Science.gov

Sample records for permeabilized fibroblasts effects

  1. Calcium mobilization in permeabilized fibroblasts: effects of inositol trisphosphate, orthovanadate, mitogens phorbol ester, and guanosine triphosphate

    SciTech Connect

    Muldoon, L.L.; Jamieson, G.A. Jr.; Villereal, M.L.

    1987-01-01

    Utilizing a digitonin-permeabilized cell system, the authors have studied the release of calcium from a non-mitochondrial intracellular compartment in cultured human fibroblasts (HSWP cells). Addition of 1 mM MgATP to a monolayer of permeabilized cells in a cytosolic media buffered to 150 nM Ca with EGTA rapidly stimulates /sup 45/Ca uptake, and the subsequent addition of the putative intracellular messenger inositol trisphosphate (InsP/sub 3/) induces rapid release of 85% of the /sup 45/Ca taken up in response to ATP. Mitogenic peptides (bradykinin, vasopressin, epidermal growth factor (EGF), and insulin) and orthovanadate, which are effective in mobilizing intracellular Ca in intact cells, have little or no effect when added alone to permeabilized cells. However, in the presence of GTP these agents stimulate accumulation of inositol phosphates and release Ca from the InsP/sub 3/-sensitive pool. These data suggest that a GTP binding protein is involved in receptor mediated activation of phospholipase C, which leads to release of inositol phosphates. The GTP-dependent release of InsP/sub 3/ and the mobilization of /sup 45/Ca from the intracellular compartment are inhibited by pretreatment of cells, prior to permeabilization, with the protrein kinase C activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA). These results suggest that protein kinase C is involved in down-regulation or inhibition of phospholipase C, or the GTP binding protein responsible for relaying the mitogenic signal from the cell surface receptor to the phospholipase C activity.

  2. Polyethyleneimine is an effective permeabilizer of gram-negative bacteria.

    PubMed

    Helander, I M; Alakomi, H L; Latva-Kala, K; Koski, P

    1997-10-01

    The effect of the polycation polyethyleneimine (PEI) on the permeability properties of the Gram-negative bacterial outer membrane was investigated using Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium as target organisms. At concentrations of less than 20 micrograms ml-1, PEI increased the bacterial uptake of 1-N-phenylnaphthylamine, which is a hydrophobic probe whose quantum yield is greatly increased in a lipid environment, indicating increased hydrophobic permeation of the outer membrane by PEI. The effect of PEI was comparable to that brought about by the well-known permeabilizer EDTA. Permeabilization by PEI was retarded but not completely inhibited by millimolar concentrations of MgCl2. PEI also increased the susceptibility of the test species to the hydrophobic antibiotics clindamycin, erythromycin, fucidin, novobiocin and rifampicin, without being directly bactericidal. PEI sensitized the bacteria to the lytic action of the detergent SDS in assays where the bacteria were pretreated with PEI. In assays where PEI and SDS were simultaneously present, no sensitization was observed, indicating that PEI and SDS were inactivating each other. In addition, a sensitizing effect to the nonionic detergent Triton X-100 was observed for P. aeruginosa. In conclusion, PEI was shown to be a potent permeabilizer of the outer membrane of Gram-negative bacteria.

  3. Carnitine-acylcarnitine translocase deficiency with severe hypoglycemia and auriculo ventricular block. Translocase assay in permeabilized fibroblasts.

    PubMed Central

    Pande, S V; Brivet, M; Slama, A; Demaugre, F; Aufrant, C; Saudubray, J M

    1993-01-01

    Deficiency of the enzymes of mitochondrial fatty acid oxidation and related carnitine dependent steps have been shown to be one of the causes of the fasting-induced hypoketotic hypoglycemia. We describe here carnitine-acylcarnitine translocase deficiency in a neonate who died eight days after birth. The proband showed severe fasting-induced hypoketotic hypoglycemia, high plasma creatine kinase, heartbeat disorder, hypothermia, and hyperammonemia. The plasma-free carnitine on day three was only 3 microM, and 92% of the total carnitine (37 microM) was present as acylcarnitine. Treatments with intravenous glucose, carnitine, and medium-chain triglycerides had been tried without improvements. Measurements in fibroblasts confirmed deficient oxidation of palmitate and showed normal activities of the carnitine palmitoyltransferases I and II and of the three acyl-CoA dehydrogenases. A total deficiency of the carnitine-acyl-carnitine translocase was found in fibroblasts using the carnitine acetylation assay (1986. Biochem. J. 236:143-148). This assay has been further simplified by seeking conditions permitting application to permeabilized fibroblasts and lymphocytes. Images PMID:8450053

  4. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  5. Weakening Effect of Cell Permeabilizers on Gram-Negative Bacteria Causing Biodeterioration

    PubMed Central

    Alakomi, H.-L.; Paananen, A.; Suihko, M.-L.; Helander, I. M.; Saarela, M.

    2006-01-01

    Gram-negative bacteria play an important role in the formation and stabilization of biofilm structures on stone surfaces. Therefore, the control of growth of gram-negative bacteria offers a way to diminish biodeterioration of stone materials. The effect of potential permeabilizers on the outer membrane (OM) properties of gram-negative bacteria was investigated and further characterized. In addition, efficacy of the agents in enhancing the activity of a biocide (benzalkonium chloride) was assessed. EDTA, polyethylenimine (PEI), and succimer (meso-2,3-dimercaptosuccinic) were shown to be efficient permeabilizers of the members of Pseudomonas and Stenotrophomonas genera, as indicated by an increase in the uptake of a hydrophobic probe (1-N-phenylnaphthylamine) and sensitization to hydrophobic antibiotics. Visualization of Pseudomonas cells treated with EDTA or PEI by atomic force microscopy revealed damage in the outer membrane structure. PEI especially increased the surface area and bulges of the cells. Topographic images of EDTA-treated cells were compatible with events assigned for the effect of EDTA on outer membranes, i.e., release of lipopolysaccharide and disintegration of OM structure. In addition, the effect of EDTA treatment was visualized in phase-contrast images as large areas with varying hydrophilicity on cell surfaces. In liquid culture tests, EDTA and PEI supplementation enhanced the activity of benzalkonium chloride toward the target strains. Use of permeabilizers in biocide formulations would enable the use of decreased concentrations of the active biocide ingredient, thereby providing environmentally friendlier products. PMID:16820461

  6. Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration.

    PubMed

    Alakomi, H-L; Paananen, A; Suihko, M-L; Helander, I M; Saarela, M

    2006-07-01

    Gram-negative bacteria play an important role in the formation and stabilization of biofilm structures on stone surfaces. Therefore, the control of growth of gram-negative bacteria offers a way to diminish biodeterioration of stone materials. The effect of potential permeabilizers on the outer membrane (OM) properties of gram-negative bacteria was investigated and further characterized. In addition, efficacy of the agents in enhancing the activity of a biocide (benzalkonium chloride) was assessed. EDTA, polyethylenimine (PEI), and succimer (meso-2,3-dimercaptosuccinic) were shown to be efficient permeabilizers of the members of Pseudomonas and Stenotrophomonas genera, as indicated by an increase in the uptake of a hydrophobic probe (1-N-phenylnaphthylamine) and sensitization to hydrophobic antibiotics. Visualization of Pseudomonas cells treated with EDTA or PEI by atomic force microscopy revealed damage in the outer membrane structure. PEI especially increased the surface area and bulges of the cells. Topographic images of EDTA-treated cells were compatible with events assigned for the effect of EDTA on outer membranes, i.e., release of lipopolysaccharide and disintegration of OM structure. In addition, the effect of EDTA treatment was visualized in phase-contrast images as large areas with varying hydrophilicity on cell surfaces. In liquid culture tests, EDTA and PEI supplementation enhanced the activity of benzalkonium chloride toward the target strains. Use of permeabilizers in biocide formulations would enable the use of decreased concentrations of the active biocide ingredient, thereby providing environmentally friendlier products.

  7. Permeabilizing biofilms

    DOEpatents

    Soukos, Nikolaos S.; Lee, Shun; Doukas,; Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  8. Permeabilizing biofilms

    DOEpatents

    Soukos, Nikolaos S [Revere, MA; Lee, Shun [Arlington, VA; Doukas, Apostolos G [Belmont, MA

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  9. Responsiveness of beta-escin-permeabilized rabbit gastric gland model: effects of functional peptide fragments.

    PubMed

    Akagi, K; Nagao, T; Urushidani, T

    1999-09-01

    We established a beta-escin-permeabilized gland model with the use of rabbit isolated gastric glands. The glands retained an ability to secrete acid, monitored by [14C]aminopyrine accumulation, in response to cAMP, forskolin, and histamine. These responses were all inhibited by cAMP-dependent protein kinase inhibitory peptide. Myosin light-chain kinase inhibitory peptide also suppressed aminopyrine accumulation, whereas the inhibitory peptide of protein kinase C or that of calmodulin kinase II was without effect. Guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS) abolished cAMP-stimulated acid secretion concomitantly, interfering with the redistribution of H+-K+-ATPase from tubulovesicles to the apical membrane. To identify the targets of GTPgammaS, effects of peptide fragments of certain GTP-binding proteins were examined. Although none of the peptides related to Rab proteins showed any effect, the inhibitory peptide of Arf protein inhibited cAMP-stimulated secretion. These results demonstrate that our new model, the beta-escin-permeabilized gland, allows the introduction of relatively large molecules, e.g., peptides, into the cell, and will be quite useful for analyzing signal transduction of parietal cell function.

  10. [Effect of permeabilization on sulfate reduction activity of Desulfovibrio vulgaris Hildenborough cells in the presence of different electron donors].

    PubMed

    Xu, Hui-Wei; Zhang, Xu; Li, Li-Ming; Zheng, Guang-Jie; Li, Guang-He

    2013-01-01

    The Desulfovibrio vulgaris Hildenborough (DvH) cells permeabilized with ethanol were used as biocatalysts to enhance hydrogenotrophic sulfate conversion. The effect of permeabilization extent of DvH cells on sulfate reduction was studied in the presence of different electron donors. When hydrogen was used as an electron donor, the highest level of sulfate reduction activity attained in cells treated with 10% ethanol (V/V), followed by 15% -ethanol treated cells. Furthermore, sulfate reduction activity markedly decreased when the ethanol concentration exceeded 15%. However, when lactate was used as the electron donor, the optimum ethanol concentration of the permeabilizing reagent was 20%, followed by 15% and 10%. Even when ethanol concentration reached 25%, DvH cells remained their partial activity with lactate. In a word, sulfate reduction activity of DvH cells responded differently in the presence of different donors. This was because the oxidation process of H2 and lactate occurred at different positions in DvH cells, and consequently intracellular electron transport pathway differed. To ensure the integrity of the electron transport chain between the donor and the accepter was a key factor for determining the permeabilization extent and for the application of cell permeabilization technology.

  11. Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency.

    PubMed

    Asavasanti, Suvaluk; Ristenpart, William; Stroeve, Pieter; Barrett, Diane M

    2011-01-01

    Pulsed electric fields (PEF) nonthermally induce cell membrane permeabilization and thereby improve dehydration and extraction efficiencies in food plant materials. Effects of electrical field strength and number of pulses on plant tissue integrity have been studied extensively. Two previous studies on the effect of pulse frequency, however, did not provide a clear view: one study suggested no effect of frequency, while the other found a greater impact on tissue integrity at lower frequency. This study establishes the effect of pulse frequency on integrity of onion tissues. Changes in electrical characteristics, ion leakage, texture parameters, and percent weight loss were quantified for a wide range of pulse frequencies under conditions of fixed field strength and pulse number. Optical microscopy and viable-cell staining provided direct visualization of effects on individual cells. The key finding is that lower frequencies (f < 1 Hz) cause more damage to tissue integrity than higher frequencies (f = 1 to 5000 Hz). Intriguingly, the optical microscopy observations demonstrate that the speed of intracellular convective motion (that is, cytoplasmic streaming) following PEF application is strongly correlated with PEF frequency. We provide the first in situ visualization of the intracellular consequence of PEF at different frequencies in a plant tissue. We hypothesize that cytoplasmic streaming plays a significant role in moving conductive ionic species from permeabilized cells to the intercellular space between plant cells, making subsequent pulses more efficacious at sufficiently low frequencies. The results suggest that decreasing the pulse frequency in PEF may minimize the number of pulses needed to achieve a desired amount of permeabilization, thus lowering the total energy consumption. Practical Application: PEF cause pores to be formed in plant cell membranes, thereby improve moisture removal and potential extraction of desirable components. This study used in

  12. Partial characterization and effect of omeprazole on ATPase activity in Helicobacter pylori by using permeabilized cells.

    PubMed Central

    Belli, W A; Fryklund, J

    1995-01-01

    ATPase activity in permeabilized cells of Helicobacter pylori as well as those of Helicobacter felis and Campylobacter jejuni was analyzed. The ATPase activities in these cells were most susceptible to sodium azide, fluoroaluminate, and dicyclohexylcarbodiimide, which are typical inhibitors of F ATPases. Optimal values for maximal activity were found to be at approximately pH 6.4, 6.0, and 6.0 for C. jejuni, H. pylori, and H. felis, respectively. The substituted benzimidazole compounds omeprazole, lansoprazole, and Eisai 3810 were found to have no effect on the F ATPase activity of H. pylori at concentrations which are inhibitory for cell growth (MICs). In addition, an extracellular, vanadate-susceptible ATPase activity was detected in H. pylori, which was also relatively insusceptible to the benzimidazole compounds. Thus, the mechanism of killing mediated by omeprazole and related compounds in Helicobacter pylori does not appear to be due to diminished ATPase activity. PMID:7486907

  13. Effect of polyethylenimine, a cell permeabilizer, on the photosensitized destruction of algae by methylene blue and nuclear fast red.

    PubMed

    McCullagh, Cathy; Robertson, Peter K J

    2006-01-01

    The present study reports the effect a cell permeabilizer, polyethylenimine (PEI) has on the photodynamic effect of methylene blue (MB) and nuclear fast red (NFR) in the presence of hydrogen peroxide (H2O2). The photosensitized destruction of the algae Chlorella vulgaris under irradiation with visible light is examined. The photodynamic effect was investigated under aerobic and anaerobic conditions. The presence of a permeabilizer during the photosensitized destruction of C. vulgaris does not enhance the activity of the MB, MB/H2O2 system or the NFR, NFR/H2O2 system under aerobic conditions. However under anaerobic conditions we have determined that when a cell permeabilizer was added to the MB/H202 system, the photosensitized destruction of C. vulgaris proceeded via a combination of Type I and Type II mechanisms. The presence of PEI enforces MB/H2O2 to be active toward the destruction of C. vulgaris whether oxygen is present or absent. Under aerobic and anaerobic conditions the activity of NFR was suppressed in the presence of PEI as a result of electrostatic interactions between the photosensitizer and the cell permeabilizer. The decrease in fluorescence recorded is indicative of destruction of the chlorophyll a pigment.

  14. A pseudosubstrate of PKC inhibits the phorbol dibutyrate (PDBu) effect on permeabilized smooth muscle

    SciTech Connect

    Sullivan, T.S.; Wells, J.N. )

    1991-03-11

    Phorbol esters can induce contraction of vascular smooth muscle and potentiate calcium-induced contractions of permeabilized smooth muscle strips. The authors have used a synthetic peptide inhibitor based on residues 19-31 of PKC (PKC-I) to determine the importance of PKC in the PDBu potentiation of calcium-induced contractions in permeabilized coronary artery smooth muscle. Although peptides similar to PKC-I have been shown to also inhibit MLCK in vitro, MLCK was presumably not inhibited in our system since 30 {mu}M PKC-I alone did not alter the calcium-induced contractions. However, the potentiation of these contractions by 1 {mu}M PDBu was reduced by about 50% in the presence of 10 {mu}M PKC-I, and the potentiation was completely abolished by 30 {mu}M PKC-I. These data indicate that, in this system, PKC is not involved in calcium-induced contractions but that activation of PKC may be the mechanism by which PDBu potentiates calcium-induced contractions in permeabilized coronary artery smooth muscle.

  15. The effect of Tween 80 on eggshell permeabilization in Galleria mellonella (L.) (Lepidoptera, Pyralidae).

    PubMed

    Cosi, E; Abidalla, M T; Roversi, P F

    2010-01-01

    The development of a species-specific protocol for dechorionation and permeabilization of insect eggs is a necessary prerequisite to cryopreserve the embryos. Here we tested different procedures based on heptane or the surfactant Tween 80 as an alternative to alkane, evaluating their efficacy and toxicity on the early (24 h post-oviposition) and late (75 h post-oviposition) stage embryos. Heptane efficiently permeabilized the eggs of G. mellonella but the hatching rate ranged from 0.1 to 4.2 percent in the early stage and from 4.3 to 11.2 percent in the late stage. The embryos treated with 1.25 percent NaOCl + 0.08 percent Tween 80 for 2 min showed the same shrinkage and reswelling percentages as eggs exposed to heptane for 10 sec, with a significantly higher hatching percentage in the early (68.2 +/- 1.5 percent) and late stages (22.4 +/- 3.7 percent). Thus, 0.08 percent Tween 80 allows sufficient permeabilization of G. mellonella embryos without the high toxicity of alkane.

  16. EsxA membrane-permeabilizing activity plays a key role in mycobacterial cytosolic translocation and virulence: effects of single-residue mutations at glutamine 5

    PubMed Central

    Zhang, Qi; Wang, Decheng; Jiang, Guozhong; Liu, Wei; Deng, Qing; Li, Xiujun; Qian, Wei; Ouellet, Hugues; Sun, Jianjun

    2016-01-01

    EsxA is required for virulence of Mycobacterium tuberculosis (Mtb) and plays an essential role in phagosome rupture and translocation to the cytosol of macrophages. Recent biochemical studies have demonstrated that EsxA is a membrane-permeabilizing protein. However, evidence that link EsxA membrane-permeabilizing activity to Mtb cytosolic translocation and virulence is lacking. Here we found that mutations at glutamine 5 (Q5) could up or down regulate EsxA membrane-permeabilizing activity. The mutation Q5K significantly diminished the membrane-permeabilizing activity, while Q5V enhanced the activity. By taking advantage of the single-residue mutations, we tested the effects of EsxA membrane-permeabilizing activity on mycobacterial virulence and cytosolic translocation using the esxA/esxB knockout strains of Mycobacterium marinum (Mm) and Mtb. Compared to wild type (WT), the Q5K mutant exhibited significantly attenuated virulence, evidenced by intracellular survival and cytotoxicity in mouse macrophages as well as infection of zebra fish embryos. The attenuated virulence of the Q5K mutant was correlated to the impaired cytosolic translocation. On the contrary, the Q5V mutant had a significantly increased cytosolic translocation and showed an overall increased virulence. This study provides convincing evidence that EsxA contributes to mycobacterial virulence with its membrane-permeabilizing activity that is required for cytosolic translocation. PMID:27600772

  17. Effects of vitamin E supplementation on plasma membrane permeabilization and fluidization induced by chlorpromazine in the rat brain.

    PubMed

    Maruoka, Nobuyuki; Murata, Tetsuhito; Omata, Naoto; Takashima, Yasuhiro; Fujibayashi, Yasuhisa; Wada, Yuji

    2008-03-01

    Neurotransmitter receptors play a key role in most research on antipsychotic drugs, but little is known about the effects of these drugs on the plasma membrane in the central nervous system. Therefore, we investigated whether chlorpromazine (CPZ), a typical phenothiazine antipsychotic drug, affects the plasma membrane integrity in the rat brain, and if so, whether these membrane alterations can be prevented by dietary supplementation with vitamin E, which has been shown to be an antioxidant and also a membrane-stabilizer. Leakage of [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG)-6-phosphate from rat striatal slices and decrease in 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy were used as indexes for plasma membrane permeabilization and fluidization, respectively. CPZ induced leakage of [(18)F]FDG-6-phosphate from striatal slices, and the leakage was delayed in the vitamin E-supplemented group compared to that in the normal diet group. The decrease in plasma membrane anisotropy induced by CPZ was significantly attenuated by vitamin E supplementation. Chronic treatment with alpha-phenyl-N-tert-butyl nitrone, a free radical scavenger, had no effect on CPZ-induced plasma membrane permeabilization, and the treatment with CPZ did not induce lipid peroxidation. CPZ can reduce plasma membrane integrity in the brain, and this reduction can be prevented by vitamin E via its membrane-stabilizing properties, not via its antioxidant activity.

  18. Permeabilized myocardial fibers as model to detect mitochondrial dysfunction during sepsis and melatonin effects without disruption of mitochondrial network.

    PubMed

    Doerrier, Carolina; García, José A; Volt, Huayqui; Díaz-Casado, María E; Luna-Sánchez, Marta; Fernández-Gil, Beatriz; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-03-01

    Analysis of mitochondrial function is crucial to understand their involvement in a given disease. High-resolution respirometry of permeabilized myocardial fibers in septic mice allows the evaluation of the bioenergetic system, maintaining mitochondrial ultrastructure and intracellular interactions, which are critical for an adequate functionality. OXPHOS and electron transport system (ETS) capacities were assessed using different substrate combinations. Our findings show a severe septic-dependent impairment in OXPHOS and ETS capacities with mitochondrial uncoupling at early and late phases of sepsis. Moreover, sepsis triggers complex III (CIII)-linked alterations in supercomplexes structure, and loss of mitochondrial density. In these conditions, melatonin administration to septic mice prevented sepsis-dependent mitochondrial injury in mitochondrial respiration. Likewise, melatonin improved cytochrome b content and ameliorated the assembly of CIII in supercomplexes. These results support the use of permeabilized fibers to identify properly the respiratory deficits and specific melatonin effects in sepsis. Copyright © 2015 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  19. Physiological effects of ultrasound mist on fibroblasts.

    PubMed

    Lai, Jengyu; Pittelkow, Mark R

    2007-06-01

    Chronic wounds present an increasing challenge in healthcare and consume a substantial portion of healthcare cost. Although new treatments have been developed, treatment success has not been improved greatly. Ultrasound has long been employed in medicine. Its unique ability to deliver energy makes it an ideal candidate as a wound care modality. We proposed that ultrasound would differentially affect intracellular signaling pathways and, with the ability to assess this effect using a noncontact form of ultrasound, were provided with a means to test this proposal. The cellular morphology, mitogenic activities, expression of keratinocyte growth factor (KGF) and transforming growth factor beta-1 (TGF-beta1), and activation of extracellular regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways of dermal fibroblasts were studied after ultrasound treatment. Untreated and scrape-wounded fibroblasts were utilized as controls. There was no difference in morphology observed, except for vacuolization in ultrasound-treated fibroblasts. Mitogenic activities were similar between ultrasound-treated and scrape-wounded fibroblasts. Ultrasound-treated fibroblasts exhibited a much earlier increase in KGF expression, ERK activation, and JNK activation. The ERK/JNK ratio was increased markedly in ultrasound-treated fibroblasts. We conclude that ultrasound induces cellular responses that may be beneficial to wound healing.

  20. Effects of toluene permeabilization and cell deenergization on tetracycline resistance in Escherichia coli.

    PubMed Central

    McMurry, L M; Hendricks, M; Levy, S B

    1986-01-01

    Resistance to tetracycline (Tcr) mediated by Tn10 and related Tcr determinants involves an inner membrane protein, TET (similar but not identical for different determinants), and a proton motive force-dependent efflux of tetracycline which keeps the drug away from its intracellular target, the ribosome (L. M. McMurry, R. E. Petrucci, Jr., and S. B. Levy, Proc. Natl. Acad. Sci. USA 77:3974-3977, 1980). However, the amount of tetracycline accumulated by bacteria does not always correlate with their resistance levels, suggesting that an additional resistance mechanism may be present. When we permeabilized susceptible and resistant Tn10-bearing cells with toluene, we found that protein synthesis in the two strains became equally sensitive to tetracycline. Therefore, the protein synthesis machinery was not a source of resistance, and an intact membrane was required for resistance. To determine whether resistance was entirely dependent on energy, we measured susceptibility to tetracycline after inhibition of proton motive force by starvation and specific inhibitors. An 80 to 90% loss of Tcr (measured by protein synthesis) resulted from partial deenergization of resistant cells. A remaining resistance (10- to 20-fold greater than that of susceptible cells) could not be eliminated by further deenergization. These findings indicated that, to a major extent, expression of Tn10 resistance required energy, presumably for tetracycline efflux. They also suggested the existence of a small component of Tcr having little or no energy dependence. Whether this component depends on tetracycline efflux or some other mechanism is not known, but presumably both high- and low-energy components of resistance reflect activity of TET protein. PMID:3010853

  1. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.

    PubMed

    Valcarcel, C A; Dalla Serra, M; Potrich, C; Bernhart, I; Tejuca, M; Martinez, D; Pazos, F; Lanio, M E; Menestrina, G

    2001-06-01

    Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA > PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small inhibitory

  2. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.

    PubMed Central

    Valcarcel, C A; Dalla Serra, M; Potrich, C; Bernhart, I; Tejuca, M; Martinez, D; Pazos, F; Lanio, M E; Menestrina, G

    2001-01-01

    Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA >> PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small

  3. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers.

    PubMed

    Roels, Belle; Thomas, Claire; Bentley, David J; Mercier, Jacques; Hayot, Maurice; Millet, Grégoire

    2007-01-01

    The effects of concurrent hypoxic/endurance training on mitochondrial respiration in permeabilized fibers in trained athletes were investigated. Eighteen endurance athletes were divided into two training groups: normoxic (Nor, n = 8) and hypoxic (H, n = 10). Three weeks (W1-W3) of endurance training (5 sessions of 1 h to 1 h and 30 min per week) were completed. All training sessions were performed under normoxic [160 Torr inspired Po(2) (Pi(O(2)))] or hypoxic conditions ( approximately 100 Torr Pi(O(2)), approximately 3,000 m) for Nor and H group, respectively, at the same relative intensity. Before and after the training period, an incremental test to exhaustion in normoxia was performed, muscle biopsy samples were taken from the vastus lateralis, and mitochondrial respiration in permeabilized fibers was measured. Peak power output (PPO) increased by 7.2% and 6.6% (P < 0.05) for Nor and H, respectively, whereas maximal O(2) uptake (Vo(2 max)) remained unchanged: 58.1 +/- 0.8 vs. 61.0 +/- 1.2 ml.kg(-1).min(-1) and 58.5 +/- 0.7 vs. 58.3 +/- 0.6 ml.kg(-1).min(-1) for Nor and H, respectively, between pretraining (W0) and posttraining (W4). Maximal ADP-stimulated mitochondrial respiration significantly increased for glutamate + malate (6.27 +/- 0.37 vs. 8.51 +/- 0.33 mumol O(2).min(-1).g dry weight(-1)) and significantly decreased for palmitate + malate (3.88 +/- 0.23 vs. 2.77 +/- 0.08 mumol O(2).min(-1).g dry weight(-1)) in the H group. In contrast, no significant differences were found for the Nor group. The findings demonstrate that 1) a 3-wk training period increased the PPO at sea level without any changes in Vo(2 max), and 2) a 3-wk hypoxic exercise training seems to alter the intrinsic properties of mitochondrial function, i.e., substrate preference.

  4. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes.

    PubMed

    Školová, Barbora; Janůšová, Barbora; Vávrová, Kateřina

    2016-02-01

    The composition and organization of stratum corneum lipids play an essential role in skin barrier function. Ceramides represent essential components of this lipid matrix; however, the importance of the individual structural features in ceramides is not fully understood. To probe the structure-permeability relationships in ceramides, we prepared analogs of N-lignoceroylsphingosine with shortened sphingosine (15 and 12 carbons) and acyl chains (2, 4 and 6 carbons) and studied their behavior in skin and in model lipid membranes. Ceramide analogs with pentadecasphingosine (15C) chains were more barrier-perturbing than 12C- and 18C-sphingosine ceramides; the greatest effects were found with 4 to 6C acyls (up to 15 times higher skin permeability compared to an untreated control and up to 79 times higher permeability of model stratum corneum lipid membranes compared to native very long-chain ceramides). Infrared spectroscopy using deuterated lipids and X-ray powder diffraction showed surprisingly similar behavior of the short ceramide membranes in terms of lipid chain order and packing, phase transitions and domain formation. The high- and low-permeability membranes differed in their amide I band shape and lamellar organization. These skin and membrane permeabilization properties of some short ceramides may be explored, for example, for the rational design of permeation enhancers for transdermal drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The effect of vitamin E on basic fibroblast growth factor level in human fibroblast cell culture.

    PubMed

    Rashid, S A Harun Nor; Halim, A S; Muhammad, N A

    2008-07-01

    Basic fibroblast growth factor (bFGF) is angiogenic and effective in down-regulating excess collagen production. The aim of this study is to evaluate the effectiveness of vitamin E (Tocotrienol Rich Fraction) in altering the level of bFGF, a cytokine involved in the scar formation process. In this model, normal human fibroblasts were treated with various concentrations of vitamin E at different time frames. The levels of bFGF were determined by Enzyme-Linked Immunosorbant Assay (ELISA). This study demonstrated that Tocotrienol Rich Fraction (TRF) stimulated bFGF production by fibroblast and postulate that vitamin E may decrease aberrant scar formation.

  6. Differential effects of planktonic and biofilm MRSA on human fibroblasts.

    PubMed

    Kirker, Kelly R; James, Garth A; Fleckman, Philip; Olerud, John E; Stewart, Philip S

    2012-01-01

    Bacteria colonizing chronic wounds often exist as biofilms, yet their role in chronic wound pathogenesis remains unclear. Staphylococcus aureus biofilms induce apoptosis in dermal keratinocytes, and given that chronic wound biofilms also colonize dermal tissue, it is important to investigate the effects of bacterial biofilms on dermal fibroblasts. The effects of a predominant wound pathogen, methicillin-resistant S. aureus, on normal, human, dermal fibroblasts were examined in vitro. Cell-culture medium was conditioned with equivalent numbers of either planktonic or biofilm methicillin-resistant S. aureus and then fed to fibroblast cultures. Fibroblast response was evaluated using scratch, viability, and apoptosis assays. The results suggested that fibroblasts experience the same fate when exposed to the soluble products of either planktonic or biofilm methicillin-resistant S. aureus, namely limited migration followed by death. Enzyme-linked immunosorbent assays demonstrated that fibroblast production of cytokines, growth factors, and proteases were differentially affected by planktonic and biofilm-conditioned medium. Planktonic-conditioned medium induced more interleukin-6, interleukin-8, vascular endothelial growth factor, transforming growth factor-β1, heparin-bound epidermal growth factor, matrix metalloproteinase-1, and metalloproteinase-3 production in fibroblasts than the biofilm-conditioned medium. Biofilm-conditioned medium induced more tumor necrosis factor-α production in fibroblasts compared with planktonic-conditioned medium, and suppressed metalloproteinase-3 production compared with controls.

  7. Excision of ultraviolet damage and the effect of irradiation on DNA synthesis in a strain of Bloom's syndrome fibroblasts

    SciTech Connect

    Henson, P.; Selsky, C.A.; Little, J.B.

    1981-03-01

    Researchers have studied repair of ultraviolet light-induced damage in a strain of Bloom's syndrome cells which we have shown to be defective in host cell reactivation of uv-irradiated herpes simplex virus. Excision repair was monitored by following loss of sensitivity of DNA in permeabilized cells to digestion by the Micrococcus luteus uv endonuclease preparation. The Bloom's syndrome fibroblasts apparently removed endonuclease-sensitive sites from the DNA slightly less efficiently than did normal strains. After 24 h, 38% of the sites remained in the Bloom's syndrome cells in comparison with 16% in normal fibroblasts. DNA newly synthesized in uv-irradiated Bloom's syndrome cells sedimented less far into alkaline sucrose gradients than did DNA from similarly treated normal cells. In other respects, including the effect of caffeine exposure, DNA synthesis in Bloom's syndrome cells was indistinguishable from that in normal cells. We were therefore able to detect only minor defects in the repair of uv-induced damage in Bloom's syndrome fibroblasts. This is consistent with the normal survival exhibited by these cells. The defect in excision repair may, however, be sufficient to allow the cellular repair capacity to become saturated at high infecting multiplicities of uv-irradiated herpes simplex virus.

  8. Fatty acid effects on fibroblast cholesterol synthesis

    SciTech Connect

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-05-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 ..mu..mol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 ..mu..Ci (/sup 14/C)acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest (/sup 14/C)acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total /sup 14/C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1(BSA).

  9. P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization.

    PubMed

    Poornima, V; Madhupriya, M; Kootar, S; Sujatha, G; Kumar, Arvind; Bera, Amal Kanti

    2012-03-01

    Activation of P2X(7) receptor (P2X(7)R) and pannexin have been implicated in membrane permeabilization associated with ischemic cell death and many other inflammatory processes. P2X(7)R has a unique property of forming large pore upon repeated or prolonged application of agonist like ATP or 2', 3'-(4-benzoyl) benzoyl ATP. It has been proposed that pannexin 1 (panx1) hemichannel associates with P2X(7)R to form large pore, though the actual mechanism is not yet understood. Calcium concentration in extracellular milieu drops in many patho-physiological conditions, e.g. ischemia, when P2X(7)R/pannexin is also known to be activated. Therefore, we hypothesize that extracellular calcium ([Ca(2+)](o)) plays an important role in the coupling of P2X(7)R-panx1 and subsequent membrane permeabilization. In this study we show that membrane permeability of the P2X(7)R and panx1 expressing N2A cell increases in ([Ca(2+)](o))-free solution. In [Ca(2+)](o)-free solution, fluorescent dye calcein trapped cells exhibited time-dependent dye leakage resulting in about 50% decrease of fluorescence intensity in 30 min. Control cells in 2 mM [Ca(2+)](o) did not show such leakage. Like N2A cells, mixed culture of neuron and glia, derived from hippocampal progenitor cells showed similar dye leakage. Dye leakage was blocked either by pannexin-specific blocker, carbenoxolone or P2X(7)R antagonists, Brilliant Blue G, and oxidized ATP. Furthermore P2X(7)R and panx1 were co-immunoprecipitated. The amount of P2X(7)R protein pulled-down with panx1, increased by twofold when cells were incubated 30 min in [Ca(2+)](o)-free buffer. Taken together, the results of this study demonstrate the activation and association of P2X(7)R-panx1, triggered by the removal of [Ca(2+)](o).

  10. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin.

    PubMed

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  11. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    PubMed Central

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD. PMID:27057276

  12. Osmotically sensitive renin release from permeabilized juxtaglomerular cells.

    PubMed

    Jensen, B L; Skøtt, O

    1993-07-01

    Renin secretion from juxtaglomerular (JG) cells is sensitive to external osmolality in a way that has been suggested to depend either on cellular volume or on effects on secretory granules. To distinguish between these possibilities, a technique for permeabilization of JG cell membranes was developed. Rat glomeruli with attached JG cells were isolated and permeabilized by 20 microM digitonin for 12 min and followed by continuous exposure to 2 microM digitonin. Experiments on proximal tubules showed that cellular volume was unaffected by changes in external sucrose concentration after a similar permeabilization procedure. With permeabilized JG cells the following changes in osmolality were tested (in mM sucrose): +90 (n = 6), +60 (n = 5), +30 (n = 6), +15 (n = 6), -15 (n = 5), -30 (n = 6), -60 (n = 6), and -90 (n = 6). With nonpermeabilized cells similar experiments were done with changes of +90 (n = 7), +30 (n = 4), -30 (n = 4), and -90 (n = 6) mM sucrose. Increases in osmolality caused inhibition of renin release, whereas decreases stimulated secretion. Within +/- 10% variations in osmolality there were no differences between the responses in permeabilized and intact cells, whereas the responses with larger changes were less in the permeabilized cells. Increase or decrease in urea concentration by 30 mM did not affect renin release. Thus water fluxes can influence renin release by a mechanism that is independent of cell volume.

  13. Effect of captopril on collagen metabolisms in keloid fibroblast cells.

    PubMed

    Chen, Junjie; Zhao, Sha; Liu, Yong; Cen, Ying; Nicolas, Crook

    2016-12-01

    Keloid is a proliferative disease of fibrous tissues. The mechanism and consistently effective treatments of keloid remained unknown. Although there was a report about treating keloid with topical captopril, the further investigation about captopril affecting keloid has not been performed so far. The aim of this study was to analyse the effect of captopril on collagen metabolisms in keloid fibroblast cells, and to provide information for the mechanism and therapy of keloid. To investigate the effects and relative mechanism of captopril on keloid fibroblast cells, we examined the changes of collagen metabolism, expression of angiotensin, transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF)-BB and heat shock protein 47 (HSP47), and cellular proliferation in keloid fibroblast cells. We found that all collagen metabolisms, expression of TGF-β1, PDGF-BB and HSP47, and cellular proliferation decreased significantly with effective captopril concentrations in keloid fibroblast cells. With a comprehensive analysis of test results, we proposed that captopril may decrease the expression of angiotensin, PDGF-BB, TGF-β1 and HSP47, and further inhibit proliferation and collagen synthesis of keloid fibroblast cells, which were the key in keloid formation. © 2014 Royal Australasian College of Surgeons.

  14. Effect of guanosine 5'-diphosphate 3'-diphosphate and related nucleoside polyphosphates on induction of tryptophanase and beta-galactosidase in permeabilized cells of Escherichia coli.

    PubMed

    Yoshimoto, A; Oki, T; Inui, T

    1978-10-04

    Exogenous addition of guanosine and adenosine 5'-(mono, di and tri) phosphate 3'-diphosphates (pppGpp, ppGpp, pGpp, pppApp, ppApp and pApp) stimulated the synthesis of tryptophanase and beta-galactosidase in permeabilized cells of Escherichia coli. From the results obtained with ppGpp and pppApp, this effect appeared to be at a transcriptional level and depended greatly on the growth condition; the largest effect was observed in cells under shiftdown or grown on poor enrgy source. ppGpp and pppApp, unlike cyclic AMP, did not act to overcome the inhibition of enzyme induction by glucose, but in combination with cyclic AMP caused a synergistic stimulation effect. In the shiftdown cells, ppGpp and pppApp gave 30% or more stimulation effect on tryptophanase induction while cyclic AMP did not stimulate induction. There was therefore a pronounced difference between cyclic AMP and ppGpp or pppApp in stimulatory function.

  15. The effects of reactive oxygen species on calcium- and carbachol-induced contractile responses in beta-escin permeabilized rat bladder.

    PubMed

    Durlu-Kandilci, N Tugba; Sahin-Erdemli, Inci

    2008-12-01

    The effect of reactive oxygen species on contractions in beta-escin permeabilized rat detrusor was investigated. Cumulative calcium contractions were inhibited by hydrogen peroxide (H(2)O(2)) and hydroxyl (*OH) but not by superoxide (O(2) *). The sarcoplasmic reticulum calcium-ATPase inhibitor cyclopiazonic acid (CPA) and the mitochondrial blocker carbonyl cyanide p-trifluromethoxyphenylhydrazone (FCCP) decreased the calcium contractions, however in their presence, H(2)O(2) and *OH did not have further effect. Carbachol contractions were inhibited by either H(2)O(2)/*OH/O(2) * or CPA/FCCP. In the presence of CPA, carbachol contractions were not affected by H(2)O(2) and *OH but further decreased by O(2) *. On the other hand, only H(2)O(2) and *OH elicited additional inhibition in carbachol responses in the presence of FCCP. Inositol triphosphate contraction was inhibited by *OH whereas none of the radicals affect carbachol induced calcium sensitization. These results show that H(2)O(2) and *OH affects sarcoplasmic reticulum where O(2) * acts on mitochondria to change contractions in rat detrusor smooth muscle.

  16. Anti-fibrotic effects of theophylline on lung fibroblasts

    SciTech Connect

    Yano, Yukihiro; Yoshida, Mitsuhiro . E-mail: hiroinosaka@hotmail.com; Hoshino, Shigenori; Inoue, Koji; Kida, Hiroshi; Yanagita, Masahiko; Takimoto, Takayuki; Hirata, Haruhiko; Kijima, Takashi; Kumagai, Toru; Osaki, Tadashi; Tachibana, Isao; Kawase, Ichiro

    2006-03-17

    Theophylline has been used in the management of bronchial asthma and chronic obstructive pulmonary disease for over 50 years. It has not only a bronchodilating effect, but also an anti-inflammatory one conducive to the inhibition of airway remodeling, including subepithelial fibrosis. To date however, whether theophylline has a direct inhibitory effect on airway fibrosis has not been established. To clarify this question, we examined whether theophylline affected the function of lung fibroblasts. Theophylline suppressed TGF-{beta}-induced type I collagen (COL1) mRNA expression in lung fibroblasts and also inhibited fibroblast proliferation stimulated by FBS and TGF-{beta}-induced {alpha}-SMA protein. A cAMP analog also inhibited TGF-{beta}-induced COL1 mRNA expression in lung fibroblasts. A PKA inhibitor reduced the inhibitory effect of theophylline on TGF-{beta}-induced COL1 mRNA expression. These results indicate that theophylline exerts anti-fibrotic effects, at least partly, through the cAMP-PKA pathway.

  17. Differential permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes as revealed by proteomics analysis of proteins released from mitochondria.

    PubMed

    Yamada, Akiko; Yamamoto, Takenori; Yamazaki, Naoshi; Yamashita, Kikuji; Kataoka, Masatoshi; Nagata, Toshihiko; Terada, Hiroshi; Shinohara, Yasuo

    2009-06-01

    It is well established that cytochrome c is released from mitochondria when the permeability transition (PT) of this organelle is induced by Ca2+. Our previous study showed that valinomycin also caused the release of cytochrome c from mitochondria but without inducing this PT (Shinohara, Y., Almofti, M. R., Yamamoto, T., Ishida, T., Kita, F., Kanzaki, H., Ohnishi, M., Yamashita, K., Shimizu, S., and Terada, H. (2002) Permeability transition-independent release of mitochondrial cytochrome c induced by valinomycin. Eur. J. Biochem. 269, 5224-5230). These results indicate that cytochrome c may be released from mitochondria with or without the induction of PT. In the present study, we examined the protein species released from valinomycin- and Ca2+-treated mitochondria by LC-MS/MS analysis. As a result, the proteins located in the intermembrane space were found to be specifically released from valinomycin-treated mitochondria, whereas those in the intermembrane space and in the matrix were released from Ca2+-treated mitochondria. These results were confirmed by Western analysis. Furthermore to examine how the protein release occurred, we examined the correlation between the species of released proteins and those of the abundant proteins in mitochondria. Consequently most of the proteins released from mitochondria treated with either agent were highly expressed proteins in mitochondria, indicating that the release occurred not selectively but in a manner dependent on the concentration of the proteins. Based on these results, the permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes are discussed.

  18. Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts.

    PubMed

    Damante, Carla Andreotti; De Micheli, Giorgio; Miyagi, Sueli Patrícia Harumi; Feist, Ilíria Salomão; Marques, Márcia Martins

    2009-11-01

    The effects of laser phototherapy on the release of growth factors by human gingival fibroblasts were studied in vitro. Cells from a primary culture were irradiated twice (6 h interval), with continuous diode laser [gallium-aluminum-arsenium (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP),_660 nm] in punctual and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). Positive [10% fetal bovine serum (FBS)] and negative (1%FBS) controls were not irradiated. Production of keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF) was quantified by enzyme-linked immunosorbent assay (ELISA). The data were statistically compared by analysis of variance (ANOVA) followed by Tukey's test (P

  19. Anti-proliferative effect of olmesartan on Tenon's capsule fibroblasts.

    PubMed

    Wang, Xuan; Fan, Ya-Zhi; Yao, Liang; Wang, Jian-Ming

    2016-01-01

    To evaluate the inhibitive effect of olmesartan to fibroblast proliferation and the anti-scarring effect in Tenon's capsule, both in vitro and in vivo. Human primary Tenon's capsule fibroblasts were cultured in vitro, treated with up titrating concentrations of olmesartan. The rate of inhibition was tested with methyl thiazol tetrazolium (MTT) method. Real-time PCR was performed to analyze changes in mRNA expressions of the fibrosis-related factors: matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase (TIMP-1,2) and proliferating cell nuclear antigen (PCNA). Thirty rabbits were divided into 5 groups (3, 7, 14, 21, and 28d). A rabbit conjunctiva flap model was created in each eye. Olmesartan solution was injected subconjunctivally and then evaluated its anti-proliferation and anti-fibrosis effects through the histological morphology and immunohistochemistry of MMP-2 and PCNA in each group. Only the 7d group was treated with Masson's trichrome to compare the neovascularization in the subconjunctiva area. In vitro, cultured Tenon's capsule human fibroblasts showed a dose dependent inhibition by olmesartan in MTT. Olmesartan reduced mRNA expressions of MMP-2 and PCNA but increased mRNA expressions of TIMP-1 and TIMP-2. In vivo, the rabbit eyes treated with olmesartan at 3(rd), 7(th), 14(th) and 21(st) days demonstrated a significant reduced expressions of MMP-2 and PCNA compared with control eye, no significant difference observed in 28(th) day group. The cellular proliferation and neovascularization was suppressed by olmesartan in Masson's trichrome observation. By inhibiting fibroblasts in vitro and in vivo, olmesartan prevents the proliferation and activity of fibroblasts in scar tissue formation, which might benefit glaucoma filtering surgery.

  20. Anti-proliferative effect of olmesartan on Tenon's capsule fibroblasts

    PubMed Central

    Wang, Xuan; Fan, Ya-Zhi; Yao, Liang; Wang, Jian-Ming

    2016-01-01

    AIM To evaluate the inhibitive effect of olmesartan to fibroblast proliferation and the anti-scarring effect in Tenon's capsule, both in vitro and in vivo. METHODS Human primary Tenon's capsule fibroblasts were cultured in vitro, treated with up titrating concentrations of olmesartan. The rate of inhibition was tested with methyl thiazol tetrazolium (MTT) method. Real-time PCR was performed to analyze changes in mRNA expressions of the fibrosis-related factors: matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase (TIMP-1,2) and proliferating cell nuclear antigen (PCNA). Thirty rabbits were divided into 5 groups (3, 7, 14, 21, and 28d). A rabbit conjunctiva flap model was created in each eye. Olmesartan solution was injected subconjunctivally and then evaluated its anti-proliferation and anti-fibrosis effects through the histological morphology and immunohistochemistry of MMP-2 and PCNA in each group. Only the 7d group was treated with Masson's trichrome to compare the neovascularization in the subconjunctiva area. RESULTS In vitro, cultured Tenon's capsule human fibroblasts showed a dose dependent inhibition by olmesartan in MTT. Olmesartan reduced mRNA expressions of MMP-2 and PCNA but increased mRNA expressions of TIMP-1 and TIMP-2. In vivo, the rabbit eyes treated with olmesartan at 3rd, 7th, 14th and 21st days demonstrated a significant reduced expressions of MMP-2 and PCNA compared with control eye, no significant difference observed in 28th day group. The cellular proliferation and neovascularization was suppressed by olmesartan in Masson's trichrome observation. CONCLUSION By inhibiting fibroblasts in vitro and in vivo, olmesartan prevents the proliferation and activity of fibroblasts in scar tissue formation, which might benefit glaucoma filtering surgery. PMID:27275419

  1. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Tube extrusion from permeabilized giant vesicles

    NASA Astrophysics Data System (ADS)

    Borghi, N.; Kremer, S.; Askovic, V.; Brochard-Wyart, F.

    2006-08-01

    This letter reports the permeabilization effects of chemical additives on mechanical properties of Giant Unilamellar Vesicles (GUVs). We use a surfactant, Tween 20, inducing transient pores and a protein, Streptolysin O, inducing permanent pores in the membrane. Lipid tubes are extracted from GUVs anchored onto the tip of a micro-needle and submitted to hydrodynamic flows. On bare vesicles, tube extrusion is governed by the entropic elasticity of the membrane. The vesicle tension increases until it balances the flow velocity U and the tube reaches a stationary length. In permeabilized vesicles, the membrane tension is maintained at a constant value σp by the permeation of inner solution through nanometric pores. This allows extrusion of "infinite" tubes at constant velocity that never reach a stationary length. Tween-20 preliminary results suggest that σp strongly depends on surfactant concentration. For Streptolysin O, we have measured σp vs. U and found two regimes: a "high-porosity" regime for U > Up0 and a "low-porosity" regime for U < Up0, where Up0 is related to the number of pores on the vesicle surface.

  3. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    SciTech Connect

    Eber, R.M.; Shuler, C.F.; Buchanan, W.; Beck, F.M.; Horton, J.E. )

    1989-08-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings.

  4. Tocotrienols have potent antifibrogenic effects in human intestinal fibroblasts.

    PubMed

    Luna, Jeroni; Masamunt, Maria Carme; Rickmann, Mariana; Mora, Rut; España, Carolina; Delgado, Salvadora; Llach, Josep; Vaquero, Eva; Sans, Miquel

    2011-03-01

    Excessive fibroblast expansion and extracellular matrix (ECM) deposition are key events for the development of bowel stenosis in Crohn's disease (CD) patients. Tocotrienols are vitamin E compounds with proven in vitro antifibrogenic effects on rat pancreatic fibroblasts. We aimed at investigating the effects of tocotrienols on human intestinal fibroblast (HIF) proliferation, apoptosis, autophagy, and synthesis of ECM. HIF isolated from CD, ulcerative colitis (UC), and normal intestine were treated with tocotrienol-rich fraction (TRF) from palm oil. HIF proliferation was quantified by (3) H-thymidine incorporation, apoptosis was studied by DNA fragmentation, propidium iodide staining, caspase activation, and poly(ADP-ribose) polymerase cleavage, autophagy was analyzed by quantification of LC3 protein and identification of autophagic vesicles by immunofluorescence and production of ECM components was measured by Western blot. TRF significantly reduced HIF proliferation and prevented basic fibroblast growth factor-induced proliferation in CD and UC, but not control HIF. TRF enhanced HIF death by promoting apoptosis and autophagy. HIF apoptosis, but not autophagy, was prevented by the pan-caspase inhibitor zVAD-fmk, whereas both types of cell death were prevented when the mitochondrial permeability transition pore was blocked by cyclosporin A, demonstrating a key role of the mitochondria in these processes. TRF diminished procollagen type I and laminin γ-1 production by HIF. Tocotrienols exert multiple effects on HIF, reducing cell proliferation, enhancing programmed cell death through apoptosis and autophagy, and decreasing ECM production. Considering their in vitro antifibrogenic properties, tocotrienols could be useful to treat or prevent bowel fibrosis in CD patients. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  5. Effects of pH and inorganic phosphate on force production in alpha-toxin-permeabilized isolated rat uterine smooth muscle.

    PubMed Central

    Crichton, C A; Taggart, M J; Wray, S; Smith, G L

    1993-01-01

    1. Strips of longitudinal smooth muscle isolated from rat uterus were permeabilized using crude alpha-toxin from the bacterium Staphylococcus aureus. This treatment rendered the surface membrane permeable to small molecular weight substances. Simultaneous measurements of tension and calcium concentration ([Ca2+]) (using indo-1 fluorescence) were used to investigate the effects of pH and inorganic phosphate concentration ([Pi]) on Ca(2+)-activated force generated by the contractile proteins. 2. Raising the [Pi] from 1 to 11 mM at a pH of 7.2 depressed both maximal and submaximal Ca(2+)-activated force. This effect of Pi was concentration dependent having the majority of its effect by 6 mM. 3. Further experiments at a submaximal [Ca2+] showed that Ca(2+)-activated force was enhanced by raising [Pi] from 6 to 11 mM suggesting that Pi increased the Ca2+ sensitivity of tension production. Based on these results, calculations indicate that the apparent affinity constant of Ca2+ for the contractile proteins increased from 4 x 10(6) M-1 to 6 x 10(6) M-1 on raising [Pi] from 1 to 11 mM. 4. Lowering pH from 7.2 to 6.7 at a [Pi] of 1 mM potentiated Ca(2+)-activated force with a small depression in the apparent Ca2+ sensitivity of tension production. This effect of pH on maximum (100 microM Ca2+) and submaximum (0.3 microM Ca2+) Ca(2+)-activated force was observed over a range of acidic pHs (7.0-6.7). 5. Increasing pH from 7.2 to 7.7 at a [Pi] of 1 mM depressed Ca(2+)-activated force with no effect on Ca2+ sensitivity of tension production. 6. Spontaneous contractions in intact rat myometrium are abolished under hypoxic conditions. Under these same conditions intracellular [Pi] rises and pH falls. The results of this study suggest that taken individually neither the effect of a rise in [Pi] nor a fall in pH on Ca(2+)-activated force generated by the contractile proteins can account for the effect of hypoxia on spontaneous contractions. PMID:8229854

  6. Effect of fibroblast-seeded artificial dermis on wound healing.

    PubMed

    Jang, Joon Chul; Choi, Rak-Jun; Han, Seung-Kyu; Jeong, Seong-Ho; Kim, Woo-Kyung

    2015-04-01

    In covering wounds, efforts should include use of the safest and least invasive methods with a goal of achieving optimal functional and cosmetic outcome. The recent development of advanced technology in wound healing has triggered the use of cells and/or biological dermis to improve wound healing conditions. The purpose of the study was to evaluate the effects of fibroblast-seeded artificial dermis on wound healing efficacy.Ten nude mice were used in this study. Four full-thickness 6-mm punch wounds were created on the dorsal surface of each mouse (total, 40 wounds). The wounds were randomly assigned to one of the following 4 treatments: topical application of Dulbecco phosphate-buffered saline (control), human fibroblasts (FB), artificial dermis (AD), and human fibroblast-seeded artificial dermis (AD with FB). On the 14th day after treatment, wound healing rate and wound contraction, which are the 2 main factors determining wound healing efficacy, were evaluated using a stereoimage optical topometer system, histomorphological analysis, and immunohistochemistry.The results of the stereoimage optical topometer system demonstrated that the FB group did not have significant influence on wound healing rate and wound contraction. The AD group showed reduced wound contraction, but wound healing was delayed. The AD with FB group showed decreased wound contraction without significantly delayed wound healing. Histomorphological analysis exhibited that more normal skin structure was regenerated in the AD with FB group. Immunohistochemistry demonstrated that the AD group and the AD with FB group produced less α-smooth muscle actin than the control group, but this was not shown in the FB group.Fibroblast-seeded artificial dermis may minimize wound contraction without significantly delaying wound healing in the treatment of skin and soft tissue defects.

  7. Proliferative Effects of Histamine on Primary Human Pterygium Fibroblasts

    PubMed Central

    Fu, Qiuli; Zhang, Lifang; Yin, Houfa; Jin, Xiuming; Tang, Qiaomei; Lyu, Danni

    2016-01-01

    Purpose. It has been confirmed that inflammatory cytokines are involved in the progression of pterygium. Histamine can enhance proliferation and migration of many cells. Therefore, we intend to investigate the proliferative and migratory effects of histamine on primary culture of human pterygium fibroblasts (HPFs). Methods. Pterygium and conjunctiva samples were obtained from surgery, and toluidine blue staining was used to identify mast cells. 3-[4, 5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was performed to evaluate the proliferative rate of HPFs and human conjunctival fibroblasts (HCFs); ki67 expression was also measured by immunofluorescence analysis. Histamine receptor-1 (H1R) antagonist (Diphenhydramine Hydrochloride) and histamine receptor-2 (H2R) antagonist (Nizatidine) were added to figure out which receptor was involved. Wound healing model was used to evaluate the migratory ability of HPFs. Results. The numbers of total mast cells and degranulated mast cells were both higher in pterygium than in conjunctiva. Histamine had a proliferative effect on both HPFs and HCFs, the effective concentration (10 μmol/L) on HPFs was lower than on HCFs (100 μmol/L), and the effect could be blocked by H1R antagonist. Histamine showed no migratory effect on HPFs. Conclusion. Histamine may play an important role in the proliferation of HPFs and act through H1R. PMID:27872516

  8. Effect of microemulsions on cell viability of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  9. Permeabilization of adhered cells using an inert gas jet.

    PubMed

    Cooper, Scott; Jonak, Paul; Chouinard-Pelletier, Guillaume; Coulombe, Sylvain; Jones, Elizabeth; Leask, Richard L

    2013-09-04

    Various cell transfection techniques exist and these can be broken down to three broad categories: viral, chemical and mechanical. This protocol describes a mechanical method to temporally permeabilize adherent cells using an inert gas jet that can facilitate the transfer of normally non-permeable macromolecules into cells. We believe this technique works by imparting shear forces on the plasma membrane of adherent cells, resulting in the temporary formation of micropores. Once these pores are created, the cells are then permeable to genetic material and other biomolecules. The mechanical forces involved do run the risk of permanently damaging or detaching cells from their substrate. There is, therefore, a narrow range of inert gas dynamics where the technique is effective. An inert gas jet has proven efficient at permeabilizing various adherent cell lines including HeLa, HEK293 and human abdominal aortic endothelial cells. This protocol is appropriate for the permeabilization of adherent cells both in vitro and, as we have demonstrated, in vivo, showing it may be used for research and potentially in future clinical applications. It also has the advantage of permeabilizing cells in a spatially restrictive manner, which could prove to be a valuable research tool.

  10. Pressure effects on the growth of human scar fibroblasts.

    PubMed

    Chang, Liang-Wey; Deng, Win-Ping; Yeong, Eng-Kean; Wu, Ching-Yuan; Yeh, Shih-Wei

    2008-01-01

    Although pressure therapy is the mainstay of treatment for hypertrophic scars, its actual mechanism remains unknown. An in vitro study was designed to investigate the effects of positive pressure on the growth of human scar-derived fibroblasts through its transforming growth factor beta1 (TGF-beta1) secretion. A pneumatic pressure system connecting to a cell culture chamber was designed. Six-well cultured plates with fibroblasts implanted were treated with different pressure settings. Cells were treated with constant pressure 20 mm Hg above atmosphere pressure (group A n = 18) or with 40 mm Hg above atmosphere pressure (group B n = 18) daily for nine successive days. Cells without pressure were treated as the control study (group C n = 6). Each experimental group was divided into daily pressure applied at 24 hours (n = 6), 18 hours (n = 6), and 12 hours (n = 6). Cell counting was performed on the 2nd, 4th, 7th, 9th, 11th, and 14th day after implantation. On day 4, the concentration of transforming growth factor beta1 was measured, and cell doubling time was calculated. Compared with the control group, there was a significant decrease in cell count and the concentration in the 18-hour and 24-hour 20 mm Hg or 40 mm Hg pressure treated group. The cell doubling time was significantly increased in the 24-hour 20 mm Hg or 40 mm Hg pressure treated groups, and the 18-hour 40 mm Hg pressure treated group. (P < .05) Pressure inhibits the growth and activity of human scar fibroblasts, and a higher pressure application can shorten the daily application period. There should be an optimal pressure level corresponding to a daily application period to achieve the most effective results on pressure therapy for scars.

  11. Mitochondrial membrane permeabilization with nanosecond electric pulses.

    PubMed

    Vernier, P Thomas

    2011-01-01

    Ultra-short, high-field electric pulses permeabilize plasma and intracellular membranes. We report here nanosecond pulse-induced permeabilization of mitochondrial membranes in living cells. Using four independent methods based on fluorescent dyes--JC-1, rhodamine 123, tetramethyl rhodamine ethyl ester, and cobalt-quenched calcein--we show that as few as five, 4 ns, 10 MV/m pulses delivered at 1 kHz cause an increase of the inner mitochondrial membrane permeability and an associated loss of mitochondrial membrane potential. The most likely interpretation of these results is a pulse-induced permeabilization of the inner mitochondrial membrane.

  12. Directed multistep biocatalysis using tailored permeabilized cells.

    PubMed

    Krauser, Steffen; Weyler, Christian; Blaß, Lisa Katharina; Heinzle, Elmar

    2013-01-01

    : Recent developments in the field of biocatalysis using permeabilized cells are reviewed here, with a special emphasis on the newly emerging area of multistep biocatalysis using permeabilized cells. New methods of metabolic engineering using in silico network design and new methods of genetic engineering provide the opportunity to design more complex biocatalysts for the synthesis of complex biomolecules. Methods for the permeabilization of cells are thoroughly reviewed. We provide an extended review of useful available databases and bioinformatics tools, particularly for setting up genome-scale reconstructed networks. Examples described include phosphorylated carbohydrates, sugar nucleotides, and polyketides.

  13. Effect of saccharin on metabolic cooperation between human fibroblasts

    SciTech Connect

    Mosser, D.D.; Bols, N.C.

    1983-01-01

    Autoradiography was used to study the effect of saccharin on metabolic cooperation between human diploid fibroblasts. When the donors, HGPRT+ cells, and recipients, HGPRT- cells, were plated together in the presence of saccharin, all the interactions that developed in 4 and 24 h were positive for metabolic cooperation. When saccharin was added after donor cells and recipient cells had made contact, the proportion of interactions that were positive for metabolic cooperation was unchanged but the number of grains over primary recipients was reduced. However, in donor cells saccharin caused a reduction in (/sup 3/H)hypoxanthine incorporation into both acid-soluble and acid-insoluble fractions, although the relative distribution of radioactivity between these two fractions and between the phosphorylated and non-phosphorylated derivatives of (/sup 3/H)hypoxanthine was unchanged. Metabolic cooperation was studied under conditions in which the number of grains over the nuclei of both the primary recipient and the primary recipient's donor could be counted. The change in the number of grains over these two cell types in response to saccharin was compared and found to be the same. Thus in normal human fibroblasts saccharin does not appear to affect metabolic cooperation, which is a measure of cell-to-cell communication.

  14. Effect of Arctium lappa (burdock) extract on canine dermal fibroblasts.

    PubMed

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2013-12-15

    Although the biological activities of Arctium lappa (burdock) have been already investigated in human and other species, data evaluating the molecular mechanisms have not been reported in the dog. In this study we analyzed for the first time the effect of a root extract of burdock on molecular responses in canine dermal fibroblasts with H2O2 stimulation (H group), with burdock treatment (B group) and with H2O2 stimulation and burdock treatment (BH group), using RNAseq technology. Differentially expressed genes (P<0.05) of H, B and BH groups in comparison to the untreated sample (negative control, C group) were identified with MeV software and were functional annotated and monitored for signaling pathways and candidate biomarkers using the Ingenuity Pathways Analysis (IPA). The expression profile of canine dermal fibroblasts treated with burdock extract with or without H2O2 stimulation, showed an up-regulation of mitochondrial superoxide dismutase (SOD2), disheveled 3 (DVL3) and chondroitin sulfate N-acetylgalactosaminyltransferase 2 (CSGALNACT2). The data suggested that burdock has implications in cell adhesion and gene expression with the modulation of Wnt/β catenin signaling and Chondroitin Sulphate Biosynthesis that are particularly important for the wound healing process. © 2013 Elsevier B.V. All rights reserved.

  15. Effect of storage media on the proliferation of periodontal ligament fibroblasts

    SciTech Connect

    Lauer, H.C.; Mueller, J.G.; Gross, J.; Horster, M.F.

    1987-07-01

    The effect of storage media, which are routinely used in replantation, upon the proliferative capacity of periodontal ligament fibroblasts, was compared with the effect of a tissue culture medium. The periodontal tissue was obtained from mandibular central incisors of White New Zealand rabbits. The experiments were performed in fibroblasts derived during second subculture. The storage media were physiologic salt solution, Ringer's solution and Rivanol; the tissue culture medium was alpha-minimum essential medium without nucleosides. The incubation period was 1 hour. (/sup 3/H)-thymidine incorporation and cell counts were taken to indicate changes in the proliferative capacity of the fibroblasts. The tissue culture experiments showed that the proliferative ability of the periodontal ligament fibroblasts was dependent upon the composition of the storage medium. Physiologic salt solution, Ringer's solution and Rivanol were unable to maintain the metabolism of the fibroblasts. alpha-MEM medium, however, was capable of stimulating proliferation of the periodontal ligament fibroblasts.

  16. The effects of Wubeizi ointment on the proliferation of keloid-derived fibroblasts.

    PubMed

    Ding, Ji-cun; Tang, Zhi-ming; Zhai, Xiao-xiang; Chen, Xiang-hui; Li, Jing-guo; Zhang, Cui-xia

    2015-01-01

    To evaluate the effectiveness of the Wubeizi (WBZ) ointment on keloid-derived fibroblasts. The primary cells of the keloid-derived fibroblasts were cultured and the effectiveness of the WBZ ointment at different concentrations was examined by MTT colorimetric methods on keloid-derived fibroblasts. The WBZ ointment showed inhibitory effects on proliferating the keloid-derived fibroblasts (P < 0.01)in a time- and dose-dependent manner. The proportion of cells in S stage was significantly higher in each of the WBZ ointment group than in the control group (P<0.01), and the proportion of G2 + M stage cells was significantly lower than that of control group, which was statistically significant (P < 0.01).The inhibitory effects of the S and G2 + M stage increased with higher drug concentrations (P < 0.05). The WBZ ointment can inhibit the proliferation of the keloid-derived fibroblasts in a time- and dose- dependent manner.

  17. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*

    PubMed Central

    Parker, William H.; Qu, Zhi-chao; May, James M.

    2015-01-01

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729

  18. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin.

    PubMed

    Parker, William H; Qu, Zhi-chao; May, James M

    2015-08-28

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism.

  19. [Effect of Capparis spinosa on fibroblast proliferation and type I collagen production in progressive systemic sclerosis].

    PubMed

    Cao, Yue-Lan; Li, Xin; Zheng, Min

    2008-03-01

    To investigate the effects of ethanolic extract from Capparis spinosa (ECS) on the fibroblast proliferation and type I collagen production in normal and progressive systemic sclerosis (PSS). Cellular activity was determined by the MTT method. Apoptosis was detected by flow cytometry analysis of Annexin V-stained cells. The expression levels of type I collagen messenger RNA and protein were analyzed by RT-PCR and western blot analysis. ECS could significantly inhibit the proliferation of fibroblast and reduced the expression of alpha2 (I) collagen mRNA and type I collagen protein in PSS in a dose-and time-dependent manner. ECS did not affect the proliferation of fibroblast and expression of type I collagen mRNA and protein in normal human. ECS could counteract the harmful effects on fibroblast by H2O2. ECS can effectively inhibit the fibroblast proliferation and type I collagen production in PSS.

  20. Effect of lipopolysaccharide on the biological characteristics of human skin fibroblasts and hypertrophic scar tissue formation.

    PubMed

    Yang, Hongming; Hu, Chao; Li, Fengyu; Liang, Liming; Liu, Lingying

    2013-06-01

    Burn injury-mediated destruction of the skin barrier normally induces microbial invasion, in turn leading to the development of systemic infection and occasional septic shock by the release of endotoxins. The objective of this work was to study the influence of lipopolysaccharide (LPS) on the biological characteristics of normal skin fibroblasts and to elucidate the influence of LPS in the initial stage of skin wound healing. Twenty patients with hypertrophic scar in proliferative stage were selected randomly and primary cultures were established from fibroblasts derived from their hypertrophic scar tissue and normal skin. Normal skin fibroblasts of passage 3 were stimulated with different concentrations of LPS. LPS stimulated the proliferation and collagen synthesis of fibroblasts within a certain extent of concentrations (0.005-0.5 μg/mL) (P < 0.05), whereas at a concentration of 1 μg/mL inhibited the proliferation and collagen synthesis of fibroblasts (P < 0.05). Collagen synthesis by normal skin fibroblasts after LPS stimulation mimicked those derived from hypertrophic scar tissue. LPS of 0.1 μg/mL had significant effect on normal skin fibroblasts-continuous passage of these fibroblasts resulted in ultrastructural pattern similar to fibroblasts derived from hypertrophic scar tissue, and the findings was substantiated by hematoxylin and eosin staining and immunohistochemistry detection of proliferation cell nuclear antigen, type I procollagen and α-smooth muscle actin. Our results suggest that LPS might convert normal skin fibroblasts to hypertrophic scar tissue fibroblasts and participate in the formation of hypertrophic scar; hence, appropriate concentration of LPS may have no effect or be beneficial to skin wound healing, whereas excessive concentration of LPS may delay the time of wound healing. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  1. Cytotoxic effects of resin components on cultured mammalian fibroblasts.

    PubMed

    Hanks, C T; Strawn, S E; Wataha, J C; Craig, R G

    1991-11-01

    The objectives of this study were to determine the cytotoxic concentrations of 11 components of resin composites on monolayers of cultured Balb/c 3T3 fibroblasts, to study the inhibitory effects of these components on DNA synthesis, total protein content, and protein synthesis, and to determine whether effects were reversible when the components were withdrawn from the medium. These data were reported as concentrations which inhibited 10% (ID10) and 50% (ID50) of a particular metabolic process as well as the range of concentrations over which cell metabolism was irreversibly inhibited. For any individual component, the ID50 values for all three metabolic parameters were of the same magnitude. The same was true for the ranges of irreversibility. Ethoxylated Bis-phenol A dimethacrylate (E-BPA) was the most toxic molecule of the group (ID50 being between 1 and 10 mumol/L). The ID50 concentrations for three of the components, including Bis-GMA, UDMA, TEGDMA, and Bis-phenol A, ranged between 10 and 100 mumol/L, while the ID50 values of three components (N,N dihydroxyethyl-p-toluidine, camphoroquinone, and N,N dimethylaminoethyl methacrylate) were above 100 mumol/L. The concentrations to which the cells and tissues are exposed in vivo are not known. This study should help to identify the concentrations of organic composite components which pose clinical cytotoxic hazards.

  2. Effects of nicotine on periodontal ligament fibroblasts in vitro.

    PubMed

    Giannopoulou, C; Geinoz, A; Cimasoni, G

    1999-01-01

    Cigarette smoking is associated with increased incidence of periodontal disease and poor response to therapy. In the present study, we examined the effects of nicotine on several functions of periodontal ligament fibroblasts (PDLF): proliferation, attachment, alkaline phosphatase production and chemotaxis. Nicotine concentrations varying from 5 ng/ml to 250 microg/ml were tested. Proliferation of cells was studied by the incorporation of 3H-thymidine, and a dose-dependent inhibition was observed with concentrations > or =100 ng/ml. Similar results were observed when studying the attachment of the cells on plastic surfaces, using a colorimetric method. The inhibition of attachment was even more evident after 6 h incubation of the cells with nicotine. The activity of alkaline phosphatase, as determined with the substrate p-nitrophenyl phosphate, in both conditioned medium (CM) and cellular extract (CE), was also significantly decreased in a concentration-related fashion. Finally, the chemotaxis of PDLE as examined by a modification of the Boyden's blind-well chamber technique, was inhibited in a dose-dependent manner. The degree of inhibition varied from 15% with the lowest concentration of nicotine (50 ng/ml), to almost 90% with the highest (5 microg/ml). The results show that nicotine can have direct adverse effects on various functions of the periodontal cells.

  3. Effect of Cleft Palate Repair on the Susceptibility to Contraction-Induced Injury of Single Permeabilized Muscle Fibers From Congenitally-Clefted Goat Palates

    PubMed Central

    Rader, Erik P.; Cederna, Paul S.; McClellan, William T.; Caterson, Stephanie A.; Panter, Kip E.; Yu, Deborah; Buchman, Steven R.; Larkin, Lisa M.; Faulkner, John A.; Weinzweig, Jeffrey

    2009-01-01

    Objective Despite cleft palate repair, velopharyngeal competence is not achieved in ~15% of patients, often necessitating secondary surgical correction. Velopharyngeal competence postrepair may require the conversion of levator veli palatini muscle fibers from injury-susceptible type 2 fibers to injury-resistant type 1 fibers. As an initial step to determining the validity of this theory, we tested the hypothesis that, in most cases, repair induces the transformation to type 1 fibers, thus diminishing susceptibility to injury. Interventions Single permeabilized levator veli palatini muscle fibers were obtained from normal palates and nonrepaired congenitally-clefted palates of young (2 months old) and adult (14 to 15 months old) goats and from repaired palates of adult goats (8 months old). Repair was done at 2 months of age using a modified von Langenbeck technique. Main Outcome Measures Fiber type was determined by contractile properties and susceptibility to injury was assessed by force deficit, the decrease in maximum force following a lengthening contraction protocol expressed as a percentage of initial force. Results For normal palates and cleft palates of young goats, the majority of the fibers were type 2 with force deficits of ~40%. Following repair, 80% of the fibers were type 1 with force deficits of 20% ± 2%; these deficits were 45% of those for nonrepaired cleft palates of adult goats (p < .0001). Conclusion The decrease in the percentage of type 2 fibers and susceptibility to injury may be important for the development of a functional levator veli palatini muscle postrepair. PMID:18333646

  4. Antifibrotic Effects of Roscovitine in Normal and Scleroderma Fibroblasts

    PubMed Central

    Steinman, Richard A.; Robinson, Andria Rasile; Feghali-Bostwick, Carol A.

    2012-01-01

    Heightened production of collagen and other matrix proteins underlies the fibrotic phenotype of systemic sclerosis (SSc). Roscovitine is an inhibitor of cyclin-dependent kinases that promote cell cycling (CDK1, 2), neuronal development (CDK5) and control transcription (CDK7,9). In an in vivo glomerulonephritis model, roscovitine treatment decreased mesangial cell proliferation and matrix proteins [1]. We investigated whether roscovitine could regulate fibrotic protein production directly rather than through cell cycling. Our investigations revealed that roscovitine coordinately inhibited the expression of collagen, fibronectin, and connective tissue growth factor (CTGF) in normal and SSc fibroblasts. This effect occurred on a transcriptional basis and did not result from roscovitine-mediated cell cycle inhibition. Roscovitine-mediated suppression of matrix proteins could not be reversed by the exogenous profibrotic cytokines TGF-β or IL-6. To our knowledge, we are the first to report that roscovitine modulates matrix protein transcription. Roscovitine may thus be a viable treatment option for SSc and other fibrosing diseases. PMID:23185265

  5. Antifibrotic effects of roscovitine in normal and scleroderma fibroblasts.

    PubMed

    Steinman, Richard A; Robinson, Andria Rasile; Feghali-Bostwick, Carol A

    2012-01-01

    Heightened production of collagen and other matrix proteins underlies the fibrotic phenotype of systemic sclerosis (SSc). Roscovitine is an inhibitor of cyclin-dependent kinases that promote cell cycling (CDK1, 2), neuronal development (CDK5) and control transcription (CDK7,9). In an in vivo glomerulonephritis model, roscovitine treatment decreased mesangial cell proliferation and matrix proteins [1]. We investigated whether roscovitine could regulate fibrotic protein production directly rather than through cell cycling. Our investigations revealed that roscovitine coordinately inhibited the expression of collagen, fibronectin, and connective tissue growth factor (CTGF) in normal and SSc fibroblasts. This effect occurred on a transcriptional basis and did not result from roscovitine-mediated cell cycle inhibition. Roscovitine-mediated suppression of matrix proteins could not be reversed by the exogenous profibrotic cytokines TGF-β or IL-6. To our knowledge, we are the first to report that roscovitine modulates matrix protein transcription. Roscovitine may thus be a viable treatment option for SSc and other fibrosing diseases.

  6. Effects of Calendula officinalis on human gingival fibroblasts.

    PubMed

    Saini, Pragtipal; Al-Shibani, Nouf; Sun, Jun; Zhang, Weiping; Song, Fengyu; Gregson, Karen S; Windsor, L Jack

    2012-04-01

    Calendula officinalis is commonly called the marigold. It is a staple topical remedy in homeopathic medicine. It is rich in quercetin, carotenoids, lutein, lycopene, rutin, ubiquinone, xanthophylls, and other anti-oxidants. It has anti-inflammatory properties. Quercetin, one of the active components in Calendula, has been shown to inhibit recombinant human matrix metalloproteinase (MMP) activity and decrease the expression of tumor necrosis factor-α, interleukin-1β (IL), IL-6 and IL-8 in phorbol 12-myristate 13-acetate and calcium ionophore-stimulated human mast cells. To examine the effects of Calendula on human gingival fibroblast (HGF) mediated collagen degradation and MMP activity. Lactate dehydrogenate assays were performed to determine the non-toxic concentrations of Calendula, doxycycline and quercetin. Cell-mediated collagen degradation assays were performed to examine the inhibitory effect on cell-mediated collagen degradation. Gelatin zymography was performed to examine their effects on MMP-2 activity. The experiments were repeated three times and ANOVA used for statistical analyses. Calendula at 2-3% completely inhibited the MMP-2 activity in the zymograms. Doxycycline inhibited HGF-mediated collagen degradation at 0.005, 0.01, 0.02 and 0.05%, and MMP-2 activity completely at 0.05%. Quercetin inhibited HGF-mediated collagen degradation at 0.005, 0.01 and 0.02%, and MMP-2 activity in a dose-dependent manner. Calendula inhibited HGF-mediated collagen degradation and MMP-2 activity more than the same correlated concentration of pure quercetin. Calendula inhibits HGF-mediated collagen degradation and MMP-2 activity more than the corresponding concentration of quercetin. This may be attributed to additional components in Calendula other than quercetin. Published by Elsevier Ltd.

  7. Anti-scarring effects of butaprost on human subconjunctival Tenon's fibroblasts

    PubMed Central

    Shin, Jong Hoon; Seo, Je Hyun; Jung, Jae Ho; Kim, Tae Woo

    2017-01-01

    AIM To investigate the toxicity of the E-prostanoid 2 (EP2) receptor agonist, butaprost against human subconjunctival (Tenon's capsule) fibroblasts, and to determine the underlying mechanism. METHODS We isolated Tenon's fibroblasts from the subconjunctival area of healthy subjects and evaluated the types of EP receptors expressed using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). The toxicity of butaprost against the fibroblasts was evaluated using methyl thiazolyl tetrazolium and lactic dehydrogenase assays. The inhibition of conjunctival fibroblast proliferation by butaprost was assessed by measuring α-actin levels. The underlying mechanism was assessed by measuring intracellular cyclic adenosine monophosphate (cAMP) levels. Intergroup differences were statistically analyzed using an independent t-test. Densitometry of the Western blot bands was performed using the Image J software. RESULTS Quantitative real-time RT-PCR revealed that the fibroblast EP2 receptor levels were higher than those of the other EP receptors. Butaprost did not show toxicity against Tenon's tissue, but inhibited conjunctival fibroblast proliferation by reducing collagen synthesis. EP2 receptor activation enhanced the cAMP cascade, which might be an important mechanism underlying this effect. CONCLUSION Butaprost effectively reduces the subconjunctival scarring response. Given the significance of wound healing modulation in blebs, butaprost's inhibitory effect on subconjunctival Tenon's fibroblasts may be beneficial in managing postoperative scarring in glaucoma surgery. PMID:28730102

  8. A Comparative Study on the Effects of Millisecond- and Microsecond-Pulsed Electric Field Treatments on the Permeabilization and Extraction of Pigments from Chlorella vulgaris.

    PubMed

    Luengo, Elisa; Martínez, Juan Manuel; Coustets, Mathilde; Álvarez, Ignacio; Teissié, Justin; Rols, Marie-Pierre; Raso, Javier

    2015-10-01

    The interdependencies of the two main processing parameters affecting "electroporation" (electric field strength and pulse duration) while using pulse duration in the range of milliseconds and microseconds on the permeabilization, inactivation, and extraction of pigments from Chlorella vulgaris was compared. While irreversible "electroporation" was observed above 4 kV/cm in the millisecond range, electric field strengths of ≥10 kV/cm were required in the microseconds range. However, to cause the electroporation of most of the 90 % of the population of C. vulgaris in the millisecond (5 kV/cm, 20 pulses) or microsecond (15 kV/cm, 25 pulses) range, the specific energy that was delivered was lower for microsecond treatments (16.87 kJ/L) than in millisecond treatments (150 kJ/L). In terms of the specific energy required to cause microalgae inactivation, treatments in the microsecond range also resulted in greater energy efficiency. The comparison of extraction yields in the range of milliseconds (5 kV, 20 ms) and microseconds (20, 25 pulses) under the conditions in which the maximum extraction was observed revealed that the improvement in the carotenoid extraction was similar and chlorophyll a and b extraction was slightly higher for treatments in the microsecond range. The specific energy that was required for the treatment in the millisecond range (150 kJ/L) was much higher than those required in the microsecond range (30 kJ/L). The comparison of the efficacy of both types of pulses on the extraction enhancement just after the treatment and after a post-pulse incubation period seemed to indicate that PEF in the millisecond range created irreversible alterations while, in the microsecond range, the defects were a dynamic structure along the post-pulse time that caused a subsequent increment in the extraction yield.

  9. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    PubMed

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  10. Effects of microelectrical current on migration of nasal fibroblasts.

    PubMed

    Choi, Hyuk; Cho, Jung-Sun; Park, Il Ho; Yoon, Hu Geun; Lee, Heung-Man

    2011-01-01

    Migration of fibroblasts is critical in wound healing. The question of how wounded electric fields guide migration of nasal fibroblasts remains to be elucidated. This study was designed to determine morphology, directedness, and migration rate of nasal fibroblasts during microcurrent application, which is simulated by an endogenous electric field at the vicinity of the wound. Nasal fibroblasts were exposed to a microelectric field at 50, 100, and 250 mV/mm for 3 hours at 37°C. In this experiment, the field polarity was reversed for an additional 3 hours. During in vitro testing, the cells were incubated in a newly developed miniature, microcurrent generating chamber system, with 5% CO(2), at 37°C; the media was circulated by a pump system. A wound was created by scratching a cell-free area (∼150 μm wide) into a confluent monolayer. The average migration speed was calculated as the distance traveled by the cell divided by time. A microelectric field of 100 mV/mm or more induced significant cell migration in the direction of the cathode. Trajectory speeds at 50, 100, and 250 mV/mm were 9.8 ± 0.3, 11.8 ± 0.3, and 13.5 ± 0.9 μm/mm, respectively. A significant difference was observed between migratory rate of controls and that of 50 mV/mm (p < 0.05). Microelectric fields appear to have a crucial role in control of nasal fibroblast activity in the process of wound healing.

  11. Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study

    PubMed Central

    Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua

    2012-01-01

    Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID

  12. Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses.

    PubMed

    Novickij, Vitalij; Dermol, Janja; Grainys, Audrius; Kranjc, Matej; Miklavčič, Damijan

    2017-01-01

    Cell membrane permeabilization by pulsed electromagnetic fields (PEMF) is a novel contactless method which results in effects similar to conventional electroporation. The non-invasiveness of the methodology, independence from the biological object homogeneity and electrical conductance introduce high flexibility and potential applicability of the PEMF in biomedicine, food processing, and biotechnology. The inferior effectiveness of the PEMF permeabilization compared to standard electroporation and the lack of clear description of the induced transmembrane transport are currently of major concern. The PEMF permeabilization experiments have been performed using a 5.5 T, 1.2 J pulse generator with a multilayer inductor as an applicator. We investigated the feasibility to increase membrane permeability of Chinese Hamster Ovary (CHO) cells using short microsecond (15 µs) pulse bursts (100 or 200 pulses) at low frequency (1 Hz) and high dB/dt (>10(6) T/s). The effectiveness of the treatment was evaluated by fluorescence microscopy and flow cytometry using two different fluorescent dyes: propidium iodide (PI) and YO-PRO®-1 (YP). The results were compared to conventional electroporation (single pulse, 1.2 kV/cm, 100 µs), i.e., positive control. The proposed PEMF protocols (both for 100 and 200 pulses) resulted in increased number of permeable cells (70 ± 11% for PI and 67 ± 9% for YP). Both cell permeabilization assays also showed a significant (8 ± 2% for PI and 35 ± 14% for YP) increase in fluorescence intensity indicating membrane permeabilization. The survival was not affected. The obtained results demonstrate the potential of PEMF as a contactless treatment for achieving reversible permeabilization of biological cells. Similar to electroporation, the PEMF permeabilization efficacy is influenced by pulse parameters in a dose-dependent manner.

  13. Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses

    PubMed Central

    Grainys, Audrius; Kranjc, Matej; Miklavčič, Damijan

    2017-01-01

    Background Cell membrane permeabilization by pulsed electromagnetic fields (PEMF) is a novel contactless method which results in effects similar to conventional electroporation. The non-invasiveness of the methodology, independence from the biological object homogeneity and electrical conductance introduce high flexibility and potential applicability of the PEMF in biomedicine, food processing, and biotechnology. The inferior effectiveness of the PEMF permeabilization compared to standard electroporation and the lack of clear description of the induced transmembrane transport are currently of major concern. Methods The PEMF permeabilization experiments have been performed using a 5.5 T, 1.2 J pulse generator with a multilayer inductor as an applicator. We investigated the feasibility to increase membrane permeability of Chinese Hamster Ovary (CHO) cells using short microsecond (15 µs) pulse bursts (100 or 200 pulses) at low frequency (1 Hz) and high dB/dt (>106 T/s). The effectiveness of the treatment was evaluated by fluorescence microscopy and flow cytometry using two different fluorescent dyes: propidium iodide (PI) and YO-PRO®-1 (YP). The results were compared to conventional electroporation (single pulse, 1.2 kV/cm, 100 µs), i.e., positive control. Results The proposed PEMF protocols (both for 100 and 200 pulses) resulted in increased number of permeable cells (70 ± 11% for PI and 67 ± 9% for YP). Both cell permeabilization assays also showed a significant (8 ± 2% for PI and 35 ± 14% for YP) increase in fluorescence intensity indicating membrane permeabilization. The survival was not affected. Discussion The obtained results demonstrate the potential of PEMF as a contactless treatment for achieving reversible permeabilization of biological cells. Similar to electroporation, the PEMF permeabilization efficacy is influenced by pulse parameters in a dose-dependent manner. PMID:28462057

  14. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes

    PubMed Central

    Varma, Sandeep R.; Sivaprakasam, Thiyagarajan O.; Mishra, Abheepsa; Kumar, L. M. Sharath; Prakash, N. S.; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  15. Effect of Oxidative Stress on Protein Tyrosine Phosphatase-1B in Scleroderma Dermal Fibroblasts

    PubMed Central

    Tsou, Pei-Suen; Talia, Nadine N.; Pinney, Adam J.; Kendzicky, Ann; Piera-Velazquez, Sonsoles; Jimenez, Sergio A.; Seibold, James R.; Phillips, Kristine; Koch, Alisa E.

    2011-01-01

    Objective Platelet-derived growth factor (PDGF) and its receptor (PDGFR) promote fibrosis in scleroderma (SSc) dermal fibroblasts, which produce excessive reactive oxygen species (ROS). PDGFR is phosphorylated upon PDGF stimulation, and dephosphorylated by protein tyrosine phosphatases (PTPs), including PTP1B. In this study we determine whether the thiol-sensitive PTP1B is affected by ROS, thus enhancing PDGFR phosphorylation (p-PDGFR) and collagen I (Col I) synthesis. The effect of a thiol antioxidant, n-acetylcysteine (NAC), was also investigated. Methods Fibroblasts were isolated from skin. A phosphate release assay was used for PTP1B activity. Results ROS and Col I were significantly higher in SSc fibroblasts, accompanied by significantly lower amounts of free thiols compared to normal fibroblasts. After PDGF stimulation, not only were the PDGFR and ERK1/2 phosphorylated to a greater extent, but the ability to produce PTP1B was also hampered in SSc fibroblasts. PTP1B activity was significantly inactivated in SSc fibroblasts, which resulted from cysteine oxidation by higher levels of ROS, since oxidation of multiple PTPs, including PTP1B, was observed. Decreased PTP1B expression in normal fibroblasts led to increased Col I. NAC restored the low PTP1B activity, improved the profile of p-PDGFR, decreased the numbers of tyrosine-phosphorylated proteins and Col I, and scavenged ROS in SSc fibroblasts. Conclusion We introduce a new mechanism by which ROS promote a profibrotic phenotype in SSc fibroblasts through oxidative inactivation of PTP1B leading to pronounced PDGFR activation. Our study also provides a novel molecular mechanism by which NAC therapy may act on ROS and PTP1B to benefit SSc patients. PMID:22161819

  16. Instability of spiral and scroll waves in the presence of a gradient in the fibroblast density: the effects of fibroblast-myocyte coupling

    NASA Astrophysics Data System (ADS)

    Zimik, Soling; Pandit, Rahul

    2016-12-01

    Fibroblast-myocyte coupling can modulate electrical-wave dynamics in cardiac tissue. In diseased hearts, the distribution of fibroblasts is heterogeneous, so there can be gradients in the fibroblast density (henceforth we call this GFD) especially from highly injured regions, like infarcted or ischemic zones, to less-wounded regions of the tissue. Fibrotic hearts are known to be prone to arrhythmias, so it is important to understand the effects of GFD in the formation and sustenance of arrhythmic re-entrant waves, like spiral or scroll waves. Therefore, we investigate the effects of GFD on the stability of spiral and scroll waves of electrical activation in a state-of-the-art mathematical model for cardiac tissue in which we also include fibroblasts. By introducing GFD in controlled ways, we show that spiral and scroll waves can be unstable in the presence of GFDs because of regions with varying spiral- or scroll-wave frequency ω, induced by the GFD. We examine the effects of the resting membrane potential of the fibroblast and the number of fibroblasts attached to the myocytes on the stability of these waves. Finally, we show that the presence of GFDs can lead to the formation of spiral waves at high-frequency pacing.

  17. Newcomers in the process of mitochondrial permeabilization.

    PubMed

    Lucken-Ardjomande, Safa; Martinou, Jean-Claude

    2005-02-01

    Under stress conditions, apoptogenic factors normally sequestered in the mitochondrial intermembrane space are released into the cytosol, caspases are activated and cells die by apoptosis. Although the precise mechanism that leads to the permeabilization of mitochondria is still unclear, the activation of multidomain pro-apoptotic proteins of the Bcl-2 family, such as Bax and Bak, is evidently crucial. Regulation of Bax and Bak by other members of the family has been known for a long time, but recent evidence suggests that additional unrelated proteins participate in the process, both as inhibitors and activators. The important rearrangements mitochondrial lipids undergo during apoptosis play a role in the permeabilization process and this role is probably more central than first envisioned.

  18. Reconstitution of Nuclear Import in Permeabilized Cells

    PubMed Central

    Cassany, Aurelia; Gerace, Larry

    2012-01-01

    The trafficking of protein and RNA cargoes between the cytoplasm and the nucleus of eukaryotic cells, which is a major pathway involved in cell regulation, is mediated by nuclear transport sequences in the cargoes and by shuttling transport factors. The latter include receptors (karyopherins) that recognize the cargoes and carry them across the nuclear pore complex (NPC), and the small GTPase Ran, which modulates karyopherin–cargo binding. Nuclear import can be studied in vitro using digitonin-permeabilized cells, which are depleted of shuttling transport factors. Nuclear import can be reconstituted in the permeabilized cells with exogenous cytosol or with purified recombinant transport factors, and can be quantified by light microscopy of fluorescently labeled cargoes or by immunofluorescence staining. Here we describe procedures for in vitro nuclear import in permeabilized mammalian cells, and for the preparation of recombinant transport factors (importin α, importin β, importin 7, transportin, Ran, NTF2) and other reagents commonly used in the assay. This assay provides means to characterize the molecular mechanisms of nuclear import and to study the import requirements of specific cargoes. PMID:18951186

  19. Reconstitution of nuclear import in permeabilized cells.

    PubMed

    Cassany, Aurelia; Gerace, Larry

    2009-01-01

    The trafficking of protein and RNA cargoes between the cytoplasm and the nucleus of eukaryotic cells, which is a major pathway involved in cell regulation, is mediated by nuclear transport sequences in the cargoes and by shuttling transport factors. The latter include receptors (karyopherins) that recognize the cargoes and carry them across the nuclear pore complex (NPC), and the small GTPase Ran, which modulates karyopherin-cargo binding. Nuclear import can be studied in vitro using digitonin-permeabilized cells, which are depleted of shuttling transport factors. Nuclear import can be reconstituted in the permeabilized cells with exogenous cytosol or with purified recombinant transport factors, and can be quantified by light microscopy of fluorescently labeled cargoes or by immunofluorescence staining. Here we describe procedures for in vitro nuclear import in permeabilized mammalian cells, and for the preparation of recombinant transport factors (importin alpha, importin beta, importin 7, transportin, Ran, NTF2) and other reagents commonly used in the assay. This assay provides means to characterize the molecular mechanisms of nuclear import and to study the import requirements of specific cargoes.

  20. [Effect of cyclic stretch with different amplitudes on the transformation of normal skin fibroblasts into hypertrophic scar fibroblasts].

    PubMed

    Wang, Zhiguo; Kuang, Ruixia; Chen, Zhenyu; Li, Peng; Chen, Lu; Zhang, Weidong

    2015-01-27

    To explore the role of cyclic stretch with different amplitudes on the transformation of normal skin fibroblasts (NSFB) into hypertrophic scar fibroblasts (HSFB). NSFB and HSFB were cultured in vitro. Cyclic stretch with 10%, 15% and 20% amplitude was applied for 24 h on NSFB of experimental groups (Group N10%,Group N15% and Group N20%). And control groups (groups N0 and H0), NSFB and HSFB were cultured without stretch. Cell Counting Kit-8 method was used to detect the proliferation of fibroblasts. The gene expressions of integrin β1, P130Cas, TGF-β1, COL1A1 and COL3 A1 were detected by real-time polymerase chain reaction (PCR). And the protein expressions of TGF-β1, collagen types I and III were detected by enzyme-linked immunosorbent assay. Cyclic stretch had stimulatory effect on cell proliferation. The proliferation capacity of group N10% was higher than that of group N20% (0.91 ± 0.09 vs 0.8 ± 0.07, P < 0.05). Cyclic stretch could induce increased levels of gene expression.Gene expression levels of integrin β1, P130Cas, TGF-β1, COL1A1 and COL3 A1 in group N10% was higher than those in group N20% (3.14 ± 0.24, 5.01 ± 0.49, 1.55 ± 0.08, 2.38 ± 0.08, 1.37 ± 0.11 vs 1.78 ± 0.32, 3.07 ± 0.41, 1.18 ± 0.05, 1.97 ± 0.05, 1.26 ± 0.19; all P < 0.05). Cyclic stretch could stimulate NSFB to secrete TGF-β1. The protein level of TGF-β1 in group N10% was higher than that in group N20% ((459 ± 12.96) vs (372 ± 10.49) pg/ml, P < 0.05). The protein levels of collagen types I and III in experiment groups were higher than those in group N0 and lower than those in group H0 (all P < 0.05). The protein level of collagen type I in group N10% was higher than that in group N20% ((12.66 ± 1.16) vs (11.23 ± 0.75) ng/ml, P < 0.05). NSFB loaded cyclic stretch with 10% amplitude could exhibit some biological characteristics of HSFB. And cyclic stretch with optimal amplitude might transform NSFB into HSFB.

  1. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro

    PubMed Central

    Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology. PMID:27536196

  2. The Effect of p38MAPK on Cyclic Stretch in Human Facial Hypertrophic Scar Fibroblast Differentiation

    PubMed Central

    Du, Qi-cui; Zhang, Dai-zun; Chen, Xiu-juan; Lan-Sun, Gui; Wu, Min; Xiao, Wen-lin

    2013-01-01

    Hypertrophic scars (HTS), the excessive deposition of scar tissue by fibroblasts, is one of the most common skin disorders. Fibroblasts derived from surgical scar tissue produce high levels of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1). However, the molecular mechanisms for this phenomenon is poorly understood. Thus, the purpose of this study was to evaluate the molecular mechanisms of HTS and their potential therapeutic implications. Fibroblasts derived from skin HTS were cultured and characterized in vitro. The fibroblasts were synchronized and randomly assigned to two groups: cyclic stretch and cyclic stretch pre-treated with SB203580 (a p38MAPK inhibitor). Cyclic stretch at 10% strain was applied at a loading frequency of 10 cycles per minute (i.e. 5 seconds of tension and 5 seconds of relaxation) for 0 h, 6 h and 12 h. Cyclic stretch on HTS fibroblasts led to an increase in the expression of α-SMA and TGF-β1 mRNA and protein and the phosphorylation of p38MAPK. SB203580 reversed these effects and caused a decrease in matrix contraction. Furthermore, HTS fibroblast growth was partially blocked by p38MAPK inhibition. Therefore, the mechanism of cyclic stretch involves p38 MAPK, and its inhibition is suggested as a novel therapeutic strategy for HTS. PMID:24130728

  3. [Effects of extracts of Dragon's blood on fibroblast proliferation and extracellular matrix hyaluronic acid].

    PubMed

    Li, Dan; Hui, Rui; Hu, Yongwu; Han, Yan; Guo, Shuzhong

    2015-01-01

    To investigate the effects of Dragon' s blood extract on proliferation and secret extracellular matrix function of fibroblasts in vitro. Dragon' s blood was extracted by chloroform, acetoacetic ester, alcohol. Human fibroblast were cultured in vitro in media containing gradient dilutions of Dragon' s blood extracts (0.002, 0.02, 0.2, 2, 20 mg/ml) , which was followed by cell proliferation assessed with MTT assay on 0, 12, 24, 36, 48, 60, 72 h. Under the optimal concentration, the cell growth curves were drawn and the flow cytometry (FCM) was used to determine the changes of cell cycle. On 0, 12, 24, 36, 48, 60, 72 h, the concentration of hyaluronic acid in the supernatant of fibroblast culture was measured by radioimmunoassay. 0.2-2 mg/ml Dragon' s blood extracts enhanced the proliferation of fibroblasts in a dose-dependent manner. 2 mg/ml was the optimal dilution of Dragon's blood extract, and it increased the ratio of S cells in cell cycle [(25.80 ± 3.10)%] than control group [(7.50 ± 0.70)%, P < 0.01]. From 12 h to 72 h, in 2 mg/ml Dragon's blood group, concentration of Hyaluronic acid secreted by fibroblasts gradually increased, but were less than control (P < 0.01). Dragon's blood acetoacetic ester extract improved the proliferation of cultured human fibroblasts in vitro, might be beneficial to promote wound healing.

  4. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro.

    PubMed

    Wyganowska-Swiatkowska, Marzena; Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology.

  5. Paracrine effects of uterine leucocytes on gene expression of human uterine stromal fibroblasts.

    PubMed

    Germeyer, Ariane; Sharkey, Andrew Mark; Prasadajudio, Mirari; Sherwin, Robert; Moffett, Ashley; Bieback, Karen; Clausmeyer, Susanne; Masters, Leanne; Popovici, Roxana Maria; Hess, Alexandra Petra; Strowitzki, Thomas; von Wolff, Michael

    2009-01-01

    The endometrium contains a distinct population of immune cells that undergo cyclic changes during the menstrual cycle and implantation. The majority of these leucocytes are uterine NK (uNK) cells, however how these cells interact with uterine stromal fibroblasts remains unclear. We therefore investigated the paracrine effect of medium conditioned by uterine decidual leucocytes (which are enriched for uNK cells) on the gene expression profile of endometrial stromal fibroblasts in vitro using a cDNA microarray. Our results, verified by real-time PCR, ELISA and FACS analysis, reveal that soluble factors from uterine leucocytes substantially alter endometrial stromal fibroblast gene expression. The largest group of up-regulated genes found was chemokines and cytokines. These include IL-8, CCL8 and CXCL1, which have also been shown to be stimulated by contact of stromal fibroblasts with trophoblast, suggesting that uNK cells work synergistically to support trophoblast migration during implantation. The decidual leucocytes also up-regulated IL-15 and IL-15Ralpha in stromal fibroblasts which could produce a niche for uNK cells allowing proliferation within and recruitment into the uterus, as seen in bone marrow. Overall this study demonstrates, for the first time, the paracrine communication between uterine leucocytes and uterine stromal fibroblasts, and adds to the understanding of how the uterine immune system contributes to the changes seen within the cycling endometrium.

  6. Electrophysiological and functional effects of sphingosine-1-phosphate in mouse ventricular fibroblasts

    SciTech Connect

    Benamer, Najate; Bois, Patrick

    2011-04-29

    Highlights: {yields} In cardiac fibroblasts, SUR2/Kir6.1 channel is activated by S1P via the S1P3R. {yields} S1P increases cell proliferation through SUR2/Kir6.1 activation. {yields} S1P decreases collagen and IL-6 secretion through SUR2/Kir6.1 activation. {yields} S1P stimulates fibroblast migration independently from SUR2/Kir6.1 channel. -- Abstract: The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac

  7. Biological Effects of Extracorporeal Shock Waves on Fibroblasts. A Review

    PubMed Central

    Frairia, Roberto; Berta, Laura

    2011-01-01

    Summary Tissue homeostasis is influenced by mechanical forces which regulate the normal function of connective tissues. Mechanotransduction, the process that transforms mechanical stimuli in chemical signals, involves mechanosensory units integrated in cell membrane. The mechanosensory units are able to activate gene expression for growth factors or cytochines as well as to induce a biological event which results in cell proliferation and/or differentiation. In connective tissue the fibroblasts are the cells more represented and are considered as a model of mechanosensitive cells. They are ubiquitous but specific for each type of tissue. Their heterogeneity consists in different morphological features and activity; the common function is the mechanosensitivity, the capacity to adhere to extracellular matrix (ECM) and to each other, the secretion of growth factors and ECM components. Extracorporeal shock waves (ESW) have been recently used to treat damaged osteotendineous tissues. Studies in vitro and in vivo confirmed that ESW treatment enhances fibroblast proliferation and differentiation by activation of gene expression for transforming growth factor β1 (TGF- β1) and Collagen Types I and III. In addition, an increase of nitric oxide (NO) release is even reported in early stage of the treatment and the subsequent activation of endothelial nitric oxide synthase (eNOS) and of vascular endothelial growth factor (VEGF) are related to TGF- β1 rise. The data have been related to the increase of angiogenesis observed in ESW treated tendons, an additional factor in accelerating the repairing process. A suitable treatment condition, characterized by a proper energy/shot number ratio, is the basis of treatment efficacy. Further ESWT applications are suggested in regenerative medicine, in all cases where fibroblast activity and the interaction with connective tissue can be positively influenced. PMID:23738262

  8. NAADP-sensitive Ca2+ stores in permeabilized rat hepatocytes.

    PubMed

    Bychkova, S V; Chorna, T I

    2014-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a nucleotide that is potent to release calcium from intracellular stores in different cell types. NAADP was shown to target specific type of intracellular store namely endolysosomal system or acidic store. Despite intense studies, its effect on endoplasmatic reticulum (ER) still remains to be elucidated. The main aim of our work was to investigate NAADP-sensitive store in permeabilized rat hepatocytes monitoring the level of Ca2+ inside intracellular organelles using chlorotetracycline (CTC). We have shown that NAADP triggered changes of stored Ca2+ in rat hepatocytes are dependent on concentration of EGTA-Ca2+-buffer in cell incubation medium, i.e. the higher is the EGTA concentration in incubation medium the smaller or absent is the effect of NAADP. Besides, the effect of NAADP was more pronounced upon cells pretreatment with the inhibitory concentration of ryanodine (100 μM). This might suggest that the effect of NAADP is dependent on ER luminal calcium. We have also found that NAADP-evoked Ca2+ release in permeabilized hepatocytes is sensitive to nigericin, bafilomycin A and thapsigargin. Additionally, NAADP triggered changes in stored Ca2+ were completely abolished by NED-19 as antagonist of NAADP.

  9. Optimization of permeabilization process of yeast cells for catalase activity using response surface methodology

    PubMed Central

    Trawczyńska, Ilona; Wójcik, Marek

    2015-01-01

    Biotransformation processes accompanied by whole yeast cells as biocatalyst are a promising area of food industry. Among the chemical sanitizers currently used in food technology, hydrogen peroxide is a very effective microbicidal and bleaching agent. In this paper, permeabilization has been applied to Saccharomyces cerevisiae yeast cells aiming at increased intracellular catalase activity for decomposed H2O2. Ethanol, which is non-toxic, biodegradable and easily available, has been used as permeabilization factor. Response surface methodology (RSM) has been applied in determining the influence of different parameters on permeabilization process. The aim of the study was to find such values of the process parameters that would yield maximum activity of catalase during decomposition of hydrogen peroxide. The optimum operating conditions for permeabilization process obtained by RSM were as follows: 53% (v/v) of ethanol concentration, temperature of 14.8 °C and treatment time of 40 min. After permeabilization, the activity of catalase increased ca. 40 times and its maximum value equalled to 4711 U/g. PMID:26019618

  10. The dose-dependence biological effect of laser fluence on rabbit fibroblasts derived from urethral scar.

    PubMed

    Yang, Yong; Yu, Bo; Sun, Dongchong; Wu, Yuanyi; Xiao, Yi

    2015-04-01

    Two-micrometer laser vaporization resection has been used in clinic for years, but some patients received the treatment are still faced with excessive and abnormal wound repair which leads to the recurrent of urethral stricture eventually. Fibroblasts play a key role in the processes of "narrow-expansion/operation-restenosis" recurring problems. Here, we investigated the effect of laser fluence biomodulation on urethral scar fibroblasts as well as the underlying mechanism. Urethral scar fibroblasts were isolated and cultured, and laser irradiation (2 μm) was applied at different laser fluence or doses (0, 0.125, 0.5, 2, 8, 32 J/cm(2)) with a single exposure in 1 day. The effect of 2-μm laser irradiation on cell proliferation, viability, and expression of scar formation related genes were investigated. Two-micrometer laser irradiation with intermediate dose (8 J/cm(2)) promoted scar fibroblasts proliferation and reactive oxygen species (ROS) production, while higher doses of 32 J/cm(2) are suppressive as it decreased the survival rate, viability, and proliferation of fibroblasts. In addition, qRT-PCR and Western blotting results both proven that collagen type I, collagen IV, MMP9, and CTGF display significant increase, yet the TGF-β1 expression was severely reduced at intermediate dose (8 J/cm(2)) group when compared with the others groups. Our findings suggest the scar formation-related genes are sensitive to intermediate laser irradiation dose, the most in scar fibroblasts. We revealed the bioeffect and molecular mechanism of 2-μm laser irradiation on rabbit urethral scar fibroblasts. Our study provides new insights into the mechanisms which involved in the excessive and abnormal wound repair of 2-μm laser vaporization resection. These results could potentially contribute to further study on biological effects and application of 2-μm laser irradiation in urethral stricture therapy.

  11. Effects of cigarette smoke extracts on the growth and senescence of skin fibroblasts in vitro.

    PubMed

    Yang, Gao-yun; Zhang, Chun-lei; Liu, Xiang-chen; Qian, Ge; Deng, Dan-qi

    2013-01-01

    Epidemiological studies have shown that cigarette smoke (CS), a very common environmental factor, plays an important role in skin aging. Although some in vivo studies have suggested that CS affects skin aging, the detailed effects of CS on skin cells in vitro remain largely unknown. In this study, we investigated the effects of cigarette smoke extract (CSE) on the growth, proliferation, and senescene of skin fibroblasts and the possible mechanism underlying these effects. Primary cultured human fibroblasts were exposed to a range of concentrations of CSE. Cell viability and cell proliferation after CSE exposure were analyzed with the methyl thiazolyl tetrazolium (MTT) assay and bromodeoxyuridine incorporation assay, respectively. Growth curves of fibroblasts exposed to different concentrations of CSE were developed and prolonged CSE-exposed cells were observed. Morphological and ultrastructural changes in fibroblasts were assessed by inverted light microscopy and transmission electron microscopy (TEM). Dying cells were stained with senescence-associated β-galactosidase (SA β-gal). Intracellular reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, and glutathione peroxidase (GSH-Px) activity were determined by a colorimetric method. We found that proliferative capacity and growth were inhibited by CSE exposure in a dose- and time-dependent manner. Fibroblasts exposed to even low concentrations of CSE for a long period of time (5 passages) showed significantly increased SA β-gal activity and typical features of aging cells. Meanwhile, CSE inhibited superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and augmented ROS levels. Our observations suggest that CSE exposure impairs fibroblast growth and proliferation and leads to features similar to those seen in senescent cells. Oxidative stress injury and inhibition of antioxidant defense activity may be involved in CSE-induced fibroblast senescence.

  12. Plasma Membrane Permeabilization by Trains of Ultrashort Electric Pulses

    PubMed Central

    Ibey, Bennett L.; Mixon, Dustin G.; Payne, Jason A.; Bowman, Angela; Sickendick, Karl; Wilmink, Gerald J.; Roach, W. Patrick; Pakhomov, Andrei G.

    2010-01-01

    Ultrashort electric pulses (USEP) cause long-lasting increase of cell membrane electrical conductance, and that a single USEP increased cell membrane electrical conductance proportionally to the absorbed dose (AD) with a threshold of about 10 mJ/g. The present study extends quantification of the membrane permeabilization effect to multiple USEP and employed a more accurate protocol that identified USEP effect as the difference between post- and pre-exposure conductance values (Δg) in individual cells. We showed that Δg can be increased by either increasing the number of pulses at a constant E-field, or by increasing the E-field at a constant number of pulses. For 60-ns pulses, an E-field threshold of 6 kV/cm for a single pulse was lowered to less than 1.7 kV/cm by applying 100-pulse or longer trains. However, the reduction of the E-field threshold was only achieved at the expense of a higher AD compared to a single pulse exposure. Furthermore, the effect of multiple pulses was not fully determined by AD, suggesting that cells permeabilized by the first pulse(s) in the train become less vulnerable to subsequent pulses. This explanation was corroborated by a model that treated multiple-pulse exposures as a series of single-pulse exposures and assumed an exponential decline of cell susceptibility to USEP as Δg increased after each pulse during the course of the train. PMID:20171148

  13. Inhibitory effects of trehalose on fibroblast proliferation and implications for ocular surgery.

    PubMed

    Takeuchi, Kimio; Nakazawa, Mitsuru; Ebina, Yuichi; Sato, Kota; Metoki, Tomomi; Miyagawa, Yasuhiro; Ito, Tadashi

    2010-11-01

    Trehalose is a disaccharide which plays an important role in preserving cells from completely dehydrated circumstances. In this study, we investigated effects of trehalose on proliferative activity of fibroblasts and epithelial cells both in vitro and in vivo. As in vitro assessment, normal human dermal fibroblasts and normal human epidermal keratinocytes were cultured in media containing various concentrations of trehalose. Growth activities of cells were evaluated with MTT assay and diff-quick™ staining. Expressions of vimentin and α smooth muscle actin (α-SMA) changed by trehalose were semiquantitatively measured by Western blot. As an in vivo study, 5% or 10% trehalose was topically instilled onto rabbit eyes after simple conjunctival incision or trabeculectomy. Condition of the surgical wound was evaluated by morphologically and immunohistochemically using isolectin B4 and antibodies specific for vimentin and α-SMA. Intraocular pressures (IOPs) after trabeculectomy were compared between eyes treated with trehalose and 0.04% mitomycin C (MMC). Results obtained by in vitro experiments showed that growth activities of cultured fibroblasts and keratinocytes were inhibited by trehalose in a dose-dependent manner. Fibroblasts were strongly inhibited by trehalose concentrations ≧ 5% of trehalose, whereas keratinocytes were less inhibited compared to fibroblasts. Expressions of vimentin and α-SMA were reduced by trehalose. With in vivo experiments, postoperative application of trehalose resulted in less firm adhesion between conjunctiva and sclera compared to controls. Immunohistochemical studies showed reduced staining of isolectin B4, vimentin and α-SMA in conjunctival wounds treated by topical trehalose. Also, after trabeculectomy, IOP remained in a low range during instillation of topical trehalose solution. We concluded that trehalose has inhibitory effects on proliferation of fibroblasts and vascular tissues, partially due to inhibition of

  14. Bnip3 Mediates Permeabilization of Mitochondria and Release of Cytochrome c via a Novel Mechanism

    PubMed Central

    Quinsay, Melissa N.; Lee, Youngil; Rikka, Shivaji; Sayen, M. Richard; Molkentin, Jeffery D.; Gottlieb, Roberta A.; Gustafsson, Åsa B.

    2010-01-01

    Bnip3 is a member of the BH3-only subfamily of pro-apoptotic Bcl-2 proteins and is associated with loss of cardiac myocytes after a myocardial infarction. Previous studies have demonstrated that Bnip3 induces mitochondrial dysfunction, but the mechanisms involved in this process remain unknown. In this study, we demonstrate that Bnip3 induces permeabilization of the mitochondria via a novel mechanism that is different from other BH3-only proteins. We found that Bnip3 induced mitochondrial swelling and cytochrome c release in isolated heart mitochondria in vitro. Another BH3-only protein, tBid, also caused release of cytochrome c but failed to induce swelling of mitochondria. Swelling of mitochondria is a characteristic of mitochondrial permeability transition pore (mPTP) opening, but Bnip3-mediated mitochondrial swelling was insensitive to cyclosporine A, an inhibitor of the mPTP and independent of cyclophilin D (cypD), an essential component of the mPTP. Bnip3 also induced permeabilization of the mitochondrial membranes as evident by calcein release from the matrix in both wild type (WT) and cypD deficient mouse embryonic fibroblasts (MEFs). Moreover, Bnip3 induced mitochondrial matrix remodeling and large amplitude swelling of the inner membrane, which led to disassembly of OPA1 complexes and release from the mitochondria. Thus, these studies suggest that Bnip3 mediates mitochondrial permeabilization by a novel mechanism that is different from other BH3-only proteins. PMID:20025887

  15. Differential effects of fluticasone on extracellular matrix production by airway and parenchymal fibroblasts in severe COPD.

    PubMed

    Brandsma, Corry-Anke; Timens, Wim; Jonker, Marnix R; Rutgers, Bea; Noordhoek, Jacobien A; Postma, Dirkje S

    2013-10-15

    Chronic obstructive pulmonary disease (COPD) is characterized by abnormal repair in the lung resulting in airway obstruction associated with emphysema and peripheral airway fibrosis. Because the presence and degree of airways disease and emphysema varies between COPD patients, this may explain the heterogeneity in the response to treatment. It is currently unknown whether and to what extent inhaled steroids can affect the abnormal repair process in the airways and lung parenchyma in COPD. We investigated the effects of fluticasone on transforming growth factor (TGF)-β- and cigarette smoke-induced changes in mothers against decapentaplegic homolog (Smad) signaling and extracellular matrix (ECM) production in airway and parenchymal lung fibroblasts from patients with severe COPD. We showed that TGF-β-induced ECM production by pulmonary fibroblasts, but not activation of the Smad pathway, was sensitive to the effects of fluticasone. Fluticasone induced decorin production by airway fibroblasts and partly reversed the negative effects of TGF-β treatment. Fluticasone inhibited biglycan production in both airway and parenchymal fibroblasts and procollagen 1 production only in parenchymal fibroblasts, thereby restoring the basal difference in procollagen 1 production between airway and parenchymal fibroblasts. Our findings suggest that the effects of steroids on the airway compartment may be beneficial for patients with severe COPD, i.e., restoration of decorin loss around the airways, whereas the effects of steroids on the parenchyma may be detrimental, since the tissue repair response, i.e., biglycan and procollagen production, is inhibited. More research is needed to further disentangle these differential effects of steroid treatment on the different lung compartments and its impact on tissue repair and remodeling in COPD.

  16. Transcriptomic study of high‑glucose effects on human skin fibroblast cells.

    PubMed

    Pang, Lingxia; Wang, Youpei; Zheng, Meiqin; Wang, Qing; Lin, Hong; Zhang, Liqing; Wu, Lingjian

    2016-03-01

    Skin ulcers are a common complication of diabetes mellitus (DM). Fibroblasts are located within the dermis of skin tissue and can be damaged by diabetes. However, the underlying mechanism of how DM affects fibroblasts remains elusive. To understand the effects of DM on fibroblasts, the current study mimicked DM by high‑glucose (HG) supplementation in the culture medium of human foreskin primary fibroblast cells, and the analysis of transcriptomic changes was conducted. RNA sequencing‑based transcriptome analysis identified that, upon HG stress, 463 genes were upregulated and 351 genes downregulated (>1.5‑fold changes; P<0.05). These altered genes were distributed into 20 different pathways. In addition, gene ontology (GO) analysis indicated that 31 GO terms were enriched. Among the pathways identified, nuclear factor κB (NF‑κB) pathway genes were highly expressed, and the addition of Bay11‑7082, a typical NF‑κB signaling inhibitor, blocked the previously observed alterations in plasminogen activator inhibitor 1 (PAI1), an inflammation marker and frizzled class receptor 8 (FZD8), a Wnt signaling gene, expression that resulted from HG stress. Furthermore, an inhibitor of Wnt signaling diminished the role of Bay11‑7082 in the regulation of PAI1 expression under HG conditions, suggesting that Wnt signaling may function downstream of the NF‑κB pathway to protect fibroblast cells from HG stress. To the best of our knowledge, the current study is the first analysis of transcriptomic responses under HG stress in human fibroblasts. The data provided here may aid the understanding of the molecular mechanisms by which fibroblast cells are damaged in the skin of patients with DM.

  17. The effect of bacterial products on synovial fibroblast function: hypermetabolic changes induced by endotoxin

    PubMed Central

    Buckingham, Robert B.; Castor, C. William

    1972-01-01

    The effects of bacterial products on selected synovial fibroblast functions were studied. Extracts of commonly encountered microorganisms were prepared by sonic or mechanical disruption. “Purified” endotoxins were prepared from selected organisms, and in some cases were purchased commercially. Normal fibroblasts were derived from synovial connective tissue obtained from amputations or arthrotomy. The cells were grown as a monolayer on glass and were nourished by a semisynthetic nutrient medium. Extracts of Gram-negative bacteria, applied to fibroblast cultures, markedly increased hyaluronic acid production, glucose utilization, and lactate output. Treatment of the extracts with heat at 100°C for ½ hr decreased their effectiveness by approximately 40%. Purified Gram-negative bacterial endotoxin stimulated synovial fibroblasts to an extent comparable to that caused by heat-treated whole extracts. The lipid moiety of the endotoxin molecule appeared to account for much of the stimulatory activity of the endotoxin. Extracts of commonly encountered Gram-positive cocci, yeast, and Mycoplasma had no stimulating capabilities. Corynebacterial extracts, however, had definite stimulating potential. Endotoxin-synovial cell interaction experiments demonstrated that endotoxin was bound to fibroblasts. Reassay of the endotoxin after extraction from the cells showed that it retained its stimulatory potential. The metabolic phenomena stimulated by bacterial products duplicate the major known actions of connective tissue-activating peptide (CTAP). The observations made in this study suggest that bacterial products may participate in a fundamental way in the activation process, and indicate a possible role for bacterial products in synovial inflammation in humans. PMID:4259829

  18. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts.

    PubMed

    Tang, Xi-Lan; Liu, Jian-Xun; Dong, Wei; Li, Peng; Li, Lei; Hou, Jin-Cai; Zheng, Yong-Qiu; Lin, Cheng-Ren; Ren, Jun-Guo

    2015-02-01

    Inflammatory response is an important mechanism in the pathogenesis of cardiovascular diseases. Cardiac fibroblasts play a crucial role in cardiac inflammation and might become a potential therapeutic target in cardiovascular diseases. Kaempferol, a flavonoid commonly existing in many edible fruits, vegetables, and Chinese herbs, is well known to possess anti-inflammatory property and thus has a therapeutic potential for the treatment of inflammatory diseases. To date, the effect of kaempferol on cardiac fibroblasts inflammation is unknown. In this study, we investigated the anti-inflammatory effect of kaempferol on lipopolysaccharide (LPS) plus ATP-induced cardiac fibroblasts and explored the underlying mechanisms. Our results showed that kaempferol at concentrations of 12.5 and 25 μg/mL significantly suppressed the release of TNF-α, IL-1β, IL-6, and IL-18 and inhibited activation of NF-κB and Akt in LPS plus ATP-induced cardiac fibroblasts. These findings suggest that kaempferol attenuates cardiac fibroblast inflammation through suppression of activation of NF-κB and Akt.

  19. Mitochondrial trifunctional protein deficiency in human cultured fibroblasts: effects of bezafibrate.

    PubMed

    Djouadi, Fatima; Habarou, Florence; Le Bachelier, Carole; Ferdinandusse, Sacha; Schlemmer, Dimitri; Benoist, Jean François; Boutron, Audrey; Andresen, Brage S; Visser, Gepke; de Lonlay, Pascale; Olpin, Simon; Fukao, Toshiyuki; Yamaguchi, Seiji; Strauss, Arnold W; Wanders, Ronald J A; Bastin, Jean

    2016-01-01

    Mitochondrial trifunctional protein (MTP) deficiency caused by HADHA or HADHB gene mutations exhibits substantial molecular, biochemical, and clinical heterogeneity and ranks among the more severe fatty acid oxidation (FAO) disorders, without pharmacological treatment. Since bezafibrate has been shown to potentially correct other FAO disorders in patient cells, we analyzed its effects in 26 MTP-deficient patient fibroblasts representing 16 genotypes. Overall, the patient cell lines exhibited variable, complex, biochemical profiles and pharmacological responses. HADHA-deficient fibroblasts showed markedly reduced alpha subunit protein levels together with decreased beta-subunit abundance, exhibited a -86 to -96% defect in LCHAD activity, and produced large amounts of C14 and C16 hydroxyacylcarnitines. In control fibroblasts, exposure to bezafibrate (400 μM for 48 h) increased the abundance of HADHA and HADHB mRNAs, immune-detectable alpha and beta subunit proteins, activities of LCHAD and LCKAT, and stimulated FAO capacities, clearly indicating that MTP is pharmacologically up-regulated by bezafibrate in human fibroblasts. In MTP-deficient patient fibroblasts, which were found markedly FAO-deficient, bezafibrate improved FAO capacities in six of 26 (23%) cases, including three cell lines heterozygous for the common c1528G > C mutation. Altogether, our results strongly suggest that, due to variable effects of HADHA and HADHB mutations on MTP abundance and residual activity, improvement of MTP deficiency in response to bezafibrate was achieved in a subset of responsive genotypes.

  20. [Fibroblast growth factors and their effects in pancreas organogenesis].

    PubMed

    Gnatenko, D A; Kopantzev, E P; Sverdlov, E D

    2017-05-01

    Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.

  1. A permeabilized cell system identifies the endoplasmic reticulum as a site of protein degradation

    PubMed Central

    1991-01-01

    Analysis of the fate of a variety of newly synthesized proteins in the secretory pathway has provided evidence for the existence of a novel protein degradation system distinct from that of the lysosome. Although current evidence suggests that proteins degraded by this system are localized to a pre-Golgi compartment before degradation, the site of proteolysis has not been determined. A permeabilized cell system was developed to examine whether degradation by this pathway required transport out of the ER, and to define the biochemical characteristics of this process. Studies were performed on fibroblast cell lines expressing proteins known to be sensitive substrates for this degradative process, such as the chimeric integral membrane proteins, Tac-TCR alpha and Tac-TCR beta. By immunofluorescence microscopy, these proteins were found to be localized to the ER. Treatment with cycloheximide resulted in the progressive disappearance of intracellular staining without change in the ER localization of the chimeric proteins. Cells permeabilized with the pore-forming toxin streptolysin O were able to degrade these newly synthesized proteins. The protein degradation seen in permeabilized cells was representative of that seen in intact cells, as judged by the similar speed of degradation, substrate selectivity, temperature dependence, and involvement of free sulfhydryl groups. Degradation of these proteins in permeabilized cells took place in the absence of transport between the ER and the Golgi system. Moreover, degradation occurred in the absence of added ATP or cytosol, and in the presence of apyrase, GTP gamma S, or EDTA; i.e., under conditions which prevent transport of proteins out of the ER. The efficiency and selectivity of degradation of newly synthesized proteins were also conserved in an isolated ER fraction. These data indicate that the machinery responsible for pre-Golgi degradation of newly synthesized proteins exists within the ER itself, and can operate

  2. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 -•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 -• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  3. Effect of three commercial mouth rinses on cultured human gingival fibroblast: an in vitro study.

    PubMed

    Flemingson; Emmadi, Pamela; Ambalavanan, N; Ramakrishnan, T; Vijayalakshmi, R

    2008-01-01

    To examine the effect of three commercial mouth rinses (Hexidine 0.2%, Listerine Cool Mint, Betadine 1%) upon cultured human gingival fibroblast proliferation. Human gingival fibroblasts were cultured and incubated in Dulbecco's Minimum Eagle's Medium containing Chlorhexidine, Listerine, Povidone-Iodine at varying concentrations (1%, 2%, 5%, 10%, 20% and 100% of the given solution) at 37 degrees C for 1, 5 and 15 min. Control cells received an equal volume of Dulbecco's Minimum Eagle's Medium without adding mouth rinses, for similar duration of exposure at 37 degrees C. Following incubation the media were removed, cells were washed twice with medium, supplemented with 10% Fetal Bovine Serum, and fibroblasts in the test and control group were allowed to recover in the same media for 24 h. In all the three groups, the proliferation inhibition was dependent on the concentration of solublized mouth rinses in the cell culture but independent of the duration of exposure to all three mouth rinses. The results showed that all three solutions were toxic to cultured human gingival fibroblasts, Chlorhexidine being the most cytotoxic. It was seen that at dilute concentrations (1% and 2% of given solutions) Listerine was more cytotoxic than Chlorhexidine and Povidone-Iodine. These results suggest that Chlorhexidine, Listerine and Povidone-Iodine are capable of inducing a dose-dependent reduction in cellular proliferation of fibroblasts. The results presented are interesting, but to know the clinical significance, further studies are needed.

  4. Effects of whole cigarette smoke on human gingival fibroblast adhesion, growth, and migration.

    PubMed

    Semlali, Abdelhabib; Chakir, Jamila; Rouabhia, Mahmoud

    2011-01-01

    The aim of this study was to investigate the effects of a single exposure to whole cigarette smoke on human gingival fibroblast behavior. Normal oral mucosa fibroblasts were exposed once to whole cigarette smoke for 5, 15, or 30 min, and then were used to analyze cell adhesion, β1-integrin expression, cell growth and viability, cell capacity to contract collagen gel, and cell migration following wound infliction. Our findings showed that when gingival fibroblasts were exposed once to whole cigarette smoke, this resulted in a significant inhibition of cell adhesion, a decrease in the number of β1-integrin-positive cells, increased LDH activity in the target cells, and reduced growth. The smoke-exposed fibroblasts were also not able to contract collagen gel matrix and migrate following insult. Overall results demonstrate that a single exposure to whole cigarette smoke produced significant morphological and functional deregulation in gingival fibroblasts. This may explain the higher predisposition of tobacco users to oral infections and diseases such as cancer.

  5. Protective effect of oat bran extracts on human dermal fibroblast injury induced by hydrogen peroxide.

    PubMed

    Feng, Bing; Ma, Lai-ji; Yao, Jin-jing; Fang, Yun; Mei, Yan-ai; Wei, Shao-min

    2013-02-01

    Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on the investigation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide (H(2)O(2)). Kjeldahl determination, phenol-sulfuric acid method, and high-performance liquid chromatography (HPLC) analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%, of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da. Assays for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity indicate that oat peptide-rich extract has a direct and concentration-dependent antioxidant activity. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay for apoptosis showed that administration of H(2)O(2) in human dermal fibroblasts caused cell damage and apoptosis. Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H(2)O(2), but application oat peptides with H(2)O(2) at same time did not. Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H(2)O(2)-induced decrease of superoxide dismutase (SOD) and the inhibition of malondialdehyde (MDA). The results demonstrate that oat peptides possess antioxidant activity and are effective against H(2)O(2)-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level. Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.

  6. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    PubMed

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p < 0.001). OCT and BET showed less influence on cell metabolism in fibroblasts than other MRs. OCT also demonstrated comparable but not significant results in epithelial cells (p > 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p < 0.005). OCT and BET showed the best results for viability in fibroblasts (p > 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  7. An investigation into the effect of amphiphilic siloxane oligomers on dermal fibroblasts.

    PubMed

    Farrugia, Brooke L; Keddie, Daniel J; George, Graeme A; Lynam, Emily C; Brook, Michael A; Upton, Zee; Dargaville, Tim R

    2012-07-01

    This study investigates the effect of well-defined poly(dimethylsiloxane)-poly(ethylene glycol) (PDMS-PEG) ABA linear block co-oligomers on the proliferation of human dermal fibroblasts. The co-oligomers assessed ranged in molecular weight (MW) from 1335 to 5208 Da and hydrophilic-lipophilic balance (HLB) from 5.9 to 16.6 by varying the number of both PDMS and PEG units. In general, it was found that co-oligomers of low MW or intermediate hydrophilicity significantly reduced fibroblast proliferation. A linear relationship between down-regulation of fibroblast proliferation, and the ratio HLB/MW was observed at concentrations of 0.1 and 1.0 wt % of the oligomers. This enabled the structures with highest efficiency to be determined. These results suggest the possible use of the PEG-PDMS-PEG block co-oligomers as an alternative to silicone gels for hypertrophic scar remediation.

  8. Effect of Concentrated Fibroblast-Conditioned Media on In Vitro Maintenance of Rat Primary Hepatocyte.

    PubMed

    Jeong, Dayeong; Han, Chungmin; Kang, Inhye; Park, Hyun Taek; Kim, Jiyoon; Ryu, Hayoung; Gho, Yong Song; Park, Jaesung

    2016-01-01

    The effects of concentrated fibroblast-conditioned media were tested to determine whether hepatocyte function can be maintained without direct contact between hepatocytes and fibroblasts. Primary rat hepatocytes cultured with a concentrated conditioned media of NIH-3T3 J2 cell line (final concentration of 55 mg/ml) showed significantly improved survival and functions (albumin and urea) compared to those of control groups. They also showed higher expression levels of mRNA, albumin and tyrosine aminotransferase compared to hepatocyte monoculture. The results suggest that culture with concentrated fibroblast-conditioned media could be an easy method for in vitro maintenance of primary hepatocytes. They also could be contribute to understand and analyze co-culture condition of hepatocyte with stroma cells.

  9. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro.

    PubMed

    Trylcova, Jana; Busek, Petr; Smetana, Karel; Balaziova, Eva; Dvorankova, Barbora; Mifkova, Alzbeta; Sedo, Aleksi

    2015-08-01

    Cancer-associated fibroblasts (CAFs) significantly influence biological properties of many tumors. The role of these mesenchymal cells is also anticipated in human gliomas. To evaluate the putative role of CAFs in glioblastoma, we tested the effect of CAF conditioned media on the proliferation and chemotaxis of glioma cells. The proliferation of glioma cells was stimulated to similar extent by both the normal fibroblasts (NFs) and CAF-conditioned media. Nevertheless, CAF-conditioned media enhanced the chemotactic migration of glioma cells significantly more potently than the media from normal fibroblasts. In order to determine whether CAF-like cells are present in human glioblastomas, immunofluorescence staining was performed on tissue samples from 20 patients using markers typical for CAFs. This analysis revealed regular presence of mesenchymal cells expressing characteristic CAF markers α-smooth muscle actin and TE-7 in human glioblastomas. These observations indicate the potential role of CAF-like cells in glioblastoma biology.

  10. [Effects of gasoline on syntheses of DNA, protein and sebum in keratinocyte and fibroblast].

    PubMed

    Jia, Xiaodong; Xiao, Ping; Jin, Xipeng; Shen, Guangzu; Jin, Taiyi

    2002-07-01

    To study the cellular and molecular mechanism of gasoline-induced adverse effects on skin, particularly on keratinocyte and fibroblast in vitro. The primary cell culture of keratinocyte and fibroblast were treated with 0, 0.001%, 0.01%, 0.1% and 1.0% gasoline, respectively. (3)H-thymidine ((3)H-TdR), (3)H-leucine ((3)H-Leu), (3)H-proline ((3)H-Pro) and (14)C-linoleic acid incorporation tests were applied to elucidate their capacity of synthesizing DNA, protein and sebum. The incorporation of (3)H-TdR in keratinocyte and (3)H-TdR and (3)H-Pro in fibroblast inhibited significantly after exposure to 0.01% gasoline (P < 0.05), with inhibition rates 68.5%, 45.1% and 40.6% for (3)H-TdR in keratinocyte, and (3)H-TdR and (3)H-Pro in fibroblast, respectively. Significant depression in incorporation of (3)H-Leu and (14)C-linoleic acid in keratinocyte were found even in the group treated with 0.001% gasoline (P < 0.05), with inhibition rates of 20.2% and 41.2%, respectively. Solvent gasoline has certain toxic effect on keratinocyte and fibroblast, intervening their normal metabolic and physiological process and affecting their ability of synthesizing DNA, protein and sebum, and their physiological functions, which could be one of the mechanisms causing skin damage by gasoline. The results also indicated that keratinocyte was more susceptible to gasoline than fibroblast.

  11. The effects of levofloxacin on rabbit fibroblast-like synoviocytes in vitro

    SciTech Connect

    Tan, Yang; Lu, Kaihang; Deng, Yu; Cao, Hong; Chen, Biao; Wang, Hui; Magdalou, Jacques; Chen, Liaobin

    2012-12-01

    It is widely accepted that tendon and cartilage are adversely affected with the toxic effects of quinolones. However, the effects of quinolones on synovium have not been deciphered completely. In this study, our main objective was to investigate the effects of levofloxacin, a typical quinolone antibiotic drug, on fibroblast-like synoviocytes (FLSs) in vitro. FLSs of rabbits were treated with levofloxacin at different concentrations (0, 14, 28, 56, 112 and 224 μM). The possible cytotoxic effects of levofloxacin on FLS were determined. Levofloxacin significantly reduced the cell viabilities, gene expression of hyaluronan synthase-2 (HAS-2), and the level of hyaluronan in FLSs. Moreover, levofloxacin-induced concentration-dependent increases of apoptosis and active caspase-3 were determined in this study. Ultrastructural damages of FLSs were observed by electron microscopy. The mRNA expression levels of matrix metalloproteinase (MMP)-3 and MMP-13 were increased in FLSs treated with levofloxacin. In addition, levofloxacin played a role in suppressing the expression of interleukin (IL)-1 and IL-6. Our data suggest that the cytotoxic effects of levofloxacin on FLS were shown to be able to affect cell viability and HA synthesis capacity. The potential mechanisms of the cytotoxic effects may be attributed to the apoptosis and increased expression of MMPs. -- Highlights: ► Levofloxacin decreases hyaluronic acid synthesis in fibroblast-like synoviocytes. ► Levofloxacin exerts pro-apoptosis effects on fibroblast-like synoviocytes. ► Levofloxacin increases gene expression of MMPs in fibroblast-like synoviocytes. ► Levofloxacin exerts anti-inflammatory effects on fibroblast-like synoviocytes.

  12. Effects of alkaline treatment for fibroblastic adhesion on titanium

    PubMed Central

    Cuellar-Flores, Miryam; Acosta-Torres, Laura Susana; Martínez-Alvarez, Omar; Sánchez-Trocino, Benjamin; de la Fuente-Hernández, Javier; Garcia-Garduño, Rigoberto; Garcia-Contreras, Rene

    2016-01-01

    Background: The surface energy of titanium (Ti) implants is very important when determining hydrophilicity or hydrophobicity, which is vital in osseointegration. The purpose of this study was to determine how Ti plates with an alkaline treatment (NaOH) affect the adhesion and proliferation of human periodontal ligament fibroblasts (HPLF). Materials and Methods: In vitro experimental study was carried out. Type 1 commercially pure Ti plates were analyzed with atomic force microscopy to evaluate surface roughness. The plates were treated ultrasonically with NaOH at 5 M (pH 13.7) for 45 s. HPLF previously established from periodontal tissue was inoculated on the treated Ti plates. The adhered and proliferated viable cell numbers were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method for 60 min and 24 h, respectively. The data were analyzed using Kruskal–Wallis tests and multiple comparisons of the Mann–Whitney U-test,P value was fixed at 0.05. Results: The mean roughness values equaled 0.04 μm with an almost flat surface and some grooves. The alkaline treatment of Ti plates caused significantly (P < 0.05) more pronounced HPLF adhesion and proliferation compared to untreated Ti plates. Conclusion: The treatment of Ti plates with NaOH enhances cell adhesion and the proliferation of HPLF cells. Clinically, the alkaline treatment of Ti-based implants could be an option to improve and accelerate osseointegration. PMID:28182066

  13. Effect of roughness of zirconia and titanium on fibroblast adhesion.

    PubMed

    Takamori, Esther Rieko; Cruz, Renato; Gonçalvez, Fábio; Zanetti, Raquel Virgínia; Zanetti, Artemio; Granjeiro, José Mauro

    2008-04-01

    The aim of this study was to investigate the adhesion (4 and 24 h) and the morphology of fibroblast Balb/c 3T3 seeded onto polystyrene, partially stabilized (ZrO(2)Y(2)O(3)), stabilized zirconia ceramic (3YTZP), and pure titanium (Ti, grade 2). Initial cell adhesion (4 h) was greater (P < 0.05, analysis of variance and Tukey's Multiple Comparisons Test) onto ZrO(2)Y(2)O(3) and polystyrene than in Ti and 3YTZ. After 24 h, the number of adhered cells was similar between the biomaterials tested, but smaller than onto polystyrene (P < 0.05). Cells were more spread onto glass surface after 4 h, but after 24 h, the morphology and density of the cells were similar in all groups (SEM). Profilometry showed distinct Ra values for each material: glass coverslips and ZrO(2)Y(2)O(3) (0.09 microm), Ti (0.88 microm), and 3YTZP (30.93 microm). It was concluded that ZrO(2)Y(2)O(3) promoted the best initial adhesion, thus indicating that surfaces with Ra values smaller than 0.1 microm could be more favorable to initial adhesion.

  14. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  15. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  16. Long-term effect of platelet lysate on primary fibroblasts highlighted with a proteomic approach.

    PubMed

    Cipriani, Valentina; Ranzato, Elia; Balbo, Valeria; Mazzucco, Laura; Cavaletto, Maria; Patrone, Mauro

    2009-10-01

    The use of platelets and platelet derivatives has acquired clinical relevance as a means of accelerating wound healing. Platelet beneficial effect is attributed to the release of growth factors and other bioactive substances able to regulate cellular activities. The purpose of this study was to evaluate the biological effects of platelet lysate (PL) on human primary skin fibroblasts. We studied cell viability, MAPK signalling and proteomic profile of fibroblasts exposed to a platelet lysate (PL) obtained from blood sample. Crystal violet and neutral red uptake assays showed the dose-response effects of PL on cell viability and metabolism at 3 and 6 days of exposure. Western blot demonstrated a more sustained activation of p38 than of ERK1/2. A proteomic approach was applied to identify soluble cellular components in primary fibroblasts that are differentially expressed in response to PL exposure. Protein identification was performed by mass spectrometry. The data demonstrate that human fibroblasts respond to PL exposure by modifying a number of proteins, related principally to stress response, metabolism and the cytoskeleton.

  17. Fibroblasts Protect Melanoma Cells from the Cytotoxic Effects of Doxorubicin

    PubMed Central

    Tiago, Manoela; de Oliveira, Edson Mendes; Brohem, Carla Abdo; Pennacchi, Paula Comune; Paes, Rafael Duarte; Haga, Raquel Brandão; Campa, Ana; de Moraes Barros, Silvia Berlanga; Smalley, Keiran S.

    2014-01-01

    Melanoma is the most aggressive form of skin cancer and until recently, it was extremely resistant to radio-, immuno-, and chemotherapy. Despite the latest success of BRAF V600E-targeted therapies, responses are typically short lived and relapse is all but certain. Furthermore, a percentage (40%) of melanoma cells is BRAF wild type. Emerging evidence suggests a role for normal host cells in the occurrence of drug resistance. In the current study, we compared a variety of cell culture models with an organotypic incomplete skin culture model (the “dermal equivalent”) to investigate the role of the tissue microenvironment in the response of melanoma cells to the chemotherapeutic agent doxorubicin (Dox). In the dermal equivalent model, consisting of fibroblasts embedded in type I collagen matrix, melanoma cells showed a decreased cytotoxic response when compared with less complex culture conditions, such as seeding on plastic cell culture plate (as monolayers cultures) or on collagen gel. We further investigated the role of the microenvironment in p53 induction and caspase 3 and 9 cleavage. Melanoma cell lines cultured on dermal equivalent showed decreased expression of p53 after Dox treatment, and this outcome was accompanied by induction of interleukin IL-6, IL-8, and matrix metalloproteinases 2 and 9. Here, we show that the growth of melanoma cells in the dermal equivalent model inflects drug responses by recapitulating important pro-survival features of the tumor microenvironment. These studies indicate that the presence of stroma enhances the drug resistance of melanoma in vitro, more closely mirroring the in vivo phenotype. Our data, thus, demonstrate the utility of organotypic cell culture models in providing essential context-dependent information critical for the development of new therapeutic strategies for melanoma. We believe that the organotypic model represents an improved screening platform to investigate novel anti-cancer agents, as it provides

  18. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.

    PubMed

    Varkey, Mathew; Ding, Jie; Tredget, Edward E

    2014-12-01

    Fibrosis affects most organs, it results in replacement of normal parenchymal tissue with collagen-rich extracellular matrix, which compromises tissue architecture and ultimately causes loss of function of the affected organ. Biochemical pathways that contribute to fibrosis have been extensively studied, but the role of biomechanical signaling in fibrosis is not clearly understood. In this study, we assessed the effect keratinocytes have on the biomechanical characteristics and pore microstructure of tissue engineered skin made with superficial or deep dermal fibroblasts in order to determine any biomaterial-mediated anti-fibrotic influences on tissue engineered skin. Tissue engineered skin with deep dermal fibroblasts and keratinocytes were found to be less stiff and contracted and had reduced number of myofibroblasts and lower expression of matrix crosslinking factors compared to matrices with deep fibroblasts alone. However, there were no such differences between tissue engineered skin with superficial fibroblasts and keratinocytes and matrices with superficial fibroblasts alone. Also, tissue engineered skin with deep fibroblasts and keratinocytes had smaller pores compared to those with superficial fibroblasts and keratinocytes; pore size of tissue engineered skin with deep fibroblasts and keratinocytes were not different from those matrices with deep fibroblasts alone. A better understanding of biomechanical characteristics and pore microstructure of tissue engineered skin may prove beneficial in promoting normal wound healing over pathologic healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. On-chip constructive cell-network study (I): contribution of cardiac fibroblasts to cardiomyocyte beating synchronization and community effect.

    PubMed

    Kaneko, Tomoyuki; Nomura, Fumimasa; Yasuda, Kenji

    2011-05-23

    To clarify the role of cardiac fibroblasts in beating synchronization, we have made simple lined-up cardiomyocyte-fibroblast network model in an on-chip single-cell-based cultivation system. The synchronization phenomenon of two cardiomyocyte networks connected by fibroblasts showed (1) propagation velocity of electrophysiological signals decreased a magnitude depending on the increasing number of fibroblasts, not the lengths of fibroblasts; (2) fluctuation of interbeat intervals of the synchronized two cardiomyocyte network connected by fibroblasts did not always decreased, and was opposite from homogeneous cardiomyocyte networks; and (3) the synchronized cardiomyocytes connected by fibroblasts sometimes loses their synchronized condition and recovered to synchronized condition, in which the length of asynchronized period was shorter less than 30 beats and was independent to their cultivation time, whereas the length of synchronized period increased according to cultivation time. The results indicated that fibroblasts can connect cardiomyocytes electrically but do not significantly enhance and contribute to beating interval stability and synchronization. This might also mean that an increase in the number of fibroblasts in heart tissue reduces the cardiomyocyte 'community effect', which enhances synchronization and stability of their beating rhythms.

  20. Effects of Mechanical Stretching on the Morphology and Cytoskeleton of Vaginal Fibroblasts from Women with Pelvic Organ Prolapse

    PubMed Central

    Wang, Sumei; Zhang, Zhenyu; Lü, Dongyuan; Xu, Qiuxiang

    2015-01-01

    Mechanical load and postmenopausal hypoestrogen are risk factors for pelvic organ prolapse (POP). In this study, we applied a 0.1-Hz uniaxial cyclic mechanical stretching (CS) with 10% elongation and 10−8 M 17-β-estradiol to vaginal fibroblasts isolated from postmenopausal women with or without POP to investigate the effects of CS and estrogen on cell morphology and cytoskeletons of normal and POP fibroblasts. Under static culture condition, POP fibroblasts exhibited lower cell circularity and higher relative fluorescence intensities (RFIs) of F-actin, α-tubulin and vimentin. When cultured with CS, all fibroblasts grew perpendicular to the force and exhibited a decreased cell projection area, cell circularity and increased cell length/width ratio; normal fibroblasts exhibited increased RFIs of all three types of cytoskeleton, and POP fibroblasts exhibited a decreased RFI of F-actin and no significant differences of α-tubulin and vimentin. After being cultured with 17-β-estradiol and CS, normal fibroblasts no longer exhibited significant changes in the cell projection area and the RFIs of F-actin and α-tubulin; POP fibroblasts exhibited no significant changes in cell circularity, length/width ratio and F-actin even with the increased RFIs of α-tubulin and vimentin. These findings suggest that POP fibroblasts have greater sensitivity to and lower tolerance for mechanical stretching, and estrogen can improve the prognosis. PMID:25923074

  1. Effect of a volatile smoke component (acrolein) on human gingival fibroblasts: An in vitro study

    PubMed Central

    Anand, Nithya; Emmadi, Pamela; Ambalavanan, N.; Ramakrishnan, T.

    2011-01-01

    Aim: Tobacco and some of its volatile and non-volatile components have been found to affect many types of cells including human gingival fibroblasts. The aim of this present study was to estimate the effect of acrolein, a volatile fraction of cigarette smoke on the attachment, proliferation and ultra structure of human gingival fibroblasts in culture. Materials and Methods: Human gingival fibroblasts strains obtained from healthy subjects aged 20-30 years, were grown to confluency and utilized between 3rd -6th passages. The cell cultures seeded in 96 well microtitration plates at a density of 45,000 cells/well were incubated with acrolein at concentrations of 10-4, 3×10-5 and 10-5 . Attachment ability was evaluated after three hours using Neubauer hemocytometer. For the proliferation assay cell cultures seeded at a density of 10,000 cells/well were incubated at concentrations of 10-4, 3×10-5, 10-5, 3×10-6, 10-6 and cell count determined after 5 days using a hemocytometer. Cell morphology was examined under phase contrast microscope. Results: Acrolein produced a dose-dependent cytotoxic effect on human gingival fibroblasts with complete inhibition of attachment and proliferation at higher concentrations. Conclusion: This supports the hypothesis that cigarette smoke is a great risk factor in the development and progression of periodontal disease. PMID:22368362

  2. Effect of corrosion products (neodymium iron boron) on oral fibroblast proliferation.

    PubMed

    Evans, R D; McDonald, F

    1995-01-01

    The biological effects of the corrosion products of neodymium iron boron (Nd2Fe14B) magnets are largely unknown. The aim of this study was to identify the types of corrosion product and to evaluate the effect of the corrosion products (CP) of Nd2Fe14B magnets on the proliferation of human oral mucosal fibroblasts. Uncoated Nd2Fe14B magnets were stored in saline at 37 degrees C for 6 months and the corrosion products collected. 100 microL of a cell suspension (human oral mucosal fibroblasts [14 x 10(4) cells/mL]) was aliquoted into 72 wells of a 96-well plate, the remaining plates receiving culture medium only. After 12 h incubation at 37 degrees C, each well then received 100 microL of either (A) culture medium, (B) 100% CP, (C) 50% CP, or (D) 0% CP. The plates were reincubated at 37 degrees C for a further 48, 96, or 144 h. Fibroblast proliferation was assessed using the methylene blue uptake/elution technique. The compounds in the corrosion product were examined using quantitative X-ray analysis. Statistical analysis (ANOVA, Bonferroni's test 0.05, SAS v 6.04), showed that at each time point, the cell numbers in groups B, C, and D were significantly lower than group A. Within groups B, C, and D no significant differences were found, despite the suggestion of a dose response effect. Fibroblast proliferation in the presence of corrosion products was significantly lower than with culture medium. Fibroblast proliferation did occur in the presence of 0, 50, and 100% CP. The actual corrosion products appeared to be salts of iron but 3.2% (+/- 0.6) of neodymium chloride (NdCl3) was found.

  3. Antifibrotic effect by activation of peroxisome proliferator-activated receptor-gamma in corneal fibroblasts.

    PubMed

    Pan, Hongwei; Chen, Jiansu; Xu, Jintang; Chen, Miaojiao; Ma, Rong

    2009-11-10

    The transformation of quiescent keratocytes to active phenotypes and the ensuing fibrotic response play important roles in corneal scar formation. This study aims to observe the antifibrotic effect of peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist on corneal fibroblasts cultured in vitro, and to explore the potential application of peroxisome proliferator-activated receptor agonist to the prevention of corneal opacity following wound repair. Rabbit corneal keratocytes were cultured in a medium containing 10% serum to induce their transformation to fibroblasts and myofibroblasts, which are similar to those that repair corneas. After incubation with the PPARgamma agonist pioglitazone at different concentrations, the effect of pioglitazone on the migration, contractility, and viability of corneal fibroblasts was examined. The secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 was determined by gelatin zymography, and the synthesis of collagen I and fibronectin was investigated by western blotting. Treatment with pioglitazone at concentrations ranging from 1 to 10 mum significantly decreased corneal fibroblast migration, as determined by scrape-wound assay, inhibited corneal fibroblast-induced collagen lattice contraction, and reduced MMP-2 and MMP-9 secretion into the supernatant of cell cultures in a dose-dependent manner. The expression of fibronectin was significantly decreased, while the expression of collagen I was only decreased when treated with 10 mum pioglitazone. Cell viability was not evidently changed compared to the control. This in vitro study demonstrated the anti-fibrotic effect of pioglitazone, suggesting that activation of PPARgamma may be a new approach for the treatment of corneal opacity and scar formation in the corneal wound healing process.

  4. Effects of basic fibroblast growth factor on density and morphology of fibroblasts grown on root surfaces with or without conditioning with tetracycline or EDTA.

    PubMed

    Silvério, Karina G; Martinez, Aurora E T; Rossa, Carlos

    2007-09-01

    A study was conducted to evaluate in vitro the effect of root surface conditioning with basic fibroblast growth factor (b-FGF) on morphology and proliferation of fibroblasts. Three experimental groups were used: non-treated, and treated with 50 microg or 125 microg b-FGF/ml. The dentin samples in each group were divided into subgroups according to the chemical treatment received before application of b-FGF: none, or conditioned with tetracycline-HCl or EDTA. After contact with b-FGF for 5 min, the samples were incubated for 24 h with 1 ml of culture medium containing 1 x 10(5) cells/ml plus 1 ml of culture medium alone. The samples were then subjected to routine preparation for SEM, and random fields were photographed. Three calibrated and blind examiners performed the assessment of morphology and density according to two index systems. Classification and regression trees indicated that the root surfaces treated with 125 microg b-FGF and previously conditioned with tetracycline-HCl or EDTA presented a morphology more suggestive of cellular adhesion and viability (P = 0.004). The density of fibroblasts on samples previously conditioned with EDTA, regardless of treatment with b-FGF, was significantly higher than in the other groups (P < 0.001). The present findings suggest that topical application of b-FGF has a positive influence on both the density and morphology of fibroblasts.

  5. The effectiveness of potent dental adhesives on the viability of LPS challenged human gingival fibroblasts.

    PubMed

    Garner, Angelia D; Tucci, Michelle A; Benghuzzi, Hamed A

    2014-01-01

    Dental adhesives are necessary for the retention of specific dental restorations utilized to repair the anatomy of the tooth after dental decay is removed. Adhesives come into contact with healthy and diseased periodontal tissues. Porphyromonas gingivalis is a gram negative bacterial pathogen, and lipopolysaccharide (LPS-PG) is an endotoxin found in gingival connective tissues of patients who suffer from periodontal disease. The presence of the endotoxin causes inflammation. This study aims to evaluate the effectiveness of potent dental adhesives when human gingival fibroblasts are challenged with LPS-PG. The fibroblasts were exposed to the dental adhesives polymethly methacrylate (PMMA), OptiBond®, and Prime & Bond® which were purchased from Patterson Dental, a national dental materials supplier. The human gingival fibroblasts (HGF-1, ATCC® CRL-2014™) were purchased from American Type Culture Collection (ATCC). The porphyromonas gingival lipopolysaccharide (LPS-PG) was purchased from Fisher Scientific (Pittsburg, PA). No significant differences in metabolic behavior was detected among the groups (p<0.132). While the glutathione assay determined that there was not any significant increase in oxidative stress levels; the lactate dehydrogenase assay identified significant cellular damage in the group exposed to combinations of the Prime & Bond® adhesives and LPS-PG at 48 hour intervals (p<0.003). No significant changes were noted in cellular morphology at any phases, and all cells demonstrated typical fibroblast spindle shape.

  6. Investigation of the effects of Chinese medicine on fibroblast viability: implications in wound healing.

    PubMed

    Lau, T W; Chan, Y W; Lau, C P; Chan, C M; Lau, C B S; Fung, K P; Leung, P C; Ho, Y Y

    2007-10-01

    Diabetes mellitus has been a clinical problem for hundreds of years. Over 194 million people suffer from this disease worldwide. Improper control of diabetes may result in diabetic foot ulcer or even amputation. Granulation formation is an important issue essential for ulcer healing. The CRL-7522 fibroblast cell line and primary fibroblasts from a diabetic foot ulcer patient were used to model the wound healing enhancing activities of two clinically efficacious Chinese herbal formulae, Formula 1 (F1) and Formula 2 (F2) and their component herbs. Results showed that the two formulae and four of their component herbs, Radix Astragali, Radix Rehmanniae, Rhizoma Alismatis and Rhizoma Atractylodis Macrocephalae significantly enhanced CRL-7522 cell viability. However, these component herbs showed compromised effects on the viability of primary fibroblasts cultured from the ulcerous tissue of a diabetic patient. Interestingly, F1 and F2 enhanced the viability of primary cultured fibroblasts from the diabetic patient even in the face of insulin resistance. These results further support the previously reported clinical efficacies of the two formulae on healing diabetic foot ulcers.

  7. Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts.

    PubMed

    Hawkins, D; Abrahamse, H

    2005-06-01

    This study aimed to investigate a number of structural, cellular, and molecular responses to heliumneon (632.8 nm) laser irradiation following a single dose of 0.5, 2.5, 5, or 10 J/cm2 on normal and wounded human skin fibroblasts. Low-level laser therapy (LLLT) is a form of phototherapy, involving the application of low-power monochromatic and coherent light to injuries and lesions to stimulate healing. 1 This therapy has been successfully used for pain attenuation and to induce wound healing in nonhealing defects. Changes in normal and wounded fibroblast cell morphology were evaluated by light microscopy. Cellular parameters evaluated cell proliferation, cell viability, and cytotoxicity while molecular parameters assessed the extent of DNA damage. The results clearly demonstrate that LLLT has an effect on normal and wounded(3) human skin fibroblasts. The parameters showed that doses of 0.5, 2.5, 5, and 10 J/cm2 were sufficient to produce measurable changes in fibroblast cells. A dose of 10 J/cm2 appeared to produce a significant amount of cellular and molecular damage, which could be an important consideration for other therapies, such as photodynamic therapy.

  8. The reversible Ca2+-induced permeabilization of rat liver mitochondria.

    PubMed Central

    Al-Nasser, I; Crompton, M

    1986-01-01

    Rat liver mitochondria became permeabilized to sucrose according to an apparent first-order process after accumulating 35 nmol of Ca2+/mg of protein in the presence of 2.5 mM-Pi, but not in its absence. A fraction (24-32%) of the internal space remains sucrose-inaccessible. The rate constant for permeabilization to sucrose decreases slightly when the pH is decreased from 7.5 to 6.5, whereas the rate of inner-membrane potential (delta psi) dissipation is markedly increased, which indicates that H+ permeation precedes sucrose permeation. Permeabilization does not release mitochondrial proteins. [14C]Sucrose appears to enter permeabilized mitochondria instantaneously. Chelation of Ca2+ with EGTA restores delta psi and entraps sucrose in the matrix space. With 20 mM-sucrose at the instant of resealing, about 21 nmol of sucrose/mg of protein becomes entrapped. The amount of sucrose entrapped is proportional to the degree of permeabilization. Entrapped sucrose is not removed by dilution of the mitochondrial suspension. Resealed mitochondria washed three times retain about 74% of the entrapped sucrose. In the presence of Ruthenium Red and Ca2+ buffers permeabilized mitochondria reseal only partially with free [Ca2+] greater than 3 microM. [14C]Sucrose enters partially resealed mitochondria continuously with time, despite maintenance of delta psi, in accordance with continued interconversion of permeable and impermeable forms. Kinetic analyses of [14C]sucrose entry indicate two Ca2+-sensitive reactions in permeabilization. This conclusion is supported by the biphasic time courses of resealing and repolarization of permeabilized mitochondria and the acute dependence of the rapid repolarization on the free [Ca2+]. A hypothetical model of permeabilization and resealing is suggested and the potential of the procedure for matrix entrapment of substances is discussed. PMID:3099778

  9. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts.

    PubMed

    Belvedere, Raffaella; Bizzarro, Valentina; Parente, Luca; Petrella, Francesco; Petrella, Antonello

    2017-08-10

    Prisma® Skin is a new pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. It includes alginates, hyaluronic acid and mainly mesoglycan. The latter is a natural glycosaminoglycan preparation containing chondroitin sulfate, dermatan sulfate, heparan sulfate and heparin and it is used in the treatment of vascular disease. Glycosaminoglycans may contribute to the re-epithelialization in the skin wound healing, as components of the extracellular matrix. Here we describe, for the first time, the effects of Prisma® Skin in in vitro cultures of adult epidermal keratinocytes and dermal fibroblasts. Once confirmed the lack of cytotoxicity by mesoglycan and Prisma® Skin, we have shown the increase of S and G2 phases of fibroblasts cell cycle distribution. We further report the strong induction of cell migration rate and invasion capability on both cell lines, two key processes of wound repair. In support of these results, we found significant cytoskeletal reorganization, following the treatments with mesoglycan and Prisma® Skin, as confirmed by the formation of F-actin stress fibers. Additionally, together with a significant reduction of E-cadherin, keratinocytes showed an increase of CD44 expression and the translocation of ezrin to the plasma membrane, suggesting the involvement of CD44/ERM (ezrin-radixin-moesin) pathway in the induction of the analyzed processes. Furthermore, as showed by immunofluorescence assay, fibroblasts treated with mesoglycan and Prisma® Skin exhibited the increase of Fibroblast Activated Protein α and a remarkable change in shape and orientation, two common features of reactive stromal fibroblasts. In all experiments Prisma® Skin was slightly more potent than mesoglycan. In conclusion, based on these findings we suggest that Prisma® Skin may be able to accelerate the healing process in venous skin ulcers, principally enhancing re-epithelialization and granulation processes.

  10. Effect of Emdogain on human periodontal fibroblasts in an in vitro wound-healing model.

    PubMed

    Rincon, J C; Haase, H R; Bartold, P M

    2003-06-01

    The aim of this study was to evaluate the influence of Emdogain (EMD) on cultured gingival fibroblasts, periodontal ligament fibroblasts and dermal fibroblasts, using an in vitro model of wound healing. Enamel matrix derivative has been demonstrated to promote periodontal regeneration. However, the precise mechanisms by which this agent acts are still unclear. The effect of EMD on proliferation of the cells was studied using subconfluent cultures of gingival fibroblasts and periodontal ligament fibroblasts. The cells were made quiescent overnight and then stimulated with various concentrations of EMD (10, 50, 100 and 150 microg/ml) for 24 h. Negative and positive controls were cells cultured in media containing 0.2% and 10% fetal calf serum (FCS). The DNA synthesis was measured by the cellular uptake of [3H]thymidine. For in vitro wounding the cells were cultured, wounded and stimulated with 0.2% FCS, 10% FCS and EMD at a concentration of 20 microg/ml. The percentage of wound fill after treatment was measured after d 1, 4, 6, 12 and 16. The proliferation of cells was also calculated by the extent of incorporation of crystal violet. The results demonstrated that cells in vitro fill an empty space by a combination of proliferation and cell migration. The most rapid closure of a wound area occurred where both proliferation and migration can occur as was seen when wounded cultures were maintained in 10% FCS or at a concentration of 20 microg/ml EMD which promoted proliferation. Therefore, EMD appears to exert an influence on cells that is compatible with improved wound healing.

  11. Novel Therapy To Reverse The Cellular Effects of Bisphosphonates on Primary Human Oral Fibroblasts

    PubMed Central

    Cozin, Matthew; Pinker, Bradley M.; Solemani, Kimberley; Zuniga, Jeremy M.; Dadaian, Stephen C.; Cremers, Serge; Landesberg, Regina; Raghavan, Srikala

    2011-01-01

    Purpose Osteonecrosis of the Jaws is a clinical condition that is characterized by a non-healing breach in the oral mucosa resulting in exposure of bone and has been increasingly reported in patients receiving bisphosphonate (BP) therapy. Although the pathogenesis and natural history of ONJ remain ill defined, it appears that the oral soft tissues play a critical role in the development of this condition. In this report we examined the effects of the nitrogen-containing BPs pamidronate and zoledronate on primary human gingival fibroblasts. Materials and Methods Primary gingival fibroblasts were exposed to clinically relevant doses of pamidronate and zoledronate. Cellular proliferation was measured using a MTS/PMS reagent-based kit, scratch wound assays were performed to measure cellular migration and apoptosis was measured by using TUNEL and caspase assays. The BP exposed cells were treated with 10ng/mL recombinant human Platelet-Derived Growth Factor-BB (rhPDGF-BB, GEM21™) and 50μM geranylgeraniol (GGOH). Results Gingival fibroblasts are significantly more sensitive to inhibition of proliferation by zoledronate compared to pamidronate. Exposure of these cells to pamidronate but not zoledronate resulted in an increase in cellular apoptosis. Furthermore, exposure of gingival fibroblasts to pamidronate or zoledronate resulted in a decrease in cellular migration. We show that these defects are due to a loss of cell-substratum adhesion, and a reduction of F-actin bundles. Finally, we show that the addition of rhPDGF-BB, (GEM21™) and GGOH in vitro are able to partially rescue the cell proliferation, migration and adhesion defects. Conclusion The cytotoxic affects BPs on oral fibroblasts and its significant reversal by the addition of GGOH and rhPDGF-BB, (GEM21™) provide both the potential mechanism and treatment options for ONJ. PMID:21807448

  12. Effects of nicotine on proliferation and extracellular matrix production of human gingival fibroblasts in vitro.

    PubMed

    Tipton, D A; Dabbous, M K

    1995-12-01

    Normal function of gingival fibroblasts is essential for maintenance of the gingival extracellular matrix (ECM), but under inflammatory conditions in gingival tissue which may occur with tobacco use, they can also act in its destruction. The purpose of this study was to determine the effects of nicotine, a major component of tobacco, on gingival fibroblast proliferation, the production of fibronectin (FN), and the production and breakdown of type I collagen to elucidate its role in periodontal destruction associated with its use. A human gingival fibroblast strain derived from a healthy individual with non-inflamed gingiva was used in this study. Nicotine at concentrations > 0.075% caused cell death, and at 0.075% and 0.05% it caused transient vacuolization of the fibroblasts. At concentrations of 0.001% to 0.075%, nicotine significantly inhibited proliferation (P < or = 0.03), measured by the incorporation of [3H]-thymidine into DNA. The production of FN and type I collagen was significantly inhibited by nicotine at > or = 0.05% (P < or = 0.001), measured using specific ELISAs. On the other hand, nicotine at > or = 0.025% significantly increased collagenase activity (P < or = 0.008), using [3H]-gly and [14C]-pro-labeled type I collagen gels as substrate. The results show that, in vitro, nicotine inhibits the growth of gingival fibroblasts and their production of FN and collagen, while also promoting collagen breakdown. This suggests that nicotine itself may augment the destruction of the gingival ECM occurring during periodontal inflammation associated with smokeless tobacco use.

  13. Biological effects of glycolic acid on dermal matrix metabolism mediated by dermal fibroblasts and epidermal keratinocytes.

    PubMed

    Okano, Yuri; Abe, Yumiko; Masaki, Hitoshi; Santhanam, Uma; Ichihashi, Masamitsu; Funasaka, Yoko

    2003-01-01

    Glycolic acid (GA), one of the alpha-hydroxy acids, is widely used as an agent for chemical peeling. Although there are several reports about the clinical effects of GA in the literature, its biological mechanism remains mostly unclear, and there are only a few reports about its effects on skin rejuvenation mediated by keratinocytes. The aim of this study was to investigate the effect of GA on the dermal matrix metabolism of keratinocytes and fibroblasts using in vitro and ex vivo systems. Our study shows that GA not only directly accelerates collagen synthesis by fibroblasts, but it also modulates matrix degradation and collagen synthesis through keratinocyte-released cytokines. We confirm that IL-1alpha is one of the primary mediators for matrix degradation released from keratinocytes after GA treatment. These results suggest that GA contributes to the recovery of photodamaged skin through various actions, depending on the skin cell type.

  14. Effects of biomaterial-derived fibroblast conditioned medium on the α-amylase expression of parotid gland acinar cells.

    PubMed

    Chou, Ya-Shuan; Young, Tai-Horng; Lou, Pei-Jen

    2015-11-01

    Salivary gland cells are surrounded by a complex stromal environment, in which fibroblasts are the main cells in proximity to the gland cells. In this study, the interaction between parotid gland acinar cells (PGACs), fibroblasts, and biomaterials was investigated. We prepared different biomaterials, including chitosan, polyvinyl alcohol (PVA), poly (ethylene-co-vinyl alcohol) (EVAL), polyvinylidene fluoride (PVDF), and tissue culture polystyrene (TCPS) to culture fibroblasts and then collect their conditioned media to culture PGACs. We observed no difference in AQP3, AQP5, and E-cadherin expression among different fibroblast conditioned medium treatments. Interestingly, α-amylase expression was obviously enhanced in PGACs cultured in the presence of conditioned medium from fibroblasts cultured on PVDF. Higher neurotrophin-4 (NT-4) expression was observed in PVDF-derived fibroblast conditioned medium using a growth factor protein array assay. In addition, directly adding NT-4 into the culture medium significantly promoted α-amylase expression by PGACs. Finally, nestin and βIII-tubulin expression by fibroblasts cultured on PVDF was also enhanced. Together, these results suggest that PVDF could promote α-amylase expression by PGACs via the NT-4 produced by fibroblasts. To date, there is no effective therapy for patients with dry mouth with persistent salivary hypofunction. The study made use of different biomaterials to culture fibroblasts and then collect their conditioned media to culture PGACs. It was found that the effect of fibroblast conditioned medium from PVDF on the α-amylase expression of PGACs was obviously enhanced and higher neurotrophin-4 (NT-4) expression was found in PVDF-derived fibroblast conditioned medium. In addition, directly adding NT-4 into the culture medium significantly promoted the expression of α-amylase by PGACs and the expression of nestin and βIII-tubulin of fibroblasts after being cultured on PVDF was enhanced. Therefore, the

  15. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis.

    PubMed

    Lee, Geum-Young; Park, Kang-Gyun; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-03-01

    Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml.

  16. Cytoprotective effects of mild plasma-activated medium against oxidative stress in human skin fibroblasts

    PubMed Central

    Horiba, Minori; Kamiya, Tetsuro; Hara, Hirokazu; Adachi, Tetsuo

    2017-01-01

    Non-thermal atmospheric pressure plasma (NTAPP) has recently been applied to living cells and tissues and has emerged as a novel technology for medical applications. NTAPP affects cells not only directly, but also indirectly with previously prepared plasma-activated medium (PAM). The objective of this study was to demonstrate the preconditioning effects of “mild PAM” which was prepared under relatively mild conditions, on fibroblasts against cellular injury generated by a high dose of hydrogen peroxide (H2O2). We observed the preconditioning effects of mild PAM containing approximately 50 μM H2O2. Hydrogen peroxide needs to be the main active species in mild PAM for it to exert preconditioning effects because the addition of catalase to mild PAM eliminated these effects. The nuclear translocation and recruitment of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response elements (ARE) in heme oxygenase 1 (HO-1) promoters and the up-regulation of HO-1 were detected in fibroblasts treated with mild PAM. The addition of ZnPP, a HO-1-specific inhibitor, or the knockdown of Nrf2 completely abrogated the preconditioning effects. Our results demonstrate that mild PAM protects fibroblasts from oxidative stress by up-regulating HO-1, and the H2O2-induced activation of the Nrf2-ARE pathway needs to be involved in this reaction. PMID:28169359

  17. Th17 cells favor inflammatory responses while inhibiting type I collagen deposition by dermal fibroblasts: differential effects in healthy and systemic sclerosis fibroblasts

    PubMed Central

    2013-01-01

    Introduction T helper (Th)-17 cells are increased in systemic sclerosis (SSc). We therefore assessed whether Th17 cells could modulate the inflammatory and fibrotic responses in dermal fibroblasts from healthy donors (HD) and SSc individuals. Methods Fibroblasts were obtained from 14 SSc and 8 HD skin biopsies. Th17 clones were generated from healthy peripheral blood upon enrichment of CC chemokine receptor (CCR)-4/CCR6/CD161 expressing cells. Their cytokine production was assessed by flow cytometry and multiplex beads immunoassay. Fibroblast production of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8, matrix metalloproteinase (MMP)-1, tissue inhibitor of metalloproteinase (TIMP)-1, MMP-2 and type-I collagen was quantified by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA), and changes in their transcription levels assessed by real-time PCR. Intracellular signals were dissected by western blot and the use of pharmacological inhibitors. IL-17A, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) blocking reagents were used to assess the specificity of the observed effects. Results IL-17A increased MCP-1, IL-8 and MMP-1 production in a dose-dependent manner while having no effect on type I collagen in HD and SSc fibroblasts both at protein and mRNA levels. Nuclear factor-kappa B (NF-κB) and p38 were preferentially involved in the induction of MCP-1 and IL-8, while MMP-1 was most dependent on c-Jun N-terminal kinase (JNK). Supernatants of activated Th17 clones largely enhanced MCP-1, IL-8 and MMP-1 while strongly inhibiting collagen production. Of note, the production of MCP-1 and IL-8 was higher, while collagen inhibition was lower in SSc compared to HD fibroblasts. The Th17 clone supernatant effects were mostly dependent on additive/synergistic activities between IL-17A, TNF and in part IFN-γ. Importantly, the inhibition of type I collagen production induced by the Th17 clone supernatants was completely abrogated by

  18. Ca(2+)-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study.

    PubMed

    Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Agafonov, Alexey V; Astashev, Maxim E; Kazakov, Alexey S; Saris, Nils-Erik L; Mironova, Galina D

    2014-10-01

    In the present work, we examine and compare the effects of saturated (palmitic) and unsaturated (oleic) fatty acids in relation to their ability to cause the Ca(2+)-dependent membrane permeabilization. The results obtained can be summarized as follows. (1) Oleic acid (OA) permeabilizes liposomal membranes at much higher concentrations of Ca(2+) than palmitic acid (PA): 1mM versus 100μM respectively. (2) The OA/Ca(2+)-induced permeabilization of liposomes is not accompanied by changes in the phase state of lipid bilayer, in contrast to what is observed with PA and Ca(2+). (3) The addition of Ca(2+) to the PA-containing vesicles does not change their size; in the case of OA, it leads to the appearance of larger and smaller vesicles, with larger vesicles dominating. This can be interpreted as a result of fusion and fission of liposomes. (4) Like PA, OA is able to induce a Ca(2+)-dependent high-amplitude swelling of mitochondria, yet it requires higher concentrations of Ca(2+) (30 and 100μM for PA and OA respectively). (5) In contrast to PA, OA is unable to cause the Ca(2+)-dependent high-amplitude swelling of mitoplasts, suggesting that the cause of OA/Ca(2+)-induced permeability transition in mitochondria may be the fusion of the inner and outer mitochondrial membranes. (6) The presence of OA enhances PA/Ca(2+)-induced permeabilization of liposomes and mitochondria. The paper discusses possible mechanisms of PA/Ca(2+)- and OA/Ca(2+)-induced membrane permeabilization, the probability of these mechanisms to be realized in the cell, and their possible physiological role.

  19. Protective Effect of Strawberry Extract against Inflammatory Stress Induced in Human Dermal Fibroblasts.

    PubMed

    Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Giampieri, Francesca; Afrin, Sadia; Mezzetti, Bruno; Quiles, Josè L; Bompadre, Stefano; Battino, Maurizio

    2017-01-21

    A protracted pro-inflammatory state is a major contributing factor in the development, progression and complication of the most common chronic pathologies. Fruit and vegetables represent the main sources of dietary antioxidants and their consumption can be considered an efficient tool to counteract inflammatory states. In this context an evaluation of the protective effects of strawberry extracts on inflammatory stress induced by E. coli LPS on human dermal fibroblast cells was performed in terms of viability assays, ROS and nitrite production and biomarkers of oxidative damage of the main biological macromolecules. The results demonstrated that strawberry extracts exerted an anti-inflammatory effect on LPS-treated cells, through an increase in cell viability, and the reduction of ROS and nitrite levels, and lipid, protein and DNA damage. This work showed for the first time the potential health benefits of strawberry extract against inflammatory and oxidative stress in LPS-treated human dermal fibroblast cells.

  20. Immunomodulatory Effects of Bee Venom in Human Synovial Fibroblast Cell Line

    PubMed Central

    Mohammadi, Ebrahim; Vatanpour, Hossein; H Shirazi, Farshad

    2015-01-01

    As in Iranian traditional medicine, bee venom (BV) is a promising treatment for the rheumatoid arthritis (RA) which is considered as a problematic human chronic inflammatory disease in the present time. Smoking is considered to be a major risk factor in RA onset and severity. The main aim of this study is to investigate the effects of BV on cigarette smoke-induced inflammatory response in fibroblast-like synoviocytes (FLS). Cytotoxicity of cigarette smoke condensate (CSC) and bee venom were determined by the tetrazolium (MTT) method in cultured synovial fibroblastes. The expression of interleukin-1β and sirtuin1 mRNA were analyzed by SYBR green real-time quantitative PCR. Differences between the mean values of treated and untreated groups were assessed by student t-test. Based on MTT assay, CSC and BV did not exert any significant cytotoxic effects up to 40 µg/mL and 10 µg/mL, respectively. Our results showed that interleukin-1β mRNA level was significantly up-regulated by CSC treatments in LPS-stimulated synoviocytes in a dose-dependent manner. Conversely, the expressions of IL-1β and Sirt1 were up-regulated even in lower concentrations of BV and attenuated at higher concentrations. Also, BV attenuated the CSC-induced and LPS-induced inflammatory responses in synovial fibroblasts. Our results support the epidemiological studies indicating pro-inflammatory effects of CSC and anti-inflammatory effects of BV on FLS cell line. PMID:25561937

  1. Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice.

    PubMed

    Noguchi, Takako; Lo, Kevin; Diemer, Tanja; Welsh, David K

    2016-04-21

    Lithium is widely used as a treatment of bipolar disorder, a neuropsychiatric disorder associated with disrupted circadian rhythms. Lithium is known to lengthen period and increase amplitude of circadian rhythms. One possible pathway for these effects involves inhibition of glycogen synthase kinase-3β (GSK-3β), which regulates degradation of CRY2, a canonical clock protein determining circadian period. CRY1 is also known to play important roles in regulating circadian period and phase, although there is no evidence that it is similarly phosphorylated by GSK-3β. In this paper, we tested the hypothesis that lithium affects circadian rhythms through CRYs. We cultured fibroblasts and slices of the suprachiasmatic nucleus (SCN), the master circadian pacemaker of the brain, from Cry1-/-, Cry2-/-, or wild-type (WT) mice bearing the PER2:LUC circadian reporter. Lithium was applied in the culture medium, and circadian rhythms of PER2 expression were measured. In WT and Cry2-/- fibroblasts, 10mM lithium increased PER2 expression and rhythm amplitude but not period, and 1mM lithium did not affect either period or amplitude. In non-rhythmic Cry1-/- fibroblasts, 10mM lithium increased PER2 expression. In SCN slices, 1mM lithium lengthened period ∼1h in all genotypes, but did not affect amplitude except in Cry2-/- SCN. Thus, the amplitude-enhancing effect of lithium in WT fibroblasts was unaffected by Cry2 knockout and occurred in the absence of period-lengthening, whereas the period-lengthening effect of lithium in WT SCN was unaffected by Cry1 or Cry2 knockout and occurred in the absence of rhythm amplification, suggesting that these two effects of lithium on circadian rhythms are independent of CRYs and of each other.

  2. [Radioprotective effect of helium-neon laser radiation for fibroblast cells].

    PubMed

    Voskanian, K Sh; Mitsyn, G V; Gaevskiĭ, V N

    2007-01-01

    Effects of combined exposure to 633-nm laser waves and gamma-radiation, and laser waves and protons with the energy of 150 MeV on survivablilty of mice fibroblast cells C3H10T1/2 were compared. Cell suspension (1 - 5 x 10(5) cells/ml) was distributed in 2-ml plastic vials with 1 cm in diameter time interval between two exposures in a combination was no more than 60 s. immediately after exposure a required quantity of cells was inoculated in special vials for survivability assessment. Based on results of the experiment, preliminary and repeated laser treatment was favorable to survivability of fibroblast cells subjected to gamma- or proton irradiation (dose variation factor was within 1.3 to 2.2). Simultaneous exposure of C3H10T1/2 cells to the laser and proton beams also increased their survivability. The radioprotective effect of the helium-neon laser on fibroblasts earlier exposed to ionizing radiation is of chief interest, as most of the present-day radioprotectors are effective only if introduced into organism prior to exposure.

  3. Delivery of optical contrast agents using Triton-X100, part 1: reversible permeabilization of live cells for intracellular labeling

    NASA Astrophysics Data System (ADS)

    van de Ven, Anne L.; Adler-Storthz, Karen; Richards-Kortum, Rebecca

    2009-03-01

    Effective delivery of optical contrast agents into live cells remains a significant challenge. We sought to determine whether Triton-X100, a detergent commonly used for membrane isolation and protein purification, could be used to effectively and reversibly permeabilize live cells for delivery of targeted optical contrast agents. Although Triton-X100 is widely recognized as a good cell permeabilization agent, no systematic study has evaluated the efficiency, reproducibility, and reversibility of Triton-X100-mediated permeabilization in live mammalian cells. We report a series of studies to characterize macromolecule delivery in cells following Triton-X100 treatment. Using this approach, we demonstrate that molecules ranging from 1 to 150 kDa in molecular weight can be reproducibly delivered into live cells by controlling the moles of Triton-X100 relative to the number of cells to be treated. When Triton-X100 is administered at or near the minimum effective concentration, cell permeabilization is generally reversed within 24 h, and treated cells continue to proliferate and show metabolic activity during the restoration of membrane integrity. We conclude that Triton-X100 is a promising permeabilization agent for efficient and reproducible delivery of optical contrast agents into live mammalian cells.

  4. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells.

    PubMed

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients' outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCMTGF, FCMPDGF) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCMB). FCMTGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCMTGF≫FCMPDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCMTGF>FCMPDGF) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The effect of beta,beta'-iminodipropionitrile (IDPN) on cytoskeletal organization in cultured human skin fibroblasts.

    PubMed

    Durham, H D

    1986-08-01

    By impairing the axonal transport of neurofilaments, IDPN induces large, filament-filled swellings in the proximal portion of axons of spinal motor neurones. We have reported that 2,5-hexanedione, another agent producing focal accumulation of neurofilaments, induces aggregation of intermediate filaments of the vimentin type in human skin fibroblasts grown in tissue culture. IDPN was tested in this model to determine if this chemical also affects a general mechanism involved in cytoplasmic transport of the cytomatrix or a process exclusive to axonal flow of neurofilaments. Although aggregates of intermediate filaments were seen in fibroblasts exposed to IDPN, they did not occur in the absence of generalized cytotoxicity and were labelled by antisera against tubulin, actin and fibronectin in addition to vimentin. It is probable the effect of IDPN on the distribution of intermediate filaments was secondary to changes in cell shape occurring during slow detachment from the substratum.

  6. Anti-fibrotic effect of pirfenidone in muscle derived-fibroblasts from Duchenne muscular dystrophy patients.

    PubMed

    Zanotti, Simona; Bragato, Cinzia; Zucchella, Andrea; Maggi, Lorenzo; Mantegazza, Renato; Morandi, Lucia; Mora, Marina

    2016-01-15

    Tissue fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the end point of diseases affecting the kidney, bladder, liver, lung, gut, skin, heart and muscle. In Duchenne muscular dystrophy (DMD), connective fibrotic tissue progressively substitutes muscle fibers. So far no specific pharmacological treatment is available for muscle fibrosis. Among promising anti-fibrotic molecules, pirfenidone has shown anti-fibrotic and anti-inflammatory activity in animal and cell models, and has already been employed in clinical trials. Therefore we tested pirfenidone anti-fibrotic properties in an in vitro model of muscle fibrosis. We evaluated effect of pirfenidone on fibroblasts isolated from DMD muscle biopsies. These cells have been previously characterized as having a pro-fibrotic phenotype. We tested cell proliferation and migration, secretion of soluble collagens, intracellular levels of collagen type I and fibronectin, and diameter of 3D fibrotic nodules. We found that pirfenidone significantly reduced proliferation and cell migration of control and DMD muscle-derived fibroblasts, decreased extracellular secretion of soluble collagens by control and DMD fibroblasts, as well as levels of collagen type I and fibronectin, and, in DMD fibroblasts only, reduced synthesis and deposition of intracellular collagen. Furthermore, pirfenidone was able to reduce the diameter of fibrotic-nodules in our 3D model of in vitro fibrosis. These pre-clinical results indicate that pirfenidone has potential anti-fibrotic effects also in skeletal muscle fibrosis, urging further studies in in vivo animal models of muscular dystrophy in order to translate the drug into the treatment of muscle fibrosis in DMD patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration

    PubMed Central

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-01-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration. PMID:28672990

  8. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration.

    PubMed

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-07-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration.

  9. Effect of static magnetic fields and phloretin on antioxidant defense system of human fibroblasts.

    PubMed

    Pawłowska-Góral, Katarzyna; Kimsa-Dudek, Magdalena; Synowiec-Wojtarowicz, Agnieszka; Orchel, Joanna; Glinka, Marek; Gawron, Stanisław

    2016-08-01

    The available evidence from in vitro and in vivo studies is deemed not sufficient to draw conclusions about the potential health effects of static magnetic field (SMF) exposure. Therefore, the aim of the present study was to determine the influence of static magnetic fields and phloretin on the redox homeostasis of human dermal fibroblasts. Control fibroblasts and fibroblasts treated with phloretin were subjected to the influence of static magnetic fields. Three chambers with static magnetic fields of different intensities (0.4, 0.55, and 0.7 T) were used in the study. Quantification of superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPX1), microsomal glutathione S-transferase 1 (MGST1), glutathione reductase (GSR), and catalase (CAT) messenger RNAs (mRNAs) was performed by means of real-time reverse transcription PCR (QRT-PCR) technique. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were measured using a commercially available kit. No significant differences were found in SOD1, SOD2, GPX1, MGST1, GSR, and CAT mRNA levels among the studied groups in comparison to the control culture without phloretin and without the magnet. There were also no changes in SOD, GPx, and CAT activities. In conclusion, our study indicated that static magnetic fields generated by permanent magnets do not exert a negative influence on the oxidative status of human dermal fibroblasts. Based on these studies, it may also be concluded that phloretin does not increase its antioxidant properties under the influence of static magnetic fields. However, SMF-induced modifications at the cellular and molecular level require further clarification.

  10. Effect of Basic Fibroblast Growth Factor on Achilles Tendon Healing in Rabbit

    PubMed Central

    Najafbeygi, Arash; Fatemi, Mohammad Javad; Lebaschi, Amir Hussein; Mousavi, Seyed Jaber; Husseini, Seyed Abouzar; Niazi, Mitra

    2017-01-01

    BACKGROUND Tendon injuries are common and it takes a long time for an injured tendon to heal. Adverse phenomena such as adhesion and rupture are associated with these injuries. Finding a method to reduce the time required for healing which improves the final outcome, will lead to decreased frequency and intensity of adverse consequences. This study was designed to investigate the effects of basic fibroblast growth factor on the healing of the Achilles tendon in rabbits METHODS In 10 New Zealand white rabbits, Achilles tendon was cut at the intersection of the distal and middle thirds on both hind legs. One microgram of recombinant basic fibroblast growth factor (bFGF) was injected in the proximal and distal stumps of the cut tendon on the right side (study group). Normal saline of equal volume was injected on the left side in the same way (control group). Then the tendons were repaired with 5/0 nylon using modified Kessler technique. A cast was made to immobilize each leg. On day 42, rabbits were euthanized and both hind legs were amputated. Tensometry and histopathologic examination were done on specimens. RESULTS In tensometric studies, more force was required to rupture the repair site in study group. In histopathologic examination, collagen fibers had significantly better orientation and organization in the study group. No difference was noted regarding number of fibroblast and fibrocytes, and degree of angiogenesis in the two groups. CONCLUSION Application of basic fibroblast growth factor at tendon repair site improves the healing process through improvement of collagen fiber orientation and increase in biomechanical resistance. PMID:28289610

  11. Biological effects of cobalt-chromium nanoparticles and ions on dural fibroblasts and dural epithelial cells.

    PubMed

    Behl, Bharat; Papageorgiou, Iraklis; Brown, Christopher; Hall, Richard; Tipper, Joanne L; Fisher, John; Ingham, Eileen

    2013-05-01

    The introduction of metal-on-metal total disc replacements motivated studies to evaluate the effects of cobalt-chromium (CoCr) nanoparticles on cells of the dura mater. Porcine fibroblasts and epithelial cells isolated from the dura mater were cultured with clinically-relevant CoCr nanoparticles and the ions, generated by the particles over 24 h, at doses up to 121 μm(3)per cell. Cell viability and production of proinflammatory cytokines was assessed over 4 days. The capacity of the particles to induce oxidative stress in the cells was evaluated at 24 h. The CoCr particles and their ions significantly reduced the viability of the dural epithelial cells in a dose-dependent manner but not the fibroblasts. Both cell types secreted IL-8 in response to particle exposure at doses of 60.5 μm(3) (epithelial cells) and 121 μm(3) (fibroblasts, epithelial cells) per cell. No significant release of IL-6 was observed in both cell types at any dose. Reactive oxygen species were induced in both cell types at 50 μm(3) per cell after 24 h exposure. The data suggested novel differences in the resistance of the dural epithelial cells and fibroblasts to CoCr nanoparticle/ion toxicity and demonstrated the inflammatory potential of the particles. The data contributes to a greater understanding of the potential biological consequences of the use of metal-on-metal total disc prostheses.

  12. Synergistic effects of nicotine on arecoline-induced cytotoxicity in human buccal mucosal fibroblasts.

    PubMed

    Chang, Y C; Hu, C C; Tseng, T H; Tai, K W; Lii, C K; Chou, M Y

    2001-09-01

    Areca quid chewing has been linked to oral submucous fibrosis and oral cancer. Arecoline, a major areca nut alkaloid, is considered to be the most important etiologic factor in the areca nut. In order to elucidate the pathobiological effects of arecoline, cytotoxicity assays, cellular glutathione S-transferase (GST) activity and lipid peroxidation assay were employed to investigate cultured human buccal mucosal fibroblasts. To date, there is a large proportion of areca quid chewers who are also smokers. Furthermore, nicotine, the major product of cigarette smoking, was added to test how it modulated the cytotoxicity of arecoline. At a concentration higher than 50 microg/ml, arecoline was shown to be cytotoxic to human buccal fibroblasts in a dose-dependent manner by the alamar blue dye colorimetric assay (P<0.05). In addition, arecoline significantly decreased GST activity in a dose-dependent manner (P<0.05). At concentrations of 100 microg/ml and 400 microg/ml, arecoline reduced GST activity about 21% and 46%, respectively, during a 24 h incubation period. However, arecoline at any test dose did not increase lipid peroxidation in the present human buccal fibroblast test system. The addition of extracellular nicotine acted synergistically on the arecoline-induced cytotoxicity. Arecoline at a concentration of 50 microg/ml caused about 30% of cell death over the 24 h incubation period. However, 2.5 mM nicotine enhanced the cytotoxic response and caused about 50% of cell death on 50 microg/ml arecoline-induced cytotoxicity. Taken together, arecoline may render human buccal mucosal fibroblasts more vulnerable to other reactive agents in cigarettes via GST reduction. The compounds of tobacco products may act synergistically in the pathogenesis of oral mucosal lesions in areca quid chewers. The data presented here may partly explain why patients who combined the habits of areca quid chewing and cigarette smoking are at greater risk of contracting oral cancer.

  13. Effect of Basic Fibroblast Growth Factor on Achilles Tendon Healing in Rabbit.

    PubMed

    Najafbeygi, Arash; Fatemi, Mohammad Javad; Lebaschi, Amir Hussein; Mousavi, Seyed Jaber; Husseini, Seyed Abouzar; Niazi, Mitra

    2017-01-01

    Tendon injuries are common and it takes a long time for an injured tendon to heal. Adverse phenomena such as adhesion and rupture are associated with these injuries. Finding a method to reduce the time required for healing which improves the final outcome, will lead to decreased frequency and intensity of adverse consequences. This study was designed to investigate the effects of basic fibroblast growth factor on the healing of the Achilles tendon in rabbits. In 10 New Zealand white rabbits, Achilles tendon was cut at the intersection of the distal and middle thirds on both hind legs. One microgram of recombinant basic fibroblast growth factor (bFGF) was injected in the proximal and distal stumps of the cut tendon on the right side (study group). Normal saline of equal volume was injected on the left side in the same way (control group). Then the tendons were repaired with 5/0 nylon using modified Kessler technique. A cast was made to immobilize each leg. On day 42, rabbits were euthanized and both hind legs were amputated. Tensometry and histopathologic examination were done on specimens. In tensometric studies, more force was required to rupture the repair site in study group. In histopathologic examination, collagen fibers had significantly better orientation and organization in the study group. No difference was noted regarding number of fibroblast and fibrocytes, and degree of angiogenesis in the two groups. Application of basic fibroblast growth factor at tendon repair site improves the healing process through improvement of collagen fiber orientation and increase in biomechanical resistance.

  14. Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.

    PubMed

    Lin, Feng; Du, Feng; Huang, Jianyong; Chau, Alicia; Zhou, Yongsheng; Duan, Huiling; Wang, Jianxiang; Xiong, Chunyang

    2016-10-01

    Graphene is an emerging candidate for biomedical applications, including biosensor, drug delivery and scaffold biomaterials. Cellular functions and behaviors on different graphene-coated substrates, however, still remain elusive to a great extent. This paper explored the functional responses of cells such as adhesion and proliferation, to different kinds of substrates including coverslips, silicone, polydimethylsiloxane (PDMS) with different curing ratios, PDMS treated with oxygen plasma, and their counterparts coated with single layer graphene (SLG). Specifically, adherent cell number, spreading area and cytoskeleton configuration were exploited to characterize cell-substrate adhesion ability, while MTT assay was employed to test the proliferation capability of fibroblasts. Experimental outcome demonstrated graphene coating had excellent cytocompatibility, which could lead to an increase in early adhesion, spreading, proliferation, and remodeling of cytoskeletons of fibroblast cells. Notably, it was found that the underlying substrate effect, e.g., stiffness of substrate materials, could essentially regulate the adhesion and proliferation of cells cultured on graphene. The stiffer the substrates were, the stronger the abilities of adhesion and proliferation of fibroblasts were. This study not only deepens our understanding of substrate-modulated interfacial interactions between live cells and graphene, but also provides a valuable guidance for the design and application of graphene-based biomaterials in biomedical engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of Hypoxia, Surrounding Fibroblasts, and p16 Expression on Breast Cancer Cell Migration and Invasion.

    PubMed

    Zhang, Jun; Li, Liyuan; Lu, Yi

    2015-01-01

    Cancer cell migration and invasion play essential roles in the metastatic cascade that transforms the local, noninvasive confined tumor cells to the motile, metastatic cancer cells moving through the extracellular matrix and basement into the circulation. Accumulated evidences suggest that intratumoral hypoxia, a characteristic of fast-growing solid tumors, promotes cancer cell motile and invasive abilities. In this study, we investigated the effects of hypoxia, surrounding fibroblasts, and p16 expression on the migration and invasion of breast cancer cells. We found that hypoxia promoted breast cancer cell migration and invasion, and cocultured fibroblasts stimulated invasiveness of breast cancer cells. Moreover, by using a Tet-on inducible system, we found that p16 is capable of inhibiting hypoxia-induced cell migration and invasion of breast cancer cells, and suppressing cocultured fibroblast-stimulated invasiveness of breast cancer cells. These results suggest that p16, in addition to its well-known anti-tumor proliferation function, has novel anti-cancer properties capable of suppressing hypoxia-mediated cancer cell migration and invasion. This study may provide important validation for p16-mediated cancer therapy either by gene therapy or pharmacological activation of internal p16 gene that is usually inactive due to hypermethylation in the tumor cells.

  16. Effects of Hypoxia, Surrounding Fibroblasts, and p16 Expression on Breast Cancer Cell Migration and Invasion

    PubMed Central

    Zhang, Jun; Li, Liyuan; Lu, Yi

    2015-01-01

    Cancer cell migration and invasion play essential roles in the metastatic cascade that transforms the local, noninvasive confined tumor cells to the motile, metastatic cancer cells moving through the extracellular matrix and basement into the circulation. Accumulated evidences suggest that intratumoral hypoxia, a characteristic of fast-growing solid tumors, promotes cancer cell motile and invasive abilities. In this study, we investigated the effects of hypoxia, surrounding fibroblasts, and p16 expression on the migration and invasion of breast cancer cells. We found that hypoxia promoted breast cancer cell migration and invasion, and cocultured fibroblasts stimulated invasiveness of breast cancer cells. Moreover, by using a Tet-on inducible system, we found that p16 is capable of inhibiting hypoxia-induced cell migration and invasion of breast cancer cells, and suppressing cocultured fibroblast-stimulated invasiveness of breast cancer cells. These results suggest that p16, in addition to its well-known anti-tumor proliferation function, has novel anti-cancer properties capable of suppressing hypoxia-mediated cancer cell migration and invasion. This study may provide important validation for p16-mediated cancer therapy either by gene therapy or pharmacological activation of internal p16 gene that is usually inactive due to hypermethylation in the tumor cells. PMID:25874006

  17. Sequence analysis of bovine C/EBPδ gene and its adipogenic effects on fibroblasts.

    PubMed

    Wang, Hong; Cheng, Gong; Fu, Changzhen; Wang, Hongbao; Yang, Wucai; Wang, Hongcheng; Zan, Linsen

    2014-01-01

    CCAAT/enhancer binding protein delta (C/EBPδ), an important transcriptional factor, regulates cell growth, differentiation and adipogenesis in humans and mice. However, we lack of directive information on the effects of C/EBPδ gene in bovine cells. In the present study, we cloned the CDS areas of bovine C/EBPδ gene and predicted its sequence characteristics. Moreover, we constructed the recombinant adenovirus plasmids of bovine C/EBPδ gene and harvested the subsequent adenoviruses to infect bovine primary fibroblasts. Oil Red O staining results showed lipid droplets accumulated gradually in the adenoviruses treated fibroblasts. Time course real-time PCR results indicated that over-expression of exogenous C/EBPδ regulated the mRNA expression levels of some key adipogenic genes, herein, activated the C/EBPα expression, increased lipoprotein lipase and fatty acid binding protein 4 mRNA expression levels, whereas inhibited leptin receptor gene. In conclusion, the present study demonstrates that the elevated C/EBPδ can induce the adipogenesis in the fibroblasts of cattle.

  18. Profibrosing effect of angiotensin converting enzyme inhibitors in human lung fibroblasts.

    PubMed

    Díaz-Piña, Gabriela; Montes, Eduardo; Checa, Marco; Becerril, Carina; García de Alba, Carolina; Vega, Anita; Páramo, Ignacio; Ordoñez-Razo, Rosa; Ruiz, Victor

    2015-04-01

    The objective of this study is to determine the effect of two angiotensin-converting enzyme inhibitors (ACEi) (Enalapril and Captopril), an angiotensin-II receptor inhibitor (Losartan) and a renin inhibitor (Aliskiren) on renin, TGF-β1 and collagen expressions in human lung fibroblast cultures through real-time PCR and ELISA. Normal commercial fibroblasts (CCD25) were exposed to 10(-6) M of enalapril, captopril, losartan, or aliskiren for 6 h. Subsequently, media were recovered and proteins were concentrated; RNA was extracted from the cells. Real time-PCR and ELISA were performed. ACEi and losartan-stimulated fibroblasts showed an increase in the expression of TGF-β1, Collagen-Iα1 (Col-Iα1), and renin (except losartan) vs PolR2A (p < 0.05), and upregulation of TGF-β1 protein (p < 0.01), except with aliskiren. Results show that ACEis and losartan could play a profibrosing role by inducing the overexpression of molecules such TGF-β1 and Collagen.

  19. Effect of time of extraction on the biocompatibility of endodontic sealers with primary human fibroblasts.

    PubMed

    Scelza, Miriam Zaccaro; Coil, Jeffrey; Alves, Gutemberg Gomes

    2012-01-01

    The aim of this work was to evaluate the effects of different times of extraction on the cytotoxicity of six representatives of different root canal sealer groups-Real Seal SE, AH Plus, GuttaFlow, Sealapex, Roth 801, and ThermaSeal Plus-with human gingival fibroblasts. The materials were prepared according to manufacturers' specifications, and were incubated in culture medium (DMEM) at 37ºC for 1, 7, 14, 21, and 28 days, with daily washing, to simulate periodontal ligament clearance. Human fibroblasts were exposed to the final extracts at 24 hours, and cell viability was determined by MTT assay, with exposure to unconditioned DMEM as a negative control. Statistical analysis comparing cytotoxicities at each exposure time was performed by ANOVA with Scheffé adjustment for multiple comparisons at a 95% confidence level. Results indicated that GuttaFlow was significantly less cytotoxic than all other sealers (p < 0.05) at 1 day of extraction. After 7 days of extraction, cell viability for GuttaFlow was significantly increased as compared with that of all groups except sealer AH Plus. At day 14, cytotoxicity of Sealapex was significantly higher than that of all other sealers (p < 0.05). At days 21 and 28, there were no significant differences in cytotoxicity among sealer groups. All materials presented some level of cytotoxicity to fibroblasts, while GuttaFlow was the least cytotoxic sealer tested. However, the cytotoxicity of all materials seemed to decrease similarly in a time-dependent manner.

  20. Effect of Collagen Nanotopography on Keloid Fibroblast Proliferation and Matrix Synthesis: Implications for Dermal Wound Healing

    PubMed Central

    Muthusubramaniam, Lalitha; Zaitseva, Tatiana; Paukshto, Michael; Martin, George

    2014-01-01

    Keloids are locally exuberant dermal scars characterized by excessive fibroblast proliferation and matrix accumulation. Although treatment strategies include surgical removal and intralesional steroid injections, an effective regimen is yet to be established due to a high rate of recurrence. The regressing center and growing margin of the keloid have different collagen architecture and also differ in the rate of proliferation. To investigate whether proliferation is responsive to collagen topography, keloid, scar, and dermal fibroblasts were cultured on nanopatterned scaffolds varying in collagen fibril diameter and alignment-small and large diameter, aligned and random fibrils, and compared to cells grown on flat collagen-coated substrates, respectively. Cell morphology, proliferation, and expression of six genes related to proliferation (cyclin D1), phenotype (α-smooth muscle actin), and matrix synthesis (collagens I and III, and matrix metalloproteinase-1 and -2) were measured to evaluate cell response. Fibril alignment was shown to reduce proliferation and matrix synthesis in all three types of fibroblasts. Further, keloid cells were found to be most responsive to nanotopography. PMID:24724556

  1. [Effects of culture supernatant of human amnion mesenchymal stem cells on biological characteristics of human fibroblasts].

    PubMed

    Wu, Qi'er; Lyu, Lu; Xin, Haiming; Luo, Liang; Tong, Yalin; Mo, Yongliang; Yue, Yigang

    2016-06-01

    To investigate the effects of culture supernatant of human amnion mesenchymal stem cells (hAMSCs-CS) on biological characteristics of human fibroblasts. (1) hAMSCs were isolated from deprecated human fresh amnion tissue of placenta and then sub-cultured. The morphology of hAMSCs on culture day 3 and hAMSCs of the third passage were observed with inverted phase contrast microscope. (2) Two batches of hAMSCs of the third passage were obtained, then the expression of vimentin of cells was observed with immunofluorescence method, and the expression of cell surface marker CD90, CD73, CD105, and CD45 was detected by flow cytometer. (3) hAMSCs-CS of the third passage at culture hour 72 were collected, and the content of insulin-like growth factor Ⅰ (IGF-Ⅰ), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) were detected by enzyme-linked immunosorbent assay. (4) Human fibroblasts were isolated from deprecated human fresh prepuce tissue of circumcision and then sub-cultured. Human fibroblasts of the third passage were used in the following experiments. Cells were divided into blank control group and 10%, 30%, 50%, and 70% hAMSCs-CS groups according to the random number table (the same grouping method below), with 48 wells in each group. Cells in blank control group were cultured with DMEM/F12 medium containing 2% fetal bovine serum (FBS), while cells in the latter 4 groups were cultured with DMEM/F12 medium containing corresponding volume fraction of hAMSCs-CS and 2% FBS. The proliferation activity of cells was detected by cell counting kit 8 and microplate reader at culture hour 12, 24, 48, and 72, respectively, and corresponding volume fraction of hAMSCs-CS which causing the best proliferation activity of human fibroblasts was used in the following experiments. (5) Human fibroblasts were divided into blank control group and 50% hAMSCs-CS group and treated as in (4), with 4 wells in each group, at post

  2. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    SciTech Connect

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  3. Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death

    PubMed Central

    André, Franck M.; Rassokhin, Mikhail A.; Bowman, Angela M.; Pakhomov, Andrei G.

    2009-01-01

    It has been widely accepted that nanosecond electric pulses (nsEP) are distinguished from micro-and millisecond duration pulses by their ability to cause intracellular effects and cell death with reduced effects on the cell plasma membrane. However, we found that nsEP-induced cell death is most likely mediated by the plasma membrane disruption. We showed that nsEP can cause long-lasting (minutes) increase in plasma membrane electrical conductance and disrupt electrolyte balance, followed by water uptake, cell swelling and blebbing. These effects of plasma membrane permeabilization could be blocked by Gd3+ in a dose-dependent manner, with a threshold at sub-micromolar concentrations. Consequently, Gd3+ protected cells from nsEP-induced cell death, thereby pointing to plasma membrane permeabilization as a likely primary mechanism of lethal cell damage. PMID:20097138

  4. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts.

    PubMed

    Pernodet, Nadine; Fang, Xiaohua; Sun, Yuan; Bakhtina, Asya; Ramakrishnan, Aditi; Sokolov, Jonathan; Ulman, Abraham; Rafailovich, Miriam

    2006-06-01

    Nanoscale engineering is one of the most dynamically growing areas at the interface between electronics, physics, biology, and medicine. As there are no safety regulations yet, concerns about future health problems are rising. We investigated the effects of citrate/gold nanoparticles at different concentrations and exposure times on human dermal fibroblasts. We found that, as a result of intracellular nanoparticle presence, actin stress fibers disappeared, thereby inducing major adverse effects on cell viability. Thus, properties such as cell spreading and adhesion, cell growth, and protein synthesis to form the extracellular matrix were altered dramatically. These results suggest that the internal cell activities have been damaged.

  5. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane.

    PubMed

    Alakomi, H L; Skyttä, E; Saarela, M; Mattila-Sandholm, T; Latva-Kala, K; Helander, I M

    2000-05-01

    The effect of lactic acid on the outer membrane permeability of Escherichia coli O157:H7, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was studied utilizing a fluorescent-probe uptake assay and sensitization to bacteriolysis. For control purposes, similar assays were performed with EDTA (a permeabilizer acting by chelation) and with hydrochloric acid, the latter at pH values corresponding to those yielded by lactic acid, and also in the presence of KCN. Already 5 mM (pH 4.0) lactic acid caused prominent permeabilization in each species, the effect in the fluorescence assay being stronger than that of EDTA or HCl. Similar results were obtained in the presence of KCN, except for P. aeruginosa, for which an increase in the effect of HCl was observed in the presence of KCN. The permeabilization by lactic and hydrochloric acid was partly abolished by MgCl(2). Lactic acid sensitized E. coli and serovar Typhimurium to the lytic action of sodium dodecyl sulfate (SDS) more efficiently than did HCl, whereas both acids sensitized P. aeruginosa to SDS and to Triton X-100. P. aeruginosa was effectively sensitized to lysozyme by lactic acid and by HCl. Considerable proportions of lipopolysaccharide were liberated from serovar Typhimurium by these acids; analysis of liberated material by electrophoresis and by fatty acid analysis showed that lactic acid was more active than EDTA or HCl in liberating lipopolysaccharide from the outer membrane. Thus, lactic acid, in addition to its antimicrobial property due to the lowering of the pH, also functions as a permeabilizer of the gram-negative bacterial outer membrane and may act as a potentiator of the effects of other antimicrobial substances.

  6. Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane

    PubMed Central

    Alakomi, H.-L.; Skyttä, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I. M.

    2000-01-01

    The effect of lactic acid on the outer membrane permeability of Escherichia coli O157:H7, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was studied utilizing a fluorescent-probe uptake assay and sensitization to bacteriolysis. For control purposes, similar assays were performed with EDTA (a permeabilizer acting by chelation) and with hydrochloric acid, the latter at pH values corresponding to those yielded by lactic acid, and also in the presence of KCN. Already 5 mM (pH 4.0) lactic acid caused prominent permeabilization in each species, the effect in the fluorescence assay being stronger than that of EDTA or HCl. Similar results were obtained in the presence of KCN, except for P. aeruginosa, for which an increase in the effect of HCl was observed in the presence of KCN. The permeabilization by lactic and hydrochloric acid was partly abolished by MgCl2. Lactic acid sensitized E. coli and serovar Typhimurium to the lytic action of sodium dodecyl sulfate (SDS) more efficiently than did HCl, whereas both acids sensitized P. aeruginosa to SDS and to Triton X-100. P. aeruginosa was effectively sensitized to lysozyme by lactic acid and by HCl. Considerable proportions of lipopolysaccharide were liberated from serovar Typhimurium by these acids; analysis of liberated material by electrophoresis and by fatty acid analysis showed that lactic acid was more active than EDTA or HCl in liberating lipopolysaccharide from the outer membrane. Thus, lactic acid, in addition to its antimicrobial property due to the lowering of the pH, also functions as a permeabilizer of the gram-negative bacterial outer membrane and may act as a potentiator of the effects of other antimicrobial substances. PMID:10788373

  7. Effects of Gadodiamide on cell proliferation and collagen production in cultured human dermal fibroblasts.

    PubMed

    Ozawa, Yumi; Hayashi, Shujiro; Hamasaki, Yoichiro; Hatamochi, Atsushi

    2016-12-01

    Nephrogenic systemic fibrosis (NSF) is a disease characterized by fibrosis of the systemic organs in patients with renal failure. Following the findings of recent epidemiological studies and the finding of gadolinium (Gd) in the skin tissue of NSF patients, it is now definitely known that the use of Gd contrast agents can trigger NSF. To date, however, the exact mechanism underlying the induction of fibrosis in various organs by Gd remains unexplained. This study was undertaken to evaluate the influence of Gd on the proliferation activity and collagen production of cultured fibroblasts. Normal human dermis-derived fibroblasts were incubated in the presence of gadodiamide (GA) in the concentration range of 5 × 10(-7) to 5 × 10(-3) M. The proliferation activity of the cells was assessed on the basis of the cell counts in the fibroblast growth curve and the DNA-synthetic activity of the cells (indicator; level of (3)H-thymidine uptake by cells). The collagen production was evaluated by densitometric measurement of the quantity of collagen through electrophoresis and fluorography after incorporation of (3)H-proline into the procollagens. Furthermore, the expression levels of the genes for type I and III collagen were measured by real-time reverse transcription polymerase chain reaction (RT-PCR) assay. The cell count tended to be higher when the fibroblasts were incubated in medium containing GA in the concentration range of 5 × 10(-7) to 5 × 10(-4)M as compared to that in the GA-free control cultures; furthermore, the DNA-synthetic activity also rose in a concentration-dependent manner in the GA-treated group as compared to that in the control group. No significant changes in either the collagen production or the collagen gene expression levels were noted in cultures containing GA at concentrations between 5 × 10(-7) and 5 × 10(-3) M. These results suggest that the formation of sclerosing lesions in patients with NSF may be attributable to the effect

  8. Ciprofloxacin has antifibrotic effects in scleroderma fibroblasts via downregulation of Dnmt1 and upregulation of Fli1

    PubMed Central

    BUJOR, ANDREEA M.; HAINES, PAUL; PADILLA, CRISTINA; CHRISTMANN, ROMY B.; JUNIE, MONICA; SAMPAIO-BARROS, PERCIVAL D.; LAFYATIS, ROBERT; TROJANOWSKA, MARIA

    2012-01-01

    Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. The present study was undertaken to examine the effects of ciprofloxacin, a fluoroquinolone antibiotic implicated in matrix remodeling, on dermal and lung fibroblasts obtained from SSc patients. Dermal and lung fibroblasts from SSc patients and healthy subjects were treated with ciprofloxacin. Western blotting was used to analyze protein levels and RT-PCR was used to measure mRNA expression. The pharmacologic inhibitor UO126 was used to block Erk1/2 signaling. SSc dermal fibroblasts demonstrated a significant decrease in collagen type I mRNA and protein levels after antibiotic treatment, while healthy dermal fibroblasts were less sensitive to ciprofloxacin, downregulating collagen only at the protein levels. Connective tissue growth factor (CCN2) gene expression was significantly reduced and matrix metalloproteinase 1 (MMP1) levels were enhanced after ciprofloxacin treatment to a similar extent in healthy and SSc fibroblasts. Ciprofloxacin induced Erk1/2 phosphorylation, and Erk1/2 blockade completely prevented MMP1 upregulation. However, Smad1 and Smad3 activation in response to TGFβ was not affected. The expression of friend leukemia integration factor 1 (Fli1), a transcriptional repressor of collagen, was increased after treatment with ciprofloxacin only in SSc fibroblasts, and this was accompanied by a decrease in the levels of DNA methyltransferase 1 (Dnmt1). Similar effects were observed in SSc-interstitial lung disease (ILD) lung fibroblasts. In summary, our study demonstrates that ciprofloxacin has antifibrotic actions in SSc dermal and lung fibroblasts via the downregulation of Dnmt1, the upregulation of Fli1 and induction of MMP1 gene expression via an Erk1/2-dependent mechanism. Thus, our data suggest that ciprofloxacin may be an attractive therapy for SSc skin and lung fibrosis. PMID:23041765

  9. The effect of platelet-derived growth factor on cell division and glycosaminoglycan synthesis by human skin and scar fibroblasts.

    PubMed

    Savage, K; Siebert, E; Swann, D

    1987-07-01

    The effect of platelet-derived growth factor (PDGF) on cell division and glycosaminoglycan (GAG) synthesis by fibroblasts isolated from skin and scar was measured. We found that PDGF stimulates cell division more efficiently in normal skin fibroblasts than in scar fibroblasts and decreases GAG synthesis in skin and scar fibroblasts. Using a 4-h pulse label with [3H]thymidine ([3H]Thd) following a 20-h incubation of confluent monolayer cultures with 0-5 units PDGF/ml Dulbecco's modified Eagle's medium, we found a concentration-dependent increase in [3H]Thd incorporation. After incubation of fibroblasts with [3H]glucosamine and 35SO4 in the presence or absence of PDGF, labeled constituents were isolated from the extracellular, pericellular, and cellular fractions by pronase digestion and column chromatography on Sepharose CL4B or DEAE-cellulose and analyzed by cellulose acetate electrophoresis. The presence of PDGF decreased the total amount of 35S incorporated into macromolecules by skin and scar fibroblasts and resulted in an altered distribution of labeled GAGs. Dermal fibroblasts exposed to PDGF for 24 h incorporated a greater percentage of radiolabeled 35S into dermatan sulfate prime (DS') and less into dermatan sulfate (DS) in the extracellular fractions and a greater percentage of 35S into heparan sulfate (HS) in the pericellular fractions than did parallel cultures grown in the absence of PDGF. It is thought than PDGF may have an effect on scar formation by increasing the fibroblast population in the wound tissue and by affecting the total amount and types of matrix components synthesized.

  10. Ciprofloxacin has antifibrotic effects in scleroderma fibroblasts via downregulation of Dnmt1 and upregulation of Fli1.

    PubMed

    Bujor, Andreea M; Haines, Paul; Padilla, Cristina; Christmann, Romy B; Junie, Monica; Sampaio-Barros, Percival D; Lafyatis, Robert; Trojanowska, Maria

    2012-12-01

    Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. The present study was undertaken to examine the effects of ciprofloxacin, a fluoroquinolone antibiotic implicated in matrix remodeling, on dermal and lung fibroblasts obtained from SSc patients. Dermal and lung fibroblasts from SSc patients and healthy subjects were treated with ciprofloxacin. Western blotting was used to analyze protein levels and RT-PCR was used to measure mRNA expression. The pharmacologic inhibitor UO126 was used to block Erk1/2 signaling. SSc dermal fibroblasts demonstrated a significant decrease in collagen type I mRNA and protein levels after antibiotic treatment, while healthy dermal fibroblasts were less sensitive to ciprofloxacin, downregulating collagen only at the protein levels. Connective tissue growth factor (CCN2) gene expression was significantly reduced and matrix metalloproteinase 1 (MMP1) levels were enhanced after ciprofloxacin treatment to a similar extent in healthy and SSc fibroblasts. Ciprofloxacin induced Erk1/2 phosphorylation, and Erk1/2 blockade completely prevented MMP1 upregulation. However, Smad1 and Smad3 activation in response to TGFβ was not affected. The expression of friend leukemia integration factor 1 (Fli1), a transcriptional repressor of collagen, was increased after treatment with ciprofloxacin only in SSc fibroblasts, and this was accompanied by a decrease in the levels of DNA methyltransferase 1 (Dnmt1). Similar effects were observed in SSc-interstitial lung disease (ILD) lung fibroblasts. In summary, our study demonstrates that ciprofloxacin has antifibrotic actions in SSc dermal and lung fibroblasts via the downregulation of Dnmt1, the upregulation of Fli1 and induction of MMP1 gene expression via an Erk1/2-dependent mechanism. Thus, our data suggest that ciprofloxacin may be an attractive therapy for SSc skin and lung fibrosis.

  11. Polyphenols protect mitochondrial membrane against permeabilization induced by HEWL oligomers: Possible mechanism of action.

    PubMed

    Roqanian, Shaqayeq; Meratan, Ali Akbar; Ahmadian, Shahin; Shafizadeh, Mahshid; Ghasemi, Atiyeh; Karami, Leila

    2017-10-01

    Increasing body of evidence suggests that polyphenols frequently interacting with amyloid aggregates and/or interfering with aggregate species to bind biomembranes may serve as a therapeutic approach for the treatment of amyloid-related diseases. Hence, in the present study, the possible effects of three naturally occurring polyphenols including Curcumin, Quercetin, and Resveratrol on mitochondrial membrane permeabilization induced by Hen Egg White Lysozyme (HEWL) oligomers were investigated. Our results indicated that pre-incubation of mitochondrial homogenate with polyphenols considerably inhibit membrane permeabilization in a concentration dependent manner. In parallel, HEWL oligomers, which were co-incubated with the polyphenols, showed less effectiveness on membrane permeabilization, suggesting that toxicity of oligomers was hindered. Using a range of techniques including fluorescence quenching, Nile red binding assay, zeta potential and size measurements, CD (far- and near-UV) spectroscopy, and molecular docking, we found that the polyphenols, structure-dependently, interact with and induce conformational changes in HEWL oligomers, thereby inhibit their toxicity. We proposed a mechanism by which selected polyphenols induce their protective effects through binding to mitochondria and interfering with HEWL oligomer-membrane interactions and/or by direct interaction with HEWL oligomers, induction of conformational changes, and generating far less toxic species. However, additional studies are needed to elucidate the detailed mechanisms involved. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Toxic effects of various retrograde root filling materials on gingival fibroblasts and rat sarcoma cells.

    PubMed

    Peltola, M; Salo, T; Oikarinen, K

    1992-06-01

    The aim of this in vitro study was to evaluate the effect of amalgam, glass ionomer, composite and titanium on the growth of gingival fibroblasts (GF) and rat sarcoma cells (UMR) in vitro. The cells were either obtained from gingival biopsies taken during deliberation of unerupted canines (GF) or were of commercial origin (UMR). Equal numbers of cells were placed on culture dishes and incubated for a period of two weeks with the freshly prepared test materials. The cultures were photographed through a light microscope after 7 days incubation and finally counted after 14 days. It was shown that the proliferation of gingival fibroblasts was less disturbed by titanium, being approximately 96% of the control value (cell cultures without test particles), followed by composite, amalgam and glass ionomer (61%, 49% and 35% of the control value respectively). The number of UMR cells after 14 days incubation with the various materials was 76% of the control value with titanium, 12% with composite and 5% with both amalgam and glass ionomer. Inhibition of cell growth (UMR) around the test particles was most prominent around amalgam and glass ionomer, followed by composite and titanium. These effects were noted only with freshly prepared components however, so that the toxic reaction was less pronounced or minimal in a second incubation using the same particles sterilized in between. The results demonstrated that potential retrograde root filling materials have a variable toxic effect on gingival fibroblasts and rat sarcoma cells. The fact that the influence on proliferation disappeared when the test was performed with materials already tested once may be of clinical importance when estimating the biocompatibility in vivo.

  13. [Effects of hypoxia on the phenotype transformation of human dermal fibroblasts to myofibroblasts and the mechanism].

    PubMed

    Zhao, B; Han, F; Zhang, W; Wang, X J; Zhang, J; Yang, F F; Shi, J H; Su, L L; Hu, D H

    2017-06-20

    Objective: To investigate the effects of hypoxia on the phenotype transformation of human dermal fibroblasts to myofibroblasts and the mechanism. Methods: The third passage of healthy adult human dermal fibroblasts in logarithmic phase were cultured in DMEM medium containing 10% fetal bovine serum for the following five experiments. (1) In experiments 1, 2, and 3, cells were divided into normoxia group and hypoxia group according to the random number table, with 10 dishes in each group. Cells of normoxia group were cultured in incubator containing 21% oxygen, while those of hypoxia group with 1% oxygen. At post culture hour (PCH) 0 and 48, 5 dishes of cells were collected from each group, respectively. mRNA expressions of markers of myofibroblasts including alpha smooth muscle actin (α-SMA), type Ⅰ collagen, and type Ⅲ collagen of cells were determined with real time fluorescent quantitative reverse transcription polymerase chain reaction in experiment 1. Protein expressions of α-SMA, type Ⅰ collagen, and type Ⅲ collagen of cells were determined with Western blotting in experiment 2. The protein expression of nuclear factor-kappa B (NF-κB) of cells was determined with Western blotting in experiment 3. (2) In experiment 4, cells were divided into normoxia group, hypoxia group, and hypoxia+ pyrrolidine dithiocarbamate (PDTC) group according to the random number table, with 5 dishes in each group. Cells in the former two groups were treated the same as those in experiment 1. Cells in hypoxia+ PDTC group were treated the same as those in hypoxia group plus adding 4 mL PDTC with a final molarity of 10 μmol/L in the culture medium. At PCH 48, the protein expression of NF-κB of cells was determined with Western blotting. (3) In experiment 5, cells were divided into normoxia group, hypoxia group, hypoxia+ PDTC group, and normoxia+ PDTC group according to the random number table, with 5 dishes in each group. Cells in the former three groups were treated the

  14. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization.

    PubMed

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-26

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  15. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization

    PubMed Central

    Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-01

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the “verge of apoptosis”. When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways. PMID:26716897

  16. Effects of dexamethasone on human synovial fibroblast-like cells, from osteoarthritic joints, in culture

    SciTech Connect

    Vento, R.; Torregrossa, M.V.; Giuliano, M.; Grecomoro, G.; Piccione, F. )

    1990-01-01

    The effect of Dexamethasone (DEX) on cell division and macromolecular synthesis was investigated in a line (Mc Coy cells, A 9) of synovial fibroblast-like cells derived from human osteoarthritic joints. DEX markedly reduced the proliferation of Mc Coy cells in a time and dose-dependent manner. The maximal inhibition was found at 500 nM DEX 24 h after incubation and was accompanied by the appearance of giant macrophage-like cells. After DEX treatment cells showed increased content of DNA, proteins and RNA together with the reduction of ({sup 3}H)-thymidine incorporation into the TCA-precipitable fraction.

  17. A Novel Protocol for Decoating and Permeabilizing Bacterial Spores for Epifluorescent Microscopy

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Mohapatra, Bidyut

    2014-01-01

    Based on previously reported procedures for permeabilizing vegetative bacterial cells, and numerous trial-and-error attempts with bacterial endospores, a protocol was developed for effectively permeabilizing bacterial spores, which facilitated the applicability of fluorescent in situ hybridization (FISH) microscopy. Bacterial endospores were first purified from overgrown, sporulated suspensions of B. pumilus SAFR-032. Purified spores at a concentration of approx equals 10 million spores/mL then underwent proteinase-K treatment, in a solution of 468.5 µL of 100 mM Tris-HCl, 30 µL of 10% SDS, and 1.5 microL of 20 mg/mL proteinase-K for ten minutes at 35 ºC. Spores were then harvested by centrifugation (15,000 g for 15 minutes) and washed twice with sterile phosphate-buffered saline (PBS) solution. This washing process consisted of resuspending the spore pellets in 0.5 mL of PBS, vortexing momentarily, and harvesting again by centrifugation. Treated and washed spore pellets were then resuspended in 0.5 mL of decoating solution, which consisted of 4.8 g urea, 3 mL Milli-Q water, 1 mL 0.5M Tris, 1 mL 1M dithiothreitol (DTT), and 2 mL 10% sodium-dodecylsulfate (SDS), and were incubated at 65 ºC for 15 minutes while being shaken at 165 rpm. Decoated spores were then, once again, washed twice with sterile PBS, and subjected to lysozyme/mutanolysin treatment (7 mg/mL lysozyme and 7U mutanolysin) for 15 minutes at 35 C. Spores were again washed twice with sterile PBS, and spore pellets were resuspended in 1-mL of 2% SDS. This treatment, facilitating inner membrane permeabilization, lasted for ten minutes at room temperature. Permeabilized spores were washed two final times with PBS, and were resuspended in 200 mkcroL of sterile PBS. At this point, the spores were permeable and ready for downstream processing, such as oligonucleotideprobe infiltration, hybridization, and microscopic evaluation. FISH-microscopic imagery confirmed the effective and efficient (˜50

  18. Effect of alpha-tocopherol and silibin dihemisuccinate on the proliferation of human skin fibroblasts.

    PubMed

    Onat, D; Boscoboinik, D; Azzi, A; Basaga, H

    1999-06-01

    Cell proliferation is a complex and important event in atherosclerosis, aging and cancer, and is under the control of signalling pathways. These signalling pathways in turn are effected by the presence of a number of chemicals. For this purpose, we have checked the effect of two chemicals on the proliferation of skin fibroblasts. alpha-Tocopherol and silibin dihemisuccinate (SDH) negatively regulate proliferation of human skin fibroblasts. To check the cell-cycle time intervals, a [3H]thymidine incorporation assay was performed, showing DNA replication at around 24 h; this indicated the time required for the incubation with the chemicals. When alpha-tocopherol was added to the growth medium at a physiological concentration of 50 microM, cell proliferation was inhibited by 40% in 72 h. A similar inhibitory effect of cell proliferation was achieved when 500 microM SDH was used (39% inhibition in 72 h). From the dose-response curves obtained it was concluded that both duration of treatment and the concentration of the chemicals are important parameters. The actual mechanism of the inhibition of cell proliferation may be due to the anti-oxidative potential of these chemicals as well as another mechanism effecting signal transduction pathways.

  19. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    SciTech Connect

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  20. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  1. Effect of low-intensity pulsed ultrasound on l929 fibroblasts

    PubMed Central

    Franco de Oliveira, Rodrigo; Pires Oliveira, Deise A. A.; Soares, Cristina Pacheco

    2011-01-01

    Introduction Ultrasound has proven to be an important therapeutic resource regarding musculoskeletal disease and is routinely used in physical therapy and medicine both therapeutically and diagnostically. The aim of the present study was to analyse the effects with different ultrasound intensities in order to establish the ideal radiation level in cell cultures. Material and methods Fibroblast cell cultures were divided into five groups: group I – control (did not receive irradiation); group II – 0.2 W/cm2 in pulsed mode at 10% (1 : 9 duty cycle); group III – 0.6 W/cm2 in pulsed mode at 10% (1 : 9 duty cycle); group IV – 0.2 W/cm2 in pulsed mode at 20% (2 : 8 duty cycle); and group V – 0.6 W/cm2 in pulsed mode at 20% (2 : 8 duty cycle). Each group was irradiated with 24-h intervals, observing the following post-irradiation incubation times: 24, 48, 72 and 96 h; after 24 h of each irradiation, cultures were analysed using the MTT method. Results Analysis of the results following ultrasound irradiation demonstrated that the effect of ultrasound with 0.6 W/cm2 in pulsed mode at 10% (1 : 9 duty cycle) was statistically significant in relation to ultrasonic irradiation in pulsed mode at 20% (2 : 8 duty cycle) (p < 0.05). Conclusions According to parameters used in the irradiation of cultivated fibroblasts, the pulse mode regime and the control of intensity are of fundamental importance for the optimal use of therapeutic ultrasound. Furthermore, low and medium intensities decreased cell damage, which establishes that acoustic pulsed energy induces the proliferation of fibroblast cells. PMID:22291760

  2. A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion.

    PubMed

    Coppe, Jean-Philippe; Boysen, Megan; Sun, Chung Ho; Wong, Brian J F; Kang, Mo K; Park, No-Hee; Desprez, Pierre-Yves; Campisi, Judith; Krtolica, Ana

    2008-07-01

    Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts-exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts-exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment.

  3. Vitamin D inhibition of pro-fibrotic effects of transforming growth factor β1 in lung fibroblasts and epithelial cells

    PubMed Central

    Ramirez, Allan M.; Wongtrakool, Cherry; Welch, Teresa; Steinmeyer, Andreas; Zügel, Ulrich; Roman, Jesse

    2010-01-01

    The mechanisms that control fibroproliferation and matrix deposition in lung fibrosis remain unclear. We speculate that vitamin D deficiency may contribute to pulmonary fibrosis since vitamin D deficiency has been implicated in several diseases. First, we confirmed the presence of vitamin D receptors (VDR) in cultured NIH/3T3 and lung fibroblasts. Fibroblasts transfected with a vitamin D response element – reporter construct and exposed to the active vitamin D metabolite, 1,25(OH)2D3, showed increased promoter activity indicating VDR functionality in these cells. Testing the effects of 1,25(OH)2D3 on fibroblasts treated with transforming growth factor β1 (TGFβ1), considered a driver of many fibrotic disorders, we found that 1,25(OH)2D3 inhibited TGFβ1-induced fibroblast proliferation in a dose-dependent fashion. 1,25(OH)2D3 also inhibited TGFβ1 stimulation of α-smooth muscle actin expression and polymerization and prevented the upregulation of fibronectin and collagen in TGFβ1-treated fibroblasts. Finally, we examined how 1,25(OH)2D3 affects epithelial-mesenchymal transformation of lung epithelial cells upon exposure to TGFβ1. We showed that the TGFβ1-induced upregulation of mesenchymal cell markers and abnormal expression of epithelial cell markers were blunted by 1,25(OH)2D3. These observations suggest that under TGFβ1 stimulation, 1,25(OH)2D3 inhibits the profibrotic phenotype of lung fibroblasts and epithelial cells. PMID:19931390

  4. Bromoenol lactone enhances the permeabilization of rat submandibular acinar cells by P2X7 agonists

    PubMed Central

    Chaïb, N; Kabré, E; Alzola, E; Pochet, S; Dehaye, J P

    2000-01-01

    The permeabilizing effect of P2X7 agonists was tested in rat submandibular acinar cells using the uptake of ethidium bromide as an index. The uptake of ethidium bromide by acini incubated at 37°C in the presence of 1 mM ATP increased with time and reached after 5 min about 10% of maximal uptake measured in the presence of digitonin. The response to ATP was dose-dependent (half-maximal concentration around 40 μM) and it was decreased when the temperature was lowered to 25°C. Benzoyl-ATP reproduced the response to ATP (half-maximal concentration around 10 μM). UTP or 2-methylthioATP had no effect. The permeabilization in response to ATP was blocked by oxidized ATP and by magnesium and inhibited by Coomassie blue. ATP increased the activity of a calcium-insensitive phospholipase A2 (iPLA2). Bromoenol lactone (BEL) inhibited the iPLA2 stimulated by ATP but potentiated the uptake of ethidium bromide in response to the purinergic agonist. From these results it is concluded that the activation of P2X7 receptors permeabilizes rat submandibular acinar cells. The pore-forming activity of the receptor might be negatively regulated by the concomitant activation of the iPLA2 by the receptor. PMID:10683195

  5. The anti-cancer agent guttiferone-A permeabilizes mitochondrial membrane: Ensuing energetic and oxidative stress implications

    SciTech Connect

    Pardo-Andreu, Gilberto L.; Tudella, Valeria G.

    2011-06-15

    Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 {mu}M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca{sup 2+} efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP{sup +} transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. - Graphical abstract: Guttiferone-A permeabilizes mitochondrial membrane and induces cancer cell death Display Omitted Highlights: > We addressed the involvement of mitochondria in guttiferone (GA) toxicity toward cancer cells. > GA promoted membrane permeabilization, membrane potential dissipation, NAD(P)H depletion, ROS accumulation and ATP depletion. > These actions

  6. Effects of Mechanical Stretch on Cell Proliferation and Matrix Formation of Mesenchymal Stem Cell and Anterior Cruciate Ligament Fibroblast

    PubMed Central

    Qu, Ling; Zhu, Rui; Li, Hongguo; Xue, Yingsen; Liu, Xincheng

    2016-01-01

    Mesenchymal stem cells (MSCs) and fibroblasts are two major seed cells for ligament tissue engineering. To understand the effects of mechanical stimulation on these cells and to develop effective approaches for cell therapy, it is necessary to investigate the biological effects of various mechanical loading conditions on cells. In this study, fibroblasts and MSCs were tested and compared under a novel Uniflex/Bioflex culture system that might mimic mechanical strain in ligament tissue. The cells were uniaxially or radially stretched with different strains (5%, 10%, and 15%) at 0.1, 0.5, and 1.0 Hz. The cell proliferation and collagen production were compared to find the optimal parameters. The results indicated that uniaxial stretch (15% at 0.5 Hz; 10% at 1.0 Hz) showed positive effects on fibroblast. The uniaxial strains (5%, 10%, and 15%) at 0.5 Hz and 10% strain at 1.0 Hz were favorable for MSCs. Radial strain did not have significant effect on fibroblast. On the contrary, the radial strains (5%, 10%, and 15%) at 0.1 Hz had positive effects on MSCs. This study suggested that fibroblasts and MSCs had their own appropriate mechanical stimulatory parameters. These specific parameters potentially provide fundamental knowledge for future cell-based ligament regeneration. PMID:27525012

  7. Influence of laser parameters on nanoparticle-induced membrane permeabilization

    NASA Astrophysics Data System (ADS)

    Yao, Cuiping; Qu, Xiaochao; Zhang, Zhenxi; Hüttmann, Gereon; Rahmanzadeh, Ramtin

    2009-09-01

    Light-absorbing nanoparticles that are heated by short laser pulses can transiently increase membrane permeability. We evaluate the membrane permeability by flow cytometry assaying of propidium iodide and fluorescein isothiocyanate dextran (FITC-D) using different laser sources. The dependence of the transfection efficiency on laser parameters such as pulse duration, irradiant exposure, and irradiation mode is investigated. For nano- and also picosecond irradiation, we show a parameter range where a reliable membrane permeabilization is achieved for 10-kDa FITC-D. Fluorescent labeled antibodies are able to penetrate living cells that are permeabilized using these parameters. More than 50% of the cells are stained positive for a 150-kDa IgG antibody. These results suggest that the laser-induced permeabilization approach constitutes a promising tool for targeted delivery of larger exogenous molecules into living cells.

  8. Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells

    PubMed Central

    Kim, Sangwoo; Jeon, Sangmi; Hui, Zheng; Kim, Young; Im, Yeonggwan; Lim, Wonbong; Kim, Changsu; Choi, Hongran; Kim, Okjoon

    2015-01-01

    Objectives: Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). Study Design: Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1/2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. Conclusions: Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis. Key words:Zinc, inflammatory response, cytokines, phorbol-12-myristate-13-acetate, gingival fibroblasts cells. PMID:25662537

  9. Anti-Photoaging Effects of Angelica acutiloba Root Ethanol Extract in Human Dermal Fibroblasts

    PubMed Central

    Park, Min Ah; Sim, Mi Ja; Kim, Young Chul

    2017-01-01

    The effects that ultraviolet rays elicit on collagen synthesis and degradation are the most common causes of wrinkle formation and photo-aging in skin. The objectives of this study were to evaluate the effects of Angelica acutiloba root ethanol extract (AAEE) to promote collagen synthesis and inhibit collagen degradation in human dermal fibroblasts. By examining total polyphenol and flavonoid contents, electron donating ability, radical scavenging activity, and superoxide dismutase-like activity, we found that AAEE exhibited fairly good antioxidant activity. Treatment with AAEE significantly increased type I procollagen production by cultured fibroblasts, as well as reduced ultraviolet-induced matrix metalloproteinase-1 (MMP-1) expression and MMP-2 activity in a dose-dependent manner (p < 0.05). In addition, AAEE significantly increased TIMP-1 mRNA expression (p < 0.05), although without an associated dose-dependent increase in TIMP-1 protein expression. In summary, we suggest that AAEE may be a potentially effective agent for the prevention or alleviation of skin-wrinkle formation induced by ultraviolet rays. PMID:28503261

  10. Effects of periodontal dressings on fibroblasts and gingival wound healing in dogs.

    PubMed

    Petelin, M; Pavlica, Z; Batista, Urska; Stiblar-Martincic, Draga; Skaleric, U

    2004-01-01

    In the present study the effects of different commercially available periodontal dressings (Peripac, Barricaid, Fittydent, Reso-Pack and Myzotect-tincture) on fibroblast (V-79-379A) proliferation and survival were tested in vitro. Barricaid, Fittydent and Reso-Pack periodontal dressings have only small inhibitory effects on cell proliferation (83.3 +/- 9%, 71.6 +/- 8.7% and 87.3 +/- 4.5% of control after 48 h, respectively) in comparison with the great inhibitory effect of Myzotect-tincture (2.9 +/- 0.1%) and Peripac (33.7 +/- 11.4%) (p < 0.001). Barricaid was the only dressing where 41% of cells survived after exposure, while the other four dressings killed all the cells in 6 days. In addition, the healing of artificially created gingival wounds covered by Barricaid and Reso-Pack was followed for 7 days in 12 Beagle dogs. Histological evaluation of gingival tissue demonstrated that wounds covered by Reso-Pack showed the best epithelisation and vascularity and the least inflammatory reaction in first 4 days. Later the observed parameters were similar with those of wounds covered by Barricaid or without pack. The present results indicate that Peripac periodontal dressing and Myzotect-tincture showed the highest cytotoxicity to fibroblasts in vitro. From the histological observations in Beagle dogs Reso-Pack has been found to be the most suitable dressing, followed by Barricaid.

  11. Ameliorative effects of Eriobotrya japonica seed extract on cellular aging in cultured rat fibroblasts.

    PubMed

    Muramoto, Kazuyo; Quan, Rong-Dan; Namba, Toshiharu; Kyotani, Shojiro; Miyamura, Mitsuhiko; Nishioka, Yutaka; Tonosaki, Keiichi; Doi, Yoshinori L; Kaba, Hideto

    2011-04-01

    To investigate the effects of Eriobotrya japonica seed extract (ESE) on cellular aging, intracellular calcium homeostasis in young and senescent cells was analyzed using a rat fibroblast culture as an in vitro model system and a calcium imaging technique. The application of bradykinin (BK) transiently elicited intracellular calcium ion (Ca(2+)) increased in most of the young fibroblasts, whereas these responses were scarcely observed or were significantly attenuated in senescent cells. However, the long-term treatment of senescent cells with ESE (for 7 days) dose-dependently increased the amplitude of BK-induced responses and the percentage of BK-responding cells. In particular, most senescent cells could respond to BK with long-term treatment with ESE (1.0% or 2.0%), an effect that reinstated the percentage of BK-responding cells to the same level as that in young cells. The effects of ESE on amplitude or percentage of responding cells were not observed in young cells. Moreover, the time to half decay, which was significantly longer in senescent cells than that in young cells, was shortened in senescent cells with long-term treatment with ESE. These results suggest that treatment with an adequate concentration of ESE renders BK-induced Ca(2+) dynamics in senescent cells similar to those in young cells. Therefore, ESE can retard and/or protect against cellular aging and may be useful for elucidating the antiaging processes.

  12. Membrane Deformation and Permeabilization Caused by Microplasma Irradiation

    NASA Astrophysics Data System (ADS)

    Motomura, Hideki; Nagaiwa, Hidenori; Yamamoto, Kenta; Kido, Yugo; Ikeda, Yoshihisa; Satoh, Susumu; Jinno, Masafumi

    2016-09-01

    The microplasma irradiation achieves high gene taransfection efficiency and high cell survivability simultaneously. For this purpose, we have developed a special plasma source using a microcapillary electrode. However, it is not clear how the stimuli of effective factors generated by plasma, such as current, charge, field, chemical species, cause transfection. In this study, we used artificial cell which is a spherical vesicle consisting of a lipid bilayer to visualize membrane dynamics and permeabilization caused by microplasma irradiation. Dioleoyl phosphatidylcholine (DOPC) was used as phospholipid molecules forming the lipid bilayer. The artificial cells were prepared by natural swelling method. Fluorescent labeled polyethylene glycol (PEG) polymers (Nanocs, MPEG Fluorescein, MW = 1000) were encapsulated in the artificial cells. The artificial cells were exposed to the microplasma for 5 ms and 10-20% of decrease of the dye fluorescence in the artificial cells was observed. This result suggests the outflow of the MPEG polymers through temporary poration or deformation of the lipid bilayer. The membrane deformation dynamics was directly observed with a microscope and the relationship to the polymer outflow will be shown at the conference. This work was partly supported by a Grant-in-Aid (25108509 and 15H00896) from JSPS and a grant from Ehime University.

  13. Effects of hyaluronan treatment on lipopolysaccharide-challenged fibroblast-like synovial cells

    PubMed Central

    Santangelo, Kelly S; Johnson, Amanda L; Ruppert, Amy S; Bertone, Alicia L

    2007-01-01

    Numerous investigations have reported the efficacy of exogenous hyaluronan (HA) in modulating acute and chronic inflammation. The current study was performed to determine the in vitro effects of lower and higher molecular weight HA on lipopolysaccharide (LPS)-challenged fibroblast-like synovial cells. Normal synovial fibroblasts were cultured in triplicate to one of four groups: group 1, unchallenged; group 2, LPS-challenged (20 ng/ml); group 3, LPS-challenged following preteatment and sustained treatment with lower molecular weight HA; and group 4, LPS-challenged following pretreatment and sustained treatment with higher molecular weight HA. The response to LPS challenge and the influence of HA were compared among the four groups using cellular morphology scoring, cell number, cell viability, prostaglandin E2 (PGE2) production, IL-6 production, matrix metalloproteinase 3 (MMP3) production, and gene expression microarray analysis. As expected, our results demonstrated that LPS challenge induced a loss of characteristic fibroblast-like synovial cell culture morphology (P < 0.05), decreased the cell number (P < 0.05), increased PGE2 production 1,000-fold (P < 0.05), increased IL-6 production 15-fold (P < 0.05), increased MMP3 production threefold (P < 0.05), and generated a profile of gene expression changes typical of LPS (P < 0.005). Importantly, LPS exposure at this concentration did not alter the cell viability. Higher molecular weight HA decreased the morphologic change (P < 0.05) associated with LPS exposure. Both lower and higher molecular weight HA significantly altered a similar set of 21 probe sets (P < 0.005), which represented decreased expression of inflammatory genes (PGE2, IL-6) and catabolic genes (MMP3) and represented increased expression of anti-inflammatory and anabolic genes. The molecular weight of the HA product did not affect the cell number, the cell viability or the PGE2, IL-6, or MMP3 production. Taken together, the anti-inflammatory and

  14. Vector-free intracellular delivery by reversible permeabilization

    PubMed Central

    Annibaldi, Valeria; Gallagher, Louise; Mulholland, Joanne; Molloy, Emer L.; Breen, Conor J.; Gilbert, Jennifer L.; Martin, Darren S.; Maguire, Michael; Curry, Fitz-Roy

    2017-01-01

    Despite advances in intracellular delivery technologies, efficient methods are still required that are vector-free, can address a wide range of cargo types and can be applied to cells that are difficult to transfect whilst maintaining cell viability. We have developed a novel vector-free method that uses reversible permeabilization to achieve rapid intracellular delivery of cargos with varying composition, properties and size. A permeabilizing delivery solution was developed that contains a low level of ethanol as the permeabilizing agent. Reversal of cell permeabilization is achieved by temporally and volumetrically controlling the contact of the target cells with this solution. Cells are seeded in conventional multi-well plates. Following removal of the supernatant, the cargo is mixed with the delivery solution and applied directly to the cells using an atomizer. After a short incubation period, permeabilization is halted by incubating the cells in a phosphate buffer saline solution that dilutes the ethanol and is non-toxic to the permeabilized cells. Normal culture medium is then added. The procedure lasts less than 5 min. With this method, proteins, mRNA, plasmid DNA and other molecules have been delivered to a variety of cell types, including primary cells, with low toxicity and cargo functionality has been confirmed in proof-of-principle studies. Co-delivery of different cargo types has also been demonstrated. Importantly, delivery occurs by diffusion directly into the cytoplasm in an endocytic-independent manner. Unlike some other vector-free methods, adherent cells are addressed in situ without the need for detachment from their substratum. The method has also been adapted to address suspension cells. This delivery method is gentle yet highly reproducible, compatible with high throughput and automated cell-based assays and has the potential to enable a broad range of research, drug discovery and clinical applications. PMID:28358921

  15. Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells

    SciTech Connect

    Voelker, D.R. )

    1989-12-01

    Chinese hamster ovary (CHO-K1) cells were pulse labeled with ({sup 3}H)serine, and the synthesis of phosphatidyl({sup 3}H)ethanolamine from phosphatidyl({sup 3}H)serine during the subsequent chase was used as a measure of lipid translocation to the mitochondria. When the CHO-K1 cells were pulse labeled and subsequently permeabilized with 50 {mu}g of saponin per ml, there was no significant turnover of nascent phosphatidyl({sup 3}H)serine to form phosphatidyl({sup 3}H)ethanolamine during an ensuring chase. Supplementation of the permeabilized cells with 2 mM ATP resulted in significant phosphatidyl({sup 3}H)ethanolamine synthesis (83% of that found in intact cells) from phosphatidyl({sup 3}H)serine during a subsequent 2-hr chase. Phosphatidyl({sup 3}H)ethanolamine synthesis essentially ceased after 2 hr in the permeabilized cells. The translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine was a saturable process with respect to ATP concentration in permeabilized cells. The conversion of phosphatidyl({sup 3}H)serine to phosphatidyl({sup 3}H)ethanolamine did not occur in saponin-treated cultures supplemented with 2 mM AMP, 2 mM 5{prime}-adenylyl imidodiphosphate, or apyrase plus 2 mM ATP. ATP was the most effective nucleotide, but the addition of GTP, CTP, UTP, and ADP also supported the translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine albeit to a lesser extent. These data provide evidence that the interorganelle translocation of phosphatidylserine requires ATP and is largely independent of soluble cytosolic proteins.

  16. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure

    SciTech Connect

    Thompson, Gary L.; Roth, Caleb C.; Kuipers, Marjorie A.; Tolstykh, Gleb P.; Beier, Hope T.; Ibey, Bennett L.

    2016-01-29

    Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus – histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. - Highlights: • The ability of nsPEF to damage nuclear structures within cells is investigated. • Leakage of proliferating nuclear antigen from nuclei is induced by nsPEF. • High doses of nsPEF disrupt cortical lamin and cause chromatin decompaction. • Histone H2B remains attached to chromatin following nsPEF exposure. • DNA does not leak out of nsPEF-permeabilized nuclei.

  17. Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells.

    PubMed

    Menicacci, Beatrice; Laurenzana, Anna; Chillà, Anastasia; Margheri, Francesca; Peppicelli, Silvia; Tanganelli, Elisabetta; Fibbi, Gabriella; Giovannelli, Lisa; Del Rosso, Mario; Mocali, Alessandra

    2017-09-01

    Cellular senescence is related to organismal aging and is observed after DNA damaging cancer therapies, that induce tumor-suppressive modifications, but it is characterized by a strong increase in secreted factors, termed the "senescence-associated secretory phenotype" (SASP). Particularly, SASP from stroma senescent fibroblasts creates a cancer-favoring microenvironment, providing targets for anti-cancer interventions. In the present article, chronic treatment (5 weeks) with 5 µM resveratrol has been used to modulate senescence-related protumoral features of MRC5 fibroblasts, reducing SASP-related interleukins IL1α, IL1β, IL6, and IL8; transforming-growth-factor-β (TGFβ); matrix metallo-proteinases MMP3 and MMP2; urokinase plasminogen activator (uPA); receptor proteins uPAR, IL6R, insulin growth factor receptor-1 (IGF-1R), TGFβ-R2, and CXCR4. The cellular nuclear-factor-kB (NF-kB) protein level was also reduced, confirming its role in the induction of SASP. Resveratrol pretreated MRC5 fibroblasts were resistant to activation by TGFβ. Resveratrol treatment of senescent MRC5 induced the production of conditioned media (CM) which counteracted the protumoral effect of senescent CM on A375 and A375-M6 melanoma cell proliferation and invasiveness, and reduced the expression of epithelial-to-mesenchymal transition markers related to malignant features. This experimental approach proposes a treatment that targets the senescent stromal cell phenotype to induce an anti-tumor hosting microenvironment, which is suitable for both preventive and therapeutic purposes. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Effects of mebendazole on protein biosynthesis and secretion in human-derived fibroblast cultures.

    PubMed

    Soto, H; Massó, F; Cano, S; Díaz de León, L

    1996-07-26

    Previous results of our group revealed that mebendazole, a broad spectrum anthelmintic drug with antimicrotubular properties, used for the treatment of liver cirrhosis, decreased total collagen content and biosynthesis in liver upon treatment. In the present study, we have evaluated the effects of mebendazole (5-50 micrograms/mL) on protein synthesis, secretion, and deposition in human-derived fibroblast cultures. The results showed a decrease in cell viability (18.5 +/- 0.9%) at 50 micrograms/mL. [3H]Thymidine incorporation diminished gradually with increasing mebendazole concentrations, reaching a plateau (53.67%) between 30 and 50 micrograms/mL. In late logarithmic phase cultures, the drug caused a decrease of [3H]proline incorporation (43.10%) and collagen biosynthesis (58.61%) in the extracellular matrix. This correlated with an increase in radioactivity in total proteins (51.28%) of the intracellular fraction. Similar results were obtained when mebendazole was assayed in post-confluent fibroblast cultures. The electrophoretic patterns of the extracellular matrix showed a decrease of radioactive collagenous components (alpha chains and beta dimers). By contrast, in the intracellular fraction an increase of radioactive collagen precursors (pro alpha chains) was observed. Immunofluorescence studies and immunotransfer analysis, using polyclonal anti-type I collagen antibodies, revealed an accumulation of intracellular collagen which included: collagen pro alpha chains, alpha chains, and low molecular weight peptides. The results obtained suggest that mebendazole interferes with the transcellular mobilization of proteins, resulting in a decrease of secretion and deposition of extracellular matrix proteins, and an accumulation of intracellular collagenous components. The intracellular accumulation of newly synthesized proteins could cause a feedback regulation in fibroblast cultures.

  19. Activation of chitin synthetase in permeabilized cells of a Saccharomyces cerevisiae mutant lacking proteinase B.

    PubMed Central

    Fernandez, M P; Correa, J U; Cabib, E

    1982-01-01

    Digitonin treatment at 30 degrees C of a Saccharomyces cerevisiae mutant lacking proteinase B permeabilized the cells and caused rapid and extensive activation of chitin synthetase in situ. The same result was obtained with a mutant generally defective in vacuolar proteases. By lowering the temperature and using different permeabilization procedures, we showed that increases in permeability and activation are distinct processes. Activation was inhibited by the protease inhibitors antipain and leupeptin, but by pepstatin or chymostatin. Metal chelators were also inhibitory, and their effect was reversed by the addition of Ca2+ but not by Mg2+. Antipain added together with Ca2+ after incubation of the cells in the presence of a chelating agent prevented reversal of inhibition, a result that was interpreted as indicating that antipain acts either on the same step affected by Ca2+ or on a subsequent step. Efforts to obtain activation in cell-free extracts were unsuccessful, but it was possible to extract the synthetase, once activated, by breaking permeabilized cells with glass beads. Treatment of the cell-free extracts with trypsin led not only to increased activity of chitin synthetase, but also to a change in the pH-activity curve and a diminished requirement by the enzyme for free N-acetylglucosamine. These observations suggest that the modification undergone by the synthetase during endogenous activation is different from that brought about by trypsin treatment. Images PMID:6216245

  20. Additive and synergistic membrane permeabilization by antimicrobial (lipo)peptides and detergents.

    PubMed

    Patel, Hiren; Huynh, Quang; Bärlehner, Dominik; Heerklotz, Heiko

    2014-05-20

    Certain antibiotic peptides are thought to permeabilize membranes of pathogens by effects that are also observed for simple detergents, such as membrane thinning and disordering, asymmetric bilayer expansion, toroidal pore formation, and micellization. Here we test the hypothesis that such peptides act additively with detergents when applied in parallel. Additivity is defined analogously to a fractional inhibitory concentration index of unity, and the extent and mechanism of leakage is measured by the fluorescence lifetime-based vesicle leakage assay using calcein-loaded vesicles. Good additivity was found for the concerted action of magainin 2, the fungicidal lipopeptide class of surfactins from Bacillus subtilis QST713, and the detergent octyl glucoside, respectively, with the detergent C12EO8. Synergistic or superadditive action was observed for fengycins from B. subtilis, as well as the detergent CHAPS, when combined with C12EO8. The results illustrate two mechanisms of synergistic action: First, maximal leakage requires an optimum degree of heterogeneity in the system that may be achieved by mixing a graded with an all-or-none permeabilizer. (The optimal perturbation should be focused to certain defect structures, yet not to the extent that some vesicles are not affected at all.) Second, a cosurfactant may enhance the bioavailability of a poorly soluble peptide. The results are important for understanding the concerted action of membrane-permeabilizing compounds in biology as well as for optimizing formulations of such antimicrobials for medical applications or crop protection. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast.

    PubMed

    Seol, Ja Young; Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami; Choi, Soon Young

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin's elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity.

  2. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast

    PubMed Central

    Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin’s elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity. PMID:27194933

  3. Antioxidant effects of the sarsaparilla via scavenging of reactive oxygen species and induction of antioxidant enzymes in human dermal fibroblasts.

    PubMed

    Park, Gunhyuk; Kim, Tae-mi; Kim, Jeong Hee; Oh, Myung Sook

    2014-07-01

    Ultraviolet (UV) radiation from sunlight causes distinct changes in collagenous skin tissues as a result of the breakdown of collagen, a major component of the extracellular matrix. UV irradiation downregulates reactive oxygen species (ROS)-elimination pathways, thereby promoting the production of ROS, which are implicated in skin aging. Smilax glabra Roxb (sarsaparilla) has been used in folk medicine because of its many effects. However, no study on the protective effects of sarsaparilla root (SR) on human dermal fibroblasts has been reported previously. Here, we investigated the protective effect of SR against oxidative stress in dermal fibroblasts. SR significantly inhibited oxidative damage and skin-aging factor via mitogen-activated protein kinase signaling pathways. Also, SR decreased Ca(2+) and ROS, mitochondrial membrane potential, dysfunction, and increased glutathione, NAD(P)H dehydrogenase and heme oxygenase-1. These results demonstrate that SR can protect dermal fibroblasts against UVB-induced skin aging via antioxidant effects.

  4. Effects of differently polarized microwave radiation on the microscopic structure of the nuclei in human fibroblasts.

    PubMed

    Shckorbatov, Yuriy G; Pasiuga, Vladimir N; Goncharuk, Elena I; Petrenko, Tatiana Ph; Grabina, Valentin A; Kolchigin, Nicolay N; Ivanchenko, Dmitry D; Bykov, Victor N; Dumin, Oleksandr M

    2010-10-01

    To investigate the influence of microwave radiation on the human fibroblast nuclei, the effects of three variants of electromagnetic wave polarization, linear and left-handed and right-handed elliptically polarized, were examined. Experimental conditions were: frequency (f) 36.65 GHz, power density (P) at the surface of exposed object 1, 10, 30, and 100 µW/cm(2), exposure time 10 s. Human fibroblasts growing in a monolayer on a cover slide were exposed to microwave electromagnetic radiation. The layer of medium that covered cells during microwave exposure was about 1 mm thick. Cells were stained immediately after irradiation by 2% (w/v) orcein solution in 45% (w/v) acetic acid. Experiments were made at room temperature (25 °C), and control cell samples were processed in the same conditions. We assessed heterochromatin granule quantity (HGQ) at 600× magnification. Microwave irradiation at the intensity of 1 µW/cm(2) produced no effect, and irradiation at the intensities of 10 and 100 µW/cm(2) induced an increase in HGQ. More intense irradiation induced more chromatin condensation. The right-handed elliptically polarized radiation revealed more biological activity than the left-handed polarized one.

  5. Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Siddique, M.; Israr-Qadir, M.; Nur, O.; Willander, M.; Öllinger, K.

    2014-11-01

    Photocytotoxic effects of as-grown and zinc oxide (ZnO) nanorods coated with 5-aminolevulinic acid (ALA) have been studied on human cells, i.e. melanoma and foreskin fibroblast, under dark and ultraviolet light exposures. Zinc oxide nanorods have been grown on the very sharp tip (diameter = 700 nm) of borosilicate glass pipettes and then were coated by the photosensitizer for targeted investigations inside human cells. The coated glass pipette’s tip with photosensitizer has been inserted inside the cells with the help of a micro-manipulator and irradiated through ultraviolet light (UVA), which reduces the membrane potential of the mitochondria leading to cell death. Cell viability loss has been detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay when exposed to the dissolved ZnO nanorods and the production of the reactive oxygen species (ROS) has been detected along with the enhanced cytotoxic effect under UVA irradiation. Additionally, the influence of the lipid soluble antioxidant vitamin E and water-soluble N-acetyl-cysteine toward the enhancement or reduction of the toxicity has been investigated. A comparative analysis of the toxic nature of ZnO nanorods has been drawn between normal human fibroblast and melanoma cells, which can be favorable for understanding the clinical setting for killing tumor cells.

  6. [Determination of the healing effect of Piper aduncum (spiked pepper or matico) on human fibroblasts].

    PubMed

    Paco, Karen; Ponce-Soto, Luis Alberto; Lopez-Ilasaca, Marco; Aguilar, José L

    2016-01-01

    To evaluate the healing effect of a Piper aduncum ethanol-water extract on an adult human dermal fibroblast cell line (hDFa). After obtaining the extract via solid-liquid extraction, concentration, and lyophilization, extract proteins were purified using reverse phase high-performance liquid chromatography, identified using tandem mass spectrometry of tryptic peptides, and analyzed using MALDI-TOF-TOF on an ABSciex4800 mass spectrometer. Half maximum effective concentration values (EC50), half maximum inhibiting concentration (IC50), and percentages of cell proliferation were determined using tetrazolium salt assays. Cell migration was evaluated using a "scratch assay". Growth factor expression in cells was analyzed via quantitative real-time reverse transcription polymerase chain reaction. Against the hDFa cell line, the extract had an IC50 of 200 μg/mL and EC50 of 103.5 µg/mL. In the proliferation assay, protein K2 (obtained from the extract) exhibited increased proliferative activity relative to other treatments (1 µg/mL); this agent also exhibited increased activity (50 µg/mL) in the fibroblast migration assay.Furthermore, the relative expression of platelet-derived growth factor increased by 8.6-fold in the presence of K2 protein relative to the control. The hydroethanolic extract of Piper aduncum and its component proteins increased the proliferation and migration of hDFa and increased the expression of growth factors involved in the healing process.

  7. Effects of differently polarized microwave radiation on the microscopic structure of the nuclei in human fibroblasts

    PubMed Central

    Shckorbatov, Yuriy G.; Pasiuga, Vladimir N.; Goncharuk, Elena I.; Petrenko, Tatiana Ph.; Grabina, Valentin A.; Kolchigin, Nicolay N.; Ivanchenko, Dmitry D.; Bykov, Victor N.; Dumin, Oleksandr M.

    2010-01-01

    To investigate the influence of microwave radiation on the human fibroblast nuclei, the effects of three variants of electromagnetic wave polarization, linear and left-handed and right-handed elliptically polarized, were examined. Experimental conditions were: frequency (f) 36.65 GHz, power density (P) at the surface of exposed object 1, 10, 30, and 100 µW/cm2, exposure time 10 s. Human fibroblasts growing in a monolayer on a cover slide were exposed to microwave electromagnetic radiation. The layer of medium that covered cells during microwave exposure was about 1 mm thick. Cells were stained immediately after irradiation by 2% (w/v) orcein solution in 45% (w/v) acetic acid. Experiments were made at room temperature (25 °C), and control cell samples were processed in the same conditions. We assessed heterochromatin granule quantity (HGQ) at 600× magnification. Microwave irradiation at the intensity of 1 µW/cm2 produced no effect, and irradiation at the intensities of 10 and 100 µW/cm2 induced an increase in HGQ. More intense irradiation induced more chromatin condensation. The right-handed elliptically polarized radiation revealed more biological activity than the left-handed polarized one. PMID:20872988

  8. Effect of nicotine-treated epithelial cells on the proliferation and collagen production of gingival fibroblasts.

    PubMed

    Giannopoulou, C; Roehrich, N; Mombelli, A

    2001-08-01

    Several in vitro and in vivo studies have indicated that tobacco smoking may be an important risk factor for the development and severity of inflammatory periodontal disease. In the present study, we developed an in vitro model to study the interactions between nicotine-treated epithelial cells (EC) and gingival fibroblasts (GF) derived from the same patient. EC were treated with nicotine concentrations varying from 1 microg/ml to 500 microg/ml and their effect on different functions of GF was studied. The proliferation of GF was evaluated by the incorporation of 3H-thymidine. A dose-dependent inhibition was observed with nicotine concentrations > or =100 microg/ml. Similar results were observed when studying the total protein synthesis of GF by incorporation of 3H-proline into non-dialyzable material. When collagen production was evaluated by 3H-proline incorporation into collagenase-sensitive protein, a dose-dependent reduction was observed: the degree of inhibition varied from 25% with 50 microg/ml nicotine, to almost 60% with 500 microg/ml. Interestingly, the production of non-collagenous proteins decreased by almost 50% only when EC were treated with the highest concentration of nicotine. The results suggest that epithelial cells, acting as mechanical barrier, can reduce but not completely eliminate the deleterious effect of nicotine on gingival fibroblasts.

  9. Smac127 Has Proapoptotic and Anti-Inflammatory Effects on Rheumatoid Arthritis Fibroblast-Like Synoviocytes

    PubMed Central

    Lattuada, D.; Gualtierotti, R.; Crotta, K.; Seneci, P.; Ingegnoli, F.; Corradini, C.; Viganò, R.; Marelli, O.; Casnici, C.

    2016-01-01

    Rheumatoid arthritis (RA) is characterized by synovial inflammation and hyperplasia. Fibroblast-like synoviocytes (FLSs) are apoptosis-resistant and contribute to the pathogenesis of RA by producing cytokines and proteolytic enzymes, which degrade the extracellular matrix. We evaluated the proapoptotic and anti-inflammatory activity of the small molecule Smac127 on RA-FLSs cultured in synovial fluid (SF), in order to reproduce the physiopathological environmental characteristic of RA joints. In this context, Smac127 induces apoptosis by inhibiting apoptosis proteins (IAPs). This inhibition activates caspase 3 and restores the apoptotic pathway. In addition, Smac127 induces a significant inhibition of the secretion of IL-15 and IL-6, stimulation of pannus formation, and damage of bone and cartilage in RA. Also the secretion of the anti-inflammatory cytokine IL-10 is dramatically increased in the presence of Smac127. The cartilage destruction in RA patients is partly mediated by metalloproteinases; here we show that the MMP-1 production by fibroblasts cultured in SF is significantly antagonized by Smac127. Conversely, this molecule has no significant effects on RANKL and OPG production. Our observations demonstrate that Smac127 has beneficial regulatory effects on inflammatory state of RA-FLSs and suggest a potential use of Smac127 for the control of inflammation and disease progression in RA. PMID:26989333

  10. Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts.

    PubMed

    Zhu, Huang; Wang, Jie; Cui, Jiefeng; Fan, Xianqun

    2016-06-01

    This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p < 0.05). This study shows that ELF-EMFs had biological effects on HFSFs and could cause abnormality in scleral collagen. © The Author(s) 2014.

  11. Smac127 Has Proapoptotic and Anti-Inflammatory Effects on Rheumatoid Arthritis Fibroblast-Like Synoviocytes.

    PubMed

    Lattuada, D; Gualtierotti, R; Crotta, K; Seneci, P; Ingegnoli, F; Corradini, C; Viganò, R; Marelli, O; Casnici, C

    2016-01-01

    Rheumatoid arthritis (RA) is characterized by synovial inflammation and hyperplasia. Fibroblast-like synoviocytes (FLSs) are apoptosis-resistant and contribute to the pathogenesis of RA by producing cytokines and proteolytic enzymes, which degrade the extracellular matrix. We evaluated the proapoptotic and anti-inflammatory activity of the small molecule Smac127 on RA-FLSs cultured in synovial fluid (SF), in order to reproduce the physiopathological environmental characteristic of RA joints. In this context, Smac127 induces apoptosis by inhibiting apoptosis proteins (IAPs). This inhibition activates caspase 3 and restores the apoptotic pathway. In addition, Smac127 induces a significant inhibition of the secretion of IL-15 and IL-6, stimulation of pannus formation, and damage of bone and cartilage in RA. Also the secretion of the anti-inflammatory cytokine IL-10 is dramatically increased in the presence of Smac127. The cartilage destruction in RA patients is partly mediated by metalloproteinases; here we show that the MMP-1 production by fibroblasts cultured in SF is significantly antagonized by Smac127. Conversely, this molecule has no significant effects on RANKL and OPG production. Our observations demonstrate that Smac127 has beneficial regulatory effects on inflammatory state of RA-FLSs and suggest a potential use of Smac127 for the control of inflammation and disease progression in RA.

  12. P-glycoprotein Blockers Augment the Effect of Mitomycin C on Human Tenon's Fibroblasts

    PubMed Central

    White, Andrew J. R.; Kelly, Elizabeth; Healey, Paul R.; Crowston, Jonathan G.; Mitchell, Paul; Zoellner, Hans

    2013-01-01

    Purpose: Mitomycin C (MMC), which induces apoptosis in human Tenon's fibroblasts (HTF), is frequently used to retard wound healing after glaucoma surgery. The aim of this in vitro study was to examine whether adjunctive Verapamil and Cyclosporine could augment the cytotoxic effect of MMC on HTF. Methods: Fibroblast cell lines were established by explant culture from human tissue biopsy samples obtained during trabeculectomy procedures. Cells were exposed to MMC at varying concentrations (0.01–0.4 mg/ml) for 3 minutes, prior to washing in the presence or absence of the following drugs: Staurosporine (0.003mg/ml), Verapamil (2.5–0.25 mg/ml), or Cyclosporine (50–0.5 mg/ml). Following exposure, cells were cultured for 6 hours and surviving cells quantitated by haemocytometer counts. Results: Both Verapamil and Staurosporine exhibited mild toxic effects on their own, but greatly enhanced the apoptotic effect of MMC. Staurosporine is too toxic to be considered clinically, so its augmentive effect on the activity of MMC was not studied further here. Doses as low as 0.25 mg/ml of Verapamil continued to show significant augmentation of the apoptotic effect of MMC Cyclosporine at a clinically used concentration (5 mg/ml) exhibited modest augmentation of the effect of MMC. Conclusions: Verapamil and Cyclosporine in clinically acceptable concentrations potentiate the effect of MMC and may obviate the need for high dose antimetabolites in trabeculectomy; however, further preclinical study is required. Translational Relevance: Adjunctive Verapamil or Cyclosporine may allow lower dose MMC to be used in glaucoma filtration surgery while maintaining the same antifibrotic effects. PMID:24049721

  13. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    SciTech Connect

    Layman, D.L.; Diedrich, D.L.

    1987-06-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by /sup 3/H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in /sup 3/H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin.

  14. Effect of Cyclosporin A and Angiotensin II on cytosolic calcium levels in primary human gingival fibroblasts

    PubMed Central

    Supraja, Ajitkumar; Dinesh, Murugan Girija; Rajasekaran, Subbarayan; Balaji, Thodur Madapusi; Rao, Suresh Ranga

    2016-01-01

    Background: To evaluate the effect of Cyclosporin A (CsA) and angiotensin II (Ang II) on cytosolic calcium levels in cultured human gingival fibroblasts (HGFs). Materials and Methods: Healthy gingival samples from six volunteers were obtained, and primary HGFs were cultured. Cell viability and proliferation assay were performed to identify the ideal concentrations of CsA and Ang II. Cytosolic calcium levels in cultured gingival fibroblasts treated with CsA and Ang II were studied using colorimetric assay, confocal and fluorescence imaging. Statistical analyses were done using SPSS software and GraphPad Prism. Results: Higher levels of cytosolic levels were evident in cells treated with CsA and Ang II when compared to control group and was statistically significant (P < 0.05) in both colorimetric assay and confocal imaging. Fluorescent images of the cultured HGFs revealed the same. Conclusion: Thus calcium being a key player in major cellular functions, plays a major role in the pathogenesis of drug-induced gingival overgrowth. PMID:27857765

  15. The effect of laser-treated titanium surface on human gingival fibroblast behavior.

    PubMed

    Baltriukienė, D; Sabaliauskas, V; Balčiūnas, E; Melninkaitis, A; Liutkevičius, E; Bukelskienė, V; Rutkūnas, V

    2014-03-01

    Surface modification, as a means of enhancing soft tissue integration in titanium would have significant advantages including less marginal bone resorption, predictable esthetic outcome, improved soft tissue stability, and seal against bacterial leakage. The aim of this study was to evaluate the effects of laser-roughened titanium surfaces on human gingival fibroblast (HGF) viability, proliferation, and adhesion. Titanium discs were ablated with impulse laser in four different patterns. Polished and sand-blasted titanium discs were used as control groups. Specimen surface properties were determined using optical profilometry and scanning electron microscopy. HGF behavior on modified surfaces was analyzed using cell adhesion, viability, proliferation, and ELISA assays. Results suggested that modified Ti surfaces did not affect the viability of HGFs and improved adhesion was measured in laser treatment groups after 24 h. However, proliferation study showed that the adsorbance of fibroblast cells after 72 h cultured on polished titanium was higher and comparable with that of control cells. As for focal adhesion kinase (FAK), cells grown on laser modified surfaces had higher expression of FAK as compared with polished titanium. In conclusion, tested laser-treated surfaces seem to favor HGF adhesion. There were no significant differences between different laser treatment groups. Copyright © 2013 Society of Plastics Engineers.

  16. Cytotoxic effects of mineral trioxide aggregate, calcium enrichedmixture cement, Biodentine and octacalcium pohosphate onhuman gingival fibroblasts

    PubMed Central

    A. Saberi, Eshagh; Farhadmollashahi, Narges; Ghotbi, Faroogh; Karkeabadi, Hamed; Havaei, Roholla

    2016-01-01

    Background. This in vitro study compared the effects of mineral trioxide aggregate (MTA), calcium enriched mixture(CEM) cement, Biodentine (BD) and octacalcium phosphate (OCP) on the viability of human gingival fibroblasts (HGFs). Methods. After completion of the setting time of the materials under study, fibroblasts were placed in 24-well insert platesand 1 mg of each material was added to the respective wells. The plates were then incubated at 37°C. The inserts were removedat 24, 48 and 168 hours and 2,5-diphenyltetrazolium bromide was added to assess cytotoxicity via the MTT colorimetricassay. Data were analyzed at different time intervals using repeated-measures ANOVA, followed by the Bonferronitest at three levels of significance of P < 0.05, P < 0.01 and P < 0.001. Results. Cytotoxicity of the materials under study was not significantly different at 24 and 48 hours compared to the controlgroup. However, at 168 hours, a significant difference was noted between MTA (P < 0.05) and Biodentine (P < 0.01)and the control group. Conclusion. Cytotoxicity of MTA, CEM, Biodentine and OCP against HGFs was similar to that of the control group at 24and 48 hours. Over time, MTA and Biodentine exhibited less cytotoxicity than other materials. PMID:27429722

  17. Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Jen; Lu, Pei-Shan; Hsieh, Chih-Hsin; Chen, Wen-Cheng; Chen, Jian-Chih

    2014-09-01

    The main objective of this study was to compare the responses of fibroblasts and osteoblasts to bioglass (BG) and bioglass-containing mesoporous structure (BG-M) powders. The BG-M powders exhibited specific surface areas approximately three times larger than those of the BG powders. The formation of a hysteresis loop also signified the presence of mesoporous structures in the BG-M samples; however, a hysteresis loop was not observed for the BG samples, resulting in 1/5 the pore volume of the BG-M samples. The viabilities of the fibroblasts and osteoblasts cultured in media containing the BG-M powders for 1, 2, and 3 days were greater than 90%. Importantly, the results of fluorescent microscopy images show that BG-M has excellent cellular affinity. Both the BG and BG-M substrates had positive effects on the proliferation of the osteoblastic cells. However, cells cultured on BG-M had approximately 1.4 times higher proliferation activity.

  18. Nonthermal effects of ND:YAG laser on biological functions of human skin fibroblasts in culture.

    PubMed

    Abergel, R P; Meeker, C A; Dwyer, R M; Lesavoy, M A; Uitto, J

    1984-01-01

    Previous studies have indicated that laser can selectively affect the biological functions of cells. In the present study, the role of a thermal component in laser-induced alterations in the biology of human skin fibroblasts was examined. Cells were cultured on 96-well tissue culture plates, subjected to treatment with the Nd:YAG laser (wavelength 1,064 nm), and the temperature of the medium was monitored by a microprobe connected to a telethermometer . For comparison, parallel cultures were heated to the same temperatures by tungsten-halogen lamp. The cell cultures were analyzed for collagen synthesis by incubating the cultures with [3H]proline, and the collagen production was assayed by the synthesis of nondialyzable [3H]hydroxyproline. The rate of DNA replication was also determined by measuring the uptake of [3H]thymidine. A marked decrease of collagen production and thymidine incorporation was noted in the cultures subjected to Nd:YAG laser. No such decreases were noted in cultures heated to the corresponding temperatures by tungsten-halogen lamp. The results thus indicate that the biochemical alteration caused by the Nd:YAG laser in human fibroblast functions cannot be explained on the basis of thermal effects.

  19. Effects of ethyl-α-d-glucoside on human dermal fibroblasts.

    PubMed

    Bogaki, Takayuki; Mitani, Keiichi; Oura, Yuki; Ozeki, Kenji

    2017-09-01

    Ethyl α-d-glucoside (α-EG) is a glycoside present in sake, Japanese rice wine. Previous studies have reported that α-EG suppresses skin roughness after ultraviolet B irradiation, transepidermal water loss, and hepatic function disorder, and has a skin moisturizing effect. In this study, 0.48 μM of α-EG was found to increase the proliferation of normal human dermal fibroblasts (NHDF) by 121.0%, and the amount of collagen I produced by NHDF increased by 159.6% at an α-EG concentration of 0.048 μM, compared to those in cells cultured without α-EG. In NHDF cultured in α-EG-supplemented medium, the expression of fibroblast growth factor I and VII mRNA increased by 148.8 and 153.1%, at an α-EG concentration of 4.8 and 0.048 μM, respectively, as measured by a quantitative reverse transcription-polymerase chain reaction. Transcript levels of type I collagen genes, COL1A1 and COL1A2, increased by 152.4 and 129.7%, respectively, and that of a type III collagen gene, COL3A1, increased by 131.8% at an α-EG concentration of 0.48 μM. These findings supported the possibility that α-EG was involved in the maintenance and improvement of skin homeostasis and moisturizing functions.

  20. Cytotoxic effects of mineral trioxide aggregate, calcium enrichedmixture cement, Biodentine and octacalcium pohosphate onhuman gingival fibroblasts.

    PubMed

    A Saberi, Eshagh; Farhadmollashahi, Narges; Ghotbi, Faroogh; Karkeabadi, Hamed; Havaei, Roholla

    2016-01-01

    Background. This in vitro study compared the effects of mineral trioxide aggregate (MTA), calcium enriched mixture(CEM) cement, Biodentine (BD) and octacalcium phosphate (OCP) on the viability of human gingival fibroblasts (HGFs). Methods. After completion of the setting time of the materials under study, fibroblasts were placed in 24-well insert platesand 1 mg of each material was added to the respective wells. The plates were then incubated at 37°C. The inserts were removedat 24, 48 and 168 hours and 2,5-diphenyltetrazolium bromide was added to assess cytotoxicity via the MTT colorimetricassay. Data were analyzed at different time intervals using repeated-measures ANOVA, followed by the Bonferronitest at three levels of significance of P < 0.05, P < 0.01 and P < 0.001. Results. Cytotoxicity of the materials under study was not significantly different at 24 and 48 hours compared to the controlgroup. However, at 168 hours, a significant difference was noted between MTA (P < 0.05) and Biodentine (P < 0.01)and the control group. Conclusion. Cytotoxicity of MTA, CEM, Biodentine and OCP against HGFs was similar to that of the control group at 24and 48 hours. Over time, MTA and Biodentine exhibited less cytotoxicity than other materials.

  1. Effects of interleukin-1 on cardiac fibroblast function: relevance to post-myocardial infarction remodelling.

    PubMed

    Turner, Neil A

    2014-01-01

    The cardiac fibroblast (CF) is a multifunctional and heterogeneous cell type that plays an essential role in regulating cardiac development, structure and function. Following myocardial infarction (MI), the myocardium undergoes complex structural remodelling in an attempt to repair the damaged tissue and overcome the loss of function induced by ischemia/reperfusion injury. Evidence is emerging that CF play critical roles in all stages of post-MI remodelling, including the initial inflammatory phase that is triggered in response to myocardial damage. CF are particularly responsive to the proinflammatory cytokine interleukin-1 (IL-1) whose levels are rapidly induced in the myocardium after MI. Studies from our laboratory in recent years have sought to evaluate the functional effects of IL-1 on human CF function and to determine the underlying molecular mechanisms. This review summarises these data and sets it in the context of post-MI cardiac remodelling, identifying the fibroblast as a potential therapeutic target for reducing adverse cardiac remodelling and its devastating consequences. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The Effect of Substrate Topography on Direct Reprogramming of Fibroblasts to Induced Neurons

    PubMed Central

    Kulangara, Karina; Adler, Andrew F.; Wang, Hong; Chellappan, Malathi; Hammett, Ellen; Yasuda, Ryohei; Leong, Kam W.

    2014-01-01

    Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2+ neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming. PMID:24709523

  3. Mechanisms of luteinizing-hormone exocytosis in Staphylococcus aureus-alpha-toxin-permeabilized sheep gonadotropes.

    PubMed Central

    van der Merwe, P A; Millar, R P; Wakefield, I K; Davidson, J S

    1989-01-01

    We have used primary gonadotropes permeabilized with the pore-forming protein Staphylococcus aureus alpha-toxin to investigate luteinizing hormone (lutropin, LH) exocytosis. The diameter of the alpha-toxin pores (2-3 nm) allows the exchange of small molecules, whereas larger cytosolic proteins are retained. Because of the slow exchange of small molecules through the pores, we have developed a protocol which combines prolonged pre-equilibration of the permeabilized cells at 0 degrees C before stimulation with strong Ca2+ buffering. Under these conditions, increasing the free Ca2+ concentration from 0.1 microM to 10 microM [EC50 (concentration effecting half-maximal response) 2-3 microM] resulted in a 15-20-fold increase in LH exocytosis. LH exocytosis was maximal in the first 3 min and completed by 12 min. When permeabilized cells were equilibrated for prolonged periods in the absence of MgATP, Ca2(+)-stimulated LH secretion gradually declined (greater than 90% decrease by 60 min). Addition of MgATP (5 mM) rapidly restored full Ca2(+)-stimulated LH secretion. MgATP supported Ca2(+)-stimulated LH secretion at a half-maximal concentration of 1.5 mM. UTP and adenosine 5'-[gamma-thio]triphosphate were 40 and 31% as effective as MgATP, whereas other nucleotide triphosphates were ineffective. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA; 50 nM) stimulated LH exocytosis at free Ca2+ concentrations as low as 1 nM and was additive with Ca2+ at higher free Ca2+ concentrations. PMA-stimulated exocytosis required MgATP at concentrations similar to those required for Ca2(+)-stimulated LH exocytosis. These results demonstrate that LH exocytosis can be triggered both by micromolar Ca2+ concentrations or, in the virtual absence of Ca2+, by PKC activation. Both mechanisms of stimulated exocytosis have an absolute requirement for millimolar ATP. Because they retain cytosolic proteins, alpha-toxin-permeabilized cells may have advantages over alternative

  4. Mechanisms of luteinizing-hormone exocytosis in Staphylococcus aureus-alpha-toxin-permeabilized sheep gonadotropes.

    PubMed

    van der Merwe, P A; Millar, R P; Wakefield, I K; Davidson, J S

    1989-12-15

    We have used primary gonadotropes permeabilized with the pore-forming protein Staphylococcus aureus alpha-toxin to investigate luteinizing hormone (lutropin, LH) exocytosis. The diameter of the alpha-toxin pores (2-3 nm) allows the exchange of small molecules, whereas larger cytosolic proteins are retained. Because of the slow exchange of small molecules through the pores, we have developed a protocol which combines prolonged pre-equilibration of the permeabilized cells at 0 degrees C before stimulation with strong Ca2+ buffering. Under these conditions, increasing the free Ca2+ concentration from 0.1 microM to 10 microM [EC50 (concentration effecting half-maximal response) 2-3 microM] resulted in a 15-20-fold increase in LH exocytosis. LH exocytosis was maximal in the first 3 min and completed by 12 min. When permeabilized cells were equilibrated for prolonged periods in the absence of MgATP, Ca2(+)-stimulated LH secretion gradually declined (greater than 90% decrease by 60 min). Addition of MgATP (5 mM) rapidly restored full Ca2(+)-stimulated LH secretion. MgATP supported Ca2(+)-stimulated LH secretion at a half-maximal concentration of 1.5 mM. UTP and adenosine 5'-[gamma-thio]triphosphate were 40 and 31% as effective as MgATP, whereas other nucleotide triphosphates were ineffective. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA; 50 nM) stimulated LH exocytosis at free Ca2+ concentrations as low as 1 nM and was additive with Ca2+ at higher free Ca2+ concentrations. PMA-stimulated exocytosis required MgATP at concentrations similar to those required for Ca2(+)-stimulated LH exocytosis. These results demonstrate that LH exocytosis can be triggered both by micromolar Ca2+ concentrations or, in the virtual absence of Ca2+, by PKC activation. Both mechanisms of stimulated exocytosis have an absolute requirement for millimolar ATP. Because they retain cytosolic proteins, alpha-toxin-permeabilized cells may have advantages over alternative

  5. Treatment effect of coenzyme Q(10) and an antioxidant cocktail in fibroblasts of patients with Sanfilippo disease.

    PubMed

    Matalonga, Leslie; Arias, Angela; Coll, María Josep; Garcia-Villoria, Judit; Gort, Laura; Ribes, Antonia

    2014-05-01

    Coenzyme Q10 (CoQ10) plays a key role in the exchange of electrons in lysosomal membrane, which contributes to protons' translocation into the lumen and to the acidification of intra-lysosomal medium, which is essential for the proteolytic function of hydrolases responsible -when deficient- of a wide range of inherited lysosomal diseases such as Sanfilippo syndromes. Our aim was to evaluate whether treatment with CoQ10 or with an antioxidant cocktail (α-tocopherol, N-acetylcysteine and α-lipoic acid) were able to ameliorate the biochemical phenotype in cultured fibroblasts of Sanfilippo patients. Basal CoQ10 was analyzed in fibroblasts and Sanfilippo A patients showed decreased basal levels. However, no dysfunction in the CoQ10 biosynthesis pathways was found, revealing for the first time a secondary CoQ10 deficiency in Sanfilippo A fibroblasts. Cultured fibroblasts from five patients affected by Sanfilippo A and B diseases were treated with CoQ10 and an antioxidant cocktail. Upon CoQ10 treatment, none of the Sanfilippo A fibroblasts increased their residual enzymatic activity, but the two Sanfilippo B cell lines showed a statistically significant increase of their residual activity. The antioxidant treatment had no effect on the residual activity in all tested cell lines. Moreover, one Sanfilippo A and two Sanfilippo B fibroblasts showed a statistically significant reduction of glycosaminoglycans accumulation both, after 50 μmol/L CoQ10 and antioxidant treatment. Fibroblasts responsive to treatment enhanced their exocytosis levels. Our results are encouraging as some cellular alterations observed in Sanfilippo syndrome can be partially restored by CoQ10 or other antioxidant treatment in some patients.

  6. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    PubMed

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  7. [Effects of flavone from leaves of Diospyros kaki on adventitial fibroblasts proliferation by advanced oxidation protein products in vitro].

    PubMed

    Ouyang, Ping; Liu, Shangxi; Bei, Weijian; Lai, Wenyan; Hou, Fanfan; Xu, Anlong

    2004-03-01

    To observe the effects of flavone from leaves of Diospyros kaki on adventitial fibroblasts proliferation by advanced oxidation protein products (AOPP) in vitro. NIH-3T3 cells were cultured in vitro and treated with AOPP and flavone from leaves of Diospyros kaki, respectively, and observed in comparison with the control group. The ratio of cell proliferation was determined by non-radioactive MTS/PES assay. The ratio of cell proliferation was 1.789 +/- 0.299 in the control group, and 2.064 +/- 0.141, 2.149 +/- 0.218, 2.108 +/- 0.165, 2.124 +/- 0.131 and 2.087 +/- 0.125 in AOPP groups corresponding to AOPP concentrations of 100, 50, 10, 1 and 0.1 microg/ml, respectively. It showed that AOPP significantly induced the fibroblasts proliferation when the concentration was above 100 ng/ml (P < 0.05). The ratio of cell proliferation was 1.714 +/- 0.179 in flavone from leaves of Diospyros kaki group corresponding to concentration of 50 microg/ml. It also showed that flavone from leaves of Diospyros kaki alone had no effect on fibroblasts proliferation (P > 0.05). With AOPP stimulation, flavone from leaves of Diospyros kaki significantly inhibited fibroblasts proliferation (P < 0.05). Flavone from leaves of Diospyros kaki can significantly inhibit the adventitial fibroblasts proliferation stimulated by AOPP in vitro.

  8. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition.

    PubMed

    Kosic, Milica; Arsikin-Csordas, Katarina; Paunovic, Verica; Firestone, Raymond A; Ristic, Biljana; Mircic, Aleksandar; Petricevic, Sasa; Bosnjak, Mihajlo; Zogovic, Nevena; Mandic, Milos; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2016-10-28

    We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Effect of serum starvation and chemical inhibitors on cell cycle synchronization of canine dermal fibroblasts.

    PubMed

    Khammanit, R; Chantakru, S; Kitiyanant, Y; Saikhun, J

    2008-07-01

    The cell cycle stage of donor cells and the method of cell cycle synchronization are important factors influencing the success of somatic cell nuclear transfer. In this study, we examined the effects of serum starvation, culture to confluence, and treatment with chemical inhibitors (roscovitine, aphidicolin, and colchicine) on cell cycle characteristics of canine dermal fibroblast cells. The effect of the various methods of cell cycle synchronization was determined by flow cytometry. Short periods of serum starvation (24-72 h) increased (P<0.05) the proportion of cells at the G0/G1 phase (88.4-90.9%) as compared to the control group (73.6%). A similar increase in the percentage of G0/G1 (P<0.05) cells were obtained in the culture to confluency group (91.8%). Treatment with various concentrations of roscovitine did not increase the proportion of G0/G1 cells; conversely, at concentrations of 30 and 45 microM, it increased (P<0.05) the percentage of cells that underwent apoptosis. The use of aphidicolin led to increase percentages of cells at the S phase in a dose-dependent manner, without increasing apoptosis. Colchicine, at a concentration of 0.1 microg/mL, increased the proportion of cells at the G2/M phase (38.5%, P<0.05); conversely, it decreased the proportions of G0/G1 cells (51.4%, P<0.05). Concentrations of colchicines >0.1 microg/mL did not increase the percentage of G2/M phase cells. The effects of chemical inhibitors were fully reversible; their removal led to a rapid progression in the cell cycle. In conclusion, canine dermal fibroblasts were effectively synchronized at various stages of the cell cycle, which could have benefits for somatic cell nuclear transfer in this species.

  10. The effects of basic fibroblast growth factor in an animal model of acute mechanically induced right ventricular hypertrophy.

    PubMed

    Vida, Vladimiro L; Dedja, Arben; Faggin, Elisabetta; Speggiorin, Simone; Padalino, Massimo A; Boccuzzo, Giovanna; Pauletto, Paolo; Angelini, Annalisa; Milanesi, Ornella; Thiene, Gaetano; Stellin, Giovanni

    2012-08-01

    To evaluate the effect of a continuous infusion of basic fibroblast growth factor on the adaptive potential of the right ventricular myocardium after 30 days of mechanically induced overload in rats. Materials and methods We banded the pulmonary trunk, so as to increase the systolic workload of the right ventricle, in six Lewis/HanHsd rats at the age of 11 weeks, using six adult rats as controls. The six adult rats were also banded and received an additional continuous infusion of basic fibroblastic growth factor, using six rats with a continuous infusion of basic fibroblastic growth factor only as controls. We analysed the functional adaptation and structural changes of the right ventricular myocardium, blood vessels, and interstitial tissue 30 days after the increased afterload. The pulmonary artery banding induced an increase in the right ventricular free wall thickness of banded rats when compared with controls, which was mainly justified by an increase in cardiomyocyte area and in the percentage of extracellular fibrosis. The infusion of basic fibroblastic growth factor promotes a more extensive capillary network in banded rats (p < 0.001), which modulates the compensatory response of the right ventricle, promoting the hypertrophy of contractile elements and limiting the areas in which fibrosis develops (p < 0.001). The subcutaneous infusion with osmotic pumps was a valid and reproducible method of delivering basic fibroblast growth factor to heart tissue. This infusion contributed to better preserve the right ventricular capillary network, hampering the development of interstitial fibrosis.

  11. Effect of growth factors on the migration of equine oral and limb fibroblasts using an in vitro scratch assay.

    PubMed

    Rose, Michael T

    2012-08-01

    The objective of this study was to determine the effect of platelet derived growth factor BB (PDGF), epidermal growth factor (EGF), transforming growth factor β1 (TGFβ1), insulin like growth factor-1 (IGF-1) and fibroblast growth factor-2 (FGF-2) on the proliferation and migration of equine oral mucosa and leg skin fibroblast cell lines, using an in vitro scratch assay. Fibroblasts from the two sites were firstly grown to confluence and then an area of cells removed (cell void area). Cell migration alone (with the addition of the mitosis inhibitor mitomycin-C to the culture media) and proliferation and migration combined (without mitomycin-C) into the cell void area were observed at 0, 5, 10, 24 and 36 h. The presence of mitomycin-C in the culture media significantly slowed the closure of the cell void area, as mitosis was inhibited. For the oral cells only, TGFβ1 significantly slowed both migration (with mitomycin-C) and proliferation and migration combined (without mitomycin-C). For the limb cells only, both PDGF and FGF-2 significantly increased fibroblast proliferation and migration combined (without mitomycin-C). For both cell types, EGF significantly reduced migration (with mitomycin-C). IGF-1 had no effect on any of the parameters measured. It was concluded that TGFβ1, PDGF and FGF-2 have differential effects on the proliferation and migration of equine oral and limb fibroblasts. These differences in fibroblast responses to growth factors may in part form the basis of the different clinical outcomes for oral and limb wounds.

  12. Additive anti-inflammatory effect of formoterol and budesonide on human lung fibroblasts

    PubMed Central

    Spoelstra, F; Postma, D; Hovenga, H; Noordhoek, J; Kauffman, H

    2002-01-01

    Background: It has been shown that treatment with a long acting ß2 agonist in addition to a glucocorticoid is beneficial in the treatment of asthma. In asthma inflammatory cells, particularly eosinophils, migrate into the pulmonary tissue and airway lumen by means of adhesion molecules expressed on resident tissue cells—that is, fibroblasts—and become activated by cytokines and adhesive interactions. A study was undertaken to determine whether an interaction exists between the long acting ß2 agonist formoterol and the glucocorticoid budesonide on inhibition of adhesion molecule expression, as well as chemo/cytokine production by human lung fibroblasts. Methods: Lung fibroblasts were preincubated with therapeutically relevant drug concentrations of 10-8 M to 10-10 M. Cells were stimulated with interleukin (IL)-1ß (1 or 10 U/ml) for 8 hours and supernatants were collected for measurement of GM-CSF and IL-8 concentrations. The cells were fixed and subjected to a cell surface ELISA technique to measure the expression of ICAM-1 and VCAM-1. Results: Formoterol exerted an additive effect on the inhibition of IL-1ß stimulated ICAM-1 and VCAM-1 upregulation and GM-CSF production by budesonide in concentrations of 10-9 M and above (p<0.05). IL-8 production was not influenced by formoterol. Conclusion: Formoterol exerts an additive effect on the anti-inflammatory properties of budesonide. In vitro data support the finding that the combination of budesonide and formoterol in asthma treatment strengthens the beneficial effect of either drug alone. PMID:11867828

  13. Cytotoxic effects of new MTA-based cement formulations on fibroblast-like MDPL-20 cells.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Santos, Alailson Domingos dos; Moraes, João Carlos Silos; Costa, Carlos Alberto de Souza

    2016-01-01

    The present study aimed at evaluating the cytotoxic effects of a novel cement called CER on periodontal fibroblast-like cells of mice (MDPL-20), in comparison with different formulations of Mineral Trioxide Aggregate (MTA), by means of the cell viability test (MTT) and cell morphology analysis. Thirty-two round-shaped samples were fabricated with the following cements: white MTA, white and gray CER and experimental white MTA. The samples were immersed in serum-free culture medium for 24 hours or 7 days (n = 16). The extracts (culture medium + components released from the cements) were applied for 24 hours to previously cultured cells (40.000 cells/cm2) in the wells of 24-well plates. Cells seeded in complete culture medium were used as a negative control. Cell viability was assessed using the MTT assay. Two samples of each cement were used for cell morphology analysis by Scanning Electron Microscopy (SEM). The extracts obtained at the 7-day period presented higher cytotoxicity compared with the 24-hour period (p < 0.05). The gray CER obtained at 24 hours presented the highest cytotoxic effect, whereas the experimental white MTA presented the lowest, similar to the control (p > 0.05). However, at the 7-day period, the experimental white MTA presented no significant difference in comparison with the other cements (p > 0.05). At the 7-day period, CER cement presented cytotoxic effects on fibroblast-like cells, similar to different MTA formulations. However, the immersion period in the culture medium influenced the cytotoxicity of the cements, which was greater for CER cement at 24 hours.

  14. Effects of interleukins on connective tissue type mast cells co-cultured with fibroblasts.

    PubMed Central

    Levi-Schaffer, F; Segal, V; Shalit, M

    1991-01-01

    We investigated the effects of interleukin-2 (IL-2), interleukin-3 (IL-3) and interleukin-4 (IL-4) on mouse and rat peritoneal mast cells (MC) co-cultured with 3T3 fibroblasts (MC/3T3). The continuous presence of these cytokines for 7-9 days in the culture media was neither toxic nor caused proliferation of MC, as determined by the stability of MC numbers in culture. Long-term incubation of mouse MC/3T3 with IL-2 (100 U/ml), IL-3 (50 U/ml), IL-4 (50 U/ml) or a mixture of IL-3 and IL-4 (25 U/ml) induced an increase in basal histamine release of 79.3 +/- 19.0%, 41.0 +/- 17.3%, 25.2 +/- 10.4% and 30.2 +/- 3.2%, respectively, over control cells incubated with medium alone. When rat MC/3T3 were incubated for 7 days with the various interleukins an enhancement in histamine release similar to that observed with mouse MC/3T3 was found. Preincubation (1 hr) of rat MC/3T3 with interleukins prior to immunological activation with anti-IgE antibodies enhanced histamine release. The highest effect was observed with IL-3 + IL-4 (60.4 +/- 10.8% increase) followed by IL-2 (51.5 +/- 4.5%), IL-4 (28.6 +/- 10.3%) and IL-3 (13.2 +/- 4.2%). This study demonstrates that when mouse and rat peritoneal MC are cultured with fibroblasts in the presence of interleukins they do not proliferate, suggesting that they preserve their connective tissue type MC phenotype. Moreover, interleukins display a pro-inflammatory effect on these cells by enhancing both basal and anti-IgE-mediated histamine release. PMID:2016117

  15. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts.

    PubMed

    Ershova, E S; Sergeeva, V A; Chausheva, A I; Zheglo, D G; Nikitina, V A; Smirnova, T D; Kameneva, L V; Porokhovnik, L N; Kutsev, S I; Troshin, P A; Voronov, I I; Khakina, E A; Veiko, N N; Kostyuk, S V

    2016-07-01

    Water-soluble fullerenes have been studied as potential nanovectors and therapeutic agents, but their possible toxicity is of concern. We have studied the effects of F-828, a soluble fullerene [C60] derivative, on diploid human embryonic lung fibroblasts (HELFs) in vitro. F-828 causes complex time-dependent changes in ROS levels. Inhibition of Nox4 activity by plumbagin blocks F-828-dependent ROS elevation. F-828 induces DNA breaks, as measured by the comet assay and γH2AX expression, and the activities of the transcription factors NF-kB and p53 increase. F-828 concentrations>25μM are cytotoxic; cell death occurs by necrosis. Expression levels of TGF-β, RHOA, RHOC, ROCK1, and SMAD2 increase following exposure to F-828. Our results raise the possibility that fullerene F-828 may induce pulmonary fibrosis in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. CCN2 and CCN5 exerts opposing effect on fibroblast proliferation and transdifferentiation induced by TGF-β.

    PubMed

    Xu, Honghai; Li, Peng; Liu, Mengting; Liu, Cong; Sun, Zhengming; Guo, Xiong; Zhang, Yuelin

    2015-11-01

    Epidural fibrosis might occur after lumbar discectomy and contributes to failed back syndrome. Transforming growth factor (TGF)-β has been reported to influence multiple organ fibrosis, in which connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed 2 (CCN2) and CCN5 are involved. However, the effect of CCN2 and CCN5 on TGF-β induced fibrosis has not yet been elucidated. This study reports that CCN2 and CCN5 play opposing roles in cell proliferation and transdifferentiation of human skin fibroblasts or rabbit epidural scar-derived fibroblasts exposed to TGF-β. We observed that TGF-β1 induced fibroblasts proliferation and differentiation in a dose-dependent manner (from 0 μg/L to 20 μg/L). Meanwhile, CCN2 expression is up-regulated while CCN5 expression is inhibited by TGF-β1 exposure. Furthermore, it is demonstrated that CCN2 overexpression leads to promoted proliferation and elevated collagen and α-smooth muscle actin (α-SMA) expression, which are inhibited by CCN5 overexpression. Moreover, it is shown that the cysteine knot (CT) domain, present in CCN2 but absent in CCN5, plays an essential part in fibroblast proliferation and differentiation. Additionally, enhanced TGF-β and CCN2 expression but decreased CCN5 expression is found in rabbit epidural scar-derived fibroblasts. Overall, the results show the opposing effects of CCN2 and CCN5 on fibroblast proliferation and transdifferentiation induced by TGF-β.

  17. PPAR-gamma ligands modulate effects of LPS in stimulated rat synovial fibroblasts.

    PubMed

    Simonin, Marie-Agnès; Bordji, Karim; Boyault, Sandrine; Bianchi, Arnaud; Gouze, Elvire; Bécuwe, Philippe; Dauça, Michel; Netter, Patrick; Terlain, Bernard

    2002-01-01

    This work demonstrated the constitutive expression of peroxisome proliferator-activated receptor (PPAR)-gamma and PPAR-alpha in rat synovial fibroblasts at both mRNA and protein levels. A decrease in PPAR-gamma expression induced by 10 microg/ml lipopolysaccharide (LPS) was observed, whereas PPAR-alpha mRNA expression was not modified. 15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) dose-dependently decreased LPS-induced cyclooxygenase (COX)-2 (-80%) and inducible nitric oxide synthase (iNOS) mRNA expression (-80%), whereas troglitazone (10 microM) only inhibited iNOS mRNA expression (-50%). 15d-PGJ(2) decreased LPS-induced interleukin (IL)-1 beta (-25%) and tumor necrosis factor (TNF)-alpha (-40%) expression. Interestingly, troglitazone strongly decreased TNF-alpha expression (-50%) but had no significant effect on IL-1 beta expression. 15d-PGJ(2) was able to inhibit DNA-binding activity of both nuclear factor (NF)-kappa B and AP-1. Troglitazone had no effect on NF-kappa B activation and was shown to increase LPS-induced AP-1 activation. 15d-PGJ(2) and troglitazone modulated the expression of LPS-induced iNOS, COX-2, and proinflammatory cytokines differently. Indeed, troglitazone seems to specifically target TNF-alpha and iNOS pathways. These results offer new insights in regard to the anti-inflammatory potential of the PPAR-gamma ligands and underline different mechanisms of action of 15d-PGJ(2) and troglitazone in synovial fibroblasts.

  18. Effects of atmospheric pressure plasma jet with floating electrode on murine melanoma and fibroblast cells

    NASA Astrophysics Data System (ADS)

    Xu, G.; Liu, J.; Yao, C.; Chen, S.; Lin, F.; Li, P.; Shi, X.; Zhang, Guan-Jun

    2017-08-01

    Atmospheric pressure cold plasma jets have been recently shown as a highly promising tool in certain cancer therapies. In this paper, an atmospheric pressure plasma jet (APPJ) with a one inner floating and two outer electrode configuration using helium gas for medical applications is developed. Subjected to a range of applied voltages with a frequency of 19.8 kHz at a fixed rate of gas flow (i.e., 3 l/min), electrical and optical characteristics of the APPJ are investigated. Compared with the device only with two outer electrodes, higher discharge current, longer jet, and more active species in the plasma plume at the same applied voltage together with the lower gas breakdown voltage can be achieved through embedding a floating inner electrode. Employing the APPJ with a floating electrode, the effects of identical plasma treatment time durations on murine melanoma cancer and normal fibroblast cells cultured in vitro are evaluated. The results of cell viability, cell apoptosis, and DNA damage detection show that the plasma can inactivate melanoma cells in a time-dependent manner from 10 s to 60 s compared with the control group (p < 0.05). However, for fibroblast cells compared with their control group, the plasma with treatment time from 30 s to 60 s can induce significant changes (p < 0.05), showing a less cytotoxic effect than that on melanoma cells at the same treatment time. The different basal reactive oxygen species level and antioxidant superoxide dismutase level of two kinds of cells may account for their different responses towards the identical plasma exposure.

  19. [Effects of citrus reticulata blanco extract on fibroblasts from human hypertrophic scar in vitro].

    PubMed

    Qi, Shao-hai; Xu, Ying-bin; Bian, Hui-ning; Liu, Po; Xie, Ju-lin; He, Jie-hua; Shu, Bin; Li, Tian-zeng

    2006-08-01

    To investigate the effects of citrus reticulata blanco extract on the proliferation and collagen metabolism of fibroblasts from human hypertrophic scar. Human hypertrophic scar fibroblasts from two burn patients obtained from plastic surgery were cultured in vitro and divided into experimental group (n = 12, with basic culture medium and 2.5, 5.0, 10.0,25.0 mg/L citrus reticulata blanco extract, respectively, 3 bottles for each concentration of citrus reticulata blanco extract ), control group 1 (n = 3, with basic culture medium) , and control group 2 ( n = 3, with basic culture medium and 5% ethyl alcohol). The cell proliferation in each group was observed with MTT method, then the inhibition rate was calculated. Apoptosis and its index ( AI) in each group were determined after TUNEL staining . The changes in the content of ICTP and PINP in each group were observed by radioimmunity. The inhibition rate in the experimental group with the citrus reticulata blanco extract in concentration of 2. 5, 5.0, 10.0, 25. 0 microg/ ml were (7. 100+/-0.038)% , (8. 100+/- 0. 048)% , (10. 900+/-0. 055)%, (15.900+/-0. 097) %, respectively, which were significantly higher than those in other two groups ( P <0.05 ). The Al (69. 7% , 71.7%, 86.4% , 95.2% ), ICTP [(17.2+/-0.6), (18.3+/-0.6), (19.8+/-0.5), (23.2+/-0.6) microg/L] and PINP [ (101.7+/-1.4) , (107. 8+/-1. 1) , (111.6+/-1.2) , (124. 6+/-1.3) microg/L] in experimental group with the citrus reticulata blanco extract in concentration of 2.5, 5.0, 10.0 , 25.0 mg/L were also obviously higher than other two control groups( P <0.05) ,but these indices in control 1 group were similar to those in control 2 group( P >0. 05). The citrus reticulata blanco extract might be beneficial for the management of hypertrophic scar through inhibition of the proliferation of fibroblasts in hypertrophic scar, by promoting apoptosis and collagen degradation.

  20. Rho-kinase inhibition attenuates calcium-induced contraction in β-escin but not Triton X-100 permeabilized rabbit femoral artery.

    PubMed

    Clelland, Lyndsay J; Browne, Brendan M; Alvarez, Silvina M; Miner, Amy S; Ratz, Paul H

    2011-09-01

    K+-depolarization (KCl) of smooth muscle has long been known to cause Ca2+-dependent contraction, but only recently has this G protein-coupled receptor (GPCR)-independent stimulus been associated with rhoA kinase (ROCK)-dependent myosin light chain (MLC) phosphatase inhibition and Ca2+ sensitization. This study examined effects of ROCK inhibition on the concentration-response curves (CRCs) generated in femoral artery by incrementally adding increasing concentrations of KCl to intact tissues, and Ca2+ to tissues permeabilized with Triton X-100, β-escin and α-toxin. For a comparison, tissue responses were assessed also in the presence of protein kinase C (PKC) and MLC kinase inhibition. The ROCK inhibitor H-1152 induced a strong concentration-dependent inhibition of a KCl CRC. A relatively low GF-109203X concentration (1 μM) sufficient to inhibit conventional PKC isotypes also inhibited the KCl CRC but did not affect the maximum tension. ROCK inhibitors had no effect on the Ca2+ CRC induced in Triton X-100 or α-toxin permeabilized tissues, but depressed the maximum contraction induced in β-escin permeabilized tissue. GF-109203X at 1 μM depressed the maximum Ca2+-dependent contraction induced in α-toxin permeabilized tissue and had no effect on the Ca2+ CRC induced in Triton X-100 permeabilized tissue. The MLC kinase inhibitor wortmannin (1 μM) strongly depression the Ca2+ CRCs in tissues permeabilized with Triton X-100, α-toxin and β-escin. H-1152 inhibited contractions induced by a single exposure to a submaximum [Ca2+] (pCa 6) in both rabbit and mouse femoral arteries. These data indicate that β-escin permeabilized muscle preserves GPCR-independent, Ca2+- and ROCK-dependent, Ca2+ sensitization.

  1. Rho-kinase inhibition attenuates calcium-induced contraction in β-escin but not Triton X-100 permeabilized rabbit femoral artery

    PubMed Central

    Clelland, Lyndsay J.; Browne, Brendan M.; Alvarez, Silvina M.; Miner, Amy S.; Ratz, Paul H.

    2011-01-01

    K+-depolarization (KCl) of smooth muscle has long been known to cause Ca2+-dependent contraction, but only recently has this G protein-coupled receptor (GPCR)-independent stimulus been associated with rhoA kinase (ROCK)-dependent myosin light chain (MLC) phosphatase inhibition and Ca2+ sensitization. This study examined effects of ROCK inhibition on the concentration-response curves (CRCs) generated in femoral artery by incrementally adding increasing concentrations of KCl to intact tissues, and Ca2+ to tissues permeabilized with Triton X-100, β-escin and α-toxin. For a comparison, tissue responses were assessed also in the presence of protein kinase C (PKC) and MLC kinase inhibition. The ROCK inhibitor H-1152 induced a strong concentration-dependent inhibition of a KCl CRC. A relatively low GF-109203X concentration (1 μM) sufficient to inhibit conventional PKC isotypes also inhibited the KCl CRC but did not affect the maximum tension. ROCK inhibitors had no effect on the Ca2+ CRC induced in Triton X-100 or α-toxin permeabilized tissues, but depressed the maximum contraction induced in β-escin permeabilized tissue. GF-109203X at 1 μM depressed the maximum Ca2+-dependent contraction induced in α-toxin permeabilized tissue and had no effect on the Ca2+ CRC induced in Triton X-100 permeabilized tissue. The MLC kinase inhibitor wortmannin (1 μM) strongly depression the Ca2+ CRCs in tissues permeabilized with Triton X-100, α-toxin and β-escin. H-1152 inhibited contractions induced by a single exposure to a submaximum [Ca2+] (pCa 6) in both rabbit and mouse femoral arteries. These data indicate that β-escin permeabilized muscle preserves GPCR-independent, Ca2+- and ROCK-dependent, Ca2+ sensitization. PMID:21706258

  2. Prostaglandin E2 secretion from gingival fibroblasts treated with interleukin-1beta: effects of lipid extracts from Porphyromonas gingivalis or calculus.

    PubMed

    Nichols, F C; Levinbook, H; Shnaydman, M; Goldschmidt, J

    2001-06-01

    Complex lipids of Porphyromonas gingivalis have been identified in lipid extracts from calculus-contaminated root surfaces and in diseased gingival tissues. However, little is known about the biological effects of these complex lipids on host cells. The purpose of this study was to evaluate the effects of P. gingivalis or calculus lipids on prostaglandin secretion from gingival fibroblasts. Lipids were extracted from paired subgingival plaque and teeth samples, and calculus-contaminated root surfaces before and after scaling and root planing, in order to determine the relevant levels of lipid extracts for the treatment of gingival fibroblasts in culture. Primary cultures of gingival fibroblasts were exposed to lipid extracts from either P. gingivalis or calculus/teeth for a period of 7 days. Control and lipid-treated cultures were exposed to human recombinant interleukin-1beta for 48 h and prostaglandin secretion from interleukin-1beta-treated fibroblasts was compared with control and lipid-treated fibroblasts without interleukin-1beta treatment. These experiments demonstrated that P. gingivalis lipids or calculus-tooth lipids potentiate interleukin-1beta-mediated prostaglandin secretory responses from gingival fibroblasts. Additionally, P. gingivalis or calculus-tooth lipid extracts were readily taken up by gingival fibroblasts as measured by bacterial fatty acid recovery in lipid extracts of cultured fibroblasts. These results indicate that bacterial lipid penetration into gingival tissues in combination with a chronic inflammatory response may substantially potentiate prostaglandin secretion from gingival fibroblasts, thereby promoting tissue destructive processes associated with adult periodontitis.

  3. Inhibitory effect of YQHYRJ recipe on osteoblast differentiation induced by BMP-2 in fibroblasts from posterior longitudinal ligament of mice.

    PubMed

    Bian, Qin; Jia, Kuan; Liu, Shu-Fen; Shu, Bing; Liang, Qian-Qian; Zhou, Chong-Jian; Zhou, Quan; Wang, Yong-Jun

    2011-10-01

    Ossification of posterior longitudinal ligament (OPLL) is a common disease in Asian countries. Osteoblast differentiation in posterior longitudinal ligamentous fibroblast is a pathologic basis of OPLL. Nowadays, an effective pharmacotherapy for OPLL is still hunted for. YQHYRJ Recipe (YQHYRJ) is designed based on traditional Chinese medicine (TCM) theories, and previous clinic trials reported its effect on relieving syndromes of cervical spondylopathy. To clarify the YQHYRJ effect of OPLL on a cellular level, we induced mice fibroblasts from posterior longitudinal ligaments to differentiate into osteoblasts by human recombinant BMP-2, and treated them with YQHYRJ and its three sub-compounds: YQ, HY and RJ. YQHYRJ and the sub-compounds reduced the increase of fibroblast proliferation, mineralization, type I collagen secretion induced by BMP-2 via MTT, alizarin red staining and immunochemical examination. Moreover, these agents inhibited BMP-2 induced upregulation of ossification-related genes ALP, Col I and OC as well as BMP signal molecules Smad1, Smad 5 and Runx2 mRNA expression. These results suggested YQHYRJ to be effective in inhibiting osteoblast differentiation induced by BMP-2 in fibroblasts from posterior longitudinal ligament. YQHYRJ might be a promising medicine for preventing OPLL disease.

  4. [Effects of Angelica dahurica extract on biological behavior of dermal fibroblasts].

    PubMed

    Bai, Xiao-zhi; Hu, Da-hai; Wang, Yun-chuan; Liu, Jia-qi; Shi, Ji-hong; Tang, Chao-wu

    2012-04-01

    To observe the effects of Angelica dahurica extracts on the biological characteristics of human dermal fibroblasts in vitro and to preliminary explore its possible therapeutic mechanism for wound healing. The optimal concentration of Angelica dahurica extracts was identified by analysing of proliferation activity of human normal fibroblasts (Fb) that treated with different concentration of Angelica dahurica extracts through thiazole blue (MTT) colorimetric assay. Cell cycle, collagen I and collagen III mRNA levels of the optimal Angelica dahurica extracts treated Fb were detected by flow cytometry (FCM) and real-time PCR techniques. At concentrations of 5 × 10(-4) to 5 × 10(-2) g/L, the Angelica dahurica extracts significantly enhanced the proliferation of Fb. The most significant concentration was 5 × 10(-3) g/L (t = 5.79, P < 0.01), at which an increased percentage of G1 to S and S to G2 phase cells (t = 11.2, 5.69, 2.44, P < 0.05) as well as an increased level of collagen I (1.61 ± 0.26 vs. 1.00 ± 0.16) and collagen III mRNA (3.36 ± 0.40 vs. 1.00 ± 0.14) were obtained compared to the control group (t = 6.69, 7.64, P < 0.01). Angelica dahurica extracts can notably promote the proliferation of Fb and accelerating the cell cycle of Fb as well as up-regulating the expression of collagen I and collagen III, which may enhance the process of wound healing.

  5. Effects of hepatocyte growth factor on MMP-2 expression in scleral fibroblasts from a guinea pig myopia model

    PubMed Central

    Li, Xiu-Juan; Yang, Xiao-Peng; Wan, Guang-Ming; Wang, Yu-Ying; Zhang, Jin-Song

    2014-01-01

    AIM To investigate the effects of hepatocyte growth factor (HGF) on MMP-2 expression in scleral fibroblasts from guinea pig with LIM. METHODS Sixty 1-week-old guinea pigs were chosen for the study. The right eyes were treated with -10.0 D lenses as the LIM group; the left eyes remained untreated as the control group. The refraction and axial length were measured by streak retinoscopy and A-scan ultrasonography respectively prior to and 4 weeks after the experiment. Four weeks later, the guinea pigs were sacrificed and primary scleral fibroblasts were taken for tissue culture. The 3rd-5th generation scleral fibroblasts were chosen for the experiments. The expression levels of HGF and MMP-2 protein in the scleral fibroblasts were analyzed by Western blotting. After HGF with different doses acted on the scleral fibroblasts of the control group, MMP-2 protein expression in the scleral fibroblasts was analyzed by Western blotting. HGF siRNA was transfected into the scleral fibroblasts of the LIM group and the protein expressions of HGF and MMP-2 were analyzed by Western blotting. RESULTS The LIM group became myopic with a significant increase in axial length (7.97±0.29 mm vs 7.01±0.26 mm, P<0.05), and a significant decrease in refraction (-5.06±0.31 D vs 0.55±0.25 D, P<0.05) compared with the control group. The protein expression of HGF in the scleral fibroblasts of the LIM group was significantly higher compared with the control group ( 1.26±0.04 vs 0.32 ±0.04, P<0.05). The protein expression of MMP-2 in the scleral fibroblasts of the LIM group was significantly higher compared with the control group (0.89±0.06 vs 0.42±0.05, P<0.05). In the scleral fibroblasts of the control group, HGF(0, 0.1, 1, 10 ng/mL) upregulated MMP-2 protein expression in a dose-dependent manner (0.35±0.03, 0.44±0.02, 0.91±0.03, 1.33±0.04, all P<0.05). In the scleral fibroblasts of the LIM group transfected with HGF siRNA, MMP-2 protein expressions were significantly decreased

  6. The effects of levofloxacin on rabbit fibroblast-like synoviocytes in vitro.

    PubMed

    Tan, Yang; Lu, Kaihang; Deng, Yu; Cao, Hong; Chen, Biao; Wang, Hui; Magdalou, Jacques; Chen, Liaobin

    2012-12-01

    It is widely accepted that tendon and cartilage are adversely affected with the toxic effects of quinolones. However, the effects of quinolones on synovium have not been deciphered completely. In this study, our main objective was to investigate the effects of levofloxacin, a typical quinolone antibiotic drug, on fibroblast-like synoviocytes (FLSs) in vitro. FLSs of rabbits were treated with levofloxacin at different concentrations (0, 14, 28, 56, 112 and 224 μM). The possible cytotoxic effects of levofloxacin on FLS were determined. Levofloxacin significantly reduced the cell viabilities, gene expression of hyaluronan synthase-2 (HAS-2), and the level of hyaluronan in FLSs. Moreover, levofloxacin-induced concentration-dependent increases of apoptosis and active caspase-3 were determined in this study. Ultrastructural damages of FLSs were observed by electron microscopy. The mRNA expression levels of matrix metalloproteinase (MMP)-3 and MMP-13 were increased in FLSs treated with levofloxacin. In addition, levofloxacin played a role in suppressing the expression of interleukin (IL)-1 and IL-6. Our data suggest that the cytotoxic effects of levofloxacin on FLS were shown to be able to affect cell viability and HA synthesis capacity. The potential mechanisms of the cytotoxic effects may be attributed to the apoptosis and increased expression of MMPs.

  7. Differential effects of Bcl-2 and caspases on mitochondrial permeabilization during endogenous or exogenous reactive oxygen species-induced cell death: a comparative study of H₂O₂, paraquat, t-BHP, etoposide and TNF-α-induced cell death.

    PubMed

    Rincheval, Vincent; Bergeaud, Marie; Mathieu, Lise; Leroy, Jacqueline; Guillaume, Arnaud; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc

    2012-08-01

    In this study, we have compared several features of cell death triggered by classical inducers of apoptotic pathways (etoposide and tumour necrosis factor (TNF)-α) versus exogenous reactive oxygen species (ROS; hydrogen peroxide (H₂O₂), tert-butyl hydroperoxide (t-BHP)) or a ROS generator (paraquat). Our aim was to characterize relationships that exist between ROS, mitochondrial perturbations, Bcl-2 and caspases, depending on source and identity of ROS. First, we have found that these five inducers trigger oxidative stress, mitochondrial membrane permeabilization (MMP), cytochrome c (cyt c) release from mitochondria and cell death. In each case, cell death could be inhibited by several antioxidants, showing that it is primarily ROS dependent. Second, we have highlighted that during etoposide or TNF-α treatments, intracellular ROS level, MMP and cell death are all regulated by caspases and Bcl-2, with caspases acting early in the process. Third, we have demonstrated that H₂O₂-induced cell death shares many of these characteristics with etoposide and TNF-α, whereas t-BHP induces both caspase-dependent and caspase-independent cell death. Surprisingly, paraquat-induced cell death, which harbours some characteristics of apoptosis such as cyt c release and caspase-3 activation, is not modulated by Bcl-2 and caspase inhibitors, suggesting that paraquat also triggers non-apoptotic cell death signals. On the one hand, these results show that endogenous or exogenous ROS can trigger multiple cell death pathways with Bcl-2 and caspases acting differentially. On the other hand, they suggest that H₂O₂ could be an important mediator of etoposide and TNF-α-dependent cell death since these inducers trigger similar phenotypes.

  8. The Effects of Ascorbate, N-Acetylcysteine, and Resveratrol on Fibroblasts from Patients with Mitochondrial Disorders

    PubMed Central

    Douiev, Liza; Soiferman, Devorah; Alban, Corinne; Saada, Ann

    2016-01-01

    Reactive oxygen species (ROS) are assumed to be implicated in the pathogenesis of inborn mitochondrial diseases affecting oxidative phosphorylation (OXPHOS). In the current study, we characterized the effects of three small molecules with antioxidant properties (N-acetylcysteine, ascorbate, and resveratrol) on ROS production and several OXPHOS parameters (growth in glucose free medium, ATP production, mitochondrial content and membrane potential (MMP)), in primary fibroblasts derived from seven patients with different molecularly defined and undefined mitochondrial diseases. N-acetylcysteine appeared to be the most beneficial compound, reducing ROS while increasing growth and ATP production in some patients’ cells. Ascorbate showed a variable positive or negative effect on ROS, ATP production, and mitochondrial content, while incubation with resveratrol disclosed either no effect or detrimental effect on ATP production and MMP in some cells. The individual responses highlight the importance of investigating multiple parameters in addition to ROS to obtain a more balanced view of the overall effect on OXPHOS when evaluating antioxidant treatment options for mitochondrial diseases. PMID:28025489

  9. Analysis of CRM1-Dependent Nuclear Export in Permeabilized Cells.

    PubMed

    Kehlenbach, Ralph H; Port, Sarah A

    2016-01-01

    Nuclear protein import and export assays in permeabilized cells have been instrumental for the identification of transport factors and for the molecular characterization of nucleocytoplasmic transport pathways. Our original assay to quantitatively analyze CRM1-dependent export was based on stably transfected cells expressing GFP-NFAT. We now present a simplified version of the assay using transiently transfected cells expressing GFP-NFAT or GFP-snurportin1 as a fluorescent export cargo and mCherry-emerin as a marker protein for transfected cells. CRM1- and Ran-dependent export is recapitulated in digitonin-permeabilized cells and quantified by flow cytometry. The assay should be applicable to other combinations of cargo and marker proteins.

  10. Hydrolysis of whey lactose using CTAB-permeabilized yeast cells.

    PubMed

    Kaur, Gurpreet; Panesar, Parmjit S; Bera, Manav B; Kumar, Harish

    2009-01-01

    Disposal of lactose in whey and whey permeates is one of the most significant problems with regard to economics and environmental impact faced by the dairy industries. The enzymatic hydrolysis of whey lactose to glucose and galactose by beta-galactosidase constitutes the basis of the most biotechnological processes currently developed to exploit the sugar content of whey. Keeping this in view, lactose hydrolysis in whey was performed using CTAB permeabilized Kluyveromyces marxianus cells. Permeabilization of K. marxianus cells in relation to beta-galactosidase activity was carried out using cetyltrimethyl ammonium bromide (CTAB) to avoid the problem of enzyme extraction. Different process parameters (biomass load, pH, temperature, and incubation time) were optimized to enhance the lactose hydrolysis in whey. Maximum hydrolysis (90.5%) of whey lactose was observed with 200 mg DW yeast biomass after 90 min of incubation period at optimum pH of 6.5 and temperature of 40 degrees C.

  11. A permeabilized cell system that assembles filamentous bacteriophage

    PubMed Central

    Feng, Jian-nong; Russel, Marjorie; Model, Peter

    1997-01-01

    A permeabilized cell system has been developed that is capable of assembling filamentous phage only upon addition of exogenous thioredoxin. The in vitro system exhibits the same component requirements seen in vivo: functional thioredoxin, an intact packaging signal in the substrate DNA, and the assembly protein, pIV. This crude in vitro system is insensitive to inhibitors of protein or DNA synthesis, demonstrating that particle assembly uses components that had accumulated before cell permeabilization. The temporal separation of the synthetic period, during which phage proteins and DNA accumulate, from the assembly period enabled us to examine the energy requirement for assembly. We show here that ATP hydrolysis is required for filamentous phage assembly and that the proton motive force is also important. PMID:9108106

  12. The Possible Pre- and Post-UVA Radiation Protective Effect of Amaranth Oil on Human Skin Fibroblast Cells

    PubMed Central

    Wolosik, Katarzyna; Zareba, Ilona; Surazynski, Arkadiusz; Markowska, Agnieszka

    2017-01-01

    Background: The health effects of Amaranth Oil (AO) are attributed to its specific chemical composition. That makes it an outstanding natural product for the prevention and treatment of ultraviolet (UV) irradiation-related pathologies such as sunburn, photoaging, photoimmunosuppression, and photocarcinogenesis. Most of the studies are taken on animal model, and there is a lack of research on the endogenous effect of AO on fibroblast level, where UVA takes it harmful place. Objective: The aim of this study was evaluation if AO can protect or abolish UVA exposure effect on human skin fibroblast. Materials and Methods: The 0.1% AO, 0.25% AO, and 0.5% AO concentration and irradiation for 15 min under UVA-emitting lamp were studied in various condition. In all experiments, the mean values for six assays ± standard deviations were calculated. Results: Pretreatment with various concentrations of AO was tested. The highest concentration of AO where cell survival was observed was 0.5%. Cytotoxicity assays provided evidence for pre- and post-UVA protective effect of 0.1% AO among three tested concentrations. The results also provide evidence that UVA has inhibitory effect on collagen biosynthesis in confluent skin fibroblast, but presence of 0.1% AO abolishes pre- and post-UVA effect comparing to other used AO concentration. The assessment results on DNA biosynthesis show the significant abolished post-UVA effect when 0.1% and 0.5% of AO were added. Conclusion: AO gives pre- and post-UVA protection in low concentration. This provides the evidence for using it not as a main protective factor against UV but as one of the combined components in cosmetic formulation. SUMMARY The recommended Amaranth Oil (AO) concentration in cosmetic formulation is between 0.1 and 5%Pretreatment with various concentrations of AO suggests to use the highest 0.5% concentration of AO in human skin fibroblast culturesThe 0.1% of AO in fibroblast cultures, protects and abolishes effect of

  13. Histological Effect of Basic Fibroblast Growth Factor on Chronic Vocal Fold Scarring in a Rat Model

    PubMed Central

    Tateya, Ichiro; Tateya, Tomoko; Sohn, Jin-Ho; Bless, Diane M.

    2016-01-01

    Objectives Vocal fold scarring is one of the most challenging laryngeal disorders to treat and there are currently no consistently effective treatments available. Our previous studies have shown the therapeutic potential of basic fibroblast growth factor (bFGF) for vocal fold scarring. However, the histological effects of bFGF on scarred vocal fold have not been elucidated. The aim of this study was to examine the histological effects of bFGF on chronic vocal fold scarring. Methods Sprague-Dawley rats were divided into phosphate buffered saline (sham) and bFGF groups. Unilateral vocal fold stripping was performed and the drug was injected into the scarred vocal fold for each group 2 months postoperatively. Injections were performed weekly for 4 weeks. Two months after the last injection, larynges were harvested and histologically analyzed. Results A significant increase of hyaluronic acid was observed in the vocal fold of the bFGF group compared with that of the sham group. However, there was no remarkable change in collagen expression nor in vocal fold contraction. Conclusion Significant increase of hyaluronic acid by local bFGF injection was thought to contribute to the therapeutic effects on chronic vocal fold scarring. PMID:26976028

  14. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts.

    PubMed

    Ohvo, H; Olsio, C; Slotte, J P

    1997-11-15

    The hydrolysis of plasma membrane sphingomyelin is known to dramatically alter cellular cholesterol homeostasis in different ways, whereas the degradation of plasma membrane phosphatidylcholine has much less or no effects on cell cholesterol homeostasis [Pörn, Ares, Slotte, J. Lipid Res. 34 (1993) 1385-1392]. In this study, we used an efficient extracellular cholesterol acceptor (cyclodextrin) and determined the extent of cholesterol efflux from cultured fibroblasts in which plasma membrane sphingomyelin or phosphatidylcholine was degraded. Treatment of cells with sphingomyelinase reduced the cell sphingomyelin content by about 76% (about 13 nmol SM degraded), and dramatically increased the desorption of [3H]cholesterol from the plasma membrane to 2-hydroxypropyl-beta-cyclodextrin. The corresponding hydrolysis of cell surface phosphatidylcholine (about 12% reduction of the cellular phosphatidylcholine content, corresponding to about 12 nmol degraded PC) had almost no effect on cell [3H]cholesterol efflux. The stimulatory effect of sphingomyelin degradation on cell [3H]cholesterol efflux was reversible, since rates of [3H]cholesterol efflux dropped back to control levels when cells (in this case baby hamster kidney cells) were allowed to restore their sphingomyelin content by re-synthesis in the absence of sphingomyelinase. The findings of this study clearly demonstrate that plasma membrane sphingomyelin markedly affected the rate of cholesterol transfer between cells and an extracellular acceptor (i.e., cyclodextrin), whereas the effect of phosphatidylcholine on cholesterol efflux was much smaller.

  15. Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts.

    PubMed

    Pasi, Francesca; Sanna, Samuele; Paolini, Alessandro; Alquati, Marco; Lascialfari, Alessandro; Corti, Maurizio Enrico; Liberto, Riccardo Di; Cialdai, Francesca; Monici, Monica; Nano, Rosanna

    2016-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMFs) applied in magnetotherapy have frequency lower than 100 Hz and magnetic field intensity ranging from 0.1 to 20 mT. For many years, the use of magnetotherapy in clinics has been increasing because of its beneficial effects in many processes, e.g., skin diseases, inflammation and bone disorders. However, the understanding of the microscopic mechanisms governing such processes is still lacking and the results of the studies on the effects of ELF-EMFs are controversial because effects derive from different conditions and from intrinsic responsiveness of different cell types.In the present study, we studied the biological effects of 1.5 h exposure of human dermal fibroblasts to EMFs with frequencies of 5 and 50 Hz and intensity between 0.25 and 1.6 mT. Our data showed that the magnetic treatment did not produce changes in cell viability, but gave evidence of a sizeable decrease in proliferation at 24 h after treatment. In addition, immunofluorescence experiments displayed an increase in tubulin expression that could foreshadow changes in cell motility or morphology. The decrease in proliferation with unchanged viability and increase in tubulin expression could be consistent with the triggering of a transdifferentiation process after the exposure to ELF-EMFs.

  16. Effects of resolvin D1 on cell survival and cytokine expression of human gingival fibroblasts.

    PubMed

    Khaled, Mohamed; Shibani, Nouf-Al; Labban, Nawaf; Batarseh, Ghada; Song, Fengyu; Ruby, John; Windsor, L Jack

    2013-12-01

    Tissue breakdown in periodontitis is initiated by bacteria, such as Porphyromonas gingivalis, and is caused largely by host responses. Resolvins protect the host against acute inflammation by blocking the migration of polymorphonuclear neutrophils to initiate resolution. The effects of resolvins on human gingival fibroblasts (HGFs) are unknown. This study examines the effects of resolvin D1 on HGF survival and cytokine expression when treated with or without P. gingivalis supernatant. Cytotoxicity of resolvin D1 on HGFs with or without a toxic level of P. gingivalis supernatant was measured with lactate dehydrogenase assays. Cytokine arrays were performed on HGF-conditioned media treated with or without resolvin D1 and with or without P. gingivalis supernatant. Resolvin D1 had no cytotoxic effects on HGFs at concentrations between 1 and 1,000 nM (all P > 0.05). Resolvin D1 (1,000 nM) significantly inhibited the toxic effects of 13.5% (v/v) P. gingivalis supernatant on HGFs (P = 0.002). Resolvin D1 significantly reduced the expression of interleukin (IL)-6 (P = 0.010) and monocyte chemoattractant protein (MCP)-1 (P = 0.04) in untreated fibroblasts. P. gingivalis (10%) supernatant significantly increased the expression levels of granulocyte-macrophage colony-stimulating factor (CSF), granulocyte CSF, growth-regulated oncogene (GRO), IL-5, IL-6, IL-7, IL-8, IL-10, MCP-1, MCP-2, MCP-3, and monokine induced by γ-interferon. Resolvin D1 significantly reduced the expression of GRO (P = 0.04), marginally reduced the levels of MCP-1 (P = 0.10), and marginally increased the levels of transforming growth factor (TGF)-β1 (P = 0.07) from HGFs treated with P. gingivalis supernatant. Resolvin D1 altered the cytotoxicity of P. gingivalis supernatant on HGFs. Resolvin D1 significantly reduced GRO, marginally reduced MCP-1, and marginally increased TGF-β1 from P. gingivalis-treated HGFs, which could alter the ability of P. gingivalis to induce inflammation.

  17. Effect of botulinum neurotoxin type A (BoNTA) on the morphology and viability of 3T3 murine fibroblasts

    PubMed Central

    Bandala, Cindy; Terán-Melo, Juan Luis; Anaya-Ruiz, Maricruz; Mejía-Barradas, Cesar Miguel; Domínguez-Rubio, Rene; la Garza-Montano, Paloma De; Alfaro-Rodríguez, Alfonso; Lara-Padilla, Eleazar

    2015-01-01

    Aim: BoNTA is used in the treatment of ophthalmological disorders, muscular hyperactivity and pain. In recent years it has been described that BoNTA reduces cellular viability and induces apoptosis in prostate cells lines. Studies about the effect of BoNTA are no well known. There have been studies about the effect of BoNTA on the expression levels of collagenase in fibroblasts, but not on its morphological impact on these cells. The aim of this study was to determine the effect of BoNTA on the morphology and viability of the 3T3 fibroblast cell line. Material and methods: The 3T3 fibroblast cell line was cultured and the experimental group received 10 U BoNTA added to a 0.9% sterile saline solution in a reconstituted vial. The control group received saline solution only. Cultured cells were observed and photographed at 5, 10, 15 and 20 h. Cell viability was evaluated by means of the trypan blue test, and cell proliferation with the Proliferation Assay kit (PROMEGA). Results: The application of BoNTA to 3T3 fibroblast cells induced morphological changes, such as a loss of normal fibroblast morphology. Additionally, we observed the cytoplasmic retraction and spread phenomena. The nuclei showed other important changes with Giemsa staining. Conclusion: The results indicate that BoNTA induced a loss of spindle form, increase in cytoplasmic vesicles, and the presence of nuclear vesicles (compacted chromatin surrounded by a nuclear envelope). This suggests an apoptotic process and decreased cell viability. Further studies are needed to explore the mechanisms of these alterations. PMID:26464704

  18. Effect of nifedipine on the expression of keratinocyte growth factor and its receptor in cocultured/monocultured fibroblasts and keratinocytes.

    PubMed

    Di, C-P; Sun, Y; Zhao, L; Li, L; Ding, C; Xu, Y; Fan, Y

    2013-12-01

    Keratinocyte growth factor (KGF) and its receptor (KGFR) are involved in hyperplastic diseases. This study explored the effect of intercellular communication on KGF and KGFR in cocultured/monocultured gingival fibroblasts and keratinocytes following treatment with nifedipine. Human gingival fibroblasts and keratinocytes were monocultured and cocultured, respectively. MTT was used to investigate the effects of nifedipine on the proliferation of gingival fibroblasts and keratinocytes. Monoculture and coculture systems were treated with different concentrations (0, 0.2 or 20 μg/mL) of nifedipine, and the expression of KGF and KGFR mRNAs was examined by RT-PCR, whilst the secretion of KGF and the expression of KGFR on the membrane were analyzed using ELISA and flow cytometry, respectively. Nifedipine (0, 0.2 and 20 μg/mL) had no influence on cell proliferation within 3 d. KGF and KGFR mRNAs were up-regulated, but only in the cocultures. In coculture, the secretion of KGF was significantly increased by nifedipine, while it was only significantly up-regulated by 20 μg/mL of nifedipine in monoculture. Moreover, the level of KGFR protein in the membrane was significantly increased by 20 μg/mL of nifedipine in monocultures, while it was significantly down-regulated by 20 μg/mL of nifedipine in cocultures. The expression of KGF and KGFR are influenced by the interplay of gingival keratinocytes and fibroblasts. Epithelial keratinocytes and mesenchymal fibroblasts may interplay to dynamically regulate gene expression, which may have an effect on the gingival condition following treatment with nifedipine. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The effects of solcoseryl on the growth and multiplication of chick embryo fibroblasts cultivated "in vitro".

    PubMed

    Brasseur, R; De Paermentier, F

    1979-01-01

    The action of Solcoseryl, a free protein extract of calf blood, was studied on chick embryo fibroblasts cultivated in vitro. Solcoseryl stimulates the permitotic DNA synthesis and increases the number of mitoses.,

  20. Photoprotective Effects of Cycloheterophyllin against UVA-Induced Damage and Oxidative Stress in Human Dermal Fibroblasts.

    PubMed

    Huang, Cheng-Hua; Li, Hsin-Ju; Wu, Nan-Lin; Hsiao, Chien-Yu; Lin, Chun-Nan; Chang, Hsun-Hsien; Hung, Chi-Feng

    2016-01-01

    Ultraviolet (UV) radiation, particularly ultraviolet A (UVA), is known to play a major role in photoaging of the human skin. Many studies have demonstrated that UV exposure causes the skin cells to generate reactive oxygen species and activates the mitogen-activated protein kinase (MAPK) pathway. Previous studies have also demonstrated that cycloheterophyllin has an antioxidant effect and can effectively scavenge free radicals. Extending the aforementioned investigations, in this study, human dermal fibroblasts were used to investigate the protective effect of cycloheterophyllin against UV-induced damage. We found that cycloheterophyllin not only significantly increased cell viability, but also attenuated the phosphorylation of MAPK after UVA exposure. Furthermore, cycloheterophyllin could reduce hydrogen peroxide (H2O2) generation and down-regulate H2O2-induced MAPK phosphorylation. In the in vivo studies, the topical application of cycloheterophyllin before UVA irradiation significantly decreased trans-epidermal water loss (TEWL), erythema, and blood flow rate. These results indicate that cycloheterophyllin is a photoprotective agent that inhibits UVA-induced oxidative stress and damage, and could be used in the research on and prevention of skin photoaging.

  1. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts.

    PubMed

    De Amicis, Andrea; Sanctis, Stefania De; Cristofaro, Sara Di; Franchini, Valeria; Lista, Florigio; Regalbuto, Elisa; Giovenale, Emilio; Gallerano, Gian Piero; Nenzi, Paolo; Bei, Roberto; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Coluzzi, Elisa; Cicia, Cristina; Sgura, Antonella

    2015-11-01

    In recent years, terahertz (THz) radiation has been widely used in a variety of applications: medical, security, telecommunications and military areas. However, few data are available on the biological effects of this type of electromagnetic radiation and the reported results, using different genetic or cellular assays, are quite discordant. This multidisciplinary study focuses on potential genotoxic and cytotoxic effects, evaluated by several end-points, associated with THz radiation. For this purpose, in vitro exposure of human foetal fibroblasts to low frequency THz radiation (0.1-0.15THz) was performed using a Compact Free Electron Laser. We did not observe an induction of DNA damage evaluated by Comet assay, phosphorylation of H2AX histone or telomere length modulation. In addiction, no induction of apoptosis or changes in pro-survival signalling proteins were detected. Moreover, our results indicated an increase in the total number of micronuclei and centromere positive micronuclei induction evaluated by CREST analysis, indicating that THz radiation could induce aneugenic rather than clastogenic effects, probably leading to chromosome loss. Furthermore, an increase of actin polymerization observed by ultrastructural analysis after THz irradiation, supports the hypothesis that an abnormal assembly of spindle proteins could lead to the observed chromosomal malsegregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Photoprotective Effects of Cycloheterophyllin against UVA-Induced Damage and Oxidative Stress in Human Dermal Fibroblasts

    PubMed Central

    Huang, Cheng-Hua; Li, Hsin-Ju; Wu, Nan-Lin; Hsiao, Chien-Yu; Lin, Chun-Nan; Chang, Hsun-Hsien; Hung, Chi-Feng

    2016-01-01

    Ultraviolet (UV) radiation, particularly ultraviolet A (UVA), is known to play a major role in photoaging of the human skin. Many studies have demonstrated that UV exposure causes the skin cells to generate reactive oxygen species and activates the mitogen-activated protein kinase (MAPK) pathway. Previous studies have also demonstrated that cycloheterophyllin has an antioxidant effect and can effectively scavenge free radicals. Extending the aforementioned investigations, in this study, human dermal fibroblasts were used to investigate the protective effect of cycloheterophyllin against UV-induced damage. We found that cycloheterophyllin not only significantly increased cell viability, but also attenuated the phosphorylation of MAPK after UVA exposure. Furthermore, cycloheterophyllin could reduce hydrogen peroxide (H2O2) generation and down-regulate H2O2-induced MAPK phosphorylation. In the in vivo studies, the topical application of cycloheterophyllin before UVA irradiation significantly decreased trans-epidermal water loss (TEWL), erythema, and blood flow rate. These results indicate that cycloheterophyllin is a photoprotective agent that inhibits UVA-induced oxidative stress and damage, and could be used in the research on and prevention of skin photoaging. PMID:27583973

  3. The effect of flavonoids on transduction mechanisms in lipopolysaccharide-treated human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Jiménez-Estrada, Manuel; Maldonado, Silvia

    2007-09-01

    Periodontal disease comprises a group of infections that lead to inflammation of the gingival and destruction of periodontal tissues and is accompanied by the loss of the alveolar bone with eventual exfoliation of the teeth. Porphyromonas gingivalis is a Gram-negative bacteria obtained from the periodontal pocket of patients with aggressive and chronic periodontitis. This bacteria presents in the external membrane lipopolysaccharide (LPS). Flavonoids are molecules obtained from plants and possess anti-inflammatory properties. Herein we characterize the effect of the flavonoids quercetin, genistein, luteolin, and quercetagetin on LPS-activated transduction mechanism regulation in human gingival fibroblasts (HGF). In this study, we investigated the role of the previously mentioned flavonoids on mitogen-activated protein kinase (MAPK) activation induced by LPS obtained from P. gingivalis. Our results showed that LPS treatment induces activation of extracellular signal related kinase 1/2 (ERK1/2), p38, and c-jun-NH(2)-terminal kinase (JNK). All flavonoids demonstrated an inhibitory effect on MAPK activation, interleukin, 1beta, and cyclooxygenase-2 (COX-2) expression, IL-1beta and prostaglandin E2 (PGE2) synthesis. The most active flavonoid was quercetagetin. Finally we found that the treatment with quercetagetin had no effect on cellular viability or in genetic material integrity.

  4. Effects of central fibroblast growth factor 21 (FGF21) in energy balance.

    PubMed

    Recinella, L; Leone, S; Ferrante, C; Chiavaroli, A; Di Nisio, C; Martinotti, S; Vacca, M; Brunetti, L; Orlando, G

    Fibroblast growth factor 21 (FGF21) is known as a major metabolic regulator of glucose and lipid homeostasis. Continuous intracerebroventricular (i.c.v.) administration of FGF21 was found to modulate feeding and energy expenditure in rats with diet-induced obesity, suggesting a central effect by the peptide. In this context, in the present work, we studied the effects of a single central FGF21 administration (0.5-5 µg) on feeding and energy expenditure by evaluating locomotor activity, interscapular brown adipose tissue (BAT) weight, gene expression of uncoupling protein-1 (UCP-1) in BAT and plasma norepinephrine (NE) levels in Sprague-Dawley fed rats. In addition, we evaluated the effects of FGF21 on orexigenic [agouti-related peptide (AgRP) and neuropeptide Y (NPY)] and anorexigenic [cocaine and amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC)] peptides, in the hypothalamus, and dopamine (DA) and serotonin (5-hydroxytriptamine, 5-HT) levels in nucleus accumbens (NAc). We confirmed that central FGF21 administration induced a significant increase in food intake, possibly mediated by increased NPY and AgRP, and decreased POMC and CART gene expression. Moreover, FGF21 could modulate the motivational aspects of feeding, possibly through stimulated NAc DA levels. On the other hand, our findings of decreased locomotor activity, BAT weight, UCP-1 gene expression and plasma NE levels support a role for FGF21 in decreasing energy expenditure.

  5. Effects of alendronate and pamidronate on apoptosis and cell proliferation in cultured primary human gingival fibroblasts.

    PubMed

    Soydan, S S; Araz, K; Senel, F V; Yurtcu, E; Helvacioglu, F; Dagdeviren, A; Tekindal, M A; Sahin, F

    2015-11-01

    Data arising from the recent literature directed the researchers to study on the degree and extent of bisphosphonate toxicity on oral mucosa in further detail. The aim of this study is to determine the half maximal inhibitory concentration of pamidronate (PAM) and alendronate (ALN) on human gingival fibroblasts in vitro using 3-[4.5-thiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) assay and to evaluate the effects of both agents on the proliferation and apoptotic indices. Cells used in the study were generated from human gingival specimens and divided into alendronate (n = 240), PAM (n = 240), and control groups (n = 60). Based on the MTT assay results, 10(-4), 10(-5), 10(-6), and 10(-7) M concentrations of both drugs were administered and the effects were evaluated for 6, 12, 24, 48, or 72 h periods. An indirect immunofluorescence technique was used to evaluate apoptotic (anti-caspase 3) and proliferation (anti-Ki67) indices. Toxicity of both PAM and ALN was found to be the most potent at 10(-4)-10(-5) M range. The apoptotic index of PAM group was found to be significantly higher than ALN group for all concentrations especially at 24 h incubation time (p < 0.05). The decrease in the proliferation index was found similar in first 48 h for both drugs; however, after 72 h of incubation decrease in proliferation index in PAM group was found to be significantly higher (p < 0.05). Micromolar concentrations of not only PAM but also ALN rapidly affect cells generated from human oral gingival tissue by inducing apoptosis together with inhibition of proliferation. Cytotoxic effects of both ALN and PAM on primary human gingival fibroblasts, which cause significant changes in apoptotic and proliferative indices as shown in this in vitro study, suggests that the defective epithelialization of oral mucosa is possibly a major factor on the onset of bisphosphonate-related osteonecrosis of the jaw cases. © The Author(s) 2015.

  6. Replacement of α-galactosidase A in Fabry disease: effect on fibroblast cultures compared with biopsied tissues of treated patients

    PubMed Central

    Keslová-Veselíková, Jana; Hůlková, Helena; Dobrovolný, Robert; Asfaw, Befekadu; Poupětová, Helena; Berná, Linda; Sikora, Jakub; Goláň, Lubor

    2008-01-01

    The function and intracellular delivery of enzyme therapeutics for Fabry disease were studied in cultured fibroblasts and in the biopsied tissues of two male patients to show diversity of affected cells in response to treatment. In the mutant fibroblasts cultures, the final cellular level of endocytosed recombinant α-galactosidases A (agalsidases, FabrazymeTM, and ReplagalTM) exceeded, by several fold, the amount in control fibroblasts and led to efficient direct intra-lysosomal hydrolysis of (3H)Gb3Cer. In contrast, in the samples from the heart and some other tissues biopsied after several months of enzyme replacement therapy (ERT) with FabrazymeTM, only the endothelial cells were free of storage. Persistent Gb3Cer storage was found in cardiocytes (accompanied by increase of lipopigment), smooth muscle cells, fibroblasts, sweat glands, and skeletal muscle. Immunohistochemistry of cardiocytes demonstrated, for the first time, the presence of a considerable amount of the active enzyme in intimate contact with the storage compartment. Factors responsible for the limited ERT effectiveness are discussed, namely post-mitotic status of storage cells preventing their replacement by enzyme supplied precursors, modification of the lysosomal system by longstanding storage, and possible relative lack of Sap B. These observations support the strategy of early treatment for prevention of lysosomal storage. PMID:18351385

  7. Anti-inflammatory effects of bamboo salt and sodium fluoride in human gingival fibroblasts--An in vitro study.

    PubMed

    Lee, Hye-Jin; Choi, Choong-Ho

    2015-06-01

    Dental caries preventive agents, such as sodium fluoride (NaF) and bamboo salt (BS), are known to cause cellular growth that is characterized by morphological and gene expression changes. This study was designed to investigate the dual effect of NaF and BS on interleukin (IL)-1β-induced gingival inflammation. Under in vitro experimental conditions, exposure to a subcytotoxic dose of IL-1β enhanced human gingival fibroblast inflammation, as characterized by increased levels of inflammation-associated proteins. A combination of NaF and BS significantly protected fibroblasts from IL-1β-induced cellular deterioration. Exposure to NaF and BS induced the cell growth and no changes in viability were found with the Lactate Dehydrogenase Assay (LDH) assay at the NaF and BS concentration analyzed. Molecular analysis demonstrated that NaF and BS increased resistance to inflammation by reduction of IL-1β, IL-8, and tumor necrosis factor (TNF)-α production. In addition, NaF and BS decreased the expression of IL-1β, IL-8, and TNF-α mRNA in IL-1β-induced human gingival fibroblast cells. The study identifies a new role for NaF and BS in the IL-1β-induced inflammation of gingival fibroblasts and provides a potential target for gingival protection.

  8. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    PubMed Central

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast cells. Materials and Methods: Protective ability of flavonoid-enriched (FE) fraction of clove was studied against UV-B induced cytotoxicity, anti-oxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2 antioxidant response element (Nrf2 ARE) pathway. Results: FE fraction showed a significant antioxidant potential. Pretreatment of cells with FE fraction (10–40 μg/ml) reversed the effects of UV-B induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. Conclusion: The present study demonstrated for the first time that the FE fraction from clove could confer UV-B protection probably through the Nrf2-ARE pathway, which included the down-regulation of Nrf2 and HO-1. These findings suggested that the flavonoids from clove could potentially be considered as UV-B protectants and can be explored further for its topical application to the area of the skin requiring protection. SUMMARY Pretreatment of human dermal fibroblast with flavonoid-enriched fraction of Eugenia caryophylata attenuated effects of ultraviolet-B radiationsIt also conferred protection through nuclear factor E2-related factor 2-antioxidant response pathway and increased tolerance of cells against oxidative stress

  9. Effects of tanshinone VI on the hypertrophy of cardiac myocytes and fibrosis of cardiac fibroblasts of neonatal rats.

    PubMed

    Maki, Toshiyuki; Kawahara, Yuji; Tanonaka, Kouichi; Yagi, Akira; Takeo, Satoshi

    2002-12-01

    The possible effects of tanshinone VI (tsh), a diterpene from the root of Tan-Shen (Salvia miltiorrhiza, Bunge (Labiatae)) on hypertrophy and fibrosis in cultured neonatal rat cardiac myocytes and fibroblasts were examined. Tsh had no significant effect on protein synthesis, which was evaluated by [3H]-leucine incorporation into the acid insoluble fraction in the cells, in the absence of stimulatory factors in cardiac myocytes. The amount of protein produced in cardiac myocytes was increased by 10(-8) M endothelin-1 (ET-1), 10(-6) M phenylephrine (PE), or 10(-8) M insulin-like growth factor-1 (IGF-1), suggesting that hypertrophy of cardiac myocytes in vitro was induced by these factors. The ET-1-, PE-, or IGF-1-induced increase in protein synthesis was attenuated by treatment with 10(-5) M tsh. Treatment with 10(-5) M tsh significantly decreased the synthesis of collagen by cardiac fibroblasts, which was evaluated by [3H]-proline incorpolation into acid-insoluble fraction of the fiblobrasts, in the absence of stimulatory factors for the production. Fetal bovine serum (FBS) or IGF-1 increased collagen synthesis in a concentration-dependent manner. The increase at 5% FBS or 10(-8) M IGF-1 was inhibited by 10(-5) M tsh. Fibroblast-conditioned medium (FB-CM) increased protein synthesis in cardiac myocytes in a concentration-dependent manner (10; - 100 %). Tsh attenuated the FB-CM-induced increase in protein synthesis by cardiac myocytes. These results show that tsh may attenuate the humoral factor-induced hypertrophy of cardiac myocytes and fibrosis of cardiac fibroblasts. The findings suggest that tsh may improve the development of cardiac remodeling under pathophysiological conditions. Abbreviations. ANP:atrial natriuretic peptide DMEM:Dulbecco-modified Eagle's medium ET-1:endothelin-1 FB-CM:fibroblast-conditioned medium FBS:fetal bovine serum IGF-1:insulin-like growth factor-1 PE:phenylephrine tsh:tanshinone VI

  10. Radiation induced bystander effect by GAP junction channels in human fibroblast cell

    NASA Astrophysics Data System (ADS)

    Furusawa, Y.; Shao, C.; Aoki, M.; Kobayashi, Y.; Funayama, T.; Ando, K.

    The chemical factor involved in bystander effect and its transfer pathway were investigated in a confluent human fibroblast cell (AG1522) population. Micronuclei (MN) and G1-phase arrest were detected in cells irradiated by carbon (~100 keV/μm) ions at HIMAC. A very low dose irradiation showed a high effectiveness in producing MN, suggesting a bystander effect. This effectiveness was enhanced by 8-Br-cAMP treatment that increases gap junctional intercellular communication (GJIC). On the other hand, the effect was reduced by 5% DMSO treatment, which reduce the reactive oxygen species (ROS), and suppressed by 100 μM lindane treatment, an inhibitor of GJIC. In addition, the radiation-induced G1-phase arrest was also enhanced by cAMP, and reduced or suppressed by DMSO or lindane. A microbeam device (JAERI) was also used for these studies. It was found that exposing one single cell in a confluent cell population to exactly one argon (~1260 keV/μm) or neon (~430 keV/ μm) ion, additional MN could be detected in many other unirradiated cells. The yield of MN increased with the number of irradiated cells. However, there was no significant difference in the MN induction when the cells were irradiated by increasing number of particles. MN induction by bystander effect was partly reduced by DMSO, and effectively suppressed by lindane. Our results obtained from both random irradiation and precise numbered irradiation indicate that both GJIC and ROS contributed to the radiation-induced bystander effect, but the cell gap junction channels likely play an essential role in the release and transfer of radiation-induced chemical factors.

  11. In vitro investigations on the effect of dermal fibroblasts on keratinocyte responses to ultraviolet B radiation.

    PubMed

    Fernandez, Tara L; Van Lonkhuyzen, Derek R; Dawson, Rebecca A; Kimlin, Michael G; Upton, Zee

    2014-01-01

    Exposure to ultraviolet radiation is closely linked to the development of skin cancers in humans. The ultraviolet B (UVB) radiation wavelength (280-320 nm), in particular, causes DNA damage in epidermal keratinocytes, which are linked to the generation of signature premalignant mutations. Interactions between dermal fibroblasts and keratinocytes play a role in epidermal repair and regeneration after UVB-induced damage. To investigate these processes, established two and three-dimensional culture models were utilized to study the impact of fibroblast-keratinocyte crosstalk during the acute UVB response. Using a coculture system it was observed that fibroblasts enhanced keratinocyte survival and the repair of cyclobutane pyrimidine dimers (CPDs) after UVB radiation exposure. These findings were also mirrored in irradiated human skin coculture models employed in this study. Fibroblast coculture was shown to play a role in the expression and activation of members of the apoptotic cascade, including caspase-3 and Bad. Interestingly, the expression and phosphorylation of p53, a key player in the regulation of keratinocyte cell fate postirradiation, was also shown to be influenced by fibroblast-produced factors. This study highlights the importance of synergistic interactions between fibroblasts and keratinocytes in maintaining a functional epidermis while promoting repair and regeneration following UVB radiation-induced damage.

  12. FGF2-induced effects on transcriptome associated with regeneration competence in adult human fibroblasts

    PubMed Central

    2013-01-01

    Background Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury – by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. Results We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion molecules, matrix remodelling, cytoskeleton, and cytokines were determined to be affected by FGF2 treatment. Conclusions Transcriptome analysis comparing control adult human fibroblasts with FGF2-treated fibroblasts identified functional groups of genes that reflect transcriptional changes potentially contributing to their regeneration competence. This comparative transcriptome analysis should contribute new insights into genes that characterize cells with greater regenerative potential. PMID:24066673

  13. Effects of chromium picolinate on the viability of chick embryo fibroblast.

    PubMed

    Bai, Y; Zhao, X; Qi, C; Wang, L; Cheng, Z; Liu, M; Liu, J; Yang, D; Wang, S; Chai, T

    2014-04-01

    Chromium picolinate (CrPic), which is used as a nutritional supplement and to treat type 2 diabetes, has gained much attention because of its cytotoxicity. This study evaluated the effects of CrPic on the viability of the chick embryo fibroblast (CEF) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, morphological detection, and flow cytometry. The results show that lower concentrations of CrPic (8 and 16 μM) did not damage CEF viability (p > 0.05). However, higher CrPic concentrations (400 and 600 μM) indicated a highly significant effect on the production of intracellular reactive oxygen species, alteration of mitochondrial membrane potential, intracellular calcium ion concentration, and the apoptosis rate (p < 0.01), contrary to lower CrPic concentrations (8 and 16 μM) and control group. Moreover, apoptotic morphological changes induced by these processes in CEF were confirmed using Hoechst 33258 staining. Cell death induced by higher concentrations of CrPic was caused by an apoptotic and a necrotic mechanism, whereas the main mechanism of oxidative stress-induced mitochondrial dysfunction was apoptotic death.

  14. Stimulatory effect of Aggregatibacter actinomycetemcomitans DNA on proinflammatory cytokine expression by human gingival fibroblasts.

    PubMed

    Soto-Barreras, Uriel; Cortés-Sandoval, Gabriela; Dominguez-Perez, Ruben; Loyola-Leyva, Alejandra; Martinez-Rodriguez, Panfilo-Raymundo; Loyola-Rodriguez, Juan Pablo

    2017-10-01

    While different virulence factors have been reported of Aggregatibacter actinomycetemcomitans (Aa), there is little information about the stimulatory effect of its DNA. The main purpose of this study was to assess the inflammatory response of human gingival fibroblasts (HGFs) stimulated with A. actinomycetemcomitans DNA. Cytokine levels of IL-6, IL-1α and TNF-α were measured on the supernatant of HGFs activated with 10, 25, 50 and 100μg/ml DNA of Aa during 24h. Primary cultures of HGFs were infected with Aa and its DNA at different times and concentrations to compare its cytotoxic effect. Cell damage and adhesion of Aa to HGFs were evaluated under light microscopy and Scanning electron microscopy respectively. There was a statistical difference (p<0.05) in cytokine expression in HGFs activated by bacterial DNA with a dose dependent on IL-6 expression and a significantly elevated expression of IL-1α and TNF-α compared to Human DNA negative control. Substantial morphological alterations were observed after infection of A. actinomycetemcomitans in HGFs but not with bDNA exposure. Aggregatibacter actinomycetemcomitans showed a high rate of adhesion and cell damage to HGFs after 30min. Genomic DNA of A. actinomycetemcomitans could be a factor in the pathogenesis of periodontitis that might play a major role in the inflammatory response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells.

    PubMed

    Pan, Zhi; Lee, Wilson; Slutsky, Lenny; Clark, Richard A F; Pernodet, Nadine; Rafailovich, Miriam H

    2009-04-01

    The effects of exposure of human dermal fibroblasts to rutile and anatase TiO(2) nanoparticles are reported. These particles can impair cell function, with the latter being more potent at producing damage. The exposure to nanoparticles decreases cell area, cell proliferation, mobility, and ability to contract collagen. Individual particles are shown to penetrate easily through the cell membrane in the absence of endocytosis, while some endocytosis is observed for larger particle clusters. Once inside, the particles are sequestered in vesicles, which continue to fill up with increasing incubation time till they rupture. Particles coated with a dense grafted polymer brush are also tested, and, using flow cytometry, are shown to prevent adherence to the cell membrane and hence penetration of the cell, which effectively decreases reactive oxygen species (ROS) formation and protects cells, even in the absence of light exposure. Considering the broad applications of these nanoparticles in personal health care products, the functionalized polymer coating can potentially play an important role in protecting cells and tissue from damage.

  16. Differential effect of acetylsalicylic acid and dipyrone on prostaglandin production in human fibroblast cultures.

    PubMed Central

    Lüthy, C.; Multhaupt, M.; Oetliker, O.; Perisic, M.

    1983-01-01

    Human skin fibroblasts incubated with arachidonic acid in culture show basal release of prostaglandins. They produce the same prostaglandins after stimulation with bradykinin. Basal release of prostaglandins I2 (6-oxo-PGF1 alpha), F2 alpha and E2 is inhibited dose-dependently by both acetylsalicylic acid (ASA) and dipyrone (P less than 0.05). The examined dose-range was 10(-7) to 10(-4) M for both drugs. During the first 5 min after removal of the drugs from the incubation medium, bradykinin-stimulated release remains dose-dependently inhibited (P less than 0.001) in ASA-, but not in dipyrone-treated cultures. The difference between the effects of ASA and of dipyrone is highly significant (P less than 0.0001), whereas the dipyrone-treated cultures are not different from controls. The findings are consistent with cyclo-oxygenase inhibition by ASA as well as by dipyrone. However, the data demonstrate rapid reversibility of the effect of dipyrone. This suggests that in contrast to ASA, dipyrone does not inhibit cyclo-oxygenase by binding covalently to the enzyme. PMID:6418250

  17. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes.

    PubMed

    Galandáková, A; Franková, J; Ambrožová, N; Habartová, K; Pivodová, V; Zálešák, B; Šafářová, K; Smékalová, M; Ulrichová, J

    2016-09-01

    Biomedical application of silver nanoparticles (AgNPs) has been rapidly increasing. Owing to their strong antimicrobial activity, AgNPs are used in dermatology in the treatment of wounds and burns. However, recent evidence for their cytotoxicity gives rise to safety concerns. This study was undertaken as a part of an ongoing programme in our laboratory to develop a topical agent for wound healing. Here, we investigated the potential toxicity of AgNPs using normal human dermal fibroblasts (NHDF) and normal human epidermal keratinocytes (NHEK) with the aim of comparing the effects of AgNPs and ionic silver (Ag-I). Besides the effect of AgNPs and Ag-I on cell viability, the inflammatory response and DNA damage in AgNPs and Ag-I-treated cells were examined. The results showed that Ag-I were significantly more toxic than AgNPs both on NHDF and NHEK. Non-cytotoxic concentrations of AgNPs and Ag-I did not induce DNA strand breaks and did not affect inflammatory markers, except for a transient increase in interleukin 6 levels in Ag-I-treated NHDF. The results showed that AgNPs are more suitable for the intended application as a topical agent for wound healing up to the concentration 25 µg/mL.

  18. Enhanced effect of fibroblast growth factor-2-containing dalteparin/protamine nanoparticles on hair growth

    PubMed Central

    Takabayashi, Yuki; Nambu, Masaki; Ishihara, Masayuki; Kuwabara, Masahiro; Fukuda, Koichi; Nakamura, Shingo; Hattori, Hidemi; Kiyosawa, Tomoharu

    2016-01-01

    Purpose Although treatments for alopecia are in high demand, not all treatments are safe and reliable. Dalteparin/protamine nanoparticles (D/P NPs) can effectively carry growth factors (GFs) such as fibroblast GF (FGF)-2. The purpose of this study was to identify the effects of FGF-2-containing D/P NPs (FGF-2&D/P NPs) on hair growth. Patients and methods In this study, the participants were 12 volunteers with thin hair. One milliliter of FGF-2 (100 ng/mL) and D/P NPs (56 μg/mL) was applied and massaged on the skin of the scalp by the participants twice a day. They were evaluated for 6 months. Participants were photographed using a digital camera for general observation and a hair diagnosis system for measuring hair diameter. Results The mean diameter of the hairs was significantly higher following the application of FGF-2&D/P NPs for 6 months. Objective improvements in thin hair were observed in two cases. Nine participants experienced greater bounce and hair resilience. Conclusion The transdermal application of FGF-2&D/P NPs to the scalp can be used as a new treatment for alopecia. PMID:27274299

  19. Cytotoxic and mutagenic effects of specific carcinogen-DNA adducts in diploid human fibroblasts

    SciTech Connect

    McCormick, J.J.; Maher, V.M.

    1985-10-01

    A comparison of the cytotoxicity and mutagenicity of a series of carcinogens in normal diploid human fibroblasts and in cells deficient in one or more DNA repair processes has provided insight into the specific DNA adduct(s) responsible for these biological effects. The carcinogens tested include ultraviolet radiation; reactive derivatives of structurally related aromatic amides; metabolites of benzo(a)pyrene; the simple alkylating agents N-methyl-N'-nitro-N-nitrosoguanidine and N-ethyl-N-nitrosourea; and aflatoxin B/sub 1/ dichloride, a model for the reactive 2,3-epoxide of aflatoxin B/sub 1/. Exponentially growing cells were exposed to agents and assayed for mutations and cell killing. Cells deficient in repair of particular DNA adducts or lesions proved more sensitive to the agent causing those lesions than did normally repairing cells. Many of the carcinogens were compared for their mutagenic and/or cytotoxic effect, not only as a function of dose administered, but also as a function of the initial number of adducts or photoproducts induced in DNA and the number remaining at critical times posttreatment. The results demonstrated a high correlation between the number of DNA lesions remaining unexcised at the time the DNA was replicated and frequency of mutations induced. Comparative studies of the frequency of UV-induced transformation of normal and repair-deficient cells showed this also to be true for transformation.

  20. Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells.

    PubMed Central

    Golzio, M; Mora, M P; Raynaud, C; Delteil, C; Teissié, J; Rols, M P

    1998-01-01

    Cells can be transiently permeabilized by a membrane potential difference increase induced by the application of high electric pulses. This was shown to be under the control of the pulsing buffer osmotic pressure, when short pulses were applied. In this paper, the effects of buffer osmotic pressure during electric treatment and during the following 10 min were investigated in Chinese hamster ovary cells subjected to long (ms) square wave pulses, a condition needed to mediate gene transfer. No effect on cell permeabilization for a small molecule such as propidium iodide was observed. The use of a hypoosmolar buffer during pulsation allows more efficient loading of cells with beta-galactosidase, a tetrameric protein, but no effect of the postpulse buffer osmolarity was observed. The resulting expression of plasmid coding for beta-galactosidase was strongly controlled by buffer osmolarity during as well as after the pulse. The results, tentatively explained in terms of the effect of osmotic pressure on cell swelling, membrane organization, and interaction between molecules and membrane, support the existence of key steps in plasmid-membrane interaction in the mechanism of cell electrically mediated gene transfer. PMID:9635756

  1. The effect of chloroquine on the distribution of newly synthesized and old β-hexosaminidase in fibroblasts

    PubMed Central

    Vladutiu, Georgirene D.

    1982-01-01

    Most of the newly synthesized β-N-acetyl-d-glucosaminidase (EC 3.2.1.30; β-hexosaminidase) in normal fibroblast cultures is excreted during 24h incubation with serum-free medium. In this study, this new enzyme only comprises about one-half of the excreted pool as determined by a near total inhibition of [14C]leucine incorporation into the excreted enzyme in the presence of cycloheximide, with only a 46% reduction in enzyme activity. These data indicate that nearly equal fractions of new and old enzyme are normally excreted by fibroblasts. Incubation of normal fibroblast cultures with chloroquine (25 μm) for 24h doubled the amount of extracellular β-hexosaminidase activity from 15% to 37% of total culture activity while reducing the incorporation of [14C]leucine into intra- and extracellular enzyme by 66 and 29% of control, respectively. Therefore, it appears that chloroquine inhibited enzyme synthesis while enhancing the excretion of old as well as newly synthesized enzyme. Chloroquine and cycloheximide together reduced the [14C]leucine incorporation into intracellular enzyme by more than either agent alone, indicating a combined effect on enzyme synthesis and/or degradation. β-Hexosaminidase-deficient fibroblasts that contained endocytosed enzyme spontaneously excreted 10% of their enzyme during 24h incubation with serum-free medium and 18% in the presence of mannose 6-phosphate (2 mm). These results indicated that about one-half of the excreted enzyme still possessed its phosphomannosyl recognition residues and actually re-entered the cells. Chloroquine stimulated the excretion of an addition 15% of the total endocytosed enzyme at 48 and 72h after endocytosis. These data suggest that new, old and endocytosed β-hexosaminidase are all excreted by fibroblasts, that this excretion is enhanced by chloroquine, and that a fraction of the excreted enzyme retains its phosphomannosylated residues needed for re-uptake and transport inside the cells. ImagesFig. 1. PMID

  2. Tirilazad amelioriates extracellular effects of photooxidative stress by sealing the membrane of UVA irradiated human dermal fibroblasts.

    PubMed

    Schneider, Lars Alexander; Dissemond, Joachim; Schwamborn, Edith; Wlaschek, Meinhard; Brenneisen, Peter; Scharffetter-Kochanek, Karin

    2006-01-01

    The evaluation of antioxidant medication might provide further tools to protect the skin against the detrimental effects of photooxidative stress. In this context we have previously shown that the lazaroid tirilazad protects fibroblasts effectively against lipid peroxidation (LPO). Now we investigated whether and how tirilazad also influences two typical stress responses after UVA exposure, i.e. IL-6 and collagenase (MMP-1) release. Fibroblasts pre-incubated with tirilazad at a concentration of 30 microM show significantly less IL-6 in the extracellular medium after UVA exposure. Correspondingly, pre-incubation with tirilazad also significantly diminishes the extracellular MMP-1 protein concentration 24h post-irradiation. These effects observed are due to a membrane stabilisation, as tirilazad neither diminishes IL-6 mRNA production nor intracellular IL-6/MMP-1 protein levels after UVA exposure and thus most likely acts by sealing off the cell, delaying the typical leakage of IL-6 and MMP-1.

  3. 199 EFFECTS OF REPROGRAMMING-CONDITIONED MEDIUM ON ULTRAVIOLET RAY A-DAMAGED HUMAN DERMAL FIBROBLASTS.

    PubMed

    Kang, J; Lee, S G; Kang, J H; Park, S-M; Heo, S Y; Lee, S Y; Kim, S; Lo, E; Ahn, K S; Shim, H

    2016-01-01

    Ultraviolet ray A (UVA) is an electromagnetic light with a long wavelength from the sun. The penetration of UVA deep into the human dermis causes changes in cells, such as DNA fragmentation, apoptosis, and senescence, eventually leading a decline of proliferation and wound-healing ability. These changes induced by UVA exposure are similar to those seen in the process of stem cell differentiation. We postulated that the condition that reverses cellular differentiation may alleviate the UVA-induced damage in skin cells. Human dermal fibroblasts (HDF) could be reprogrammed to induced pluripotent stem cells (iPSC). Conditioned medium (CM) was prepared during the process of iPSC reprogramming (referred to as Repro-CM). The UVA-irradiated HDF were cultured in Repro-CM for 24h. In comparison with CM prepared from the culture of normal HDF and iPSC (referred to as HDF-CM and iPSC-CM, respectively), effects of Repro-CM on UVA-irradiated cells were investigated. Viability, wound-healing ability, apoptosis, and senescence of HDF were analysed by WST-1 assay, scratch assay, Annexin V assay, and senescence-associated β-galactosidase assay, respectively. Upon recovering from the UVA-induced damage, viability and wound-healing ability of HDF were significantly different (P<0.05) among the treatments in the order of Repro-, HDF-, and iPSC-CM. In the same context, apoptosis and senescence were significantly different (P<0.05) in the order of iPSC-, HDF-, and Repro-CM. Interestingly, iPSC-CM did not substantially ameliorate UVA-induced damage, suggesting that the conditions optimized to pluripotent stem cells may not be suitable for the recovery from damage in terminally differentiated cells, such as fibroblasts. The RNA-seq analysis was performed to assess the genome-wide transcriptional profile in the process of recovery. Repro- and HDF-CM were categorized more closely than iPSC-CM in hierarchical cluster analysis. In comparison with iPSC-CM, the up-regulated genes by Repro

  4. [Effects and mechanism of fibroblast growth factor 21 on rat vascular smooth muscle cells calcification].

    PubMed

    Fu, Kun; Xin, Yi; Shi, Yuchen; Zheng, Xuwei; Lyu, Yuan; Xu, Zhenye; Liu, Jinghua

    2015-10-01

    To observe the effect and mechanism of fibroblast growth factor 21 (FGF21) on rat vascular smooth muscle cells (VSMCs) calcification in vitro. VSMCs was treated with calcification medium containing calcium chloride and β-glycerophosphate to induce rat VSMCs calcification in vitro. VSMCs were divided into 5 groups: the control group (cultured in normal medium), the calcification group (incubated in calcified medium), the FGF21 group (cultured in calcified medium and FGF21), the PD166866 group (cultured in calcified medium and FGF21 and PD166866, inhibitor of fibroblast growth factor receptor-1 (FGFR1)), the GW9662 group (cultured in calcified medium and FGF21 and GW9662, inhibitor of peroxisome proliferators activated receptor-γ (PPAR-γ)). The calcification of VSMCs was detected by calcium content, alkaline phosphatase activity and alizarin red staining. The protein and mRNA expression of FGFR1, β-Klotho, osteocalcin and smooth muscle 22α (SM22α) were determined by western blot analysis and realtime-PCR, respectively. (1) The mRNA (P < 0.01) and protein expressions of β-Klotho and FGFR1 were significantly downregulated in calcification group compared with control group (P < 0.05 or 0.01). (2) The protein levels and mRNA expression of calcium content, alkaline phosphatase activity and osteocalcin were significantly downregulated, while the protein levels and mRNA of SM22α were significantly increased in FGF21 group compared with calcification group (all P < 0.05). Moreover, alizarin red staining verified positive red nodules on calcified VSMCs was significantly reduced in FGF21 group than in calcification group. (3) Calcium content, alkaline phosphatase activity and alizarin red staining were similar between PD166866 group and calcification group (all P > 0.05). (4) Calcium content, alkaline phosphatase activity and alizarin red staining were similar between GW9662 group and calcification group (all P > 0.05). The inhibition of VSMCs calcification by FGF21 is

  5. Chromosome aberrations in human fibroblasts induced by monoenergetic neutrons. I. Relative biological effectiveness.

    PubMed

    Pandita, T K; Geard, C R

    1996-06-01

    The relative biological effectiveness (RBE) of neutrons for many biological end points varies with neutron energy. To test the hypothesis that the RBE of neutrons varies with respect to their energy for chromosome aberrations in a cell system that does not face interphase death, we studied the yield of chromosome aberrations induced by monoenergetic neutrons in normal human fibroblasts at the first mitosis postirradiation. Monoenergetic neutrons at 0.22, 0.34, 0.43, 1, 5.9 and 13.6 MeV were generated at the Accelerator Facility of the Center for Radiological Research, Columbia University, and were used to irradiate plateau-phase fibroblasts at low absorbed doses from 0.3 to 1.2 Gy at a low dose rate. The reference low-LET, low-dose-rate radiation was 137Cs-gamma rays (0.66 MeV). A linear dose response (Y = alphaD) for chromosome aberrations was obtained for all monoenergetic neutrons and for the gamma rays. The yield of chromosome aberrations per unit dose was high at low neutron energies (0.22, 0.34 and 0.43 MeV) with a gradual decline with the increase in neutron energy. Maximum RBE (RBEm) values varied for the different types of chromosome aberrations. The highest RBE (24.3) for 0.22 and 0.43 MeV neutrons was observed for intrachromosomal deletions, a category of chromosomal change common in solid tumors. Even for the 13.6 MeV neutrons the RBEm (11.1) exceeded 10. These results show that the RBE of neutrons varies with neutron energy and that RBEs are dissimilar between different types of asymmetric chromosome aberrations and suggest that the radiation weighting factors applicable to low-energy neutrons need firmer delineation. This latter may best be attained with neutrons of well-defined energies. This would enable integrations of appropriate quality factors with measured radiation fields, such as those in high-altitude Earth atmosphere. The introduction of commercial flights at high altitude could result in many more individuals being exposed to neutrons than

  6. Bilirubin and amyloid-beta peptide induce cytochrome c release through mitochondrial membrane permeabilization.

    PubMed Central

    Rodrigues, C. M.; Solá, S.; Silva, R.; Brites, D.

    2000-01-01

    BACKGROUND: The pathogenesis of bilirubin encephalopathy and Alzheimer's disease appears to result from accumulation of unconjugated bilirubin (UCB) and amyloid-beta (Abeta) peptide, respectively, which may cause apoptosis. Permeabilization of the mitochondrial membrane, with release of intermembrane proteins, has been strongly implicated in cell death. Inhibition of the mitochondrial permeability is one pathway by which ursodeoxycholate (UDC) and tauroursodeoxycholate (TUDC) protect against apoptosis in hepatic and nonhepatic cells. In this study, we further characterize UCB- and Abeta-induced cytotoxicty in isolated neural cells, and investigate membrane perturbation during incubation of isolated mitochondria with both agents. In addition, we evaluate whether the anti-apoptotic drugs UDC and TUDC prevent any changes from occurring. MATERIALS AND METHODS: Primary rat neuron and astrocyte cultures were incubated with UCB or Abeta peptide, either alone or in the presence of UDC. Apoptosis was assessed by DNA fragmentation and nuclear morphological changes. Isolated mitochondria were treated with each toxic, either alone or in combination with UDC, TUDC, or cyclosporine A. Mitochondrial swelling was measured spectrophotometrically and cytochrome c protein levels determined by Western blot. RESULTS: Incubation of neural cells with both UCB and Abeta induced apoptosis (p < 0.01). Coincubation with UDC reduced apoptosis by > 50% (p < 0.05). Both toxins caused membrane permeabilization in isolated mitochondria (p < 0.001); whereas, pretreatment with UDC was protective (p < 0.05). TUDC was even more effective at preventing matrix swelling mediated by Abeta (p < 0.01). UDC and TUDC markedly reduced cytochrome c release associated with mitochondrial permeabilization induced by UCB and Abeta, respectively (p < 0.05). Moreover, cyclosporine A significantly inhibited mitochondrial swelling and cytochrome c efflux mediated by UCB (p < 0.05). CONCLUSION: UCB and Abeta peptide

  7. Asymmetric Oxidation of Giant Vesicles Triggers Curvature-Associated Shape Transition and Permeabilization

    PubMed Central

    Heuvingh, Julien; Bonneau, Stéphanie

    2009-01-01

    Abstract Oxidation of unsaturated lipids is a fundamental process involved in cell bioenergetics as well as in cell death. Using giant unilamellar vesicles and a chlorin photosensitizer, we asymmetrically oxidized the outer or inner monolayers of lipid membranes. We observed different shape transitions such as oblate to prolate and budding, which are typical of membrane curvature modifications. The asymmetry of the shape transitions is in accordance with a lowered effective spontaneous curvature of the leaflet being targeted. We interpret this effect as a decrease in the preferred area of the targeted leaflet compared to the other, due to the secondary products of oxidation (cleaved-lipids). Permeabilization of giant vesicles by light-induced oxidation is observed after a lag and is characterized in relation with the photosensitizer concentration. We interpret permeabilization as the opening of a pore above a critical membrane tension, resulting from the budding of vesicles. The evolution of photosensitized giant vesicle lysis tension was measured and yields an estimation of the effective spontaneous curvature at lysis. Additionally photo-oxidation was shown to be fusogenic. PMID:19948119

  8. Anti-Inflammatory Effects of TRAF-Interacting Protein in Rheumatoid Arthritis Fibroblast-Like Synoviocytes

    PubMed Central

    Yan, Shi

    2016-01-01

    Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by inflammatory cell infiltration, synovial inflammation, and cartilage destruction. Proliferative fibroblast-like synoviocytes (FLS) play crucial roles in both propagation of inflammation and joint damage because of their production of great amount of proinflammatory cytokines and proteolytic enzymes. In this study, we investigate the role of TRAF-interacting protein (TRIP) in regulating inflammatory process in RA-FLS. TRIP expression was attenuated in RA-FLS compared with osteoarthritis- (OA-) FLS. Overexpression of TRIP significantly inhibited the activation of NF-κB signaling and decreased the production of proinflammatory cytokines and matrix metalloproteinases (MMPs) in TNFα-stimulated RA-FLS. Furthermore, TRIP was found to interact with transforming growth factor β-activated kinase 1 (TAK1) and promoting K48-linked polyubiquitination of TAK1 in RA-FLS. Our results demonstrate that TRIP has anti-inflammatory effects on RA-FLS and suggest TRIP as a potential therapeutic target for human RA. PMID:27847407

  9. Effect of gingival fibroblasts and ultrasound on dogs' root resorption during orthodontic treatment

    PubMed Central

    Crossman, Jacqueline; Hassan, Ali H; Saleem, Ali; Felemban, Nayef; Aldaghreer, Saleh; Fawzi, Elham; Farid, Mamdouh; Abdel-Ghaffar, Khaled; Gargoum, Ausama; El-Bialy, Tarek

    2017-01-01

    Objectives: To investigate the effect of using osteogenic induced gingival fibroblasts (OIGFs) and low intensity pulsed ultrasound (LIPUS) on root resorption lacunae volume and cementum thickness in beagle dogs that received orthodontic tooth movement. Materials and Methods: Seven beagle dogs were used, from which gingival cells (GCs) were obtained and were induced osteogenically to produce OIGFs. Each third and fourth premolar was randomly assigned to one of the five groups, namely, LIPUS, OIGFs, bone morphogenetic protein-2 (BMP-2), OIGFs + LIPUS, and control. All groups received 4 weeks of bodily tooth movement, then LIPUS-treated groups received LIPUS for 20 min/day for 4 weeks, and OIGFs groups received an injection of OIGFs near the root apex. Microcomputed tomography analysis was used to calculate root resorption lacunae volume and histomorphometric analysis was performed to measure the cementum thickness of each root at 3 root levels on compression and tension sides. Results: There was no significant difference in resorption volume between the treatment groups. OIGFs + LIPUS increased cementum thickness (P > 0.05) in third premolars near the apex, and LIPUS increased cementum thickness (P > 0.05) in fourth premolars near the apex. Furthermore, BMP2 increased cementum thickness at the coronal third at the compression side. Conclusion: OIGFs, LIPUS, and BMP-2 can be potential treatments for orthodontically induced root resorption, however, improvements in experimental design and treatment parameters are required to further investigate these repair modalities. PMID:28197400

  10. Effect of Fibroblast Growth Factor 2 on Equine Synovial Fluid Chondroprogenitor Expansion and Chondrogenesis

    PubMed Central

    Bianchessi, Marta; Chen, Yuwen; Durgam, Sushmitha; Pondenis, Holly; Stewart, Matthew

    2016-01-01

    Mesenchymal stem cells have been identified in the synovial fluid of several species. This study was conducted to characterize chondroprogenitor (CP) cells in equine synovial fluid (SF) and to determine the effect of fibroblast growth factor 2 (FGF-2) on SF-CP monolayer proliferation and subsequent chondrogenesis. We hypothesized that FGF-2 would stimulate SF-CP proliferation and postexpansion chondrogenesis. SF aspirates were collected from adult equine joints. Colony-forming unit (CFU) assays were performed during primary cultures. At first passage, SF-cells were seeded at low density, with or without FGF-2. Following monolayer expansion and serial immunophenotyping, cells were transferred to chondrogenic pellet cultures. Pellets were analyzed for chondrogenic mRNA expression and cartilage matrix secretion. There was a mean of 59.2 CFU/mL of SF. FGF-2 increased the number of population doublings during two monolayer passages and halved the population doubling times. FGF-2 did not alter the immunophenotype of SF-CPs during monolayer expansion, nor did FGF-2 compromise chondrogenesis. Hypertrophic phenotypic markers were not expressed in control or FGF-2 groups. FGF-2 did prevent the development of a “fibroblastic” cell layer around pellet periphery. FGF-2 significantly accelerates in vitro SF-CP expansion, the major hurdle to clinical application of this cell population, without detrimentally affecting subsequent chondrogenic capacity. PMID:26839571

  11. The effect of recombinant human fibroblast growth factor-18 on articular cartilage following single impact load.

    PubMed

    Barr, Lynne; Getgood, Alan; Guehring, Hans; Rushton, Neil; Henson, Frances M D

    2014-07-01

    The aim of this in vitro study was to ascertain the effect of recombinant human Fibroblast Growth Factor-18 (rhFGF18) on the repair response of mechanically damaged articular cartilage. Articular cartilage discs were harvested from healthy mature horses (n = 4) and subjected to single impact load (SIL). The impacted explants, together with unimpacted controls were cultured in modified DMEM ± 200 ng/ml rhFGF18 for up to 30 days. Glycosaminoglycan (GAG) release into the media was measured using the dimethylmethylene blue (DMMB) assay. Aggrecan neopepitope CS846, collagen type II synthesis (CPII) and cleavage (C2C) were measured by ELISA. Histological analysis and TUNEL staining were used to assess repair cell number and cell death. Impacted explants treated with rhFGF18 showed significantly more GAG and CS846 release into the media (p < 0.05), there was also a significant decrease in C2C levels at Day 20. Loaded sections treated with rhFGF18 had more repair cells and significantly less cell death (p < 0.001) at Day 30 in culture. In an in vitro damage/repair model, rhFGF18 increases the proteoglycan synthesis, the repair cell number and prevents apoptosis at Day 30. This suggests that rhFGF18 may be a good candidate for enhancement of cartilage repair following mechanical damage. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblasts.

    PubMed

    Seo, Young-Kwon; Song, Kye-Yong; Kim, Young-Jin; Park, Jung-Keug

    2007-07-01

    In this study, an acellular artificial dermis, composed of human collagen and glycosaminoglycan (GAG) secreted by cultured human fibroblasts on a bovine collagen sponge, was developed. Much of the newly secreted extracellular matrix (ECM) remained after the cell removal process. The main theme of this study focused on the matrix, rather than the viable cell components of the skin, as the major dermal deficit in the wound. Both the acellular artificial and bioartificial dermises, containing viable cells with ECM, were significantly less soluble than the collagen sponge, and the relative GAG content in the bioartificial and acellular artificial dermises was approximately 115-120% of the chondroitin-6-sulfate (CS) content found in the collagen sponge. In the group receiving the collagen sponge, the wound area gradually decreased to approximately 10% of its original area, while in the groups receiving the bioartificial and acellular artificial dermises, the wound area also gradually decreased to approximately 60 and 50%, respectively, of the original size over the 5 weeks after grafting. Both the bioartificial and acellular artificial dermises formed thicker, denser collagen fibers; more new blood vessel formation was observed in both cases. The basement membrane of the regenerated epidermal-dermal junction was thicker and more linear in the acellular artificial dermis graft than in the collagen sponge graft. In conclusion, the wound healing effects of acellular artificial dermis are no less than those of the bioartificial dermis, and much better than the collagen sponge graft with respect to wound contraction, angiogenesis, collagen formation, and basement membrane repair.

  13. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts

    PubMed Central

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid. PMID:24623977

  14. UV-protective effects of phytoecdysteroids from Microsorum grossum extracts on human dermal fibroblasts.

    PubMed

    Ho, Raimana; Teai, Taivini; Meybeck, Alain; Raharivelomanana, Phila

    2015-01-01

    Microsorum grossum (Polypodiaceae), locally called metuapua'a, is one of the most frequently used fern species in Polynesian traditional medicine. Fronds or rhizomes of this species are common ingredients of popular medicine recipes to cure various ailments. M. grossum frond and rhizome extracts contain, as their main bioactive components, phytoecdysteroids such as 20-hydroxyecdysone, known to have many interesting biological activities and considered to be adaptogenic compounds [1]. The skin-active effect of M. grossum extract was investigated in two ways on human dermal fibroblasts: a transcriptomic study with c-DNA array for gene expression modulation and a Stress Induced Premature Senescence (SIPS) test. The total extract of M. grossum up-regulates Heme Oxygenase 1 (HO1), an enzyme which protects cells from oxidative stress and which is responsible for skin photoimmunoprotection. The present paper also reports that premature senescence of human skin induced by repeated UV irradiations can be prevented by an ecdysteroid fraction of M. grossum. Our data indicate that extracts of M. grossum could protect skin against oxidative stresses and suggest that they could be used as innovative active cosmetic ingredients.

  15. Gastric ulcer healing and basic fibroblast growth factor: effects of lansoprazole and famotidine.

    PubMed

    Tsuji, S; Kawano, S; Higashi, T; Mukuda, T; Imaizumi, T; Tatsumi, T; Miura, N; Miyajima, K; Fukuda, M; Noguchi, M

    1995-01-01

    We examined the effects of lansoprazole and famotidine on gastric basic fibroblast growth factor (bFGF) levels and ulcer healing in patients with gastric ulcer. Sixteen patients with active gastric ulcer were divided into two groups and received treatment with lansoprazole 30 mg/day or famotidine 40 mg/day. They were examined endoscopically at 2, 4, and 8 weeks to measure gastric bFGF levels at the ulcer margin and to assess ulcer healing. Helicobacter pylori infection was determined by a rapid urease test. The two groups were comparable with regard to age, male:female ratio, H. pylori infection rates, and bFGF levels. During treatment, bFGF levels did not change significantly in the famotidine group, whereas they increased by a factor of 2.2 to 2.6 in the lansoprazole group. Cumulative healing rates were also significantly lower in the famotidine group than in the lansoprazole group. These results indicate that lansoprazole increases tissue bFGF levels and promotes gastric ulcer healing in humans.

  16. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts.

    PubMed

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid.

  17. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  18. Effects of photodynamic treatment on contraction of collagen gels by cultured human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Szeimies, Rolf-Markus; Bosserhoff, Anja K.; Hein, Ruediger; Dylla, Armin; Baeumler, Wolfgang; Landthaler, Michael

    1995-03-01

    Usually cell viability (CV) after PDT is observed in methods based on metabolic parameters (MTT assay) or dye exclusion tests [trypan-blue (TBT)]. Although these tests are accurate in the determination of cell death, functional impairment can not be easily detected. We examined the effects of PDT on human dermal fibroblasts (DF) to determine whether collagen gel contraction (CGC) can be inhibited and whether it correlates well with CV as measured by the TBT. Five-aminolevulinic acid (5-ALA) (1, 5, 10 (mu) g/ml) was added to DF cultured in dishes. Twenty-four hours later, a collagen type I solution was added and irradiation with a tunable dye laser (630 nm, 100 mW/cm2, 80 J/cm2) was performed. After 24 h, diameters of contracted gels and TBT were measured. As a result, PDT with 5-ALA inhibited CGC and affected CV as a function of dose level. Consequently, CGC data allows a better estimation of the threshold 5-ALA dose affecting the cells.

  19. Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells

    SciTech Connect

    Chiou, Michael; Xu Yue; Longaker, Michael T. . E-mail: Longaker@stanford.edu

    2006-05-05

    Adipose-derived mesenchymal cells (AMCs) have demonstrated a great capacity for differentiating into bone, cartilage, and fat. Studies using bone marrow-derived mesenchymal cells (BMSCs) have shown that fibroblast growth factor (FGF)-2, a potent mitogenic factor, plays an important role in tissue engineering due to its effects in proliferation and differentiation for mesenchymal cells. The aim of this study was to investigate the function of FGF-2 in AMC chondrogenic differentiation and its possible contributions to cell-based therapeutics in skeletal tissue regeneration. Data demonstrated that FGF-2 significantly promoted the proliferation of AMCs and enhanced chondrogenesis in three-dimensional micromass culture. Moreover, priming AMCs with treatment of FGF-2 at 10 ng/ml demonstrated that cells underwent chondrogenic phenotypic differentiation, possibly by inducing N-Cadherin, FGF-receptor 2, and transcription factor Sox9. Our results indicated that FGF-2 potentiates chondrogenesis in AMCs, similar to its functions in BMSCs, suggesting the versatile potential applications of FGF-2 in skeletal regeneration and cartilage repair.

  20. Photodynamic effects of haematoporphyrin derivative on DNA repair in murine L929 fibroblasts.

    PubMed Central

    Boegheim, J P; Dubbelman, T M; Mullenders, L H; Van Steveninck, J

    1987-01-01

    Illumination with red light of murine L929 fibroblasts that had been sensitized with haematoporphyrin derivative caused DNA single-strand breaks after a lag time of about 20 min, as revealed by alkaline elution. The cells appeared not to be capable of recovering from this damage. The photodynamic effect of haematoporphyrin derivative on DNA repair was assessed by monitoring the repair kinetics of DNA damage induced by either X-rays, u.v. light (254 nm) or methyl methanesulphonate treatment subsequent to a non-DNA-damaging photodynamic treatment with haematoporphyrin derivative. On 'post-incubation', the normally rapid repair of X-ray-induced DNA strand breaks did not occur, whereas with u.v. light and methyl methanesulphonate treatment after photodynamic treatment prolonged post-incubation resulted in an increase in the number of strand breaks rather than the normally observed decrease. This clearly shows that, after a photodynamic treatment with haematoporphyrin derivative that itself did not cause strand breaks, excision repair in L929 cells is severely inhibited at a stage beyond the incision step. PMID:2965572

  1. Effects of water-filtered infrared A irradiation on human fibroblasts.

    PubMed

    Jung, Tobias; Höhn, Annika; Piazena, Helmut; Grune, Tilman

    2010-01-01

    Infrared radiation is a substantial part of the solar energy output reaching the earth surface. Therefore, exposure of humans to infrared radiation is common. However, whether and how infrared (IR) or infrared A acts on human skin cells is still under debate. Recently the generation of reactive oxygen species by water-filtered infrared A (wIRA) irradiation was postulated. wIRA shows a spectral distribution similar to that of solar irradiation at the earth's surface. Thus, the need for protection of human skin from both solar- and artificially generated infrared A irradiation was concluded. Here we demonstrate that in human dermal fibroblasts this reactive oxygen species generation is dependent on heat formation by infrared A and can be reproduced by thermal exposure. On the other hand wIRA irradiation had no detectable effect if the temperature in the cells was kept constant, even if irradiance exceeded the extraterrestrial solar irradiance in the IR range by a factor of about 4 and the maximum at noontime in the tropics by a factor up to about 6. This could be demonstrated by the measurement of oxidant formation using H(2)DCFDA and the determination of protein carbonyls. In additional experiments we could show that during thermal exposure the mitochondria contribute significantly to oxidant production. Further experiments revealed that the major absorbance of infrared is due to absorption of the energy by cellular water. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Effect of UVA fluence rate on indicators of oxidative stress in human dermal fibroblasts.

    PubMed

    Hoerter, James D; Ward, Christopher S; Bale, Kyle D; Gizachew, Admasu N; Graham, Rachelle; Reynolds, Jaclyn; Ward, Melanie E; Choi, Chesca; Kagabo, Jean-Leonard; Sauer, Michael; Kuipers, Tara; Hotchkiss, Timothy; Banner, Nate; Chellson, Renee A; Ohaeri, Theresa; Gant, Langston; Vanderhill, Leah

    2008-02-19

    During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm) and UVB (315-400 nm) spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR) and tanning-bed radiation (TBR) on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses. Our results show that the higher UVA fluence rate in TBR increases the level of all four indicators of oxidative stress. In sequential exposures when cells are exposed first to SSR, the lower UVA fluence rate in SSR induces a protective response that protects against oxidative stress following a second exposure to a higher UVA fluence rate. Our studies underscore the important role of UVA fluence rate in determining how human skin cells respond to a given dose of radiation containing both UVA and UVB radiation.

  3. Protecting effect of phytoncide solution, on normal human dermal fibroblasts against reactive oxygen species.

    PubMed

    Fujimori, Hiroaki; Hisama, Masayoshi; Shibayama, Hiroharu; Iwaki, Masahiro

    2009-01-01

    Four types of phytoncide solutions (A-Type, AB-Type, D-Type and G-Type) was evaluated for reduction of cell damage induced by oxidative stress, ultraviolet A (UVA), ultraviolet B (UVB), hydroxyperoxide (H2O2) and t-butyl-hydroperoxide (t-BHP); stimulation of collagen synthesis against UVA irradiation; and inhibition of matrix metalloproteinase-1 (MMP-1) activity induced by UVA in human normal dermal fibroblasts and human reconstituted skin model. The A-Type, AB-Type, D-Type and G-Type of phytoncide solutions pretreatment resulted in significant protection against cell damage induced by UVB, UVA, H2O2 and t-BHP. The amount of type I collagen following UVA irradiation was increased by treatment with phytoncide solutions in a concentration-dependent manner. On the other hand, phytoncide solutions also suppressed the excess MMP-1 irradiated UVA in a concentration-dependent manner. These effects of G-type solution were superior to those of other types solutions.

  4. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis

    PubMed Central

    CHOI, SEO-HYUN; KIM, MISEON; LEE, HAE-JUNE; KIM, EUN-HO; KIM, CHUN-HO; LEE, YOON-JIN

    2016-01-01

    Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  5. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    PubMed

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  6. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts.

    PubMed

    Ryu, Jina; Park, Su-Jin; Kim, In-Hye; Choi, Youn Hee; Nam, Taek-Jeong

    2014-09-01

    The significant increase in life expectancy is closely related to the growing interest in the impact of aging on the function and appearance of the skin. Skin aging is influenced by several factors, and solar ultraviolet (UV) irradiation is considered one of the most important causes of skin photoaging. The aim of this study was to examine the anti-photoaging role of porphyra-334 from Porphyra (P.) yezoensis, a mycosporine-like amino acid (MAA), using high-performance liquid chromatography (HPLC), and electrospray ionization‑mass spectrometry (ESI-MS). In the present study, extracted UV‑absorbing compounds from P. yezoensis included palythine, asterina-330 and porphyra-334. Porphyra-334 was the most abundant MAA in P. yezoensis, and it was therefore used for conducting antiphotoaging experiments. The effect of porphyra-334 on the prevention of photoaging was investigated by measuring reactive oxygen species (ROS) production and matrix metalloproteinase (MMP) levels, as well as extracellular matrix (ECM) components and protein expression in UVA‑irradiated human skin fibroblasts. Porphyra-334 suppressed ROS production and the expression of MMPs following UVA irradiation, while increasing levels of ECM components, such as procollagen, type I collagen, elastin. These results suggest that porphyra-334 has various applications in cosmetics and toiletries because of its anti‑photoaging activities and may serve as a novel anti-aging agent.

  7. Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts

    PubMed Central

    Alili, Lirija; Chapiro, Swetlana; Marten, Gernot U.; Schmidt, Annette M.; Zanger, Klaus; Brenneisen, Peter

    2015-01-01

    Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF) and cells of the squamous tumor cell line (SCL-1) with Fe3O4 nanoparticles. These nanoparticles had an average size of 65 nm. Fe3O4 nanoparticles induced oxidative stress via generation of reactive oxygen species (ROS) and subsequent initiation of lipid peroxidation. Furthermore, the question was addressed of whether Fe3O4 nanoparticles affect myofibroblast formation, known to be involved in tumor invasion. Herein, Fe3O4 nanoparticles prevent the expression alpha-smooth muscle actin and therefore decrease the number of myofibroblastic cells. Moreover, our data show in vitro that concentrations of Fe3O4 nanoparticles, which are nontoxic for normal cells, partially reveal a ROS-triggered cytotoxic but also a pro-invasive effect on the fraction of squamous cancer cells surviving the treatment with Fe3O4 nanoparticles. The data herein show that the Fe3O4 nanoparticles appear not to be adequate for use in therapeutic approaches against cancer cells, in contrast to recently published data with cerium oxide nanoparticles. PMID:26090418

  8. Simulated studies on the biological effects of space radiation on quiescent human fibroblasts

    NASA Astrophysics Data System (ADS)

    Ding, Nan; Pei, Hailong; He, Jinpeng; Furusawa, Yoshiya; Hirayama, Ryoichi; Liu, Cuihua; Matsumoto, Yoshitaka; Li, He; Hu, Wentao; Li, Yinghui; Wang, Jufang; Wang, Tieshan; Zhou, Guangming

    2013-10-01

    High charge and energy (HZE) particles are severe risk to manned long-term outer space exploration. Studies on the biological effects of space HZE particles and the underlying mechanisms are essential to the accurate risk assessment and the development of efficient countermeasure. Since majority of the cells in human body stay quiescent (G0 phase), in this study, we established G0 cell and G1 cell models by releasing human normal embryonic lung fibroblast cells from contact inhibition and studied the radiation toxicity of various kinds of HZE particles. Results showed that all of the particles were dose-dependently lethal and G0 cells were more radioresistant than G1 cells. We also found that 53BP1 foci were induced in a LET- and fluence-dependent manner and fewer foci were induced in G0 cells than G1 cells, however, the decrease of foci in 24 h after irradiation was highly relevant to the type of particles. These results imply that even though health risk of space radiation is probably overestimated by the data obtained with exponentially growing cells, whose radiosensitivity is similar to G1 cells, the risk of space HZE particles is un-ignorable and accurate assessment and mechanistic studies should be deepened. The diverse abilities of G0 cells and G1 cells in repairing DNA damages induced by HZE particles emphasize the importance in studying the impact of HZE particles on DNA damage repair pathways.

  9. Permeabilization and cell surgery using femtosecond laser pulses: an emerging tool for cellular manipulation

    NASA Astrophysics Data System (ADS)

    Kohli, Vikram; Acker, Jason P.; Elezzabi, Abdulhakem Y.

    2006-02-01

    Non-invasive manipulation of live cells is important for cell-based therapeutics. Herein, we report on the application of femtosecond laser pulses for cellular manipulation, and the generation of optical pores for cytoplasmic delivery of non-reducing cryoprotectants. Under precise laser focusing, we demonstrate membrane surgery on live mammalian cells, and ablation of focal adhesions adjoining fibroblast cells. In both studies, the morphology of the cell post-laser treatment was maintained with no visible collapse or disassociation. When mammalian cells were suspended in a hyperosmotic cryoprotectant solution, focused femtosecond laser pulses were used to transiently permeabilize live cells for sucrose uptake. To verify the cytoplasmic uptake, the volumetric response of cells in 0.2, 0.3, 0.4, and 0.5 M cryoprotective sucrose was measured using video microscopy. From membrane integrity assays, we determined that optimal cell survival of 91.5 +/- 8% is achieved using 0.2 M sucrose, with a decline in survival at higher concentrations. Using diffusion analysis for a porous membrane, the intracellular accumulation of cryoprotective sucrose was theoretically determined. At a diffusion length of 10 um, > 70% of the extracellular osmolarity was estimated to be intracellularly delivered following closure of the transient pore. We anticipate that our study will have important applications for biopresevation, and profound implications for surgery and cell-isolation.

  10. Effect of spermine synthase deficiency on polyamine biosynthesis and content in mice and embryonic fibroblasts, and the sensitivity of fibroblasts to 1,3-bis-(2-chloroethyl)-N-nitrosourea.

    PubMed Central

    Mackintosh, C A; Pegg, A E

    2000-01-01

    Mutant Gy male mice, which have previously been described as having disruption of the phosphate-regulating Phex gene and a spermine synthase gene [Meyer, Henley, Meyer, Morgan, McDonald, Mills and Price (1998) Genomics, 48, 289-295; Lorenz, Francis, Gempel, Böddrich, Josten, Schmahl and Schmidt (1998) Hum. Mol. Genet. 7, 541-547], as well as mutant Hyp male mice, which have disruption of the Phex gene only, were examined along with their respective normal male littermates. Biochemical analyses of extracts of brains, hearts and livers of 5-week-old mice showed that Gy males lacked any significant spermine synthase activity as well as spermine content. Organs of Gy males had a higher spermidine content. This was caused not only by the lack of conversion of spermidine into spermine, but also because of compensatory increases in the activities of other polyamine biosynthetic enzymes. Gy males were half the body weight of their normal male littermates at weaning age. Hyp males, however, were no different in size when compared with their controls. High mortality of Gy males occurs by weaning age and this mortality was shown to be largely post-natal. Embryonic fibroblasts were isolated from Gy males and their normal male littermates and were similarly shown to lack any significant spermine synthase activity as well as spermine content. The lack of spermine, however, had no significant effect on the growth of immortalized fibroblasts or of primary fibroblast cultures. Similarly, there was no difference in the time of senescence of primary fibroblast cultures from Gy males compared with cultures derived from normal male littermates. However, the lack of spermine did increase the sensitivity of immortalized fibroblasts to killing by the chloroethylating agent 1, 3-bis(2-chloroethyl)-N-nitrosourea. Therefore both the Gy male mice and derived embryonic fibroblasts provide valuable models to study the importance of spermine and spermine synthase, without the use of inhibitors

  11. Effects of ranibizumab on the extracellular matrix production by human Tenon's fibroblast.

    PubMed

    Md Noh, Siti Munirah; Sheikh Abdul Kadir, Siti H; Bannur, Zakaria M; Froemming, Gabriele Anisah; Abdul Hamid Hasani, Narimah; Mohd Nawawi, Hapizah; Crowston, Jonathan G; Vasudevan, Sushil

    2014-10-01

    Anti-Vascular Endothelial Growth Factors (Anti-VEGF) agents have received recent interest as potential anti-fibrotic agents for their concurrent use with trabeculectomy. Preliminary cohort studies have revealed improved bleb morphology following trabeculectomy augmented with ranibizumab. The effects of this humanized monoclonal antibody on human Tenon's fibroblast (HTF), the key player of post trabeculectomy scar formation, are not fully understood. This study was conducted to understand the effects of ranibizumab on extracellular matrix production by HTF. The effect of ranibizumab on HTF proliferation and cell viability was determined using MTT assay (3-(4,5-dimethylthiazone-2-yl)-2,5-diphenyl tetrazolium). Ranibizumab at concentrations ranging from 0.01 to 0.5 mg/mL were administered for 24, 48 and 72 h in serum and serum free conditions. Supernatants and cell lysates from samples were assessed for collagen type 1 alpha 1 and fibronectin mRNA and protein level using quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). After 48-h, ranibizumab at 0.5 mg/mL, significantly induced cell death under serum-free culture conditions (p < 0.05). Ranibizumab caused significant reduction of collagen type 1 alpha 1 (COL1A1) mRNA, but not for fibronectin (FN). Meanwhile, COL1A1 and FN protein levels were found upregulated in treated monolayers compared to control monolayers. Ranibizumab at 0.5 mg/mL significantly reduced cell viability in cultured HTF. From this study, we found that single application of ranibizumab is inadequate to induce the anti-fibrotic effects on HTF, suggesting the importance of adjunctive therapy. Further studies are underway to understand mechanism of actions of ranibizumab on HTF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of bisphosphonates on human gingival fibroblast production of mediators of osteoclastogenesis: RANKL, osteoprotegerin and interleukin-6.

    PubMed

    Tipton, D A; Seshul, B A; Dabbous, M Kh

    2011-02-01

    Osteonecrosis of the jaw (ONJ) is associated with bisphosphonate (BP) therapy. BPs alter osteoblast production of mediators of osteoclastogenesis, including interleukin (IL)-6, RANKL and osteoprotegerin (OPG), a RANKL antagonist. This can inhibit bone turnover and lead to necrosis. There is little information on the contribution of gingival fibroblasts, near bone-resorption sites, to the IL-6/RANKL/OPG network, the effects of BPs, or fibroblast involvement in ONJ pathogenesis. Therefore, the objective of this study was to determine the effects of alendronate and pamidronate on the constitutive production, or the lipopolysaccharide (LPS)- or IL-1β-stimulated production, of IL-6, RANKL and OPG by human gingival fibroblasts. Human gingival fibroblasts were derived from explants obtained from healthy individuals with noninflamed gingiva. Cytotoxicity was determined by measuring the activity of a mitochondrial enzyme. Fibroblasts were pre-incubated or not with BPs (0.01 nm-1 μm), then incubated or not with LPS or IL-1β. The concentrations of IL-6, OPG and RANKL were measured using ELISA. Data were analyzed using analysis of variance (ANOVA) and Scheffé's F procedure. LPS and BPs were not cytotoxic. The cells produced IL-6, OPG and RANKL, all of which were stimulated by IL-1β or LPS (p ≤ 0.04). BPs generally increased the production of IL-6 and OPG (p ≤ 0.04) and decreased the production of RANKL (p ≤ 0.02). BPs generally further increased the production of LPS- or IL-1β-stimulated IL-6 (p ≤ 0.04) and had no effect on, or further increased, the production of LPS- or IL-1β-stimulated OPG (p ≤ 0.04). BPs decreased the production of LPS- or IL-1β-stimulated RANKL (p ≤ 0.04) and decreased constitutive, LPS-stimulated and IL-1β-stimulated RANKL/OPG ratios (p ≤ 0.02). The action of alendronate and pamidronate on human gingival fibroblasts, through altering the production of RANKL and OPG, appears to contribute to a microenvironment favoring the

  13. In vitro effects of ascorbic acid and β-glycerophosphate on human gingival fibroblast cells.

    PubMed

    Martinez, Elizabeth F; Donato, Tatiani A G; Arana-Chavez, Victor E

    2012-10-01

    Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA+βG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA+βG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and βG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular.

  14. Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients.

    PubMed

    Viteri, Gabriela; Chung, Youn Wook; Stadtman, Earl R

    2010-01-01

    The mutation responsible for Hutchinson Gilford Progeria Syndrome (HGPS) causes abnormal nuclear morphology. Previous studies show that free radicals and reactive oxygen species play major roles in the etiology and/or progression of neurodegenerative diseases and aging. This study compares oxidative stress responses between progeric and normal fibroblasts. Our data revealed higher ROS levels in HGPS cells compared to age-matched controls. In response to oxidative challenge, progeric cells showed increased mRNA levels for mitochondrial superoxide dismutase (SOD) and SOD protein content. However, this did not prevent a drop in the ATP content of progeria fibroblasts. Previous studies have shown that declines in human fibroblast ATP levels interfere with programmed cell death and promote necrotic inflammation. Notably, in our investigations the ATP content of progeria fibroblasts was only approximately 50% of that found in healthy controls. Furthermore, HGPS fibroblast analysis revealed a decrease in total caspase-like proteasome activity and in the levels of two active proteolytic complex subunits (beta(5) and beta(7)). A number of studies indicate that the molecular mechanisms causing accelerated aging in progeric patients also occur in healthy cells of older individuals. Thus, the results of this study may also help explain some of the cellular changes that accompany normal aging.

  15. Ca(2+)-loading modulates potencies of cyclosporin A, Mg2+ and ADP to recouple permeabilized rat liver mitochondria.

    PubMed

    Andreyev AYu; Mikhaylova, L M; Starkov, A A; Kushnareva YuE

    1994-09-01

    We studied the relative potencies of cyclosporin A and endogenous effectors (Mg2+ and ADP) to recouple rat liver mitochondria permeabilized by different Ca(2+)-loading in a P(i)-containing medium. Recoupling efficiency of cyclosporin A dramatically decreased at high Ca(2+)-loading (approx. 100 nM of Ca2+/mg protein and more). Mitochondria permeabilized by high Ca2+ were recoupled with approximately equal efficiency by higher cyclosporin A concentrations or by adding 1-5 mM Mg2+ together with low concentrations of cyclosporin A while potentiating effect of ADP on the cyclosporin A recoupling potency was insignificant. Mg2+ ions at concentrations of 3 mM and higher also prevented the carboxyatractylate-induced reversion of cyclosporin A recoupling effect. The data point to competitive relationships between cyclosporin A and/or Mg2+ ions and Ca2+ ions for the site(s) regulating permeability state of the pore.

  16. Gadolinium modifies the cell membrane to inhibit permeabilization by nanosecond electric pulses

    PubMed Central

    Gianulis, Elena C.; Pakhomov, Andrei G.

    2015-01-01

    Lanthanide ions are the only known blockers of permeabilization by electric pulses of nanosecond duration (nsEP), but the underlying mechanisms are unknown. We employed timed applications of Gd3+ before or after nsEP (600-ns, 20 kV/cm) to investigate the mechanism of inhibition, and measured the uptake of the membrane-impermeable YO-PRO-1 (YP) and propidium (Pr) dyes. Gd3+ inhibited dye uptake in a concentration-dependent manner. The inhibition of Pr uptake was always about 2-fold stronger. Gd3+ was effective when added after nsEP, as well as when it was present during nsEP exposure and removed afterwards. Pores formed by nsEP in the presence of Gd3+ remained quiescent unless Gd3+ was promptly washed away. Such pores resealed (or shrunk) shortly after the wash despite the absence of Gd3+. Finally, a brief (3 s) Gd3+ perfusion was equally potent at inhibiting dye uptake when performed either immediately before or after nsEP, or early before nsEP. The persistent protective effect of Gd3+ even in its absence proves that inhibition by Gd3+ does not result from simple pore obstruction. Instead, Gd3+ causes lasting modification of the membrane, occurring promptly and irrespective of pore presence; it makes the membrane less prone to permeabilization and/or reduces the stability of electropores. PMID:25707556

  17. Minimal requirements for exocytosis. A study using PC 12 cells permeabilized with staphylococcal alpha-toxin

    SciTech Connect

    Ahnert-Hilger, G.; Bhakdi, S.; Gratzl, M.

    1985-10-15

    The membrane-permeabilizing effects of streptolysin O, staphylococcal alpha-toxin, and digitonin on cultured rat pheochromocytoma cells were studied. All three agents perturbed the plasma membrane, causing release of intracellular YWRb and uptake of trypan blue. In addition, streptolysin O and digitonin also damaged the membranes of secretory vesicles, including a parallel release of dopamine. In contrast, the effects of alpha-toxin appeared to be strictly confined to the plasma membrane, and no dopamine release was observed with this agent. The exocytotic machinery, however, remained intact and could be triggered by subsequent introduction of micromolar concentrations of Ca2+ into the medium. Dopamine release was entirely Ca2+ specific and occurred independent of the presence or absence of other cations or anions including K+ glutamate, K+ acetate, or Na+ chloride. Ca2+-induced exocytosis did not require the presence of Mg2+-ATP in the medium. The process was insensitive to pH alterations in the range pH 6.6-7.2, and appeared optimal at an osmolarity of 300 mosm/kg. Toxin permeabilization seems to be an excellent method for studying the minimal requirements for exocytosis.

  18. Effect of temperature and seven storage media on human periodontal ligament fibroblast viability.

    PubMed

    de Souza, Beatriz Dulcineia Mendes; Bortoluzzi, Eduardo Antunes; Reyes-Carmona, Jessie; Dos Santos, Luciane Geanini Pena; Simões, Claudia Maria de Oliveira; Felippe, Wilson Tadeu; Felippe, Mara Cristina Santos

    2017-04-01

    Natural resources, such as coconut water, propolis, and egg whites, have been examined as possible storage media for avulsed teeth. However, there is a lack of research focused on the efficacy of these three products together compared with Hank's balanced salt solution and milk. The aim of this study was to evaluate the capacity of seven storage media to maintain the viability of human periodontal ligament fibroblasts (PDLFs). PDLFs were kept at 5°C and 20°C, in skimmed milk (SMilk), whole milk (WMilk), recently prepared Hank's balanced salt solution (HBSS), Save-A-Tooth(®) system's HBSS (Save), natural coconut water (Coconut), Propolis, and egg white (Egg) for 3, 6, 24, 48, 72, 96, and 120 h, through the analysis of tetrazolium salt-based colorimetric (MTT) assay. At 5°C, SMilk and WMilk were better than HBSS in maintaining cell viability, from 24 h onward. At 20°C, HBSS was the best storage medium at 96 and 120 h. At both temperatures, from 6 h onward, Coconut, Propolis and Egg were less effective than SMilk, WMilk, and HBSS. In general, the performance of Coconut, Propolis and Egg were not influenced by storage temperature. However, the lowest temperature undermined the effectiveness of HBSS from 24 h and favored SMilk and WMilk, from 96 and 48 h onward, respectively. Save and water were the worst storage media. SMilk was the best storage medium, followed by WMilk and HBSS. Coconut, Propolis, and Egg can be indicated for the conservation of PDLF up to 3 h. The lower temperature (5°C) undermined the effectiveness of HBSS and favored SMilk and WMilk. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  20. Effects of bleaching on osteoclast activity and their modulation by osteostatin and fibroblast growth factor 2.

    PubMed

    Torres-Rodríguez, Carolina; Portolés, M Teresa; Matesanz, M Concepción; Linares, Javier; Feito, M José; Izquierdo-Barba, Isabel; Esbrit, Pedro; Vallet-Regí, María

    2016-01-01

    Dental bleaching with H2O2 is a common daily practice in dentistry to correct discoloration of anterior teeth. The aim of this study has been to determine whether this treatment of human teeth affects growth, differentiation and activity of osteoclast-like cells, as well as the putative modulatory action of osteostatin and fibroblast growth factor 2 (FGF-2). Previously to the in vitro assays, structural, physical-chemical and morphological features of teeth after bleaching were studied. Osteoclast-like cells were cultured on human dentin disks, pre-treated or not with 38% H2O2 bleaching gel, in the presence or absence of osteostatin (100 nM) or FGF-2 (1 ng/ml). Cell proliferation and viability, intracellular content of reactive oxygen species (ROS), pro-inflammatory cytokine (IL-6 and TNFα) secretion and resorption activity were evaluated. Bleaching treatment failed to affect either the structural or the chemical features of both enamel and dentin, except for slight morphological changes, increased porosity in the most superficial parts (enamel), and a moderate increase in the wettability degree. In this scenario, bleaching produced an increased osteoclast-like cell proliferation but decreased cell viability and cytokine secretion, while it augmented resorption activity on dentin. The presence of either osteostatin or FGF-2 reduced the osteoclast-like cell proliferation induced by bleaching. FGF-2 enhanced ROS content, whereas osteostatin decreased ROS but increased TNFα secretion. The bleaching effect on resorption activity was increased by osteostatin, but this effect was less evident with FGF-2. These findings further confirm the deleterious effects of tooth bleaching by affecting osteoclast growth and function as well as different modulatory actions of osteostatin and FGF-2. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  2. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  3. Effects of high-energy shockwaves on normal human fibroblasts in suspension.

    PubMed

    Kaulesar Johannes, E J; Sukul, D M; Bijma, A M; Mulder, P G

    1994-12-01

    To gain insight in the effects of shockwaves on human cells the relationship between the energy density and the number of shockwaves as well as their effect on suspensions of normal cells was studied. At energy densities of 0.37, 0.6, 0.78, and 1.20 mJ/mm2 fibroblasts were subjected to 50, 100, 250, 500, and 1,000 shockwaves. Each test was performed three times and one sample was used as control. A decrease in viability related to the logarithm of both the number (P = 0.0000) and the energy density (P = 0.001) of the shockwaves was statistically demonstrable 1 hr after the shockwave application. The energy density of the shockwaves has less influence on the viability than the number of applied shockwaves. Seeding of viable cells 1 hr after the shockwave application showed that the decrease in the 48-hr growth potential was statistically dependent of the number of applied shockwaves only (P = 0.0007). After 24 hr no difference in the 48-hr growth potential could be demonstrated between viable shockwave-treated cells and control cells. The literature as well as our own investigations in vitro and in vivo indicate that shockwaves have a logarithmic dose-dependent destructive effect on cells in suspension, but they also seem to have a dose-dependent stimulating influence on the healing process in damaged tissues. Due to the logarithmic relationship between the viability and both the number and energy density of the applied shockwaves it might be expected that even excessive numbers of high-energy-density shockwaves don't soon lead to total destruction of all cells in the suspension.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  5. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  6. Metabolomic Elucidation of the Effects of Curcumin on Fibroblast-Like Synoviocytes in Rheumatoid Arthritis

    PubMed Central

    Hwang, Jiwon; Kim, Jungyeon; Lee, You Sun; Koh, Eun-Mi; Kim, Kyoung Heon; Cha, Hoon-Suk

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by synovial inflammation and joint disability. Curcumin is known to be effective in ameliorating joint inflammation in RA. To obtain new insights into the effect of curcumin on primary fibroblast-like synoviocytes (FLS, N = 3), which are key effector cells in RA, we employed gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS)-based metabolomics. Metabolomic profiling of tumor necrosis factor (TNF)-α-stimulated and curcumin-treated FLS was performed using GC/TOF-MS in conjunction with univariate and multivariate statistical analyses. A total of 119 metabolites were identified. Metabolomic analysis revealed that metabolite profiles were clearly distinct between TNF-α-stimulated vs. the control group (not stimulated by TNF-α or curcumin). Treatment of FLS with curcumin showed that the metabolic perturbation by TNF-α could be reversed to that of the control group to a considerable extent. Curcumin-treated FLS had higher restoration of amino acid and fatty acid metabolism, as indicated by the prominent metabolic restoration of intermediates of amino acid and fatty acid metabolism, compared with that observed in TNF-α-stimulated FLS. In particular, the abundance of glycine, citrulline, arachidonic acid, and saturated fatty acids in TNF-α-stimulated FLS was restored to the control level after treatment with curcumin, suggesting that the effect of curcumin on preventing joint inflammation may be elucidated with the levels of these metabolites. Our results suggest that GC/TOF-MS-based metabolomic investigation using FLS has the potential for discovering the mechanism of action of curcumin and new targets for therapeutic drugs in RA. PMID:26716989

  7. Stimulation of 14-3-3 protein and its isoform on histamine secretion from permeabilized rat peritoneal mast cells.

    PubMed

    Fujii, Toshihiro; Ueeda, Takayuki

    2002-12-01

    The effect of the 14-3-3 protein, an adaptor protein of intracellular signal pathways, on histamine release from rat peritoneal mast cells was investigated. The exogenous 14-3-3 protein from bovine brain increased the Ca(2+)-dependent histamine release from permeabilized mast cells, but only slightly affected the non-permeabilized cells. Partial amino acid sequences showed that the bovine brain 14-3-3 protein contained 14-3-3beta, gamma and zeta isoforms, and that these recombinant isoforms were prepared. Among them, 14-3-3zeta was an active species while the 14-3-3beta and gamma were inactive for histamine release from the permeabilized mast cells. Approximately 15% of the histamine release was stimulated by 14-3-3zeta at 2.5 microM, and half-maximal stimulation occurred at 1 microM. Treatment of the mast cells with wortmannin or staurosporine completely inhibited the stimulatory effect on histamine release caused by Ca(2+) or Ca(2+)/14-3-3zeta, and genistein partially inhibited both stimulatory effects. PD 98059, however, had little effect on the histamine release. These results suggest the possibility that 14-3-3zeta is associated with signal transduction for degranulation of the mast cells.

  8. Biostimulatory effects of low-level laser therapy on epithelial cells and gingival fibroblasts treated with zoledronic acid

    NASA Astrophysics Data System (ADS)

    Basso, F. G.; Pansani, T. N.; Turrioni, A. P. S.; Kurachi, C.; Bagnato, V. S.; Hebling, J.; de Souza Costa, C. A.

    2013-05-01

    Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate—zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype—LaserTABLE (InGaAsP—780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm-2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions.

  9. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    SciTech Connect

    Ndukwe Erlingsson, Uzochi Chimdinma; Iacobazzi, Francesco; Liu, Aiping; Ardon, Orly; Pasquali, Marzia; Longo, Nicola

    2013-08-09

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacity of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.

  10. Effect of wavelength and fluence on morphology, cellular and genetic integrity of diabetic wounded human skin fibroblasts

    NASA Astrophysics Data System (ADS)

    Abrahamse, H.; Hawkins, D.; Houreld, N.

    2006-02-01

    An alternative treatment modality for diabetic wound healing includes low level laser therapy (LLLT). Biostimulation of such wounds may be of benefit to patients by reducing healing time. Structural, cellular and genetic events in diabetic wounded human skin fibroblasts (WS1) were evaluated after exposing cells in culture to a Helium-Neon (632.8nm), a Diode laser (830nm) and a Nd:YAG (Neodynium:Yttrium-Allumina-Gallium) laser (1064nm) at either 5J/cm2 or 16J/cm2. Cells were exposed twice a week and left 24 hours post-irradiation prior to measuring effects. Structural changes were evaluated by assessing colony formation, haptotaxis and chemotaxis. Cellular changes were evaluated using cell viability, (adenosine-triphosphate, ATP production), and proliferation, (alkaline phosphatase, ALP and basic fibroblast growth factor, bFGF expression), while the Comet assay evaluated DNA damage and cytotoxicity was determined assessing membrane permeability for lactate dehydrogenase (LDH). Caspase 3/7 activity was used as an estimate of apoptosis as a result of irradiation. The irradiated diabetic wounded cells showed structural, cellular as well as molecular resilience comparable to that of unwounded normal skin fibroblast cells. With regards to fluence, 5J/cm2 elicit positive cellular and structural responses while 16J/cm2 increases cellular and genetic damage and cellular morphology is altered. Different wavelengths of LLLT influences the beneficial outcomes of diabetic wounded cells and although all three wavelengths elicit cellular effects, the penetration depth of 830nm plays a significant role in the healing of diabetic wounded human fibroblast cells. Results from this study validate the contribution of LLLT to wound healing and elucidate the biochemical effects at a cellular level while highlighting the role of different dosages and wavelengths in LLLT.

  11. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis.

    PubMed

    Togami, Kohei; Miyao, Aki; Miyakoshi, Kei; Kanehira, Yukimune; Tada, Hitoshi; Chono, Sumio

    2015-01-01

    In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis.

  12. Effects of retinal laser photocoagulation on photoreceptor basic fibroblast growth factor and survival.

    PubMed

    Xiao, M; Sastry, S M; Li, Z Y; Possin, D E; Chang, J H; Klock, I B; Milam, A H

    1998-03-01

    In an unpublished study, the authors found that immunoreactivity for basic fibroblast growth factor (bFGF) is increased in rod photoreceptors adjacent to long-standing laser burns in human diabetic retinas. The goal of this study was to determine whether laser photocoagulation produces a similar increase in photoreceptor bFGF and promotes survival of these cells in dystrophic rodent retinas. Threshold (whitening) and subthreshold (nonwhitening) laser burns were made in retinas of normal and Royal College of Surgeons (RCS) rats and normal and rds mice. The retinas were processed for immunocytochemical and morphometric analyses. In nonlasered normal rat and mouse retinas, bFGF immunoreactivity was prominent in the nuclei of Müller cells and astrocytes. Photoreceptors were bFGF negative except for a zone of bFGF-immunoreactive rods near the ora serrata. Some photoreceptors in nonlasered retinas of RCS rats and rds mice became bFGF immunoreactive. After laser treatment, bFGF immunoreactivity was markedly increased in all photoreceptors flanking the threshold burns and within the subthreshold burns in normal and mutant rats and mice. In RCS rat retinas, photoreceptor bFGF immunoreactivity remained elevated within subthreshold burns and flanking the threshold burns, and photoreceptor survival was prolonged. In rds mouse retinas, increased bFGF immunoreactivity in photoreceptors was not sustained and their degeneration was not retarded. Laser treatment of RCS rat retinas produced a sustained increase in bFGF immunoreactivity in photoreceptors and prolonged their survival, but laser treatment of rds mouse retinas did not have a long-term effect on photoreceptor bFGF immunoreactivity or survival. Although species differences in laser effects on photoreceptor bFGF and survival are apparent, the finding that rods flanking laser burns in human retinas have sustained increases in bFGF immunoreactivity suggests that laser treatment may be useful for prolonging survival of

  13. Effects of basic fibroblast growth factor on hippocampal neurons after axonal injury.

    PubMed

    Himmelseher, S; Pfenninger, E; Georgieff, M

    1997-04-01

    Axons of adult central nervous system neurons fail to regenerate after diffuse axonal injury in head trauma. Basic fibroblast growth factor (bFGF) has been reported to enhance neuritic extensions after neuronal injury in immature nerve cells. To investigate the effects of bFGF on adult neurons and axonal reoutgrowth, differentiated nerve cells were axonally transected and bFGF was applied. Cell culture study with primary rat hippocampal neurons. After axotomy, hippocampal cultures were maintained untreated or in the presence of 0.5, 1, 10, or 20 ng/mL bFGF and evaluated over a 7-day period after injury. Seven days after injury, axotomy decreased cell survival to 65%, increased [3H]arachidonic acid release 1.8-fold from prelabeled cells, and showed negligible effects on neuronal dendrites. bFGF reduced this neurodegeneration at all doses applied. bFGF at 10 ng/mL most efficiently increased live cells to 85% and decreased [3H]arachidonic acid release from prelabeled cells to control values (p < 0.01, vs. damaged cells). Furthermore, 10 ng/mL bFGF induced axonal branching and the longest axonal re-extensions from 60 +/- 8 to 377 +/- 10 microns 7 days after injury (p < 0.01, vs. damaged cells). bFGF increased cell survival and supported axonal re-elongations in adult hippocampal neurons in vitro when applied after axotomy. bFGF may play a role in new therapeutic concepts for the management of axonal injury after head trauma.

  14. Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis.

    PubMed

    Egger, Christine; Cannet, Catherine; Gérard, Christelle; Suply, Thomas; Ksiazek, Iwona; Jarman, Elizabeth; Beckmann, Nicolau

    2017-08-15

    Bleomycin (BLM) induced lung injury is detectable in C57BL/6 mice using magnetic resonance imaging (MRI). We investigated the effects of the fibroblast activation protein (FAP) inhibitor, PT100, in this model. BLM (0.5mg/kg/day) was administered on days -7, -6, -5, -2, -1, 0 in the nostrils of male mice. PT100 (40µg/mouse) or vehicle (0.9%NaCl) was dosed per os twice daily from day 1-14. MRI was performed before BLM and at days 0, 7 and 14. After the last MRI acquisition, animals were euthanised and the lungs harvested for histological and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. As evidenced longitudinally by MRI, the BLM-elicited lesions in the lungs of vehicle-treated mice progressed over time. In contrast, responses elicited by BLM did not progress in animals receiving PT100. Histology demonstrated significant less fibrosis in PT100- than in vehicle-treated, BLM-challenged mice. Significant correlation (R=0.91, P<0.001, N=24) was found between the volumes of BLM-induced lesions detected in vivo by MRI and the collagen content determined histologically (picrosirius staining). FAP was overexpressed in the lungs of BLM-challenged mice. Upon PT100 treatment, FAP expression was reduced. Significant differences in the MMP-12, MIP-1α, and MCP-3 mRNA expression levels in the lungs of PT100- compared to vehicle-treated mice were also revealed by qRT-PCR. The IBA-1 level determined histologically was higher in the lungs of PT100- compared to vehicle-treated mice. Taken together, these observations suggest that treatment with PT100 in this murine model of pulmonary fibrosis had an anti-fibro-proliferative effect and increased macrophage activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cryoprotective effect of low-molecular-weight hyaluronan on human dermal fibroblast monolayers.

    PubMed

    Ujihira, Masanobu; Iwama, Akira; Aoki, Makie; Aoki, Kanako; Omaki, Sayaka; Goto, Erika; Mabuchi, Kiyoshi

    2010-01-01

    The purpose of this study was to assess the availability of low-molecular-weight (low-MW) hyaluronan (HA) as a cryoprotectant for cellular cryopreservation. To clarify whether low-MW HA is cryoprotective, we evaluated the effect of HA concentration (0-5% w/w) in a cryoprotectant solution on cell membrane integrity after freeze-thaw. A test sample was created using human dermal fibroblast monolayers incubated in a culture dish for 24 h (37 degrees C, 5% CO2). Sodium hyaluronate (MW 3 x 10(4)-5 x 10(4)) dissolved in medium served as the cryoprotectant solution. Samples were immersed in the solution for 2 h at 0-4 degrees C. They were frozen at a cooling rate of 3 degrees C/min from 4 to -80 degrees C, cooled further to below -185 degrees C, and then thawed. Cell membrane integrity after thawing was evaluated using a trypan blue exclusion assay. The sample and freezing procedures were repeated in subsequent experiments, while the conditions of the solution immersion with respect to the sample varied. Next, to clarify whether the cryoprotective action of HA is intra- or extracellular, we performed three experiments. The first studied the dependence of membrane integrity after freeze-thaw on preliminary incubation time (0.75-24 h at 37 degrees C) with a sample immersed in the solution (5% w/w HA). In the second, membrane integrity of thawed samples that were initially frozen in a medium instead of solution, by removing extracellular HA following a preliminary 6-h incubation period, were evaluated. Thirdly, we investigated cellular uptake of fluorescein isothiocyanate-labeled HA (MW 10(5), 1% w/w) after a preliminary 6-h incubation period under fluorescent microscopy (without freeze-thaw). The results show that HA had a cryoprotective effect, and that this cryoprotective action was intracellular. Therefore, low- MW HA proves to be a promising cellular cryoprotectant.

  16. Calcium- and guanine-nucleotide-dependent exocytosis in permeabilized rat mast cells. Modulation by protein kinase C.

    PubMed Central

    Koopmann, W R; Jackson, R C

    1990-01-01

    We have used a digitonin-permeabilized cell system to study the signal transduction pathways responsible for stimulus-secretion coupling in the rat peritoneal mast cell. Conditions were established for permeabilizing the mast cell plasma membrane without disrupting secretory vesicles. Exocytotic release of histamine from digitonin-permeabilized cells required a combination of micromolar concentrations of Ca2+ and the stable guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but was independent of exogenous ATP. In the presence of 40 microM-GTP[S], exocytosis was half-maximal at 1.3 microM-Ca2+ and maximal at 10 microM-Ca2+; GTP[S] alone (100 microM) had no effect on histamine release in the absence of added Ca2+. In the presence of 10 microM free Ca2+, 5 microM-GTP[S] was required for half-maximal exocytosis. To examine the possible role of protein kinase C (PKC) in exocytosis, we utilized 12-O-tetradecanoylphorbol 13-acetate (TPA) to activate PKC and studied its effect on histamine release from permeabilized mast cells. Cells that had been incubated with TPA (25 nM for 5 min) exhibited increased sensitivity to both GTP[S] and Ca2+. The PKC inhibitor staurosporine blocked the effect of TPA without inhibiting normal exocytosis in response to the combination of GTP[S] and Ca2+. In addition, down-regulation of mast-cell PKC by long-term TPA treatment (25 nM for 20 h) blocked the ability of the cells to respond to TPA and inhibited exocytosis in response to Ca2+ and GTP[S] by 40-50%. These results suggest that the sensitivity of the exocytotic machinery of the mast cell can be altered by PKC-catalysed phosphorylation events, but that activation of PKC is not required for exocytosis to occur. Images Fig. 7. PMID:1689146

  17. Insulin alters cAMP-activated lipolysis but not cAMP-inhibited glycogen synthase in permeabilized adipocytes

    SciTech Connect

    Mooney, R.A.; Wisniewski, J.L.

    1986-05-01

    Lipolysis and, to a lesser extent, glycogen synthase activity are regulated in adipocytes by cellular cAMP and counter-regulated by insulin. These activities were measured in situ in digitonin (20 ..mu..g/ml) permeabilized rat adipocytes. Incorporation of /sup 3/H UDP-glucose into endogenous glycogen in the presence of KF, EDTA and 10mM glucose-6-phosphate was the basis of the G.S. assay. Cellular GS activity determined by this technique was 1.4 +/- 0.2 fold greater than that of matched homogenates. Insulin treatment of intact cells prior to permeabilization increased GS activity ratio (-/+ G-6-P) 2.5 fold when subsequently measured by the in situ assay. Following digitonin permeabilization, addition of cAMP to the suspension medium increased lipolysis 7 fold and decreased GS activity ratio to 0.38 +/- 0.01 from a basal value of 0.44 +/- 0.06. ATP had a negligible effect on lipolysis but decreased GS to 0.16 +/- 0.04. ATP plus cAMP was only slightly more effective on GS than ATP alone. Insulin at 10/sup -9/M inhibited cAMP-dependent lipolysis by 27% but had no effect on the cAMP- or ATP-dependent decrease in GS. These results suggest that insulin's counter-regulatory mechanisms on these two cAMP-dependent processes may be different.

  18. The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation.

    PubMed

    Chen, Fang; Zhang, Bing; Sun, Yong; Xiong, Zeng-Xing; Peng, Han; Deng, Ze-Yuan; Hu, Jiang-Ning

    2016-04-25

    Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O), has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu) and Cat D inhibitor (pepA) inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p < 0.05) in lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome.

  19. The Antimicrobial Peptide Gramicidin S Permeabilizes Phospholipid Bilayer Membranes Without Forming Discrete Ion Channels

    PubMed Central

    Ashrafuzzaman, Md.; Andersen, O. S.; McElhaney, R. N.

    2008-01-01

    We examined the permeabilization of lipid bilayers by the β-sheet, cyclic antimicrobial decapeptide gramicidin S (GS) in phospholipid bilayers formed either by mixtures of zwitterionic diphytanoylphosphatidylcholine and anionic diphytanoylphosphatidylglycerol or by single zwitterionic unsaturated phosphatidylcholines having various hydrocarbon chain lengths, with and without cholesterol. In the zwitterionic bilayers formed by the phosphatidylcholines, without or with cholesterol, the peptide concentrations and membrane potentials required to initiate membrane permeabilization vary little as function of bilayer thickness and cholesterol content. In all the systems tested, the GS-induced transient ion conductance events exhibit a broad range of conductances, which are little affected by the bilayer composition or thickness. In the zwitterionic phosphatidylcholine bilayers, the effect of GS does not depend on the polarity of the transmembrane potential; however, in bilayers formed from mixtures of phosphatidylcholines and anionic phospholipids, the polarity of the transmembrane potential becomes important, with the GS-induced conductance events being much more frequent when the GS-containing solution is positive relative to the GS-free solution. Overall, these results suggest that GS does not form discrete, well-defined, channel-like structures in phospholipid bilayers, but rather induces a wide variety of transient, differently sized defects which serve to compromise the bilayer barrier properties for small electrolytes. PMID:18809374

  20. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels.

    PubMed

    Ashrafuzzaman, Md; Andersen, O S; McElhaney, R N

    2008-12-01

    We examined the permeabilization of lipid bilayers by the beta-sheet, cyclic antimicrobial decapeptide gramicidin S (GS) in phospholipid bilayers formed either by mixtures of zwitterionic diphytanoylphosphatidylcholine and anionic diphytanoylphosphatidylglycerol or by single zwitterionic unsaturated phosphatidylcholines having various hydrocarbon chain lengths, with and without cholesterol. In the zwitterionic bilayers formed by the phosphatidylcholines, without or with cholesterol, the peptide concentrations and membrane potentials required to initiate membrane permeabilization vary little as function of bilayer thickness and cholesterol content. In all the systems tested, the GS-induced transient ion conductance events exhibit a broad range of conductances, which are little affected by the bilayer composition or thickness. In the zwitterionic phosphatidylcholine bilayers, the effect of GS does not depend on the polarity of the transmembrane potential; however, in bilayers formed from mixtures of phosphatidylcholines and anionic phospholipids, the polarity of the transmembrane potential becomes important, with the GS-induced conductance events being much more frequent when the GS-containing solution is positive relative to the GS-free solution. Overall, these results suggest that GS does not form discrete, well-defined, channel-like structures in phospholipid bilayers, but rather induces a wide variety of transient, differently sized defects which serve to compromise the bilayer barrier properties for small electrolytes.

  1. Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts.

    PubMed

    Conte, Enrico; Gili, Elisa; Fagone, Evelina; Fruciano, Mary; Iemmolo, Maria; Vancheri, Carlo

    2014-07-16

    Pirfenidone is an orally active small molecule that has been shown to inhibit the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis. Although pirfenidone exhibits well documented antifibrotic and antiinflammatory activities, in vitro and in vivo, its molecular targets and mechanisms of action have not been elucidated. In this study, we investigated the effects of pirfenidone on proliferation, TGF-β-induced differentiation and fibrogenic activity of primary human lung fibroblasts (HLFs). Pirfenidone reduced fibroblast proliferation and attenuated TGF-β-induced α-smooth muscle actin (SMA) and pro-collagen (Col)-I mRNA and protein levels. Importantly, pirfenidone inhibited TGF-β-induced phosphorylation of Smad3, p38, and Akt, key factors in the TGF-β pathway. Together, these results demonstrate that pirfenidone modulates HLF proliferation and TGF-β-mediated differentiation into myofibroblasts by attenuating key TGF-β-induced signaling pathways.

  2. Effects of Photodynamic Therapy Using Yellow LED-light with Concomitant Hypocrellin B on Apoptotic Signaling in Keloid Fibroblasts

    PubMed Central

    Hu, Yongqing; Zhang, Chunmin; Li, Shengli; Jiao, Ya; Qi, Tonggang; Wei, Guo; Han, Gangwen

    2017-01-01

    Keloid is a common and refractory disease characterized by abnormal fibroblast proliferation and excessive deposition of extracellular matrix components. Hypocrellin B (HB) is a natural perylene quinone photosensitizer. In this experiment, we studied the effects of photodynamic therapy (PDT) using yellow light from light-emitting diode (LED) combined with HB on keloid fibroblasts (KFB) in vitro. Our results showed that HB-LED PDT treatment induced significant KFB apoptosis and decreased KFB cell viability. HB-LED PDT treatment lead to significant BAX upregulation and BCL-2 downregulation in KFB cells, which led to elevation of intracellular free Ca2+ and activation of caspase-3. Our data provides preliminary evidence for the potential of HB-LED PDT as a therapeutic strategy for keloid. PMID:28367096

  3. Effects of taurolidine and chlorhexidine on SaOS-2 cells and human gingival fibroblasts grown on implant surfaces.

    PubMed

    John, Gordon; Becker, Jürgen; Schwarz, Frank

    2014-01-01

    The purpose of the study was the evaluation of possible cytologic effects of taurolidine to fibroblasts and osteoblast-like cells. Human gingival fibroblasts and SaOS-2 cells were seeded on samples with sand-blasted and acid-etched surfaces. Both groups were treated with taurolidine, chlorhexidine, and pure water with three different treatment times. Three dates of measurements were set to evaluate cell viability, cytotoxicity, and apoptosis. Highest cytotoxicity was measured in both cell lines in the groups treated with chlorhexidine, while cell viability was lower than in the corresponding taurolidine and pure water groups; on days 3 and 6 these differences were significant. Taurolidine showed similar results to the pure water groups. The results of this study indicate that taurolidine is biocompatible and gentle to the tested human cells for the application time of a mouthrinse.

  4. Effect of Wubeizi ointment aqueous solution on the expression of type I and III procollagen genes in keloid fibroblasts

    PubMed Central

    Zhai, Xiao-Xiang; Ding, Ji-Cun; Tang, Zhi-Ming; Li, Jing-Guo; Chen, Xiang-Hui; Zhang, Cui-Xia

    2017-01-01

    We evaluated the effect of Wubeizi (WBZ) ointment on keloids. Keloid-derived fibroblast primary cultures were used to evaluate the effect of the different concentration of WBZ ointment on the expression of type I and III procollagen in keloid fibroblast primary cultures using dot blot assay. Type I and II precollagen cDNA probes labeled with non-radioactive digoxin were used for dot blot. Cell cultures were divided into 4 groups: The large dose group received 1 g/ml of WBZ, middle dose, and small dose groups received 0.5 and 0.25 g/ml of WBZ, respectively. The control group received serum-free medium without WBZ. Our results showed that type I and III procollagen mRNA expression was reduced significantly in the large dose and middle dose groups compared to the control group. Type I and III procollagen mRNA expression level in the small dose group had no statistically significant difference with the control group. However, the difference between the large dose group and the small dose group was statistically significant. We concluded that WBZ ointment aqueous solution restricted keloid fibroblast proliferation by downregulating the expression of type I and III procollagen and therefore reducing collagen deposition in keloid tissue.

  5. Effects of 35 kHz, low-frequency ultrasound application in vitro on human fibroblast morphology and migration patterns.

    PubMed

    Conner-Kerr, Teresa; Malpass, Gloria; Steele, Arhalia; Howlett, Allyn

    2015-03-01

    Low-frequency ultrasound (LFU) in the frequency range 30-40 kHz administered using different delivery methods (waterbath and noncontact spray) has shown positive effects on chronic wound healing rates in humans, but the underlying mechanisms are only beginning to be explored. To examine the effects of LFU delivered at 35 kHz on the morphology and migration of human fibroblasts, real-time videography was used to record the rate and character of cultured human fibroblast migration at 8-hour increments for 48 hours in a wound assay model. Cells were treated with 35 kHz LFU or saline only (control). Cellular morphology (cell shape, packing, and apparent length) and migration patterns including orientation were analyzed using time-lapse videography. LFU delivered at a frequency of 35 kHz produced a different pattern of fibroblast migration in vitro (varied orientation versus vertical orientation for untreated cells) and altered cell morphology compared to controls. The observed pattern of migration was more varied and widely distributed across multiple angles versus the predominant parallel orientation of the migrating untreated cells. The potential implications of these findings on collagen placement in the extracellular matrix, which may affect degree of soft tissue scarring, should be further investigated.

  6. Cytoprotective effect of the enzyme-mediated polygallic acid on fibroblast cells under exposure of UV-irradiation.

    PubMed

    Sánchez-Sánchez, Roberto; Romero-Montero, Alejandra; Montiel, Carmina; Melgarejo-Ramírez, Yaaziel; Sánchez-Ortega, Carmina; Lugo-Martínez, Haydée; Cabello-Arista, Beatriz; García-Arrazola, Roeb; Velasquillo, Cristina; Gimeno, Miquel

    2017-07-01

    The poly(gallic acid), produced by laccase-mediated oxidation of gallic acid in aqueous media (pH5.5) to attain a novel material with well-defined molecular structure and high water solubility (500mg/mL at 25°C), has been investigated to understand its potential biological activities. In this regard, a biomedical approach based on cytoprotective effect on human fibroblast cells exposed to UV-irradiation in the presence of the polymer has been demonstrated. The results also shows that 200μg/mL of poly(gallic acid) inhibits the growth and migration of dermal fibroblasts and cancer cell lines without affecting cell viability. Poly(gallic acid) pretreatment with 10μg/mL protects dermal fibroblasts from UV induced cell death and additionally, the cytoprotective effect reduce ROS presence in the cells. This property can be correlated with the antioxidant power (IC50 of 23.5μg/mL) of this novel material, which was ascertained by electronic paramagnetic resonance spectroscopy and spectrophotometrically. Additionally, the antimicrobial activity of this material was corroborated with the inhibition of Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 29212) strains (MIC=400mg/mL) common bacteria found in hospitals. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of enoxaparin and onion extract on human skin fibroblast cell line - therapeutic implications for the treatment of keloids.

    PubMed

    Pikuła, Michał; Żebrowska, Maria E; Pobłocka-Olech, Loretta; Krauze-Baranowska, Mirosława; Sznitowska, Małgorzata; Trzonkowski, Piotr

    2014-02-01

    Keloids and hypertrophic scars are hyperproliferative skin disorders resulting in abnormal wound healing. In the prevention and treatment of keloids and hypertrophic scars, ointments containing heparin and onion extract are very popular. Their therapeutic effects, however, are still controversial and the mechanism of action is not fully understood. The aim of this study was to assess the effect of enoxaparin and dry onion extract on proliferation, apoptosis and β1 integrin expression in human fibroblasts. Fibroblast human cell lines (46 BR.1 N) were treated for 48 h with various concentrations of enoxaparin sodium (20, 100, 500 µg/mL) and/or onion [Allium cepa L. (Alliaceae)] extract (50, 250, 1000 µg/mL). The cell proliferation was evaluated by [(3)H]-thymidine incorporation assay. Furthermore, the expression of β1 integrin and apoptosis was determined by flow cytometry. The results demonstrate that enoxaparin and onion extract inhibited the proliferation of human fibroblasts. Almost complete inhibition of cell proliferation was achieved by enoxaparin in 500 µg/mL concentration (91.5% reduction). The onion extract at a concentration of 250 µg/mL also strongly inhibited the proliferation of cells (50.8% reduction). Depending on concentration, enoxaparin and onion extract induced apoptosis (500 and 1000 µg/mL, respectively) and, depending on concentration, downregulated the expression of β1 integrin on human fibroblasts. This work points at possible mechanism of action of enoxaparin and onion extract, when administered in the treatment of patients with keloids and hypertrophic scars.

  8. Differential effects of protein kinase C inhibitors on chemokine production in human synovial fibroblasts.

    PubMed Central

    Jordan, N. J.; Watson, M. L.; Yoshimura, T.; Westwick, J.

    1996-01-01

    1. Rheumatoid arthritis is associated with the accumulation and activation of selected populations of inflammatory cells within the arthritic joint. One putative signal for this process is the production, by resident cells, of a group of inflammatory mediators known as the chemokines. 2. The chemokines interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and RANTES (regulated on activation normal T-cell expressed and presumably secreted) are target-cell specific chemoattractants produced by synovial fibroblasts in response to stimulation with interleukin-1 alpha (IL-1 alpha) or tumour necrosis factor alpha (TNF alpha). The signalling pathways involved in their production are not well defined. We therefore used four different protein kinase C inhibitors to investigate the role of this kinase in the regulation of chemokine mRNA and protein expression in human cultured synovial fibroblasts. 3. The non-selective PKC inhibitor, staurosporine (1-300 nM) significantly increased the production of IL-1 alpha-induced IL-8 mRNA and protein. A specific PKC inhibitor, chelerythrine chloride (0.1-3 microM), also caused a small concentration-dependent increase in IL-8 mRNA and protein production. In contrast, 3-[1-[3-(amidinothio)propyl]-3-indoly]-4-(1-methyl-3-indolyl )- 1H-pyrrole-2,5-dione methanesulphonate (Ro 31-8220) and 2[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3- yl)-maleimide (GF 109203X), two selective PKC inhibitors of the substituted bisindolylmaleimide family had a concentration-dependent biphasic effect on IL-1 alpha or TNF alpha-induced chemokine expression. At low concentrations they caused a stimulation in chemokine production, which was especially evident at the mRNA level. At higher concentrations both inhibited IL-1 alpha or TNF alpha-induced chemokine mRNA and protein production. Ro 31-8220 was 10 fold more potent than GF 109203X, with an IC50 of 1.6 +/- 0.08 microM (mean +/- s.e.mean, n = 4) for IL-1 alpha induced IL-8 production. Ro 31

  9. Succinate/NLRP3 Inflammasome Induces Synovial Fibroblast Activation: Therapeutical Effects of Clematichinenoside AR on Arthritis

    PubMed Central

    Li, Yi; Zheng, Jia-Yi; Liu, Jian-Qun; Yang, Jie; Liu, Yang; Wang, Chen; Ma, Xiao-Nan; Liu, Bao-Lin; Xin, Gui-Zhong; Liu, Li-Fang

    2016-01-01

    Clematichinenoside AR (C-AR) is a triterpene saponin isolated from the root of Clematis manshurica Rupr., which is a herbal medicine used in traditional Chinese medicine for the treatment of arthritis. C-AR exerts anti-inflammatory and immunosuppressive properties, but little is known about its action in the suppression of fibroblast activation. Low oxygen tension and transforming growth factor-β (TGF-β1) induction in the synovium contribute to fibrosis in arthritis. This study was designed to investigate the effect of C-AR on synovial fibrosis from the aspects of hypoxic TGF-β1 and hypoxia-inducible transcription factor-1α (HIF-1α) induction. In the synovium of rheumatoid arthritis (RA) rats, hypoxic TGF-β1 induction increased succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activation and induced NLRP3 inflammasome activation in a manner dependent on HIF-1α induction. In response to NLRP3 inflammasome activation, the released IL-1β further increased TGF-β1 induction, suggesting the forward cycle between inflammation and fibrosis in myofibroblast activation. In the synovium of RA rats, C-AR inhibited hypoxic TGF-β1 induction and suppressed succinate-associated NLRP3 inflammasome activation by inhibiting SDH activity, and thereby prevented myofibroblast activation by blocking the cross-talk between inflammation and fibrosis. Taken together, these results showed that succinate worked as a metabolic signaling, linking inflammation with fibrosis through NLRP3 inflammasome activation. These findings suggested that synovial succinate accumulation and HIF-1α induction might be therapeutical targets for the prevention of fibrosis in arthritis. PMID:28003810

  10. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    PubMed Central

    2013-01-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a ‘green’, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications. PMID:24059222

  11. Effects of oxygen, growth state, and senescence on the antioxidant responses of WI-38 fibroblasts

    PubMed Central

    Reimer, Richard J.; Reenstra, Wende R.; Lilie, Steven M.; Leong, Ina; Sullivan, Katherine; Allen, Robert G.

    2010-01-01

    Mitotically active, growth-arrested cells and proliferatively senescent cultures of human fetal lung fibroblasts (WI-38) were exposed to six different oxygen tensions for various lengths of time and then analyzed to determine the responses of their antioxidant defense system. Glutathione (GSH) concentration increased as a function of ambient oxygen tension in early passage cultures; the effect was larger in exponentially growing cultures than in those in a state of contact-inhibited growth arrest, but was absent in senescent cells. Conversely, the activity of glutathione disulfide reductase was greater in growth-arrested cultures than in mitotically active cells irrespective of oxygen tension. Glucose-6-phosphate dehydrogenase was lowest in log-phase cells exposed to different oxygen tensions for 24 h and in senescent cells. Both hypoxia and hyperoxia depressed selenium-dependent glutathione peroxidase activity in early passage cultures, while the activity of the enzyme progressively declined with increasing oxygen in senescent cells. The GSH S-transferase activity was unresponsive to changes in ambient oxygen tension in either young or senescent cultures. Manganese-containing superoxide dismutase (MnSOD) activity was unaffected by oxygen tension, but was elevated in young confluent cultures as compared with cultures in log-phase growth. MnSOD activity was significantly higher in senescent cultures than in early passage cultures and was also responsive to increased oxygen tension in senescent cultures. Copper–zinc-containing superoxide dismutases activity was not affected by oxygen tension or the passage of time, but it declined in senescent cultures. PMID:20473639

  12. Mechanical loading influences the effects of bisphosphonates on human periodontal ligament fibroblasts.

    PubMed

    Jacobs, Collin; Walter, Christian; Ziebart, Thomas; Dirks, Isabelle; Schramm, Sabrina; Grimm, Sarah; Krieger, Elena; Wehrbein, Heinrich

    2015-04-01

    There is increasing evidence that bisphosphonates affect orthodontic tooth movement. The object of the study was to investigate the changes produced by tensile strain on human periodontal ligament fibroblasts (HPdLFs) treated with clodronate or zoledronate. HPdLF were cultured with 5 and 50 μM clodronate or zoledronate for 48 h and applied to tensile strain (TS) (5 and 10 %) for 12 h in vitro. Viability was verified by MTT assay and apoptosis rate via caspase 3/7 assay. Gene expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) was investigated using real-time PCR. OPG was also analyzed by ELISA and RANKL by immunocytochemical staining. Zoledronate (50 μM) reduced the viability of HPdLF (76 vs 100 %) and combined with 5 % TS to 53 %. TS of 10 % and clodronate reduced viability to 79 % with increased caspase 3/7 activity. Clodronate (5 μM) led to a slight increase of OPG gene expression, zoledronate (5 μM) to a slight decrease. Combined with 5 % TS, both increased OPG gene expression (2-3-fold) and OPG synthesis. Zoledronate increased gene expression of RANKL (4-fold). Combined with 5 % of TS, this increase was abolished. TS of 10 % in combination amplified increase of RANKL ending up with a 9-fold gene expression by clodronate and high RANKL protein synthesis. This study shows for the first time that mechanical loading alters the effects of bisphosphonates on viability, apoptosis rate, and OPG/RANKL system of HPdLF dependent on the applied strength. Low forces and bisphosphonates increase factors for bone apposition, whereas high forces combined with bisphosphonates stimulate osteoclastogenesis. Mechanical loading of periodontal ligament with high strengths should be avoided during bisphosphonate therapy.

  13. Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells.

    PubMed Central

    Pörn, M I; Slotte, J P

    1990-01-01

    Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin. PMID:2222406

  14. The effects of arctigenin on human rheumatoid arthritis fibroblast-like synoviocytes.

    PubMed

    Liu, Hongbin; Yang, Yang; Cai, Xiaosong; Gao, Yunlong; Du, Jun; Chen, Shuo

    2015-08-01

    Rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs) play an important role in the initiation and progression of RA, which are resistant to apoptosis and proliferate in an anchorage-independent manner. The effects of arctigenin on the proliferation and apoptosis of RAFLSs were explored. Arctigenin (0-160 µM) was used to treat RAFLSs for 48 h. Cell viability and apoptosis were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay and annexin V/propidium iodide staining. Western blot analysis was performed to detect the changes in apoptosis-related genes. Arctigenin decreased cell viability by 23, 30, and 38% at the dose of 10, 20, and 30 µM, respectively. The half maximal inhibitory concentration (IC50) of arctignein on RAFLSs was about 38 µM. Moreover, 9, 15, and 21% of RAFLSs are induced apoptosis by 10, 20, and 30 µM of arctigenin. The apoptotic response was due to the loss of mitochondrial membrane potential, coupled with the release of cytochrome C into cytoplasm, the up-regulation of pro-apoptotic protein, Bax, and down-regulation of antiapoptotic protein, B cell lymphoma 2 (Bcl-2). The activation of mitochondrial pathway in arctigenin-treated RAFLSs induced the cleavage of caspase-9, caspase-3, and poly (ADP-ribose) polymerase (PARP). Additionally, arctigenin inhibited the nuclear translocation of p65, decreased the degradation of inhibitor of kappa B alpha (IκBα), and attenuated the phosphorylation of Akt. Our results reveal that arctigenin inhibits cell proliferation and induces mitochondrial apoptosis of RAFLSs, which is associated with the modulation of NF-κB and Akt signaling pathways.

  15. Interaction of the antibiotic minocycline with liver mitochondria - role of membrane permeabilization in the impairment of respiration.

    PubMed

    Schönfeld, Peter; Siemen, Detlef; Kreutzmann, Peter; Franz, Claudia; Wojtczak, Lech

    2013-12-01

    Several studies have proposed that the antibiotic minocycline (MC) has cytoprotective activities. Nevertheless, when cells have been exposed to MC at micromolar concentrations, detrimental effects have been also observed. Despite the known inhibitory activity of MC on ATP synthesis and the Ca(2+) retention capacity of isolated rat liver and brain mitochondria, the underlying mechanism is still debated. Here, we present further arguments supporting our concept that MC acting on rat liver mitochondria suspended in KCl medium permeabilizes the inner membrane. Supplementation of the medium with cytochrome c and NAD(+) strongly enhanced the respiration of MC-treated mitochondria, thus partly preventing or reversing the inhibitory effect of MC on state 3 or uncoupled respiration. These results indicate that MC produced depletion of mitochondrial cytochrome c and NAD(+) , thus impairing mitochondrial respiration. In addition, NADH oxidation by alamethicin-permeabilized mitochondria supplemented with cytochrome c was insensitive to 200 μm MC, arguing against direct impairment of respiratory chain complexes by MC. Finally, a surprising feature of MC was its accumulation or binding by intact rat liver mitochondria, but not by mitochondria permeabilized with alamethicin or disrupted by freezing and thawing. © 2013 FEBS.

  16. Fluorescent Method for Monitoring Cheese Starter Permeabilization and Lysis

    PubMed Central

    Bunthof, Christine J.; van Schalkwijk, Saskia; Meijer, Wilco; Abee, Tjakko; Hugenholtz, Jeroen

    2001-01-01

    A fluorescence method to monitor lysis of cheese starter bacteria using dual staining with the LIVE/DEAD BacLight bacterial viability kit is described. This kit combines membrane-permeant green fluorescent nucleic acid dye SYTO 9 and membrane-impermeant red fluorescent nucleic acid dye propidium iodide (PI), staining damaged membrane cells fluorescent red and intact cells fluorescent green. For evaluation of the fluorescence method, cells of Lactococcus lactis MG1363 were incubated under different conditions and subsequently labeled with SYTO 9 and PI and analyzed by flow cytometry and epifluorescence microscopy. Lysis was induced by treatment with cell wall-hydrolyzing enzyme mutanolysin. Cheese conditions were mimicked by incubating cells in a buffer with high protein, potassium, and magnesium, which stabilizes the cells. Under nonstabilizing conditions a high concentration of mutanolysin caused complete disruption of the cells. This resulted in a decrease in the total number of cells and release of cytoplasmic enzyme lactate dehydrogenase. In the stabilizing buffer, mutanolysin caused membrane damage as well but the cells disintegrated at a much lower rate. Stabilizing buffer supported permeabilized cells, as indicated by a high number of PI-labeled cells. In addition, permeable cells did not release intracellular aminopeptidase N, but increased enzyme activity was observed with the externally added and nonpermeable peptide substrate lysyl-p-nitroanilide. Finally, with these stains and confocal scanning laser microscopy the permeabilization of starter cells in cheese could be analyzed. PMID:11526032

  17. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts

    PubMed Central

    2014-01-01

    Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159

  18. Effect of ultrasound irradiation on α-SMA and TGF-β1 expression in human dermal fibroblasts.

    PubMed

    Maeshige, Noriaki; Terashi, Hiroto; Aoyama, Michiko; Torii, Kazuhiro; Sugimoto, Masaharu; Usami, Makoto

    2011-05-11

    Ultrasound therapy is used to promote pressure ulcer healing as an adjunctive therapy. However, the efficacy and the scientific basis of this treatment are unclear. We investigated the effect of ultrasound irradiation on alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta1 (TGF-β1) expression in human dermal fibroblasts. These are important factors for acceleration of wound closure. We used pulsed ultrasound of 0, 0.1, 0.5, and 1.0 W/cm2. TGF-β1 and α-SMA mRNA was measured by quantitative real-time polymerase chain reaction, α-SMA protein was examined by western blot, and localization of α-SMA was evaluated by immunofluorescence staining. Expression of α-SMA and TGF-β1 mRNA was increased at 24 h but not at 48 h after ultrasound irradiation. There were significant differences between controls of 0 W/cm² and 0.1 W/cm² with a 1.34 ± 0.26 fold increase in α-SMA (P < 0.05) and a 1.78 ± 0.57 fold increase in TGF-β1 (P < 0.05). Protein levels of α-SMA were also increased and detected in ultrasound irradiated fibroblasts at 24 h. Ultrasound irradiation promotes α-SMA expression in human dermal fibroblasts and this suggests the biological mechanism of ultrasound efficacy on chronic wound treatment.

  19. Protective effect of chromene isolated from Sargassum horneri against UV-A-induced damage in skin dermal fibroblasts.

    PubMed

    Kim, Jung-Ae; Ahn, Byul-Nim; Kong, Chang-Suk; Kim, Se-Kwon

    2012-08-01

    Skin homoeostasis is interrupted during UV-A irradiation. How the UV-A-altered skin components influences photoageing of skin should be investigated using human in vitro models that are important for understanding skin ageing. In this study, chromene compound, sargachromenol, was isolated from Sargassum horneri, and its potency on inhibition of photoageing was investigated in UV-A-irradiated dermal fibroblasts. Effects of sargachromenol on the prevention of photoageing were evaluated by measuring ROS production, membrane protein oxidation, lipid peroxidation and ageing-related gene expression in UV-A-irradiated human skin dermal fibroblasts. The results indicated that treatment with sargachromenol suppressed the collagenase matrix metalloproteinases (MMPs), MMP-1, MMP-2 and MMP-9 expression without any cytotoxicity and phototoxicity. It was further found that these inhibitions were because of increase in the expression of TIMP-1 and TIMP-2 genes. Furthermore, we confirmed that the UV-A-induced transcriptions of AP-1 signalling pathway were regulated by sargachromenol treatment in UV-A-irradiated dermal fibroblasts. © 2012 John Wiley & Sons A/S.

  20. The anti-cancer agent guttiferone-A permeabilizes mitochondrial membrane: ensuing energetic and oxidative stress implications.

    PubMed

    Pardo-Andreu, Gilberto L; Nuñez-Figueredo, Yanier; Tudella, Valeria G; Cuesta-Rubio, Osmany; Rodrigues, Fernando P; Pestana, Cezar R; Uyemura, Sérgio A; Leopoldino, Andreia M; Alberici, Luciane C; Curti, Carlos

    2011-06-15

    Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 μM) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca²⁺ efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP+ transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. [Effect of cetirizine hydrochloride on the expression of substance P receptor and cytokines production in human epidermal keratinocytes and dermal fibroblasts].

    PubMed

    Liu, Ji-Yong; Zhao, Yong-Zhe; Peng, Cheng; Li, Feng-Qian; Zhu, Quan-Gang; Hu, Jin-Hong

    2008-04-01

    To investigate the effect of cetirizine hydrochloride on the expression of neurokinin 1 receptor (NK-1R) and cytokines production induced by substance P (SP) in HaCaT cells (a human epidermal keratinocyte cell line) and dermal fibroblasts. The effect of cetirizine on the expression of NK-1R protein was detected by flow cytometry and Western blotting analysis. The modulation of cetirizine on the production of interferon (IFN)-gamma, interleukin (IL)-1beta, IL-6 and IL-8 in HaCaT cells and fibroblasts was measured by ELISA. The results showed that cetirizine significantly inhibited the expression of NK-1R in HaCaT cells and fibroblasts. SP induced the production of IFN-gamma, IL-1beta and IL-8 in both cell types. Cetirizine 1-100 micromol x L(-1) inhibited SP-induced IL-1beta and IL-8 production in HaCaT cells and fibroblasts, while had no effect on the production of IFN-gamma in both cells. Both SP and cetirizine had no effect on the secretion of IL-6 in HaCaT cells and fibroblasts. These findings suggest that cetirizine may be involved in the treatment of SP-induced skin inflammation by inhibiting the expression of substance P receptor and regulation the production of IL-1beta and IL-8 in epidermal keratinocyte and dermal fibroblasts.

  2. Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts and cybrid models of the disease

    PubMed Central

    Garrido-Maraver, Juan; Cordero, Mario D; Moñino, Irene Domínguez; Pereira-Arenas, Sheila; Lechuga-Vieco, Ana V; Cotán, David; De la Mata, Mario; Oropesa-Ávila, Manuel; De Miguel, Manuel; Bautista Lorite, Juan; Rivas Infante, Eloy; Álvarez-Dolado, Manuel; Navas, Plácido; Jackson, Sandra; Francisci, Silvia; Sánchez-Alcázar, José A

    2012-01-01

    BACKGROUND AND PURPOSE MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is a mitochondrial disease most usually caused by point mutations in tRNA genes encoded by mitochondrial DNA (mtDNA). Approximately 80% of cases of MELAS syndrome are associated with a m.3243A > G mutation in the MT-TL1 gene, which encodes the mitochondrial tRNALeu (UUR). Currently, no effective treatments are available for this chronic progressive disorder. Treatment strategies in MELAS and other mitochondrial diseases consist of several drugs that diminish the deleterious effects of the abnormal respiratory chain function, reduce the presence of toxic agents or correct deficiencies in essential cofactors. EXPERIMENTAL APPROACH We evaluated the effectiveness of some common pharmacological agents that have been utilized in the treatment of MELAS, in yeast, fibroblast and cybrid models of the disease. The yeast model harbouring the A14G mutation in the mitochondrial tRNALeu(UUR) gene, which is equivalent to the A3243G mutation in humans, was used in the initial screening. Next, the most effective drugs that were able to rescue the respiratory deficiency in MELAS yeast mutants were tested in fibroblasts and cybrid models of MELAS disease. KEY RESULTS According to our results, supplementation with riboflavin or coenzyme Q10 effectively reversed the respiratory defect in MELAS yeast and improved the pathologic alterations in MELAS fibroblast and cybrid cell models. CONCLUSIONS AND IMPLICATIONS Our results indicate that cell models have great potential for screening and validating the effects of novel drug candidates for MELAS treatment and presumably also for other diseases with mitochondrial impairment. PMID:22747838

  3. Effect of early administration of exogenous basic fibroblast growth factor on acute edematous pancreatitis in rats

    PubMed Central

    Yan, Qiang; Yao, Xing; Dai, Li-Cheng; Zhang, Guo-Lei; Ping, Jin-Liang; He, Jian-Fang; Han, Chun-Fan

    2006-01-01

    AIM: To observe the therapeutic effect of early administration of exogenous Basic fibroblast growth factor (bFGF) on acute edematous pancreatitis (AEP) in rats. METHODS: Thirty male Sprague-Dawley rats were randomly divided into three (n = 10): normal control group (group I), AEP group (group II) and AEP with bFGF treatment group (group III). AEP was induced by subcutaneous injection of cerulein (5.5 μg/kg and 7.5 μg/kg) at 1 h interval into rats of groups II and III. Three hours after induction of AEP, 100 μg/kg bFGF was administrated intraperitoneally for 1h to group III rats. For test of DNA synthesis in acinar cells, 5-bromo-2’-deoxyuridine (BrdU) labeling solution was intraperitoneally injected into the rats of groups II and III 24 h after bFGF treatment. The changes in serum amylase, lipase, pancreatic tissue wet/dry ratio were detected. RESULTS: In bFGF treatment group, there was a significant decrease in the volume of serum amylase, lipase and the pancreatic wet/dry weight ratio(1383.0 ± 94.6 U/L, 194.0 ± 43.6 U/L, 4.32 ± 0.32) compared to AEP group (3464 ± 223.7 U/L, 456 ±68.7 U/L, 6.89 ± 0.47) (P < 0.01), and no significant difference was found between bFGF treatment and control group (1289 ± 94.0 U/L, 171 ± 23.4 U/L, 4.12 ± 0.26, P > 0.05). The inflammatory changes such as interstitial edema, polymorphonuclear neutrophils (PMNs) and vacuolization were significantly ameliorated compared to AEP group (P < 0.01). A small number of BrdU-labeled nuclei were observed in acinar cells of AEP rats (1.8 ± 0.3 nuclei/microscopic field, n = 10) while diffuse BrdU-labeled nuclei were found in bFGF-treated rats (18.9 ± 1.4 nuclei/microscopic field, n = 10) (P < 0.01). Immunohistochemical study showed increased DNA synthesis in pancreatic acinar cells. CONCLUSION: Early administration of exogenous bFGF has significant therapeutic effect on cerulein-induced acute edematous pancreatitis in rats. Its mechanism is related to the amelioration of inflammation

  4. Effects of cholera toxin and isobutylmethylxanthine on growth of human fibroblasts

    SciTech Connect

    Espinoza, B.; Wharton, W.

    1986-08-01

    Cholera toxin produced a dose-dependent decrease in the restimulation of G0/G1 traverse in density-arrested human fibroblasts but did not inhibit the stimulation of cells arrested in G0 after serum starvation at low density. In addition, cholera toxin did not inhibit the proliferation of sparse logarithmically growing human fibroblasts, even when low concentrations of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) were also present. However, the final density to which sparse cells grew was limited by cholera toxin, when added either alone or together with low concentrations of IBMX. In contrast, high concentrations of the phosphodiesterase inhibitor alone produced a profound inhibition in the growth of sparse human fibrobasts. IBMX produced an inhibition both in the G1 and in the G2 phases of the cell cycle by a mechanism(s) that was not related to the magnitude of the increases in adenosine 3,5-cyclic monophosphate concentrations.

  5. Collagen Gel Contraction by Fibroblasts: The Role of Myosin 2 and Gravity Effects

    NASA Technical Reports Server (NTRS)

    Johnson-Wint, Barbara P.; Malouvier, Alexandre; Holton, Emily

    1996-01-01

    Several lines of evidence suggest that collagen organization by connective tissue cells is sensitive to force. For instance, in flight experiments on rats the collagen fibrils which were produced under weightlessness and which were immediately next to the tendon fibroblasts were shown to be oriented randomly around the cells while the older fibrils right next to these and which were produced under 1 G, were highly organized.

  6. Collagen Gel Contraction by Fibroblasts: The Role of Myosin 2 and Gravity Effects

    NASA Technical Reports Server (NTRS)

    Johnson-Wint, Barbara P.; Malouvier, Alexandre; Holton, Emily

    1996-01-01

    Several lines of evidence suggest that collagen organization by connective tissue cells is sensitive to force. For instance, in flight experiments on rats the collagen fibrils which were produced under weightlessness and which were immediately next to the tendon fibroblasts were shown to be oriented randomly around the cells while the older fibrils right next to these and which were produced under 1 G, were highly organized.

  7. Effect of Cold Plasma on Cell Viability and Collagen Synthesis in Cultured Murine Fibroblasts

    NASA Astrophysics Data System (ADS)

    Shi, Xingmin; Cai, Jingfen; Xu, Guimin; Ren, Hongbin; Chen, Sile; Chang, Zhengshi; Liu, Jinren; Huang, Chongya; Zhang, Guanjun; Wu, Xili

    2016-04-01

    An argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro. Experimental results showed that, compared with the control cells, the treatment of fibroblasts with 15 s of plasma led to a significant increase of cell viability and collagen synthesis, while the treatment of 25 s plasma resulted in a remarkable decrease. Exploration of related mechanisms suggested that cold plasma could up-regulate CyclinD1 gene expression and down-regulate p27 gene expression at a low dose, while it could down-regulate CyclinD1 expression and up-regulate p27 expression at a higher dose, thus altering the cell cycle progression, and then affecting cell viability and collagen synthesis of fibroblasts. supported partly by National Natural Science Foundation of China (Nos. 81372076, 51307133 and 51221005), China National Funds for Distinguished Young Scientists (No. 51125029), the Sci-Tech Project of Shaanxi Province of China (No. 2010K16-04), and the Fundamental Research Funds for the Central Universities of China (No. xkjc2013004)

  8. Circadian clocks in rat skin and dermal fibroblasts: differential effects of aging, temperature and melatonin.

    PubMed

    Sandu, Cristina; Liu, Taole; Malan, André; Challet, Etienne; Pévet, Paul; Felder-Schmittbuhl, Marie-Paule

    2015-06-01

    As a peripheral tissue localized at the interface between internal and external environments, skin performs functions which are critical for the preservation of body homeostasis, in coordination with environmental changes. Some of these functions undergo daily variations, such as temperature or water loss, suggesting the presence of time-keeping mechanisms. Rhythmic functions are controlled by a network of circadian oscillators present virtually in every cell and coordinated by the central clock located in the suprachiasmatic nuclei. At the molecular level, circadian rhythms are generated by conserved transcriptional-translational feedback loops involving several clock genes, among which Per1 and Per2 play a central role. Here we characterize clock activity in skin of the transgenic Per1-luciferase rat during postnatal development and adulthood, by real-time recording of bioluminescence in explants and primary dermal fibroblasts, and report marked transformation in circadian properties, from early life to aging. Using primary dermal fibroblast cultures we provide evidence that melatonin treatment phase dependently increases the amplitude of circadian oscillations and that ambient temperature impacts on their period, with slight overcompensation. Together, these findings demonstrate that skin contains a self-sustained circadian clock undergoing age-dependent changes. Dermal fibroblasts, one of the major skin cell types, also exhibit robust, yet specific, circadian rhythmicity which can be fine-tuned by both internal (melatonin) and external (temperature) factors.

  9. The Effect of Phototherapy on Cancer Predisposition Genes of Diabetic and Normal Human Skin Fibroblasts

    PubMed Central

    Tangtrakulwanich, Boonsin; Sangkhathat, Surasak

    2017-01-01

    The purpose of this study was to investigate whether LED light at different wavelengths affects the expression profile of 143 cancer predisposition genes in both diabetic and normal human fibroblasts. In this study, both diabetic and normal fibroblast cell lines were cultured and irradiated with red (635 nm), green (520 nm), and blue (465 nm) LED light for 10 minutes at 0.67 J/cm2 each. After that, mRNA from all cell lines was extracted for microarray analysis. We found that green light activates EPHB2, KIT, ANTXR2, ESCO2, MSR1, EXT1, TSC1, KIT, NF1, BUB1B, FANCD2, EPCAM, FANCD2, NF, DIS3L2, and RET in normal fibroblast cells, while blue and red light can upregulate RUNX1, PDGFRA, EHBP1, GPC3, AXIN2, KDR, GLMN, MSMB, EPHB2, MSR1, KIT, FANCD2, BMPR1A, BUB1B, PDE11A, and RET. Therefore, genetic screening before phototherapy treatment may be required. PMID:28386563

  10. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation

    SciTech Connect

    Eppley, B.L.; Connolly, D.T.; Winkelmann, T.; Sadove, A.M.; Heuvelman, D.; Feder, J. )

    1991-07-01

    A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically in all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.

  11. Effect of hexavalent chromium on proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts.

    PubMed

    Martini, Claudia N; Brandani, Javier N; Gabrielli, Matías; Vila, María del C

    2014-06-01

    Heavy metals contamination has become an important risk factor for public health and the environment. Chromium is a frequent industrial contaminant and is also used in orthopaedic joint replacements made from cobalt-chromium-alloy. Since hexavalent chromium (Cr(VI)) was reported as genotoxic and carcinogenic in different mammals, to further evaluate its cytotoxicity, we investigated the effect of this heavy metal in the proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. These cells, after the addition of a mixture containing insulin, dexamethasone and methylisobutylxanthine, first proliferate, a process known as mitotic clonal expansion (MCE), and then differentiate to adipocytes. In this differentiation process a key transcription factor is induced: peroxisome proliferator-activated receptor gamma (PPAR gamma). We found that treatment of 3T3-L1 fibroblasts with potassium chromate inhibited proliferation in exponentially growing cells and MCE as well as differentiation. A decrease in PPAR gamma content, evaluated by western blot and immunofluorescence, was found in cells differentiated in the presence of chromium. On the other hand, after inhibition of differentiation with chromium, when the metal was removed, differentiation was recovered, which indicates that this may be a reversible effect. We also found an increase in the number of micronucleated cells after treatment with Cr(VI) which is associated with genotoxic effects. According to our results, Cr(VI) is able to inhibit proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts and to increase micronucleated cells, which are all indicative of alterations in cellular physiology and therefore, contributes to further elucidate the cytotoxic effects of this heavy metal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The effects of maternal iron deficiency on infant fibroblast growth factor-23 and mineral metabolism

    PubMed Central

    Braithwaite, V.S.; Prentice, A.; Darboe, M.K.; Prentice, A.M.; Moore, S.E.

    2016-01-01

    Fibroblast growth factor-23 (FGF23), a phosphate(Phos)-regulating hormone, is abnormally elevated in hypophosphataemic syndromes and an elevated FGF23 is a predictor of mortality in kidney disease. Recent findings suggest iron deficiency as a potential mediator of FGF23 expression and murine studies have shown in utero effects of maternal iron deficiency on offspring FGF23 and phosphate metabolism. Our aim was to investigate the impact of maternal iron status on infant FGF23 and mineral metabolites over the first 2 years of life. Infants born to mothers with normal (NIn = 25,) and low (LIn = 25) iron status during pregnancy, from a mother-infant trial (ISRCTN49285450) in rural Gambia, West Africa, had blood and plasma samples analysed at 12, 24, 52, 78 and 104 weeks (wk) of age. Circulating intact-FGF23 (I-FGF23), Phos, total alkaline phosphatase (TALP) and haemoglobin (Hb) decreased and estimated glomerular filtration rate increased over time [all P ≤ 0.0001)]. C-terminal-FGF23 (C-FGF23) and TALP were significantly higher in LI compared with NI, from 52 wk for C-FGF23 [Beta coefficient (SE) 18.1 (0.04) %, P = 0.04] and from 24 wk for TALP [44.7 (29.6) U/L, P = 0.04]. Infant Hb was the strongest negative predictor of C-FGF23 concentration [− 21% (4%) RU/mL, P ≤ 0.0001], Phos was the strongest positive predictor of I-FGF23 [32.0(3.9) pg/mL, P ≤ 0.0001] and I-FGF23 did not predict C-FGF23 over time [− 0.5% (0.5%), P = 0.3]. In conclusion, this study suggests that poor maternal iron status is associated with a higher infant C-FGF23 and TALP but similar I-FGF23 concentrations in infants and young children. These findings further highlight the likely public health importance of preventing iron deficiency during pregnancy. Whether or not children who are born to iron deficient mothers have persistently high concentrations of these metabolites and are more likely to be at risk of impaired bone development and pre-disposed to rickets

  13. [Effects of silencing Smad ubiquitination regulatory factor 2 on the function of human hypertrophic scar-derived fibroblasts].

    PubMed

    Zhang, Z; Kuang, F; Liu, C L; Chen, B; Tang, W B; Li, X J

    2017-03-20

    Objective: To explore the effects of silencing Smad ubiquitination regulatory factor 2 (Smurf2) on the secretion of transforming growth factor beta 1 (TGF-β(1)), alpha-smooth muscle actin (α-SMA), and collagen type Ⅰ by human hypertrophic scar-derived fibroblasts. Methods: The human normal skin-derived fibroblasts and hypertrophic scar-derived fibroblasts were cultured with explant culture technique from the normal skin and hypertrophic scar tissue, which was obtained from 9 patients with hypertrophic scars after burn. Two kinds of fibroblasts of the third passage were both divided into 6 groups according to the random number table, with 9 wells in each group. Fibroblasts in blank control group were cultured for 72 h without transfection of any small interfering RNA (siRNA), fibroblasts in negative control group were for cultured for 72 h after transfected with non-target siRNA, fibroblasts in Smurf2 siRNA group were cultured for 72 h after transfected with 100 nmol/L Smurf2 siRNA, fibroblasts in blank control+ TGF-β(1) group were cultured for 72 h without transfection of any siRNA and then treated with 10 ng/mL TGF-β(1) for 6 h, fibroblasts in negative control+ TGF-β(1) group were cultured for 72 h after transfected with non-target siRNA and then treated with 10 ng/mL TGF-β(1) for 6 h, fibroblasts in Smurf2 siRNA+ TGF-β(1) group were cultured for 72 h after transfected with Smurf2 siRNA and then treated with 10 ng/mL TGF-β(1) for 6 h. (1) The protein and mRNA expression levels of Smurf2 of the two kinds of cells in blank control group, negative control group, and Smurf2 siRNA group were assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR), respectively. (2) The content of TGF-β(1) in the cell culture supernatant of the two kinds of cells in blank control group and Smurf2 siRNA group was determined by enzyme-linked immunosorbent assay (ELISA). (3) The protein expression levels of α-SMA of the two kinds of cells in

  14. Resveratrol Prevents Reactive Oxygen Species-Induced Effects of Light-Emitting Diode-Generated Blue Light in Human Skin Fibroblasts.

    PubMed

    Mamalis, Andrew; Koo, Eugene; Jagdeo, Jared

    2016-06-01

    Light-emitting diode-generated blue light (LED-BL) is part of the visible light spectrum that does not cause DNA damage and may represent a safer alternative to ultraviolet phototherapy. Previous research demonstrated that LED-BL can inhibit adult human skin fibroblast proliferation and migration speed and is associated with increased reactive oxygen species (ROS) generation in a dose-dependent manner. In addition, resveratrol possesses potent intracellular antioxidative effects on ROS-free radicals in human skin fibroblasts. The authors studied the effects on migration speed as a surrogate to measure LED-BL effects on fibroblast function. The authors hypothesized that resveratrol, a potent scavenger of ROS, could prevent the effects of LED-BL on fibroblast migration speed. This would implicate ROS as the mechanistic driver of LED-BL effects on human skin fibroblasts. To demonstrate that resveratrol could prevent the effects of LED-BL (415-nm), fibroblasts were incubated with resveratrol (Sigma-Aldrich, St. Louis, MO) at concentrations of 0.001% and 0.0001% for 24 hours and then irradiated with LED-BL at fluences of 30, 45, and 80 J/cm. Postirradiation fibroblast migratory speed was assayed in an environment-controlled computer-assisted video microscopy system. Reactive oxygen species levels were measured by flow cytometric analysis of dihydrorhodamine. Statistical analyses with analysis of variance and Student t-test were performed to compare individual treatment arms and matched controls. The experimental results demonstrate that pretreatment of skin fibroblasts with resveratrol at concentrations of 0.001% and 0.0001% prevents the effects of 30, 45, and 80 J/cm of LED-BL on fibroblast migration speed. The authors found that LED-BL at a fluences of 30, 45, and 80 J/cm significantly increased ROS, whereas pretreatment with 0.001% resveratrol significantly reduced ROS generation. The findings demonstrate that LED-BL-induced decreases in fibroblast migration speed

  15. The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer.

    PubMed

    Niu, Yi-Nong; Wang, Kai; Jin, Song; Fan, Dong-Dong; Wang, Ming-Shuai; Xing, Nian-Zeng; Xia, Shu-Jie

    2016-01-01

    In a large clinical trial, finasteride reduced the rate of low-grade prostate cancer (PCa) while increasing the incidence of high-grade cancer. Whether finasteride promotes the development of high-grade tumors remains controversial. We demonstrated the role of fibroblasts and c-Jun in chemopreventive and therapeutic effect of finasteride on xenograft models of PCa. LNCaP (PC3) cells or recombinants of cancer cells and fibroblasts were implanted in male athymic nude mice treated with finasteride. Tumor growth, cell proliferation, apoptosis, p-Akt, and p-ERK1/2 were evaluated. In LNCaP (PC3) mono-grafted models, finasteride did not change the tumor growth. In recombinant-grafted models, fibroblasts and c-Jun promoted tumor growth; finasteride induced proliferation of LNCaP cells and repressed PC3 cell apoptosis. When c-Jun was knocked out, fibroblasts and/or finasteride did not promote the tumor growth. Finasteride inhibited p-Akt and p-ERK1/2 in mono-culture cancer cells while stimulating the same signaling molecules in the presence of fibroblasts. Reduced p-Akt and p-ERK1/2 were noted in the presence of c-Jun-/- fibroblasts. Fibroblasts and c-Jun promote PCa growth; finasteride further stimulates tumor growth with promoted proliferation, repressed apoptosis, and up-regulated pro-proliferative molecular pathway in the presence of fibroblasts and c-Jun. Stromal-epithelial interactions play critical roles in finasteride's therapeutic effects on PCa. Our findings have preliminary implications in using finasteride as a chemopreventive or therapeutic agent for PCa patients.

  16. Effect of Protein Kinase C delta (PKC-δ) Inhibition on the Transcriptome of Normal and Systemic Sclerosis Human Dermal Fibroblasts In Vitro

    PubMed Central

    Wermuth, Peter J.; Addya, Sankar; Jimenez, Sergio A.

    2011-01-01

    Previous studies demonstrated that protein kinase C- δ (PKC-δ) inhibition with the selective inhibitor, rottlerin, resulted in potent downregulation of type I collagen expression and production in normal human dermal fibroblasts and abrogated the exaggerated type I collagen production and expression in fibroblasts cultured from affected skin from patients with the fibrosing disorder systemic sclerosis (SSc). To elucidate the mechanisms involved in the ability of PKC-δ to regulate collagen production in fibroblasts, we examined the effects of PKC-δ inhibition on the transcriptome of normal and SSc human dermal fibroblasts. Normal and SSc human dermal fibroblasts were incubated with rottlerin (5 µM), and their gene expression was analyzed by microarrays. Pathway analysis and gene ontology analysis of differentially expressed genes in each comparison were performed. Identification of significantly overrepresented transcriptional regulatory elements (TREs) was performed using the Promoter Analysis and Interaction Network Toolset (PAINT) program. PKC-δ activity was also inhibited using RNA interference (siRNA) and by treating fibroblasts with a specific PKC-δ inhibitory cell permeable peptide. Differential gene expression of 20 genes was confirmed using real time PCR. PKC-δ inhibition caused a profound change in the transcriptome of normal and SSc human dermal fibroblasts in vitro. Pathway and gene ontology analysis identified multiple cellular and organismal pathways affected by PKC-δ inhibition. Furthermore, both pathway and PAINT analyses indicated that the transcription factor NFκB played an important role in the transcriptome changes induced by PKC-δ inhibition. Multiple genes involved in the degradation of the extracellular matrix components were significantly reduced in SSc fibroblasts and their expression was increased by PKC-δ inhibition. These results indicate that isoform-specific inhibition of PKC-δ profibrotic effects may represent a novel

  17. Dickkopf-1 has an Inhibitory Effect on Mesenchymal Stem Cells to Fibroblast Differentiation

    PubMed Central

    Li, Yan; Qiu, Sang-Sang; Shao, Yan; Song, Hong-Huan; Li, Gu-Li; Lu, Wei; Zhu, Li-Mei

    2016-01-01

    Background: Mesenchymal stem cells (MSCs) are bone marrow stem cells which play an important role in tissue repair. The treatment with MSCs will be likely to aggravate the degree of fibrosis. The Wnt/β-catenin signaling pathway is involved in developmental and physiological processes, such as fibrosis. Dickkopfs (DKKs) are considered as an antagonist to block Wnt/β-catenin signaling pathway by binding the receptor of receptor-related protein (LRP5/6). DKK1 was chosen in attempt to inhibit fibrosis of MSCs by lowering activity of Wnt/β-catenin signaling pathway. Methods: Stable MSCs were randomly divided into four groups: MSCs control, MSCs + transforming growth factor-β (TGF-β), MSCs + DKK1, and MSCs + TGF-β + DKK1. Flow cytometry was used to identify MSCs. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide test. Immunofluorescence was used to detect protein expression in the Wnt/β-catenin signaling pathways. Western blotting analysis was employed to test expression of fibroblast surface markers and, finally, real-time reverse transcription polymerase chain reaction was employed to test mRNA expression of fibroblast surface markers and Wnt/β-catenin signaling proteins. Results: Cultivated MSCs were found to conform to the characteristics of standard MSCs: expression of cluster of differentiation (CD) 73, 90, and 105, not expression of 34, 45, and 79. We found that DKK1 could maintain the normal cell morphology of MSCs. Western blotting analysis showed that fibroblast surface markers were expressed in high quantities in the group MSCs + TGF-β. However, the expression was lower in the MSCs + TGF-β + DKK1. Immunofluorescence showed high expression of all Wnt/β-catnin molecules in the MSCs + TGF-β group but expressed in lower quantities in MSCs + TGF-β + DKK1 group. Finally, mRNA expression of fibroblast markers vimentin, α-smooth muscle actin and Wnt/β-catenin signaling proteins β-catenin, T-cell factor

  18. The primary growth of laryngeal squamous cell carcinoma cells in vitro is effectively supported by paired cancer-associated fibroblasts alone.

    PubMed

    Wang, Mei; Wu, Chunping; Guo, Yu; Cao, Xiaojuan; Zheng, Wenwei; Fan, Guo-Kang

    2017-05-01

    Most primarily cultured laryngeal squamous cell carcinoma cells are difficult to propagate in vitro and have a low survival rate. However, in our previous work to establish a laryngeal squamous cell carcinoma cell line, we found that laryngeal cancer-associated fibroblasts appeared to strongly inhibit the apoptosis of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In this study, we investigated whether paired laryngeal cancer-associated fibroblasts alone can effectively support the growth of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In all, 29 laryngeal squamous cell carcinoma specimens were collected and primarily cultured. The laryngeal squamous cell carcinoma cells were separated from cancer-associated fibroblasts by differential trypsinization and continuously subcultured. Morphological changes of the cultured laryngeal squamous cell carcinoma cells were observed. Immunocytofluorescence was used to authenticate the identity of the cancer-associated fibroblasts and laryngeal squamous cell carcinoma cells. Flow cytometry was used to quantify the proportion of apoptotic cells. Western blot was used to detect the protein levels of caspase-3. Enzyme-linked immunosorbent assay was used to detect the levels of chemokine (C-X-C motif) ligand 12, chemokine (C-X-C motif) ligand 7, hepatocyte growth factor, and fibroblast growth factor 1 in the supernatants of the laryngeal squamous cell carcinoma and control cells. AMD3100 (a chemokine (C-X-C motif) receptor 4 antagonist) and an anti-chemokine (C-X-C motif) ligand 7 antibody were used to block the tumor-supporting capacity of cancer-associated fibroblasts. Significant apoptotic changes were detected in the morphology of laryngeal squamous cell carcinoma cells detached from cancer-associated fibroblasts. The percentage of apoptotic laryngeal squamous cell carcinoma cells and the protein levels of caspase-3 increased gradually in subsequent subcultures. In contrast, no

  19. Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride

    PubMed Central

    Inkielewicz-Stepniak, Iwona; Santos-Martinez, Maria Jose; Medina, Carlos; Radomski, Marek W

    2014-01-01

    Background Silver nanoparticles (AgNPs) and fluoride (F) are pharmacological agents widely used in oral medicine and dental practice due to their anti-microbial/anti-cavity properties. However, risks associated with the co-exposure of local cells and tissues to these xenobiotics are not clear. Therefore, we have evaluated the effects of AgNPs and F co-exposure on human gingival fibroblast cells. Methods Human gingival fibroblast cells (CRL-2014) were exposed to AgNPs and/or F at different concentrations for up to 24 hours. Cellular uptake of AgNPs was examined by transmission electron microscopy. Downstream inflammatory effects and oxidative stress were measured by real-time quantitative polymerase chain reaction (PCR) and reactive oxygen species (ROS) generation. Cytotoxicity and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and real-time quantitative PCR and flow cytometry, respectively. Finally, the involvement of mitogen-activated protein kinases (MAPK) was studied using Western blot. Results We found that AgNPs penetrated the cell membrane and localized inside the mitochondria. Co-incubation experiments resulted in increased oxidative stress, inflammation, and apoptosis. In addition, we found that co-exposure to both xenobiotics phosphorylated MAPK, particularly p42/44 MAPK. Conclusion A combined exposure of human fibroblasts to AgNPs and F results in increased cellular damage. Further studies are needed in order to evaluate pharmacological and potentially toxicological effects of AgNPs and F on oral health. PMID:24729703

  20. TGFbeta and TGFalpha, antagonistic effect in vitro on extracellular matrix accumulation by chick skin fibroblasts at two distinct embryonic stages.

    PubMed

    Locci, P; Baroni, T; Lilli, C; Martinese, D; Marinucci, L; Bellocchio, S; Calvitti, M; Becchetti, E

    1999-03-01

    ECM macromolecules create a specific environment that participates in the control of cell proliferation and differentiation during embryogenesis. Quantitative and qualitative alterations in the ECM may depend on several growth factors that modify cell metabolism. Since transforming growth factor beta (TGFbeta) and alpha (TGFalpha) are abundantly expressed during embryonic development in organs in which epithelial-mesenchymal interactions occur, the aim of this study was to determine: a) the effect of TGFbeta on the phenotype of 7 and 14 day chick embryo back skin (CEBS) fibroblasts by evaluating the neosynthesis of GAG, collagen and fibronectin; b) whether TGFalpha and TGFbeta production, in particular TGFbeta3 and TGFbeta4, and the number of TGFbeta receptors change during these two stages of embryonic development. The results show that the neosynthesis of ECM macromolecules, tested using radiolabelled precursors, is increased by TGFbeta. The growth factor generally favours cellular accumulation more than secretion. As far as GAG is concerned, TGFbeta has a greater stimulatory effect on sulphated GAG than on HA. Specific bioassay shows that TGFbeta3 and TGFbeta4 activity is higher in 7 day than 14 day CEBS fibroblasts. Moreover, TGFbeta3 and TGFbeta4 mRNA expression is increased in the first stages of development. Instead, the level of TGFalpha increases in successive developmental stages. Since TGFalpha stimulates the synthesis and secretion of HA, and HA binds and inactivates TGFbeta, the greater quantity of HA in 14 day fibroblasts may contribute to reducing the TGFbeta effect. Overall our data suggest that the production of TGFbeta and TGFalpha are age-dependent and that the balance between the two growth factors may be a mechanism for controlling skin differentiation.

  1. Curcumin triggers p16-dependent senescence in active breast cancer-associated fibroblasts and suppresses their paracrine procarcinogenic effects.

    PubMed

    Hendrayani, Siti-Fauziah; Al-Khalaf, Huda H; Aboussekhra, Abdelilah

    2013-06-01

    Activated cancer-associated fibroblasts (CAFs) or myofibroblasts not only facilitate tumor growth and spread but also affect tumor response to therapeutic agents. Therefore, it became clear that efficient therapeutic regimens should also take into account the presence of these supportive cells and inhibit their paracrine effects. To this end, we tested the effect of low concentrations of curcumin, a pharmacologically safe natural product, on patient-derived primary breast CAF cells. We have shown that curcumin treatment upregulates p16(INK4A) and other tumor suppressor proteins while inactivates the JAK2/STAT3 pathway. This reduced the level of alpha-smooth muscle actin (α-SMA) and the migration/invasion abilities of these cells. Furthermore, curcumin suppressed the expression/secretion of stromal cell-derived factor-1 (SDF-1), interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2), MMP-9, and transforming growth factor-β, which impeded their paracrine procarcinogenic potential. Intriguingly, these effects were sustained even after curcumin withdrawal and cell splitting. Therefore, using different markers of senescence [senescence-associated β-galactosidase (SA-β-gal) activity, Ki-67 and Lamin B1 levels, and bromodeoxyuridine incorporation], we have shown that curcumin markedly suppresses Lamin B1 and triggers DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts. Importantly, this curcumin-related senescence was p16(INK4A)-dependent and occurred with no associated inflammatory secretory phenotype. These results indicate the possible inactivation of cancer-associated myofibroblasts and present the first indication that curcumin can trigger DNA damage-independent and safe senescence in stromal fibroblasts.

  2. Disease-Specific Effects of Matrix and Growth Factors on Adhesion and Migration of Rheumatoid Synovial Fibroblasts.

    PubMed

    Lefèvre, Stephanie; Schwarz, Maria; Meier, Florian M P; Zimmermann-Geller, Birgit; Tarner, Ingo H; Rickert, Markus; Steinmeyer, Jürgen; Sauerbier, Michael; Rehart, Stefan; Müller-Ladner, Ulf; Neumann, Elena

    2017-06-15

    In rheumatoid arthritis (RA), cartilage and bone matrix are degraded, and extracellular matrix (ECM) proteins, acting as cellular activators, are liberated. Similar to ECM proteins, matrix-bound chemokines, cytokines, and growth factors (GFs) influence functional properties of key cells in RA, especially synovial fibroblasts. The role of these molecules on attachment, migration, and proinflammatory and prodestructive activation of RASFs was analyzed. Adhesion/migration of RASFs were examined under GF-enriched (GF(+)) or -reduced (GF(-)) conditions with or without addition of matrix-associated GFs, TGF-β, and platelet-derived GF to GF(-) or culture supernatants. Fibroblast adhesion and alterations in proinflammatory/prodestructive properties (e.g., IL-6/matrix metalloproteinase 3-release) in response to matrix-associated molecules were compared. Effects of GF(+), GF(-), and other ECM components on human RASF-mediated cartilage invasion were examined in the SCID mouse model. RASF adhesion under GF(-) conditions was significantly lower compared with GF(+) conditions (6.8- versus 8.3-fold). This effect was specific for RA because control cells showed opposite effects (e.g., osteoarthritis synovial fibroblasts [SF]; GF(-) versus GF(+): 10.7- versus 8-fold). Addition of TGF-β to GF(-) increased RASF attachment (12.7-fold) compared with other matrices and components. RASF adhesion to GF(+) matrix resulted in the strongest IL-6 and matrix metalloproteinase-3 release, and was even more pronounced compared with supplementation of single GFs. In vivo, GF(-) matrix decreased RASF-mediated cartilage invasion compared with GF(+) matrix. ECM components and especially GFs when bound within ECM actively enhance RASF attraction and cartilage adhesion. This observation was specific for RASFs as a reverse behavior was observed for controls. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Procedure for the permeabilization and cryobiological preservation of Drosophila embryos

    SciTech Connect

    Cole, K.W.; Schreuders, P.D.; Mahowald, A.P.; Mazur, P. |

    1993-05-06

    The authors describe the detailed protocol developed in their laboratory at Oak Ridge for the permeabilization and cryobiological preservation of embryos of Drosophila melanogaster, Oregon R strain. The protocol is supplemented by notes containing two sorts of information. One category includes references to the appropriate portions of their published papers giving the scientific rationale and experimental basis for important steps. The other category is concerned with the criticality of certain steps and the precision with which they need to be performed. As an aid to investigators, the authors list even ordinary pieces of equipment. Brand names and model numbers are given where it is either important or convenient for readers to know precisely what is used.

  4. Mitochondria and cell death: outer membrane permeabilization and beyond.

    PubMed

    Tait, Stephen W G; Green, Douglas R

    2010-09-01

    Mitochondrial outer membrane permeabilization (MOMP) is often required for activation of the caspase proteases that cause apoptotic cell death. Various intermembrane space (IMS) proteins, such as cytochrome c, promote caspase activation following their mitochondrial release. As a consequence, mitochondrial outer membrane integrity is highly controlled, primarily through interactions between pro- and anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family. Following MOMP by pro-apoptotic BCL-2-associated X protein (BAX) or BCL-2 antagonist or killer (BAK), additional regulatory mechanisms govern the mitochondrial release of IMS proteins and caspase activity. MOMP typically leads to cell death irrespective of caspase activity by causing a progressive decline in mitochondrial function, although cells can survive this under certain circumstances, which may have pathophysiological consequences.

  5. Low Dose Theophylline Showed an Inhibitory Effect on the Production of IL-6 and IL-8 in Primary Lung Fibroblast from Patients with COPD

    PubMed Central

    Zhang, Jing; Feng, Ming-xiang; Qu, Jie-ming

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by the abnormal and chronic lung inflammation. We hypothesized that lung fibroblasts could contribute to the local inflammation and investigated whether low dose theophylline had a beneficial effect on fibroblasts inflammation. Subjects undergoing lobectomy for bronchial carcinoma were enrolled and divided into COPD and control groups according to spirometry. Primary human lung fibroblasts were cultured from peripheral lung tissue distant to tumor tissue. There was a significant increase in both the mRNA expressions and protein levels for IL-6 and IL-8 in fibroblasts in COPD group, and the values were negatively correlated with lung function (P < 0.05). For COPD fibroblasts, the protein levels of IL-6 and IL-8 decreased from 993.0 ± 738.9 pg/mL to 650.1 ± 421.9 pg/mL (P = 0.014) and from 703.1 ± 278.0 pg/mL to 492.0 ± 214.9 pg/mL (P = 0.001), respectively, with 5 μg/mL theophylline treatment. In addition, theophylline at the dose of 5 μg/mL reduced the increased production of IL-6 and IL-8 induced by 1 μg/mL LPS in primary human lung fibroblasts. Our data suggest that lung fibroblasts participate in the chronic inflammation in COPD by releasing IL-6 and IL-8, and low dose theophylline can alleviate the proinflammatory mediators' production by fibroblasts. PMID:22363103

  6. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts.

    PubMed

    Fronza, M; Heinzmann, B; Hamburger, M; Laufer, S; Merfort, I

    2009-12-10

    PHARMACOLOGICAL RELEVANCE: Presentation of the scratch assay as a convenient and inexpensive in vitro tool to gain first insights in the wound healing potential of plant extracts and natural compounds. The present study deals with the optimization of the scratch assay which can be used as an in vitro model for quantification of fibroblast migration to and proliferation into the wounded area. It is suitable for the first evaluation of the wound re-epithelialization potential of crude herbal extracts, isolated compounds and pharmaceutical preparations. As a proof of concept three preparations from traditional medicinal plants were investigated. Swiss 3T3 albino mouse fibroblasts were used in monolayers and platelet derived growth factor as positive control. Hexane and ethanolic extracts from Calendula officinalis and Matricaria recutita, Hypericum oil as well as the triterpenoids faradiol myristate and palmitate were studied. To differentiate between proliferation and migration antimitotic mitomycin C was added. Both extracts of Calendula officinalis stimulated proliferation and migration of fibroblasts at low concentrations, e.g. 10 microg/ml enhanced cell numbers by 64.35% and 70.53%, respectively. Inhibition of proliferation showed that this effect is mainly due to stimulation of migration. Faradiol myristate and palmitate gave comparable stimulation rates at an almost 50 microg/ml concentration, indicating that they contribute partially, but not most significantly to the wound healing effects of Calendula preparations. Extracts from Matricaria recutita were only moderately active. Hypericum oil was cytotoxic at concentrations higher than 0.5 microg/ml. The scratch assay in the present form can be used as a promising scientific approach and platform to differentiate between plant extracts known for their wound healing and their anti-inflammatory properties.

  7. Proliferative effect of green light emitting diode irradiation on chicken fibroblasts in hyperglycaemic circumstances: a preliminary in vitro study

    NASA Astrophysics Data System (ADS)

    Vinck, Elke; Cagnie, Barbara; Declercq, Heidi; Cornelissen, Ria; Cambier, Dirk

    2004-09-01

    A reduced mortality due to hyperglycaemia was noted since the development of insulin treatment for type I diabetes and various oral hypoglycaemic agents for type II diabetes. Nevertheless the chronic metabolic disorder, Diabetes Mellitus, remains an important cause of morbidity and mortality due to a series of common secondary metabolic complications. Patients with diabetes have an increased tendency to develop infections of the skin. Healing of skin lesions in diabetics evolves often relatively slow and the lesions tend to be more severe than in non-diabetics. Endeavouring to accelerate the healing process of skin lesions in diabetic patients, this preliminary in vitro study investigates the efficacy of green Light Emitting Diode (LED) irradiation on fibroblast proliferation of cells in hyperglycaemic circumstances. In an attempt to imitate the diabetic environment, embryonic chicken fibroblasts were cultured in hyperglycaemic medium (30.000mg Glucose per litre Hanks Medium). LED irradiation was performed three consecutive days with a wavelength of 540 nm and a power output of 10 mW, at 0,6 cm distance from the fibroblasts. Each treatment lasted 3 minutes, resulting in a surface energy density of 0,2 J/cm2. Statistical analysis revealed that LED irradiation at the applied parameters induced a higher rate of proliferation in hyperglycaemic circumstances after irradiation than in the same circumstances without irradiation. Regarding these results the effectiveness of green LED irradiation on cells in hyperglycaemic circumstances is proven. To ensure the effectiveness and to evaluate the value of LED irradiation in vivo, further research is required.

  8. Mitochondrial permeabilization without caspase activation mediates the increase of basal apoptosis in cells lacking Nrf2.

    PubMed

    Ariza, Julia; González-Reyes, José A; Jódar, Laura; Díaz-Ruiz, Alberto; de Cabo, Rafael; Villalba, José Manuel

    2016-06-01

    Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway.

  9. Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes

    PubMed Central

    Heidi Au, Hoi Ting; Cheng, Irene; Chowdhury, Mohammad Fahad; Radisic, Milica

    2007-01-01

    In contractile tissues such as myocardium, functional properties are directly related to the cellular orientation and elongation. Thus, tissue engineering of functional cardiac patches critically depends on our understanding of the interaction between multiple guidance cues such as topographical, adhesive or electrical. The main objective of this study was to determine the interactive effects of contact guidance and electrical field stimulation on elongation and orientation of fibroblasts and cardiomyocytes, major cell populations of the myocardium. Polyvinyl surfaces were abraded using lapping paper with grain size 1 to 80μm, resulting in V-shaped abrasions with the average abrasion peak-to-peak width in the range from 3 to 13μm, and the average depth in the range from 140nm to 700nm (AFM). The surfaces with abrasions 13μm wide and 700nm deep, exhibited the strongest effect on neonatal rat cardiomyocyte elongation and orientation as well as statistically significant effect on orientation of fibroblasts, thus they were utilized for electrical field stimulation. Electrical field stimulation was performed using a regime of relevance for heart tissue in vivo as well as for cardiac tissue engineering. Stimulation (square pulses, 1ms duration, 1Hz, 2.3V/cm or 4.6V/cm) was initiated 24hr after cell seeding and maintained for additional 72hr. The cover slips were positioned between the carbon rod electrodes so that the abrasions were either parallel or perpendicular to the field lines. Non-abraded surfaces were utilized as controls. Field stimulation did not affect cell viability (live/dead staining). The presence of a well developed contractile apparatus in neonatal rat cardiomyocytes (staining for cardiac Troponin I and actin filaments) was identified in the groups cultivated on abraded surfaces in the presence of field stimulation. Overall we observed that i) fibroblast and cardiomyocyte elongation on non-abraded surfaces was significantly enhanced by electrical

  10. Sorbitol and gluconic acid production using permeabilized zymomonas mobilis cells confined by hollow-fiber membranes.

    PubMed

    Ferraz, H C; Borges, C P; Alves, T L

    2000-10-01

    Immobilization of Zymomonas mobilis by different methods was investigated. Experiments were performed in order to choose the most appropriate support for the immobilization of the cells. The most advantageous option was to use permeabilized cells in the bore of microporous hollow fibers. Whereas the reaction rate was about 33 g of gluconate/(g of protein x h) using hollow fibers, which is comparable to that observed by using free cells, the calcium alginate immobilized cells presented a reaction rate of 4 g of gluconate/(g of protein x h). These results can be explained by the mass transfer resistance effect, which, indeed, was much lower in the case of hollow-fiber membranes than in the alginate gel beads. A loss of enzymatic activity during the reaction was observed in all experiments, which was attributed to the lactone produced as an intermediate of the reaction.

  11. Lysosomal membrane permeabilization causes oxidative stress and ferritin induction in macrophages.

    PubMed

    Ghosh, Moumita; Carlsson, Fredrik; Laskar, Amit; Yuan, Xi-Ming; Li, Wei

    2011-02-18

    Moderate lysosomal membrane permeabilization (LMP) is an important inducer of apoptosis. Macrophages are professional scavengers and are rich in hydrolytic enzymes and iron. In the present study, we found that LMP by lysosomotropic detergent MSDH resulted in early up-regulation of lysosomal cathepsins, oxidative stress and ferritin up-regulation, and cell death. Lysosomotropic base NH(4)Cl reduced the ferritin induction and oxidative stress in apoptotic cells induced by MSDH. Cysteine cathepsin inhibitors significantly protected cell death and oxidative stress, but had less effect on ferritin induction. We conclude that oxidative stress induced by lysosomal rupture causes ferritin induction with concomitant mitochondrial damage, which are the potential target for prevention of cellular oxidative stress and cell death induced by typical lysosomotropic substances in different disorders.

  12. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins.

    PubMed

    Sand, Sverre L; Nissen-Meyer, Jon; Sand, Olav; Haug, Trude M

    2013-02-01

    Lactobacillus plantarum C11 releases plantaricin A (PlnA), a cationic peptide pheromone that has a membrane-permeabilizing, antimicrobial effect. We have previously shown that PlnA may also permeabilize eukaryotic cells, with a potency that differs between cell types. It is generally assumed that cationic antimicrobial peptides exert their effects through electrostatic attraction to negatively charged phospholipids in the membrane. The aim of the present study was to investigate if removal of the negative charge linked to glycosylated proteins at the cell surface reduces the permeabilizing potency of PlnA. The effects of PlnA were tested on clonal rat anterior pituitary cells (GH(4) cells) using patch clamp and microfluorometric techniques. In physiological extracellular solution, GH(4) cells are highly sensitive to PlnA, but the sensitivity was dramatically reduced in solutions that partly neutralize the negative surface charge of the cells, in agreement with the notion that electrostatic interactions are probably important for the PlnA effects. Trypsination of cells prior to PlnA exposure also rendered the cells less sensitive to the peptide, suggesting that negative charges linked to membrane proteins are involved in the permeabilizing action. Finally, pre-exposure of cells to a mixture of enzymes that split carbohydrate residues from the backbone of glycosylated proteins also impeded the PlnA-induced membrane permeabilization. We conclude that electrostatic attraction between PlnA and glycosylated membrane proteins is probably an essential first step before PlnA can interact with membrane phospholipids. Deviating glycosylation patterns may contribute to the variation in PlnA sensitivity of different cell types, including cancerous cells and their normal counterparts.

  13. Effect of TERT and ATM on gene expression profiles in human fibroblasts.

    PubMed

    Baross, Agnes; Schertzer, Mike; Zuyderduyn, Scott D; Jones, Steven J M; Marra, Marco A; Lansdorp, Peter M

    2004-04-01

    Telomeres protect chromosomes from degradation, end-to-end fusion, and illegitimate recombination. Loss of telomeres may lead to cell death or senescence or may cause genomic instability, leading to tumor formation. Expression of human telomerase reverse transcriptase (TERT) in human fibroblast cells elongates their telomeres and extends their lifespan. Ataxia telangiectasia mutated (ATM) deficiency in A-T human fibroblasts results in accelerated telomere shortening, abnormal cell-cycle response to DNA damage, and early senescence. Gene expression profiling was performed by serial analysis of gene expression (SAGE) on BJ normal human skin fibroblasts, A-T cells, and BJ and A-T cells transduced with TERT cDNA and expressing telomerase activity. In the four SAGE libraries, 36,921 unique SAGE tags were detected. Pairwise comparisons between the libraries showed differential expression levels of 1%-8% of the tags. Transcripts affected by both TERT and ATM were identified according to expression patterns, making them good candidates for further studies of pathways affected by both TERT and ATM. These include MT2A, P4HB, LGALS1, CFL1, LDHA, S100A10, EIF3S8, RANBP9, and SEC63. These genes are involved in apoptosis or processes related to cell growth, and most have been found to be deregulated in cancer. Our results have provided further insight into the roles of TERT and ATM by identifying genes likely to be involved in their function. Supplementary material for this article can be found on the Genes, Chromosomes and Cancer website at http://www.interscience.wiley.com/jpages/1045-2257/suppmat/index.html. Copyright 2004 Wiley-Liss, Inc.

  14. Cytotoxic Effects of One-step Self-etching Dental Adhesives on Human Periodontal Ligament Fibroblasts In Vitro.

    PubMed

    Sun, Fangfang; Mao, Peng; Wang, Cong; Shi, Chaowen; Nie, Rongrong; Han, Ningning; Han, Xiaodong

    2016-01-01

    To evaluate the potential cytotoxic effects of four one-step self-etching dental adhesives [Adper Easy One (AEO), iBond (IB), Clearfil S³ Bond (CSB), and G-Bond (GB)] on cultured human periodontal ligament fibroblasts. Cured adhesives were immersed in complete DMEM or deionized water and maintained at 37°C for 24 h, followed by sterilization. The deionized water-based extract was used for Fourier transform infrared spectroscopy analysis. The DMEM-based extract was diluted into various concentrations for cytotoxicity tests. The viability, integrity, and apoptosis of cultured human periodontal ligament fibroblasts upon treatment with the extracts were determined using the CCK-8 assay, microscopy, and flow cytometry. All of the four adhesives induced cell viability loss, cell morphology alteration, and cell death. GB showed the greatest cytotoxicity by inducing cell apoptosis and necrosis, while IB had the weakest cytotoxic effect on the cultured cells. All tested dental adhesives have significant adverse effects on cell viability. Therefore, precautions should be taken to protect the periodontal tissues when dental adhesives are applied in the clinic.

  15. The effects of Malaysian propolis and Brazilian red propolis on connective tissue fibroblasts in the wound healing process.

    PubMed

    Jacob, Ann; Parolia, Abhishek; Pau, Allan; Davamani Amalraj, Fabian

    2015-08-25

    To evaluate and compare the effects of ethanolic extracts of Malaysian propolis and Brazilian red propolis at different concentrations on the migration and proliferation of fibroblast cells. Malaysian and Brazilian red propolis crude samples were extracted using ethanol. Their wound healing effects were tested in vitro on the normal human fibroblast cell line CRL-7522. Cell migration and proliferation assays were carried out using propolis concentrations of 1, 10, 100, 250, 500 and 1000 μg/mL. The data were analyzed using one-way ANOVA and post hoc Bonferroni tests (α=0.05). Malaysian and Brazilian red propolis followed a concentration-dependent increasing and decreasing trend. Malaysian propolis showed the fastest migration rate at 250 μg/mL which was statistically significant (p<0.05) and maximum proliferation at 500 μg/mL with no significant difference (p>0.05) compared to control. Brazilian red propolis showed a slight increase in migration and proliferation at 10 and 100 μg/mL, respectively with no significant difference (p>0.05) compared to control, while concentrations above these conferred inhibitory effects. Malaysian and Brazilian red propolis show potential to assist in wound healing, depending on their concentration.

  16. Genome-wide microarray analysis of human fibroblasts in response to γ radiation and the radiation-induced bystander effect.

    PubMed

    Kalanxhi, Erta; Dahle, Jostein

    2012-01-01

    Radiation-induced bystander effects have been studied extensively due to their potential implications for cancer therapy and radiation protection; however, a complete understanding of the molecular mechanisms remains to be elucidated. In this study, we monitored transcriptional responses to γ radiation in irradiated and bystander fibroblasts simultaneously employing a genome-wide microarray approach to determine factors that may be modulated in the generation or propagation of the bystander effect. For the microarray data we employed analysis at both the single-gene and gene-set level to place the findings in a biological context. Unirradiated bystander fibroblasts that were recipients of growth medium harvested from irradiated cultures 2 h after exposure to 2 Gy displayed transient enrichment in gene sets belonging to ribosome, oxidative phosphorylation and neurodegenerative disease pathways associated with mitochondrial dysfunctions. The response to direct irradiation was characterized by induction of signaling and apoptosis genes and the gradual formation of a cellular immune response. A set of 14 genes, many of which were regulated by p53, were found to be induced early after irradiation (prior to medium transfer) and may be important in the generation or propagation of the bystander effect.

  17. Celiac anti-type 2 transglutaminase antibodies induce differential effects in fibroblasts from celiac disease patients and from healthy subjects.

    PubMed

    Paolella, Gaetana; Lepretti, Marilena; Barone, Maria Vittoria; Nanayakkara, Merlin; Di Zenzo, Marina; Sblattero, Daniele; Auricchio, Salvatore; Esposito, Carla; Caputo, Ivana

    2017-03-01

    Type 2 transglutaminase (TG2) has an important pathogenic role in celiac disease (CD), an inflammatory intestinal disease that is caused by the ingestion of gluten-containing cereals. Indeed, TG2 deamidates specific gliadin peptides, thus enhancing their immunogenicity. Moreover, the transamidating activity seems to provoke an autoimmune response, where TG2 is the main autoantigen. Many studies have highlighted a possible pathogenetic role of anti-TG2 antibodies, because they modulate TG2 enzymatic activity and they can interact with cell-surface TG2, triggering a wide range of intracellular responses. Autoantibodies also alter the uptake of the alpha-gliadin peptide 31-43 (p31-43), responsible of the innate immune response in CD, thus partially protecting cells from p31-43 damaging effects in an intestinal cell line. Here, we investigated whether anti-TG2 antibodies protect cells from p31-43-induced damage in a CD model consisting of primary dermal fibroblasts. We found that the antibodies specifically reduced the uptake of p31-43 by fibroblasts derived from healthy subjects but not in those derived from CD patients. Analyses of TG2 expression and enzymatic activity did not reveal any significant difference between fibroblasts from healthy and celiac subjects, suggesting that other features related to TG2 may be responsible of such different behaviors, e.g., trafficking or subcellular distribution. Our findings are in line with the concept that a "celiac cellular phenotype" exists and that TG2 may contribute to this phenotype. Moreover, they suggest that the autoimmune response to TG2, which alone may damage the celiac mucosa, also fails in its protective role in celiac cells.

  18. Effects of methylglyoxal on human cardiac fibroblast: roles of transient receptor potential ankyrin 1 (TRPA1) channels.

    PubMed

    Oguri, Gaku; Nakajima, Toshiaki; Yamamoto, Yumiko; Takano, Nami; Tanaka, Tomofumi; Kikuchi, Hironobu; Morita, Toshihiro; Nakamura, Fumitaka; Yamasoba, Tatsuya; Komuro, Issei

    2014-11-01

    Cardiac fibroblasts contribute to the pathogenesis of cardiac remodeling. Methylglyoxal (MG) is an endogenous carbonyl compound produced under hyperglycemic conditions, which may play a role in the development of pathophysiological conditions including diabetic cardiomyopathy. However, the mechanism by which this occurs and the molecular targets of MG are unclear. We investigated the effects of MG on Ca(2+) signals, its underlying mechanism, and cell cycle progression/cell differentiation in human cardiac fibroblasts. The conventional and quantitative real-time RT-PCR, Western blot, immunocytochemical analysis, and intracellular Ca(2+) concentration [Ca(2+)]i measurement were applied. Cell cycle progression was assessed using the fluorescence activated cell sorting. MG induced Ca(2+) entry concentration dependently. Ruthenium red (RR), a general cation channel blocker, and HC030031, a selective transient receptor potential ankyrin 1 (TRPA1) antagonist, inhibited MG-induced Ca(2+) entry. Treatment with aminoguanidine, a MG scavenger, also inhibited it. Allyl isothiocyanate, a selective TRPA1 agonist, increased Ca(2+) entry. The use of small interfering RNA to knock down TRPA1 reduced the MG-induced Ca(2+) entry as well as TRPA1 mRNA expression. The quantitative real-time RT-PCR analysis showed the prominent existence of TRPA1 mRNA. Expression of TRPA1 protein was confirmed by Western blotting and immunocytochemical analyses. MG promoted cell cycle progression from G0/G1 to S/G2/M, which was suppressed by HC030031 or RR. MG also enhanced α-smooth muscle actin expression. The present results suggest that methylglyoxal activates TRPA1 and promotes cell cycle progression and differentiation in human cardiac fibroblasts. MG might participate the development of pathophysiological conditions including diabetic cardiomyopathy via activation of TRPA1.

  19. Effects of nanometric roughness on surface properties and fibroblast's initial cytocompatibilities of Ti6Al4V.

    PubMed

    Wang, Rex C-C; Hsieh, Ming-Che; Lee, Tzer-Min

    2011-09-01

    Titanium alloy (Ti6Al4V) has widespread medical applications because of its excellent biocompatibility. Its biological responses can further be enhanced by polishing and passivation. Unfortunately, preparing titanium alloy samples of nanometric roughness is by far much more difficult than preparing those of micrometric roughness, and numerous investigations on roughness induced effects are all focused on micrometric scales. For the remedy, we investigate, at nanometric scale, the influence of roughness on surface properties and biological responses. Six groups of Ti6Al4V with average roughness (R(a)) values of 2.75-30.34 nm are prepared. The results indicated that nanometric roughness of samples change the wettability and amphoteric OH groups. The contact angles monotonically decrease from 2.75 to 30.34 nm and the rougher surfaces lead to higher wettability. The in vitro cell-culture studies, using Murine NIH-3T3 fibroblasts, showed the spindle-shaped morphology on rougher surface compared to round∕spherical morphology on smoother surface. A cytodetacher is employed to quantitatively measure the initial adhesion force of fibroblasts to specimen. The adhesion strength of fibroblasts, ranging from 55 to 193 nN, is significantly influenced by the nanometric roughness while the surface is within the range of 2.75-30.34 nm R(a) roughness, and the adhesion strength appeared stronger for rougher surface. The cell number on the smoother surface is higher than on the rougher surface at 5-day culture. The studies indicated that nanometric roughness would alter the surface properties and further influence cell morphology, adhesion strength, and proliferation.

  20. [Effects of dexamethasone and vitamin B12 on expression of fibroblast growth factor 10 and fibroblast growth factor receptor 2b during early palatogenesis].

    PubMed

    He, Wei; Lu, Sheng-jun; Li, Cheng-hao; Zhou, Jing-lin; Meng, Tian; Zheng, Qian; Shi, Bing

    2010-10-01

    To observe the alteration of fibroblast growth factor 10 (Fgf10) and fibroblast growth factor receptor 2 (Fgfr2b) signal in mouse embryonic palate after dexamethasone and vitamin B12 exposure. Dams were divided teratogenetic group, antagomistic group and control group and were respectively injected dexamethasone, dexamethasone and vitamin B12, and normal sodium. Dams were killed and fetus was collected at embryo 12.5 and 13.5 day. The expression of Fgf10 and Fgfr2b and mesenchymal cells proliferation of mouse embryonic by western blotting and BrdU assay were checked. Fgf10 and Fgfr2b expression was down-regulated and mesenchymal cells proliferation was inhibited significantly after dexamethasone exposure. After vitamin B12 treatment, Fgf10 and Fgfr2b expression did not restore, but cells proliferation was recovered. Dexamethasone and vitamin B12 affected the expression of Fgf10 and Fgfr2b of mouse embryonic palate and mesenchyme cells proliferation, but the change was disaccord.

  1. The Inhibitory Effects of Anti-Oxidants on Ultraviolet-Induced Up-Regulation of the Wrinkling-Inducing Enzyme Neutral Endopeptidase in Human Fibroblasts

    PubMed Central

    Nakajima, Hiroaki; Terazawa, Shuko; Niwano, Takao; Yamamoto, Yorihiro; Imokawa, Genji

    2016-01-01

    We recently reported that the over-expression of skin fibroblast-derived neutral endopeptidase (NEP) plays a pivotal role in impairing the three-dimensional architecture of dermal elastic fibers during the biological mechanism of ultraviolet (UV)-induced skin wrinkling. In that process, a UVB-associated epithelial-mesenchymal cytokine interaction as well as a direct UVA-induced cellular stimulation are associated with the up-regulation of NEP in human fibroblasts. In this study, we characterized the mode of action of ubiquinol10 which may abrogate the up-regulation of NEP by dermal fibroblasts, resulting in a reported in vivo anti-wrinkling action, and compared that with 3 other anti-oxidants, astaxanthin (AX), riboflavin (RF) and flavin mononucleotide (FMN). Post-irradiation treatment with all 4 of those anti-oxidants elicited an interrupting effect on the UVB-associated epithelial-mesenchymal cytokine interaction leading to the up-regulation of NEP in human fibroblasts but with different modes of action. While AX mainly served as an inhibitor of the secretion of wrinkle-inducing cytokines, such as interleukin-1α (IL-1α) and granulocyte macrophage colony stimulatory factor (GM-CSF) in UVB-exposed epidermal keratinocytes, ubiquinol10, RF and FMN predominantly interrupted the IL-1α and GM-CSF-stimulated expression of NEP in dermal fibroblasts. On the other hand, as for the UVA-associated mechanism, similar to the abrogating effects reported for AX and FMN, ubiquinol10 but not RF had the potential to abrogate the increased expression of NEP and matrix-metalloproteinase-1 in UVA-exposed human fibroblasts. Our findings strongly support the in vivo anti-wrinkling effects of ubiquinol10 and AX on human and animal skin and provide convincing proof of the UV-induced wrinkling mechanism that essentially focuses on the over-expression of NEP by dermal fibroblasts as an intrinsic causative factor. PMID:27648570

  2. Biophysical Studies of Nanosecond Pulsed Electric Field Induced Cell Membrane Permeabilization

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Hsuan

    Nanosecond megavolts-per-meter pulsed electric field (nsPEF) offers a non-invasive manipulation of intracellular organelles and functions of biological cells. Accordingly, nsPEF is a potential technique for biophysical research and cancer therapy, and is of growing interest. Although, the application of nsPEF has shown electroperturbation on cell plasma membranes and intracellular membranes as well, the mechanisms underlying the electropermeabilization are still not clear. In this thesis, we systematically study nsPEFs (5 and 30 ns) induced membrane permeability change in biological cell in-vitro with different pulse parameters. In Chapter 3, we investigate the nsPEF-induced intracellular membrane permeabilization of mitochondria which play key roles in activating apoptosis in mammalian cells. The results show the evidences of nsPEF-induced membrane permeability increase in mitochondria, and suggest that nsPEF is a potential technology for cancer cell ablation without delivery of drug or gene into cells. In Chapter 2, 4 and 6, we study the properties of nsPEF-induced plasma membrane permeabilization. In the beginning, the change of plasma membrane permeability is studied by uptake of YO-PRO-1 and propidium iodide, fluorescent dyes specifically used as indicators of plasma membrane permeabilization. However, the detection is limited by the fluorescent emission efficiency and detector capability. To increase the detection sensitivity, we later develop a method based on cell volume change due to regulation of osmotic balance that causes water and small ions transport through plasma membrane. We find that even a single 10 MV/m pulse of 5 ns duration produces measureable cell swelling. The results demonstrate that cell swelling is susceptible to nsPEF and can detect membrane permeabilization more easily and precisely than fluorescent dyes. We compare the effects of different pulse parameters (pulse duration, pulse number, electric field amplitude and pulse repetition

  3. Detection of electroporation-induced membrane permeabilization states in the brain using diffusion-weighted MRI

    PubMed Central

    Mahmood, Faisal; Hansen, Rasmus H.; Agerholm-Larsen, Birgit; Gissel, Hanne; Ibsen, Per

    2015-01-01

    Background Tissue permeabilization by electroporation (EP) is a promising technique to treat certain cancers. Non-invasive methods for verification of induced permeabilization are important, especially in deep-seated cancers. In this study we evaluated diffusion-weighted magnetic resonance imaging (DW-MRI) as a quantitative method for detecting EP-induced membrane permeabilization of brain tissue using a rat brain model. Material and methods Fifty-four anesthetized Sprague-Dawley male rats were electroporated in the right hemisphere, using different voltage levels to induce no permeabilization (NP), transient membrane permeabilization (TMP), and permanent membrane permeabilization (PMP), respectively. DW-MRI was acquired 5 minutes, 2 hours, 24 hours and 48 hours after EP. Histology was performed for validation of the permeabilization states. Tissue content of water, Na+, K+, Ca2+, and extracellular volume were determined. The Kruskal-Wallis test was used to compare the DW-MRI parameters, apparent diffusion coefficient (ADC) and kurtosis, at different voltage levels. The two-sample Mann- Whitney test with Holm's Bonferroni correction was used to identify pairs of significantly different groups. The study was approved by the Danish Animal Experiments Inspectorate. Results and conclusion Results showed significant difference in the ADC between TMP and PMP at 2 hours (p < 0.001) and 24 hours (p < 0.05) after EP. Kurtosis was significantly increased both at TMP (p < 0.05) and PMP (p < 0.001) 5 minutes after EP, compared to NP. Kurtosis was also significantly higher at 24 hours (p < 0.05) and 48 hours (p < 0.05) at PMP compared to NP. Physiological parameters indicated correlation with the permeabilization states, supporting the DW-MRI findings. We conclude that DW-MRI is capable of detecting EP-induced permeabilization of brain tissue and to some extent of differentiating NP, TMP and PMP using appropriate scan timing. PMID:25591820

  4. Low-Dose Hyper-Radiosensitivity Is Not a Common Effect in Normal Asynchronous and G2-Phase Fibroblasts of Cancer Patients

    SciTech Connect

    Słonina, Dorota; Biesaga, Beata; Janecka, Anna; Kabat, Damian; Bukowska-Strakova, Karolina; Gasińska, Anna

    2014-02-01

    Purpose: In our previous study, using the micronucleus assay, a low-dose hyper-radiosensitivity (HRS)-like phenomenon was observed for normal fibroblasts of 2 of the 40 cancer patients investigated. In this article we report, for the first time, the survival response of primary fibroblasts from 25 of these patients to low-dose irradiation and answer the question regarding the effect of G2-phase enrichment on HRS elicitation. Methods and Materials: The clonogenic survival of asynchronous as well as G2-phase enriched fibroblast populations was measured. Separation of G2-phase cells and precise cell counting was performed using a fluorescence-activated cell sorter. Sorted and plated cells were irradiated with single doses (0.1-4 Gy) of 6-MV x-rays. For each patient, at least 4 independent experiments were performed, and the induced-repair model was fitted over the whole data set to confirm the presence of HRS effect. Results: The HRS response was demonstrated for the asynchronous and G2-phase enriched cell populations of 4 patients. For the rest of patients, HRS was not defined in either of the 2 fibroblast populations. Thus, G2-phase enrichment had no effect on HRS elicitation. Conclusions: The fact that low-dose hyper-radiosensitivity is not a common effect in normal human fibroblasts implies that HRS may be of little consequence in late-responding connective tissues with regard to radiation fibrosis.

  5. Effect of Readthrough Treatment in Fibroblasts of Patients Affected by Lysosomal Diseases Caused by Premature Termination Codons.

    PubMed

    Matalonga, Leslie; Arias, Ángela; Tort, Frederic; Ferrer-Cortés, Xènia; Garcia-Villoria, Judit; Coll, Maria Josep; Gort, Laura; Ribes, Antonia

    2015-10-01

    Aminoglycoside antibiotics, such as gentamicin, may induce premature termination codon (PTC) readthrough and elude the nonsense-mediated mRNA decay mechanism. Because PTCs are frequently involved in lysosomal diseases, readthrough compounds may be useful as potential therapeutic agents. The aim of our study was to identify patients responsive to gentamicin treatment in order to be used as positive controls to further screen for other PTC readthrough compounds. With this aim, fibroblasts from 11 patients affected by 6 different lysosomal diseases carrying PTCs were treated with gentamicin. Treatment response was evaluated by measuring enzymatic activity, abnormal metabolite accumulation, mRNA expression, protein localization, and cell viability. The potential effect of readthrough was also analyzed by in silico predictions. Results showed that fibroblasts from 5/11 patients exhibited an up to 3-fold increase of enzymatic activity after gentamicin treatment. Accordingly, cell lines tested showed enhanced well-localized protein and/or increased mRNA expression levels and/or reduced metabolite accumulation. Interestingly, these cell lines also showed increased enzymatic activity after PTC124 treatment, which is a PTC readthrough-promoting compound. In conclusion, our results provide a proof-of-concept that PTCs can be effectively suppressed by readthrough drugs, with different efficiencies depending on the genetic context. The screening of new compounds with readthrough activity is a strategy that can be used to develop efficient therapies for diseases caused by PTC mutations.

  6. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells.

    PubMed

    Raguvaran, R; Manuja, Balvinder K; Chopra, Meenu; Thakur, Rajesh; Anand, Taruna; Kalia, Anu; Manuja, Anju

    2017-03-01

    An ideal biomaterial for wound dressing applications should possess antibacterial and anti-inflammatory properties without any toxicity to the host cells while providing the maximum healing activity. Zinc oxide nanoparticles (ZnONPs) possess antimicrobial activity and enhance wound healing, but the questions regarding their safety arise before application to the biological systems. We synthesized ZnONPs-loaded-sodium alginate-gum acacia hydrogels (SAGA-ZnONPs) by cross linking hydroxyl groups of the polymers sodium alginate and gum acacia with the aldehyde group of gluteradehyde. Here, we report the wound healing properties of sodium alginate/gum acacia/ZnONPs, circumventing the toxicity of ZnONPs simultaneously. We demonstrated the concentration-dependent zones of inhibition in treated cultures of Pseudomonas aerigunosa and Bacillus cereus and biocompatability on peripheral blood mononuclear/fibroblast cells. SAGA-ZnONPs hydrogels showed a healing effect at a low concentration of ZnONPs using sheep fibroblast cells. Our findings suggest that high concentrations of ZnONPs were toxic to cells but SAGA-ZnONPs hydrogels significantly reduced the toxicity and preserved the beneficial antibacterial and healing effect.

  7. Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue

    PubMed Central

    Sridhar, S.; Vandersickel, Nele; Panfilov, Alexander V.

    2017-01-01

    Managing lethal cardiac arrhythmias is one of the biggest challenges in modern cardiology, and hence it is very important to understand the factors underlying such arrhythmias. While early afterdepolarizations (EAD) of cardiac cells is known to be one such arrhythmogenic factor, the mechanisms underlying the emergence of tissue level arrhythmias from cellular level EADs is not fully understood. Another known arrhythmogenic condition is fibrosis of cardiac tissue that occurs both due to aging and in many types of heart diseases. In this paper we describe the results of a systematic in-silico study, using the TNNP model of human cardiac cells and MacCannell model for (myo)fibroblasts, on the possible effects of diffuse fibrosis on arrhythmias occurring via EADs. We find that depending on the resting potential of fibroblasts (VFR), M-F coupling can either increase or decrease the region of parameters showing EADs. Fibrosis increases the probability of occurrence of arrhythmias after a single focal stimulation and this effect increases with the strength of the M-F coupling. While in our simulations, arrhythmias occur due to fibrosis induced ectopic activity, we do not observe any specific fibrotic pattern that promotes the occurrence of these ectopic sources. PMID:28106124

  8. The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores.

    PubMed Central

    Robson, M C; Phillips, L G; Lawrence, W T; Bishop, J B; Youngerman, J S; Hayward, P G; Broemeling, L D; Heggers, J P

    1992-01-01

    The first randomized, blinded, placebo-controlled human trials of recombinant basic fibroblast growth factor (bFGF) for pressure sore treatment were performed. Three different concentrations of bFGF in five dosing schedules were tested for safety using hematology, serum chemistries, urinalysis, absorption, antibody formation, and signs of toxicity. Efficacy was evaluated by wound volumes, histology, and photography. No toxicity, significant serum absorption, or antibody formation occurred. In six of eight subgroups, there was a trend toward efficacy with bFGF treatment. When all subgroups were combined, comparison of the slopes of the regression curves of volume decrease over initial pressure sore volume demonstrated a greater healing effect for the bFGF-treated patients (p < 0.05). Histologically, bFGF-treated wound sections demonstrated increased fibroblasts and capillaries. More patients treated with bFGF achieved > 70% wound closure (p < 0.05). Blinded observers were able to distinguish differences in visual wound improvement between bFGF and placebo groups. These data suggest that bFGF may be effective in the treatment of chronic wounds. PMID:1417189

  9. Effects of cigarette smoke residues from textiles on fibroblasts, neurocytes and zebrafish embryos and nicotine permeation through human skin.

    PubMed

    Hammer, Timo R; Fischer, Kirsten; Mueller, Marina; Hoefer, Dirk

    2011-09-01

    Toxic substances from cigarette smoke can attach to carpets, curtains, clothes or other surfaces and thus may pose risks to affected persons. The phenomenon itself and the potential hazards are discussed controversially, but scientific data are rare. The objective of this study was to examine the potential of textile-bound nicotine for permeation through human skin and to assess the effects of cigarette smoke extracts from clothes on fibroblasts, neurocytes and zebrafish embryos. Tritiated nicotine from contaminated cotton textiles penetrated through adult human full-thickness skin as well as through a 3D in vitro skin model in diffusion chambers. We also observed a significant concentration-dependent cytotoxicity of textile smoke extracts on fibroblast viability and structure as well as on neurocytes. Early larval tests with zebrafish embryos were used as a valid assay for testing acute vertebrate toxicity. Zebrafish development was delayed and most of the embryos died when exposed to smoke extracts from textiles. Our data show that textiles contaminated with cigarette smoke represent a potential source of nicotine uptake and can provoke adverse health effects.

  10. Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Vandersickel, Nele; Panfilov, Alexander V.

    2017-01-01

    Managing lethal cardiac arrhythmias is one of the biggest challenges in modern cardiology, and hence it is very important to understand the factors underlying such arrhythmias. While early afterdepolarizations (EAD) of cardiac cells is known to be one such arrhythmogenic factor, the mechanisms underlying the emergence of tissue level arrhythmias from cellular level EADs is not fully understood. Another known arrhythmogenic condition is fibrosis of cardiac tissue that occurs both due to aging and in many types of heart diseases. In this paper we describe the results of a systematic in-silico study, using the TNNP model of human cardiac cells and MacCannell model for (myo)fibroblasts, on the possible effects of diffuse fibrosis on arrhythmias occurring via EADs. We find that depending on the resting potential of fibroblasts (VFR), M-F coupling can either increase or decrease the region of parameters showing EADs. Fibrosis increases the probability of occurrence of arrhythmias after a single focal stimulation and this effect increases with the strength of the M-F coupling. While in our simulations, arrhythmias occur due to fibrosis induced ectopic activity, we do not observe any specific fibrotic pattern that promotes the occurrence of these ectopic sources.

  11. Combined effects of interleukin-1β and cyclic stretching on metalloproteinase expression in corneal fibroblasts in vitro.

    PubMed

    Feng, Pengfei; Li, Xiaona; Chen, Weiyi; Liu, Chengxing; Rong, Shuo; Wang, Xiaojun; Du, Genlai

    2016-06-10

    Corneal tensile strain increases if the cornea becomes thin or if intraocular pressure increases. However, the effects of mechanical stress on extracellular matrix (ECM) remodelling in the corneal repair process and the corneal anomalies are unknown. In this study, the combined effects of interleukin-1β (IL-1β) on matrix metalloproteinases (MMPs) in corneal fibroblasts under cyclic stretching were investigated in vitro. Cultured rabbit corneal fibroblasts were subjected to 5, 10 or 15 % cyclic equibiaxial stretching at 0.1 Hz for 36 h in the presence of IL-1β. Conditioned medium was harvested for the analysis of MMP2 and MMP9 protein production using the gelatin zymography and western blot techniques. Cyclic equibiaxial stretching changed the cell morphology by increasing the contractility of F-actin fibres. IL-1β alone induced the expression of MMP9 and increased the production of MMP2, and 5 % stretching alone decreased the production of MMP2, which indicates that a low stretching magnitude can reduce ECM degradation. In the presence of IL-1β, 5 and 10 % stretching increased the production of MMP2, whereas 15 % stretching increased the production of MMP9. These results indicate that MMP expression is enhanced by cyclic mechanical stimulation in the presence of IL-1β, which is expected to contribute to corneal ECM degradation, leading to the development of post-refractive surgery keratectasia.

  12. Molecular evidence on the protective effect of ellagic acid on phosalone-induced senescence in rat embryonic fibroblast cells.

    PubMed

    Baeeri, Maryam; Momtaz, Saeideh; Navaei-Nigjeh, Mona; Niaz, Kamal; Rahimifard, Mahban; Ghasemi-Niri, Seyedeh Farnaz; Sanadgol, Nima; Hodjat, Mahshid; Sharifzadeh, Mohammad; Abdollahi, Mohammad

    2017-02-01

    Salient evidence testifies the link between organophosphorus (OPs) exposure and the formation of free radical oxidants; and it is well accepted that free radicals are one of the basic concerns of senescence. To show the oxidative features of phosalone (PLN) as a key member of OPs, to induce senescence in rat embryonic fibroblast (REF) cells and to demonstrate the beneficial effects of the known antioxidant ellagic acid (EA) in diminishing the PLN-induced toxic effects, the levels of cell viability, oxidative stress markers, inflammatory cytokines, telomerase activity, and the expression of the genes related to senescence were investigated. Our results lend support to the hypothesis that PLN enhances the entire premature senescence parameters of REF cells. This accounts for the mechanistic approval of the role of OPs in induction of senescence in rat fibroblasts. Moreover, incorporation of EA diminished PLN toxicity mainly through suppression of p38 and p53 at gene and protein levels, and tempered the inflammation factors (TNF-α, IL-1β, IL-6 and NF-κB), which further affected cell division. Analysis of cell cycle showed that the percentage of G0/G1 arrest, in REF cells treated by EA was elevated as compared to control and PLN treated cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing.

    PubMed

    Loo, Alvin Eng Kiat; Halliwell, Barry

    2012-06-29

    Recently, there has been renewed interest in the role of reactive oxygen species (ROS), especially H(2)O(2), in wound healing. We previously showed that H(2)O(2) stimulates healing in a keratinocyte scratch wound model. In this paper, we used a more complex and physiologically relevant model that involves co-culturing primary keratinocytes and fibroblasts. We found that the two main cell types within the skin have different sensitivities to H(2)O(2) and to the widely used "antioxidant"N-acetyl-l-cysteine (NAC). Keratinocytes were very resistant to the toxicity of H(2)O(2) (250 and 500 μM) or NAC (5 mM). However, the viability of fibroblasts was decreased by both compounds. Using the co-culture model, we also found that H(2)O(2) increases re-epithelialization while NAC retards it. Our data further illustrate the possible role of ROS in wound healing and the co-culture model should be useful for screening agents that may influence the wound healing process. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Effects of prolonged quiescence on neuclei and chromatin of WI-38 fibroblasts.

    PubMed

    Rossini, M; Lin, J C; Baserga, R

    1976-05-01

    DNA synthesis and cell division are markedly reduced in confluent mono-layers of WI-38 diploid fibroblasts, but resume again if the depleted medium is replaced by fresh medium containing 10% fetal calf serum. If the cells are kept quiescent for prolonged periods of time after confluence (1 or 2 weeks), the fraction of cells that can be stimulated to proliferate by fresh serum decreases and the length of the prereplicative phase increases. The template activity of isolated nuclei decreases with increasing time of quiescence, and parallel changes occur in chromatin as evidenced by circular dichroism spectra and capacity to bind the intercalating dye, ethidium bromide. When WI-38 cells are stimulated to proliferate after prolonged quiescence, the increase in template activity of nuclei is delayed by several hours in comparison to cells stimulated after short periods of quiescence. Two distinct steps, both requiring serum, can be identified in the prereplicative phase of cells stimulated to proliferative after prolonged quiescence. We interpret the results as indicating that, during prolonged quiescence, WI-38 fibroblasts go into a deeper GO state from which they can be rescued only after prolonged stimulation. In this respect, prolonged quiescence may bear some resemblance to the process of aging.

  15. Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces.

    PubMed

    Liu, Runhui; Masters, Kristyn S; Gellman, Samuel H

    2012-04-09

    Nylon-3 polymers have a polyamide backbone reminiscent of that found in proteins (β- vs α-amino acid residues, respectively), which makes these materials interesting for biological applications. Because of the versatility of the ring-opening polymerization process and the variety of β-lactam starting materials available, the structure of nylon-3 copolymers is highly amenable to alteration. A previous study showed that relatively subtle changes in the structure or ratio of hydrophobic and cationic subunits that comprise these polymers can result in significant changes in the ability of nylon-3-bearing surfaces to support cell adhesion and spreading. In the present study, we have exploited the highly tailorable nature of these polymers to synthesize new versions possessing a wide range of chain lengths, with the intent of optimizing these materials for use as cell-supportive substrates. We find that longer nylon-3 chains lead to better fibroblast attachment on modified surfaces and that at the optimal chain lengths less hydrophobic subunits are superior. The best polymers we identified are comparable to an RGD-containing peptide in supporting fibroblast attachment. The results described here will help to focus future efforts aimed at refining nylon-3 copolymer substrates for specific tissue engineering applications.

  16. Polymer Chain Length Effects on Fibroblast Attachment on Nylon-3-Modified Surfaces

    PubMed Central

    Liu, Runhui; Masters, Kristyn S.; Gellman, Samuel H.

    2012-01-01

    Nylon-3 polymers have a polyamide backbone reminiscent of that found in proteins (β- vs. α-amino acid residues, respectively), which makes these materials interesting for biological applications. Because of the versatility of the ring-opening polymerization process and the variety of β-lactam starting materials available, the structure of nylon-3 copolymers is highly amenable to alteration. A previous study showed that relatively subtle changes in the structure or ratio of hydrophobic and cationic subunits that comprise these polymers can result in significant changes in the ability of nylon-3-bearing surfaces to support cell adhesion and spreading. In the present study we have exploited the highly tailorable nature of these polymers to synthesize new versions possessing a wide range of chain lengths, with the intent of optimizing these materials for use as cell-supportive substrates. We find that longer nylon-3 chains lead to better fibroblast growth on modified surfaces, and that at the optimal chain lengths, less hydrophobic subunits are superior. The best polymers we identified are comparable to an RGD-containing peptide in supporting fibroblast attachment. The results described here will help to focus future efforts aimed at refining nylon-3 copolymer substrates for specific tissue engineering applications. PMID:22455338

  17. Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts.

    PubMed

    Marques, Márcia M; Pereira, Aymann N; Fujihara, Neusa A; Nogueira, Fernando N; Eduardo, Carlos P

    2004-01-01

    Low-power lasers improve wound healing. Cell proliferation and protein secretion are important steps of this process. The aim of this study was to analyze both protein synthesis and ultrastructural morphology of human gingival fibroblasts irradiated by a low-power laser. The cell line FMM1 was grown in nutritional deficit. Laser irradiation was carried out with a gallium-aluminum-arsenate (Ga-Al-As) diode laser (904 nm, 120 mW, energy density of 3 J/cm(2)). The protein synthesis analysis and ultrastructural morphology of control (non-irradiated) and irradiated cultures were obtained. There were changes in the structure of cytoplasm organelles of treated cells. The procollagen was not altered by the laser irradiation; however, there were a significant reduction of the amount of protein in the DMEM conditioned by irradiated cells. Low-power laser irradiation causes ultrastructural changes in cultured fibroblasts. We suggest that these alterations may lead to disturbances in the collagen metabolism. Copyright 2004 Wiley-Liss, Inc.

  18. Whole cell mechanics of contractile fibroblasts: relations between effective cellular and extracellular matrix moduli

    PubMed Central

    Marquez, J. Pablo; Elson, Elliot L.; Genin, Guy M.

    2010-01-01

    While much is known about the subcellular structures responsible for the mechanical functioning of a contractile fibroblast, debate exists about how these components combine to endow a cell with its form and mechanical function. We present an analysis of mechanical characterization experiments performed on bio-artificial tissue constructs, which we believe serve as a more realistic testing environment than two-dimensional cell culture. These model tissues capture many features of real tissues with the advantage that they can be engineered to model different physiological and pathological characteristics. We study here a model tissue consisting of reconstituted type I collagen and varying concentrations of activated contractile fibroblasts that is relevant to modelling different stages of wound healing. We applied this system to assess how cell and extracellular matrix (ECM) mechanics vary with cell concentration. Short-term and long-term moduli of the ECM were estimated through analytical and numerical analysis of two-phase elastic solids containing cell-shaped voids. The relative properties of cells were then deduced from the results of numerical analyses of two-phase elastic solids containing mechanically isotropic cells of varying modulus. With increasing cell concentration, the short-term and long-term tangent moduli of the reconstituted collagen ECM increased sharply from a baseline value, while those of the cells decreased monotonically. PMID:20047943

  19. Analysis of propolis from Baccharis dracunculifolia DC. (Compositae) and its effects on mouse fibroblasts.

    PubMed

    de Funari, Cristiano Soleo; de Oliveira Ferro, Vicente; Mathor, Monica Beatriz

    2007-05-04

    This paper confirms Baccharis dracunculifolia DC. (Compositae) as the main botanical source of the propolis from southeastern Brazil (state of São Paulo) investigated to ascertain specific biological activity in relation to mouse NIH-3T3 fibroblasts, skin cells directly involved in the cicatrization processes. Flavonoid and total phenolic compounds were determined by spectrophotometry, and chemical composition by HPLC; the chromatographic profile, characterized largely by flavonoids and aromatic acids, was found to be qualitatively similar to that of Baccharis dracunculifolia DC. The adsorption of phenolic compounds in the propolis to skin powder was also investigated, and 68% of these compounds adsorbed to the skin powder. At concentrations from 0.12 to 7.81 microg/ml, the propolis revealed no statistical significant differences from its control solutions; however, at concentrations of 31.25 microg/ml or more, the propolis was toxic to NIH-3T3 cells. Thus, the propolis from Baccharis dracunculifolia DC. (Compositae) presents an in vitro concentration-dependent toxicity on mouse NIH-3T3 fibroblasts.

  20. Effect of primary culture medium type for culture of canine fibroblasts on production of cloned dogs.

    PubMed

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Kim, Jin Wook; Lee, Tae Hee; Lee, Byeong Chun

    2015-09-01

    Fibroblasts are common source of donor cells for SCNT. It is suggested that donor cells' microenvironment, including the primary culture, affects development of reconstructed embryos. To prove this, canine embryos were cloned with fibroblasts that were cultured in two different primary media (RCMEp vs. Dulbecco's modified Eagle's medium [DMEM]) and in vivo developments were compared with relative amount of stemness, reprogramming, apoptosis gene transcripts, and telomerase activity. Donor cells cultured in RCMEp contained a significantly higher amount of SOX2, NANOG, DPPA2, REXO1, HDAC, DNMT1, MECP2 and telomerase activity than those cultured in DMEM (P < 0.05). In vivo developmental potential of cloned embryos with donor cells cultured in RCMEp had a higher birth rate than that of embryos derived from DMEM (P < 0.05). The culture medium can induce changes in gene expression of donor cells and telomerase activity, and these alterations can also affect in vivo developmental competence of the cloned embryos.

  1. Mitochondrial respiratory chain inhibitors modulate the metal-induced inner mitochondrial membrane permeabilization.

    PubMed

    Belyaeva, Elena A

    2010-01-01

    To elucidate the molecular mechanisms of the protective action of stigmatellin (an inhibitor of complex III of mitochondrial electron transport chain, mtETC) against the heavy metal-induced cytotoxicity, we tested its effectiveness against mitochondrial membrane permeabilization produced by heavy metal ions Cd²(+), Hg²(+), Cu²(+) and Zn²(+), as well as by Ca²(+) (in the presence of P(i)) or Se (in form of Na₂SeO₃) using isolated rat liver mitochondria. It was shown that stigmatellin modulated mitochondrial swelling produced by these metals/metalloids in the isotonic sucrose medium in the presence of ascorbate plus tetramethyl-p-phenylenediamine (complex IV substrates added for energization of the mitochondria). It was found that stigmatellin and other mtETC inhibitors enhanced the mitochondrial swelling induced by selenite. However, in the same medium, all the mtETC inhibitors tested as well as cyclosporin A and bongkrekic acid did not significantly affect Cu²(+)-induced swelling. In contrast, the high-amplitude swelling produced by Cd²(+), Hg²(+), Zn²(+), or Ca²(+) plus P(i) was significantly depressed by these inhibitors. Significant differences in the action of these metals/metalloids on the redox status of pyridine nucleotides, transmembrane potential and mitochondrial respiration were also observed. In the light of these results as well as the data from the recent literature, our hypothesis on a possible involvement of the respiratory supercomplex, formed by complex I (P-site) and complex III (S-site) in the mitochondrial permeabilization mediated by the mitochondrial transition pore, is updated.

  2. Adipose-derived stem cells promote human dermal fibroblast function and increase senescence-associated β‑galactosidase mRNA expression through paracrine effects.

    PubMed

    Shen, Xiao; Du, Yunpeng; Shen, Weimin; Xue, Bin; Zhao, Yu

    2014-12-01

    Adipose‑derived stem cells (ADSCs) are known to secrete various cytokines, which affect fibroblast function through paracrine effects. In the present study, the paracrine effects of ADSCs on the function and senescence of young and aged human dermal fibroblasts (HDFs) were investigated in vitro. ADSCs and HDFs were isolated from healthy donors and flow cytometry was used for immunophenotype identification. ADSCs were co‑cultured with young or aged human dermal fibroblasts in Transwell plates, and control groups were established accordingly. Cellular proliferation was measured by an MTT assay. Type I collagen, matrix metalloproteinase‑1 (MMP‑1) and senescence-associated β‑galactosidase (SA‑β‑GAL) mRNA expression were measured by quantitative polymerase chain reaction. It was identified that ADSCs promoted proliferation of co‑cultured HDFs and induced increased expression of type I collagen and decreased expression of MMP‑1. The co‑cultured HDFs exhibited increased expression of SA‑β‑GAL. These results demonstrated that ADSCs improve fibroblast function through paracrine effects. The increased expression of SA‑β‑GAL indicated an accelerated aging process. It is proposed that ADSCs may improve fibroblast function, but not reverse the age status in vitro.

  3. Effect of soluble products from lectin-stimulated lymphocytes on the growth, adhesiveness, and glycosaminoglycan synthesis of cultured synovial fibroblastic cells.

    PubMed Central

    Anastassiades, T P; Wood, A

    1981-01-01

    Human blood mononuclear cells exposed to concanavalin A or phytohemagglutinin secrete a soluble factor that arrests the growth of human synovial fibroblastic cells in culture. Once the growth-inhibitory effect is initiated it cannot be reversed by washing the fibroblastic cells, by refeeding with nonconditioned fresh serum-containing medium, by trypsinization, EDTA treatment, or a combination of these procedures. Media from nonstimulated mononuclear cells, fibroblastic cells, or the lectins themselves do not contain similar inhibitory activity that can be detected by the present culture systems. This lectin-dependent, growth-inhibitory activity does not have a cytotoxic effect on the fibroblasts but increases their adhesiveness to plastic or glass surfaces, and the cells tend to assume a less fibroblastic morphology. The growth-inhibitory activity is stable in the cold and is nondialyzable or ultrafilterable, but the activity is rapidly lost at temperature between 60 degrees and 70 degrees C and at pH 2.0. The growth-arrested cells secrete more glycosaminoglycan per cell in the medium and synthesize more cell surface glycosaminoglycan than the controls. However, the increased glycosaminoglycan synthesis cannot be explained as being entirely secondary to a cell density effect as it is also observed when adjustments are made for the differences in growth rates. PMID:7276172

  4. The Effects of Cytokines in Adipose Stem Cell-Conditioned Medium on the Migration and Proliferation of Skin Fibroblasts In Vitro

    PubMed Central

    Zhao, Jiajia; Hu, Li; Liu, Jiarong; Gong, Niya; Chen, Lili

    2013-01-01

    Although adipose stem cell-conditioned medium (ASC-CM) has demonstrated the effect of promoting the cutaneous wound healing, the mechanism for this response on the effector cells (e.g., dermal fibroblasts) during the process remains to be determined. In this study, we aim to investigate the types and contents of cytokines in ASC-CM and the effects of some kinds of common cytokines in ASC-CM, such as EGF, PDGF-AA, VEGF, and bFGF, on dermal fibroblasts proliferation and migration in wound healing process. Results showed that these four cytokines had high concentrations in ASC-CM. The migration of skin fibroblasts could be significantly stimulated by VEGF, bFGF, and PDGF-AA, and the proliferation could be significantly stimulated by bFGF and EGF in ASC-CM. Additionally, ASC-CM had more obvious promoting effect on fibroblasts proliferation and migration than single cytokine. These observations suggested that ASC-CM played an important role in the cutaneous injury partly by the synergistic actions of several cytokines in promoting dermal fibroblasts proliferation and migration, and ASC-CM was more adaptive than each single cytokine to be applied in promoting the wound healing. PMID:24416724

  5. Prostacyclin analogs inhibit fibroblast migration.

    PubMed

    Kohyama, Tadashi; Liu, Xiangde; Kim, Hui Jung; Kobayashi, Tetsu; Ertl, Ronald F; Wen, Fu-Qiang; Takizawa, Hajime; Rennard, Stephen I

    2002-08-01

    The controlled accumulation of fibroblasts to sites of inflammation is crucial to effective tissue repair after injury. Either inadequate or excessive accumulation of fibroblasts could result in abnormal tissue function. Prostacyclin (PGI(2)) is a potent mediator in the coagulation and inflammatory processes. The aim of this study was to investigate the effect of PGI(2) on chemotaxis of human fetal lung fibroblasts (HFL-1). Using the blind well chamber technique, we found that the PGI(2) analog carbaprostacyclin (10(-6) M) inhibited HFL-1 chemotaxis to human plasma fibronectin (20 microg/ml) 58.0 +/- 13.2% (P < 0.05) and to platelet-derived growth factor (PDGF)-BB (10 ng/ml) 48.7 +/- 4.6% (P < 0.05). Checkerboard analysis demonstrated that carbaprostacyclin inhibits both directed and undirected migration. The inhibitory effect of the carbaprostacyclin was concentration dependent and blocked by the cAMP-dependent protein kinase (PKA) inhibitor KT-5720, suggesting that a cAMP-PKA pathway may be involved in the process. Two other PGI(2) analogs, ciprostene and dehydro-15-cyclohexyl carbaprostacyclin (both 10(-6) M), significantly inhibited fibroblast migration to fibronectin. In summary, PGI(2) appears to inhibit fibroblast chemotaxis to fibronectin and PDGF-BB. Such an effect may contribute to the regulation of fibroblasts in wound healing and could contribute to the pathogenesis of diseases characterized by abnormal tissue repair remodeling.

  6. The pleiotropic effects of decanoic acid treatment on mitochondrial function in fibroblasts from patients with complex I deficient Leigh syndrome.

    PubMed

    Kanabus, Marta; Fassone, Elisa; Hughes, Sean David; Bilooei, Sara Farahi; Rutherford, Tricia; Donnell, Maura O'; Heales, Simon J R; Rahman, Shamima

    2016-05-01

    There is growing interest in the use of the ketogenic diet (KD) to treat inherited metabolic diseases including mitochondrial disorders. However, neither the mechanism whereby the diet may be working, nor if it could benefit all patients with mitochondrial disease, is known. This study focusses on decanoic acid (C10), a component of the medium chain triglyceride KD, and a ligand for the nuclear receptor PPAR-γ known to be involved in mitochondrial biogenesis. The effects of C10 were investigated in primary fibroblasts from a cohort of patients with Leigh syndrome (LS) caused by nuclear-encoded defects of respiratory chain complex I, using mitochondrial respiratory chain enzyme assays, gene expression microarray, qPCR and flow cytometry. Treatment with C10 increased citrate synthase activity, a marker of cellular mitochondrial content, in 50 % of fibroblasts obtained from individuals diagnosed with LS in a PPAR-γ-mediated manner. Gene expression analysis and qPCR studies suggested that treating cells with C10 supports fatty acid metabolism, through increasing ACADVL and CPT1 expression, whilst downregulating genes involved in glucose metabolism (PDK3, PDK4). PCK2, involved in blocking glucose metabolism, was upregulated, as was CAT, encoding catalase. Moreover, treatment with C10 also decreased oxidative stress in complex I deficient (rotenone treated) cells. However, since not all cells from subjects with LS appeared to respond to C10, prior cellular testing in vitro could be employed as a means for selecting individuals for subsequent clinical studies involving C10 preparations.

  7. Evaluation of genotoxic effects in human fibroblasts after intermittent exposure to 50 Hz electromagnetic fields: a confirmatory study.

    PubMed

    Scarfí, Maria Rosaria; Sannino, Anna; Perrotta, Alessandro; Sarti, Maurizio; Mesirca, Pietro; Bersani, Ferdinando

    2005-09-01

    The aim of this investigation was to confirm the main results reported in recent studies on the induction of genotoxic effects in human fibroblasts exposed to 50 Hz intermittent (5 min field on/10 min field off) sinusoidal electromagnetic fields. For this purpose, the induction of DNA single-strand breaks was evaluated by applying the alkaline single-cell gel electrophoresis (SCGE)/comet assay. To extend the study and validate the results, in the same experimental conditions, the potential genotoxicity was also tested by exposing the cells to a 50 Hz powerline signal (50 Hz frequency plus its harmonics). The cytokinesis-block micronucleus assay was applied after 24 h intermittent exposure to both sinusoidal and powerline signals to obtain information on cell cycle kinetics. The experiments were carried out on human diploid fibroblasts (ES-1). For each experimental run, exposed and sham-exposed samples were set up; positive controls were also provided by treating cells with hydrogen peroxide or mitomycin C for the comet or micronucleus assay, respectively. No statistically significant difference was detected in exposed compared to sham-exposed samples in any of the experimental conditions tested (P > 0.05). In contrast, the positive controls showed a statistically significant increase in DNA damage in all cases, as expected. Accordingly, our findings do not confirm the results reported previously for either comet induction or an increase in micronucleus frequency.

  8. Effects of fibroblast growth factor 2 on osteoblastic proliferation and differentiation by regulating bone morphogenetic protein receptor expression.

    PubMed

    Park, Jun-Beom

    2011-09-01

    Fibroblast growth factors (FGFs) are known to play a critical role in bone growth and development, affecting both osteogenesis and chondrogenesis. Fibroblast growth factor 2 (FGF-2) is produced intracellularly by osteoblasts and secreted into the surrounding matrix in bone.The dose-dependent effects of FGF-2 were tested to examine the relationship between FGF-2 and osteoblast proliferation and differentiation. Tests used included a cell viability test, an alkaline phosphatase activity test, and a Western blot analysis.Cultures growing in the presence of FGF-2 showed an increased value for 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and a decreased value for alkaline phosphatase activity. Results of the Western blot analysis showed that the addition of FGF-2 seems to decrease osteocalcin and bone morphogenetic protein receptor IA.These data show that FGF-2 in the tested dosage within MC3T3-E1 cells seems to affect proliferation and differentiation. Results of the Western blot analysis may add some possible mechanisms, and it may be suggested that treatment of FGF-2 may have an influence on the expression of bone morphogenetic protein receptors in osteoprecursor cells. Further elucidation of the mechanisms related to this mechanism within the in vivo model may be necessary to ascertain greater detail.

  9. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids.

    PubMed

    Rogers, Carlyle; Davis, Barbara; Neufer, P Darrell; Murphy, Michael P; Anderson, Ethan J; Robidoux, Jacques

    2014-02-01

    Preadipocytes are periodically subjected to fatty acid (FA) concentrations that are potentially cytotoxic. We tested the hypothesis that prolonged exposure of preadipocytes of human origin to a physiologically relevant mix of FAs leads to mitochondrial i