applicable technology for treatment of dye wastewater. Copyright © 2016. Published by Elsevier Ltd.

  15. ABTS as an Electron Shuttle to Enhance the Oxidation Kinetics of Substituted Phenols by Aqueous Permanganate.

    PubMed

    Song, Yang; Jiang, Jin; Ma, Jun; Pang, Su-Yan; Liu, Yong-Ze; Yang, Yi; Luo, Cong-Wei; Zhang, Jian-Qiao; Gu, Jia; Qin, Wen

    2015-10-06

    In this study, it was, interestingly, found that 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), a widely used electron shuttle, could greatly accelerate the oxidation of substituted phenols by potassium permanganate (Mn(VII)) in aqueous solutions at pH 5-9. This was attributed to the fact that these substituted phenols could be readily oxidized by the stable radical cation (ABTS(•+)), which was quickly produced from the oxidation of ABTS by Mn(VII). The reaction of Mn(VII) with ABTS exhibited second-order kinetics, with stoichiometries of ∼5:1 at pH 5-6 and ∼3:1 at pH 7-9, and the rate constants varied negligibly from pH 5 to 9 (k = (9.44 ± 0.21) × 10(4) M(-1) s(-1)). Comparatively, the reaction of ABTS(•+) with phenol showed biphasic kinetics. The second-order rate constants for the reactions of ABTS(•+) with substituted phenols obtained in the initial phase were strongly affected by pH, and they were several orders of magnitude higher than those for the reactions of Mn(VII) with substituted phenols at each pH. Good Hammett-type correlations were found for the reactions of ABTS(•+) with undissociated (log(k) = 2.82-4.31σ) and dissociated phenols (log(k) = 7.29-5.90σ). The stoichiometries of (2.2 ± 0.06):1 (ABTS(•+) in excess) and (1.38 ± 0.18):1 (phenol in excess) were achieved in the reaction of ABTS(•+) with phenol, but they exhibited no pH dependency.

  16. Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism.

    PubMed

    Xu, Ke; Ben, Weiwei; Ling, Wencui; Zhang, Yu; Qu, Jiuhui; Qiang, Zhimin

    2017-10-15

    Levofloxacin (LF) is a frequently detected fluoroquinolone in surface water, and permanganate (MnO 4 - ) is a commonly used oxidant in drinking water treatment. This study investigated the impact of humic acid (HA) on LF degradation by aqueous MnO 4 - from both kinetic and mechanistic aspects. In the absence of HA, the second-order rate constant (k) of LF degradation by MnO 4 - was determined to be 3.9 M -1  s -1 at pH 7.5, which increased with decreasing pH. In the presence of HA, the pseudo-first-order rate constant (k obs ) of LF degradation at pH 7.5 was significantly increased by 3.8- and 2.8-fold at [HA] o :[KMnO 4 ] o (mass ratio) = 0.5 and 1, respectively. Secondary oxidant scavenging and electron paramagnetic resonance tests indicated that HA could form a complex with Mn(III), a strongly oxidative intermediate produced in the reaction of MnO 4 - with HA, to induce the successive formation of superoxide radicals (O 2 - ) and hydroxyl radicals (OH). The resulting OH primarily contributed to the accelerated LF degradation, and the complex [HA-Mn(III)] could account for the rest of acceleration. The degradation of LF and its byproducts during MnO 4 - oxidation was mainly through hydroxylation, dehydrogenation and carboxylation, and the presence of HA led to a stronger destruction of LF. This study helps better understand the degradation of organic micropollutants by MnO 4 - in drinking water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Oxidation of Microcystins by Permanganate: pH and Temperature-Dependent Kinetics, Effect of DOM Characteristics, and Oxidation Mechanism Revisited.

    PubMed

    Kim, Min Sik; Lee, Hye-Jin; Lee, Ki-Myeong; Seo, Jiwon; Lee, Changha

    2018-05-23

    Oxidative degradation of six representative microcystins (MCs) (MC-RR, -LR, -YR, -LF, -LW and -LA) by potassium permanganate (KMnO4; Mn(VII)) was investigated, focusing on the temperature- and pH-dependent reaction kinetics, the effect of dissolved organic matter (DOM), and the oxidation mechanisms. Second-order rate constants for the reactions of the six MCs with Mn(VII) (kMn(VII),MC) were determined to be 160.4-520.1 M-1 s-1 (MC-RR > -LR  -YR > -LF  -LW > -LA) at pH 7.2 and 21°C. The kMn(VII),MC values exhibited activation energies ranging from 15.1 to 22.4 kJ mol-1. With increasing pH from 2 to 11, the kMn(VII),MC values decreased until pH 5, and plateaued over the pH range of 5-11, except for that of MC-YR (which increased at pH > 8). Species-specific second-order rate constants were calculated using predicted pKa values of MCs. The oxidation of MCs in natural waters was accurately predicted by the kinetic model using kMn(VII),MC and Mn(VII) exposure ([Mn(VII)]dt) values. Among different characteristics of DOM in natural waters, UV254, SUVA254, and the abundance of humic-like substances characterized by fluorescence spectroscopy exhibited good correlation with [Mn(VII)]dt. A thorough product study of MC-LR oxidation by Mn(VII) was performed using liquid chromatography-mass spectrometry.

  18. Anomalously large effects of pressure on electron transfer kinetics in solution: The aqueous manganate(VI)-permanganate(VII) system

    NASA Astrophysics Data System (ADS)

    Swaddle, T. W.; Spiccia, L.

    1986-05-01

    The classical Stranks-Hush-Marcus theory of pressure effects on the rates of outer-sphere electron transfer reaction rates in solution underestimates |ΔV ∗| specifically, for the MnO 4/MnO 42- (aq) exchange, ΔV ∗=-21.2 (observed) vs. -6.6 cm3mol-1 (calculated). This discrepancy can best be resolved by conceding that the Mn-Mn separation σ in the transition state is variable and pressure-sensitive in the context of non-adiabatic electron transfer within an ellipsoidal cavity with σ ∼ 550 pm.

  19. Syntheses, structural characterization, and basic properties of unsymmetrically substituted biphenoquinones

    NASA Astrophysics Data System (ADS)

    Fujii, Ryotaro; Sugiura, Ken-ichi

    2018-03-01

    Unsymmetrically substituted biphenoquinones, 3,5-dimethyl-3‧,5‧-diphenylbiphenoquinone and 3,5-di-tert-butyl-3‧,5‧-diphenylbiphenoquinone, were prepared by a mixed oxidative coupling reaction of the corresponding phenols with potassium permanganate in CHCl3. The properties of the quinones such as reduction potential and visible light absorption were measured and positively shifted reduction potentials and bathochromic shifts as a result of light absorption were found to be characteristic of the π-expanded quinones. We also carried out single-crystal diffraction study and uncovered a unique packing motif attributable to their unsymmetrical structures.

  20. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  1. Primary Localized Vesical Amyloidosis Mimicking Bladder Carcinoma: A Case Report

    PubMed Central

    Patil, Purwa R.; Warpe, Bhushan M.

    2016-01-01

    Amyloidosis of urinary bladder is a rare condition and may be primary or secondary in nature. A case of primary localized vesical amyloidosis (VA) in a 40-yr-old man is described which was confused with neoplasm by cystoscopic, urographic and other studies. Surgical specimens obtained by transurethral resection (TUR) were diagnostic and histologically revealed amyloid deposits in sub-epithelial stroma with chronic inflammatory and giant-cell reaction. Congo-red staining proved its amyloid nature. It was resistant to potassium permanganate (KMnO4) pretreatment, indicating it to be of the AL type. PMID:28974964

  2. Decomposition of blackberry and broomsedge bluestem as influenced by ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.S.; Chappelka, A.H.; Miller-Goodman, M.S.

    Many researchers have reported on individual plant responses to O{sub 3}, but few have investigated the effects of this pollutant on ecosystem function. This investigation examined the influence of O{sub 3} on short-term (Phase 1) litter decomposition of blackberry (Rubus cuneifolus Pursh.) and broomsedge bluestem (Andropogon virginicus L.), two plant species native to early successional forest communities in the southern US. Mixed blackberry/broomsedge litter (1:1) collected from plants exposed to different levels of O{sub 3} for one growing season was placed in open-top chambers and exposed to different O{sub 3} levels of treatments for 24 weeks. Litter also was incubatedmore » in microcosms in the laboratory t 25 or 30 C to determine the effects of climate change on O{sub 3}-treated litter. Initial C and N concentrations of the collected foliage did not differ significantly among treatments for either species. Blackberry litter had approximately twice as much N as broomsedge, and when collected from 2X O{sub 3} chambers, had significantly greater permanganate lignin than the other treatments. Initial permanganate lignin concentration of blackberry, over all O{sub 3} treatments, correlated significantly with remaining mass of the litter mixture after 24 wk exposure. Litter decomposed more slowly in the 2X chambers than in the other treatment chambers, regardless of litter source. Elevated O{sub 3}-exposed litter (2X) decomposed the slowest regardless of treatment applied. There were significant temperature and time effects observed with litter decomposition: litter incubated at 30 C decomposed faster than at 25 C. The data suggest O{sub 3} may influence substrate quality and microbial activity, thus reducing the rate of litter decomposition in early successional forest communities.« less

  3. Development of a Persistent Reactive Treatment Zone for Containment of Sources Located in Lower-Permeability Strata

    NASA Astrophysics Data System (ADS)

    Marble, J.; Carroll, K. C.; Brusseau, M. L.; Plaschke, M.; Brinker, F.

    2013-12-01

    Source zones located in relatively deep, low-permeability formations provide special challenges for remediation. Application of permeable reactive barriers, in-situ thermal, or electrokinetic methods would be expensive and generally impractical. In addition, the use of enhanced mass-removal approaches based on reagent injection (e.g., ISCO, enhanced-solubility reagents) is likely to be ineffective. One possible approach for such conditions is to create a persistent treatment zone for purposes of containment. This study examines the efficacy of this approach for containment and treatment of contaminants in a lower permeability zone using potassium permanganate (KMnO4) as the reactant. A localized 1,1-dichloroethene (DCE) source zone is present in a section of the Tucson International Airport Area (TIAA) Superfund Site. Characterization studies identified the source of DCE to be located in lower-permeability strata adjacent to the water table. Bench-scale studies were conducted using core material collected from boreholes drilled at the site to measure DCE concentrations and determine natural oxidant demand. The reactive zone was created by injecting ~1.7% KMnO4 solution into multiple wells screened within the lower-permeability unit. The site has been monitored for ~8 years to characterize the spatial distribution of DCE and permanganate. KMnO4 continues to persist at the site, demonstrating successful creation of a long-term reactive zone. Additionally, the footprint of the DCE contaminant plume in groundwater has decreased continuously with time. This project illustrates the application of ISCO as a reactive-treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass flux into groundwater.

  4. Application of inorganic oxidants to the spectrophotometric determination of ribavirin in bulk and capsules.

    PubMed

    Darwish, Ibrahim A; Khedr, Alaa S; Askal, Hassan F; Mohamed, Ramadan M

    2006-01-01

    Eight spectrophotometric methods for determination of ribavirin have been developed and validated. These methods were based on the oxidation of the drug by different inorganic oxidants: ceric ammonium sulfate, potassium permanganate, ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate. The oxidation reactions were performed in perchloric acid medium for ceric ammonium sulfate and in sulfuric acid medium for the other reagents. With ceric ammonium sulfate and potassium permanganate, the concentration of ribavirin in its samples was determined by measuring the decrease in the absorption intensity of the colored reagents at 315 and 525 nm, respectively. With the other reagents, the concentration of ribavirin was determined by measuring the intensity of the developed colored reaction products at the wavelengths of maximum absorbance: 675, 780, 595, 595, 475, and 475 nm for reactions with ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate, respectively. Different variables affecting the reaction conditions were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9984-0.9998) were found between the absorbance readings and the concentrations of ribavirin in the range of 4-1400 microg/mL. The molar absorptivities were correlated with the oxidation potential of the oxidants used. The precision of the methods were satisfactory; the values of relative standard deviation did not exceed 1.64%. The proposed methods were successfully applied to the analysis of ribavirin in pure drug material and capsules with good accuracy and precision; the recovery values were 99.2-101.2 +/- 0.48-1.30%. The results obtained using the proposed spectrophotometric methods were comparable with those obtained with the official method stated in the United States Pharmacopeia.

  5. Permanganate oxidation of diclofenac: The pH-dependent reaction kinetics and a ring-opening mechanism.

    PubMed

    Cheng, Hanyang; Song, Dean; Liu, Huijuan; Qu, Jiuhui

    2015-10-01

    In this work, the fate of diclofenac (DCF) during permanganate (Mn(VII)) oxidation was investigated at environmentally relevant pH conditions (from 5 to 9). The batch experiments showed that the kinetics of the Mn(VII)/DCF reaction follows a second-order rate law with an apparent rate constant of 1.57±0.02 M(-1) s(-1) at pH 7 and 20 °C. The half-value of DCF was calculated to be 37.5 min, when the concentration of Mn(VII) (0.4 mM) was 20-fold excess of DCF. The pH-dependence of the reaction kinetics was investigated, and the DCF reactivity with Mn(VII) was found to decrease with increasing pH. The second-order rate constants were then quantitatively described by incorporating the species distribution of DCF. A lower reactivity of the anionic DCF (DCF(-)) in comparison with its neutral counterpart (DCF(0)) was most likely attributable to the interaction between the ionized carboxylate group and amine nitrogen position, which can reduce the nucleophilicity of amine nitrogen by inductive and resonance effects. Moreover, a range of degradation products and the corresponding structures were proposed on the basis of the LC-Q-TOF-MS analysis. A detailed ring-opening reaction mechanism was proposed as follows: Mn(VII) acts as an electrophile to attack the amine moiety, leading to the formation of the primary intermediate products 2,6-dichloroaniline and 5-hydroxy-diclofenac, which can be further transformed. The further degradation proceeded through a multistep process including ring-opening, decarboxylation, hydroxylation, and cyclation reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Treatment of dye wastewater with permanganate oxidation and in situ formed manganese dioxides adsorption: cation blue as model pollutant.

    PubMed

    Liu, Ruiping; Liu, Huijuan; Zhao, Xu; Qu, Jiuhui; Zhang, Ran

    2010-04-15

    This study investigated the process of potassium permanganate (KMnO(4)) oxidation and in situ formed hydrous manganese dioxides (deltaMnO(2)) (i.e., KMnO(4) oxidation and deltaMnO(2) adsorption) for the treatment of dye wastewater. The effectiveness of decolorization, removing dissolved organic carbon (DOC), and increasing biodegradable oxygen demand (BOD) were compared among these processes of KMnO(4) oxidation, deltaMnO(2) adsorption, and KMnO(4) oxidation and deltaMnO(2) adsorption. DeltaMnO(2) adsorption contributed to the maximum DOC removal of 65.0%, but exhibited limited capabilities of decolorizing and increasing biodegradability. KMnO(4) oxidation alone at pH 0.5 showed satisfactory decrease of UV-vis absorption peaks, and the maximum BOD(5)/DOC value of 1.67 was achieved. Unfortunately, the DOC removal was as low as 27.4%. Additionally, the great amount of acid for pH adjustment and the much too low pH levels limited its application in practice. KMnO(4) oxidation and deltaMnO(2) adsorption at pH 2.0 was the best strategy prior to biological process, in balancing the objectives of decolorization, DOC removal, and BOD increase. The optimum ratio of KMnO(4) dosage to X-GRL concentration (R(KMnO(4)/X-GRL)) was determined to be 2.5, at which KMnO(4) oxidation and deltaMnO(2) adsorption contributed to the maximal DOC removal of 53.4%. Additionally, the optimum pH for X-GRL treatment was observed to be near 3.0. 2009 Elsevier B.V. All rights reserved.

  7. Heterometallic cerium(IV) perrhenate, permanganate, and molybdate complexes supported by the imidodiphosphinate ligand [N(i-Pr2PO)2]-.

    PubMed

    Wang, Guo-Cang; Sung, Herman H Y; Dai, Feng-Rong; Chiu, Wai-Hang; Wong, Wai-Yeung; Williams, Ian D; Leung, Wa-Hung

    2013-03-04

    Heterometallic cerium(IV) perrhenate, permanganate, and molybdate complexes containing the imidodiphosphinate ligand [N(i-Pr2PO)2](-) have been synthesized, and their reactivity was investigated. Treatment of Ce[N(i-Pr2PO)2]3Cl (1) with AgMO4 (M = Re, Mn) afforded Ce[N(i-Pr2PO)2]3(ReO4) (2) or Ce2[N(i-Pr2PO)2]6(MnO4)2 (3). In the solid state, 3 is composed of a [Ce2{N(i-Pr2PO)2}6(MnO4)](+) moiety featuring a weak Ce-OMn interaction [Ce-OMn distance = 2.528(8) Å] and a noncoordinating MnO4(-) counteranion. While 3 is stable in the solid state and acetonitrile solution, it decomposes readily in other organic solvents, such as CH2Cl2. 3 can oxidize ethylbenzene to acetophenone at room temperature. Treatment of 1 with AgBF4, followed by reaction with [n-Bu4N]2[MoO4], afforded [Ce{N(i-Pr2PO)2}3]2(μ-MoO4) (4). Reaction of trans-Ce[N(i-Pr2PO)2]2(NO3)2 (5), which was prepared from (NH4)2Ce(NO3)6 and K[N(i-Pr2PO)2], with 2 equiv of [n-Bu4N][Cp*MoO3] yielded trans-Ce[N(i-Pr2PO)2]2(Cp*MoO3)2 (6). 4 can catalyze the oxidation of methyl phenyl sulfide with tert-butyl hydroperoxide with high selectivity. The crystal structures of complexes 3-6 have been determined.

  8. Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate.

    PubMed

    Jiang, Jin; Gao, Yuan; Pang, Su-Yan; Lu, Xue-Ting; Zhou, Yang; Ma, Jun; Wang, Qiang

    2015-01-06

    Recent studies have shown that manganese dioxide (MnO2) can significantly accelerate the oxidation kinetics of phenolic compounds such as triclosan and chlorophenols by potassium permanganate (Mn(VII)) in slightly acidic solutions. However, the role of MnO2 (i.e., as an oxidant vs catalyst) is still unclear. In this work, it was demonstrated that Mn(VII) oxidized triclosan (i.e., trichloro-2-phenoxyphenol) and its analogue 2-phenoxyphenol, mainly generating ether bond cleavage products (i.e., 2,4-dichlorophenol and phenol, respectively), while MnO2 reacted with them producing appreciable dimers as well as hydroxylated and quinone-like products. Using these two phenoxyphenols as mechanistic probes, it was interestingly found that MnO2 formed in situ or prepared ex situ greatly accelerated the kinetics but negligibly affected the pathways of their oxidation by Mn(VII) at acidic pH 5. The yields (R) of indicative products 2,4-dichlorophenol and phenol from their respective probes (i.e., molar ratios of product formed to probe lost) under various experimental conditions were quantified. Comparable R values were obtained during the treatment by Mn(VII) in the absence vs presence of MnO2. Meanwhile, it was confirmed that MnO2 could accelerate the kinetics of Mn(VII) oxidation of refractory nitrophenols (i.e., 2-nitrophenol and 4-nitrophenol), which otherwise showed negligible reactivity toward Mn(VII) and MnO2 individually, and the effect of MnO2 was strongly dependent upon its concentration as well as solution pH. These results clearly rule out the role of MnO2 as a mild co-oxidant and suggest a potential catalytic effect on Mn(VII) oxidation of phenolic compounds regardless of their susceptibility to oxidation by MnO2.

  9. Serum creatinine and cystatin C provide conflicting evidence of acute kidney injury following acute ingestion of potassium permanganate and oxalic acid.

    PubMed

    Wijerathna, Thilini Madushanka; Gawarammana, Indika Bandara; Dissanayaka, Dhammika Menike; Palanagasinghe, Chathura; Shihana, Fathima; Dassanayaka, Gihani; Shahmy, Seyed; Endre, Zoltan Huba; Mohamed, Fahim; Buckley, Nicholas Alan

    2017-11-01

    Acute kidney injury (AKI) is common following deliberate self-poisoning with a combination washing powder containing oxalic acid (H 2 C 2 O 4 ) and potassium permanganate (KMnO 4 ). Early and rapid increases in serum creatinine (sCr) follow severe poisoning. We investigated the relationship of these increases with direct nephrotoxicity in an ongoing multicenter prospective cohort study in Sri Lanka exploring AKI following poisoning. Multiple measures of change in kidney function were evaluated in 48 consenting patients who had serial sCr and serum cystatin C (sCysC) data available. Thirty-eight (38/48, 79%) patients developed AKI (AKIN criteria). Twenty-eight (58%) had AKIN stage 2 or 3. Initial increases in urine creatinine (uCr) excretion were followed by a substantial loss of renal function. The AKIN stage 2 and 3 (AKIN2/3) group had very rapid rises in sCr (a median of 118% at 24 h and by 400% at 72 h post ingestion). We excluded the possibility that the rapid rise resulted from the assay used or muscle damage. In contrast, the average sCysC increase was 65% by 72 h. In most AKI, sCysC increases to the same extent but more rapidly than sCr, as sCysC has a shorter half-life. This suggests either a reduction in Cystatin C production or, conversely, that the rapid early rise of sCr results from increased production of creatine and creatinine to meet energy demands following severe oxidative stress mediated by H 2 C 2 O 4 and KMnO 4 . Increased early creatinine excretion supports the latter explanation, since creatinine excretion usually decreases transiently in AKIN2/3 from other causes.

  10. Permanganate Fixation of Plant Cells

    PubMed Central

    Mollenhauer, Hilton H.

    1959-01-01

    In an evaluation of procedures explored to circumvent some of the problems of osmium tetroxide-fixation and methacrylate embedding of plant materials, excised segments of root tips of Zea mays were fixed for electron microscopy in potassium permanganate in the following treatment variations: unbuffered and veronal-acetate buffered solutions of 0.6, 2.0, and 5.0 per cent KMnO4 at pH 5.0, 6.0, 6.7, and 7.5, and temperatures of 2–4°C. and 22°C. After fixation the segments were dehydrated, embedded in epoxy resin, sectioned, and observed or photographed. The cells of the central region of the rootcap are described. The fixation procedures employing unbuffered solutions containing 2.0 to 5.0 per cent KMnO4 at a temperature of 22°C. gave particularly good preservation of cell structure and all membrane systems. Similar results were obtained using a solution containing 2.0 per cent KMnO4, buffered with veronal-acetate to pH 6.0, and a fixation time of 2 hours at 22°C. The fixation procedure utilizing veronal-acetate buffered, 0.6 per cent KMnO4 at 2–4°C. and pH 6.7 also gave relatively good preservation of most cellular constituents. However, preservation of the plasma membrane was not so good, nor was the intensity of staining so great, as that with the group of fixatives containing greater concentrations of KMnO4. The other fixation procedures did not give satisfactory preservation of fine structure. A comparison is made of cell structures as fixed in KMnO4 or OsO4. PMID:14423414

  11. Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil

    NASA Astrophysics Data System (ADS)

    Zawierucha, I.; Malina, G.

    2011-04-01

    Respirometry studies using the 10-chamber Micro-Oxymax respirometer (Columbus, Ohio) were conducted to determine the effect of biostimulation (by diverse ways of O2 supply) on enhancing biodegradation in soils contaminated with oil hydrocarbons. Soil was collected from a former military airport in Kluczewo, Poland. Oxygen was supplied by means of aerated water, aqueous solutions of H2O2 and KMnO4. The biodegradation was evaluated on the basis of O2 uptake and CO2 production. The O2 consumption and CO2 production rates during hydrocarbons biodegradation were estimated from the slopes of cumulative curve linear regressions. The pertinent intrinsic and enhanced biodegradation rates were calculated on the basis of mass balance equation and O2 uptake and CO2 production rates. The biodegradation rates of 5-7 times higher as compared to a control were observed when the aqueous solution of KMnO4 in concentration of 20 g L-1 was applied. Permanganate is known to readily oxidize alkene carbon - carbon double bonds; so it can be successfully applied in remediation technology for soils contaminated with oil hydrocarbons. While hydrocarbons are not completely mineralized by permanganate oxidation reactions, their structure is altered by polar functional groups providing vast improvements in aqueous solubility and availability for biodegradation. The 3% aqueous solution of H2O2 caused significant improvement of the biodegradation rates as compared to a control (on average about 260%). Aerobic biodegradation of hydrocarbons can benefit from the presence of oxygen released during H2O2 decomposition. Adding of aerated water resulted in an increase of biodegradation rates (about 114 - 229%) as compared to a control. The aerated water can both be the source of oxygen for microorganisms and determine the transport of substrate to bacteria cells.

  12. 3D-printed and CNC milled flow-cells for chemiluminescence detection.

    PubMed

    Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S

    2014-08-01

    Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A redox-hydrothermal route to β-MnO 2 hollow octahedra

    NASA Astrophysics Data System (ADS)

    Zhang, Yange; Chen, Liyong; Zheng, Zhi; Yang, Fengling

    2009-07-01

    Beta-Manganese dioxides' (β-MnO 2) hollow octahedra have been prepared by a synergetic redox reaction using cuprous chloride (CuCl) and hydrochloric acid (HCl) as reductants and potassium permanganate (KMnO 4) as oxidant through a hydrothermal route. During the process, the self-generated chlorine (Cl 2) gas bubbles and HCl's etching appear to be necessary for the formation of MnO 2 hollow structure. The catalytic efficiency of the prepared β-MnO 2 hollow octahedra was high which has been demonstrated by the catalytic oxidation of methylene blue (MB) dye in the presence of hydrogen peroxide (H 2O 2) under natural light.

  14. Hierarchical porous carbon/MnO2 hybrids as supercapacitor electrodes.

    PubMed

    Lee, Min Eui; Yun, Young Soo; Jin, Hyoung-Joon

    2014-12-01

    Hybrid electrodes of hierarchical porous carbon (HPC) and manganese oxide (MnO2) were synthesized using a fast surface redox reaction of potassium permanganate under facile immersion methods. The HPC/MnO2 hybrids had a number of micropores and macropores and the MnO2 nanoparticles acted as a pseudocapacitive material. The synergistic effects of electric double-layer capacitor (EDLC)-induced capacitance and pseudocapacitance brought about a better electrochemical performance of the HPC/MnO2 hybrid electrodes compared to that obtained with a single component. The hybrids showed a specific capacitance of 228 F g(-1) and good cycle stability over 1000 cycles.

  15. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1959-11-01

    A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

  16. EVALUATION OF ALTERNATIVE STRONIUM AND TRANSURANIC SEPARATION PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMALLEY CS

    2011-04-25

    In order to meet contract requirements on the concentrations of strontium-90 and transuranic isotopes in the immobilized low-activity waste, strontium-90 and transuranics must be removed from the supernate of tanks 241-AN-102 and 241-AN-107. The process currently proposed for this application is an in-tank precipitation process using strontium nitrate and sodium permanganate. Development work on the process has not proceeded since 2005. The purpose of the evaluation is to identify whether any promising alternative processes have been developed since this issue was last examined, evaluate the alternatives and the baseline process, and recommend which process should be carried forward.

  17. Investigation on electrical tree propagation in polyethylene based on etching method

    NASA Astrophysics Data System (ADS)

    Shi, Zexiang; Zhang, Xiaohong; Wang, Kun; Gao, Junguo; Guo, Ning

    2017-11-01

    To investigate the characteristic of electrical tree propagation in semi-crystalline polymers, the low-density polyethylene (LDPE) samples containing electrical trees are cut into slices by using ultramicrotome. Then the slice samples are etched by potassium permanganate etchant. Finally, the crystalline structure and the electrical tree propagation path in samples are observed by polarized light microscopy (PLM). According to the observation, the LDPE spherocrystal structure model is established on the basis of crystallization kinetics and morphology of polymers. And the electrical tree growth process in LDPE is discussed based on the free volume breakdown theory, the molecular chain relaxation theory, the electromechanical force theory, the thermal expansion effect and the space charge shielding effect.

  18. A method for determining and exploring the distribution of organic matters and hardness salts in natural waters

    NASA Astrophysics Data System (ADS)

    Sargsyan, Suren

    2017-11-01

    A question regarding how organic matters in water are associated with hardness salts hasn't been completely studied. For partially clarifying this question, a water fractional separation and investigation method has been recommended. The experiments carried out by the recommended method showed that the dynamics of the distribution of total hardness and permanganate oxidation values in the fractions of frozen and melted water samples coincided completely based on which it has been concluded that organic matters in natural waters are associated with hardness salts and always distributed in this form. All these findings are useful information for the deep study of macro- and microelements in water.

  19. Indirect spectrophotometric determination of traces of bromide in water

    USGS Publications Warehouse

    Fishman, M. J.; Skougstad, M.W.

    1963-01-01

    A rapid, accurate, and sensitive indirect spectrophotometric method for the determination of bromide in natural waters is based on the catalytic effect of bromide on the oxidation of iodine to iodate by potassium permanganate in sulfuric acid solution. The method is applicable to concentrations ranging from 1 to 100 ??g. of bromide per liter, but may be modified to extend the concentration range. Most ions commonly occurring in water do not interfere. The standard deviation is 2.9 at bromide concentrations of 100 ??g. per liter and less at lower concentrations. The determination of bromide in samples containing known added amounts gave values ranging from 99 to 105% of the concentration calculated to be present.

  20. Essential/precursor chemicals and drug consumption: impacts of US sodium permanganate and Mexico pseudoephedrine controls on the numbers of US cocaine and methamphetamine users.

    PubMed

    Cunningham, James K; Liu, Lon-Mu; Callaghan, Russell C

    2016-11-01

    In December 2006 the United States regulated sodium permanganate, a cocaine essential chemical. In March 2007 Mexico, the United States' primary source for methamphetamine, closed a chemical company accused of illicitly importing 60+ tons of pseudoephedrine, a methamphetamine precursor chemical. US cocaine availability and methamphetamine availability, respectively, decreased in association. This study tested whether the controls had impacts upon the numbers of US cocaine users and methamphetamine users. Auto-regressive integrated moving average (ARIMA) intervention time-series analysis. Comparison series-heroin and marijuana users-were used. United States, 2002-14. The National Survey on Drug Use and Health (n = 723 283), a complex sample survey of the US civilian, non-institutionalized population. Estimates of the numbers of (1) past-year users and (2) past-month users were constructed for each calendar quarter from 2002 to 2014, providing each series with 52 time-periods. Downward shifts in cocaine users started at the time of the cocaine regulation. Past-year and past-month cocaine users series levels decreased by approximately 1 946 271 (-32%) (P < 0.05) and 694 770 (-29%) (P < 0.01), respectively-no apparent recovery occurred through 2014. Downward shifts in methamphetamine users started at the time of the chemical company closure. Past-year and past-month methamphetamine series levels decreased by 494 440 (-35%) [P < 0.01; 95% confidence interval (CI) = -771 897, -216 982] and 277 380 (-45%) (P < 0.05; CI = -554 073, -686), respectively-partial recovery possibly occurred in 2013. The comparison series changed little at the intervention times. Essential/precursor chemical controls in the United States (2006) and Mexico (2007) were associated with large, extended (7+ years) reductions in cocaine users and methamphetamine users in the United States. © 2016 Society for the Study of Addiction.

  1. Sterility in male animals induced by injection of chemical agents into the vas deferens.

    PubMed

    Freeman, C; Coffey, D S

    1973-11-01

    This study was undertaken to develop a simple non-surgical technic for achieving male sterility. The method induces obstruction in the vas deferens by injecting sclerosing chemical agents through the skin of the scrotum directly into the vas. Previous success in rats using 95% ethanol have been reported. This sutdy used 95% ethanol, 10% silver nitrate, 36% acetic acid, 3.6% formaldehyde, 3% sodium tetradecyl sulfate, 5% sodium morrhuate, 5% potassium permanganate, 3.6% formaldehyde in 90% ethanol, and for controls .9% sodium chloride. 25 or 50 mcl of the agent being tested was injected into each vas deferens of mature Sprague-Dawley rats. 2 weeks after treatment the rats were exposed to continuous mating. All of the rats treated with ethanol, silver nitrate, acetic acid, formaldehyde, and sodium tetradecyl sulfate have remained sterile for 8 months. 33% of those treated with potassium permanganate and 67% of those treated with sodium morrhuate have remained fertile. When the experiment was repeated in dogs using 95% ethanol, 10% silver nitrate, or 3.6% formaldehyde in 90% ethanol (100 or 500 mcl injected through the skin of the scrotum) the same obstructing sclerosis was found and a reduction in size of the vas was visible for approximately 2 cm. No sperm granulomas were found either grossly or microscopically. The method has not be used in humans but injections of methylene blue dye in alcohol have been made in several human autopsy specimens. The dye was contained within the sheath of the vas and penetrated the full thickness of the wall of the vas. The method is believed to be suitable for humans, would avoid post-surgical hemorrhage and infection, would require less equipment, and more rapid accomplishment and lower cost would follow if paramedical personnel could be taught the procudre in less developed countries for mass voluntary sterilizations. The results appear to be permanent. Surgical reversibility has not be determined.

  2. Comparative reactivity of mismatched and unpaired bases in relation to their type and surroundings. Chemical cleavage of DNA mismatches in mutation detection analysis.

    PubMed

    Yakubovskaya, Marianna G; Belyakova, Anna A; Gasanova, Viktoria K; Belitsky, Gennady A; Dolinnaya, Nina G

    2010-07-01

    Systematic study of chemical reactivity of non-Watson-Crick base pairs depending on their type and microenvironment was performed on a model system that represents two sets of synthetic DNA duplexes with all types of mismatched and unmatched bases flanked by T.A or G.C pairs. Using comparative cleavage pattern analysis, we identified the main and additional target bases and performed quantitative study of the time course and efficacy of DNA modification caused by potassium permanganate or hydroxylamine. Potassium permanganate in combination with tetraethylammonium chloride was shown to induce DNA cleavage at all mismatched or bulged T residues, as well as at thymines of neighboring canonical pairs. Other mispaired (bulged) bases and thymine residues located on the second position from the mismatch site were not the targets for KMnO(4) attack. In contrast, hydroxylamine cleaved only heteroduplexes containing mismatched or unmatched C residues, and did not modify adjacent cytosines. However when G.C pairs flank bulged C residue, neighboring cytosines are also attacked by hydroxylamine due to defect migration. Chemical reactivity of target bases was shown to correlate strongly with the local disturbance of DNA double helix at mismatch or bulge site. With our model system, we were able to prove the absence of false-negative and false-positive results. Portion of heteroduplex reliably revealed in a mixture with corresponding homoduplex consists of 5% for bulge bases and "open" non-canonical pairs, and 10% for wobble base pairs giving minimal violations in DNA structure. This study provides a complete understanding of the principles of mutation detection methodology based on chemical cleavage of mismatches and clarifies the advantages and limitations of this approach in various biological and conformational studies of DNA. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  3. Permanganate/bisulfite (PM/BS) conditioning-horizontal electro-dewatering (HED) of activated sludge: Effect of reactive Mn(III) species.

    PubMed

    Guo, Xinxin; Wang, Yili; Wang, Dongsheng

    2017-11-01

    A novel activated sludge (AS) conditioning method through permanganate/bisulfate (PM/BS) process was proposed. The method involved a new conditioner of reactive Mn(III) intermediate. Moreover, a Mn(III) conditioning-horizontal electro-dewatering (Mn(III) C-HED) process was established to improve AS dewatering performance. Underlying mechanisms were unraveled by investigating changes in physicochemical characteristics, scanning electron microscope (SEM) morphology, and transformation of water and organic matters. The optimum dewatering conditions for Mn(III) C-HED process with the final water content of 86.94% were determined as the combination of KMnO 4 0.01 mol/L AS and NaHSO 3 0.05 mol/L AS at 20 V for 120 min. Results showed that Mn(III) C-HED process effectively reduced free water and bound water with the corresponding removal ratios of 51.68% and 87.62% at the anode-side as well as 36.55% and 85.08% at the cathode-side, respectively. During the PM/BS process, the produced Mn(III), Mn 2+ , and MnO 2 exerted chemical and physical effects on AS conditioning and dewatering. Mn(III) disintegrated extracellular polymeric substances (EPS) fractions and cells in AS, as well as induced partial bound water release. Additionally, flocculation effect induced by Mn 2+ and MnO 2 skeleton building also benefited AS dewatering. AS cells were further disrupted under the effect of a horizontal electric field. Accordingly, EPS within the AS matrix was solubilized, tightly bound (TB)-EPS or loosely bound (LB)-EPS was converted to their corresponding outer EPS fractions, and AS dewaterability improved. Additionally, changes in pH and temperature at HED stage damaged the AS cells and changed the floc properties, thereby leading to easy separation of liquid and AS particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.

    PubMed

    Liu, Ran; Duay, Jonathon; Lee, Sang Bok

    2010-07-27

    MnO2 nanoparticle enriched poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires are fabricated by simply soaking the PEDOT nanowires in potassium permanganate (KMnO4) solution. The structures of these MnO2 nanoparticle enriched PEDOT nanowires are characterized by SEM and TEM, which show that the MnO2 nanoparticles have uniform sizes and are finely dispersed in the PEDOT matrix. The chemical constituents and bonding of these composite nanowires are characterized by energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, and infrared spectroscopy, which indicate that the formation and dispersion of these MnO2 nanoparticles into the nanoscale pores of the PEDOT nanowires are most likely triggered by the reduction of KMnO4 via the redox exchange of permanganate ions with the functional group on PEDOT. Varying the concentrations of KMnO4 and the reaction time controls the loading amount and size of the MnO2 nanoparticles. Cyclic voltammetry and galvanostatic charge-discharge are used to characterize the electrochemical properties of these MnO2 nanoparticle loaded PEDOT nanowires. Due to their extremely high exposed surface area with nanosizes, the pristine MnO2 nanoparticles in these MnO2 nanoparticle enriched PEDOT nanowires show very high specific capacitance (410 F/g) as the supercapacitor electrode materials as well as high Li+ storage capacity (300 mAh/g) as cathode materials of Li ion battery, which boost the energy storage capacity of PEDOT nanowires to 4 times without causing excessive volume expansion in the polymer. The highly conductive and porous PEDOT matrix facilitates fast charge/discharge of the MnO2 nanoparticles and prevents them from agglomerating. These synergic properties enable the MnO2 nanoparticle enriched PEDOT nanowires to be promising electrode materials for supercapacitors and lithium ion batteries.

  5. Exploring the potential of the permanganate oxidation method as a tool to monitor soil quality in agricultural upland systems of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hepp, Catherine M.; Bruun, Thilde Bech; de Neergaard, Andreas

    2014-05-01

    The transition to more intensified upland systems is having an impact on the soil quality, defined as the ability of a soil to both provide and maintain essential services to an ecosystem. As many tropical upland soils are inherently low in quality, it is essential that impacts be monitored. Soil quality is assessed by using a combination of parameters that serve as indicators and cover the soil chemical, biological and physical properties. An ideal indicator should be sensitive to changes in the environment and management practices and should be widely accessible, meaning low resource requirement (i.e. time and equipment). Total organic carbon (TOC) content is a commonly used indicator of soil quality as it is linked to many soil functions and processes; however analysis is costly and requires access to advanced instrumental facilities, rendering it unsuited for many developing countries. An alternative indicator is the soil fraction dominated by easily decomposable carbon; this may be measured by treating soil samples with 0.2M potassium permanganate (KMnO4), an oxidizing agent which is thought to mimic the enzymes released by the soil microbial community. The advantage of this method is that it is accessible: it is fast, requires little resource input and is field appropriate. There is no consensus however as to which soil carbon fraction the method targets. Furthermore Skjemstad et al. (2006) has indicated that KMnO4 may oxidise charcoal, a component of the non-labile carbon pool; this has implications for the suitability of the method when used for soils of shifting cultivation systems. The purpose of this study was to investigate the potential of permanganate oxidizable carbon (Pox C) as a reliable indicator of soil quality in agricultural upland systems in Northern Lao PDR. Focus was placed on the relations between Pox C and other soil quality parameters (bulk density, pH, CEC, TOC, total N, exchangeable K, plant available P) and upland rice yields. The ability of KMnO4 to oxidize charcoal was also a focus however, as the study is still in its initial stage, no results can be discussed. Volumetric soil samples (at the surface and at 10 cm) and upland rice yield measurements were taken from three fields with three plots that were previously left fallow for five years (n=9; soil n=81). Pearson's Correlation test and Stepwise Regression analysis was done using SPSS v 16.0 for Windows. Results show that Pox C is significantly correlated to the measured soil parameters in a manner similar to TOC. Both are positively correlated to the soil nutrients: Total N %, P Avail and K Exch; Pox C however had a stronger correlation to K Exch than TOC. This affirms the important role of Pox C in soil processes in the biological, chemical and physical spheres. Furthermore, the regression analysis identified Pox C as an influencing factor for the variations seen in upland rice yields. It is concluded that Pox C is a suitable indicator for soil quality and may be useful in monitoring changes in the soil quality of agricultural upland systems.

  6. The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies

    USGS Publications Warehouse

    Hatcher, P.G.; Schnitzer, M.; Vassallo, A.M.; Wilson, M.A.

    1989-01-01

    Dipolar dephasing 13C NMR studies of three highly aromatic humic acids, one from a modern soil and two from paleosols, have permitted the determination of the degree of aromatic substitution. From these data and the normal solid-state 13C NMR data we have been able to develop a model for the average chemical structure of these humic acids that generally correlates well with permanganate oxidation data. The models depict these humic acids as benzene di- and tricarboxylic acids interconnected by biphenyl linkages. An increasing degree of substitution is observed with increasing geologic age. These structures may be characteristic of the resistant aromatic part of the "core" of humic substances that survives degradation. ?? 1989.

  7. Fast degradation of dyes in water using manganese-oxide-coated diatomite for environmental remediation

    NASA Astrophysics Data System (ADS)

    Dang, Trung-Dung; Banerjee, Arghya Narayan; Tran, Quang-Tung; Roy, Sudipta

    2016-11-01

    By a simple wet-chemical procedure using a permanganate in the acidic medium, diatomite coated with amorphous manganese oxide nanoparticles was synthesized. The structural, microstructural and morphological characterizations of the as-synthesized catalysts confirmed the nanostructure of MnO2 and its stabilization on the support - diatomite. The highly efficient and rapid degradation of methylene blue and methyl orange over synthesized MnO2 coated Diatomite has been carried out. The results revealed considerably faster degradation of the dyes against the previously reported data. The proposed mechanism of the dye-degradation is considered to be a combinatorial effect of chemical, physicochemical and physical processes. Therefore, the fabricated catalysts have potential application in waste water treatment, and pollution degradation for environmental remediation.

  8. Development of the Plant Growth Facility for Use in the Shuttle Middeck and Test Units for Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Wells, H. William

    1996-01-01

    The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.

  9. Theoretical study on complexation of the perchlorate, permanganate, pertechnate and perrhenate anions with dodecabenzylbambus[6]uril

    NASA Astrophysics Data System (ADS)

    Böhm, Stanislav; Makrlík, Emanuel; Vaňura, Petr

    2017-07-01

    By using quantum chemical calculations, the most probable structures of the anionic complex species dodecabenzylbambus[6]uril-ClO4-, dodecabenzylbambus[6]uril-MnO4-, dodecabenzylbambus[6]uril-TcO4- and dodecabenzylbambus[6]uril-ReO4- were derived. In these four complexes, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion. Further, the corresponding interaction energies of the investigated four anionic complexes were calculated; the absolute values of these calculated energies increase in the series of ReO4- < TcO4- < MnO4- < ClO4-.

  10. KSC-00pp0102

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, representatives from environmental and Federal agencies head for the block house during presentations about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  11. KSC00pp0101

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, Greg Beyke, with Current Environmental Solutions, talks to representatives from environmental and federal agencies about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  12. KSC-00pp0101

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, Greg Beyke, with Current Environmental Solutions, talks to representatives from environmental and federal agencies about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  13. KSC00pp0102

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, representatives from environmental and Federal agencies head for the block house during presentations about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  14. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.

    PubMed

    Baptista, C; Robert, D; Duarte, A P

    2008-05-01

    This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.

  15. HALE STAIN FOR SIALIC ACID-CONTAINING MUCINS. ADAPTATION TO ELECTRON MICROSCOPY.

    PubMed

    GASIC, G; BERWICK, L

    1963-10-01

    The feasibility of using the Hale stain to identify cellular sialic acid-containing mucins by electron microscopy was investigated. Three kinds of mouse ascites tumor cells were fixed in neutral buffered formalin, exposed to fresh colloidal ferric oxide, treated with potassium ferrocyanide, imbedded in Selectron, and sectioned for electron microscopy. Additional staining with uranyl acetate and potassium permanganate was done after sectioning in order to increase contrast. Those cells known to be coated with sialomucin showed deposits of electron-opaque ferric ferrocyanide crystals in the areas where sialomucin concentrations were expected. When these cells were treated with neuraminidase beforehand, these deposits did not appear. It was concluded that, with the precautions and modifications described, the Hale stain can be successfully combined with electron microscopy to identify sialomucin.

  16. Candidate Species Selection and Controlled Environment Injuries

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.

    1982-01-01

    Research was undertaken to attempt to identify the causal agents for intumescences that develop on many different species of plants in controlled environments. Concentration and filtration procedures were not successful in identifying any particular compounds. The injury was found to develop, even though the atmosphere for the plants is filtered through activated charcoal, potassium permanganate, or is subjected to catalytic combustion at 450 C. Thus, the causal agent is apparently either an oxidized compound or specific element, or the result of some unrecognized variation in physical conditions around the plants. The research has demonstrated that the injury is controlled to a significant extent by temperature. Growing temperatures of 20 degrees and 25 degrees C resulted in serious injury on plants, but temperatures of 30 C resulted in very little injury.

  17. Spontaneous Polarization of Hydrogen-Saturated Composite Materials

    NASA Astrophysics Data System (ADS)

    Sokolov, A. A.; Sergeev, V. O.; Kharlamov, V. F.

    2017-01-01

    The paper focuses on the effect of spontaneous electric field emergence in mixtures of cesium nitrate and/or potassium permanganate microparticles with nickel, aluminum and aluminum oxide nanoparticles in the hydrogen atmosphere. It was established that increase in the share of Ni, Al or Al2O3 nanoparticles in the mix with KMnO4 powder from 0 to 0.25 (in terms of weight) leads to gradual decrease in electric field density in the powder to zero (T = 22-250°C). The authors identified the stimulating effect of nickel nanoparticles on hydrogen-initiated electric field emergence in the CsNO3 powder. It was established that spontaneous polarization of powders is caused by dissociative chemisorption of hydrogen molecules on the surface of KMnO4 and CsNO3 particles.

  18. The growth rates of KDP crystals in solutions with potassium permanganate additives

    NASA Astrophysics Data System (ADS)

    Egorova, A. E.; Vorontsov, D. A.; Nezhdanov, A. V.; Noskova, A. N.; Portnov, V. N.

    2017-01-01

    We have found that growth of the {101} faces of a KDP (KH2PO4) crystal is suppressed, and the growth rate of the {100} faces passes through the maximum with increasing addition of KMnO4 to a solution with pH=4.7. We have concluded that the [MnH2PO4]2+ complex and MnO2 particles affect the growth kinetics. The X-ray and electronic paramagnetic resonance data show that manganese is incorporated into the crystal in the form of Mn3+ and Mn4+. The local excess of a positive charge in the area with incorporated [MnH2PO4]2+ complex can be compensated by the shift of the hydrogen atoms in the KDP structure.

  19. Amyloid arthropathy revealed by RS3PE syndrome.

    PubMed

    Magy, N; Michel, F; Auge, B; Toussirot, E; Wendling, D

    2000-01-01

    Amyloid arthropathy is a form of primary AL amyloidosis with a monoclonal component in the blood and/or urine, and RS3PE syndrome is acute edematous polysynovitis in subjects older than 60 years. A 74-year-old man was diagnosed with both disorders. He was admitted for benign acute polyarthritis of the hands and feet and reported carpal tunnel symptoms predominating on the right. A synovial biopsy at the right wrist disclosed deposits that stained with Congo red even after potassium permanganate treatment (positive Wright's test). Articular AL amyloidosis was diagnosed. The symptoms resolved under glucocorticoid therapy alone, casting some doubt on their relationship with the amyloidosis. Roentgenograms showed geodes, a feature not present in RS3PE. Whether RS3PE may be among the possible presentations of articular amyloidosis is discussed.

  20. Amyloidosis in the black-footed ferret (Mustela nigripes).

    PubMed

    Garner, Michael M; Raymond, James T; O'Brien, Timothy D; Nordhausen, Robert W; Russell, William C

    2007-03-01

    This study describes clinical, histologic, immunohistochemical and electron microscopic features of amyloid A amyloidosis occurring in black-footed ferrets (Mustela nigripes) from eight U.S. zoological institutions. Ferrets had nonregenerative anemia, serum chemistries consistent with chronic renal disease, and proteinuria. Amyloid was present in a variety of tissues, but it was most severe in renal glomeruli and associated with tubular protein loss and emaciation. Congo red/potassium permanganate (KMnO4) and immunohistochemical stains revealed that the amyloid was of the AA type. Concurrent diseases and genetic predisposition were considered the most important contributing factors to development of amyloidosis. Analysis of the genetic tree did not reveal convincing evidence of a common ancestor in the affected ferrets, but a genetic predisposition is likely because all the captive black-footed ferrets are related.

  1. [Characteristics of microbial community and operation efficiency in biofilter process for drinking water purification].

    PubMed

    Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can

    2011-04-01

    In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.

  2. Investigations of Chemical and Biological Treatment Options for the Attenuation of Hexahydro-1,3,5-trinitro-1,3,5-triazine Contamination in Groundwater at Los Alamos, New Mexico

    NASA Astrophysics Data System (ADS)

    Heerspink, B. P.; Wang, D.; Ware, D.; Marina, O.; Perkins, G.; WoldeGabriel, G. W.; Goering, T.; Boukhalfa, H.

    2017-12-01

    High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL) in Los Alamos, NM. Liquid effluents containing RDX released at LANL's Technical Area 16 (TA-16) resulted in the contamination of alluvial, perched-intermediate, and regional groundwater bodies. Past investigations have shown persistent RDX contamination in the perched-intermediate zone located between 225 to 311 m below ground surface, where transport studies have shown that RDX and its degradation products transport conservatively. In this study, we compared RDX degradation by chemical treatments using reduction by sodium dithionite, oxidation by potassium permanganate, and alkaline hydrolysis by carbonate/bicarbonate buffering, with microbial degradation under biostimulated conditions. The experiments were conducted using groundwater and sediments representative of the contaminated aquifer beneath TA-16. Batch testing showed that all chemical treatments degraded RDX very rapidly, with half-lives ranging from 50 minutes to 22 hours. Comparatively, RDX degradation in biostimulated reactors under strict anaerobic conditions was significantly slower, with half-lives of about 3 weeks. Results from column experiments with chemically treated sediments deviated from the results of the batch testing. Dithionite treated sediments reduced RDX with no breakthrough observed before clogging occurred at 50 pour volumes. Treatments by oxidation using potassium permanganate, and hydrolysis under buffered alkaline conditions, were less effective with complete RDX breakthrough after 2 pore volumes. No known degradation products were observed in the column effluents. RDX degradation in biostimulated columns was very effective initially for both treatments. However, the column biostimulated with safflower oil clogged very rapidly. The column biostimulated with molasses was very effective when molasses was continuously supplied but less effective after molasses injection stopped. Degradation products (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine [MNX]; hexahydro-1,3-dinitro-5-nitro-1,3,5-triazine [DNX]; 2,4,6-trinitroxylene [TNX]) were visible in the effluents from the biostimulated columns.

  3. A new method and application for determining the nitrogen isotopic composition of NOx

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Miller, D. J.; Wojtal, P.; O'Connor, M.

    2015-12-01

    Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry, air quality, and radiative forcing, and contribute to nitric acid deposition. Sources of NOx include both natural and anthropogenic emissions, which vary significantly in space and time. NOx isotopic signatures offer a potentially valuable tool to trace source impacts on atmospheric chemistry and regional acid deposition. Previous work on NOx isotopic signatures suggests large ranges in values, even from the same emission source, as well as overlapping ranges amongst different sources, making it difficult to use the isotopic composition as a quantitative tracer of source influences. These prior measurements have utilized a variety of methods for collecting the NOx as nitrate or nitrite for isotopic analysis, and testing of some of these methods (including active and passive collections) reveal inconsistencies in efficiency of collection, as well as issues related to changes in conditions such as humidity, temperature, and NOx fluxes. A recently developed method allows for accurately measuring the nitrogen isotopic composition of NOx (NOx = NO + NO2) after capturing the NOx in a potassium permanganate/sodium hydroxide solution as nitrate (Fibiger et al., Anal. Chem., 2014). The method has been thoroughly tested in the laboratory and field, and efficiently collects NO and NO2 under a variety of conditions. There are several advantages to collecting NOx actively, including the ability to collect over minutes to hourly time scales, and the ability to collect in environments with highly variable NOx sources and concentrations. Challenges include a nitrate background present in potassium permanganate (solid and liquid forms), accurately deriving ambient NOx concentrations based upon flow rate and solution concentrations above this variable background, and potential interferences from other nitrogen species. This method was designed to collect NOx in environments with very different emission source loadings in an effort to isotopically characterize NOx sources. Results to date suggest very different values, and less variability than previous work, particularly for vehicle emissions. Ultimately, we aim to determine whether the influence of NOx sources can be quantitatively tracked in the environment.

  4. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    PubMed

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings provide direct evidence for the unintended spreading of contaminants as a result of remediation efforts, which can, under some circumstances, result in enhanced risks for soil vapour intrusion. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. KSC-00pp0104

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, the Six-Phase Soil Heating site that is involved in a groundwater cleanup project can be seen. The project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six-Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background is the block house for the complex. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  6. KSC00pp0104

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, the Six-Phase Soil Heating site that is involved in a groundwater cleanup project can be seen. The project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six-Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background is the block house for the complex. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  7. Manganese-induced Parkinsonism among ephedrone users and drug policy in Poland.

    PubMed

    Fudalej, Sylwia; Kołodziejczyk, Iwona; Gajda, Tomasz; Majkowska-Zwolińska, Beata; Wojnar, Marcin

    2013-01-01

    A recent government's prohibition policy in Poland was partially successful with a reduction of the synthetic drugs market and a decrease in drug-related poisoning mortality rates. However, a new threatening trend is observed. There are a growing number of individuals in Poland and other European countries using legal pharmaceuticals containing ephedrine or pseudoephedrine to produce stimulants. This case report describes a history of a male patient with polysubstance dependence who administered self-designed ephedrone derived from Sudafed using potassium permanganate. He revealed significant clinical symptoms of manganese-induced parkinsonism. No effective treatment could be recommended. Awareness of this severe neurological and social consequences should lead to prevention efforts including educational programs and initiatives reducing availability of the legal medications containing ephedrine or pseudoephedrine. More research is needed to enhance our knowledge about manganism and potential treatment regimens.

  8. Design of LabVIEW®-based software for the control of sequential injection analysis instrumentation for the determination of morphine

    PubMed Central

    Lenehan, Claire E.; Lewis, Simon W.

    2002-01-01

    LabVIEW®-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 × 10-10 to 5 × 10-6 M) with a line of best fit of y=1.05x+8.9164 (R2 =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 × 10-8 M). The limit of detection (3σ) was determined as 5 × 10-11 M morphine. PMID:18924729

  9. Design of LabVIEW-based software for the control of sequential injection analysis instrumentation for the determination of morphine.

    PubMed

    Lenehan, Claire E; Barnett, Neil W; Lewis, Simon W

    2002-01-01

    LabVIEW-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 x 10(-10) to 5 x 10(-6) M) with a line of best fit of y=1.05(x)+8.9164 (R(2) =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 x 10(-8) M). The limit of detection (3sigma) was determined as 5 x 10(-11) M morphine.

  10. The properties of syringyl, guaiacyl and p-hydroxyphenyl artificial lignins

    PubMed Central

    Bland, D. E.; Logan, A. F.

    1965-01-01

    1. Artificial lignins have been produced on potato parenchyma. 2. The methoxyl-free lignin and 4-hydroxy-3-methoxy (guaiacyl) lignins could be estimated by the sulphuric acid method but the 4-hydroxy-3,5-dimethoxy (syringyl) lignins could not. 3. Permanganate oxidation of isolated p-coumaric lignin gave 4-hydroxybenzoic acid, 4-hydroxyisophthalic acid and small amounts of hydroxytrimesic acid and 4-hydroxyphthalic acid. Ferulic lignin gave vanillic acid and 5-carboxyvanillic acid and also small amounts of 4-hydroxybenzoic acid and dehydrodivanillic acid. The sinapic lignin gave traces of syringic acid and of 4-hydroxybenzoic acid. 4. The p-coumaric lignin is a highly condensed polymer. The ferulic lignin is partly uncondensed and partly condensed through the 5-position like gymnosperm lignin. The sinapic lignin shows no evidence of condensation and is probably an ether-linked polymer. PMID:14340102

  11. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, Greg Beyke, with Current Environmental Solutions, talks to representatives from environmental and federal agencies about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  12. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, the Six-Phase Soil Heating site that is involved in a groundwater cleanup project can be seen. The project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six-Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background is the block house for the complex. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  13. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4-

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Truhlar, Donald G.; Gagliardi, Laura

    2018-03-01

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  14. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, representatives from environmental and Federal agencies head for the block house during presentations about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  15. Electronic interaction in an outer-sphere mixed-valence double salt: a polarized neutron diffraction study of K(3)(MnO(4))(2).

    PubMed

    Cannon, Roderick D; Jayasooriya, Upali A; Tilford, Claire; Anson, Christopher E; Sowrey, Frank E; Rosseinsky, David R; Stride, John A; Tasset, Francis; Ressouche, Eric; White, Ross P; Ballou, Rafik

    2004-11-01

    The mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca. T = 5 K. The spin-density distribution in the paramagnetic phase at T = 10 K has been determined by polarized neutron diffraction, confirming that unpaired spin is largely confined to the nominal manganate ion Mn2. Through use of both Fourier refinement and maximum entropy methods, the spin on Mn1 is estimated as 1.75 +/- 1% of one unpaired electron with an upper limit of 2.5%.

  16. Molecular imprinting-chemiluminescence determination of trimethoprim using trimethoprim-imprinted polymer as recognition material.

    PubMed

    He, Yunhua; Lu, Jiuru; Liu, Mei; Du, Jianxiu

    2005-07-01

    A new molecular imprinting-chemiluminescence method for the determination of trimethoprim was developed, in which trimethoprim-imprinted polymer was used as the molecular recognition material and the CL reaction of trimethoprim with potassium permanganate in acidic medium was used as the detection system. The CL intensity responds linearly to the concentration of trimethoprim within the 5.0 x 10(-8)-5.0 x 10(-6) g mL(-1) range (r= 0.9983) with a detection limit of 2 x 10(-8) g mL(-1). The relative standard deviation for the determination of 1.0 x 10(-7) g mL(-1) trimethoprim solutions is 4.8% (n= 9). The method has been applied to the determination of trimethoprim in pharmaceutical preparations and body fluids, and satisfactory results were obtained.

  17. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4.

    PubMed

    Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura

    2018-03-28

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  18. Efficient production of ultrapure manganese oxides via electrodeposition.

    PubMed

    Cheney, Marcos A; Joo, Sang Woo; Banerjee, Arghya; Min, Bong-Ki

    2012-08-01

    A new process for the production of electrolytic amorphous nanomanganese oxides (EAMD) with uniform size and morphology is described. EAMD are produced for the first time by cathodic deposition from a basic aqueous solution of potassium permanganate at a constant temperature of 16°C. The synthesized materials are characterized by XRD, SEM, TEM, and HRTEM. The materials produced at 5.0 V at constant temperature are amorphous with homogeneous size and morphology with an average particle size around 20 nm, which appears to be much lesser than the previously reported anodic EAMD. A potentiostatic electrodeposition with much lesser deposition rate (with respect to previously reported anodic depositions) is considered to be the reason behind the very low and homogenous particle size distribution due to the lesser agglomeration of our as-synthesized nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?

    PubMed

    Sofer, Zdeněk; Luxa, Jan; Jankovský, Ondřej; Sedmidubský, David; Bystroň, Tomáš; Pumera, Martin

    2016-09-19

    It is well established that graphene oxide can be prepared by the oxidation of graphite using permanganate or chlorate in an acidic environment. Recently, however, the synthesis of graphene oxide using potassium ferrate(VI) ions has been reported. Herein, we critically replicate and evaluate this new ferrate(VI) oxidation method. In addition, we test the use of potassium ferrate(VI) for the synthesis of graphene oxide under various experimental routes. The synthesized materials are analyzed by a number of analytical methods in order to confirm or disprove the possibility of synthesizing graphene oxide by the ferrate(VI) oxidation route. Our results confirm the unsuitability of using ferrate(VI) for the oxidation of graphite on graphene oxide because of its high instability in an acidic environment and low oxidation power in neutral and alkaline environments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sensitivity of juvenile striped bass to chemicals used in aquaculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bills, T.D.; Marking, L.L.; Howe, G.E.

    1993-01-01

    Efforts to restore anadromous striped bass (Morone saxatilis) populations by the U.S. Fish and Wildlife Service and other agencies over the past 20 years have concentrated on hatchery culture to supplement dwindling natural reproduction. Adult fish captured for artificial spawning are stressed by handling and crowding in rearing ponds and are often exposed to therapeutants, anesthetics, disinfectants, and herbicides used in fish culture. The authors determined the toxicity of 17 fishery chemicals (chloramine-T, erythromycin, formalin, Hyamine 3500, Roccal, malachite green, sulfamerazine, benzocaine, etomidate, Finquel (MS-222), metomidate, quinaldine sulfate, chlorine, potassium permanganate, Aquazine, copper sulfate, and Rodeo) to striped bass frymore » (average weight = 1 g) in reconstituted water (total hardness 40 mg/L) at 12 degrees C. The 96-h LC50's (concentration calculated to produce 50% mortality in a population) ranged from 0.129 mg/L for malachite green to 340 mg/L for erythromycin.« less

  1. Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates.

    PubMed

    Teze, David; Sergentu, Dumitru-Claudiu; Kalichuk, Valentina; Barbet, Jacques; Deniaud, David; Galland, Nicolas; Maurice, Rémi; Montavon, Gilles

    2017-05-31

    211 At is a most promising radionuclide for targeted alpha therapy. However, its limited availability and poorly known basic chemistry hamper its use. Based on the analogy with iodine, labelling is performed via astatobenzoate conjugates, but in vivo deastatination occurs, particularly when the conjugates are internalized in cells. Actually, the chemical or biological mechanism responsible for deastatination is unknown. In this work, we show that the C-At "organometalloid" bond can be cleaved by oxidative dehalogenation induced by oxidants such as permanganates, peroxides or hydroxyl radicals. Quantum mechanical calculations demonstrate that astatobenzoates are more sensitive to oxidation than iodobenzoates, and the oxidative deastatination rate is estimated to be about 6 × 10 6 faster at 37 °C than the oxidative deiodination one. Therefore, we attribute the "internal" deastatination mechanism to oxidative dehalogenation in biological compartments, in particular lysosomes.

  2. High-performance liquid chromatography of methanol released from pectins after its oxidation to formaldehyde and condensation with 2,4-dinitrophenylhydrazine.

    PubMed

    Zegota, H

    1999-11-26

    A procedure was developed to measure the content of methanol in pectins after the base-catalysed hydrolysis of galacturonic acid methyl esters and oxidation of released methanol with potassium permanganate followed by condensation of the resulting formaldehyde (HCHO) with 2,4-dinitrophenylhydrazine (DNPH) dissolved in acetonitrile. The constant yields of resultant formaldehyde 2,4-dinitrophenylhydrazone (HCHO-DNPH derivative) were obtained at molar ratios of DNPH/HCHO higher than 5. The separation of the HCHO-DNPH derivative from DNPH reagent was achieved by isocratic reversed-phase HPLC equipped with the spectrophotometric detector set at a wavelength of 351 nm. The calibration curve was linear in the methanol concentration range between 0.04 and 15 micromol/ml (R=0.9995). The total recovery from pectin solutions spiked with methanol was equal to 100.6+/-5.1%.

  3. System decontamination as a tool to control radiation fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, R.; Bertholdt, H.O.

    1995-03-01

    Since chemical decontamination of the Reactor Coolant Systems (RCS) and subsystems has the highest potential to reduce radiation fields in a short term this technology has gained an increasing importance. The available decontamination process at Siemens, i.e., the CORD processes, will be described. It is characterized by using permanganic acid for preoxidation and diluted organic acid for the decontamination step. It is a regenerative process resulting in very low waste volumes. This technology has been used frequently in Europe and Japan in both RCS and subsystems. An overview will be given i.e. on the 1993 applications. This overview will includemore » plant, scope, date of performance, system volume specal features of the process removed activities, decon factor time, waste volumes, and personnel dose during decontamination. This overview will be followed by an outlook on future developments in this area.« less

  4. Topical antifungal agents: an update.

    PubMed

    Diehl, K B

    1996-10-01

    So many topical antifungal agents have been introduced that it has become very difficult to select the proper agent for a given infection. Nonspecific agents have been available for many years, and they are still effective in many situations. These agents include Whitfield's ointment, Castellani paint, gentian violet, potassium permanganate, undecylenic acid and selenium sulfide. Specific antifungal agents include, among others, the polyenes (nystatin, amphotericin B), the imidazoles (metronidazole, clotrimazole) and the allylamines (terbinafine, naftifine). Although the choice of an antifungal agent should be based on an accurate diagnosis, many clinicians believe that topical miconazole is a relatively effective agent for the treatment of most mycotic infections. Terbinafine and other newer drugs have primary fungicidal effects. Compared with older antifungal agents, these newer drugs can be used in lower concentrations and shorter therapeutic courses. Studies are needed to evaluate the clinical efficacies and cost advantages of both newer and traditional agents.

  5. Hazard Assessment of Personal Protective Clothing for Hydrogen Peroxide Service

    NASA Technical Reports Server (NTRS)

    Greene, Ben; McClure, Mark B.; Johnson, Harry T.

    2004-01-01

    Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.

  6. Visualization studies of turbulent transition flows in a porous medium

    NASA Technical Reports Server (NTRS)

    Bilardo, V. J.

    1983-01-01

    Results are reported for flow-visualization studies of the flow regimes of water passing through a porous medium consisting of cylindrical glass and plexiglas rods arranged in a complex and fixed three-dimensional geometry. The Reynolds number (Re) varied from 50 to 700; the flow was visualized by injecting a 5% potassium permanganate dye solution into the pores and photographing the resulting dye streaklines with both a still camera and a movie camera. The results indicate that four distinct flow regimes exist in the porous medium: (1) Darcy or creeping flow up to Re = 3; (2) steady inertia-dominated laminar flow for Re = 3-150; (3) unsteady transitional laminar flow for Re = 150-250; and (4) fully turbulent flow for Re greater than 250. It is concluded that a laminar wake instability mechanism typical of the external flow about bluff bodies may be responsible for the overall transition from laminar to turbulent flow in porous media.

  7. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    NASA Astrophysics Data System (ADS)

    Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.

    2016-09-01

    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.

  8. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process

    NASA Astrophysics Data System (ADS)

    Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei

    2017-09-01

    Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.

  9. Fast and fully-scalable synthesis of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-05-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene.

  10. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  11. Modified Graphene Oxide for Long Cycle Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Shareef, Muhamed; Gunn, Harrison; Voigt, Victoria; Singh, Gurpreet

    Hummer's process was modified to produce gram levels of 2-dimensional nanosheets of graphene oxide (GO) with varying degree of exfoliation and chemical functionalization. This was achieved by varying the weight ratios and reaction times of oxidizing agents used in the process. Based on Raman and Fourier transform infra red spectroscopy we show that potassium permanganate (KMnO4) is the key oxidizing agent while sodium nitrate (NaNO3) and sulfuric acid (H2SO4) play minor role during the exfoliation of graphite. Tested as working electrode in sodium-ion half-cell, the GO nanosheets produced using this optimized approach showed high rate capability and exceptionally high energy density of ~500 mAh/g for up to at least 100 cycles, which is among the highest reported for sodium/graphite electrodes. The average Coulombic efficiency was approximately 99 %. NSF Grant No. 1454151.

  12. Reagent removal of manganese from ground water

    NASA Astrophysics Data System (ADS)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  13. A microfluidic galvanic cell on a single layer of paper

    NASA Astrophysics Data System (ADS)

    Purohit, Krutarth H.; Emrani, Saina; Rodriguez, Sandra; Liaw, Shi-Shen; Pham, Linda; Galvan, Vicente; Domalaon, Kryls; Gomez, Frank A.; Haan, John L.

    2016-06-01

    Paper microfluidics is used to produce single layer galvanic and hybrid cells to produce energy that could power paper-based analytical sensors. When two aqueous streams are absorbed onto paper to establish co-laminar flow, the streams stay in contact with each other with limited mixing. The interface at which mixing occurs acts as a charge-transfer region, eliminating the need for a salt bridge. We designed a Cusbnd Zn galvanic cell that powers an LED when two are placed in series. We also used more powerful redox couples (formate and silver, formate and permanganate) to produce higher power density (18 and 3.1 mW mg-1 Pd). These power densities are greater than previously reported paper microfluidic fuel cells using formate or methanol. The single layer design is much more simplified than previous reports of multi-layer galvanic cells on paper.

  14. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  15. Antioxidant Characterization of Oak Extracts Combining Spectrophotometric Assays and Chemometrics

    PubMed Central

    Popović, Boris M.; Štajner, Dubravka; Orlović, Saša; Galić, Zoran

    2013-01-01

    Antioxidant characteristics of leaves, twigs, and acorns from two Serbian oak species Quercus robur L. and Quercus petraea L. from Vojvodina province (northern Serbia) were investigated. 80% ethanol (in water) extracts were used for antiradical power (ARP) determinations against DPPH•, •NO, and O2 •− radicals, ferric reducing antioxidant power (FRAP), total phenol, tannin, flavonoid, and proanthocyanidin contents. Permanganate reducing antioxidant capacity (PRAC) was determined using water extracts. Beside, mentioned parameters, soluble proteins, lipid peroxidation (LP), pigments and proline contents were also determined. The data of different procedures were compared and analyzed by multivariate techniques (correlation matrix calculation and principal component analysis (PCA)). PCA found that investigated organs of two different oak tree species possess similar antioxidant characteristics. The superior antioxidant characteristics showed oak leaves over twigs and acorns and seem to be promising source of antioxidants with possible use in industry and pharmacy. PMID:24453789

  16. Charge-transfer complexes of phenylephrine with nitrobenzene derivatives

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.

    2004-04-01

    The molecular charge-transfer complexes of phenylephrine with picric acid and m-dinitrobenzene have been studied and investigated by IR, 1H NMR electronic spectra in organic solvents and buffer solutions, respectively. Simple and selective methods are proposed for the determination of phenylephrine hydrochloride in bulk form and in tablets. The two methods are based on the formation of charge-transfer complexes between drug base as a n-donor (D) and picric acid, m-dinitrobenzene as π-acceptor (A). The products exhibit absorption maxima at 497 and 560 nm in acetonitrile for picric acid and m-dinitrobenzene, respectively. The coloured product exhibits an absorption maximum at 650 nm in dioxane. The sensitive kinetic methods for the determination phynylephrine hydrochloride are described. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time at 20 min.

  17. Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation.

    PubMed

    Xu, Naijin; Chen, Guanqun; Liu, Hui

    2017-11-27

    In view of the great importance bestowed on amino acids as antioxidants in oxidation resistance, we attempted two common redox titration methods in this report, including micro-potassium permanganate titration and iodometric titration, to measure the antioxidative capacity of 20 amino acids, which are the construction units of proteins in living organisms. Based on the relative intensities of the antioxidative capacity, we further conducted a quantitative comparison and found out that the product of experimental values obtained from the two methods was proven to be a better indicator for evaluating the relative antioxidative capacity of amino acids. The experimental results were largely in accordance with structural analysis made on amino acids. On the whole, the 20 amino acids concerned could be divided into two categories according to their antioxidative capacity. Seven amino acids, including tryptophan, methionine, histidine, lysine, cysteine, arginine and tyrosine, were greater in total antioxidative capacity compared with the other 13 amino acids.

  18. Oropharyngeal cleansing with 0.2% chlorhexidine for prevention of nosocomial pneumonia in critically ill patients: an open-label randomized trial with 0.01% potassium permanganate as control.

    PubMed

    Panchabhai, Tanmay S; Dangayach, Neha S; Krishnan, Anand; Kothari, Vatsal M; Karnad, Dilip R

    2009-05-01

    Oral cleansing with chlorhexidine decreases the incidence of nosocomial pneumonia in patients after cardiac surgery. However, evidence of its benefit in ICU patients is conflicting. Patients admitted to the ICU of an Indian tertiary care teaching hospital were randomized to twice-daily oropharyngeal cleansing with 0.2% chlorhexidine or 0.01% potassium permanganate (control) solution. Effects on the incidence of nosocomial pneumonia during ICU stay (primary outcome) and length of ICU stay and in-hospital mortality (secondary outcomes) were studied. Five hundred twelve patients were randomized to either the chlorhexidine group (n = 250) or the control group (n = 262). Of the 471 subjects who completed the protocol, nosocomial pneumonia developed in 16 of 224 subjects (7.1%) in the chlorhexidine group and 19 of 247 subjects (7.7%) in the control group (p = 0.82; relative risk, 0.93; 95% confidence interval, 0.49 to 1.76); intention-to-treat analysis of 21 patients in whom the cleansing protocol was not followed revealed similar results. There was no significant difference between the study and control groups in the median day of development of pneumonia (5.0 days: interquartile range [IQR], 3.0 to 7.7 vs 5.0 days: IQR, 3.0 to 6.0, respectively), median ICU stay (5.0 days: IQR, 3.0 to 8.0 vs 6.0 days: IQR, 3.0 to 8.0, respectively), and mortality (34.8% vs 28.3%, respectively). On subgroup analysis, there was no significant difference in the primary and secondary outcomes in patients on mechanical ventilation, tracheal intubation, and coma (Glasgow coma scale

  19. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.

    PubMed

    Lee, Byung Sun; Kim, Jeong Hee; Lee, Ki Churl; Kim, Yang Bin; Schwartz, Franklin W; Lee, Eung Seok; Woo, Nam Chil; Lee, Myoung Ki

    2009-02-01

    A well-based, reactive barrier system using controlled-release potassium permanganate (CRP system) was recently developed as a long-term treatment option for dilute plumes of chlorinated solvents in groundwater. In this study, we performed large-scale (L x W x D = 8 m x 4 m x 2 m) flow-tank experiments to examine remedial efficacy of the CRP system. A total of 110 CRP rods (OD x L=5 cm x 150 cm) were used to construct a well-based CRP system (L x W x D = 3 m x 4 m x 1.5 m) comprising three discrete barriers installed at 1-m interval downstream. Natural sands having oxidant demand of 3.7 g MnO(4)(-)kg(-1) for 500 mg L(-1)MnO(4)(-) were used as porous media. After MnO(4)(-) concentrations were somewhat stabilized (0.5-6.0 mg L(-1)), trichloroethylene (TCE) plume was flowed through the flow-tank for 53 d by supplying 1.19 m(3)d(-1) of TCE solution. Mean initial TCE concentrations were 87 microg L(-1) for first 20 d and 172 microg L(-1) for the next 33 d. During TCE treatment, flow velocity (0.60md(-1)), pH (7.0-8.2), and concentrations of dissolved metals ([Al]=0.7 mg L(-1), [Fe]=0.01 mg L(-1)) showed little variations. The MnO(2)(s) contents in the sandy media measured after the TCE treatment ranged from 21 to 26 mg kg(-1), slightly increased from mean baseline value of 17 mg kg(-1). Strengths of the TCE plume considerably diminished by the CRP system. For the 87 microg L(-1) plume, TCE concentrations decreased by 38% (53), 67% (29), and 74% (23 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. For the 172 microg L(-1) plume, TCE concentrations decreased by 27% (125), 46% (93), and 65% (61 microg L(-1)) after 1st, 2nd, and 3rd barriers, respectively. Incomplete destruction of TCE plume was attributed to the lack of lateral dispersion in the unpumped well-based barrier system. Development of delivery systems that can facilitate lateral spreading and mixing of permanganate with contaminant plume is warranted.

  20. Coupling Surfactants/Cosolvents with Oxidants: Effects on Site Characterization and DNAPL Remediation

    NASA Astrophysics Data System (ADS)

    Dugan, P. J.; Siegrist, R. L.; Crimi, M. L.

    2004-12-01

    Within the last decade, surfactant-enhanced aquifer remediation \\(SEAR\\), and more recently, in-situ chemical oxidation \\(ISCO\\) show promise for remediation of dense nonaqueous phase liquid \\(DNAPL\\) contamination in the subsurface. DNAPL removal is typically difficult to achieve with one remedial technique; however, coupling of treatments can be a highly effective method for remediation of DNAPL contamination. Little research has been completed to date to evaluate such coupling and the factors that impact appropriate engineering design and remediation performance assessment. Partitioning tracer tests (PTTs) are a promising method for estimating the volume and distribution of DNAPL. PTTs have several useful purposes: locating subsurface DNAPL zones, estimating NAPL saturation or volume within these contaminated zones, and providing a quantitative and qualitative means of assessing remediation performance. PTT theory permits direct calculation of the NAPL saturation from the chromatographic separation of a tracer pulse consisting of suites of partitioning and non-partitioning tracers that travel with the advecting groundwater. The PTT has been used with limited success after surfactant/cosolvent recovery but has not been assessed as a performance assessment tool after ISCO. There are several factors that could potentially impact the feasibility of the PTT after ISCO. First, previous batch experiments indicate that partitioning tracers degrade in the presence of the oxidant potassium permanganate. Secondly, tracer partitioning could be inhibited by manganese dioxide film formation after chemical oxidation of DNAPL. Both of these factors have potential to influence partitioning tracer transport, which could lead to inaccurate estimates of the post-remediation NAPL saturation, and therefore remediation efficiency. There is a need for researching PTTs after surfactant/cosolvent coupling with ISCO. In general, DNAPL-zone characterization methods have significant uncertainty, and assessing remediation efficiency is difficult. Effluent concentrations can be monitored in the extraction fluid during surfactant/cosolvent flushing, as an independent measure of mass removed. However, a challenge with ISCO in terms of performance assessment is that there is no way to directly measure mass destroyed, except through post-remediation characterization (i.e., PTTs or soil cores). Column and 2-D cell studies were conducted to investigate removal of DNAPL with surfactant/cosolvent flushing coupled with ISCO using the oxidant potassium permanganate. Partitioning and non-partitioning tracers were used in the pre- and post-remediation studies to investigate the effect of these remedial techniques on the viability of PTT.

  1. Structural morphology of crystals with the barite (BaSO 4) structure: A revision and extension

    NASA Astrophysics Data System (ADS)

    Hartman, P.; Strom, C. S.

    1989-09-01

    The structural morphology of crystals with the barite (BaSO 4) structure (sulphates, chromates, perchlorates, permanganates and tetrafluoroborates) has been determined with the use of computer programs. Uniquely defined F forms are {002}, {210}, {211}, {020} and {201}. Two different F slices were found for {101} and {200}, 33 for {011}. Attachment energies and specific surface energies have been calculated for an electrostatic point charge model as a function of the charge distribution in the anion. On this basis it is concluded that {101} behaves as an F form, {200} as an S form and {011} as a K form. The theoretical growth form shows {210}, {101} and {002} as main forms. A comparison is made with habits of natural and synthetic crystals. Experiments on KCIO 4 show that {011} appears at high supersaturations (>38; ;20%). It is shown that a broken bond model provides relative attachment energies that are higher by a factor of about three.

  2. Structural characterization of lignin from grape stalks (Vitis vinifera L.).

    PubMed

    Prozil, Sónia O; Evtuguin, Dmitry V; Silva, Artur M S; Lopes, Luísa P C

    2014-06-18

    The chemical structure of lignin from grape stalks, an abundant waste of winemaking, has been studied. The dioxane lignin was isolated from extractive- and protein-free grape stalks (Vitis vinifera L.) by modified acidolytic procedure and submitted to a structural analysis by wet chemistry (nitrobenzene and permanganate oxidation (PO)) and spectroscopic techniques. The results obtained suggest that grape stalk lignin is an HGS type with molar proportions of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units of 3:71:26. Structural analysis by (1)H and (13)C NMR spectroscopy and PO indicates the predominance of β-O-4' structures (39% mol) in grape stalk lignin together with moderate amounts of β-5', β-β, β-1', 5-5', and 4-O-5' structures. NMR studies also revealed that grape lignin should be structurally associated with tannins. The condensation degree of grape stalks lignin is higher than that of conventional wood lignins and lignins from other agricultural residues.

  3. Effect of ferrate on green algae removal.

    PubMed

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  4. KSC-00pp0103

    NASA Image and Video Library

    2000-01-25

    On top of the block house at Launch Complex 34, representatives from environmental and Federal agencies hear from Laymon Gray, with Florida State University, about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background (left) can be seen the cement platform and walkway from the block house to the pad. Beyond it is the Atlantic Ocean. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  5. KSC00pp0103

    NASA Image and Video Library

    2000-01-25

    On top of the block house at Launch Complex 34, representatives from environmental and Federal agencies hear from Laymon Gray, with Florida State University, about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background (left) can be seen the cement platform and walkway from the block house to the pad. Beyond it is the Atlantic Ocean. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stengl, Vaclav, E-mail: stengl@iic.cas.cz; Bludska, Jana; Oplustil, Frantisek

    Highlights: {yields} New nano-dispersive materials for warfare agents decontamination. {yields} 95% decontamination activities for sulphur mustard. {yields} New materials base on titanium and manganese oxides. -- Abstract: Titanium(IV)-manganese(IV) nano-dispersed oxides were prepared by a homogeneous hydrolysis of potassium permanganate and titanium(IV) oxo-sulphate with 2-chloroacetamide. Synthesised samples were characterised using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (HD or bis(2-chloroethyl)sulphide) and soman (GD or (3,3'-dimethylbutan-2-yl)-methylphosphonofluoridate). Mn{sup 4+} content affects the decontamination activity; with increasing Mn{supmore » 4+} content the activity increases for sulphur mustard and decreases for soman. The best decontamination activities for sulphur mustard and soman were observed for samples TiMn{sub 3}7 with 18.6 wt.% Mn and TiMn{sub 5} with 2.1 wt.% Mn, respectively.« less

  7. A method of chemiluminescence coupled with ultrafiltration for investigating the interaction between ibuprofen and human serum albumin.

    PubMed

    Xiong, Xunyu; Zhang, Qunzheng; Nan, Yefei; Gu, Xuefan

    2013-01-01

    In acidic media, ibuprofen substantially enhanced the weak chemiluminescence (CL) produced by sodium sulfite and potassium permanganate. The increased signals were linearly correlated with ibuprofen concentrations ranging from 1.2 × 10(-3) to 4.8 μM, with a detection limit of 4.8 × 10(-4) μM. Two ultrafiltration (UF) membranes were used to construct a unit for trapping 0.15 and 0.75 μM human serum albumin (HSA) and coupled online with the CL system. At low HSA concentrations, the numbers of bound molecules per binding site were calculated to be 0.9 for Sudlow site I and 6.2 for Sudlow site II. The association constants on these binding sites were 5.9 × 10(5) and 3.4 × 10(4) M(-1), respectively. Our CL-UF protocol presents a rapid and sensitive method for studies on drug-protein interaction. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Determination of 99Tc in fresh water using TRU resin by ICP-MS.

    PubMed

    Guérin, Nicolas; Riopel, Remi; Kramer-Tremblay, Sheila; de Silva, Nimal; Cornett, Jack; Dai, Xiongxin

    2017-10-02

    Technetium-99 ( 99 Tc) determination at trace level by inductively coupled plasma mass spectrometry (ICP-MS) is challenging because there is no readily available appropriate Tc isotopic tracer. A new method using Re as a recovery tracer to determine 99 Tc in fresh water samples, which does not require any evaporation step, was developed. Tc(VII) and Re(VII) were pre-concentrated on a small anion exchange resin (AER) cartridge from one litre of water sample. They were then efficiently eluted from the AER using a potassium permanganate (KMnO 4 ) solution. After the reduction of KMnO 4 in 2 M sulfuric acid solution, the sample was passed through a small TRU resin cartridge. Tc(VII) and Re(VII) retained on the TRU resin were eluted using near boiling water, which can be directly used for the ICP-MS measurement. The results for method optimisation, validation and application were reported. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Identification of a novel structure in heparin generated by potassium permanganate oxidation

    PubMed Central

    Beccati, Daniela; Roy, Sucharita; Yu, Fei; Gunay, Nur Sibel; Capila, Ishan; Lech, Miroslaw; Linhardt, Robert J.; Venkataraman, Ganesh

    2012-01-01

    The worldwide heparin contamination crisis in 2008 led health authorities to take fundamental steps to better control heparin manufacture, including implementing appropriate analytical and bio-analytical methods to ensure production and release of high quality heparin sodium product. Consequently, there is an increased interest in the identification and structural elucidation of unusually modified structures that may be present in heparin. Our study focuses on the structural elucidation of species that give rise to a signal observed at 2.10 ppm in the N-acetyl region of the 1H NMR spectrum of some pharmaceutical grade heparin preparations. Structural elucidation experiments were carried out using homonuclear (COSY, TOSCY and NOESY) and heteronuclear (HSQC, HSQC-DEPT, HMQC-COSY, HSQC-TOCSY, and HMBC) 2D NMR spectroscopy on both heparin as well as heparin-like model compounds. Our results identify a novel type of oxidative modification of the heparin chain that results from a specific step in the manufacturing process used to prepare heparin. PMID:25147414

  10. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    PubMed

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-03

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.

  11. METHOD FOR SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY SOLVENT EXTRACTION

    DOEpatents

    Seaborg, G.T.; Blaedel, W.J.; Walling, M.T. Jr.

    1960-08-23

    A process is given for separating from each other uranium, plutonium, and fission products in an aqueous nitric acid solution by the so-called Redox process. The plutonium is first oxidized to the hexavalent state, e.g., with a water-soluble dichromate or sodium bismuthate, preferably together with a holding oxidant such as potassium bromate. potassium permanganate, or an excess of the oxidizing agent. The solution is then contacted with a water-immiscible organic solvent, preferably hexone. whereby uranium and plutonium are extracted while the fission products remain in the aqueous solution. The separated organic phase is then contacted with an aqueous solution of a reducing agent, with or without a holding reductant (e.g., with a ferrous salt plus hydrazine or with ferrous sulfamate), whereby plutonium is reduced to the trivalent state and back- extracted into the aqueous solution. The uranium may finally be back-extracted from the organic solvent (e.g., with a 0.1 N nitric acid).

  12. Sol-gel synthesis and adsorption properties of mesoporous manganese oxide

    NASA Astrophysics Data System (ADS)

    Ivanets, A. I.; Kuznetsova, T. F.; Prozorovich, V. G.

    2015-03-01

    Sol-gel synthesis of mesoporous xerogels of manganese oxide with different phase compositions has been performed. The manganese oxide sols were obtained by redox reactions of potassium permanganate with hydrogen peroxide or manganese(II) chloride in aqueous solutions. The isotherms of the low-temperature adsorption-desorption of nitrogen with manganese oxide xerogels treated at 80, 200, 400, and 600°C were measured. The samples were studied by electron microscopy and thermal and XRD analysis. The phase transformation and the changes in the adsorption and capillary-condensation properties of manganese oxide were shown to depend on the sol synthesis conditions and the temperature of the thermal treatment of the gel. The X-ray amorphous samples heated at 80°C were shown to have low values of the specific surface; at higher temperatures, the xerogel crystallized into mixed phases with various compositions and its surface area increased at 200-400°C and decreased at 600°C.

  13. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    NASA Astrophysics Data System (ADS)

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-03-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

  14. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    NASA Astrophysics Data System (ADS)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  15. Kinetic Competition between Elongation Rate and Binding of NELF Controls Promoter Proximal Pausing

    PubMed Central

    Li, Jian; Liu, Yingyun; Rhee, Ho Sung; Ghosh, Saikat Kumar B.; Bai, Lu; Pugh, B. Franklin; Gilmour, David S.

    2013-01-01

    Summary Pausing of RNA polymerase II (Pol II) 20-60 bp downstream of transcription start sites is a major checkpoint during transcription in animal cells. Mechanisms that control pausing are largely unknown. We developed permanganate-ChIP-seq to evaluate the state of Pol II at promoters throughout the Drosophila genome, and a biochemical system that reconstitutes promoter-proximal pausing to define pausing mechanisms. Stable open complexes of Pol II are largely absent from the transcription start sites of most mRNA genes, but are present at snRNA genes and the highly transcribed heat shock genes following their induction. The location of the pause is influenced by the timing between when NELF loads onto Pol II and how fast Pol II escapes the promoter region. Our biochemical analysis reveals that the sequence-specific transcription factor, GAF, orchestrates efficient pausing by recruiting NELF to promoters before transcription initiation and by assisting in loading NELF onto Pol II after initiation. PMID:23746353

  16. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On top of the block house at Launch Complex 34, representatives from environmental and Federal agencies hear from Laymon Gray, with Florida State University, about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background (left) can be seen the cement platform and walkway from the block house to the pad. Beyond it is the Atlantic Ocean. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  17. N,N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment.

    PubMed

    Schmidt, Carsten K; Brauch, Heinz-Jürgen

    2008-09-01

    Application and microbial degradation of the fungicide tolylfluanide gives rise to a new decomposition product named N,N-dimethylsulfamide (DMS). In Germany, DMS was found in groundwaters and surface waters with typical concentrations in the range of 100-1000 ng/L and 50-90 ng/L, respectively. Laboratory-scale and field investigations concerning its fate during drinking water treatment showed that DMS cannot be removed via riverbank filtration, activated carbon filtration, flocculation, and oxidation or disinfection procedures based on hydrogen peroxide, potassium permanganate, chlorine dioxide, or UV irradiation. Even nanofiltration does not provide a sufficient removal efficiency. During ozonation about 30-50% of DMS are converted to the carcinogenic N-nitrosodimethylamine (NDMA). The NDMA being formed is biodegradable and can at least partially be removed by subsequent biologically active drinking water treatment steps including sand or activated carbon filtration. Disinfection with hypochlorous acid converts DMS to so far unknown degradation products but not to NDMA or 1,1-dimethylhydrazine (UDMH).

  18. Surface roughness analysis of fiber post conditioning processes.

    PubMed

    Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R

    2008-02-01

    The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.

  19. Label-free potentiometric biosensor based on solid-contact for determination of total phenols in honey and propolis.

    PubMed

    Draghi, Patrícia Ferrante; Fernandes, Julio Cesar Bastos

    2017-03-01

    We developed a label-free potentiometric biosensor using tyrosinase extracted from Musa acuminata and immobilized by covalent bond on a surface of a solid-contact transducer. The transducer was manufactured containing two layers. The first layer contained a blend of poly(vinyl) chloride carboxylated (PVC-COOH), graphite and potassium permanganate. On this layer, we deposited a second layer containing just a mixture of poly(vinyl chloride) carboxylated and graphite. On the last layer of the transducer, we immobilized the tyrosinase enzyme by reaction with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride. The solid-contact potentiometric biosensor presented at low detection limit of 7.3×10 -7 M and a linear range to catechol concentration between 9.3×10 -7 M and 8.3×10 -2 M. This biosensor was applied to determine the amount of total phenols in different samples of honey and propolis. The results agreed with the Folin-Ciocalteu method. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A comprehensive evaluation of three microfluidic chemiluminescence methods for the determination of the total phenolic contents in fruit juices.

    PubMed

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2017-01-01

    Three recently reported microfluidic chemiluminescence (MF-CL) methods (based on reactions with acidic permanganate enhanced by formaldehyde (KMnO4-COH), acidic cerium (IV) and rhodamine B (Ce-RB), and acidic cerium (IV) and rhodamine 6G (Ce-R6G) enhanced by SDS) for the determination of the total phenolic content (TPC) in juices were critically evaluated in terms of their selectivity. The evaluation was carried out using 86 analytes, including 22 phenolic compounds (phenolic acids and polyphenols), 6 known non-phenolic antioxidants, 9 amino acids and a number of proteins, carbohydrates, nucleotide bases, inorganic salts and other compounds. Each method was sensitive toward phenolic compounds (PCs). However, the KMnO4-COH CL system showed a higher sensitivity toward phenolic acids and also responded to non-phenolic antioxidants. The other two systems showed higher sensitivity toward polyphenolic compounds than to phenolic acids and did not responded to all other compounds including non-phenolic antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate.

    PubMed

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-12-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy (μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO 4 , K 2 Cr 2 O 7 ) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO 4 and NaClO 3 .

  2. Comparison of Extraction Methods of Chitin from Ganoderma lucidum Mushroom Obtained in Submerged Culture

    PubMed Central

    Ospina Álvarez, Sandra Patricia; Ramírez Cadavid, David Alexander; Ossa Orozco, Claudia Patricia; Zapata Ocampo, Paola; Atehortúa, Lucía

    2014-01-01

    The chitin was isolated from the Ganoderma lucidum submerged cultures mycelium as potential source of chitin under biotechnological processes. The extraction of chitin was carried out through 5 different assays which involved mainly three phases: pulverization of the mushroom, deproteinization of the mycelia with NaOH solution, and a process of decolorization with potassium permanganate and oxalic acid. The chitin contents extracted from 9-day mycelia were 413, 339, 87, 78, and 144 mg/g−1 (milligrams of chitin/grams of dry biomass) for A1, A2, A3, A4, and A5, respectively. Obtained chitin was characterized by X-Ray Diffraction (XRD), by Fourier transform infrared spectroscopy (FTIR), and by thermal analysis (TGA). The results showed that Ganoderma lucidum chitin has similar characteristic of chitin from different fonts. The advantage of the biotechnological processes and the fact that Ganoderma lucidum fungus may be used as a potential raw material for chitin production were demonstrated. PMID:24551839

  3. The 2007 water crisis in Wuxi, China: analysis of the origin.

    PubMed

    Zhang, Xiao-jian; Chen, Chao; Ding, Jian-qing; Hou, Aixin; Li, Yong; Niu, Zhang-bin; Su, Xiao-yan; Xu, Yan-juan; Laws, Edward A

    2010-10-15

    An odorous tap water crisis that affected two million residents for several days occurred in Wuxi, China in the summer of 2007. Volatile sulfide chemicals including methyl thiols, dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide were the dominant odorous contaminants in Lake Taihu and in tap water during the crisis. These contaminants originated from the decomposition of a massive cyanobacterial bloom that was triggered by illegal industrial discharges and inadequately regulated domestic pollution. A specific emergency drinking water treatment process was quickly developed using a combination of potassium permanganate oxidation and powdered activated carbon adsorption. The emergency treatment process removed the odor from the tap water and solved the crisis successfully in several days. This experience underscores the suggestion that a combination of stresses associated with eutrophication and industrial and domestic wastewater discharges can push an aquatic system to the tipping point with consequences far more severe than would occur if the system were subjected to each stress separately. 2010 Elsevier B.V. All rights reserved.

  4. Some aspects of snail ecology in South Africa

    PubMed Central

    de Meillon, B.; Frank, G. H.; Allanson, B. R.

    1958-01-01

    In this paper, the authors present the preliminary results of a recent ecological survey of some rivers in the Transvaal, Union of South Africa. Representative samples of the molluscan fauna of the rivers were collected and chemical analyses of the river waters were carried out. In addition, such characteristics as current speed, temperature, turbidity, biochemical oxygen demand, and amount of oxygen absorbed from potassium permanganate were determined. No evidence was obtained to show that the chemical composition of natural, unpolluted waters plays any part in determining vector snail habitats. Current speed was found to have some effect, bilharzia vector snails not being found in fast-flowing waters. Of the other factors, turbidity was shown to be of some importance, probably because it affects the growth of the algae on which certain snails seem to depend for their proper development, and severe pollution with sewage and industrial wastes also appeared to have an adverse affect on the snail population. PMID:13573112

  5. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B1 by using enzyme-responsive just-in-time generation of a MnO2 based nanocatalyst.

    PubMed

    Lai, Wenqiang; Zeng, Qiao; Tang, Juan; Zhang, Maosheng; Tang, Dianping

    2018-01-10

    The authors describe a colorimetric immunoassay for the model nalyte aflatoxin B 1 (AFB 1 ). It is based on the just-in-time generation of an MnO 2 nanocatalyst. Unlike previously developed immunoassay, the chromogenic reaction relies on the just-in-time formation of an oxidase mimic without the aid of the substrate. Potassium permanganate (KMnO 4 ) is converted into manganese dioxide (MnO 2 ) which acts as an oxidase mimic that catalyzes the oxidation 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen to give a blue colored product. In the presence of ascorbic acid (AA), KMnO 4 is reduced to Mn(II) ions. This results in a decrease in the amount of MnO 2 nanocatalyst. Hence, the oxidation of TMB does not take place. By adding ascorbate oxidase, AA is converted into dehydroascorbic acid which cannot reduce KMnO 4 . Based on these observations, a colorimetric competitive enzyme immunoassay was developed where ascorbate oxidase and gold nanoparticle-labeled antibody against AFB 1 and magnetic beads carrying bovine serum albumin conjugated to AFB 1 are used for the determination of AFB 1 . In presence of AFB 1 , it will compete with the BSA-conjugated AFB 1 (on the magnetic beads) for the labeled antibody against AFB 1 on the gold nanoparticles. This makes the amount of ascorbate oxidase/anti-AFB 1 antibody-labeled gold nanoparticles, which conjugated on magnetic beads, reduce, and resulted in an increase of ascorbic acid. Under optimal conditions, the absorbance (measured at 652 nm) decreases with increasing AFB 1 concentrations in the range from 0.1 to 100 ng mL -1 , with a 0.1 ng mL -1 detection limit (at the 3S blank level). The accuracy of the assay was validated by analyzing spiked peanut samples. The results matched well with those obtained with a commercial ELISA kit. Conceivably, the method is not limited to aflatoxins but has a wide scope in that it may be applied to many other analytes for which respective antibodies are available. Graphical abstract Schematic illustration of ascorbate oxidase (AOx)-mediated potassium permanganate (KMnO 4 )-responsive ascorbic acid (AA) for visual colorimetric immunoassay of aflatoxin B 1 (AFB 1 ) by coupling with hydrolytic reaction of AOx toward AA and the KMnO 4 -Mn(II)-TMB system [note: 3,3',5,5'-tetramethylbenzidine: TMB].

  6. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.

    PubMed

    Paratala, Bhavna S; Jacobson, Barry D; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.

  7. Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    PubMed Central

    Paratala, Bhavna S.; Jacobson, Barry D.; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents. PMID:22685555

  8. Pilot study on control of phytoplankton by zooplankton coupling with filter-feeding fish in surface water.

    PubMed

    Ma, Hua; Cui, Fuyi; Liu, Zhiquan; Fan, Zhenqiang

    2009-01-01

    A pilot-scale facility was originally designed to control phytoplankton in algae-laden reservoir water characterized by summer cyanobacteria blooms (mainly Microcystis flos-aquae). The system made good use of the different food habits of Daphnia magna and silver carp. Zooplankton (Daphnia magna), filter-feeding fish (silver carp), and zooplankton (Daphnia magna) were stocked in three separated tanks in sequence, respectively. Thus, single-cell phytoplankton and some Microcystis flos-aquae in small size were first grazed by Daphnia magna in the first tank, and in the second tank phytoplankton larger than 10 microm were filtered by silver carp, and the concentration of the remaining phytoplankton was further reduced to a rather low level by Daphnia magna in the third tank. The results showed that the system had good removal efficiencies of phytoplankton and chlorophyll a, 86.85% and 59.41%, respectively, and permanganate consumption (COD(Mn)) and turbidity were lowered as well. A high phytoplankton removal efficiency and low cost indicated that the system had a good advantage in pre-treating algae-laden source water in drinking water works.

  9. High performance liquid chromatography with two simultaneous on-line antioxidant assays: Evaluation and comparison of espresso coffees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Neil W; Gritti, Fabrice; Guiochon, Georges A

    The antioxidant profiles of various espresso coffees were established using HPLC with UV-absorbance detection and two rapid, simultaneous, on-line chemical assays that enabled the relative reactivity of sample components to be screened. The assays were based on (i) the colour change associated with reduction of the 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH{sm_bullet}); and (ii) the emission of light (chemiluminescence) upon reaction with acidic potassium permanganate. Results from the two approaches were similar and reflected the complex array of antioxidant species present in the samples. However, some differences in selectivity were observed. Chromatograms generated with the chemiluminescence assay contained more peaks, which was ascribedmore » to the greater sensitivity of the reagent towards minor, readily oxidisable sample components. The three coffee samples produced closely related profiles, signifying their fundamentally similar chemical compositions and origin. Nevertheless, the overall intensity and complexity of the samples in both UV absorption and antioxidant assay chromatograms were aligned with the manufacturers description of flavour intensity and character.« less

  10. A novel green analytical procedure for monitoring of azoxystrobin in water samples by a flow injection chemiluminescence method with off-line ultrasonic treatment.

    PubMed

    Yang, Xin-an; Zhang, Wang-bing

    2013-01-01

    A simple and green flow injection chemiluminescence (FI-CL) method for determination of the fungicide azoxystrobin was described for the first time. CL signal was generated when azoxystrobin was injected into a mixed stream of luminol and KMnO4 . The CL signal of azoxystrobin could be greatly improved when an off-line ultrasonic treatment was adopted. Meanwhile, the signal intensity increases with the analyte concentration proportionally. Several variables, such as the ultrasonic parameters, flow rate of reagents, concentrations of sodium hydroxide solution and CL reagents (potassium permanganate, luminol) were investigated, and the optimal CL conditions were obtained. Under optimal conditions, the linear range of 1-100 ng/mL for azoxystrobin was obtained and the detection limit (3σ) was determined as 0.13 ng/mL. The relative standard deviation was 1.5% for 10 consecutive measurements of 20 ng/mL azoxystrobin. The method has been applied to the determination of azoxystrobin residues in water samples. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Studies on kinetics of water quality factors to establish water transparency model in Neijiang River, China.

    PubMed

    Li, Ronghui; Pan, Wei; Guo, Jinchuan; Pang, Yong; Wu, Jianqiang; Li, Yiping; Pan, Baozhu; Ji, Yong; Ding, Ling

    2014-05-01

    The basis for submerged plant restoration in surface water is to research the complicated dynamic mechanism of water transparency. In this paper, through the impact factor analysis of water transparency, the suspended sediment, dissolved organic matter, algae were determined as three main impactfactors for water transparency of Neijiang River in Eastern China. And the multiple regression equation of water transparency and sediment concentration, permanganate index, chlorophyll-a concentration was developed. Considering the complicated transport and transformation of suspended sediment, dissolved organic matter and algae, numerical model of them were developed respectively for simulating the dynamic process. Water transparency numerical model was finally developed by coupling the sediment, water quality, and algae model. These results showed that suspended sediment was a key factor influencing water transparency of Neijiang River, the influence of water quality indicated by chemical oxygen demand and algal concentration indicated by chlorophyll a were indeterminate when their concentrations were lower, the influence was more obvious when high concentrations are available, such three factors showed direct influence on water transparency.

  12. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors.

    PubMed

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-11-21

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g(-1)), energy (9.0 W h kg(-1)), power (59.7 kW kg(-1)), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.

  13. Ordered Conformational Changes in Damaged DNA Induced by Nucleotide Excision Repair Factors*

    PubMed Central

    Tapias, Angels; Auriol, Jerome; Forget, Diane; Enzlin, Jacqueline H.; Schärer, Orlando D; Coin, Frederic; Coulombe, Benoit; Egly, Jean-Marc

    2015-01-01

    In response to genotoxic attacks, cells activate sophisticated DNA repair pathways such as nucleotide excision repair (NER), which consists of damage removal via dual incision and DNA resynthesis. Using permanganate footprinting as well as highly purified factors, we show that NER is a dynamic process that takes place in a number of successive steps during which the DNA is remodeled around the lesion in response to the various NER factors. XPC/HR23B first recognizes the damaged structure and initiates the opening of the helix from position −3 to +6. TFIIH is then recruited and, in the presence of ATP, extends the opening from position −6 to +6; it also displaces XPC downstream from the lesion, thereby providing the topological structure for recruiting XPA and RPA, which will enlarge the opening. Once targeted by XPG, the damaged DNA is further melted from position −19 to +8. XPG and XPF/ERCC1 endo-nucleases then cut the damaged DNA at the limit of the opened structure that was previously “labeled” by the positioning of XPC/HR23B and TFIIH. PMID:14981083

  14. Investigation of nitrogen and phosphorus contents in water in the tributaries of Danjiangkou Reservoir

    PubMed Central

    Liu, Yan; Zhu, Yuanyuan; Qiao, Xiaocui; Chang, Sheng; Fu, Qing

    2018-01-01

    As part of the efforts to ensure adequate supply of quality water from Danjiangkou Reservoir to Beijing, surface water samples were taken from the tributaries of Danjiangkou Reservoir in the normal (May), flood (August) and dry (December) seasons of 2014, and characterized for nitrogen and phosphorus contents as specified in the applicable standards. Test results indicated that (i) the organic pollution in the Sihe and Shendinghe rivers was more serious than those in other tributaries, and the concentrations of nitrogen and phosphorus favoured the growth of most algae; (ii) total phosphorus (TP), total nitrogen (TN) and dissolved inorganic nitrogen (DIN) were in the forms of dissolved phosphorus (DTP), dissolved nitrogen (DTN) and nitrate nitrogen (NO3−-N), respectively, in these seasons; (iii) compared with nitrogen, phosphorus was more likely to block an overrun of phytoplankton; (iv) TN, TP, permanganate index (CODMn) and other ions were positively correlated. These findings are helpful for the government to develop effective measures to protect the source water in Danjingkou Reservoir from pollution. PMID:29410793

  15. On-chip sample pretreatment using a porous polymer monolithic column for solid-phase microextraction and chemiluminescence determination of catechins in green tea.

    PubMed

    Lin, Ling; Chen, Hui; Wei, Huibin; Wang, Feng; Lin, Jin-Ming

    2011-10-21

    A porous polymer monolithic column for solid-phase microextraction and chemiluminescence detection was integrated into a simple microfluidic chip for the extraction and determination of catechins in green tea. The porous polymer was prepared by poly(glycidyl methacrylate-co-ethylene dimethacrylate) and modified with ethylenediamine. Catechins can be concentrated in the porous polymer monolithic column and react with potassium permanganate to give chemiluminescence. The microfluidic chip is reusable with high sensitivity and very low reagent consumption. The on-line preconcentration and detection can be realized without an elution step. The enrichment factor was calculated to be about 20 for catechins. The relative chemiluminescence intensity increased linearly with concentration of catechin from 5.0 × 10(-9) to 1.0 × 10(-6) M and the limit of detection was 1.0 × 10(-9) M. The proposed method was applied to determine catechin in green tea. The recoveries are from 90% to 110% which benefits the actual application for green tea samples.

  16. Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system.

    PubMed

    Sun, F; Chen, J; Tong, Q; Zeng, S

    2007-01-01

    Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.

  17. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.

    PubMed

    Fukushima, Romualdo S; Hatfield, Ronald D

    2004-06-16

    Present analytical methods to quantify lignin in herbaceous plants are not totally satisfactory. A spectrophotometric method, acetyl bromide soluble lignin (ABSL), has been employed to determine lignin concentration in a range of plant materials. In this work, lignin extracted with acidic dioxane was used to develop standard curves and to calculate the derived linear regression equation (slope equals absorptivity value or extinction coefficient) for determining the lignin concentration of respective cell wall samples. This procedure yielded lignin values that were different from those obtained with Klason lignin, acid detergent acid insoluble lignin, or permanganate lignin procedures. Correlations with in vitro dry matter or cell wall digestibility of samples were highest with data from the spectrophotometric technique. The ABSL method employing as standard lignin extracted with acidic dioxane has the potential to be employed as an analytical method to determine lignin concentration in a range of forage materials. It may be useful in developing a quick and easy method to predict in vitro digestibility on the basis of the total lignin content of a sample.

  18. [Feasibility of treatment of micro-pollutant water polluted by nitrobenzene with IBAC-process].

    PubMed

    Wang, Chen; Ma, Fang; Shan, Dan; Yang, Ji-xian; Lan, Yuan-dong; Gao, Guo-wei

    2007-07-01

    The performance and feasibility of immobilization biological activated carbon (IBAC) were investigated to treat micro-pollutant water containing nitrobenzene. IBAC has been developed on the granular activated carbon by immobilization of selected and acclimated species of engineering bacteria to treat the micro-pollutant water containing nitrobenzene. The IBAC removal efficiencies for nitrobenzene, permanganate index, turbidity, UV, ammonia and nitrite were compared with granular activated carbon (GAC) process. Biological toxicity of influent and effluent of filter were determined. Amount of bacteria in carbon was measured when carbon filter was inoculated and circulated stably. The results showed that compared with GAC, it took short time for IABC to startup and recover to normal after impact burden. In addition, IBAC was more effective to treat micro-pollutants. In order to ensure security of drinking water, the influent nitrobenzene should be controlled below 26 microg/L. Effluent biological toxicity treated with IBAC was less than that with GAC. The performance of IBAC was much better than that of GAC. Amount of bacteria in both activated carbon filter increased first and then declined from inlet to outlet.

  19. [Temporal variation of water quality and driving factors in Yanghe watershed of Zhangjiakou].

    PubMed

    Pang, Bo; Wang, Tie-Yu; Lü, Yong-Long; Du, Li-Yu; Luo, Wei

    2013-01-01

    Yanghe is an important water source for Guanting Reservoir, which once supplied the Beijing city with drinking water, industrial process water and water-use in landscape. Based on the data of water quality monitored by Yanghe watershed monitoring stations from 1992 to 2009, 11 pollutants were selected for analysis. The trends of changes in water quality were figured out, and the major pollutants and driving factors were measured by the integrated standard index and grey correlation analytical methods. The results showed that there were two stages of water quality change in Yanghe watershed of Zhangjiakou. Firstly, the water was polluted seriously but recovered rapidly from 1992 to 1996. Secondly, although light pollution occurred in the watershed from 1997 to 2009, the pollution factors were still above the limits. The main pollution factors are ammonia nitrogen, petroleum, permanganate index, BOD5, Cr6+ and Cd. The main driving factor of water quality is the change of land use type, and the agricultural land showed less impact on water quality than the industrial land.

  20. Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Pan; Lu, Li-Qiang; Cao, Wei-Cheng; Tian, Xi-Ke

    2017-02-01

    The phosphorescent L-cysteine modified manganese-doped zinc sulfide quantum dots (L-cys-MnZnS QDs) was developed for a highly sensitive detection of permanganate anions (MnO4-). L-cys-MnZnS QDs, which were easily synthesized in aqueous media using safe and low-cost materials, can emit intense phosphorescence even though the solution was not deoxygenated. However, the phosphorescence of L-cys-Mn-ZnS QDs was strongly quenched by MnO4- ascribed to the oxidation of L-cys and the increase of surface defects on L-cys-MnZnS QDs. Under the optimal conditions, L-cys-MnZnS QDs offer high selectivity over other anions for MnO4- determination, and good linear Stern-Volmer equation was obtained for MnO4- in the range of 0.5-100 μM with a detection limit down to 0.24 μM. The developed method was finally applied to the detection of MnO4- in water samples, and the spike-recoveries fell in the range of 95-106%.

Top