Science.gov

Sample records for permeable stretching surface

  1. Unsteady boundary layer flow of Carreau fluid over a permeable stretching surface

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Azam, Muhammad

    The main objective of the present work is to present numerical solutions of the unsteady two-dimensional boundary layer flow and heat transfer of an incompressible Carreau fluid over a permeable time dependent stretching sheet. Using suitable transformations, the time dependent partial differential equations are converted to non-linear ordinary differential equations. The numerical results of these non-linear ordinary differential equations with associated boundary conditions are determined by using the bvp4c function in MATLAB. The numerical results are investigated for the emerging parameters namely, the unsteadiness parameter A, mass transfer parameter S, Prandtl number Pr, power law index n and Weissenberg number We. It is important to state that both the momentum and thermal boundary layer thicknesses diminish with increasing values of the unsteadiness and mass transfer parameters. A comparison with the available literature in limiting cases is performed and found to be in good agreement.

  2. Unsteady mixed convection flow through a permeable stretching flat surface with partial slip effects through MHD nanofluid using spectral relaxation method

    NASA Astrophysics Data System (ADS)

    Ahamed, Sami M.; Mondal, Sabyasachi; Sibanda, Precious

    2017-05-01

    An unsteady, laminar, mixed convective stagnation point nanofluid flow through a permeable stretching flat surface using internal heat source or sink and partial slip is investigated. The effects of thermophoresis and Brownian motion parameters are revised on the traditional model of nanofluid for which nanofluid particle volume fraction is passively controlled on the boundary. Spectral relaxation method is applied here to solve the non-dimensional conservation equations. The results show the illustration of the impact of skin friction coefficient, different physical parameters, and the heat transfer rate. The nanofluid motion is enhanced with increase in the value of the internal heat sink or source. On the other hand, the rate of heat transfer on the stretching sheet and the skin friction coefficient are reduced by an increase in internal heat generation. This study further shows that the velocity slip increases with decrease in the rate of heat transfer. The outcome results are benchmarked with previously published results.

  3. Numerical investigation of velocity slip and temperature jump effects on unsteady flow over a stretching permeable surface

    NASA Astrophysics Data System (ADS)

    Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.

    2017-02-01

    In this paper, the boundary layer flow and heat transfer of unsteady flow over a porous accelerating stretching surface in the presence of the velocity slip and temperature jump effects are investigated numerically. A new effective collocation method based on rational Bernstein functions is applied to solve the governing system of nonlinear ordinary differential equations. This method solves the problem on the semi-infinite domain without truncating or transforming it to a finite domain. In addition, the presented method reduces the solution of the problem to the solution of a system of algebraic equations. Graphical and tabular results are presented to investigate the influence of the unsteadiness parameter A , Prandtl number Pr, suction parameter fw, velocity slip parameter γ and thermal slip parameter φ on the velocity and temperature profiles of the fluid. The numerical experiments are reported to show the accuracy and efficiency of the novel proposed computational procedure. Comparisons of present results are made with those obtained by previous works and show excellent agreement.

  4. EPA Permeable Surface Research

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  5. EPA Permeable Surface Research

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  6. Axisymmetric rotational stagnation point flow impinging radially a permeable stretching/shrinking surface in a nanofluid using Tiwari and Das model.

    PubMed

    Roşca, Natalia C; Pop, Ioan

    2017-01-12

    In this paper, the problem of normal impingement rotational stagnation-point flow on a radially permeable stretching sheet in a viscous fluid, recently studied in a very interesting paper, is extended to a water-based nanofluid. A similarity transformation is used to reduce the system of governing nonlinear partial differential equations to a system of ordinary differential equations, which is then solved numerically using the function bvp4c from Matlab. It is found that dual (upper and lower branch) solutions exist for some values of the governing parameters. From the stability analysis, it is found that the upper branch solution is stable, while the lower branch solution is unstable. Sample velocity and temperature profiles along both solution branches are graphically presented.

  7. Axisymmetric rotational stagnation point flow impinging radially a permeable stretching/shrinking surface in a nanofluid using Tiwari and Das model

    NASA Astrophysics Data System (ADS)

    Roşca, Natalia C.; Pop, Ioan

    2017-01-01

    In this paper, the problem of normal impingement rotational stagnation-point flow on a radially permeable stretching sheet in a viscous fluid, recently studied in a very interesting paper, is extended to a water-based nanofluid. A similarity transformation is used to reduce the system of governing nonlinear partial differential equations to a system of ordinary differential equations, which is then solved numerically using the function bvp4c from Matlab. It is found that dual (upper and lower branch) solutions exist for some values of the governing parameters. From the stability analysis, it is found that the upper branch solution is stable, while the lower branch solution is unstable. Sample velocity and temperature profiles along both solution branches are graphically presented.

  8. Axisymmetric rotational stagnation point flow impinging radially a permeable stretching/shrinking surface in a nanofluid using Tiwari and Das model

    PubMed Central

    Roşca, Natalia C.; Pop, Ioan

    2017-01-01

    In this paper, the problem of normal impingement rotational stagnation-point flow on a radially permeable stretching sheet in a viscous fluid, recently studied in a very interesting paper, is extended to a water-based nanofluid. A similarity transformation is used to reduce the system of governing nonlinear partial differential equations to a system of ordinary differential equations, which is then solved numerically using the function bvp4c from Matlab. It is found that dual (upper and lower branch) solutions exist for some values of the governing parameters. From the stability analysis, it is found that the upper branch solution is stable, while the lower branch solution is unstable. Sample velocity and temperature profiles along both solution branches are graphically presented. PMID:28079124

  9. EPA Permeable Surface Research - Poster

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  10. EPA Permeable Surface Research - Poster

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  11. MHD stagnation-point flow and heat transfer over a permeable stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Ali, Fadzilah Md; Nazar, Roslinda; Arifin, Norihan; Pop, Ioan

    2014-06-01

    The steady magnetohydrodynamic (MHD) two-dimensional stagnation-point boundary layer flow and heat transfer of a viscous, incompressible and electrically conducting fluid over a permeable flat stretching/shrinking sheet in the presence of an externally applied magnetic field of constant strength is studied. The governing partial differential equations are first transformed into a system of ordinary differential equations, which is then been solved numerically using a shooting method built in Maple software. It is found that the heat transfer rate at the surface reduces with the Eckert number and it is also found that dual solutions exist for certain values of the mass flux parameter and the stretching/shrinking parameter.

  12. MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2016-06-01

    The steady two-dimensional magnetohydrodynamic (MHD) flow past a permeable stretching/shrinking sheet with radiation effects is investigated. The similarity transformation is introduced to transform the governing partial differential equations into a system of ordinary differential equations before being solved numerically using a shooting method. The results are obtained for the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and the concentration profiles for some values of the governing parameters, namely, suction/injection parameter S, stretching/shrinking parameter λ, magnetic parameter M, radiation parameter R, heat source/sink Q and chemical rate parameter K. For the shrinking case, there exist two solutions for a certain range of parameters, but the solution is unique for the stretching case. The stability analysis verified that the upper branch solution is linearly stable and physically reliable while the lower branch solution is not. For the reliable solution, the skin friction coefficient increases in the present of magnetic field. The heat transfer rate at the surface decreases in the present of radiation.

  13. Altered surface character of stretched condom latex.

    PubMed

    Jay, G D; Drummond, E; Lane, B

    1992-02-01

    A new type of imperfection in condom latex, present during moderate stretching, was observed by low magnification scanning electron microscopy. The normally smooth surface of relaxed natural latex was transformed into an accordion-like arrangement of ripples in addition to tears. A corollary experiment with Alcian blue dye placed into both stretched and unstretched condoms leaked no dye. These surface features are consistent with latex acting as a molecular barrier. The tears may represent areas of lowered mechanical resistance and raise questions concerning quality control.

  14. Stretching

    MedlinePlus

    ... benefits of stretching before working out. Traditional, or "static," stretching may lead to decreased muscle strength and performance. Consider doing dynamic stretches before and static stretching after a workout. Stretching still can be ...

  15. Stretching

    MedlinePlus

    ... in the activity, dynamic stretching allows for full range of motion of the joints. continue Stretching Stretching used to ... performance. In addition, stretching provides increased: flexibility joint range and motion blood flow to muscles Stretching has to be ...

  16. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching

    PubMed Central

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-01-01

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed. PMID:27509528

  17. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching.

    PubMed

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-08-06

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.

  18. Flow of viscous fluid along a nonlinearly stretching curved surface

    NASA Astrophysics Data System (ADS)

    Sanni, K. M.; Asghar, S.; Jalil, M.; Okechi, N. F.

    This paper focuses on the flow of viscous fluid over a curved surface stretching with nonlinear power-law velocity. The boundary layer equations are transformed into ordinary differential equations using suitable non-dimensional transformations. These equations are solved numerically using shooting and Runge-Kutta (RK) methods. The impact of non-dimensional radius of curvature and power-law indices on the velocity field, the pressure and the skin friction coefficient are investigated. The results deduced for linear stretching are compared with the published work to validate the numerical procedure. The important findings are: (a) Slight variation of the curvature of the stretching sheet increases the velocity and the skin friction coefficient significantly. (b) The nonlinearity of the stretching velocity increases the skin friction. (c) The results for linear stretching and the flat surface are the special cases of this problem.

  19. Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid.

    PubMed

    Zaimi, Khairy; Ishak, Anuar; Pop, Ioan

    2014-03-18

    The steady boundary layer flow and heat transfer of a nanofluid past a nonlinearly permeable stretching/shrinking sheet is numerically studied. The governing partial differential equations are reduced into a system of ordinary differential equations using a similarity transformation, which are then solved numerically using a shooting method. The local Nusselt number and the local Sherwood number and some samples of velocity, temperature and nanoparticle concentration profiles are graphically presented and discussed. Effects of the suction parameter, thermophoresis parameter, Brownian motion parameter and the stretching/shrinking parameter on the flow, concentration and heat transfer characteristics are thoroughly investigated. Dual solutions are found to exist in a certain range of the stretching/shrinking parameter for both shrinking and stretching cases. Results indicate that suction widens the range of the stretching/shrinking parameter for which the solution exists.

  20. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno's model.

    PubMed

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-10-06

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet.

  1. Dispersion controlled by permeable surfaces: surface properties and scaling

    SciTech Connect

    Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia

    2016-07-19

    Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of the surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.

  2. Similarity solution for rarefied flow over a vertical stretched surface

    NASA Astrophysics Data System (ADS)

    Al-Kouz, W.; Kiwan, S.; Sari, M.; Alkhalidi, A.

    2017-07-01

    Similarity technique is used to solve for the laminar natural convection heat transfer for rarefied flows over a linearly vertical stretched surface. Such flows have significant importance in many engineering and manufacturing applications. It is found that the flow is affected by flow parameters, namely, velocity slip (K1), temperature jump (K2), and the Prandtl number (Pr).

  3. Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion

    NASA Astrophysics Data System (ADS)

    Misra, J. C.; Sinha, A.

    2013-05-01

    In this paper, a theoretical analysis is presented for magnetohydrodynamic flow of blood in a capillary, its lumen being porous and wall permeable. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. Thermal radiation, velocity slip and thermal slip conditions are taken into account. In order to study the flow field as well as the temperature field, the problem is formulated as a boundary value problem consisting of a system of nonlinear coupled partial differential equations. The problem is analysed by using similarity transformation and boundary layer approximation. Solution of the problem is achieved by developing a suitable numerical method and using high speed computers. Computational results for the variation in velocity, temperature, skin-friction co-efficient and Nusselt number are presented in graphical/tabular form. Effects of different parameters are adequately discussed. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries.

  4. A calcium-permeable stretch-activated cation channel in renal proximal tubule.

    PubMed

    Filipovic, D; Sackin, H

    1991-01-01

    Isolated Necturus proximal tubules were split to expose the apical membrane surface for patch clamping. When both pipette and bath solutions contained only Ca, N-methyl-D-glucamine, and methanesulfonate, inwardly directed Ca currents were observed through a stretch-activated (SA) cation channel with conductance of 18 +/- 1 pS (n = 19). The SA cation channel exhibited little discrimination among Na, K, and Ca but was at least nine times more selective for cations than anions. The channel was not significantly gated by either membrane potential or cytosolic Ca. However, application of 15 cmH2O suction to patch pipette significantly increased the mean number of open channels by a factor of 6.5, from 0.04 +/- 0.02 to 0.26 +/- 0.08 (n = 11). Ca currents through the SA cation channel were reversibly blocked by 10 microM gadolinium, which was applied to outside surface of excised patches. This is similar to gadolinium block of stretch-activated channels in Xenopus oocytes (X.-C. Yang and F. Sachs. Science Wash. DC 243: 1068-1071, 1989). A Ca-dependent, maxi-K channel (92 +/- 9 pS, n = 5) was also found at the apical membrane of the same proximal tubules. In some cases this maxi-K channel appeared to be indirectly activated by pipette suction, raising the possibility that Ca influx through the SA cation channel may regulate K efflux via the maxi-K channel. Such a process could mediate cell volume regulation and maintain electrolyte homeostasis during normal variations in Na-substrate cotransport.

  5. Unsteady boundary layer nanofluid flow and heat transfer along a porous stretching surface with magnetic field

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ali, M.; Alim, M. A.; Munshi, M. J. Haque

    2017-06-01

    The present study is performed to find the similarity solution like Blasius solution and also analyzed the effect of various dimensionless parameters on the momentum, thermal and nanoparticle concentration. In this respect we have considered the magnetohydrodynamic (MHD) unsteady boundary layer nanofluid flow and heat - mass transfer along a porous stretching surface. So the governing partial differential equations are transformed to ordinary differential equations by using similarity transformations. The numerical solution is taken by applying the Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme. The effects of various dimensionless parameters on velocity, temperature and nanoparticle concentration are discussed numerically and shown graphically. Therefore, from the figures it is observed that the results of velocity profile increases for increasing values of unsteadiness parameter, permeability parameter and stretching ratio parameter but there is no effect for magnetic parameter, the temperature profile decreases for increasing values of Brownian motion, unsteadiness, thermophoresis and stretching ratio but increases for magnetic parameter, the nanoparticle concentration decreases for increasing values of unsteadiness parameter, thermophoresis parameter, suction parameter, stretching ratio parameter and Lewis number but increases for magnetic parameter and Brownian motion parameter. For validity and accuracy the present results are compared with previously published work and found to in good agreement.

  6. Three-dimensional flow and heat transfer of a nanofluid past a permeable stretching sheet with a convective boundary condition

    NASA Astrophysics Data System (ADS)

    Mansur, Syahira; Ishak, Anuar

    2014-09-01

    The three-dimensional flow and heat transfer of a nanofluid over a stretching sheet is studied. Numerical solutions are obtained using the boundary value problem solver bvp4c in MATLAB. It is noted that the results obtained for three-dimensional flow are similar to the results obtained in most two-dimensional flow problems. The suction and stretching parameter decrease the skin friction coefficient. On the other hand, increasing the stretching parameter is to increase the local Nusselt number. Although Biot number encourages the heat transfer rate at the surface, increasing thermophoresis parameter and Brownian motion parameter causes the local Nusselt number to decrease.

  7. Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface

    PubMed Central

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737

  8. Unsteady convection flow and heat transfer over a vertical stretching surface.

    PubMed

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  9. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, T.; Smith, L.; Moosdorf, N.; Hartmann, J.; Durr, H.H.; Manning, A.H.; Van Beek, L. P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of ???5 ?? 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change. Copyright ?? 2011 by the American Geophysical Union.

  10. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

  11. Assessing the potential for restoration of surface permeability for permeable pavements through maintenance.

    PubMed

    Drake, Jennifer; Bradford, Andrea

    2013-01-01

    Permeable pavements (PPs) have been in use as stormwater management systems in Canada and the United States for over 20 years. After years of exposure to sediment and debris build-up, surface clogging reduces the infiltration of stormwater and inhibits the hydraulic and environmental functions of the pavement. Removal of surface material has been shown to restore infiltration but the majority of studies have been limited to small-scale testing. This paper presents the results of small- and full-sized equipment testing aimed at restoring surface permeability, including the first testing of regenerative-air and vacuum-sweeping streetsweepers in Ontario. Maintenance achieved partial restoration of PP surface permeability. Post-treatment surface infiltration rates displayed large spatial variability, highlighting that localized conditions throughout the pavement have a confounding influence on the overall effectiveness of maintenance. The impact of maintenance may be improved by establishing regular cleaning intervals and developing instructional guidelines for pavement owners and equipment operators.

  12. Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model.

    PubMed

    Zaimi, Khairy; Ishak, Anuar; Pop, Ioan

    2014-01-01

    The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter.

  13. Flow Past a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Two-Phase Model

    PubMed Central

    Zaimi, Khairy; Ishak, Anuar; Pop, Ioan

    2014-01-01

    The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno’s nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter. PMID:25365118

  14. Fast Liquid Transfer between Surfaces: Breakup of Stretched Liquid Bridges.

    PubMed

    Chen, H; Tang, T; Amirfazli, A

    2015-10-27

    In this work, a systematic experimental study was performed to understand the fast liquid transfer process between two surfaces. According to the value of the Reynolds number (Re), the fast transfer is divided into two different scenarios, one with negligible inertia effects (Re ≪ 1) and the other with significant inertia effects (Re > 1). For Re ≪ 1, the influences of the capillary number (Ca) and the dimensionless minimum separation (H(min)* = H(min)/V(1/3), where H(min) is the minimum separation between two surfaces and V is the volume of liquid) on the transfer ratio (α, the volume of liquid transferred to the acceptor surface over the total liquid volume) are discussed. On the basis of the roles of each physical parameter, an empirical equation is presented to predict the transfer ratio, α = f(Ca). This equation involves two coefficients which are affected only by the surface contact angles and H(min)* but not by the liquid viscosity or surface tension. When Re > 1, it is shown for the first time that the transfer ratio does not converge to 0.5 with the increase in the stretching speed.

  15. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno’s model

    NASA Astrophysics Data System (ADS)

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-10-01

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet.

  16. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno’s model

    PubMed Central

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-01-01

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet. PMID:26440761

  17. MEAUSREMENT OF THE SURFACE PERMEABILITY OF BASEMENT CONCRETES

    EPA Science Inventory

    The report discusses the development, testing, and use of a portable surface permeameter suitable for field use in measuring the surface permeability of concrete in new houses. he permeameter measures the airflow induced by a pressure difference across a temporary test seal appli...

  18. MEAUSREMENT OF THE SURFACE PERMEABILITY OF BASEMENT CONCRETES

    EPA Science Inventory

    The report discusses the development, testing, and use of a portable surface permeameter suitable for field use in measuring the surface permeability of concrete in new houses. he permeameter measures the airflow induced by a pressure difference across a temporary test seal appli...

  19. Effect of surface preparation on gas permeability of wood

    Treesearch

    E.T. Choong; C.W. McMillin; F.O. Tesoro

    1975-01-01

    Surface preparation has a profound effect on the rate of flow of fluid through wood, particularly in the longitudinal direction of flow. For best results, the surface must be devoid of any debris and/or obstruction. The use of a sharp, thin knife appears to be an effective way of preparing samples for natural permeability measurements.

  20. Uniaxially Stretched Flexible Surface Plasmon Resonance Film for Versatile Surface Enhanced Raman Scattering Diagnostics.

    PubMed

    Xu, Kaichen; Wang, Zuyong; Tan, Chuan Fu; Kang, Ning; Chen, Lianwei; Ren, Lei; Thian, Eng San; Ho, Ghim Wei; Ji, Rong; Hong, Minghui

    2017-08-09

    Surface-enhanced Raman scattering (SERS) spectroscopy affords a rapid, highly sensitive, and nondestructive approach for label-free and fingerprint diagnosis of a wide range of chemicals. It is of great significance to develop large-area, uniform, and environmentally friendly SERS substrates for in situ identification of analytes on complex topological surfaces. In this work, we demonstrate a biodegradable flexible SERS film via irreversibly and longitudinally stretching metal deposited biocompatible poly(ε-caprolactone) film. This composite film after stretching shows surprising phenomena: three-dimensional and periodic wave-shaped microribbons array embedded with a high density of nanogaps functioning as hot-spots at an average gap size of 20 nm and nanogrooves array along the stretching direction. The stretched polymer surface plasmon resonance film gives rise to more than 10 times signal enhancement in comparison with that of the unstretched composite film. Furthermore, the SERS signals with high uniformity exhibit good temperature stability. The polymer SPR film with excellent flexibility and transparency can be conformally attached onto arbitrary nonplanar surfaces for in situ detection of various chemicals. Our results pave a new way for next-generation flexible SERS detection means, as well as enabling its huge potentials toward green wearable devices for point-of-care diagnostics.

  1. Image stretching on a curved surface to improve satellite gridding

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1975-01-01

    A method for substantially reducing gridding errors due to satellite roll, pitch and yaw is given. A gimbal-mounted curved screen, scaled to 1:7,500,000, is used to stretch the satellite image whereby visible landmarks coincide with a projected map outline. The resulting rms position errors averaged 10.7 km as compared with 25.6 and 34.9 km for two samples of satellite imagery upon which image stretching was not performed.

  2. Method for patterning stretched DNA molecules on mica surfaces by soft lithography.

    PubMed

    Gad, M; Sugiyama, Shigeru; Ohtani, Toshio

    2003-12-01

    Lambda DNA was stretched and patterned on mica surface using soft lithography. A highly diluted solution of amino propyl trimethoxy silane in hexane was deposited on a line patterned polydimethylsiloxane (PDMS) stamp. The functionalized stamp was then used to pick up DNA by molecular combing while the line patterns are parallel to the liquid surface. The stamp was then microcontact printed on freshly cleaved mica. We successfully obtained stretched DNA pattern on mica surface. DNA was found to be stretched in patterns perpendicular to those carved on the stamp. The stretched DNA population was large enough to be used for molecular biology mapping studies. Furthermore, the possibility of locating stretched DNA molecules in the desired position by stamping makes this method a good candidate for assembling non-semiconductor molecular devices.

  3. Partial slip and dissipation on MHD radiative ferro-fluid over a non-linear permeable convectively heated stretching sheet

    NASA Astrophysics Data System (ADS)

    Sivakumar, N.; Durga Prasad, P.; Raju, C. S. K.; Varma, S. V. K.; Shehzad, S. A.

    The simultaneous interaction of viscous dissipative and thermal radiation in MHD two dimensional flows of ferro-liquid over a nonlinear moving surface is analyzed here. The slip on velocity and convective boundary condition on temperature are imposed on stretching surface. We used water as conventional base liquid which have magnetite (Fe3O4) and alumina (Al2O3) as nanoparticles. The governing mathematical expressions are converted into non-dimensional form via nonlinear type similarity variables. The resulting mathematical model is numerically solved with the help of MATLAB solver bvp4c. The roles of non-dimensional constraints on velocity and temperature are elaborated through plots. The numerical data of skin-friction coefficient and Nusselt number is presented and visualized. The validity of computed results is analyzed through comparative benchmark.

  4. g-Jitter Mixed Convective Slip Flow of Nanofluid past a Permeable Stretching Sheet Embedded in a Darcian Porous Media with Variable Viscosity

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Amin, Norsarahaida S.

    2014-01-01

    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results. PMID:24927277

  5. g-Jitter mixed convective slip flow of nanofluid past a permeable stretching sheet embedded in a Darcian porous media with variable viscosity.

    PubMed

    Uddin, Mohammed J; Khan, Waqar A; Amin, Norsarahaida S

    2014-01-01

    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results.

  6. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    SciTech Connect

    Simmons, Carver S.; Keller, Jason M.

    2005-09-29

    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  7. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface

    PubMed Central

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2015-01-01

    The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem. PMID:26110873

  8. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface.

    PubMed

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2015-01-01

    The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem.

  9. Stretching a Curved Surface in a Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Sajid, M.; N., Ali; T., Javed; Z., Abbas

    2010-02-01

    This work is concerned with the viscous flow due to a curved stretching sheet. The similarity solution of the problem is obtained numerically by a shooting method using the Runge-Kutta algorithm. The physical quantities of interest like the fluid velocity and skin friction coefficient are obtained and discussed under the influence of dimensionless curvature. It is evident from the results that dimensionless curvature causes an increase in boundary layer thickness and a decrease in the skin friction coefficient.

  10. Hydromagnetic Steady Flow of Maxwell Fluid over a Bidirectional Stretching Surface with Prescribed Surface Temperature and Prescribed Surface Heat Flux

    PubMed Central

    Shehzad, Sabir Ali; Alsaedi, Ahmad; Hayat, Tasawar

    2013-01-01

    This paper investigates the steady hydromagnetic three-dimensional boundary layer flow of Maxwell fluid over a bidirectional stretching surface. Both cases of prescribed surface temperature (PST) and prescribed surface heat flux (PHF) are considered. Computations are made for the velocities and temperatures. Results are plotted and analyzed for PST and PHF cases. Convergence analysis is presented for the velocities and temperatures. Comparison of PST and PHF cases is given and examined. PMID:23874523

  11. Multiscale modeling of bone tissue with surface and permeability control.

    PubMed

    Gonçalves Coelho, Pedro; Rui Fernandes, Paulo; Carriço Rodrigues, Helder

    2011-01-11

    Natural biological materials usually present a hierarchical arrangement with various structural levels. The biomechanical behavior of the complex hierarchical structure of bone is investigated with models that address the various levels corresponding to different scales. Models that simulate the bone remodeling process concurrently at different scales are in development. We present a multiscale model for bone tissue adaptation that considers the two top levels, whole bone and trabecular architecture. The bone density distribution is calculated at the macroscale (whole bone) level, and the trabecular structure at the microscale level takes into account its mechanical properties as well as surface density and permeability. The bone remodeling process is thus formulated as a material distribution problem at both scales. At the local level, the biologically driven information of surface density and permeability characterizes the trabecular structure. The model is tested by a three-dimensional simulation of bone tissue adaptation for the human femur. The density distribution of the model shows good agreement with the actual bone density distribution. Permeability at the microstructural level assures interconnectivity of pores, which mimics the interconnectivity of trabecular bone essential for vascularization and transport of nutrients. The importance of this multiscale model relays on the flexibility to control the morphometric parameters that characterize the trabecular structure. Therefore, the presented model can be a valuable tool to define bone quality, to assist with diagnosis of osteoporosis, and to support the development of bone substitutes.

  12. Permeability of Luminal Surface of Intestinal Mucosal Cells

    PubMed Central

    Lindemann, B.; Solomon, A. K.

    1962-01-01

    A method has been devised to measure the permeability characteristics of the intestinal mucosal cells in the rat. The method makes use of an electrical recording balance to register changes in weight when the mucosal face of a small strip of intestine is exposed to anisotonic solutions. The permeability coefficient of the luminal surface of intestinal mucosal cells to water is measured as 0.15 cm4/OSM, sec. and reasons are adduced to suggest that the true value might be higher than this. The equivalent pore radius of the luminal face of the tissue, measured in experiments in which lipid-insoluble non-electrolytes have been used according to the method of Goldstein and Solomon, appears to be 4.0 Å. PMID:14465429

  13. Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Tien, J. S.

    1999-01-01

    Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.

  14. MHD biconvective flow of Powell Eyring nanofluid over stretched surface

    NASA Astrophysics Data System (ADS)

    Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum

    2017-06-01

    The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

  15. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  16. Permeable Surface Corrections for Ffowcs Williams and Hawkings Integrals

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Casper, Jay H.

    2005-01-01

    The acoustic prediction methodology discussed herein applies an acoustic analogy to calculate the sound generated by sources in an aerodynamic simulation. Sound is propagated from the computed flow field by integrating the Ffowcs Williams and Hawkings equation on a suitable control surface. Previous research suggests that, for some applications, the integration surface must be placed away from the solid surface to incorporate source contributions from within the flow volume. As such, the fluid mechanisms in the input flow field that contribute to the far-field noise are accounted for by their mathematical projection as a distribution of source terms on a permeable surface. The passage of nonacoustic disturbances through such an integration surface can result in significant error in an acoustic calculation. A correction for the error is derived in the frequency domain using a frozen gust assumption. The correction is found to work reasonably well in several test cases where the error is a small fraction of the actual radiated noise. However, satisfactory agreement has not been obtained between noise predictions using the solution from a three-dimensional, detached-eddy simulation of flow over a cylinder.

  17. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium

    PubMed Central

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number. PMID:26657931

  18. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    PubMed

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.

  19. On curve and surface stretching in turbulent flow

    NASA Technical Reports Server (NTRS)

    Etemadi, Nassrollah

    1989-01-01

    Cocke (1969) proved that in incompressible, isotropic turbulence the average material line (material surface) elements increase in comparison with their initial values. Good estimates of how much they increase in terms of the eigenvalues of the Green deformation tensor were rigorously obtained.

  20. Magnetohydrodynamic boundary layer nanofluid flow and heat transfer over a stretching surface

    NASA Astrophysics Data System (ADS)

    Ali, M.; Alim, M. A.; Nasrin, R.; Alam, M. S.; Chowdhury, M. Z. U.

    2017-06-01

    The present study is performed to investigate the effect of unsteadiness, stretching ratio, Brownian motion, thermophoresis and magnetic parameter on boundary layer such as momentum, thermal and nanoparticle concentration. In this respect we have considered the magnetohydrodynamic (MHD) unsteady boundary layer nanofluid flow and heat - mass transfer over a stretching surface. The dimensionless governing equations are unsteady, two-dimensional coupled and non-linear ordinary differential equations. The numerical solution is taken by applying the Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme. The effects of various dimensionless parameters on velocity, temperature and nanoparticle concentration are discussed numerically and shown graphically. Therefore, from the figures it is observed that the results of velocity profile increases for increasing values of magnetic parameter and unsteadiness parameter but decreases for stretching ratio parameter, the temperature profile decreases in presence of Brownian motion, unsteadiness parameter, stretching ratio parameter and thermophoresis parameter but increases for magnetic parameter and, the nanoparticle concentration decreases for increasing values of thermophoresis parameter, unsteadiness parameter and stretching ratio parameter whereas the reverse trend arises for Brownian motion & magnetic parameter. For validity and accuracy the present results are compared with previously published work and found good agreement.

  1. Manipulation of DNA at Polymer Surfaces: Electric-Field Controlled Adsorption, Patterned Cutting and Stretching

    NASA Astrophysics Data System (ADS)

    Zhu, Ke

    Recent developments in next generation DNA sequencing and optical restriction mapping involve manipulation of DNA molecules on surfaces. Here we propose a novel method that can control the adsorbed DNA density on polymer surfaces by applying an electric field. The efficiency of deposition was optimized with respect to DNA concentration in solution, electric field type and electric field strength. Enhancement of adsorption density of greater than twenty-fold was found. In addition, DNA molecules are fragmented on a polymer surface by soft lithography. Several experimental conditions have been tested to optimize the polydimethylsiloxane (PDMS) stamp fabrication and DNA cutting method. Fragmented DNA strands of 3.5 mum in length can be fabricated over a large area (2cm by 5cm) in one single cutting. The mechanism of DNA cutting behind this method has been discussed as well. This method can potentially improve current sequencing techniques in both efficiency and sensitivity. Finally, DNA molecules were then deposited and stretched on a flexible PDMS substrate. Incident light polarization was varied and fluorescence emission intensity was measured as a function of polarization angle and degree of stretching of the DNA. The stretching and breakage properties of lambda DNA on the PDMS substrate were determined. The amount of stretching before breakage occurred was found to be up to 50% relative to the as-deposited length.

  2. Flows induced by power-law stretching surface motion modulated by transverse or orthogonal surface shear

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick

    2017-02-01

    Boundary-layer solutions to Banks' problem for the flow induced by power-law stretching of a plate are obtained for two generalizations that include arbitrary transverse plate shearing motion. In one extension an arbitrary transverse shearing motion is the product of the power-law stretching. In the other extension the streamwise stretching coordinate is added to an arbitrary transverse shearing and together raised to the power of stretching. In addition we find that Banks' power law stretching may be accompanied by orthogonal power-law shear. In all cases, the original boundary-value problem of Banks [1] is recovered. Results are illustrated with velocity profiles both at the plate and at fixed height in the fluid above the plate.

  3. Stagnation point flow over a stretching/shrinking cylinder with prescribed surface heat flux

    NASA Astrophysics Data System (ADS)

    Najib, Najwa; Bachok, Norfifah; Arifin, Norihan Md.

    2014-06-01

    The steady stagnation-point flow towards a horizontal linearly stretching/shrinking cylinder immersed in an incompressible viscous fluid with prescribed surface heat flux is investigated. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by similarity transformations. The transformed equations are solved numerically by using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles and temperature profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Prandtl number on the flow and heat transfer characteristics are discussed. The study indicate that the solutions for a shrinking cylinder are non-unique. It is observed that the surface shear stress and heat transfer rate at the surface increase as the curvature parameter increases.

  4. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-04-01

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.

  5. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet

    PubMed Central

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-01-01

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. PMID:27091085

  6. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet.

    PubMed

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-04-19

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.

  7. DNA stretching on the wall surfaces in curved microchannels with different radii

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju

    2014-08-01

    DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10-4 ≤ Re ≤ 10-3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.

  8. Observation and Identification of a New OH Stretch Vibrational Band at the Surface of Ice.

    PubMed

    Smit, Wilbert J; Tang, Fujie; Nagata, Yuki; Sánchez, M Alejandra; Hasegawa, Taisuke; Backus, Ellen H G; Bonn, Mischa; Bakker, Huib J

    2017-08-03

    We study the signatures of the OH stretch vibrations at the basal surface of ice using heterodyne-detected sum-frequency generation and molecular dynamics simulations. At 150 K, we observe seven distinct modes in the sum-frequency response, five of which have an analogue in the bulk, and two pure surface-specific modes at higher frequencies (∼3530 and ∼3700 cm(-1)). The band at ∼3530 cm(-1) has not been reported previously. Using molecular dynamics simulations, we find that the ∼3530 cm(-1) band contains contributions from OH stretch vibrations of both fully coordinated interfacial water molecules and water molecules with two donor and one acceptor hydrogen bond.

  9. Stretching and imaging of single DNA chains on a hydrophobic polymer surface made of amphiphilic alternating comb-copolymer.

    PubMed

    Liu, Rongrong; Wong, Sheau Tyug; Lau, Peggy Pei Zhi; Tomczak, Nikodem

    2014-02-26

    Functionalization of amine derivatized glass slides with a poly(maleic anhydride)-based comb-copolymer to facilitate stretching, aligning, and imaging of individual dsDNA chains is presented. The polymer-coated surface is hydrophobic due to the presence of the long alkyl side chains along the polymer backbone. The surface is also characterized by low roughness and a globular morphology. Stretched and aligned bacteriophage λ-DNA chains were obtained using a robust method based on stretching by a receding water meniscus at pH 7.8 without the need for small droplet volumes or precoating the surface with additional layers of (bio)molecules. Although the dye to DNA base pairs ratio did not influence substantially the stretching length distributions, a clear peak at stretching lengths close to the contour length of the dsDNA is visible at larger staining ratios.

  10. Evaluation of permeable pavement responses to urban surface runoff.

    PubMed

    Kamali, Meysam; Delkash, Madjid; Tajrishy, Massoud

    2017-02-01

    The construction of permeable pavement (PP) in sidewalks of urban areas is an alternative low impact development (LID) to control stormwater runoff volume and consequently decrease the discharge of pollutants in receiving water bodies. In this paper, some laboratory experiments were performed to evaluate the efficiency of a PP subjected to sediment loadings during its life span. Simple infiltration models were validated by the laboratory experiments to evaluate the trend and extend of PP infiltration capacity throughout the life of the pavement operation. In addition, performances of the PP in removing total suspended solids (TSS) and selective nutrient pollutants such as NO3(-),NH4(+) and PO4(-3) from the surface runoff have been investigated. Experimental data showed that the PP was completely clogged after seven hydrological years. The model revealed that the ratio of horizontal to vertical hydraulic conductivity is 3.5 for this PP. Moreover, it was found that 20% reduction in hydraulic conductivity occurred after three hydrological years. The PP showed 100%, 23% and 59% efficiencies in sediment retention (TSS removal), (PO4(-3)), and N-NH4(+) removal during the entire study, respectively. However, the removal efficiency of (N-NO3(-)) was -12% and we suspect the increase in effluent (N-NO3(-)) is due to the nitrification process in subsurface layers. This study demonstrated that when PPs are annually cleaned, it is expected that PPs can function hydraulically and be able to remove particulate pollutants during their life span by a proper maintenance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Dynamical instability in surface permeability characteristics of building sandstones in response to salt accumulation over time

    NASA Astrophysics Data System (ADS)

    McCabe, S.; McKinley, J. M.; Gomez-Heras, M.; Smith, B. J.

    2011-07-01

    This paper explores how the surface permeability of sandstone blocks changes over time in response to repeated salt weathering cycles. Surface permeability controls the amount of moisture and dissolved salt that can penetrate in and facilitate decay. Connected pores permit the movement of moisture (and hence soluble salts) into the stone interior, and where areas are more or less permeable soluble salts may migrate along preferred pathways at differential rates. Previous research has shown that salts can accumulate in the near-surface zone and lead to partial pore blocking which influences subsequent moisture ingress and causes rapid salt accumulation in the near-surface zone. Two parallel salt weathering simulations were carried out on blocks of Peakmoor Sandstone of different volumes. Blocks were removed from simulations after 2, 5, 10, 20 and 60 cycles. Permeability measurements were taken for these blocks at a resolution of 20 mm, providing a grid of 100 permeability values for each surface. The geostatistical technique of ordinary kriging was applied to the data to produce a smoothed interpolation of permeability for these surfaces, and hence improve understanding of the evolution of permeability over time in response to repeated salt weathering cycles. Results illustrate the different responses of the sandstone blocks of different volumes to repeated salt weathering cycles. In both cases, after an initial subtle decline in the permeability (reflecting pore blocking), the permeability starts to increase — reflected in a rise in mean, maximum and minimum values. However, between 10 and 20 cycles, there is a jump in the mean and range permeability of the group A block surfaces coinciding with the onset of meaningful debris release. After 60 cycles, the range of permeability in the group A block surface had increased markedly, suggesting the development of a secondary permeability. The concept of dynamic instability and divergent behaviour is applied at the

  12. Rotating flow of a nanofluid due to an exponentially stretching surface with suction

    NASA Astrophysics Data System (ADS)

    Salleh, Siti Nur Alwani; Bachok, Norfifah; Arifin, Norihan Md

    2017-08-01

    An analysis of the rotating nanofluid flow past an exponentially stretched surface with the presence of suction is studied in this work. Three different types of nanoparticles, namely, copper, titania and alumina are considered. The system of ordinary differential equations is computed numerically using a shooting method in Maple software after being transformed from the partial differential equations. This transformation has considered the similarity transformations in exponential form. The physical effect of the rotation, suction and nanoparticle volume fraction parameters on the rotating flow and heat transfer phenomena is investigated and has been described in detail through graphs. The dual solutions are found to appear when the governing parameters reach a certain range.

  13. 3-D Maxwell fluid flow over an exponentially stretching surface using 3-stage Lobatto IIIA formula

    NASA Astrophysics Data System (ADS)

    Awais, M.; Hayat, T.; Ali, Aamir

    2016-05-01

    The present study looks at the three dimensional boundary layer flow driven by an exponentially stretching surface. An upper-convected Maxwell (UCM) fluid is considered. Characteristics here are characterized by rheological constitutive equations of upper convected Maxwell (UCM) fluid. Involved mathematical modeling constitutes a nonlinear differential system. 3-stage Lobatto IIIA formula is employed to construct the numerical solutions whereas analytic solutions are computed using HAM. Both solutions are compared and found in good agreement. The velocity components are analyzed for the Deborah number and ratio parameters.

  14. Surface potential and permeability of rock cores under asphaltenic oil flow conditions

    SciTech Connect

    Alkafeef, S.F.; Gochin, R.J.; Smith, A.L.

    1995-12-31

    The surface properties, wetting behaviour and permeability of rock samples are central to understanding recovery behaviour in oil reservoirs. This paper will present a method new to petroleum engineering to show how area/length ratios for porous systems can be obtained by combining streaming potential and streaming current measurements on rock cores. This has allows streaming current measurements (independent of surface conductivity errors) to be made on rock samples using hydrocarbon solvents with increasing concentrations of asphaltene. Negative surface potentials for the rock became steadily more positive as asphaltene coated the pore surfaces, with permeability reduction agreeing well with petrographic analysis.

  15. Effects of skin surface temperature on epidermal permeability barrier homeostasis.

    PubMed

    Denda, Mitsuhiro; Sokabe, Takaaki; Fukumi-Tominaga, Tomoko; Tominaga, Makoto

    2007-03-01

    Members of the transient receptor potential (TRP) family are temperature sensors, and TRPV1, V3, and V4 are expressed in epidermal keratinocytes. To evaluate the influence of these receptors on epidermal permeability barrier homeostasis, we kept both hairless mouse skin and human skin at various temperatures immediately after tape stripping. At temperatures from 36 to 40 degrees C, barrier recovery was accelerated in both cases compared with the area at 34 degrees C. At 34 or 42 degrees C, barrier recovery was delayed compared with the un-occluded area. 4Alpha-phorbol 12,13-didecanone, an activator of TRPV4, accelerated barrier recovery, whereas ruthenium red, a blocker of TRPV4, delayed barrier recovery. Capsaicin, an activator of TRPV1, delayed barrier recovery, whereas capsazepin, an antagonist of TRPV1, blocked this delay. 2-Aminoethoxydiphenyl borate and camphor, TRPV3 activators, did not affect the barrier recovery rate. As TRPV4 is activated at about 35 degrees C and above, whereas TRPV1 is activated at about 42 degrees C and above, these results suggest that both TRPV1 and TRPV4 play important roles in skin permeability barrier homeostasis. Previous reports suggest the existence of a water flux sensor in the epidermis, and as TRPV4 is known to be activated by osmotic pressure, our results indicate that it might be this sensor.

  16. In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching.

    PubMed

    Maiti, Raman; Gerhardt, Lutz-Christian; Lee, Zing S; Byers, Robert A; Woods, Daniel; Sanz-Herrera, José A; Franklin, Steve E; Lewis, Roger; Matcher, Stephen J; Carré, Matthew J

    2016-09-01

    Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Influence of multi-wavelength laser irradiation of enamel and dentin surfaces on surface morphology and permeability

    NASA Astrophysics Data System (ADS)

    Chang, Nai-Yuan N.; Jew, Jamison; Simon, Jacob C.; Chan, Kenneth H.; Lee, Robert C.; Fried, William A.; Cho, Jinny; Darling, Cynthia L.; Fried, Daniel

    2017-02-01

    UV and IR lasers can be used to specifically target protein, water, and the mineral phase of dental hard tissues to produce varying changes in surface morphology. In this study, we irradiated enamel and dentin surfaces with various combinations of lasers operating at 0.355, 2.94, and 9.4 μm, exposed those surfaces to topical fluoride, and subsequently evaluated the influence of these changes on surface morphology and permeability. Digital microscopy and surface dehydration rate measurements were used to monitor changes in the samples overtime. The surface morphology and permeability (dehydration rate) varied markedly with the different laser treatments on enamel. On dentin, fluoride was most effective in reducing the permeability.

  18. MHD viscous Casson fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable stretching sheet in the presence of internal heat generation/absorption and thermal radiation

    NASA Astrophysics Data System (ADS)

    Megahed, Ahmed M.

    2015-04-01

    This article is devoted to describing the boundary layer flow and heat transfer for an electrically conducting Casson fluid over a permeable stretching surface with second-order slip velocity model and thermal slip conditions in the presence of internal heat generation/absorption and thermal radiation. The basic equations governing the flow and heat transfer are in the form of partial differential equations; the same have been reduced to a set of highly non-linear ordinary differential equations by applying suitable similarity transformations. Exact solution corresponding to momentum equation is obtained, and, in the case of no slip conditions, we get the exact solutions for both momentum and energy equation. The resulting similarity equations are solved numerically by shooting method. Comparisons with previously published work are performed and the results are found to be in excellent agreement. In the present work the effect of magnetic parameter, suction/injection parameter, Casson parameter, slip parameters, radiation parameter, internal heat generation/absorption parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Also, the local skin-friction coefficient and the local Nusselt number at the sheet are computed and discussed. It is found that the temperature rises to a higher value when the Casson parameter increases but the reverse is true for the velocity distribution. Finally, increasing the velocity and thermal slip parameters makes the rate of heat transfer decrease.

  19. On the hydrodynamic interaction between a particle and a permeable surface

    NASA Astrophysics Data System (ADS)

    Ramon, Guy Z.; Huppert, Herbert E.; Lister, John R.; Stone, Howard A.

    2013-07-01

    The motion and deposition of a particle translating perpendicular to a rigid, permeable surface is considered. The lubrication approximation is used to derive an equation for the pressure in the gap between the particle and the permeable surface, with a symmetric shape prescribed for the particle. The hydrodynamic force on a particle is, in general, a function of the particle size and shape, the distance from the surface and the surface permeability, and its sign depends on the relative motion of the particle and the background fluid permeating through the surface. As the particle becomes flatter, this force generally increases and is more sensitive to the surface permeability. In the case of a spherical particle, closed-form, approximate solutions are obtained using perturbation methods, in the limits of small permeability and close approach to contact. It is also shown that a sedimenting particle attains a finite velocity on close approach, which scales as k1/2 and k for a sphere and a disc, respectively, where k is the permeability per unit thickness of the surface. In the case of a particle advected toward the surface, as is common in membrane filtration, a balance of electrostatic repulsion and viscous drag is used to calculate a possible equilibrium position of the particle, at some finite distance from the surface. The dependence of the equilibrium and its stability is shown in terms of the ratio of electrostatic and lubrication forces at contact, as well as the ratio of characteristic lengths over which the two forces decay away from the boundary. The latter is found to be a significant factor in determining the conditions under which a stable equilibrium exists. These results are useful for estimating deposition propensity in membrane filtration processes, as affected by operational conditions.

  20. NMDA receptor mediated phosphorylation of GluR1 subunits contributes to the appearance of calcium-permeable AMPA receptors after mechanical stretch injury

    PubMed Central

    Spaethling, Jennifer; Le, Linda; Meaney, David F

    2016-01-01

    Alterations in neuronal cytosolic calcium is a key mediator of the traumatic brain injury (TBI) pathobiology, but less is known of the role and source of calcium in shaping early changes in synaptic receptors and neural circuits after TBI. In this study, we examined the calcium source and potential phosphorylation events leading to insertion of calcium-permeable AMPARs (CP-AMPARs) after in vitro traumatic brain injury, a receptor subtype that influences neural circuit dynamics for hours to days following injury. We found that both synaptic and NR2B-containing NMDARs contribute significantly to the calcium influx following stretch injury. Moreover, an early and sustained phosphorylation of the S-831 site of the GluR1 subunit appeared after mechanical injury, and this phosphorylation was blocked with the inhibition of either synaptic NMDARs or NR2B-containing NMDARs. In comparison, mechanical injury led to no significant change in the S-845 phosphorylation of the GluR1 subunit. Although no change in S-845 phosphorylation appeared in injured cultures, we observed that inhibition of NR2B-containing NMDARs significantly increased S-845 phosphorylation one hour after injury while blockade of synaptic NMDARs did not change S-845 phosphorylation at any time point following injury. These findings show that a broad class of NMDARs are activated in parallel and that targeting either subpopulation will reverse some of the consequences of mechanical injury, providing distinct paths to treat the effects of mechanical injury on neural circuits after TBI. PMID:22426393

  1. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: A finite element study

    PubMed Central

    Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur

    2015-01-01

    Background A nonlinear isotropic finite element (FE) model of a 29 year old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. Methods The model simulates dis-accommodation by stretching of the lens and predicts the change in the lens capsule, cortex and nucleus surface profiles at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the FE results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Results Aspects of lens shape change relative to stretch were evaluated including change in diameter (d), central thickness (T) and accommodation (A). Maximum accommodation achieved was 10.29 D. From the MRA, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5×10−3 µm, p<0.001). The results are compared with those from in vitro studies. Conclusions The FE and ray-tracing predictions are consistent with EVAS studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully-accommodated states. PMID:25727940

  2. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study.

    PubMed

    Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur

    2015-03-01

    A non-linear isotropic finite element (FE) model of a 29-year-old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. The model simulates dis-accommodation by stretching of the lens and predicts the change in surface profiles of the lens capsule, cortex and nucleus at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the finite element results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Aspects of lens shape change relative to stretch were evaluated, including change in diameter, central thickness and accommodation. Maximum accommodation achieved was 10.29 D. From the multiple regression analysis, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5 × 10(-3 ) μm, p < 0.001). The results are compared with those from in vitro studies. The finite element and ray-tracing predictions are consistent with Ex Vivo Accommodation Simulator (EVAS) studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully accommodated states. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  3. The Effect of Thermophoresis on Unsteady Oldroyd-B Nanofluid Flow over Stretching Surface.

    PubMed

    Awad, Faiz G; Ahamed, Sami M S; Sibanda, Precious; Khumalo, Melusi

    2015-01-01

    There are currently only a few theoretical studies on convective heat transfer in polymer nanocomposites. In this paper, the unsteady incompressible flow of a polymer nanocomposite represented by an Oldroyd-B nanofluid along a stretching sheet is investigated. Recent studies have assumed that the nanoparticle fraction can be actively controlled on the boundary, similar to the temperature. However, in practice, such control presents significant challenges and in this study the nanoparticle flux at the boundary surface is assumed to be zero. We have used a relatively novel numerical scheme; the spectral relaxation method to solve the momentum, heat and mass transport equations. The accuracy of the solutions has been determined by benchmarking the results against the quasilinearisation method. We have conducted a parametric study to determine the influence of the fluid parameters on the heat and mass transfer coefficients.

  4. The Effect of Thermophoresis on Unsteady Oldroyd-B Nanofluid Flow over Stretching Surface

    PubMed Central

    Awad, Faiz G.; Ahamed, Sami M. S.; Sibanda, Precious; Khumalo, Melusi

    2015-01-01

    There are currently only a few theoretical studies on convective heat transfer in polymer nanocomposites. In this paper, the unsteady incompressible flow of a polymer nanocomposite represented by an Oldroyd-B nanofluid along a stretching sheet is investigated. Recent studies have assumed that the nanoparticle fraction can be actively controlled on the boundary, similar to the temperature. However, in practice, such control presents significant challenges and in this study the nanoparticle flux at the boundary surface is assumed to be zero. We have used a relatively novel numerical scheme; the spectral relaxation method to solve the momentum, heat and mass transport equations. The accuracy of the solutions has been determined by benchmarking the results against the quasilinearisation method. We have conducted a parametric study to determine the influence of the fluid parameters on the heat and mass transfer coefficients. PMID:26312754

  5. Laser surfacing of high density polyethylene for reduction in fuel permeability

    SciTech Connect

    Duley, W.W. ); Ogmen, M.; Steel, T. ); Mihailov, S. )

    1992-01-01

    This paper reports that the increasing use of plastics by the automobile industry has resulted in new manufacturing technology. For example, high density polyethylene (HDPE) fuel tanks can now be blow-molded to fit available vehicle space. Such HDPE tanks offer several advantages over conventional metal tanks. Some of these advantages are: lower production cost; ease of fabrication and fitting to vehicle; reduced explosion hazard; 40 - 50 % reduction in weight; impact resistance; and lack of corrosion. The effect of UV and CO[sub 2] laser radiation on the surface of HDPE gas tank material in relation to the permeability of the surface to unleaded gasoline has been investigated. It is found that while excimer (UV) laser radiation has no effect on permeability, CO[sub 2] laser radiation at low intensity modifies the surface so as to reduce permeability over timescales of 1 - 2 days. A possible origin for this modification is suggested.

  6. The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno's Model: A Revised Model

    NASA Astrophysics Data System (ADS)

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2016-01-01

    A numerical study on the stagnation-point boundary layer flow of a viscous and incompressible (Newtonian) fluid past a stretching/shrinking sheet with the fluid suction using Buongiorno's model is considered. The main focus of this article is the effects of the non-alignment of the flow and the surface of the sheet. We have also studied the problem using a new boundary condition that is more physically realistic which assumes that the nanoparticle fraction at the surface is passively controlled. The governing equations of this problem are reduced to the ordinary differential equations using some similarity transformations which are then solved using the bvp4c function in Matlab. From the results obtained, we concluded that the effect of the non-alignment function is the same as in the regular fluid or nanofluid. However, it is found that the fluid suction can reduce the effect of the non-alignment at the surface. Dual solutions have also been discovered in this problem and from the stability analysis it is found that the first solution is stable while the second solution is not stable.

  7. Liquid film condensation along a vertical surface in a thin porous medium with large anisotropic permeability.

    PubMed

    Sanya, Arthur S O; Akowanou, Christian; Sanya, Emile A; Degan, Gerard

    2014-01-01

    The problems of steady film condensation on a vertical surface embedded in a thin porous medium with anisotropic permeability filled with pure saturated vapour are studied analytically by using the Brinkman-Darcy flow model. The principal axes of anisotropic permeability are oriented in a direction that non-coincident with the gravity force. On the basis of the flow permeability tensor due to the anisotropic properties and the Brinkman-Darcy flow model adopted by considering negligible macroscopic and microscopic inertial terms, boundary-layer approximations in the porous liquid film momentum equation is solved analytically. Scale analysis is applied to predict the order-of-magnitudes involved in the boundary layer regime. The first novel contribution in the mathematics consists in the use of the anisotropic permeability tensor inside the expression of the mathematical formulation of the film condensation problem along a vertical surface embedded in a porous medium. The present analytical study reveals that the anisotropic permeability properties have a strong influence on the liquid film thickness, condensate mass flow rate and surface heat transfer rate. The comparison between thin and thick porous media is also presented.

  8. Surface tension driven processes densify and retain permeability in magma and lava

    NASA Astrophysics Data System (ADS)

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.

    2016-01-01

    We offer new insights into how an explosive eruption can transition into an effusive eruption. Magma containing >0.2 wt% dissolved water has the potential to vesiculate to a porosity in excess of 80 vol.% at atmospheric pressure. Thus all magmas contain volatiles at depth sufficient to form foams and explosively fragment. Yet gas is often lost passively and effusive eruptions ensue. Magmatic foams are permeable and understanding permeability in magma is crucial for models that predict eruptive style. Permeability also governs magma compaction models. Those models generally imply that a reduction in magma porosity and permeability generates an increased propensity for explosivity. Here, our experimental results show that surface tension stresses drive densification without creating an impermeable 'plug', offering an additional explanation of why dense magmas can avoid explosive eruption. In both an open furnace and a closed autoclave, we subject pumice samples with initial porosity of ∼70 vol.% to a range of isostatic pressures (0.1-11 MPa) and temperatures (350-950 °C) relevant to shallow volcanic environments. Our experimental data and models constrain the viscosity, permeability, timescales, and length scales over which densification by pore-scale surface tension stresses competes with density-driven compaction. Where surface tension dominates the dynamics, densification halts at a plateau connected porosity of ∼25 vol.% for our samples. SEM, pycnometry and micro-tomography show that in this process (1) microporous networks are destroyed, (2) the relative pore network surface area decreases, and (3) a remaining crystal framework enhances the longevity of macro-pore connectivity and permeability critical for sustained outgassing. We propose that these observations are a consequence of a surface tension-driven retraction of viscous pore walls at areas of high bubble curvature (micro-vesicular network terminations), and that this process drives bulk

  9. MHD three-dimensional flow of viscoelastic fluid over an exponentially stretching surface with variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Alsaedi, A.; Hayat, T.; Muhammad, T.; Shehzad, S. A.

    2016-09-01

    This study models the magnetohydrodynamic (MHD) three-dimensional boundary layer flow of viscoelastic fluid. The flow is due to the exponentially stretching surface. The heat transfer analysis is performed through prescribed surface temperature (PST) and prescribed surface heat flux (PHF). The thermal conductivity is taken temperature dependent. Series solutions of velocities and temperatures are constructed. Graphical results for PST and PHF cases are plotted and analyzed. Numerical values of skin-friction coefficients and Nusselt numbers are presented and discussed.

  10. Evaluation of Surface Infiltration Testing Procedures in Permeable Pavement Systems

    EPA Science Inventory

    The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete provides limited guidance on how to select testing locations, so research is needed to evaluate how testing sites should be selected and how results should be interpreted to assess surface ...

  11. Evaluation of Surface Infiltration Testing Procedures in Permeable Pavement Systems

    EPA Science Inventory

    The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete provides limited guidance on how to select testing locations, so research is needed to evaluate how testing sites should be selected and how results should be interpreted to assess surface ...

  12. Permeability- and Surface-Energy-Tunable Polyurethane Acrylate Molds for Capillary Force Lithography.

    PubMed

    Suh, Dongchul; Tak, Hyowon; Choi, Se-jin; Kim, Tae-il

    2015-11-04

    A permeability- and surface-energy-controllable polyurethane acrylate (PUA) mold, a "capillary-force material (CFM)" mold, is introduced for capillary-force lithography (CFL). In CFL, the surface energy and gas permeability of the mold are crucial. However, the modulation of these two main factors at a time is difficult. Here, we introduce new CFM molds in which the surface energy and permeability can be modified by controlling the degree of cross-linking of the CFM. As the degree of cross-linking of the CFM mold increases, the surface energy and air permeability decrease. The high average functionality of the mold material makes it possible to produce patterns relatively finely and rapidly due to the high rate of capillary rise and stiffness, and the low functionality allows for patterns to form on a curved surface with conformal contact. CFMs with different functionality and controllable-interfacial properties will extend the capabilities of capillary force lithography to overcome the geometric limitations of patterning on a scale below 100 nm and micro- and nanopatterning on the curved region.

  13. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  14. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  15. Methods to Use Surface Infiltration Tests in Permeable Pavement Systems to Determine Maintenance Frequency

    EPA Science Inventory

    Currently, there is limited guidance on selecting test sites to measure surface infiltration rates in permeable pavement systems to determine maintenance frequency. The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete suggest to either (1) p...

  16. Methods to Use Surface Infiltration Tests in Permeable Pavement Systems to Determine Maintenance Frequency

    EPA Science Inventory

    Currently, there is limited guidance on selecting test sites to measure surface infiltration rates in permeable pavement systems to determine maintenance frequency. The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete suggest to either (1) p...

  17. Unsteady heat and mass transfer in MHD flow over an oscillatory stretching surface with Soret and Dufour effects

    NASA Astrophysics Data System (ADS)

    Zheng, Lian-Cun; Jin, Xin; Zhang, Xin-Xin; Zhang, Jun-Hong

    2013-10-01

    In this paper, we study the unsteady coupled heat and mass transfer of two-dimensional MHD fluid over a moving oscillatory stretching surface with Soret and Dufour effects. Viscous dissipation effects are adopted in the energy equation. A uniform magnetic field is applied vertically to the flow direction. The governing equations are reduced to non-linear coupled partial differential equations and solved by means of homotopy analysis method (HAM). The effects of some physical parameters such as magnetic parameter, Dufour number, Soret number, the Prandtl number and the ratio of the oscillation frequency of the sheet to its stretching rate on the flow and heat transfer characteristics are illustrated and analyzed.

  18. Multiple solutions of two-dimensional and three-dimensional flows induced by a stretching flat surface

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Ishak, Anuar

    2015-08-01

    New solutions of flow induced by a biorthogonally stretching surface are reported. The flexible membrane has linear stretching rate a along the x-axis and b along the y-axis. A similarity reduction of the Navier-Stokes equations yields a coupled pair of ordinary differential equations governed the single parameter α = b / a . Dual solutions are found in the region αt < α ⩽ 1 , where αt = - 0.2514 . One of the two components of the dual solutions exhibits algebraic decay in the far field. It appears that no self-similar solutions exist for α <αt . It is also shown that the exact solution for flow induced by a unilaterally stretching sheet due to Crane has dual solutions with algebraic decay in the far field.

  19. Liquid-gas relative permeabilities in fractures: Effects of flow structures, phase transformation and surface roughness

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Ying

    2005-11-01

    Two-phase flow through fractured media is important in petroleum, geothermal, and environmental applications. However, the actual physics and phenomena that occur inside fractures are poorly understood, and oversimplified relative permeability curves are commonly used in fractured reservoir simulations. In this work, an experimental apparatus equipped with a high-speed data acquisition system, real-time visualization, and automated image processing technology was constructed to study three transparent analog fractures with distinct surface roughnesses: smooth, homogeneously rough, and randomly rough. Air-water relative permeability measurements obtained in this study were compared with models suggested by earlier studies and analyzed by examining the flow structures. A method to evaluate the tortuosities induced by the blocking phase, namely the channel tortuosity, was proposed from observations of the flow structure images. The relationship between the coefficients of channel tortuosity and the relative permeabilities was studied with the aid of laboratory experiments and visualizations. Experimental data from these fractures were used to develop a broad approach for modeling two-phase flow behavior based on the flow structures. Finally, a general model deduced from these data was proposed to describe two-phase relative permeabilities in both smooth and rough fractures. For the theoretical analysis of liquid-vapor relative permeabilities, accounting for phase transformations, the inviscid bubble train models coupled with relative permeability concepts were developed. The phase transformation effects were evaluated by accounting for the molecular transport through liquid-vapor interfaces. For the steam-water relative permeabilities, we conducted steam-water flow experiments in the same fractures as used for air-water experiments. We compared the flow behavior and relative permeability differences between two-phase flow with and without phase transformation effects

  20. Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface

    NASA Astrophysics Data System (ADS)

    Ul Haq, Rizwan; Khan, Zafar Hayat; Khan, Waqar Ahmed

    2014-09-01

    This article is intended for investigating the effects of magnetohydrodynamics (MHD) and volume fraction of carbon nanotubes (CNTs) on the flow and heat transfer in two lateral directions over a stretching sheet. For this purpose, three types of base fluids specifically water, ethylene glycol and engine oil with single and multi-walled carbon nanotubes are used in the analysis. The convective boundary condition in the presence of CNTs is presented first time and not been explored so far. The transformed nonlinear differential equations are solved by the Runge-Kutta-Fehlberg method with a shooting technique. The dimensionless velocity and shear stress are obtained in both directions. The dimensionless heat transfer is determined on the surface. Three different models of thermal conductivity are comparable for both CNTs and it is found that the Xue [1] model gives the best approach to guess the superb thermal conductivity in comparison with the Maxwell [2] and Hamilton and Crosser [3] models. And finally, another finding suggests the engine oil provides the highest skin friction and heat transfer rates.

  1. Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Khan, Zafar Hayat

    2016-07-01

    The combine effects of magnetic field bioconvection, Brownian motion and thermophoresis on a free convection nanofluid flow over a stretching sheet containing gyrotactic microorganisms are investigated. The self-similar Buongiorno model is analyzed first time for stretching sheet numerically. The present results are compared with available data and are found in an excellent agreement. Pertinent results are presented graphically and discussed quantitatively with respect to variation in bioconvection parameters.

  2. Influence of thickness and permeability of endothelial surface layer on transmission of shear stress in capillaries

    NASA Astrophysics Data System (ADS)

    Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert

    2015-07-01

    The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.

  3. Influence of surface-active food additives on the integrity and permeability of rat intestinal mucosa.

    PubMed

    Tagesson, C; Edling, C

    1984-11-01

    The influence of two surface-active food additives on the integrity and permeability of rat ileal mucosa has been studied. We determined the activity of N-acetyl-beta-glucosaminidase, a lysosomal enzyme, in the rat intestinal lumen after deposition of polyoxyethylene (20) sorbitan monostearate (polysorbate 60; Tween 60) or polyoxyethylene (20) sorbitan monooleate (polysorbate 80; Tween 80) in a section of ligated, cannulated gut. We also determined the activities of N-acetyl-beta-glucosaminidase, alkaline phosphatase, 5'-nucleotidase and phospholipase A2 in mixtures of isolated mucosal cells and polysorbate 60 or polysorbate 80. The activity of N-acetyl-beta-glucosaminidase was increased in the luminal contents of the cannulated gut 15 min after deposition of either polysorbate 60 or polysorbate 80 (10 mg/ml fluid instilled into gut). It was also increased in mixtures of mucosal cells and polysorbate 60 or polysorbate 80 (0.1-10 mg/ml). In contrast, the activities of alkaline phosphatase and 5'-nucleotidase were unaffected and that of phospholipase A2 was decreased by the presence of either polysorbate. These findings indicated that polysorbate 60 and polysorbate 80 released lysosomal enzymes from the intestinal mucosal cells and that these agents might damage the intestinal mucosa and increase its permeability. We therefore determined the intestinal permeability to sodium fluorescein in the absence and presence of polysorbate 60 or 80 and found that the permeability was slightly increased in the presence of either of the compounds at concentrations of 10 mg/ml fluid instilled into gut. It is possible therefore that surface-active food additives might impair the function of the mucosal barrier and increase the permeability of the gut to potentially toxic and pathogenic molecules.

  4. Simultaneous engagement of mechanical stretching and surface pattern promotes cardiomyogenic differentiation of human mesenchymal stem cells.

    PubMed

    Gu, Seo Rin; Kang, Yun Gyeong; Shin, Ji Won; Shin, Jung-Woog

    2017-02-01

    It has been widely recognized and proved that biophysical factors for mimicking in vivo conditions should be also considered to have stem cells differentiated into desired cell type in vitro along with biochemical factors. Biophysical factors include substrate and biomechanical conditions. This study focused on the effect of biomimetic mechanical stretching along with changes in substrate topography to influence on cardiomyogenic differentiation of human mesenchymal stem cells (hMSCs). Elastic micropatterned substrates were made to mimic the geometric conditions surrounding cells in vivo. To mimic biomechanical conditions due to beating of the heart, mechanical stretching was applied parallel to the direction of the pattern (10% elongation, 0.5 Hz, 4 h/day). Suberoylanilide hydroxamic acid (SAHA) was used as a biochemical factor. The micropatterned substrate was found more effective in the alignment of cytoskeleton and cardiomyogenic differentiation compared with flat substrate. Significantly higher expression levels of related markers [GATA binding protein 4 (GATA4), troponin I, troponin T, natriuretic peptide A (NPPA)] were observed when mechanical stretching was engaged on micropatterned substrate. In addition, 4 days of mechanical stretching was associated with higher levels of expression than 2 days of stretching. These results indicate that simultaneous engagement of biomimetic environment such as substrate pattern and mechanical stimuli effectively promotes the cardiomyogenic differentiation of hMSCs in vitro. The suggested method which tried to mimic in vivo microenvironment would provide systematic investigation to control cardiomyogenic differentiation of hMSCs.

  5. Effect of perfusate hematocrit on urea permeability-surface area in isolated dog lung

    SciTech Connect

    Parker, R.E.; Roselli, R.J.; Haselton, F.R.; Harris, T.R.

    1986-10-01

    Seven dog lower left lung lobes were statically inflated and perfused at a constant rate for each lobe with a perfusate in which the hematocrit was altered over a wide range. The permeability-surface area of urea was calculated from multiple indicator dilution curves using two separate injectates for each hematocrit level. One injectate contained only /sup 125/I-albumin as the vascular reference tracer and the other contained both /sup 51/Cr-erythrocytes and /sup 125/I-albumin as the vascular reference tracers; both contained (/sup 14/C)urea as the permeating tracer. The results strongly indicate that the phenomenon of erythrocyte trapping of urea does not affect the calculation of urea permeability-surface area product provided the appropriate albumin-erythrocyte composite reference tracer is utilized in its calculation.

  6. Numerical Simulation of MHD Hiemenz Flow of a Micropolar Fluid towards a Nonlinear Stretching Surface through a Porous Medium

    NASA Astrophysics Data System (ADS)

    Sharma, Rajesh; Bhargava, Rama

    2015-07-01

    In this article, the two-dimensional boundary layer problem of Hiemenz flow (two-dimensional flow of a fluid near a stagnation point) of an incompressible micropolar fluid towards a nonlinear stretching surface placed in a porous medium in the presence of transverse magnetic field is examined. The resulting nonlinear differential equations governing the problem have been transformed by a similarity transformation into a system of nonlinear ordinary differential equations which are solved numerically by the Element Free Galerkin method. The influence of various parameters on the velocity, microrotation, temperature, and concentration is shown. Some of the results are compared with the Finite Element Method. Finally, validation of the numerical results is demonstrated for local skin friction ? for hydrodynamic micropolar fluid flow on a linearly stretching surface.

  7. Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics.

    PubMed

    Zhang, Wei; Fan, Liu-Min; Wu, Wei-Hua

    2007-03-01

    In responses to a number of environmental stimuli, changes of cytoplasmic [Ca(2+)](cyt) in stomatal guard cells play important roles in regulation of stomatal movements. In this study, the osmo-sensitive and stretch-activated (SA) Ca(2+) channels in the plasma membrane of Vicia faba guard cells are identified, and their regulation by osmotic changes and actin dynamics are characterized. The identified Ca(2+) channels were activated under hypotonic conditions at both whole-cell and single-channel levels. The channels were also activated by a stretch force directly applied to the membrane patches. The channel-mediated inward currents observed under hypotonic conditions or in the presence of a stretch force were blocked by the Ca(2+) channel inhibitor Gd(3+). Disruption of actin filaments activated SA Ca(2+) channels, whereas stabilization of actin filaments blocked the channel activation induced by stretch or hypotonic treatment, indicating that actin dynamics may mediate the stretch activation of these channels. In addition, [Ca(2+)](cyt) imaging demonstrated that both the hypotonic treatment and disruption of actin filaments induced significant Ca(2+) elevation in guard cell protoplasts, which is consistent with our electrophysiological results. It is concluded that stomatal guard cells may utilize SA Ca(2+) channels as osmo sensors, by which swelling of guard cells causes elevation of [Ca(2+)](cyt) and consequently inhibits overswelling of guard cells. This SA Ca(2+) channel-mediated negative feedback mechanism may coordinate with previously hypothesized positive feedback mechanisms and regulate stomatal movement in response to environmental changes.

  8. Osmo-Sensitive and Stretch-Activated Calcium-Permeable Channels in Vicia faba Guard Cells Are Regulated by Actin Dynamics1[OA

    PubMed Central

    Zhang, Wei; Fan, Liu-Min; Wu, Wei-Hua

    2007-01-01

    In responses to a number of environmental stimuli, changes of cytoplasmic [Ca2+]cyt in stomatal guard cells play important roles in regulation of stomatal movements. In this study, the osmo-sensitive and stretch-activated (SA) Ca2+ channels in the plasma membrane of Vicia faba guard cells are identified, and their regulation by osmotic changes and actin dynamics are characterized. The identified Ca2+ channels were activated under hypotonic conditions at both whole-cell and single-channel levels. The channels were also activated by a stretch force directly applied to the membrane patches. The channel-mediated inward currents observed under hypotonic conditions or in the presence of a stretch force were blocked by the Ca2+ channel inhibitor Gd3+. Disruption of actin filaments activated SA Ca2+ channels, whereas stabilization of actin filaments blocked the channel activation induced by stretch or hypotonic treatment, indicating that actin dynamics may mediate the stretch activation of these channels. In addition, [Ca2+]cyt imaging demonstrated that both the hypotonic treatment and disruption of actin filaments induced significant Ca2+ elevation in guard cell protoplasts, which is consistent with our electrophysiological results. It is concluded that stomatal guard cells may utilize SA Ca2+ channels as osmo sensors, by which swelling of guard cells causes elevation of [Ca2+]cyt and consequently inhibits overswelling of guard cells. This SA Ca2+ channel-mediated negative feedback mechanism may coordinate with previously hypothesized positive feedback mechanisms and regulate stomatal movement in response to environmental changes. PMID:17259289

  9. Multiscale Characterization of Porosity, Permeability and reactive Surface Changes During Dissolution.

    NASA Astrophysics Data System (ADS)

    Gouze, P.; Sadhukhan, S.; Dentz, M.; Luquot, L.; Dweik, J.

    2011-12-01

    Meshed models in which equations are solved assuming that constant macroscopic properties can be defined in each cells are essential tools for predicting reservoir properties changes triggered by dissolution and precipitation. However, the parameterization of the dissolution-precipitation problem and their feedback effects on the flow field are still challenging. The problem arises from the mismatch between the scales at which averaged parameters and parameters relationships (such as the porosity-permeability heuristic relation) are defined and the scale at which chemical reactions occur according to the pore scale fluid concentration and flow heterogeneities and modify the pore network geometry. Here, we investigate the links between the dissolution mechanisms that control the porosity changes and the related changes of the reactive surface area and of the permeability. We used X-ray microtomography data obtained before and after a set of dissolution experiments of pure calcite rocks using distinctly different brine- CO2 mixtures. The objective is to characterize pore scale changes and constrain the macroscale relationships between permeability, porosity and reactive surface area by introducing parameters that can be computed from the X-ray microtomography images, e.g. pore size distribution, pore network and surface tortuosity and multifractal properties. For instance it is shown that depending on the initial heterogeneity and the dissolution capacity of the inlet fluid (here CO2 concentration) permeability increase is due to distinctly combinations of tortuosity decrease and hydraulic radius increase. Such changes can be investigated using pore scale modeling for simple pore network geometries and chemical systems for which reactions can be linked to pore scale and sample scale mixing mechanisms.

  10. Surface Infiltration Rates of Permeable Surfaces: Six Month Update (November 2009 through April 2010)

    EPA Science Inventory

    At the end of October 2009, EPA opened a parking lot on the Edison Environmental Center that included three parking rows of permeable pavement. The construction was a cooperative effort among EPA’s Office of Administration and Resources Management, National Risk Management Resea...

  11. Surface Infiltration Rates of Permeable Surfaces: Six Month Update (November 2009 through April 2010)

    EPA Science Inventory

    At the end of October 2009, EPA opened a parking lot on the Edison Environmental Center that included three parking rows of permeable pavement. The construction was a cooperative effort among EPA’s Office of Administration and Resources Management, National Risk Management Resea...

  12. On the protonation of oxo- and hydroxo-groups of the goethite (α-FeOOH) surface: A FTIR spectroscopic investigation of surface O H stretching vibrations

    NASA Astrophysics Data System (ADS)

    Boily, Jean-François; Felmy, Andrew R.

    2008-07-01

    The O-H stretching region of goethite particles evaporated at different levels of acidity was investigated by Attenuated Total Reflectance (ATR)-Fourier Transform InfraRed (FTIR) spectroscopy. Two-dimensional IR Correlation Spectroscopy was used to identify correlations between different sets of discrete surface OH stretches and a Multivariate Curve Resolution analysis was used to resolve the predominant spectral components. Two dominant groups of hydroxyls were identified on the basis of their differences in proton affinity. Group I hydroxyls appear as two 3698/3541 and 3660/3490 cm -1 band pairs. Group II hydroxyls are manifested through the 3648 and 3578 cm -1 bands at greater levels of surface proton loading. There is consequently no correlation between O-H stretching frequencies and proton affinity. Groups I and II were assigned to mostly singly- (-OH) and doubly- (μ-OH) coordinated hydroxyls, respectively. Stretches arising from triply-coordinated (μ 3-OH) are proposed to be embedded within the dominant O-H band of bulk goethite. The possibility that these sites contribute to Group I and II hydroxyls should, however, not be entirely dismissed without further investigations. A reexamination of Temperature Programmed Desorption (TPD)-FTIR data of one goethite sample evaporated from alkaline conditions [Boily J.-F., Szanyi J., Felmy A. R. (2006) A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite. Geochim. Cosmochim. Acta70, 3613-3624] provided further constraints to this band assignment by providing clues to the network of surface hydrogen bonds. Important cooperative effects between hydrogen-bonded surface hydroxyls are suggested to play a crucial role on the variations of the position and intensity of discrete O-H stretching bands as a function of protonation level and temperature.

  13. On the protonation of oxo- and hydroxo- groups of the goethite (α-FeOOH) surface: A FTIR spectroscopic investigation of surface O-H stretching vibrations.

    SciTech Connect

    Boily, Jean F; Felmy, Andrew R

    2008-06-01

    The O–H stretching region of goethite particles evaporated at different levels of acidity was investigated by Attenuated Total Reflectance (ATR)-Fourier Transform InfraRed (FTIR) spectroscopy. Two-dimensional IR Correlation Spectroscopy was used to identify correlations between different sets of discrete surface OH stretches and a Multivariate Curve Resolution analysis was used to resolve the predominant spectral components. Two dominant groups of hydroxyls were identified on the basis of their differences in proton affinity. Group I hydroxyls appear as two 3698/3541 and 3660/3490 cm-1 band pairs. Group II hydroxyls are manifested through the 3648 and 3578 cm-1 bands at greater levels of surface proton loading. There is consequently no correlation between O–H stretching frequencies and proton affinity. Groups I and II were assigned to mostly singly- (–OH) and doubly- (μ-OH) coordinated hydroxyls, respectively. Stretches arising from triply-coordinated (μ3-OH) are proposed to be embedded within the dominant O–H band of bulk goethite. The possibility that these sites contribute to Group I and II hydroxyls should, however, not be entirely dismissed without further investigations. A reexamination of Temperature Programmed Desorption (TPD)-FTIR data of one goethite sample evaporated from alkaline conditions [Boily J.-F., Szanyi J., Felmy A. R. (2006) A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite. Geochim. Cosmochim. Acta70, 3613–3624] provided further constraints to this band assignment by providing clues to the network of surface hydrogen bonds. Important cooperative effects between hydrogen-bonded surface hydroxyls are suggested to play a crucial role on the variations of the position and intensity of discrete O–H stretching bands as a function of protonation level and temperature.

  14. Surface electromyographic assessment of the effect of static stretching of the gastrocnemius on vertical jump performance.

    PubMed

    Wallmann, Harvey W; Mercer, John A; McWhorter, J Wesley

    2005-08-01

    The purpose of this study was to investigate the effects of static stretching of the gastrocnemius muscle on maximal vertical jump performance using electromyographic activity (EMG) of the gastrocnemius musculature to record muscle activation during vertical jump performance. Fourteen healthy adults (8 men and 6 women) aged 18-34 years, who were familiar with the vertical jumping task and had no lower extremity injuries or any bone or joint disorders within the past year, served as participants for this study. After a brief warm-up, participants performed the following sequence: (a) three baseline maximal vertical jump trials, (b) 15 minutes of quiet sitting and three 30-second bilateral static stretches of the gastrocnemius muscles, and (c) 3 maximal vertical jump trials. Jump height data were collected using the Kistler force plate, while muscle activity was recorded during the jumping and stretching trials using a Noraxon telemetry EMG unit. Vertical jump height data as well as EMG values were averaged for the 3 trials and analyzed using paired t-tests for pre- and poststretching (alpha = 0.05). Vertical jump height was 5.6% lower when poststretch heights were compared with prestretch heights (t = -4.930, p < 0.005). Gastrocnemius EMG was 17.9% greater when the EMG during poststretch jumps was compared with prestretch jumps (t = 2.805, p < 0.02). The results from this study imply that, despite increased gastrocnemius muscle activity, static stretching of the gastrocnemius muscles had a negative effect on maximal jumping performance. The practical importance concerns coaches and athletes, who may want to consider the potential adverse effects of performing static stretching of the gastrocnemius muscles only before a jumping event, as jump height may be negatively affected. Future research is required to identify the mechanisms that affect vertical jump performance.

  15. Rigid gas permeable contact lenses surface roughness examined by interferential shifting phase and scanning electron microscopies.

    PubMed

    Merindano, M D; Canals, M; Saona, C; Costa, J

    1998-01-01

    The anterior surface roughness of seven factory new rigid gas permeable (RGP) contact lenses has been studied by interferential shifting phase microscopy (ISPM) and scanning electron microscopy (SEM). Five lenses were fluorsilicone acrylate and two lenses were silicone acrylate. Their material Dk ranged from 14 to 210. ISPM is shown to be a reliable and non-destructive method to observe and measure the relief of the contact lens surface. Moreover, profile and contour data are easily stored for further quantitative studies. ISPM contour patterns of the studied lenses are qualitatively compared with those obtained by SEM for the same lenses. Results point out that ISPM gives similar accuracy but it is non-destructive and cheaper than SEM. Moreover, the quantitative study of surface roughness suggests that there is a relationship between surface roughness and Dk of the lens material: surface roughness increases with Dk and allows to distinguish between lenses with low, medium and high Dk.

  16. High microvascular endothelial water permeability in mouse lung measured by a pleural surface fluorescence method.

    PubMed Central

    Carter, E P; Olveczky, B P; Matthay, M A; Verkman, A S

    1998-01-01

    Transport of water between the capillary and airspace compartments in lung encounters serial barriers: the alveolar epithelium, interstitium, and capillary endothelium. We previously reported a pleural surface fluorescence method to measure net capillary-to-airspace water transport. To measure the osmotic water permeability across the microvascular endothelial barrier in intact lung, the airspace was filled with a water-immiscible fluorocarbon. The capillaries were perfused via the pulmonary artery with solutions of specified osmolalites containing a high-molecular-weight fluorescent dextran. An increase in perfusate osmolality produced a prompt decrease in surface fluorescence due to dye dilution in the capillaries, followed by a slower return to initial fluorescence as capillary and lung interstitial osmolality equilibrate. A mathematical model was developed to determine the osmotic water permeability coefficient (Pf) of lung microvessels from the time course of pleural surface fluorescence. As predicted, the magnitude of the prompt change in surface fluorescence increased with decreased pulmonary artery perfusion rate and increased osmotic gradient size. With raffinose used to induce the osmotic gradient, Pf was 0.03 cm/s at 23 degrees C and was reduced 54% by 0.5 mM HgCl2. Temperature dependence measurements gave an Arrhenius activation energy (Ea) of 5.4 kcal/mol (12-37 degrees C). The apparent Pf induced by the smaller osmolytes mannitol and glycine was 0.021 and 0.011 cm/s (23 degrees C). Immunoblot analysis showed approximately 1.4 x 10(12) aquaporin-1 water channels/cm2 of capillary surface, which accounted quantitatively for the high Pf. These results establish a novel method for measuring osmotically driven water permeability across microvessels in intact lung. The high Pf, low Ea, and mercurial inhibition indicate the involvement of molecular water channels in water transport across the lung endothelium. PMID:9545071

  17. The effect of different surface materials on runoff quality in permeable pavement systems.

    PubMed

    Li, Haiyan; Li, Zhifei; Zhang, Xiaoran; Li, Zhuorong; Liu, Dongqing; Li, Tanghu; Zhang, Ziyang

    2017-07-20

    To investigate the effect of different permeable pavement surface materials on the removal of pollutants from urban storm-runoff, six commonly surface materials (porous asphalt, porous concrete, cement brick, ceramic brick, sand base brick, and shale brick) were selected in this study and the research was carried out by column experiments. Except the concentrations of total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP) in the influent and effluent that were measured, the removal mechanism of pollutants was discussed further. The results indicate that the surface materials influence the removal efficiency of pollutants greatly and have different effects on certain pollutant. Furthermore, the physical interception and adsorption would be the main mechanism for the removal of pollutants from runoff. For example, for all surface materials, the average removal efficiency of TSS is nearly about 90.0% because of physical interception. Due to the amount of iron oxide, the removal efficiency of COD, NO3-N, and TN of shale brick was 88.2, 35.1, and 17.5%, respectively. NH4-N and TN can be easily removed by porous asphalt due to the high content of organic matter. By lacking of useful adsorption sites, all the surface materials had little effect on the removal of TP from runoff. This research could offer useful guidelines for the better design of permeable pavement system and promote the insight into the removal mechanism of pollutants in permeable pavement system. Graphical abstract Different types of materials for the different types of pollutants in the runoff purification capacity were significantly different, overall, shale brick and porous asphalt Shale bricks and porous asphalt have a better purification effect according to the six kinds of materials.

  18. Surface Properties and Permeability of Poly(Vinylidene Fluoride)-Clays (PVDF/Clays) Composite Membranes

    NASA Astrophysics Data System (ADS)

    Pramono, E.; Ahdiat, M.; Simamora, A.; Pratiwi, W.; Radiman, C. L.; Wahyuningrum, D.

    2017-07-01

    Surface properties are important factors that determine the performance of ultrafiltration membranes. This study aimed to investigate the effects of clay addition on the surface properties and membrane permeability of PVDF (poly-vinylidene fluoride) membranes. Three types of clay with different particle size were used in this study, namely montmorillonite-MMT, bentonite-BNT and cloisite 15A-CLS. The PVDF-clay composite membranes were prepared by phase inversion method using PEG as additive. The hydrophobicity of membrane surface was characterized by contact angle. The membrane permeability was determined by dead- end ultrafiltration with a trans-membrane pressure of 2 bars. In contact angle measurement, water contact angle of composite membranes is higher than PVDF membrane. The addition of clays decreased water flux but increased of Dextran rejection. The PVDF-BNT composite membranes reach highest Dextran rejection value of about 93%. The type and particle size of clay affected the hydrophobicity of membrane surface and determined the resulting membrane structure as well as the membrane performance.

  19. Identification of Spurious Signals from Permeable Ffowcs Williams and Hawkings Surfaces

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.; Boyd, David D., Jr.; Nark, Douglas M.; Wiedemann, Karl E.

    2017-01-01

    Integral forms of the permeable surface formulation of the Ffowcs Williams and Hawkings (FW-H) equation often require an input in the form of a near field Computational Fluid Dynamics (CFD) solution to predict noise in the near or far field from various types of geometries. The FW-H equation involves three source terms; two surface terms (monopole and dipole) and a volume term (quadrupole). Many solutions to the FW-H equation, such as several of Farassat's formulations, neglect the quadrupole term. Neglecting the quadrupole term in permeable surface formulations leads to inaccuracies called spurious signals. This paper explores the concept of spurious signals, explains how they are generated by specifying the acoustic and hydrodynamic surface properties individually, and provides methods to determine their presence, regardless of whether a correction algorithm is employed. A potential approach based on the equivalent sources method (ESM) and the sensitivity of Formulation 1A (Formulation S1A) is also discussed for the removal of spurious signals.

  20. Dual solutions of stagnation point flow and heat transfer of Maxwell fluid over a permeable stretching/shrinking sheet in the presence of nanoparticles

    NASA Astrophysics Data System (ADS)

    Jusoh, Rahimah; Nazar, Roslinda

    2017-08-01

    Numerical investigation for stagnation point flow and heat transfer of Maxwell fluid over a stretching/shrinking sheet in the presence of nanoparticles has been performed. A similarity transformation has been used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are solved numerically using the built in bvp4c function in Matlab. Graphical results are plotted for the local Nusselt number and the local Sherwood number for various values of the emerging parameters. Final conclusion has been drawn on the basis of both numerical and graphical results. Dual solutions exist and the first solution is found to be stable.

  1. Stretch Marks

    MedlinePlus

    ... like during puberty), that person may get fine lines on the body called stretch marks. Stretch marks happen when the skin is pulled by rapid growth or stretching. Although the skin is usually fairly elastic, when it's overstretched, the normal production of collagen (the major protein that makes up ...

  2. Impact of caprock permeability on vertical ground surface displacements in geological underground utilisation

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Tillner, Elena

    2015-04-01

    Geological underground utilisation inducing pore pressure changes in underground reservoirs is generally accompanied by hydro-mechanical processes. Thereby, pore pressure increase due to fluid injection may trigger ground surface uplift, while a decrease in pore pressure due to reservoir fluid production is known to induce ground subsidence. Different coupled hydro-mechanical simulation studies (e.g. Klimkowski et al., 2015, Kempka et al., 2014, Tillner et al., 2014) indicate that ground surface displacements can achieve a magnitude of several decimetres, if storage or production operations are being carried out at an industrial scale. Consequently, detailed knowledge on the parameters impacting ground surface uplift or subsidence is of major interest for the success of any geological underground utilisation in order to avoid surface infrastructure damage by spatially varying deformations. Furthermore, ground subsidence may result increased groundwater levels as experienced in different underground coal mining districts. In the present study, we carried out coupled hydro-mechanical simulations to account for the impact of caprock permeability on ground surface displacements resulting from geological underground utilisation. Thereto, different simulation scenarios were investigated using a synthetic 3D coupled numerical simulation model with varying caprock permeability and vertical location of the open well section in the target reservoir. Material property ranges were derived from available literature, while a normal faulting stress state was applied in all simulation scenarios. Our simulation results demonstrate that caprock permeability has a significant impact on the pressure development, and thus on vertical displacements at the ground surface as well as at the reservoir top. An increase in caprock permeability from 1 x 10-20 m2 by two orders of magnitude doubles vertical displacements at the ground surface, whereas vertical displacements at the reservoir top

  3. Continuum percolation on nonorientable surfaces: the problem of permeable disks on a Klein bottle

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Grekhov, A. M.; Tronin, V. N.; Tronin, I. V.

    2015-11-01

    The percolation threshold and wrapping probability (R ∞) for the two-dimensional problem of continuum percolation on the surface of a Klein bottle have been calculated by the Monte Carlo method with the Newman-Ziff algorithm for completely permeable disks. It has been shown that the percolation threshold of disks on the Klein bottle coincides with the percolation threshold of disks on the surface of a torus, indicating that this threshold is topologically invariant. The scaling exponents determining corrections to the wrapping probability and critical concentration owing to the finite-size effects are also topologically invariant. At the same time, the quantities R ∞ are different for percolation on the torus and Klein bottle and are apparently determined by the topology of the surface. Furthermore, the difference between the R ∞ values for the torus and Klein bottle means that at least one of the percolation clusters is degenerate.

  4. Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Mahanthesh, B.; Gorla, Rama Subba Reddy; Manjunatha, P. T.

    2016-04-01

    Theoretical study on hydromagnetic heat transfer in dusty viscous fluid on continuously stretching non-isothermal surface, with linear variation of surface temperature or heat flux has been carried out. Effects of Hall current, Darcy porous medium, thermal radiation and non-uniform heat source/sink are taken into the account. The sheet is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a linear. Two cases of the temperature boundary conditions were considered at the surface namely, PST and PHF cases. The governing partial differential equations are transferred to a system of non-linear ordinary differential equations by employing suitable similarity transformations and then they are solved numerically. Effects of various pertinent parameters on flow and heat transfer for both phases is analyzed and discussed through graphs in detail. The values of skin friction and Nusselt number for different governing parameters are also tabulated. Comparison of the present results with known numerical results is presented and an excellent agreement is found.

  5. Computational modelling on 2D magnetohydrodynamic flow of Sisko fluid over a time dependent stretching surface

    NASA Astrophysics Data System (ADS)

    Mahmood, T.; Shahzad, A.; Iqbal, Z.; Ahmed, J.; Khan, M.

    A study is presented for the flow and heat transfer of Sisko fluid model over an unsteady stretching sheet in the presence of uniform magnetic field. While taking newly developed similarity transformations, the governing time dependent partial differential equations are reduced to nonlinear ordinary differential equations. Numerical solutions of the reduced nonlinear differential equations are found by employing Shooting method. The influence of physical parameters of interest on the velocity and temperature profiles are highlighted graphically and examined in detail. Moreover, the skin friction coefficient and Nusselt number are tabulated against influential parameters. Skin friction coefficient increases with unsteadiness parameter, magnetic field and suction parameter.

  6. Magnetohydrodynamic Flow and Mass Transfer of a Jeffery Fluid over a Nonlinear Stretching Surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qasim, Muhammad; Abbas, Zaheer; Hendi, Awatif A.

    2010-12-01

    This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of a Jeffery fluid induced by a nonlinearly stretching sheet with mass transfer. The relevant system of partial differential equations has been reduced into ordinary differential equations by employing the similarity transformation. Series solutions of velocity and concentration fields are developed by using the homotopy analysis method (HAM). Effects of the various parameters such as Hartman number, Schmidt number, and chemical reaction parameter on velocity and concentration fields are discussed by presenting graphs. Numerical values of the mass transfer coefficient are also tabulated and analyzed.

  7. Darcy–Forchheimer Three-Dimensional Flow of Williamson Nanofluid over a Convectively Heated Nonlinear Stretching Surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2017-09-01

    The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.

  8. Stability analysis of flow and heat transfer over a permeable stretching/shrinking sheet with internal heat generation and viscous dissipation

    NASA Astrophysics Data System (ADS)

    Jamaludin, A.; Nazar, R.; Pop, I.

    2017-09-01

    In this study, a steady two-dimensional boundary layer flow and heat transfer in an incompressible viscous fluid over a stretching/shrinking sheet with suction, internal heat generation and viscous dissipation is studied. The governing equations are first reduced to the nonlinear ordinary differential equations using a set of similarity variables. The obtained equations are then solved numerically using the bvp4c function in MATLAB. It is found that the nonlinear ordinary differential equations have dual (first and second) solutions in a certain range of the suction parameter. Stability analysis is employed to test the stability of the dual solutions. The results indicate that the first solution is stable while the second solution is unstable.

  9. Atomic diffusion on vicinal surfaces: step roughening impact on step permeability

    NASA Astrophysics Data System (ADS)

    Ranguelov, B.; Michailov, M.

    2014-12-01

    The problem of mass transport in material science for systems with reduced dimensionality holds special academic and technological attention since the fine diffusion control of adatoms could initiate exotic nanoscale patterning at epitaxial interfaces. The present study brings out important details of the atomic diffusion mechanisms on vicinal surfaces, accounting for the subtle competition between an external field imposed on the migrating adatoms and the roughening of the steps bordering the atomic terraces. The computational model reveals a temperature gap for breakdown of step permeability in the vicinity of the step roughening transition and sheds light on recently observed experimental results for atomic step dynamics on Si surfaces. The present study also demonstrates the extended capability of atomistic models in computer simulations to unravel simultaneous effects, to distinguish between them, and finally to assess their specific contribution to experimentally observed complex physical phenomena.

  10. Boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid

    NASA Astrophysics Data System (ADS)

    Othman, Noor Adila; Yacob, Nor Azizah; Bachok, Norfifah; Ramli, Nazirah; Ishak, Anuar

    2015-10-01

    A steady mixed convection boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid is investigated. The velocity of the external flow is assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically using the Keller box method with the help of MATLAB software. The effects of physical parameters such as the suction/injection parameter, Brownian motion parameter, thermophoresis parameter and Lewis number on the heat and mass transfer rate at the surface as well as the temperature and concentration profiles are analyzed and discussed. Both assisting and opposing flows are considered. It is found that, increasing the thermophoresis parameter, Brownian motion parameter and Lewis number are to decrease the heat transfer rate at the surface, but on the other hand increase the mass transfer rate at the surface for both assisting and opposing flows. In addition, increasing suction parameter tends to increase the heat transfer rate at the surface. However, the opposite behavior occurs for the effect of mass transfer rate at the surface.

  11. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    PubMed

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.

  12. Muscle afferent potential (`A-wave') in the surface electromyogram of a phasic stretch reflex in normal humans

    PubMed Central

    Clarke, Alex. M.; Michie, Patricia T.; Glue, Leonard C. T.

    1972-01-01

    The experiments reported in this paper tested the hypothesis that the afferent potential elicited by a tendon tap in an isometrically recorded phasic stretch reflex can be detected in the surface EMG of normal humans when appropriate techniques are used. These techniques involved (1) training the subjects to relax mentally and physically so that the EMG was silent before and immediately after the diphasic MAP which reflects a highly synchronous discharge of afferent impulses from low threshold muscle stretch receptors after a tendon tap, and (2) using a data retrieval computer to summate stimulus-locked potentials in the EMG over a series of 16 samples using taps of uniform peak force and duration on the Achilles tendon to elicit the tendon jerk in the calf muscles. A discrete, diphasic potential (`A-wave') was recorded from EMG electrodes placed on the surface of the skin over the medial gastrocnemius muscle. The `A-wave' afferent potential had the opposite polarity to the corresponding efferent MAP. Under control conditions of relaxation the `A-wave' had a latency after the onset of the tap of 2 msec, the peak to peak amplitude was of the order of 5 μV and the duration was in the range of 6 to 10 msec. Further experiments were conducted to show that the `A-wave' (1) was not an artefact of the instrumentation used, (2) had a threshold at low intensities of stimulation, and (3) could be reliably augmented by using a Jendrassik manoeuvre compared with the potential observed during control (relaxation) conditions. The results support the conclusion that the `A-wave' emanates from the pool of muscle spindles which discharges impulses along group Ia nerve fibres in response to the phasic stretch stimulus because the primary ending of the spindles is known to initiate the stretch reflex and the spindles can be sensitized by fusimotor impulses so that their threshold is lowered as a result of a Jendrassik manoeuvre. The finding has important implications for the

  13. Boundary layer flow past a stretching surface in a porous medium saturated by a nanofluid: Brinkman-Forchheimer model.

    PubMed

    Khan, Waqar A; Pop, Ioan M

    2012-01-01

    In this study, the steady forced convection flow and heat transfer due to an impermeable stretching surface in a porous medium saturated with a nanofluid are investigated numerically. The Brinkman-Forchheimer model is used for the momentum equations (porous medium), whereas, Bongiorno's model is used for the nanofluid. Uniform temperature and nanofluid volume fraction are assumed at the surface. The boundary layer equations are transformed to ordinary differential equations in terms of the governing parameters including Prandtl and Lewis numbers, viscosity ratio, porous medium, Brownian motion and thermophoresis parameters. Numerical results for the velocity, temperature and concentration profiles, as well as for the reduced Nusselt and Sherwood numbers are obtained and presented graphically.

  14. Boundary Layer Flow Past a Stretching Surface in a Porous Medium Saturated by a Nanofluid: Brinkman-Forchheimer Model

    PubMed Central

    Khan, Waqar A.; Pop, Ioan M.

    2012-01-01

    In this study, the steady forced convection flow and heat transfer due to an impermeable stretching surface in a porous medium saturated with a nanofluid are investigated numerically. The Brinkman-Forchheimer model is used for the momentum equations (porous medium), whereas, Bongiorno’s model is used for the nanofluid. Uniform temperature and nanofluid volume fraction are assumed at the surface. The boundary layer equations are transformed to ordinary differential equations in terms of the governing parameters including Prandtl and Lewis numbers, viscosity ratio, porous medium, Brownian motion and thermophoresis parameters. Numerical results for the velocity, temperature and concentration profiles, as well as for the reduced Nusselt and Sherwood numbers are obtained and presented graphically. PMID:23077541

  15. Lactobacillus fermentum AGR1487 cell surface structures and supernatant increase paracellular permeability through different pathways

    PubMed Central

    Sengupta, Ranjita; Anderson, Rachel C; Altermann, Eric; McNabb, Warren C; Ganesh, Siva; Armstrong, Kelly M; Moughan, Paul J; Roy, Nicole C

    2015-01-01

    Lactobacillus fermentum is commonly found in food products, and some strains are known to have beneficial effects on human health. However, our previous research indicated that L. fermentum AGR1487 decreases in vitro intestinal barrier integrity. The hypothesis was that cell surface structures of AGR1487 are responsible for the observed in vitro effect. AGR1487 was compared to another human oral L. fermentum strain, AGR1485, which does not cause the same effect. The examination of phenotypic traits associated with the composition of cell surface structures showed that compared to AGR1485, AGR1487 had a smaller genome, utilized different sugars, and had greater tolerance to acid and bile. The effect of the two strains on intestinal barrier integrity was determined using two independent measures of paracellular permeability of the intestinal epithelial Caco-2 cell line. The transepithelial electrical resistance (TEER) assay specifically measures ion permeability, whereas the mannitol flux assay measures the passage of uncharged molecules. Both live and UV-inactivated AGR1487 decreased TEER across Caco-2 cells implicating the cell surfaces structures in the effect. However, only live AGR1487, and not UV-inactivated AGR1487, increased the rate of passage of mannitol, implying that a secreted component(s) is responsible for this effect. These differences in barrier integrity results are likely due to the TEER and mannitol flux assays measuring different characteristics of the epithelial barrier, and therefore imply that there are multiple mechanisms involved in the effect of AGR1487 on barrier integrity. PMID:25943073

  16. Micropatterning stretched and aligned DNA using microfluidics and surface patterning for applications in hybridization-mediated templated assembly of nanostructures

    NASA Astrophysics Data System (ADS)

    Carbeck, Jeffrey; Petit, Cecilia

    2004-03-01

    Current efforts in nanotechnology use one of two basic approaches: top-down fabrication and bottom-up assembly. Top-down strategies use lithography and contact printing to create patterned surfaces and microfluidic channels that, in turn, can corral and organize nanoscale structures. Bottom-up approaches use templates to direct the assembly of atoms, molecules, and nanoparticles through molecular recognition. The goal of this work is to integrate these strategies by first patterning and orienting DNA molecules through top-down tools so that single DNA chains can then serve as templates for the bottom-up construction of hetero-structures composed of proteins and nanoparticles, both metallic and semi-conducting. The first part of this talk focuses on the top-down strategies used to create microscopic patterns of stretched and aligned molecules of DNA. Specifically, it presents a new method in which molecular combing -- a process by which molecules are deposited and stretched onto a surface by the passage of an air-water interface -- is performed in microchannels. This approach demonstrates that the shape and motion of this interface serve as an effective local field directing the chains dynamically as they are stretched onto the surface. The geometry of the microchannel directs the placement of the DNA molecules, while the geometry of the air-water interface directs the local orientation and curvature of the molecules. This ability to control both the placement and orientation of chains has implication for the use of this technique in genetic analysis and in the bottom up approach to nanofabrication.The second half of this talk presents our bottom-up strategy, which allows placement of nanoparticles along individual DNA chains with a theoretical resolution of less than 1 nm. Specifically, we demonstrate the sequence-specific patterning of nanoparticles via the hybridization of functionalized complementary probes to surface-bound chains of double-stranded DNA. Using

  17. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus.

    PubMed

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin.

  18. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus

    PubMed Central

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  19. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, R.R.; Schroeder, J.L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.

  20. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, Robert R.; Schroeder, John L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.

  1. Stability analysis of MHD viscous flow and heat transfer over a permeable shrinking surface

    NASA Astrophysics Data System (ADS)

    Hafidzuddin, Mohd Ezad Hafidz; Nazar, Roslinda

    2015-10-01

    In this study, a problem of steady laminar magnetohydrodynamic (MHD) viscous boundary layer flow and heat transfer over a permeable shrinking surface is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation. The transformed ordinary differential equations are then solved numerically using the bvp4c function in MATLAB software. Dual solutions are found for a certain range of the suction parameter. A stability analysis has been performed to determine which solution is stable and physically realizable. The effects of the suction parameter, the Hartmann number and the Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed in detail.

  2. Three-Dimensional Flow of an Oldroyd-B Nanofluid towards Stretching Surface with Heat Generation/Absorption

    PubMed Central

    Azeem Khan, Waqar; Khan, Masood; Malik, Rabia

    2014-01-01

    This article addresses the steady three-dimensional flow of an Oldroyd-B nanofluid over a bidirectional stretching surface with heat generation/absorption effects. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are then solved analytically by using the homotpy analysis method (HAM). Graphically results are presented and discussed for various parameters, namely, Deborah numbers and , heat generation/absorption parameter Prandtl parameter , Brownian motion parameters, thermophoresis parameter and Lewis number . We have seen that the increasing values of the Brownian motion parameter and thermophoresis parameter leads to an increase in the temperature field and thermal boundary layer thickness while the opposite behavior is observed for concentration field and concentration boundary layer thickness. To see the validity of the present work, the numerical results are compared with the analytical solutions obtained by Homotopy analysis method and noted an excellent agreement for the limiting cases. PMID:25170945

  3. Stagnation point flow on bioconvection nanofluid over a stretching/shrinking surface with velocity and thermal slip effects

    NASA Astrophysics Data System (ADS)

    Chan, Sze Qi; Aman, Fazlina; Mansur, Syahira

    2017-09-01

    Nanofluid containing nanometer sized particles has become an ideal thermal conductivity medium for the flow and heat transfer in many industrial and engineering applications due to their high rate of heat transfer. However, swimming microorganisms are imposed into the nanofluid to overcome the instability of nanoparticles due to a bioconvection phenomenon. This paper investigates the stagnation point flow on bioconvection heat transfer of a nanofluid over a stretching/shrinking surface containing gyrotactic microorganisms. Velocity and thermal slip effects are the two conditions incorporated into the model. Similarity transformation is applied to reduce the governing nonlinear partial differential equations into the nonlinear ordinary differential equations. The transformed equations are then solved numerically. The results are displayed in the form of graphs and tables. The effects of these governing parameters on the skin friction coefficient, local Nusselt number, local Sherwood number and the local density of the motile microorganisms are analysed and discussed in details.

  4. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  5. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions.

    PubMed

    Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed

    2016-01-01

    This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number.

  6. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions

    PubMed Central

    Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed

    2016-01-01

    This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457

  7. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation

    PubMed Central

    Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4–water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690

  8. Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface

    PubMed Central

    Ahmad Khan, Junaid; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2015-01-01

    This work deals with the flow and heat transfer in upper-convected Maxwell fluid above an exponentially stretching surface. Cattaneo-Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. Similarity approach is utilized to normalize the governing boundary layer equations. Local similarity solutions are achieved by shooting approach together with fourth-fifth-order Runge-Kutta integration technique and Newton’s method. Our computations reveal that fluid temperature has inverse relationship with the thermal relaxation time. Further the fluid velocity is a decreasing function of the fluid relaxation time. A comparison of Fourier’s law and the Cattaneo-Christov’s law is also presented. Present attempt even in the case of Newtonian fluid is not yet available in the literature. PMID:26325426

  9. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    NASA Astrophysics Data System (ADS)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-03-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  10. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    NASA Astrophysics Data System (ADS)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-07-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  11. Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface.

    PubMed

    Ahmad Khan, Junaid; Mustafa, M; Hayat, T; Alsaedi, A

    2015-01-01

    This work deals with the flow and heat transfer in upper-convected Maxwell fluid above an exponentially stretching surface. Cattaneo-Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. Similarity approach is utilized to normalize the governing boundary layer equations. Local similarity solutions are achieved by shooting approach together with fourth-fifth-order Runge-Kutta integration technique and Newton's method. Our computations reveal that fluid temperature has inverse relationship with the thermal relaxation time. Further the fluid velocity is a decreasing function of the fluid relaxation time. A comparison of Fourier's law and the Cattaneo-Christov's law is also presented. Present attempt even in the case of Newtonian fluid is not yet available in the literature.

  12. Numerical study of chemically reacting unsteady Casson fluid flow past a stretching surface with cross diffusion and thermal radiation

    NASA Astrophysics Data System (ADS)

    Pushpalatha, K.; Ramana Reddy, J. V.; Sugunamma, V.; Sandeep, N.

    2017-04-01

    The problem of an unsteady MHD Casson fluid flow towards a stretching surface with cross diffusion effects is considered. The governing partial differential equations are converted into a set of nonlinear coupled ordinary differential equations with the help of suitable similarity transformations. Further, these equations have been solved numerically by using Runge-Kutta fourth order method along with shooting technique. Finally, we studied the influence of various non-dimensional governing parameters on the flow field through graphs and tables. Results indicate that Dufour and Soret numbers have tendency to enhance the fluid velocity. It is also found that Soret number enhances the heat transfer rate where as an opposite result is observed with Casson parameter. A comparison of the present results with the previous literature is also tabulated to show the accuracy of the results.

  13. Clinical findings correlated with contact angles on rigid gas permeable contact lens surfaces in vivo.

    PubMed

    Bourassa, S; Benjamin, W J

    1989-08-01

    Functional wettability of daily wear rigid gas permeable (RGP) contact lenses worn by 16 human subjects was monitored over a 4-month period during which wettability was also assessed with an equilibrium sessile-drop contact angle method in vivo. In all, 2,128 lens surface break-up time (LBUT) and in vivo contact angle data points were accumulated. Six hundred thirty-one associated graded evaluations of lens surface deposition and patient discomfort were also recorded. The four factors (LBUT, contact angle, deposition, and discomfort) were found to be correlated to each other, their paired values having statistically significant correlation coefficients. Contact angles were of predictive value for extremes of functional wettability, based on criterion of 20 degrees equivalent to an LBUT of 5 seconds. We confirm that surface deposition and subject discomfort are related to RGP lens wettability on the eye. In addition, the in vivo contact angle is perhaps the first contact angle measurement to be correlated with functional RGP wettability.

  14. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  15. Consequences of Anisotropic Permeability and Surface Tension for Magmatic Segregation in Deforming Mantle Rock

    NASA Astrophysics Data System (ADS)

    Taylor-West, J.; Katz, R. F.

    2014-12-01

    The mechanics of partially molten regions of the mantle are not well understood--in part due to the inaccessibility of these regions to observation. However it is widely agreed that experiments performed on synthetic mantle rocks [e.g KZK10] act as a reasonable test of theoretical models of magma dynamics. One robust feature of experiments on partially molten mantle rocks deformed under strain is the emergence of high-porosity bands at an angle of between 15° and 20° to the shear plane. A number of theoretical approaches have been made to reproduce the formation of these low angle bands in models. The most recent approaches, for example by Takei and Katz [TK13], have involved the inclusion of anisotropic viscosity in diffusion creep arising from the grain-scale redistribution of melt as formulated in a theoretical model by Takei and Holtzman [TH09]. It is reasonable to assume that this melt-preferred orientation (MPO) that leads to anisotropy in viscosity may also lead to anisotropy in permeability. However, the effect of anisotropic permeability remains unexplored. We investigate its impact on the dynamics of partially molten rock, and specifically on its role in low-angle band formation in deformation under simple shear. We work with the continuum model of two-phase-flow as formulated by McKenzie [M84] with the addition of anisotropic permeability. There are some apparent inconsistencies in this model. Firstly, the model predicts continued segregation of melt into bands of 100% porosity, while experiments report maximum porosities in the region of 30%. Secondly, linear stability analyses find maximal growth-rates for porosity perturbations that vary on arbitrarily small length-scales. We study how the inclusion of surface forces into the model could regulate these effects. REFERENCES: KZK10 = King, Zimmerman, & Kohlstedt (2010), J Pet, 10.1093/petrology/egp062. TK13 = Takei & Katz (2013), JFM, 10.1017/jfm.2013.482. TH09 = Takei & Holtzman (2009a), JGR, 10

  16. Coupled-surface investigation of the photodissociation of NH{sub 3}(A-tilde): Effect of exciting the symmetric and antisymmetric stretching modes

    SciTech Connect

    Bonhommeau, David; Valero, Rosendo; Truhlar, Donald G.; Jasper, Ahren W.

    2009-06-21

    Using previously developed potential energy surfaces and their couplings, non-Born-Oppenheimer trajectory methods are used to study the state-selected photodissociation of ammonia, prepared with up to six quanta of vibrational excitation in the symmetric ({nu}{sub 1}) or antisymmetric ({nu}{sub 3}) stretching modes of NH{sub 3}(A-tilde). The predicted dynamics is mainly electronically nonadiabatic (that is, it produces ground electronic state amino radicals). The small probability of forming the excited-state amino radical is found, for low excitations, to increase with total energy and to be independent of whether the symmetric or antisymmetric stretch is excited; however some selectivity with respect to exciting the antisymmetric stretch is found when more than one quantum of excitation is added to the stretches, and more than 50% of the amino radical are found to be electronically excited when six quanta are placed in the antisymmetric stretch. These results are in contrast to the mechanism inferred in recent experimental work, where excitation of the antisymmetric stretch by a single quantum was found to produce significant amounts of excited-state products via adiabatic dissociation at total energies of about 7.0 eV. Both theory and experiment predict a broad range of translational energies for the departing H atoms when the symmetric stretch is excited, but the present simulations do not reproduce the experimental translational energy profiles when the antisymmetric stretch is excited. The sensitivity of the predicted results to several aspects of the calculation is considered in detail, and the analysis leads to insight into the nature of the dynamics that is responsible for mode selectivity.

  17. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid

    PubMed Central

    2011-01-01

    The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Two types of nanofluids, namely, Cu-water and Ag-water are used. The effects of nanoparticle volume fraction, the type of nanoparticles, the convective parameter, and the thermal conductivity on the heat transfer characteristics are discussed. It is found that the heat transfer rate at the surface increases with increasing nanoparticle volume fraction while it decreases with the convective parameter. Moreover, the heat transfer rate at the surface of Cu-water nanofluid is higher than that at the surface of Ag-water nanofluid even though the thermal conductivity of Ag is higher than that of Cu. PMID:21711841

  18. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid.

    PubMed

    Yacob, Nor Azizah; Ishak, Anuar; Pop, Ioan; Vajravelu, Kuppalapalle

    2011-04-07

    The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Two types of nanofluids, namely, Cu-water and Ag-water are used. The effects of nanoparticle volume fraction, the type of nanoparticles, the convective parameter, and the thermal conductivity on the heat transfer characteristics are discussed. It is found that the heat transfer rate at the surface increases with increasing nanoparticle volume fraction while it decreases with the convective parameter. Moreover, the heat transfer rate at the surface of Cu-water nanofluid is higher than that at the surface of Ag-water nanofluid even though the thermal conductivity of Ag is higher than that of Cu.

  19. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Gorla, R. S. Reddy; Abbasi, F. M.; Shehzad, S. A.

    2016-11-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases.

  20. Surface altered zeolites as permeable barriers for in situ treatment of contaminated groundwater

    SciTech Connect

    1996-11-01

    The authors characterized surfactant-modified zeolite (SMZ) for its ability to sorb organic and inorganic contaminants from water. The ultimate objective is to use SMZ as a permeable barrier to prevent migration of contaminants in groundwater. This report summarizes results under Phase 1 of a three-phase project leading to a full-scale field demonstration of SMZ permeable- barrier technology.

  1. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    SciTech Connect

    Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

    1999-08-30

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

  2. Changes in the permeability and morphology of dentine surfaces after brushing with a Thai herbal toothpaste: A preliminary study

    PubMed Central

    Vajrabhaya, La-ongthong; Korsuwannawong, Suwanna; Harnirattisai, Choltacha; Teinchai, Chayada

    2016-01-01

    Objectives: The aim of this study was to evaluate dentine permeability after brushing with Twin Lotus®, Thai herbal toothpaste by comparing with Sensodyne Rapid Relief®, a commercial desensitizing toothpaste, and also after artificial saliva (AS) immersion or citric acid challenge. Materials and Methods: Dentine discs from human mandibular third molars were divided into three groups (n = 20) and brushed with either experimental toothpaste or water (control) for 2 min with an automated toothbrush. Then, 10 discs were immersed in AS, and the other 10 discs were immersed in 6% citric acid to simulate the conditions of the oral environment. The dentine permeability of each specimen was measured before brushing and after each treatment using a fluid filtration system. Morphological changes in the dentine were observed using scanning electron microscopy (SEM). Results: Both toothpastes significantly reduced dentine permeability, and a crystalline precipitate was observed on the dentine surface under SEM observation. No significant difference was found between the two toothpaste groups with regard to dentine permeability after brushing and AS or acid immersion. Conclusions: The dentine permeability reduction caused by the two toothpastes did not differ after brushing or after AS or citric acid immersion. PMID:27095904

  3. Effect of dDAVP on basolateral cell surface water permeability in the outer medullary collecting duct.

    PubMed

    Solenov, E I; Nesterov, V V; Baturina, G S; Khodus, G R; Ivanova, L N

    2003-11-01

    We report a novel approach for assessing the volume of living cells which allows quantitative, high-resolution characterization of dynamic changes in cell volume while retaining the cell functionality. The aim of this study was to evaluate the short-term effect of vasopressin on basolateral cell surface water permeability in the outer medullary collecting duct (OMCD). The permeability of the basolateral cell membrane was determined in the tubules where the apical membrane was blocked with oil injected into the lumen. The apparent coefficient of water permeability (Pf) was evaluated by measuring the cell swelling after the step from hypertonic to isotonic medium (600 mosm to 300 mosm). Desmopressin (dDAVP) induced an increase of the basolateral Pf from 113.7+/-8.5 microm/s in control cells to 186.6+/-11.4 mum/s in micro-dissected fragments of the OMCD incubated in vitro (10(-7) M dDAVP, 30 min at 37 degrees C) (P<0.05). Mercury caused pronounced inhibition of basolateral water permeability (26.0+/-6.9 microm/s; P<0.05). The effect of mercury (1.0 mM HgCl2) was reversible: after washing the fragments with PBS for 20 min, Pf values were restored to the control levels (125.0+/-9.5 microm/s). The results of the study indicate the existence of a mechanism controlling the osmotic water permeability of the basolateral cell membrane in the OMCD epithelium.

  4. Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard.

    PubMed

    Bao, Huiming; Fairchild, Ian J; Wynn, Peter M; Spötl, Christoph

    2009-01-02

    The oxygen isotope composition of terrestrial sulfate is affected measurably by many Earth-surface processes. During the Neoproterozoic, severe "snowball" glaciations would have had an extreme impact on the biosphere and the atmosphere. Here, we report that sulfate extracted from carbonate lenses within a Neoproterozoic glacial diamictite suite from Svalbard, with an age of approximately 635 million years ago, falls well outside the currently known natural range of triple oxygen isotope compositions and indicates that the atmosphere had either an exceptionally high atmospheric carbon dioxide concentration or an utterly unfamiliar oxygen cycle during deposition of the diamictites.

  5. Optimized water vapor permeability of sodium alginate films using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Xu, Jiachao; Gao, Xin; Fu, Xiaoting

    2013-11-01

    The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaCl2 solution immersion time. The coefficient of determination ( R 2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g·mm/(m2·h·kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.

  6. Water Permeability Adjusts Resorption in Lung Epithelia to Increased Apical Surface Liquid Volumes.

    PubMed

    Schmidt, Hanna; Michel, Christiane; Braubach, Peter; Fauler, Michael; Neubauer, Daniel; Thompson, Kristin E; Frick, Manfred; Mizaikoff, Boris; Dietl, Paul; Wittekindt, Oliver H

    2016-11-04

    The apical surface liquid layer (ASL) covers the airways and forms a first line of defense against pathogens. Maintenance of ASL volume by airway epithelia is essential for maintaining lung function. The proteolytic activation of epithelial Na(+) channels (ENaC) is believed to be the dominating mechanism to cope with increases in ASL volumes. Alternative mechanisms, in particular increases in epithelial water permeability (Posm), have so far been regarded as rather less important. However, most studies mainly addressed immediate effects upon apical volume expansion (AVE) and increases in ASL. This study addresses the response of lung epithelia to long term AVE. NCI-H441 cells and primary human tracheal epithelial cells (hTEpC), both cultivated at air liquid interface conditions, were used as models for the lung epithelium. AVE was established by adding isotonic solution onto the apical surface of differentiated lung epithelia and time course of ASL volume restoration was assessed by the D2O dilution method. Concomitant ion transport was investigated in Ussing chambers. We identified a low resorptive state (lowRS) immediately after AVE, which coincided with proteolytic ion transport activation within 10 to 15 min after AVE. The main clearance of excess ASL occurred during a delayed (hours after AVE) high resorptive state (highRS), which did not correlate with ion transport activation. Instead, highRS onset coincided with an increase in Posm, which depended on aquapoprin upregulation. In summary, our data demonstrates that, besides to ion transport activation, modulation of Posm is a major mechanism to compensate long-term AVE in lung epithelia.

  7. Transalveolar osmotic and diffusional water permeability in intact mouse lung measured by a novel surface fluorescence method.

    PubMed

    Carter, E P; Matthay, M A; Farinas, J; Verkman, A S

    1996-09-01

    A surface fluorescence method was developed to measure transalveolar transport of water, protons, and solutes in intact perfused lungs. Lungs from c57 mice were removed and perfused via the pulmonary artery (approximately 2 ml/min). The airspace was filled via the trachea with physiological saline containing a membrane-impermeant fluorescent indicator (FITC-dextran or aminonapthalene trisulfonic acid, ANTS). Because fluorescence is detected only near the lung surface due to light absorption by lung tissue, the surface fluorescence signal is directly proportional to indicator concentration. Confocal microscopy confirmed that the fluorescence signal arises from fluorophores in alveoli just beneath the pleural surface. Osmotic water permeability (Pf) was measured from the time course of intraalveolar FITC-dextran fluorescence in response to changes in perfusate osmolality. Transalveolar Pf was 0.017 +/- 0.001 cm/s at 23 degrees C, independent of the solute used to induce osmosis (sucrose, NaCl, urea), independent of osmotic gradient size and direction, weakly temperature dependent (Arrhenius activation energy 5.3 kcal/mol) and inhibited by HgCl2. Pf was not affected by cAMP activation but was decreased by 43% in lung exposed to hyperoxia for 5 d. Diffusional water permeability (Pd) and Pf were measured in the same lung from intraalveolar ANTS fluorescence, which increased by 1.8-fold upon addition of 50% D2O to the perfusate, Pd was 1.3 x 10(-5) cm/s at 23 degrees C. Transalveolar proton transport was measured from FITC-dextran fluorescence upon switching perfusate pH between 7.4 and 5.6; alveolar pH half-equilibrated in 1.9 and 1.0 min without and with HCO3-, respectively. These results indicate high transalveolar water permeability in mouse lung, implicating the involvement of molecular water channels, and establish a quantitative surface fluorescence method to measure water and solute permeabilities in intact lung.

  8. The Influence of Selected Liquid and Soil Properties on the Propagation of Spills over Flat Permeable Surfaces

    SciTech Connect

    Keller, Jason M.; Simmons, Carver S.

    2005-02-15

    In an effort to determine spill characteristics, information about a spill's spatial distribution with time is being studied. For permeable surfaces, spill phenomenology is controlled by liquid and soil properties, the most relevant of which are presented in this report. The pertinent liquid and soil properties were tabulated for ten liquids and four soils. The liquids represented an array of organic compounds, some of which are or are soon to be documented in the liquid spectra library by the Environmental Molecular Science Laboratory at Pacific Northwest National Laboratory. The soils were chosen based on ongoing surface spectra work and to represent a range of relevant soil properties. The effect of the liquid and soil properties on spill phenomenology were explored using a spill model that couples overland flow described by gravity currents with the Green-Ampt infiltration model. From the simulations, liquid viscosity was found to be a controlling liquid property in determining the amount of time a spill remains on the surface, with the surface vanish time decreasing as viscosity decreased. This was attributed to decreasing viscosity increasing both the hydraulic conductivity of the soil and allowing for the spill to more quickly spread out onto an unsaturated soil surface. Soil permeability also controlled vanish times with the vanish times increasing as permeability decreased, corresponding to finer textured materials. Maximum spill area was found to be largely controlled by liquid viscosity on coarse, highly permeable soils. On the less permeable soils maximum spill area began to be controlled by the steady-area spill height due to the restricting of infiltration to the extent that the spill is then able to reach its steady-area spill height. Simulations performed with and without the inclusion of capillarity in the Green-Ampt infiltration model displayed the importance of capillarity in describing infiltration rate in fine textured soils. In coarse textured

  9. Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium.

    PubMed Central

    Wills, N K

    1985-01-01

    The apical membranes of surface cells in the rabbit descending colon possess a significant ionic conductance in parallel to amiloride-blockable Na+ channels. The identity of the ion(s) responsible for the amiloride-insensitive conductance is unknown. The purpose of the present paper was to assess the permeability and net driving forces for K+ and Cl- across this membrane using conventional and ion-sensitive micro-electrode techniques. Intracellular Cl- activity (aiCl) averaged 23 +/- 2 mM with an equilibrium potential (ECl) of -38 +/- 2 mV. This value is less than previous estimates of the electromotive force (e.m.f.) of the amiloride-insensitive pathway (ca. -50 mV). Consequently, Cl- alone cannot account for the amiloride-insensitive conductance. Replacement of Cl- by gluconate in the serosal solution decreased aiCl to 17 +/- 2.8 mM. aiCl was lowered to approximately 1 mM by replacement in the mucosal bath or by replacement in both solutions. The results indicate a low Cl- conductance in the basolateral membrane, in agreement with previous electrophysiological studies of this epithelium. In contrast to Cl-, the chemical driving force for K+ was large enough to support the e.m.f. of the amiloride-insensitive pathway (K+ equilibrium potential, EK = -66 mV). The basolateral membrane potential (Vbl), EK and the intracellular K+ activity (aiK) were decreased in parallel following inhibition of the basolateral Na-K pump, providing evidence that Vbl is largely due to a K+ diffusion potential. In the presence of serosal 10(-4) M-ouabain, aiK appeared to remain above equilibrium and more than doubled after addition of Ba2+ to the serosal bath. Replacement of the mucosal bathing solution with KCl or gluconate Ringer solution largely restored Vbl and the transepithelial potential (VT) in tissues which had been previously treated with ouabain. The restoration of VT was decreased and the transepithelial resistance (RT) was increased by addition of tetraethylammonium to the

  10. Slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating

    NASA Astrophysics Data System (ADS)

    Mohamed, Muhammad Khairul Anuar; Noar, Nor Aida Zuraimi Md; Ismail, Zulkhibri; Kasim, Abdul Rahman Mohd; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Ishak, Anuar

    2017-08-01

    Present study solved numerically the velocity slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating. The governing equations which in the form of partial differential equations are transformed to ordinary differential equations before being solved numerically using the Runge-Kutta-Fehlberg method in MAPLE. The numerical solution is obtained for the surface temperature, heat transfer coefficient, reduced skin friction coefficient as well as the temperature and velocity profiles. The flow features and the heat transfer characteristic for the pertinent parameter such as Prandtl number, stretching parameter, heat generation/absorption parameter, velocity slip parameter and conjugate parameter are analyzed and discussed.

  11. Water Quality Performance of Three Side-by-Side Permeable Pavement Surface Materials: Three Year Update

    EPA Science Inventory

    Communities are increasingly installing structural low impact development (LID) practices to mange stormwater and reduce pollutant loads associated with stormwater runoff. Permeable pavement is a LID practice that has limited research on working-scale, side-by-side performance o...

  12. Light-controlled gas permeability of mesoporous silica glass bearing photochromic spironaphthoxazine on its surface.

    PubMed

    Yagi, Shigeyuki; Minami, Naemi; Fujita, Junpei; Hyodo, Yutaka; Nakazumi, Hiroyuki; Yazawa, Tetsuo; Kami, Tetsuro; Ali, Aliyar Hyder

    2002-10-21

    N2 and CO2 gas permeability of mesoporous silica glass bearing photochromic indolinospironaphth[2,1-b][1,4]oxazine through a covalent linkage was controlled by photo-irradiation: the photo-isomerization of the spironaphthoxazine to the photomerocyanine form suppressed the gas permeation of the glass.

  13. Water Quality Performance of Three Side-by-Side Permeable Pavement Surface Materials: Three Year Update

    EPA Science Inventory

    Communities are increasingly installing structural low impact development (LID) practices to mange stormwater and reduce pollutant loads associated with stormwater runoff. Permeable pavement is a LID practice that has limited research on working-scale, side-by-side performance o...

  14. Stretched Loops

    NASA Image and Video Library

    2017-03-16

    When an active region rotated over to the edge of the sun, it presented us with a nice profile view of its elongated loops stretching and swaying above it (Mar. 8-9, 2017). These loops are actually charged particles (made visible in extreme ultraviolet light) swirling along the magnetic field lines of the active region. The video covers about 30 hours of activity. Also of note is a darker twisting mass of plasma to the left of the active region being pulled and spun about by magnetic forces. Video is available at http://photojournal.jpl.nasa.gov/catalog/PIA21562

  15. Influence of a Magnetically Permeable Surface Layer on Transient Fields for a Thin Circular Loop Antenna

    NASA Astrophysics Data System (ADS)

    Sami, Ghada M.

    2004-04-01

    The transient fields, in the time-domain, of a thin circular loop antenna, on a two-layered earth’s model are reexamined when the usually neglected magnetic permeability contrast is considered. It is shown that for a two-layered earth model, where the upper layer is permeable, the transient fields are modified over the nonpermeable case. The fields in the time domain are obtained as the inverse Laplace transforms of derived full wave time-harmonic solution. These time-domain solutions are obtained as a summation of waveguide modes plus contributions from branch cuts in the complex plane of the longitudinal wave number. The results should be useful for interpreting airborne electromagnetic systems and in cases where super-paramagnetic mineral constant is present.

  16. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    SciTech Connect

    Robert S. Bowman; Pengfei Zhang; Xian Tao

    2002-03-01

    This report summarizes experiments to develop and test surfactant-modified zeolite/zero-valent iron (SMZ/ZVI) pellets for permeable reactive barriers to treat groundwater contamination. Coating a glass foam core with a mixture of hexadecyltrimethylammonium surfactant, zeolite, and ZVI produced a high hydraulic conductivity, mechanically stable pellet. Laboratory experiments showed that the pellets completely removed soluble chromate from aqueous solution, and reduced perchloroethylene (PCE) concentrations more than pellets that lacked surfactant. Based upon the laboratory results, they predicted a 1-m-wide SMZ/ZVI barrier that would reduce PCE concentrations by four orders of magnitude. Thirteen cubic meters (470 cubic feet) of SMZ/ZVI pellets were manufactured and emplaced in a permeable barrier test facility. A controlled plume of chromate and PCE was allowed to contact the barrier for four weeks. The entire plume was captured by the barrier. No chromate was detected downgradient of the barrier. The PCE broke through the barrier after four weeks, and downgradient concentrations ultimately exceeded 10% of the influent PCE. The less-than-expected PCE reduction was attributed to insufficient surfactant content, the large size, and pH-altering characteristics of the bulk-produced pellets. The pellets developed here can be improved to yield a performance- and cost-competitive permeable barrier material.

  17. Decreased muscle capillary permeability surface area in type 2 diabetic subjects.

    PubMed

    Gudbjörnsdóttir, Soffia; Sjöstrand, Mikaela; Strindberg, Lena; Lönnroth, Peter

    2005-02-01

    Capillary recruitment in muscles, induced by insulin, has been proposed to be impaired in insulin-resistant states. To elucidate the mechanisms regulating capillary transport of insulin and glucose in type 2 diabetes, we directly calculated the permeability-surface area product (PS) for glucose and insulin in muscle. Intramuscular microdialysis in combination with the forearm model and blood flow measurements was performed in type 2 diabetic male subjects and age- and weight-matched controls during a euglycemic-hyperinsulinemic clamp. During steady-state hyperinsulinemia, arterial plasma glucose was 5.8 +/- 0.1 and 5.9 +/- 0.1 mmol/liter [not significant (NS)] in the obese and type 2 diabetic subjects, respectively. Venous glucose was significantly lower in the obese group compared with the type 2 diabetic subjects, 4.3 +/- 02 vs. 4.9 +/- 0.2 mmol/liter (P < 0.05). Arterial insulin was 1494 +/- 90 and 1458 +/- 132 pmol/liter (NS) in the obese and type 2 diabetic subjects, respectively. The glucose infusion rate during steady-state hyperinsulinemia was 10.8 +/- 0.8 and 7.2 +/- 0.4 mg/kg.min in the obese and diabetic subjects, respectively (P < 0.01). Interstitial-arterial lactate difference was significantly higher in the obese subjects. During steady-state hyperinsulinemia, PS for glucose was significantly higher in the obese subjects (1.1 +/- 0.2 vs. 0.5 +/- 0.1 ml/min.100 g, P < 0.05). Glucose uptake was also significantly higher in the obese subjects (3.0 +/- 0.4 vs. 1.8 +/- 0.3 mumol/min.100 g, P < 0.05). During steady-state hyperinsulinemia, PS for insulin was 0.4 +/- 0.1 and 0.3 +/- 0.1 ml/min.100 g in the obese and diabetic subjects, respectively (NS), and insulin uptake was 258 +/- 54 vs. 168 +/- 24, respectively (NS). When both subject groups were pooled together, a significant correlation was found between PS for glucose and glucose uptake during steady-state hyperinsulinemia. Skeletal muscle blood flow during steady-state hyperinsulinemia was 1.9 +/- 0

  18. Surface-subsurface turbulent interaction at the interface of a permeable bed: physical modeling of coarse-gravel river bed

    NASA Astrophysics Data System (ADS)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2016-12-01

    Coarse-gravel river beds posses a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biogeochemical processes as well as stability of sediments. Yet, the flow physics in the vicinity of a permeable interface are still poorly understood. This is in part due to a lack of quantitative direct observations near and within the wall. The latter are particularly challenging to conduct in field survey. For this reason, in this work we conduct controlled experiments on a physical model of a gravel bed. We consider an idealized permeable bed and use Refractive index matching (RIM) technique coupled with particle image velocimetry (PIV) to minimize the optical aberration and light reflection at the solid-liquid interface and thus to accurately quantify such flow interactions. A number of idealized acrylic wall models, based on spheres, were considered herein. Two different porous structures, were used to vary the permeability: simple cubic and body centered tetragonal arrangements. Additionally, two different topographies (smooth vs cubically arranged hemispheres) were considered for each wall structure. Measurements in the streamwise and wall-normal (x-y) plane were performed at two spanwise locations, one of which is along the top of the roughness elements and the other is along the valley side between neighboring spheres. These flow measurements, covering one wavelength of the roughness element, enable us to utilize double-averaging method to extract statistically-significant velocity profiles. In this paper, a detailed analysis of the first and second order velocity statistics associated with the different wall models will be presented.

  19. Thermal-diffusion and MHD for Soret and Dufour’s effects on Hiemenz flow and mass transfer of fluid flow through porous medium onto a stretching surface

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Gamal M.

    2010-06-01

    In this paper, the thermal-diffusion and magnetic field effects on a stagnation point flowing over a flat stretching surface have been obtained and studied numerically with the variation of the viscosity under the Soret and Dufour's effects. The governing continuity, momentum, energy and concentration equations are converted into a system of non-linear ordinary differential equations by means of similarity transformation. The resulting system of coupled non-linear ordinary differential equations is solved numerically. Numerical results were presented for velocity, temperature and concentration profiles for different parameters of the problem as radiation parameter, magnetic field parameter, porous medium parameter, endothermic chemical reaction, heat source parameter, stretching parameter, the Soret and Dufour number and other. Also the effects of the pertinent parameters on the skin friction, the rate of heat and mass transfer are obtained and discussed numerically and illustrated graphically.

  20. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine

    NASA Astrophysics Data System (ADS)

    Luhmann, Andrew J.; Tutolo, Benjamin M.; Bagley, Brian C.; Mildner, David F. R.; Seyfried, William E.; Saar, Martin O.

    2017-03-01

    Four reactive flow-through laboratory experiments (two each at 0.1 mL/min and 0.01 mL/min flow rates) at 150°C and 150 bar (15 MPa) are conducted on intact basalt cores to assess changes in porosity, permeability, and surface area caused by CO2-rich fluid-rock interaction. Permeability decreases slightly during the lower flow rate experiments and increases during the higher flow rate experiments. At the higher flow rate, core permeability increases by more than one order of magnitude in one experiment and less than a factor of two in the other due to differences in preexisting flow path structure. X-ray computed tomography (XRCT) scans of pre- and post-experiment cores identify both mineral dissolution and secondary mineralization, with a net decrease in XRCT porosity of ˜0.7%-0.8% for the larger pores in all four cores. (Ultra) small-angle neutron scattering ((U)SANS) data sets indicate an increase in both (U)SANS porosity and specific surface area (SSA) over the ˜1 nm to 10 µm scale range in post-experiment basalt samples, with differences due to flow rate and reaction time. Net porosity increases from summing porosity changes from XRCT and (U)SANS analyses are consistent with core mass decreases. (U)SANS data suggest an overall preservation of the pore structure with no change in mineral surface roughness from reaction, and the pore structure is unique in comparison to previously published basalt analyses. Together, these data sets illustrate changes in physical parameters that arise due to fluid-basalt interaction in relatively low pH environments with elevated CO2 concentration, with significant implications for flow, transport, and reaction through geologic formations.

  1. Permeability and porosity images based on P-wave surface seismic data: Application to a south Florida aquifer

    NASA Astrophysics Data System (ADS)

    Parra, Jorge O.; Hackert, Chris L.; Bennett, Michael W.

    2006-02-01

    P-wave surface seismic reflection data, acquired from a carbonate aquifer in southeastern Florida, are used to delineate flow units in a proposed aquifer storage and recovery (ASR) horizon. The impedance image determined by inversion from P-wave reflection data captures most of the boundaries between hydraulic facies. The hydraulic facies properties are based on integration of the well logs and the lithology, which consists of vuggy carbonate units and sandstones. Within the proposed ASR horizon, located in the upper Floridan aquifer, low-permeability zones consist of sandstones and highly permeable zones are carbonates with interconnected vuggy porosity. High-resolution porosity, permeability, and impedance images based on cross-well reflection and well logs help us evaluate the P-wave seismic reflection results. We use well logs and cross-well seismic data to support whether two-dimensional seismic reflection measurements detect important flow units delineated by cross-well high-resolution seismic data. The data analysis demonstrates that major flow units are resolved and imaged with two-dimensional seismic reflection techniques, although not as clearly as in the high-resolution cross-well data. The results suggest that the surface seismic reflection method, integrated with well logs and geology, provides the tools to assess water resources in this south Florida carbonate aquifer. However, we recommend conducting a cross-well survey in areas where an understanding of the petrophysics is imperative to relating the seismic attributes to rock and fluid properties. This can be a critical step for planning purposes when considering a large surface-oriented seismic survey.

  2. [Reducing centers on the surface of Escherichia coli bacteria and their role in copper-induced plasma membrane permeability].

    PubMed

    Lebedev, V S; Veselovskiĭ, A V; Deĭnega, E Iu; Fedorov, Iu I

    2000-01-01

    The reducing properties of Escherichia coli and their role in the induction of nonselective cationic permeability of plasma membrane by the action of Cu2+ ions were studied. The ability of cells to reduce exogenous dithiopyridine was shown to be maximal in freshly collected culture and to decrease upon starvation or exhaustion of bacteria by dinitrophenol, in the presence of other oxidants of cell thiols in the medium, and after the disturbance of the barrier properties of membrane by tetrachloracetic acid or butanol. The alkylation of cell thiols accessible for N-ethyl maleimide completely disrupted the reducing activity of bacteria. These data are consistent with the conception that the reduction of dithiopyridine and Cu2+ ions by bacteria occurs on the thiol-containing centers of the cell surface, which are continuously reduced by the transfer of cell reducing equivalents from the inner to the outer surface of plasma membrane. The analysis of data on the effect of external oxidizing and reducing agents on the copper-induced plasmolysis of bacteria showed that the induction of membrane permeability by the action of copper can occur upon interaction with critical targets on the surface of Cu+ ions formed in the periplasmic space in the reaction of Cu2+ ions with reducing centers.

  3. Cooling of a Hot Stretching Surface in the Presence of Across Mass Transfer Phenomenon in a Channel Flow

    NASA Astrophysics Data System (ADS)

    Mehmood, Ahmer; Munawar, Sufian; Ali, Asif

    2014-02-01

    This is an attempt to investigate the best possible flow situation in order to optimize the rate of heat exchange between the stretching plate and the ambient fluid. The generalized three-dimensional channel flow of an incompressible viscous fluid has been considered where both the walls of the channel are assumed to be porous and the lower wall stretching in two lateral directions at different rates. The effect of simultaneous suction and injection at the lower and upper walls, respectively (and vice versa), have been studied in detail. It is named as across mass transfer phenomenon (AMT). It is observed that even in the presence of viscous dissipation the across mass transfer increases the rate of heat exchange from plate to fluid. A purely analytic solution has been obtained by homotopy analysis method and results are also compared with a numerical technique. Results are discussed through graphs.

  4. A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats

    NASA Astrophysics Data System (ADS)

    Zussman, E.; Yarin, A. L.; Weihs, D.

    2002-05-01

    This work deals with nonwoven permeable light mats made of submicron-diameter nanofibers. The nanofibers were obtained through electrospinning of polymer solutions. The mats were positioned on light pyramid-shaped frames. These platforms fell freely through the air, apex down, at a constant velocity. The drag of such passive airborne platforms is of significant interest in a number of modern aerodynamics applications including, for example, dispersion of "smart dust" carrying various chemical and thermal sensors, dispersion of seeds, as well as movement of small organisms with bristle appendages. In the present work, drag is measured using the free fall method supplemented by extensive flow visualization. The effects of platform weight, average nanofiber diameter, and porosity of the nonwoven mats on the drag force are studied. The results are compared to data for the corresponding impermeable structures that are covered with plastic wrap. The data are presented in the form of standard dependencies of drag coefficient on the Reynolds number of the structure. It was found that permeable platforms with holes on the order of several microns (which is about ten times the diameter of the nanofibers) are essentially impermeable for airflow.

  5. Non-Newtonian Momentum Transfer past an Isothermal Stretching Sheet with Applied Suction

    NASA Astrophysics Data System (ADS)

    Veena, P. H.; Suresh, B.; Pravin, V. K.; Goud, A. M.

    2017-08-01

    The paper discusses the flow of an incompressible non-Newtonian fluid due to stretching of a plane elastic surface in a saturated porous medium in the approximation of boundary layer theory. An exact analytical solution of non-linear MHD momentum equation governing the self-similar flow is given. The skin friction co-efficient decreases with an increase in the visco-elastic parameter k1 and increase in the values of both the magnetic parameter and permeability parameter.

  6. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    SciTech Connect

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessed as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.

  7. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE PAGES

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  8. Influence of the surface permeability on the GRACE water mass variations. Case of the Lake Chad basin.

    NASA Astrophysics Data System (ADS)

    Lopez, Teodolina; Ramillien, Guillaume; Antoine, Raphaël; Rabinowicz, Michel

    2017-04-01

    Since its launch in 2002, the Gravity Recovery And Climate Experiment (GRACE) has been measured the tiny variations of the gravity field due to redistributions of water mass in the surface envelops of Earth. At a spatial resolution of 400 km, these satellite data offer a unique perspective to understand the evolution of continental water storage at regional and global scales, and therefore they enable the monitoring of the hydrological systems such as river basins. It is well known that seasonal cycle, droughts, vegetation and human extractions are the main contributors of the hydrology signals sensed by GRACE. However, the coupling between land surface and the atmosphere is important in semi-arid and arid regions, in particular in West Africa. We propose to quantify the surface water fluxes in the Lake Chad region by using the daily (and 10-day) water mass solutions of the GRACE mission in the context of the regular West African monsoon. Alternation of the evaporation/condensation cycles during the recent period are interpreted in terms of surface vertical permeability changes that control the thermal evolution in this region [2]. GRACE solutions reveal an interannual increase of surface water mass during dry seasons, especially in 2005 and 2007. We propose that this gain of surface water mass is caused by a seasonal cycle of clay fracturing. [1] Koster et al. (2004). Science, 305, 1138-1140. [2] Lopez et al. (2016). Surv. Geophys., 37 (2), 471-502.

  9. Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface

    SciTech Connect

    Shen, Bingyu; Zheng, Liancun Chen, Shengting

    2015-10-15

    This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.

  10. Hydrogen permeability through beryllium films and the impact of surface oxides

    NASA Astrophysics Data System (ADS)

    Zajec, Bojan; Nemanič, Vincenc; Žumer, Marko; Porosnicu, Corneliu; Lungu, Cristian P.

    2013-11-01

    Beryllium will constitute the major part of the first wall of ITER, however, several aspects of the tritium retention and recycling in fusion reactors are still open. Studying details of the hydrogen isotope interactions on Be films is in principle easier and more accurate than on the bulk Be metal since a thin (and therefore more permeable) layer of Be film could be deposited on a desired substrate by applying well controlled methods. Results of the hydrogen permeation through 8 micrometer thick Be films deposited by the thermionic vacuum arc method on Eurofer steel membranes with exposed area of 8.4 cm2 are presented. The permeation reduction factor (PRF) at 400 °C varied on six samples from 14 to 135 with respect to the bare Eurofer membrane. The highest PRF value enables expression of the Be film permeability coefficient P by means of a simple model which gives PBe ˜ 2 × 10-15 mol H2/m s Pa0.5. Lower PRF values could be explained by microscopic imperfections which represent parallel hydrogen paths through the Be film and enhance the permeation rate. Some of them were revealed by the SEM while their presence could be confirmed also by observing permeation flux transients recorded after the hydrogen exposure. The two-step process of achieving the steady flux agrees with our numerical simulation. It was found that for unintentionally oxidized samples the extracted regular (eliminated contribution of the pinholes in Be film) permeation rate is almost identical from sample to sample and accounts to j ≈ 1.2 × 10-7 H2/m2 s at 1 bar hydrogen driving pressure due to BeO formation. For a non-oxidized sample this value is several times higher, j ≈ 6.5 × 10-7 mol H2/m2 s. From the latter follows that PBe ≈ 1.9 × 10-14 mol H2/m s Pa0.5, while PBeO ˜ 1 × 10-17 mol H2/m s Pa0.5 can be estimated by assuming a 35 nm thick BeO layer.

  11. A novel control algorithm for interaction between surface waves and a permeable floating structure

    NASA Astrophysics Data System (ADS)

    Tsai, Pei-Wei; Alsaedi, A.; Hayat, T.; Chen, Cheng-Wu

    2016-04-01

    An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment. In the design procedure of the controller, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis is carried out for a real structure system by using Lyapunov method. The corresponding boundary value problems are then incorporated into scattering and radiation problems. They are analytically solved, based on separation of variables, to obtain series solutions in terms of the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width, thickness and mass has been thus drawn with a parametric approach. From which mathematical models are applied for the wave-induced displacement of the surge motion. A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system, but has the robustness against external disturbance.

  12. Reaction of HOD+ with NO2: effects of OD and OH stretching, bending, and collision energy on reactions on the singlet and triplet potential surfaces.

    PubMed

    Boyle, Jason M; Bell, David M; Anderson, Scott L; Viggiano, A A

    2011-02-24

    Integral cross sections and product recoil velocity distributions were measured for the reaction of HOD(+) with NO(2), in which the HOD(+) reactant was prepared in its ground state and with mode-selective excitation in the 001 (OH stretch), 100 (OD stretch), and 010 (bend) modes. In addition, we measured the 300 K thermal kinetics in a selected ion flow tube reactor and report product branching ratios different from previous measurements. Reaction is found to occur on both the singlet and triplet surfaces with near-unit efficiency. At 300 K, the product branching indicates that triplet → singlet transitions occur in about 60% of triplet-coupled collisions, which we attribute to long interaction times mediated by complexes on the triplet surface. Because the collision times are much shorter in the beam experiments, the product distributions show no signs of such transitions. The dominant product on the singlet surface is charge transfer. Reactions on the triplet surface lead to NO(+), NO(2)H(+), and NO(2)D(+). There is also charge transfer, producing NO(2)(+) (a(3)B(2)); however, this triplet NO(2)(+) mostly predissociates. The NO(2)H(+)/NO(2)D(+) cross sections peak at low collision energies and are insignificant above ~1 eV due to OH/OD loss from the nascent product ions. The effects of HOD(+) vibration are mode-specific. Vibration inhibits charge transfer, with the largest effect from the bend. The NO(2)H(+)/NO(2)D(+) channels are also vibrationally inhibited, and the mode dependence reveals how energy in different reactant modes couples to the internal energy of the product ions.

  13. Influence of multi-wavelength laser irradiation of enamel and dentin surfaces at 0.355, 2.94, and 9.4 μm on surface morphology, permeability, and acid resistance.

    PubMed

    Chang, Nai-Yuan N; Jew, Jamison M; Simon, Jacob C; Chen, Kenneth H; Lee, Robert C; Fried, William A; Cho, Jinny; Darling, Cynthia L; Fried, Daniel

    2017-07-12

    Ultraviolet (UV) and infrared (IR) lasers can be used to specifically target protein, water, and mineral, respectively, in dental hard tissues to produce varying changes in surface morphology, permeability, reflectivity, and acid resistance. The purpose of this study was to explore the influence of laser irradiation and topical fluoride application on the surface morphology, permeability, reflectivity, and acid resistance of enamel and dentin to shed light on the mechanism of interaction and develop more effective treatments. Twelve bovine enamel surfaces and twelve bovine dentin surfaces were irradiated with various combinations of lasers operating at 0.355 (Freq.-tripled Nd:YAG (UV) laser), 2.94 (Er:YAG laser), and 9.4 μm (CO2 laser), and surfaces were exposed to an acidulated phosphate fluoride gel and an acid challenge. Changes in the surface morphology, acid resistance, and permeability were measured using digital microscopy, polarized light microscopy, near-IR reflectance, fluorescence, polarization sensitive-optical coherence tomography (PS-OCT), and surface dehydration rate measurements. Different laser treatments dramatically influenced the surface morphology and permeability of both enamel and dentin. CO2 laser irradiation melted tooth surfaces. Er:YAG and UV lasers, while not melting tooth surfaces, showed markedly different surface roughness. Er:YAG irradiation led to significantly rougher enamel and dentin surfaces and led to higher permeability. There were significant differences in acid resistance among the various treatment groups. Surface dehydration measurements showed significant changes in permeability after laser treatments, application of fluoride and after exposure to demineralization. CO2 laser irradiation was most effective in inhibiting demineralization on enamel while topical fluoride was most effective for dentin surfaces. Lasers Surg. Med. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Get up and Stretch

    ERIC Educational Resources Information Center

    Crupi, Jeffrey

    2004-01-01

    Daily stretching has many benefits for one's body. It can relieve stress and tension, it increases flexibility and it can help prevent injuries. There are many stretching exercises that a teacher can do with his or her students to help promote daily stretching routines. In this article, the author presents several stretching exercises and some…

  15. Get up and Stretch

    ERIC Educational Resources Information Center

    Crupi, Jeffrey

    2004-01-01

    Daily stretching has many benefits for one's body. It can relieve stress and tension, it increases flexibility and it can help prevent injuries. There are many stretching exercises that a teacher can do with his or her students to help promote daily stretching routines. In this article, the author presents several stretching exercises and some…

  16. Cell-Based in Vitro Blood–Brain Barrier Model Can Rapidly Evaluate Nanoparticles’ Brain Permeability in Association with Particle Size and Surface Modification

    PubMed Central

    Hanada, Sanshiro; Fujioka, Kouki; Inoue, Yuriko; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2014-01-01

    The possibility of nanoparticle (NP) uptake to the human central nervous system is a major concern. Recent reports showed that in animal models, nanoparticles (NPs) passed through the blood–brain barrier (BBB). For the safe use of NPs, it is imperative to evaluate the permeability of NPs through the BBB. Here we used a commercially available in vitro BBB model to evaluate the permeability of NPs for a rapid, easy and reproducible assay. The model is reconstructed by culturing both primary rat brain endothelial cells and pericytes to support the tight junctions of endothelial cells. We used the permeability coefficient (Papp) to determine the permeability of NPs. The size dependency results, using fluorescent silica NPs (30, 100, and 400 nm), revealed that the Papp for the 30 nm NPs was higher than those of the larger silica. The surface charge dependency results using Qdots® (amino-, carboxyl-, and PEGylated-Qdots), showed that more amino-Qdots passed through the model than the other Qdots. Usage of serum-containing buffer in the model resulted in an overall reduction of permeability. In conclusion, although additional developments are desired to elucidate the NPs transportation, we showed that the BBB model could be useful as a tool to test the permeability of nanoparticles. PMID:24469316

  17. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles' brain permeability in association with particle size and surface modification.

    PubMed

    Hanada, Sanshiro; Fujioka, Kouki; Inoue, Yuriko; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2014-01-24

    The possibility of nanoparticle (NP) uptake to the human central nervous system is a major concern. Recent reports showed that in animal models, nanoparticles (NPs) passed through the blood-brain barrier (BBB). For the safe use of NPs, it is imperative to evaluate the permeability of NPs through the BBB. Here we used a commercially available in vitro BBB model to evaluate the permeability of NPs for a rapid, easy and reproducible assay. The model is reconstructed by culturing both primary rat brain endothelial cells and pericytes to support the tight junctions of endothelial cells. We used the permeability coefficient (P(app)) to determine the permeability of NPs. The size dependency results, using fluorescent silica NPs (30, 100, and 400 nm), revealed that the Papp for the 30 nm NPs was higher than those of the larger silica. The surface charge dependency results using Qdots® (amino-, carboxyl-, and PEGylated-Qdots), showed that more amino-Qdots passed through the model than the other Qdots. Usage of serum-containing buffer in the model resulted in an overall reduction of permeability. In conclusion, although additional developments are desired to elucidate the NPs transportation, we showed that the BBB model could be useful as a tool to test the permeability of nanoparticles.

  18. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    NASA Astrophysics Data System (ADS)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  19. Aligned magnetic field and cross-diffusion effects of a nanofluid over an exponentially stretching surface in porous medium

    NASA Astrophysics Data System (ADS)

    Sulochana, C.; Sandeep, N.; Sugunamma, V.; Rushi Kumar, B.

    2016-06-01

    In this paper, we investigated the effects of aligned magnetic field, thermal radiation, heat generation/absorption, cross-diffusion, viscous dissipation, heat source and chemical reaction on the flow of a nanofluid past an exponentially stretching sheet in porous medium. The governing partial differential equations are transformed to set of ordinary differential equations using self-similarity transformation, which are then solved numerically using bvp4c Matlab package. Finally the effects of various non-dimensional parameters on velocity, temperature, concentration, skin friction, local Nusselt and Sherwood numbers are thoroughly investigated and presented through graphs and tables. We observed that an increase in the aligned angle strengthens the applied magnetic field and decreases the velocity profiles of the flow. Soret and Dufour numbers are helpful to enhance the heat transfer rate. An increase in the heat source parameter, radiation parameter and Eckert number increases the mass transfer rate. Mixed convection parameter has tendency to enhance the friction factor along with the heat and mass transfer rate.

  20. Permeability of anti-fouling PEGylated surfaces probed by fluorescence correlation spectroscopy.

    PubMed

    Daniels, Charlisa R; Reznik, Carmen; Kilmer, Rachel; Felipe, Mary Jane; Tria, Maria Celeste R; Kourentzi, Katerina; Chen, Wen-Hsiang; Advincula, Rigoberto C; Willson, Richard C; Landes, Christy F

    2011-11-01

    The present work reports on in situ observations of the interaction of organic dye probe molecules and dye-labeled protein with different poly(ethylene glycol) (PEG) architectures (linear, dendron, and bottle brush). Fluorescence correlation spectroscopy (FCS) and single molecule event analysis were used to examine the nature and extent of probe-PEG interactions. The data support a sieve-like model in which size-exclusion principles determine the extent of probe-PEG interactions. Small probes are trapped by more dense PEG architectures and large probes interact more with less dense PEG surfaces. These results, and the tunable pore structure of the PEG dendrons employed in this work, suggest the viability of electrochemically-active materials for tunable surfaces.

  1. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells.

    PubMed

    Gao, Yunyi; Haso, Fadi; Szymanowski, Jennifer E S; Zhou, Jing; Hu, Lang; Burns, Peter C; Liu, Tianbo

    2015-12-14

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li48+m K12(OH)m [UO2(O2)(OH)]60-(H2O)n (m ≈ 20 and n ≈ 310) (U60) shows selective permeability to different alkali ions. The subnanometer pores on the water-ligand-rich surface of U60 are able to block Rb(+) and Cs(+) ions from passing through, while allowing Na(+) and K(+) ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestingly high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na(+)/K(+) and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells

    SciTech Connect

    Gao, Yunyi; Haso, Fadi; Szymanowski, Jennifer E. S.; Zhou, Jing; Hu, Lang; Burns, Peter C.; Liu, Tianbo

    2015-11-16

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60-(H2O)n (m≈20 and n≈310) (U60) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestingly high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.

  3. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study.

    PubMed

    Gupta, Rakesh; Rai, Beena

    2017-03-28

    Molecular level understanding of permeation of nanoparticles through human skin establishes the basis for development of novel transdermal drug delivery systems and design and formulation of cosmetics. Recent experiments suggest that surface coated nano-sized gold nanoparticles (AuNPs) can penetrate the rat and human skin. However, the mechanisms by which these AuNPs penetrate are not well understood. In this study, we have carried out coarse grained molecular dynamics simulations to explore the permeation of dodecanethiol coated neutral hydrophobic AuNPs of different sizes (2-5 nm) and surface charges (cationic and anionic) through the model skin lipid membrane. The results indicate that the neutral hydrophobic AuNPs disrupted the bilayer and entered in it with in ~200 ns, while charged AuNPs were adsorbed on the bilayer headgroup. The permeation free energy calculation revealed that at the head group of the bilayer, a very small barrier existed for neutral hydrophobic AuNP while a free energy minimum was observed for charged AuNPs. The permeability was maximum for neutral 2 nm gold nanoparticle (AuNP) and minimum for 3 nm cationic AuNP. The obtained results are aligned with recent experimental findings. This study would be helpful in designing customized nanoparticles for cosmetic and transdermal drug delivery application.

  4. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study

    PubMed Central

    Gupta, Rakesh; Rai, Beena

    2017-01-01

    Molecular level understanding of permeation of nanoparticles through human skin establishes the basis for development of novel transdermal drug delivery systems and design and formulation of cosmetics. Recent experiments suggest that surface coated nano-sized gold nanoparticles (AuNPs) can penetrate the rat and human skin. However, the mechanisms by which these AuNPs penetrate are not well understood. In this study, we have carried out coarse grained molecular dynamics simulations to explore the permeation of dodecanethiol coated neutral hydrophobic AuNPs of different sizes (2–5 nm) and surface charges (cationic and anionic) through the model skin lipid membrane. The results indicate that the neutral hydrophobic AuNPs disrupted the bilayer and entered in it with in ~200 ns, while charged AuNPs were adsorbed on the bilayer headgroup. The permeation free energy calculation revealed that at the head group of the bilayer, a very small barrier existed for neutral hydrophobic AuNP while a free energy minimum was observed for charged AuNPs. The permeability was maximum for neutral 2 nm gold nanoparticle (AuNP) and minimum for 3 nm cationic AuNP. The obtained results are aligned with recent experimental findings. This study would be helpful in designing customized nanoparticles for cosmetic and transdermal drug delivery application. PMID:28349970

  5. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells

    NASA Astrophysics Data System (ADS)

    Gao, Yunyi; Szymanowski, Jennifer; Burns, Peter; Liu, Tianbo

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of ion transport mechanism through nanosized channels and offer new views for designing nanodevices. Here we reveal that a 2.5-nm-size, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2) (OH)]60-(H2O)n (m ~20 and n ~310) (U60) shows selective permeability to different alkali ions. The sub-nanometer pores on the water-ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allow Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestingly high entropy gain during the binding process between U60 and alkali ions suggest that the hydration shells of Na+i/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of surface nanopores and the dynamics of the hydration shells. This material is based upon work supported as part of the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089.

  6. Influence of Magnetic Field in Three-Dimensional Flow of Couple Stress Nanofluid over a Nonlinearly Stretching Surface with Convective Condition

    PubMed Central

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2015-01-01

    This article investigates the magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid subject to the convective boundary condition. Flow is generated due to a nonlinear stretching of the surface in two lateral directions. Temperature and nanoparticles concentration distributions are studied through the Brownian motion and thermophoresis effects. Couple stress fluid is considered electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed via boundary layer approach. Nonlinear ordinary differential systems are constructed by employing suitable transformations. The resulting systems have been solved for the convergent series solutions of velocities, temperature and nanoparticles concentration profiles. Graphs are sketched to see the effects of different interesting flow parameters on the temperature and nanoparticles concentration distributions. Numerical values are computed to analyze the values of skin-friction coefficients and Nusselt number. PMID:26714259

  7. Influence of Magnetic Field in Three-Dimensional Flow of Couple Stress Nanofluid over a Nonlinearly Stretching Surface with Convective Condition.

    PubMed

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2015-01-01

    This article investigates the magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid subject to the convective boundary condition. Flow is generated due to a nonlinear stretching of the surface in two lateral directions. Temperature and nanoparticles concentration distributions are studied through the Brownian motion and thermophoresis effects. Couple stress fluid is considered electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed via boundary layer approach. Nonlinear ordinary differential systems are constructed by employing suitable transformations. The resulting systems have been solved for the convergent series solutions of velocities, temperature and nanoparticles concentration profiles. Graphs are sketched to see the effects of different interesting flow parameters on the temperature and nanoparticles concentration distributions. Numerical values are computed to analyze the values of skin-friction coefficients and Nusselt number.

  8. Soret and dufour effects on MHD free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface: Group theory transformation

    NASA Astrophysics Data System (ADS)

    Siva Raman, N.; Sivagnana Prabhu, K. K.; Kandasamy, R.

    2012-11-01

    The group theoretic method is applied for solving the problem of the combined influence of the thermal diffusion and diffusion thermoeffect on magnetohydrodynamic free convective heat and mass transfer over a porous stretching surface in the presence of thermophoresis particle deposition with variable stream conditions. The application of one-parameter groups reduces the number of independent variables by one; consequently, the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The equations along with the boundary conditions are solved numerically by using the Runge-Kutta-Gill integration scheme with the shooting technique. The impact of the Soret and Dufour effects in the presence of thermophoresis particle deposition with a chemical reaction plays an important role on the flow field.

  9. Simultaneous effects of heat generation/absorption and thermal radiation in magnetohydrodynamics (MHD) flow of Maxwell nanofluid towards a stretched surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed

    Mathematical analysis of magnetohydrodynamic (MHD) three-dimensional nonlinear convective flow of Maxwell nanofluid towards a stretching surface is made in this article. Characteristics of heat transfer are examined under thermal radiation, heat generation/absorption and prescribed heat flux condition. Nanofluid model includes Brownian motion and thermophoresis. Dimensional nonlinear expressions of momentum, energy and concentration are converted into dimensionless systems by invoking suitable similarity variables. A well-known homotopic technique is implemented for dimensionless expressions. Impact of different quantities on velocities, temperature and concentration are scrutinized graphically and discussed in detail. The expressions of Nusselt and Sherwood numbers are calculated and addressed comprehensively. It is also seen that thermal radiation parameter enhances the temperature field and heat transfer rate.

  10. Regional and Local Control of Arsenic Concentrations in Shallow Aquifers by the Permeability of Surface Soils

    NASA Astrophysics Data System (ADS)

    van Geen, A.; Aziz, Z.; Goodbred, S. L.; Zheng, Y.; Horneman, A.; Dhar, R.; Weinman, B.; Cheng, Z.; Stute, M.; Hoque, M. A.; Seddique, A. A.; Ahmed, K. M.

    2004-12-01

    One of the bewildering aspects of the current arsenic crisis in Bangladesh and other South Asian countries is the extreme degree of spatial variability of groundwater As concentrations. This presentation focuses on the origin of this variability in the top 20 meters of shallow aquifers by combining surface geophysical measurements (EM31) with groundwater and sediment properties obtained by modifying a local hand-drilling method in three contrasting areas of Bangladesh: (1) Birganj, in northwestern Bangladesh, where groundwater As concentrations rarely exceed 50 ug/L, (2) Araihazar, a central portion of the country where shallow groundwater As concentrations are highly variable, and (3) Lakshmipur, where essentially all shallow wells are elevated in As. Comparison with a series of auger cores collected in Araihazar indicates that the EM31 signal combines contributions related to the ionic strength of soil water as well as the proportion of fine-grained sediment. The combined set of observations shows a rather consistent relation between the conductivity of surface soils measured by induction and shallow groundwater As. In Birganj, EM31 conductivities rarely exceed 10 mS/m and can be below the detection limit of the instrument (~0.1 mS/m) over distances of 100s of meters. In Araihazar, areas with EM31 conductivities ranging form 10-15 mS/m are intermixed with regions with EM31 readings of 20-30 mS/m. The lower and higher EM31 conductivity ranges are generally associated with low and elevated As concentrations, respectively. In contrast, EM31 readings in the portion of Lakshmipur that was surveyed are consistently high and range from 30-50 mS/m. Overall, therefore, it appears that high groundwater As concentrations are typically associated with aquifers capped by fine-grained sediment whereas low groundwater As concentrations prevail in aquifers overlain by sandy deposits. This association, combined with gradual downstream fining of surface deposits of the Ganges

  11. Permeability of displaced fractures

    NASA Astrophysics Data System (ADS)

    Kluge, Christian; Milsch, Harald; Blöcher, Guido

    2017-04-01

    Flow along fractures or in fissured systems becomes increasingly important in the context of Enhanced Geothermal Systems (EGS), shale gas recovery or nuclear waste deposit. Commonly, the permeability of fractures is approximated using the Hagen-Poiseuille solution of Navier Stokes equation. Furthermore, the flow in fractures is assumed to be laminar flow between two parallel plates and the cubic law for calculating the velocity field is applied. It is a well-known fact, that fracture flow is strongly influenced by the fracture surface roughness and the shear displacement along the fracture plane. Therefore, a numerical approach was developed which calculates the flow pattern within a fracture-matrix system. The flow in the fracture is described by a free fluid flow and the flow in the matrix is assumed to be laminar and therefore validates Darcy's law. The presented approach can be applied for artificially generated fractures or real fractures measured by surface scanning. Artificial fracture surfaces are generated using the power spectral density of the surface height random process with a spectral exponent to define roughness. For calculating the permeability of such fracture-matrix systems the mean fracture aperture, the shear displacement and the surface roughness are considered by use of a 3D numerical simulator. By use of this approach correlation between shear displacement and mean aperture, shear displacement and permeability, as well as surface roughness and permeability can be obtained. Furthermore, the intrinsic measured permeability presents a combination of matrix and fracture permeability. The presented approach allows the separation and quantification of the absolute magnitudes of the matrix and the fracture permeability and the permeability of displaced fractures can be calculated. The numerical approach which is a 3D numerical simulation of the fracture-matrix system can be applied for artificial as well as real systems.

  12. Crustal permeability

    USGS Publications Warehouse

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  13. Influence of Crassostrea gigas on the permeability and microstructure of the surface layer of concrete exposed to the tidal zone of the Yellow Sea.

    PubMed

    Lv, JianFu; Mao, JiZe; Ba, HengJing

    2015-01-01

    Concrete exposed to the tidal zone of the Yellow Sea and bearing Crassostrea gigas (CG) with differing areal coverages was investigated for evidence of biologically induced corrosion prevention. The experimental results indicated that both the chloride ion profile and the neutralization depth of the concrete decreased with increasing CG coverage. Moreover, the water absorption rate and the chloride ion permeability of concrete with the original surface intact also declined with increasing degrees of CG coverage. However, the water absorption rates of three concrete samples with 2 mm of the surface layer removed were similar, as was their chloride ion permeability. Mercury intrusion porosimetry tests indicated that CG significantly reduced the pore structure of the concrete surface layer. SEM observation revealed that the CG cementation membrane and left valve were tightly glued to the concrete surface and had a dense structure. Concrete durability indices showed that high CG coverage greatly improved concrete durability.

  14. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    PubMed

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. FTIR and 1H MAS NMR investigations on the correlation between the frequency of stretching vibration and the chemical shift of surface OH groups of solids

    NASA Astrophysics Data System (ADS)

    Brunner, Eike; Karge, H. G.; Pfeifer, H.

    1992-03-01

    The study of surface hydroxyl groups of solids, especially of zeolites, belongs to the 'classical' topics of IR spectroscopy since physico-chemical information may be derived from the wavenumber (nu) OH of the stretching vibration of the different hydroxyls. On the other hand, the last decade has seen the development of high resolution solid-state NMR spectroscopy and through the use of the so-called magic-angle-spinning technique (MAS) the signals of different hydroxyl species can be resolved in the 1H NMR spectra of solids. The chemical shift (delta) H describing the position of these lines may be used as well as (nu) OH to characterize quantitatively the strength of acidity of surface OH groups of solids. In a first comparison of (nu) OH with (delta) H for several types of surface OH groups, a linear correlation between them could be found. The aim of this paper was to prove the validity of this correlation for a wide variety of hydroxyls. The IR measurements were carried out on a Perkin-Elmer FTIR spectrometer 1800 at the Fritz Haber Institute of the Max Planck Society, Berlin, and the 1H MAS NMR spectra were recorded on a Bruker MSL- 300 at the University of Leipzig.

  16. Human stretch reflex pathways reexamined

    PubMed Central

    Yavuz, Ş. Utku; Mrachacz-Kersting, Natalie; Sebik, Oğuz; Berna Ünver, M.; Farina, Dario

    2013-01-01

    Reflex responses of tibialis anterior motor units to stretch stimuli were investigated in human subjects. Three types of stretch stimuli were applied (tap-like, ramp-and-hold, and half-sine stretch). Stimulus-induced responses in single motor units were analyzed using the classical technique, which involved building average surface electromyogram (SEMG) and peristimulus time histograms (PSTH) from the discharge times of motor units and peristimulus frequencygrams (PSF) from the instantaneous discharge rates of single motor units. With the use of SEMG and PSTH, the tap-like stretch stimulus induced five separate reflex responses, on average. With the same single motor unit data, the PSF technique indicated that the tap stimulus induced only three reflex responses. Similar to the finding using the tap-like stretch stimuli, ramp-and-hold stimuli induced several peaks and troughs in the SEMG and PSTH. The PSF analyses displayed genuine increases in discharge rates underlying the peaks but not underlying the troughs. Half-sine stretch stimuli induced a long-lasting excitation followed by a long-lasting silent period in SEMG and PSTH. The increase in the discharge rate, however, lasted for the entire duration of the stimulus and continued during the silent period. The results are discussed in the light of the fact that the discharge rate of a motoneuron has a strong positive linear association with the effective synaptic current it receives and hence represents changes in the membrane potential more directly and accurately than the other indirect measures. This study suggests that the neuronal pathway of the human stretch reflex does not include inhibitory pathways. PMID:24225537

  17. Longitudinal Effect of Surface Treatments Modified by NaOCl-Induced Deproteinization and Nd:YAG Laser on Dentin Permeability.

    PubMed

    Esteves, Stella Renata Machado Silva; Huhtala, Maria Filomena Rocha Lima; Gomes, Ana Paula Martins; Ye, Qiang; Spencer, Paulette; De Paiva Gonçalves, Sérgio Eduardo

    2016-02-01

    The purpose of this study was to evaluate dentin permeability after dentin hypersensitivity treatments: fluoride, adhesive system, and collagen deproteinization with and without Nd:YAG laser exposure, and after erosive and abrasive challenges. Dentin permeability was assessed by measuring dentinal fluid flow using a permeability device. Eighty bovine dentin specimens (6 mm diameter/1 mm thickness) had permeability measured in the presence of the smear layer and after removal of the smear layer by ethylenediaminetetraacetic acid (EDTA). They were then divided into eight groups according to treatment (n = 10): Group C, control; Group L, Nd:YAG laser; Group F, fluoride; Group FL, fluoride plus Nd:YAG laser; Group A, adhesive; Group AL, adhesive plus Nd:YAG laser; Group D, 10% NaOCl plus adhesive; and group DL, NaOCl plus adhesive plus Nd:YAG laser. Nd:YAG laser was irradiated at 60 mJ/pulse/10 Hz/47.7 J/cm2/1 W and applied freehanded without contact for 60 sec. Permeability was measured 24 h after the treatments. The specimens were exposed to erosive and abrasive challenges for 5 days. Erosive challenge was done by immersion in Coca-Cola, four times a day/90 sec each. After the first and last erosive challenge of the day, the abrasive challenge was conducted by brushing the specimens (24,000 cycles/3.8 cm range/200 g weight), and permeability was measured again. Results were analyzed statistically using two factor ANOVA and Tukey tests (α = 0.05). With the exception of groups FL and A, all treatments reduced permeability. A significant reduction in permeability was seen when the treatments were combined with laser exposure. The association of adhesive and Nd:YAG laser led to the lowest rate of permeability after 24 h. NaOCl-induced deproteinization associated with Nd:YAG laser showed the lowest permeability rate after erosive/abrasive challenges. Dentin hypersensitivity treatments reduced dentin permeability when associated with Nd

  18. Logarithmic and parabolic curve fitting analysis of dual stratified stagnation point MHD mixed convection flow of Eyring-Powell fluid induced by an inclined cylindrical stretching surface

    NASA Astrophysics Data System (ADS)

    Khalil-Ur-Rehman; Malik, M. Y.; Bilal, S.; Bibi, M.; Ali, U.

    The present analysis is made to envision the characteristics of thermal and solutal stratification on magneto-hydrodynamic mixed convection boundary layer stagnation point flow of non-Newtonian fluid by way of an inclined cylindrical stretching surface. Flow exploration is manifested with heat generation process. The magnitude of temperature and concentration nearby an inclined cylindrical surface is supposed to be higher in strength as compared to the ambient fluid. A suitable similarity transformation is applied to transform the flow conducting equations (mathematically modelled) into system of coupled non-linear ordinary differential equations. The numerical computations are made for these subsequent coupled equations with the source of shooting scheme charted with fifth order Runge-Kutta algorithm. A logarithmic way of study is executed to inspect the impact of various pertinent flow controlling parameters on the dimensionless velocity, temperature and concentration distributions. Further, straight line and parabolic curve fitting is presented for skin friction coefficient, heat and mass transfer rate. It seems to be first step in this direction and will serve as a helping source for the preceding studies.

  19. Electrokinetic Stretching of Tethered DNA

    PubMed Central

    Ferree, Sean; Blanch, Harvey W.

    2003-01-01

    During electrophoretic separations of DNA in a sieving medium, DNA molecules stretch from a compact coil into elongated conformations when encountering an obstacle and relax back to a coil upon release from the obstacle. These stretching dynamics are thought to play an important role in the separation mechanism. In this article we describe a silicon microfabricated device to measure the stretching of tethered DNA in electric fields. Upon application of an electric field, electro-osmosis generates bulk fluid flow in the device, and a protocol for eliminating this flow by attaching a polymer brush to all silicon oxide surfaces is shown to be effective. Data on the steady stretching of DNA in constant electric fields is presented. The data corroborate the approximate theory of hydrodynamic equivalence, indicating that DNA is not free-draining in the presence of both electric and nonelectric forces. Finally, these data provide the first quantitative test of a Stigter and Bustamante's detailed theory of electrophoretic stretching of DNA without adjustable parameters. The agreement between theory and experiment is good. PMID:14507716

  20. Aberration changes of the corneal anterior surface following discontinued use of rigid gas permeable contact lenses1

    PubMed Central

    Yu, Qing; Wu, Jiang-Xiu; Zhang, He-Ning; Ye, Sheng; Dong, Shi-Qi; Zhang, Chen-Hao

    2013-01-01

    AIM To record aberrations with a corneal topographic device on the anterior surface of the cornea at different time-points prior to wearing and following discontinued use of rigid gas permeable (RGP) contact lenses. The effect of wearing RGP on the anterior surface of the cornea was discussed to provide guidance for clinical refractive error correction. METHODS The study objects were 24 eyes from 24 patients. All patients underwent identical examination procedures prior to lens use, as well as afterwards, including slit-lamp examination, non-contact tonometer measurement, computer optometry and corneal curvature measurement, subjective refraction test, and corneal topography analysis. The patients wore contact lenses everyday for 1 month and then discontinued. Corneal topographies were recorded at certain time points of 30 minutes, 1 day, 3, 7 and 14 days following use. RESULTS Total corneal aberration at each time point following discontinued use of RGP contact lenses was less than the time point prior to use. Detailed results were as follows: root mean square (RMS) (pre)=(1.438±0.328)µm, RMS (30 minutes)=(1.076±0.355)µm, RMS (1 day)=(1.362±0.402)µm, RMS (3 days)=(1.373±0.398)µm, RMS (7 days)=(1.387±0.415)µm, and RMS (14 days)=(1.430±0.423)µm. Results showed that at 30 minutes after discontinued use of RGP contact lenses, almost all 2nd- and 3rd-order aberrations change. Quadrafoil Z10 and spherical Z12 of the 4th-order were also changed. Alterations to Z5, Z6, and Z12 at 1 day after discontinued use were significant differences compared with the time period prior to RGP use: Z5 and Z6 decreased, and Z12 increased slightly. Z5 and Z6 remained decreased at 3 days after discontinued use, but Z9 and Z10 continued to increase and Z12 returned to levels prior to RGP use. At 14 days after discontinued use, all aberrations were not significantly different from the values prior to use. CONCLUSION The use RGP contact lenses greatly reduced total aberration of

  1. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling.

    PubMed

    Winston, Ryan J; Al-Rubaei, Ahmed M; Blecken, Godecke T; Viklander, Maria; Hunt, William F

    2016-03-15

    The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material.

  2. Permeability of R6G across Cx43 hemichannels through a novel combination of patch clamp and surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Madhavan Nair, C.; Sabna, C.; Murty, K. V. G. K.; Ramanan, S. V.

    2005-10-01

    We have measured the permeability of rhodamine-6G across Cx43 hemichannels reconstituted on a pipette tip. Cx43 hemichannels were overexpressed in Sf9 cells, and affinity-purified. The hemichannels were reconstituted in a lipid bilayer on a pipette tip by the tip-dip method. R6G in the pipette permeated across the channels into the bath. The permeability of R6G was quantified by measuring R6G concentration in the bath after several hours by surface enhanced Raman spectroscopy (SERS) with 100 nm silver colloid particles. The ratio of the permeability of dye to salt, as extracted by this combined electrical-SERS technique, is compatible with similar ratios for other dyes across whole gap junction channels. The results for the permeability ratio were further compared to fluorescence measurements. The novel combination of patch and SERS techniques can be extended to quantifying the transport of biologically significant non-fluorescent molecules, such as cAMP and IP3, across 1 nm sized pores, such as the gap junction channel.

  3. Lie group analysis of flow and heat transfer of non-Newtonian nanofluid over a stretching surface with convective boundary condition

    NASA Astrophysics Data System (ADS)

    Afify, Ahmed A.; El-Aziz, Mohamed Abd

    2017-02-01

    The steady two-dimensional flow and heat transfer of a non-Newtonian power-law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the flow. Four different types of nanoparticles, namely copper (Cu), silver (Ag), alumina (Al 2 O 3) and titanium oxide (TiO 2) are considered by using sodium alginate (SA) as the base non-Newtonian fluid. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The transformed equations are solved numerically by using a shooting method with fourth-order Runge-Kutta integration scheme. The results show that the effect of viscosity on the heat transfer rate is remarkable only for relatively strong convective heating. Moreover, the skin friction coefficient and the rate of heat transfer increase with an increase in Biot number.

  4. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink

    SciTech Connect

    Hayat, T.; Muhammad, Taseer; Shehzad, S. A.; Alsaedi, A.

    2015-01-15

    Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities, temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.

  5. Stretched Wire Mechanics

    SciTech Connect

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  6. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  7. Permeability of stylolite-bearing chalk

    SciTech Connect

    Lind, I.; Nykjaer, O.; Priisholm, S. ); Springer, N.

    1994-11-01

    Permeabilities were measured on core plugs from stylolite-bearing chalk of the Gorm field in the Danish North Sea. Air and liquid permeabilities were measured in directions parallel to and perpendicular to the stylolite surface. Permeability was measured with sleeve pressure equal to in-situ reservoir stress. Permeabilities of plugs with stylolites but without stylolite-associated fractures were equal in the two directions. The permeability is equal to the matrix permeability of non-stylolite-bearing chalk. In contrast, when fractures were associated with the stylolites, permeability was enhanced. The enhancement was most significant in the horizontal direction parallel to the stylolites.

  8. Probing the role of P dbnd O stretching mode enhancement in nerve-agent sensors: Simulation of the adsorption of diisopropylfluorophosphate on the model MgO and CaO surfaces

    NASA Astrophysics Data System (ADS)

    Kolodziejczyk, Wojciech; Majumdar, D.; Roszak, Szczepan; Leszczynski, Jerzy

    2007-12-01

    The interactions of diisopropylfluorophosphate (DFP) with model MgO and CaO surfaces have been investigated using density functional (DFT) and Møller-Plesset second order perturbation techniques. The geometries were fully optimized at the DFT level. The calculated interaction energies and the corresponding thermodynamic properties show that DFP is physisorbed on these two model oxide surfaces and adsorption on the MgO surface is stronger. Analyses of the calculated IR and Raman spectra point to the enhancement of the P dbnd O stretching mode with respect to the isolated DFP and this property could be used to detect nerve-agents using surface-enhanced Raman spectroscopy.

  9. The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction

    PubMed Central

    Mansur, Syahira; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface. PMID:25760733

  10. The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction.

    PubMed

    Mansur, Syahira; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface.

  11. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  12. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  13. Stretching: Does It Help?

    ERIC Educational Resources Information Center

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  14. Stretching: Does It Help?

    ERIC Educational Resources Information Center

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  15. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  16. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  17. Stretch Garment Dermatitis

    PubMed Central

    Mihan, Richard; Ayres, Samuel

    1968-01-01

    A disease of the skin, not hitherto described, is caused by pressure or tension on the skin from the wearing of tight-fitting stretch garments such as “stretch bras,” “stretch girdles” and “stretch socks.” The condition is not due to chemical sensitization of fabrics, dyes or other additives but is of mechanical origin. The eruption may assume various clinical forms and may be characterized by a nondescript erythematous and eczematous appearance or may consist of an exaggeration, in the areas covered by the stretch garment, of already existing dermatosis such as lichen planus, psoriasis, acne vulgaris, discoid lupus erythematosus or atopic dermatitis. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:5639939

  18. Comparative study of dentine permeability after apicectomy and surface treatment with 9.6 microm TEA CO2 and Er:YAG laser irradiation.

    PubMed

    Gouw-Soares, S; Stabholz, A; Lage-Marques, J L; Zezell, D M; Groth, E B; Eduardo, C P

    2004-04-01

    Failure of apicectomies is generally attributed to dentine surface permeability as well as to the lack of an adequate marginal sealing of the retrofilling material, which allows the percolation of microorganisms and their products from the root canal system to the periodontal region, thus compromising periapical healing. The purpose of this study was to evaluate dentine and the marginal permeability after apicectomy and surface treatment with 9.6 micro m TEA CO(2) or Er:YAG 2.94 micro m laser irradiation. Sixty-five single rooted human endodontically treated teeth were divided into five experimental groups: group I (control), apicectomy with high speed bur; group II, similar procedure to that of group I, followed by dentinal surface treatment with 9.6 micro m CO(2) laser; group III, similar procedure to group I followed by dentinal surface treatment with Er:YAG laser 2.94 micro m; group IV, apicectomy and surface treatment with CO(2) 9.6 micro m laser; and group V, apicectomy and surface treatment with Er:YAG laser 2.94 micro m. The analysis of methylene blue dye infiltration through the dentinal surface and the retrofilling material demonstrated that the samples from the groups that were irradiated with the lasers showed significantly lower infiltration indexes than the ones from the control group. These results were compatible with the structural morphological changes evidenced through SEM analysis. Samples from groups II and IV (9.6 micro m CO(2)) showed clean smooth surfaces, fusion, and recrystallized dentine distributed homogeneously throughout the irradiated area sealing the dentinal tubules. Samples from groups III and V (Er:YAG 2.94 micro m) also presented clean surfaces, without smear layer, but roughly compatible to the ablationed dentine and without evidence of dentinal tubules. Through the conditions of this study, the Er:YAG 2.94 micro m and the 9.6 micro m CO(2) laser used for root canal resection and dentine surface treatment showed a reduction of

  19. Simulation of single DNA molecule stretching and immobilization in a de-wetting two-phase flow over micropillar-patterned surface

    PubMed Central

    Liao, Wei-Ching; Hu, Xin; Wang, Weixiong; James Lee, L.

    2013-01-01

    We investigate single DNA stretching dynamics in a de-wetting flow over micropillars using Brownian dynamics simulation. The Brownian dynamics simulation is coupled with transient flow field computation through a numerical particle tracking algorithm. The droplet formation on the top of the micropillar during the de-wetting process creates a flow pattern that allows DNA to stretch across the micropillars. It is found that DNA nanowire forms if DNA molecules could extend across the stagnation point inside the connecting water filament before its breakup. It also shows that DNA locates closer to the top wall of the micropillar has higher chance to enter the flow pattern of droplet formation and thus has higher chance to be stretched across the micropillars. Our simulation tool has the potential to become a design tool for DNA manipulation in complex biomicrofluidic devices. PMID:24404023

  20. Simulation of single DNA molecule stretching and immobilization in a de-wetting two-phase flow over micropillar-patterned surface.

    PubMed

    Liao, Wei-Ching; Hu, Xin; Wang, Weixiong; James Lee, L

    2013-01-01

    We investigate single DNA stretching dynamics in a de-wetting flow over micropillars using Brownian dynamics simulation. The Brownian dynamics simulation is coupled with transient flow field computation through a numerical particle tracking algorithm. The droplet formation on the top of the micropillar during the de-wetting process creates a flow pattern that allows DNA to stretch across the micropillars. It is found that DNA nanowire forms if DNA molecules could extend across the stagnation point inside the connecting water filament before its breakup. It also shows that DNA locates closer to the top wall of the micropillar has higher chance to enter the flow pattern of droplet formation and thus has higher chance to be stretched across the micropillars. Our simulation tool has the potential to become a design tool for DNA manipulation in complex biomicrofluidic devices.

  1. The sperm surface localization of the TRP-3/SPE-41 Ca2+-permeable channel depends on SPE-38 function in Caenorhabditis elegans

    PubMed Central

    Singaravelu, Gunasekaran; Chatterjee, Indrani; Rahimi, Sina; Druzhinina, Marina K.; Kang, Lijun; Xu, X. Z. Shawn; Singson, Andrew

    2012-01-01

    Despite undergoing normal development and acquiring normal morphology and motility, mutations in spe-38 or trp-3/spe-41 cause identical phenotypes in Caenorhabditis elegans – mutant sperm fail to fertilize oocytes despite direct contact. SPE-38 is a novel, four-pass transmembrane protein and TRP-3/SPE-41 is a Ca2+-permeable channel. Localization of both of these proteins is confined to the membranous organelles (MOs) in undifferentiated spermatids. In mature spermatozoa, SPE-38 is localized to the pseudopod and TRP-3/SPE-41 is localized to the whole plasma membrane. Here we show that the dynamic redistribution of TRP-3/SPE-41 from MOs to the plasma membrane is dependent on SPE-38. In spe-38 mutant spermatozoa, TRP-3/SPE-41 is trapped within the MOs and fails to reach the cell surface despite MO fusion with the plasma membrane. Split-ubiquitin yeast-two-hybrid analyses revealed that the cell surface localization of TRP-3/SPE-41 is likely regulated by SPE-38 through a direct protein-protein interaction mechanism. We have identified sequences that influence the physical interaction between SPE-38 and TRP-3/SPE-41, and show that these sequences in SPE-38 are required for fertility in transgenic animals. Despite the mislocalization of TRP-3/SPE-41 in spe-38 mutant spermatozoa, ionomycin or thapsigargin induced influx of Ca2+ remains unperturbed. This work reveals a new paradigm for the regulated surface localization of a Ca2+-permeable channel. PMID:22425620

  2. The optical measurement of 1,2-propanediol for the determination of lung capillary permeability surface area

    SciTech Connect

    Galloway, R.L. Jr.; Staton, D.J.; Harris, T.R. )

    1989-06-01

    A technique has been developed which allows for the optical measurement of the concentration-time relationship for a diffusion-limited material in indicator dilution studies. The material, 1-2 propanediol, is used as a probe of the permeability of capillaries in the lung. Comparisons between standard radioisotope measurements and the optical measurements are provided and show excellent agreement. The optical method represents an improvement over the standard radioisotope method in that it provides the same data at lower cost, lower risk, and without the delay required by the radiographic methods.

  3. Triceps stretch (image)

    MedlinePlus

    ... shoulder. Hold for 10 to 20 seconds, then switch sides. Alternate method: raise your arm over your ... elbow. Hold for 10 to 20 seconds, then switch sides. You should feel either of these stretches ...

  4. Biocatalysis: Unmasked by stretching

    NASA Astrophysics Data System (ADS)

    Kharlampieva, Eugenia; Tsukruk, Vladimir V.

    2009-09-01

    The biocatalytic activity of enzyme-loaded responsive layer-by-layer films can be switched on and off by simple mechanical stretching. Soft materials could thus be used to trigger biochemical reactions under mechanical action, with potential therapeutic applications.

  5. Turbulent drag reduction by permeable coatings

    NASA Astrophysics Data System (ADS)

    Garcia-Mayoral, Ricardo; Abderrahaman-Elena, Nabil

    2015-11-01

    We present an assessment of permeable coatings as a form of passive drag reduction, proposing a simplified model to quantify the effect of the coating thickness and permeability. To reduce skin friction, the porous layer must be preferentially permeable in the streamwise direction, so that a slip effect is produced. For small permeability, the controlling parameter is the difference between streamwise and spanwise permeability lengths, scaled in viscous units, √{Kx+}-√{Kz+}. In this regime, the reduction in drag is proportional to that difference. However, the proportional performance eventually breaks down for larger permeabilities. A degradation mechanism is investigated, common to other obstructed surfaces in general and permeable substrates in particular, which depends critically on the geometric mean of the streamwise and wall-normal permeabilities, √{Kx+ Ky+}. For a streamwise-to-cross-plane permeability ratio of order Kx+/Ky+ = Kx+/Kz+ 10 -100, the model predicts a maximum drag reduction of order 15-25%.

  6. Steady laminar mixed convection stagnation-point flow of a nanofluid over a vertical permeable surface in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Tamim, H.; Dinarvand, S.; Hosseini, R.; Rahimi, H.; Pop, I.

    2016-11-01

    A similarity solution for a steady laminar mixed convection boundary layer flow of a nanofluid near the stagnation point on a vertical permeable plate with a magnetic field and a buoyancy force is obtained by solving a system of nonlinear ordinary differential equations. These equations are solved analytically by using a new kind of a powerful analytic technique for nonlinear problems, namely, the homotopy analysis method (HAM). Three different types of nanoparticles, namely, copper (Cu), alumina (Al2O3), and titanium oxide (TiO2), with water as the base fluid are considered. The influence of the volume fraction of nanoparticles, permeability parameter, magnetic parameter, and mixed convection parameter on the surface shear stress and surface heat transfer, as well as on the velocity and temperature profiles, is considered. It is observed that the skin friction coefficient and the local Nusselt number increase with the nanoparticle volume fraction for all types of nanoparticles considered in this study. The greatest values of the skin friction coefficient and the local Nusselt number are obtained for Cu nanoparticles.

  7. Boundary layer flow and heat transfer over a permeable surface moving with exponentially decreasing velocities in a parallel free stream

    NASA Astrophysics Data System (ADS)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2014-07-01

    In this paper, we investigate the problem of steady boundary layer flow and heat transfer of a viscous and incompressible fluid over a permeable semi-infinite flat plate moving with exponentially decreasing velocities in a parallel free stream. The velocities of the moving flat plate and the free stream as well as the temperature of the moving plate are assumed to have a specific exponential decreasing function forms. The governing equations are first transformed to the similarity equations using an appropriate similarity transformation. Then, the resulting equations are solved by using shooting technique which is done with the aid of shootlib function in Maple software. The effects of the mass flux for suction and lateral injection, and the parameter that controls the exponential increment of the temperature on the flow characteristics are analysed and discussed. It is observed that there exist dual solutions for this present study.

  8. Lie group analysis for the effect of temperature-dependent fluid viscosity with thermophoresis on magnetohydrodynamic free convective heat and mass transfer over a porous stretching surface

    NASA Astrophysics Data System (ADS)

    Kandasamy, R.; Muhaimin, I.; Amin, Norsarahaida S.

    2010-01-01

    This article concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. Impact of thermophoresis particle deposition in the presence of temperature-dependent fluid viscosity plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.

  9. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  10. Lie group analysis for the effect of temperature-dependent fluid viscosity with thermophoresis and chemical reaction on MHD free convective heat and mass transfer over a porous stretching surface in the presence of heat source/sink

    NASA Astrophysics Data System (ADS)

    Kandasamy, Ramasamy; Muhaimin, Ismoen; Saim, Hashim Bin

    2010-08-01

    This paper concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants a third-order ordinary differential equation corresponding to the momentum equation and two second-order ordinary differential equation corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. It is found that with the increase of magnetic field intensity the fluid velocity decreases but the temperature increases at a particular point of the heated stretching surface. Impact of thermophoresis particle deposition with chemical reaction in the presence of heat source/sink plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.

  11. Flows induced by exponential stretching and shearing plate motions

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick

    2016-11-01

    Boundary-layer solutions for the flow induced by an exponentially stretching surface also sheared in its own plane are given. Prior to this study no similarity solutions have been reported for flows generated by exponentially sheared surfaces concomitant with surface stretching in any form. The method of solution is self-similarity. The results found here are intimately related to those of Magyari and Keller ["Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface," J. Phys. D: Appl. Phys. 32, 577-585 (1999)] who studied the motion and heat transfer induced by an exponentially stretching plate. In addition to two particular cases reported here, a third situation is found where an exponentially stretching surface admits a concomitant arbitrary streamwise shearing motion.

  12. Mathematical Analysis of Hall Effect on Transient Hartman Flow about a Rotating Horizontal Permeable Surface in a Porous Medium under Inclined Magnetic Field.

    PubMed

    Suresh, M; Manglik, A

    2014-01-01

    This paper proposes the exact solution for unsteady flow of a viscous incompressible electrically conducting fluid past a impulsively started infinite horizontal surface which is rotating with an angular velocity embedded in a saturated porous medium under the influence of strong magnetic field with hall effect. Our study focuses on the change of direction of the external magnetic field on the flow system which leads to change in the flow behavior and skin frictional forces at the boundary. Systems of flow equations are solved using Laplace transform technique. The impacts of control parameters Hartman number, rotation of the system, hall effect, inclination of the magnetic field, and Darcy number on primary and secondary velocities are shown graphically, skin friction at horizontal boundary in tabular form. For validating our results, in the absence of permeability of the porous medium and inclination of the magnetic field the results are in good agreement with the published results.

  13. Mathematical Analysis of Hall Effect on Transient Hartman Flow about a Rotating Horizontal Permeable Surface in a Porous Medium under Inclined Magnetic Field

    PubMed Central

    Suresh, M.; Manglik, A.

    2014-01-01

    This paper proposes the exact solution for unsteady flow of a viscous incompressible electrically conducting fluid past a impulsively started infinite horizontal surface which is rotating with an angular velocity embedded in a saturated porous medium under the influence of strong magnetic field with hall effect. Our study focuses on the change of direction of the external magnetic field on the flow system which leads to change in the flow behavior and skin frictional forces at the boundary. Systems of flow equations are solved using Laplace transform technique. The impacts of control parameters Hartman number, rotation of the system, hall effect, inclination of the magnetic field, and Darcy number on primary and secondary velocities are shown graphically, skin friction at horizontal boundary in tabular form. For validating our results, in the absence of permeability of the porous medium and inclination of the magnetic field the results are in good agreement with the published results. PMID:27433540

  14. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    ERIC Educational Resources Information Center

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  15. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    ERIC Educational Resources Information Center

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  16. Scaling group transformation for the effect of temperature-dependent nanofluid viscosity on an mhd boundary layer past a porous stretching surface

    NASA Astrophysics Data System (ADS)

    Kandasamy, R.; Muhaimin, I.; Kamachi, G.

    2011-12-01

    This paper deals with a steady two-dimensional flow of an electrically conducting incompressible fluid over a porous vertical stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. The partial differential equations governing the problem under consideration are transformed by a special form of Lie group transformations, namely, scaling group of transformations, into a system of ordinary differential equations, which are solved numerically using the Runge-Kutta-Gill algorithm and the shooting method. The conclusion is drawn that the flow field and temperature profiles are significantly influenced by the Lewis number, Brownian motion number, and thermophoresis number.

  17. Effects of Variable Thermal Conductivity with Thermal Radiation on MHD Flow and Heat Transfer of Casson Liquid Film Over an Unsteady Stretching Surface

    NASA Astrophysics Data System (ADS)

    El-Aziz, Mohamed Abd; Afify, Ahmed A.

    2016-10-01

    In the present work, the hydromagnetic boundary layer flow and heat transfer of Casson fluid in a thin liquid film over an unsteady stretching sheet in the presence of variable thermal conductivity, thermal radiation, and viscous dissipation is investigated numerically. The Casson fluid model is applied to characterize the non-Newtonian fluid behavior. Similarity equations are derived and then solved numerically by using a shooting method with fourth order Runge-Kutta integration scheme. Comparisons with previous literature are accomplished and obtained an excellent agreement. The influences of parameters governing a thin liquid film of Casson fluid and heat transfer characteristics are presented graphically and analyzed. It is observed that the heat transfer rate diminishes with a rise in thermal conductivity parameter and Eckert number. Further, the opposite influence is found with an increase in radiation parameter.

  18. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  19. Stretch-Oriented Polyimide Films

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Klinedinst, D.; Feuz, L.

    2000-01-01

    Two thermoplastic polyimides - one amorphous, the other crystallizable -- were subjected to isothermal stretching just above their glass transition temperatures. Room-temperature strengths in the stretch direction were greatly improved and, moduli increased up to 3.6-fold. Optimum stretching conditions were determined.

  20. [Structural modifications of the surface of Escherichia coli bacteria and copper-induced permeability of plasma membrane].

    PubMed

    Lebedev, V S; Volodina, L A; Deĭnega, E Iu; Fedorov, Iu I

    2005-01-01

    The effect of Cu2+ on the structural organization of the cell surface of Escherichia coli bacteria during the induction of conductivity of a plasma membrane was studied. A fluorescent study did not reveal any substantial changes in the microviscosity of lipids by the action of copper ions. At the same time, a substantial reorganization of membrane proteins during plasmolysis was observed. A model of the copper-induced structural reorganization of membrane lipids was constructed, according to which the reorganization leads to the opening in the membrane of channels of nonspecific conductivity for cations. The opening of conductivity channels results from the break of disulfide bonds in critical membrane proteins during the interaction with Cu+, which form either due to the reduction of Cu2+ on specific sites of cell surface or by means of external reducing agents.

  1. Relative Permeability of Fractured Rock

    SciTech Connect

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  2. Indentation of a stretched elastomer

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Crosby, Alfred J.; Cai, Shengqiang

    2017-10-01

    Indentation has been intensively used to characterize mechanical properties of soft materials such as elastomers, gels, and soft biological tissues. In most indentation measurements, residual stress or stretch which can be commonly found in soft materials is ignored. In this article, we aim to quantitatively understand the effects of prestretches of an elastomer on its indentation measurement. Based on surface Green's function, we analytically derive the relationship between indentation force and indentation depth for a prestretched Neo-Hookean solid with a flat-ended cylindrical indenter as well as a spherical indenter. In addition, for a non-equal biaxially stretched elastomer, we obtain the equation determining the eccentricity of the elliptical contacting area between a spherical indenter and the elastomer. Our results clearly demonstrate that the effects of prestretches of an elastomer on its indentation measurement can be significant. To validate our analytical results, we further conduct correspondent finite element simulations of indentation of prestretched elastomers. The numerical results agree well with our analytical predictions.

  3. Effects of cancer cell permeability control on the efficiency of cell damage through surface plasmon resonance of gold nanoparticle (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsiao, Jen-Hung; Yu, Jian-He; He, Yulu; Tu, Yi-Chou; Hua, Wei-Hsiang; Low, Meng Chun; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Cancer cell killing efficiencies based on the photothermal effect caused by the surface plasmon resonance of metal nanoparticles (NPs) and the photodynamic effect caused by the singlet oxygen generation of a photosensitizer rely on the cell uptake efficiency of metal NP and photosensitizer. Perforation and heating can increase cell membrane permeability and hence can increase the cell uptake efficiency of NPs and drugs. In this paper, we demonstrate the variations of the cell damage efficiency under the illuminations of different lasers, which can produce mainly photothermal effect, mainly photodynamic effect, and mixed effect, when a pre-perforation and a pre-heating processes are applied. Au nanorings (NRIs) with their localized surface plasmon resonance wavelength around 1064 nm are used. The perforation process is undertaken by illuminating the cell samples by a femtosecond laser at 1064 nm with the power density lower than the cell damage threshold intensity. The heating process is implemented by illuminating cells with a low power continuous laser at 1064 nm. It is found that with the pre-perforation and pre-heating processes, the photodynamic effect is enhanced because the internalized Au NRI number and hence the internalized photosensitizer (AlPcS) molecule number are increased. However, the photothermal effect can be reduced because the adsorbed Au NRIs on cell membrane are effectively internalized during the pre-perforation and pre-heating processes. The photothermal effect is more effective when Au NRIs are adsorbed on cell membrane.

  4. Stretched View Showing 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Stretched View Showing 'Victoria'

    This pair of images from the panoramic camera on NASA's Mars Exploration Rover Opportunity served as initial confirmation that the two-year-old rover is within sight of 'Victoria Crater,' which it has been approaching for more than a year. Engineers on the rover team were unsure whether Opportunity would make it as far as Victoria, but scientists hoped for the chance to study such a large crater with their roving geologist. Victoria Crater is 800 meters (nearly half a mile) in diameter, about six times wider than 'Endurance Crater,' where Opportunity spent several months in 2004 examining rock layers affected by ancient water.

    When scientists using orbital data calculated that they should be able to detect Victoria's rim in rover images, they scrutinized frames taken in the direction of the crater by the panoramic camera. To positively characterize the subtle horizon profile of the crater and some of the features leading up to it, researchers created a vertically-stretched image (top) from a mosaic of regular frames from the panoramic camera (bottom), taken on Opportunity's 804th Martian day (April 29, 2006).

    The stretched image makes mild nearby dunes look like more threatening peaks, but that is only a result of the exaggerated vertical dimension. This vertical stretch technique was first applied to Viking Lander 2 panoramas by Philip Stooke, of the University of Western Ontario, Canada, to help locate the lander with respect to orbiter images. Vertically stretching the image allows features to be more readily identified by the Mars Exploration Rover science team.

    The bright white dot near the horizon to the right of center (barely visible without labeling or zoom-in) is thought to be a light-toned outcrop on the far wall of the crater, suggesting that the rover can see over the low rim of Victoria. In figure 1, the northeast and southeast rims are labeled

  5. Stretched View Showing 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Stretched View Showing 'Victoria'

    This pair of images from the panoramic camera on NASA's Mars Exploration Rover Opportunity served as initial confirmation that the two-year-old rover is within sight of 'Victoria Crater,' which it has been approaching for more than a year. Engineers on the rover team were unsure whether Opportunity would make it as far as Victoria, but scientists hoped for the chance to study such a large crater with their roving geologist. Victoria Crater is 800 meters (nearly half a mile) in diameter, about six times wider than 'Endurance Crater,' where Opportunity spent several months in 2004 examining rock layers affected by ancient water.

    When scientists using orbital data calculated that they should be able to detect Victoria's rim in rover images, they scrutinized frames taken in the direction of the crater by the panoramic camera. To positively characterize the subtle horizon profile of the crater and some of the features leading up to it, researchers created a vertically-stretched image (top) from a mosaic of regular frames from the panoramic camera (bottom), taken on Opportunity's 804th Martian day (April 29, 2006).

    The stretched image makes mild nearby dunes look like more threatening peaks, but that is only a result of the exaggerated vertical dimension. This vertical stretch technique was first applied to Viking Lander 2 panoramas by Philip Stooke, of the University of Western Ontario, Canada, to help locate the lander with respect to orbiter images. Vertically stretching the image allows features to be more readily identified by the Mars Exploration Rover science team.

    The bright white dot near the horizon to the right of center (barely visible without labeling or zoom-in) is thought to be a light-toned outcrop on the far wall of the crater, suggesting that the rover can see over the low rim of Victoria. In figure 1, the northeast and southeast rims are labeled

  6. System performance analysis of stretched membrane heliostats

    SciTech Connect

    Anderson, J V; Murphy, L M; Short, W; Wendelin, T

    1985-12-01

    The optical performance of both focused and unfocused stretched membrane heliostats was examined in the context of the overall cost and performance of central receiver systems. The sensitivity of optical performance to variations in design parameters such as the system size (capacity), delivery temperature, heliostat size, and heliostat surface quality was also examined. The results support the conclusion that focused stretched membrane systems provide an economically attractive alternative to current glass/metal heliostats over essentially the entire range of design parameters studied. In addition, unfocused stretched membrane heliostats may be attractive for a somewhat more limited range of applications, which would include the larger plant sizes (e.g., 450 MW) and lower delivery temperatures (e.g., 450/sup 0/C), or situations in which the heliostat size could economically be reduced.

  7. In-situ monitoring of flow-permeable surface area of high explosive powder using small sample masses

    SciTech Connect

    Maiti, Amitesh; Han, Yong; Zaka, Fowzia; Gee, Richard H.

    2015-02-17

    To ensure good performance of high explosive devices over long periods of time, initiating powders need to maintain their specific surface area within allowed margins during the entire duration of deployment. A common diagnostic used in this context is the Fisher sub-sieve surface area (FSSA). Furthermore, commercial permeametry instruments measuring the FSSA requires the utilization of a sample mass equal to the crystal density of the sample material, an amount that is often one or two orders of magnitude larger than the typical masses found in standard detonator applications. Here we develop a customization of the standard device that can utilize just tens of milligram samples, and with simple calibration yield FSSA values at ac curacy levels comparable to the standard apparatus. This necessitated a newly designed sample holder, made from a material of low coefficient of thermal expansion, which is conveniently transferred between an aging chamber and a re-designed permeametry tube. This improves the fidelity of accelerated aging studies by allowing measurement on the same physical sample at various time - instants during the aging process, and by obviating the need for a potentially FSSA-altering powder re-compaction step. We used the customized apparatus to monitor the FSSA evolution of a number of undoped and homolog-doped PETN powder samples that were subjected to artificial aging for several months at elevated temperatures. These results, in conjunction with an Arrhenius-based aging model were used to assess powder-coarsening - rates under long-term storage.

  8. Sensitivity Analysis and Parameter Identifiability of the Land Surface Model JULES at the point scale in permeable catchments

    NASA Astrophysics Data System (ADS)

    Bakopoulou, C.; Bulygina, N.; Butler, A. P.; McIntyre, N. R.

    2012-04-01

    Land surface models (LSMs) are recognised as important components of Global Circulation Models (GCMs). Simulating exchanges of the moisture, carbon and energy between land surface and atmosphere in a consistent manner requires physics-based LSMs of high complexity, fine vertical resolution and a large number of parameters that need to be estimated. The "physics" that is incorporated in such models is generally based on our knowledge of point (or very small) scale hydrological processes. Therefore, while larger GCM grid-scale performance may be the ultimate goal, the ability of the model to simulate the point-scale processes is, intuitively, a pre-requisite for its reliable use at larger scales. Critical evaluation of model performance and parameter uncertainty at point scales is therefore a rational starting point for critical evaluation of LSMs; and identification of optimal parameter sets at the point scale is a significant stage of the model evaluation at larger scales. The Joint UK Land Environment Simulator (JULES) is a complex LSM, which is used to represent surface exchanges in the UK Met Office's forecast and climate change models. This complexity necessitates a large number of model parameters (in total 108) some of which are incapable of being measured directly at large (i.e. kilometer) scales. For this reason, a parameter sensitivity analysis is a vital confidence building process within the framework of every LSM, and as a part of the calibration strategy. The problem of JULES parameter estimation and uncertainty at the point scale with a view to assessing the accuracy and the uncertainty in the default parameter values is addressed. The sensitivity of the JULES output of soil moisture is examined using parameter response surface analysis. The implemented technique is based on the Regional Sensitivity Analysis method (RSA), which evaluates the model response surface over a region of parameter space using Monte Carlo sampling. The modified version of RSA

  9. In-situ monitoring of flow-permeable surface area of high explosive powder using small sample masses

    DOE PAGES

    Maiti, Amitesh; Han, Yong; Zaka, Fowzia; ...

    2015-02-17

    To ensure good performance of high explosive devices over long periods of time, initiating powders need to maintain their specific surface area within allowed margins during the entire duration of deployment. A common diagnostic used in this context is the Fisher sub-sieve surface area (FSSA). Furthermore, commercial permeametry instruments measuring the FSSA requires the utilization of a sample mass equal to the crystal density of the sample material, an amount that is often one or two orders of magnitude larger than the typical masses found in standard detonator applications. Here we develop a customization of the standard device that canmore » utilize just tens of milligram samples, and with simple calibration yield FSSA values at ac curacy levels comparable to the standard apparatus. This necessitated a newly designed sample holder, made from a material of low coefficient of thermal expansion, which is conveniently transferred between an aging chamber and a re-designed permeametry tube. This improves the fidelity of accelerated aging studies by allowing measurement on the same physical sample at various time - instants during the aging process, and by obviating the need for a potentially FSSA-altering powder re-compaction step. We used the customized apparatus to monitor the FSSA evolution of a number of undoped and homolog-doped PETN powder samples that were subjected to artificial aging for several months at elevated temperatures. These results, in conjunction with an Arrhenius-based aging model were used to assess powder-coarsening - rates under long-term storage.« less

  10. Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Mabood, F.; Gireesha, B. J.; Gorla, R. S. R.

    2017-03-01

    The three-dimensional mixed convection boundary layer flow of a nanofluid induced by an exponentially stretching sheet is numerically investigated in the presence of thermal radiation, heat source/sink and first-order chemical reaction effects. The adopted nanofluid model incorporates the effects of Brownian motion and thermophoresis into the mathematical model. The first-order velocity slip boundary conditions are also taken into account. The governing boundary layer equations are transformed into a set of nonlinear ordinary differential equations by employing suitable similarity variables. The resultant equations are solved numerically using the Runge-Kutta-Fehlberg method. Obtained solutions are compared with previous results in a limiting sense from the literature, demonstrating an excellent agreement. To show the typical trend of the solutions, a parametric study is conducted. The axial velocity, transverse velocity, temperature and nanoparticle volume fraction profiles as well as the skin-friction coefficient, Nusselt and Sherwood numbers are demonstrated graphically as a representative set of numerical results and discussed comprehensively.

  11. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study

    NASA Astrophysics Data System (ADS)

    Lee, Bum Han; Lee, Sung Keun

    2013-07-01

    Despite the importance of understanding and quantifying the microstructure of porous networks in diverse geologic settings, the effects of the specific surface area and porosity on the key structural parameters of the networks have not been fully understood. We performed cube-counting fractal dimension (Dcc) and lacunarity analyses of 3D porous networks of model sands and configurational entropy analysis of 2D cross sections of model sands using random packing simulations and nuclear magnetic resonance (NMR) micro-imaging. We established relationships among porosity, specific surface area, structural parameters (Dcc and lacunarity), and the corresponding macroscopic properties (configurational entropy and permeability). The Dcc of the 3D porous networks increases with increasing specific surface area at a constant porosity and with increasing porosity at a constant specific surface area. Predictive relationships correlating Dcc, specific surface area, and porosity were also obtained. The lacunarity at the minimum box size decreases with increasing porosity, and that at the intermediate box size (∼0.469 mm in the current model sands) was reproduced well with specific surface area. The maximum configurational entropy increases with increasing porosity, and the entropy length of the pores decreases with increasing specific surface area and was used to calculate the average connectivity among the pores. The correlation among porosity, specific surface area, and permeability is consistent with the prediction from the Kozeny-Carman equation. From the relationship between the permeability and the Dcc of pores, the permeability can be expressed as a function of the Dcc of pores and porosity. The current methods and these newly identified correlations among structural parameters and properties provide improved insights into the nature of porous media and have useful geophysical and hydrological implications for elasticity and shear viscosity of complex composites of rock

  12. Aquifer and Shallow San Andreas Fault Permeabilities Inferred from Poroelastic Modeling of InSAR Measurements of Land Surface Deformation in Coachella Valley, California. Ravi Appana and Martin O. Saar

    NASA Astrophysics Data System (ADS)

    Appana, R.; Saar, M. O.

    2009-12-01

    Coachella Valley, in southern California, is located in a region where the southern San Andreas Fault system, comprising three main faults, cuts through the valley aquifer dividing it into many sub-basins. Satellite interferometry (InSAR) has revealed differential uplift of the land surface across the Banning Strand - San Andreas Fault (BSF) and the Garnet Hill Fault (GHF) in the upper Coachella Valley. This uplift is suggested to be caused by the elastic response of the aquifer to artificial groundwater recharge and the tectonic stresses acting in this region. However, the differential uplift appears to be mainly caused by the semi-permeable faults which partially restrict pore-fluid pressure diffusion and related groundwater flow. Hence, by employing numerical models of coupled groundwater flow and poroelastic deformation of the aquifer sediments, the land surface uplift can be utilized to constrain a large-scale hydrologic model of the region that includes hydraulic representations of the faults and the sub-basins. Such a regional model can aide in developing better groundwater management strategies that aim at uniform restorations of ground surface elevations and groundwater table levels and would better constrain fault permeabilities with implications for research related to earthquake dynamics and estimates of potential slip along segments of the southern San Andreas Fault system. Studies have suggested that these segments have reached the end of the inter-seismic strain accumulation period posing the biggest risk to seismic hazards in California. InSAR data showing regional land surface uplift and well data of water table elevations, collected in this region, are used to constrain the model yielding hydraulic parameters. Specifically, our results suggest that the horizontal permeability, kxWWB, of the White Water sub-basin (WWB) and its permeability anisotropy, aWWB = (kz/kx)WWB, are on the order of 0.20x10-11 m2 ≤ kxWWB ≤ 1.2x10-11 m2 and 0.04 ≤ a

  13. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  14. Stretching cells with DEAs

    NASA Astrophysics Data System (ADS)

    Akbari, S.; Rosset, S.; Shea, H. R.

    2012-04-01

    Biological cells regulate their biochemical behavior in response to mechanical stress present in their organism. Most of the available cell cultures designed to study the effect of mechanical stimuli on cells are cm2 area, far too large to monitor single cell response or have a very low throughput. We have developed two sets of high throughput single cell stretcher devices based on dielectric elastomer microactuators to stretch groups of individual cells with various strain levels in a single experiment. The first device consists of an array of 100 μm x 200 μm actuators on a non-stretched PDMS membrane bonded to a Pyrex chip, showing up to 4.7% strain at the electric field of 96 V/μm. The second device contains an array of 100 μm x 100 μm actuators on a 160% uniaxially prestretched PDMS membrane suspended over a frame. 37% strain is recorded at the nominal electric field of 114 V/μm. The performance of these devices as a cell stretcher is assessed by comparing their static and dynamic behavior.

  15. Incorporating surface indicators of reservoir permeability into reservoir volume calculations: Application to the Colli Albani caldera and the Central Italy Geothermal Province

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; De Benedetti, Arnaldo Angelo; Bonamico, Andrea; Ramazzotti, Paolo; Mattei, Massimo

    2014-01-01

    The Quaternary Roman Volcanic Province extends for over 200 km along the Tyrrhenian margin of the Italian peninsula and is composed of several caldera complexes with significant associated geothermal potential. In spite of the massive programs of explorations conducted by the then state-owned ENEL and AGIP companies between the 1970s and 1990s, and the identification of several high enthalpy fields, this resource remains so far unexploited, although it occurs right below the densely populated metropolitan area of Roma capital city. The main reason for this failure is that deep geothermal reservoirs are associated with fractured rocks, the secondary permeability of which has been difficult to predict making the identification of the most productive volumes of the reservoirs and the localisation of productive wells uncertain. As a consequence, almost half of the many exploration deep bore-holes drilled in the area reached a dry target. This work reviews available data and re-assesses the geothermal potential of caldera-related systems in Central Italy, by analysing in detail the case of the Colli Albani caldera system, the closest to Roma capital city. A GIS based approach identifies the most promising reservoir volumes for geothermal exploitation and uses an improved volume method approach for the evaluation of geothermal potential. The approach is based on a three dimensional matrix of georeferenced spatial data; the A axis accounts for the modelling of the depth of the top of the reservoirs based on geophysical and direct data; the B axis accounts for the thermal modelling of the crust (i.e. T with depth) based on measured thermal gradients. Both A and B data are necessary but not sufficient to identify rock volumes actually permeated by geothermal fluids in fractured reservoirs. We discuss the implementation of a C axis that evaluates all surface data indicating permeability in the reservoir and actual geothermal fluid circulation. We consider datasets on: i

  16. Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using (/sup 15/O)water and (/sup 11/C)butanol

    SciTech Connect

    Herscovitch, P.; Raichle, M.E.; Kilbourn, M.R.; Welch, M.J.

    1987-10-01

    We have previously adapted Kety's tissue autoradiographic method for measuring regional CBF in laboratory animals to the measurement of CBF in humans with positron emission tomography (PET) and H/sub 2/(/sup 15/)O. Because this model assumes diffusion equilibrium between tissue and venous blood, the use of a diffusion-limited tracer, such as H/sub 2/(/sup 15/)O, may lead to an underestimation of CBF. We therefore validated the use of (/sup 11/C)butanol as an alternative freely diffusible tracer for PET. We then used it in humans to determine the underestimation of CBF that occurs with H/sub 2/(/sup 15/)O, and thereby were able to calculate the extraction Ew and permeability-surface area product PSw of H/sub 2/(/sup 15/)O. Measurements of the permeability of rhesus monkey brain to (/sup 11/C)butanol, obtained by means of an intracarotid injection, external detection technique, demonstrated that this tracer is freely diffusible up to a CBF of at least 170 ml/min-100 g. CBF measured in baboons with the PET autoradiographic method and (/sup 11/C)butanol was then compared with CBF measured in the same animals with a standard residue detection method. An excellent correspondence was obtained between both of these measurements. Finally, paired PET measurements of CBF were made with both H/sub 2/(/sup 15/)O and (/sup 11/C)butanol in 17 normal human subjects. Average global CBF was significantly greater when measured with (/sup 11/C)butanol (53.1 ml/min-100 g) than with H/sub 2/(/sup 15/)O (44.4 ml/min-100 g). Average global Ew was 0.84 and global PSw was 104 ml/min-100 g. Regional measurements showed a linear relationship between local PSw and CBF, while Ew was relatively uniform throughout the brain. Simulations were used to determine the potential error associated with the use of an incorrect value for the brain-blood partition coefficient for (/sup 11/C)butanol and to calculate the effect of tissue heterogeneity and errors in flow measurement on the calculation of PSw.

  17. Anisotropic hydraulic permeability in compressed articular cartilage.

    PubMed

    Reynaud, Boris; Quinn, Thomas M

    2006-01-01

    The extent to which articular cartilage hydraulic permeability is anisotropic is largely unknown, despite its importance for understanding mechanisms of joint lubrication, load bearing, transport phenomena, and mechanotransduction. We developed and applied new techniques for the direct measurement of hydraulic permeability within statically compressed adult bovine cartilage explant disks, dissected such that disk axes were perpendicular to the articular surface. Applied pressure gradients were kept small to minimize flow-induced matrix compaction, and fluid outflows were measured by observation of a meniscus in a glass capillary under a microscope. Explant disk geometry under radially unconfined axial compression was measured by direct microscopic observation. Pressure, flow, and geometry data were input to a finite element model where hydraulic permeabilities in the disk axial and radial directions were determined. At less than 10% static compression, near free-swelling conditions, hydraulic permeability was nearly isotropic, with values corresponding to those of previous studies. With increasing static compression, hydraulic permeability decreased, but the radially directed permeability decreased more dramatically than the axially directed permeability such that strong anisotropy (a 10-fold difference between axial and radial directions) in the hydraulic permeability tensor was evident for static compression of 20-40%. Results correspond well with predictions of a previous microstructurally-based model for effects of tissue mechanical deformations on glycosaminoglycan architecture and cartilage hydraulic permeability. Findings inform understanding of structure-function relationships in cartilage matrix, and suggest several biomechanical roles for compression-induced anisotropic hydraulic permeability in articular cartilage.

  18. Studying the Variation in Gas Permeability of Porous Building Substrates

    NASA Astrophysics Data System (ADS)

    Townsend, L.; Savidge, C. R.; Hu, L.; Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.

    2009-12-01

    Understanding permeability of building materials is important for problems involving studies of contaminant transport. Examples include contamination from fire, acid rain, and chemical and biological weapons. Our research investigates the gas permeability of porous building substrates such as concretes, limestones, sandstones, and bricks. Each sample was cored to produce 70 mm (2.75”) diameter cores approximately 75-130 mm (3-5”) tall. The surface gas permeability was measured on the top surface of these specimens using the AutoScan II device manufactured by New England Research, Inc. The measurements were taken along a 3 mm grid producing a map of surface gas permeability. An example map is shown in Figure 1. The macroscopic measurements were performed along the entire cored specimen. A second set of measurements were made on a 5 mm thick slice cut from the top of each specimen to examine whether these measurements compare better with the surface measurements. The macroscopic gas permeability was measured for all specimens using ASTM D 4525. The results are summarized in Table 1. In general, the surface and macroscopic gas permeability measurements (Table 1) compare reasonably well (within one order of magnitude). The permeability of the 5 mm slices is not significantly different from the entire core for the specimens tested. Figure 1. Results of surface permeability mappingof Ohio Sandstone using the AutoScan II device. a) Map of gas permeability b) Range of gas permeability c) Density function of permeability. Table 1. Gas permeability values (mD)

  19. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  20. Numerical solutions of MHD stagnation-point flow and heat transfer past a stretching/shrinking sheet with chemical reaction and transpiration

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda

    2017-08-01

    In this study, the influence of the first order chemical reaction towards the magnetohydrodynamics (MHD) stagnation-point boundary layer flow past a permeable stretching/shrinking surface (sheet) is considered numerically. The governing boundary layer equations are transformed into a system of ordinary differential equations from the system of partial differential equations by using a proper similarity transformation so that it can be solved numerically by the "bvp4c" function in Matlab software. The main numerical solutions are presented graphically and discussed in the relevance of the governing parameters. It is found that dual solutions exist when the sheet is stretched and shrunk. Stability analysis is done to determine which solution is stable and valid physically. The results of the stability analysis show that the first solution (upper branch) is physically stable and realizable while the second solution (lower branch) is impracticable.

  1. To stretch or not to stretch: the role of stretching in injury prevention and performance.

    PubMed

    McHugh, M P; Cosgrave, C H

    2010-04-01

    Stretching is commonly practiced before sports participation; however, effects on subsequent performance and injury prevention are not well understood. There is an abundance of literature demonstrating that a single bout of stretching acutely impairs muscle strength, with a lesser effect on power. The extent to which these effects are apparent when stretching is combined with other aspects of a pre-participation warm-up, such as practice drills and low intensity dynamic exercises, is not known. With respect to the effect of pre-participation stretching on injury prevention a limited number of studies of varying quality have shown mixed results. A general consensus is that stretching in addition to warm-up does not affect the incidence of overuse injuries. There is evidence that pre-participation stretching reduces the incidence of muscle strains but there is clearly a need for further work. Future prospective randomized studies should use stretching interventions that are effective at decreasing passive resistance to stretch and assess effects on subsequent injury incidence in sports with a high prevalence of muscle strains.

  2. Film Permeability Determination Using Static Permeability Cells

    EPA Pesticide Factsheets

    The permeability of tarps to soil fumigant pesticides varies depending on the active ingredient chemical: dimethyl disulfide (DMDS), methyl bromide, chloropicrin, or other. The diffusion rate can be represented by the mass transfer coefficient (MTC).

  3. Investigation of the structure changes and properties of stretched mohair fibre

    NASA Astrophysics Data System (ADS)

    Zhou, A. J.; Liu, H. L.; Yu, W. D.; Carr, C. M.

    2012-12-01

    The structure changes and properties of stretched mohair fibres were studied using Raman spectroscopy, tensile tests, scanning electron microscope (SEM) and friction coefficient tests with the stretching ratios at 0%, 20%, 40% and 60%. The curve-fitting method of the amide I region implies that the conformational changes of stretched mohair fibres are mainly transformed from α-helical to β-pleated sheet structure. The tensile behaviours of the stretched mohair fibres also indicate the α → β microstructure transformation. The SEM results indicate that when the stretching ratio was 40%, the scales of stretched mohair fibres are obvious lifting of scales edges on the fibre. In contrast, when the stretching ratio was 60%, there is evidence of surface damage, with the lifted cuticle scales being chipped and flaked off. The friction coefficient of along and against scales with different stretching ratios also supports the morphology changes of scales and the presence of 'stick-slip' phenomenon at different friction speeds.

  4. Optimization of dielectrophoretic DNA stretching in microfabricated devices

    PubMed Central

    Sung, Kyung Eun; Burns, Mark A.

    2008-01-01

    We have found that the surface and bulk solution properties in a microfabricated device affect the degree and probability of electrostretching of DNA molecules. Using lambda phage DNA, we found that significantly hydrophilic surfaces between the electrodes decreases the efficiency of stretching. Surfaces treated with higher silane (trimethyl chlorosilane) concentrations performed better presumably due to the decreased non-specific adsorption of DNA on these surfaces compared to their more hydrophilic counterparts. The shape and dimensions of the electrodes also affected the efficiency of stretching. Both lift-off and metal etching methods produced electrodes with random microscopic peaks along the electrode’s edge and were poorly suited for stretching. Annealing the electrodes (450°C for 10 min) removed most of these peaks and allowed for more controlled stretching to be obtained. We also found that thin electrodes (65nm) gave close to a 90% success rate of DNA stretching but stretching with thick electrodes (350nm) produced only a 20% success rate. PMID:16642979

  5. Scanning electron microscopy and dentinal permeability analysis of smear layer.

    PubMed

    Prati, C; Mongiorgi, R; Pashley, D H; Riva di Sanseverino, L

    1991-05-01

    The aim of the present study was to evaluate the surface morphology and the permeability of dentine after different acid treatments: polyacrylic acid, maleic acid, phosphoric acid and saline solution as control. Dentine permeability was expressed as hydraulic conductance. All the acid treatments removed the smear layer and increased the dentine permeability.

  6. Long-term Metal Performance of Three Permeable Pavements

    EPA Science Inventory

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...

  7. Dynamic stretching and golf swing performance.

    PubMed

    Moran, K A; McGrath, T; Marshall, B M; Wallace, E S

    2009-02-01

    The aim of the present study was to examine the effect of dynamic stretching, static stretching and no stretching, as part of a general warm-up, on golf swing performance with a five-iron. Measures of performance were taken 0 min, 5 min, 15 min and 30 min after stretching. Dynamic stretching produced significantly greater club head speeds than both static stretching (Delta=1.9m.s (-1); p=0.000) and no stretching (Delta=1.7 m.s (-1); p=0.000), and greater ball speeds than both static stretching (Delta=3.5m.s (-1); p=0.003) and no stretching (Delta=3.3m.s (-1); p=0.001). Dynamic stretching produced significantly straighter swing-paths than both static stretching (Delta=-0.61 degrees , p=0.000) and no stretching (Delta=-0.72 degrees , p=0.01). Dynamic stretching also produced more central impact points than the static stretch (Delta=0.7 cm, p=0.001). For the club face angle, there was no effect of either stretch or time. For all of the variables measured, there was no significant difference between the static stretch and no stretch conditions. All of the results were unaffected by the time of measurement after stretching. The results indicate that dynamic stretching should be used as part of a general warm-up in golf.

  8. BSDB: the biomolecule stretching database

    PubMed Central

    Sikora, Mateusz; Sułkowska, Joanna I.; Witkowski, Bartłomiej S.; Cieplak, Marek

    2011-01-01

    We describe the Biomolecule Stretching Data Base that has been recently set up at http://www.ifpan.edu.pl/BSDB/. It provides information about mechanostability of proteins. Its core is based on simulations of stretching of 17 134 proteins within a structure-based model. The primary information is about the heights of the maximal force peaks, the force–displacement patterns, and the sequencing of the contact-rupturing events. We also summarize the possible types of the mechanical clamps, i.e. the motifs which are responsible for a protein's resistance to stretching. PMID:20929872

  9. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  10. Hydraulic fracture during epithelial stretching

    NASA Astrophysics Data System (ADS)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  11. Hydraulic fracture during epithelial stretching.

    PubMed

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  12. Strain softening in stretched DNA

    PubMed Central

    Luan, Binquan; Aksimentiev, Aleksei

    2010-01-01

    The microscopic mechanics of DNA stretching was characterized using extensive molecular dynamics simulations. By employing an anisotropic pressure control method, realistic force-extension dependences of effectively infinite DNA molecules were obtained. A coexistence of B- and S-DNA domains was observed during the overstretching transition. The simulations revealed that strain softening may occur in the process of stretching torsionally constrained DNA. The latter observation was qualitatively reconciled with available experimental data using a random-field Ising model. PMID:18851334

  13. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Experimental Volcanology: Fragmentation and Permeability

    NASA Astrophysics Data System (ADS)

    Spieler, O.

    2005-12-01

    An increasing number of scientists design new experiments to analyse processes that control the dynamics of explosive eruptions. There research is mostly coupled to numerical models and aims toward its controlling parameters. The fragmentation process, its threshold and the speed of the fragmentation wave as well as the energy consumed by the fragmentation are some hot spots of the experimental volcanology. Analysing the fragmentation behaviour of volcaniclastics as close to the natural system as possible, we found a number of physical constrains. Identifying the porosity as determining factor of the threshold, we realised that neither threshold nor the speed of the fragmentation process are solely controlled by the rock density. The later results of the shock tube type apparatus lead to the analysis of the specific surface area and permeability as direct links to textural features. Permeability analysis performed in a modified shock tube type apparatus, show two clear, distinct trends for dome rock and pyroclastic samples. The specific surface determined by Argon sorbtion (BET) as well as textural features of pumices from Campi Flegrei, Montserrat and Krakatoa (1883) give in contrary evidence of a more complex story. Large spherical, or ellipsoidal bubbles around fractured crystals prove that the high permeability of the pumice has partially developed after the fixing of the bubble size distribution. This puts up the question, if permeability measurements on pyroclastic samples reveal relevant numbers! The surface tension controlled 'self sealing' behaviour of surfaces from foaming obsidian hinders in situ measurements. Close textural investigations will have to clarify how the 'post process' samples deviate from the syneruptive conduit filling.

  15. Permeable membrane experiment

    NASA Technical Reports Server (NTRS)

    Slavin, Thomas J.; Cao, Tuan Q.; Kliss, Mark H.

    1993-01-01

    The purpose of the Permeable Membrane Experiment is to gather flight data on three areas of membrane performance that are influenced by the presence of gravity. These areas are: (1) Liquid/gas phase separation, (2) gas bubble interference with diffusion through porous membranes and (3) wetting characteristics of hydrophilic membrane surfaces. These data are important in understaning the behavior of membrane/liquid/gas interfaces where surface tension forces predominate. The data will be compared with 1-g data already obtained and with predicted micrograviity behavior. The data will be used to develop designs for phase separation and plant nutrient delivery systems and will be available to the life support community for use in developing technologies which employ membranes. A conceptual design has been developed to conduct three membrane experiments, in sequence, aboard a single Complex Autonomous Payload (CAP) carrier to be carried in the Shuttle Orbiter payload bay. One experiment is conducted for each of the three membrane performance areas under study. These experiments are discussed in this paper.

  16. Gas permeability of ENR/PVC membrane with the addition of inorganic fillers

    NASA Astrophysics Data System (ADS)

    Nor, Farhan Mohd; Abdullah, Ibrahim; Othaman, Rizafizah

    2013-11-01

    Epoxidized natural rubber (ENR) was blended with polyvinyl chloride to form a flexible and porous membrane. SiO2 and MgO were added into the membrane for pore formation and the effects of the addition was investigated by means of FTIR, TGA, SEM, EDX and gas permeability towards CO2 and N2 gases. FTIR result showed the presence of Si-O-Si asymmetric stretching at the absorption peak of 467 cm-1 for ENR/PVC/SiO2 membrane and MgO signature peak at 3700 cm-1 for ENR/PVC/MgO membrane. Thermal analysis showed that the thermal stability of ENR/PVC membrane increased with the addition of fillers. Morphological studies prove that subsequently, the pores in the membranes increased showing that some of the added fillers were drawn towards the water leaving empty spaces and tracks. The remaining fillers are homogenously distributed on the surface of the membranes. CO2 and N2 gas permeability increased with increasing filler content and the permeability of ENR/PVC/SiO2 membranes towards CO2 and N2 gasses was higher than ENR/PVC/MgO membranes.

  17. Stretching DNA with optical tweezers.

    PubMed Central

    Wang, M D; Yin, H; Landick, R; Gelles, J; Block, S M

    1997-01-01

    Force-extension (F-x) relationships were measured for single molecules of DNA under a variety of buffer conditions, using an optical trapping interferometer modified to incorporate feedback control. One end of a single DNA molecule was fixed to a coverglass surface by means of a stalled RNA polymerase complex. The other end was linked to a microscopic bead, which was captured and held in an optical trap. The DNA was subsequently stretched by moving the coverglass with respect to the trap using a piezo-driven stage, while the position of the bead was recorded at nanometer-scale resolution. An electronic feedback circuit was activated to prevent bead movement beyond a preset clamping point by modulating the light intensity, altering the trap stiffness dynamically. This arrangement permits rapid determination of the F-x relationship for individual DNA molecules as short as -1 micron with unprecedented accuracy, subjected to both low (approximately 0.1 pN) and high (approximately 50 pN) loads: complete data sets are acquired in under a minute. Experimental F-x relationships were fit over much of their range by entropic elasticity theories based on worm-like chain models. Fits yielded a persistence length, Lp, of approximately 47 nm in a buffer containing 10 mM Na1. Multivalent cations, such as Mg2+ or spermidine 3+, reduced Lp to approximately 40 nm. Although multivalent ions shield most of the negative charges on the DNA backbone, they did not further reduce Lp significantly, suggesting that the intrinsic persistence length remains close to 40 nm. An elasticity theory incorporating both enthalpic and entropic contributions to stiffness fit the experimental results extremely well throughout the full range of extensions and returned an elastic modulus of approximately 1100 pN. Images FIGURE 1 FIGURE 2 PMID:9138579

  18. Permeability of Dentine

    PubMed Central

    Ghazali, Farid Bin Che

    2003-01-01

    This is an update on the present integrated knowledge regarding dentine permeability that assumed a role in dentine sensitivity and contribute clinically to the effective bonding properties of restorative dental materials. This paper will attempt to refer to in vivo and in vitro studies of dentine permeability and the various interrelated factors governing it. PMID:23365497

  19. Permeability of dentine.

    PubMed

    Ghazali, Farid Bin Che

    2003-01-01

    This is an update on the present integrated knowledge regarding dentine permeability that assumed a role in dentine sensitivity and contribute clinically to the effective bonding properties of restorative dental materials. This paper will attempt to refer to in vivo and in vitro studies of dentine permeability and the various interrelated factors governing it.

  20. Failure During Sheared Edge Stretching

    NASA Astrophysics Data System (ADS)

    Levy, B. S.; van Tyne, C. J.

    2008-12-01

    Failure during sheared edge stretching of sheet steels is a serious concern, especially in advanced high-strength steel (AHSS) grades. The shearing process produces a shear face and a zone of deformation behind the shear face, which is the shear-affected zone (SAZ). A failure during sheared edge stretching depends on prior deformation in the sheet, the shearing process, and the subsequent strain path in the SAZ during stretching. Data from laboratory hole expansion tests and hole extrusion tests for multiple lots of fourteen grades of steel were analyzed. The forming limit curve (FLC), regression equations, measurement uncertainty calculations, and difference calculations were used in the analyses. From these analyses, an assessment of the primary factors that contribute to the fracture during sheared edge stretching was made. It was found that the forming limit strain with consideration of strain path in the SAZ is a major factor that contributes to the failure of a sheared edge during stretching. Although metallurgical factors are important, they appear to play a somewhat lesser role.

  1. Heat Transfer and Flow of a Casson Fluid Due to a Stretching Cylinder with the Soret and Dufour Effects

    NASA Astrophysics Data System (ADS)

    Mahdy, A.

    2015-07-01

    Numerical solutions of the problem on flow and heat transfer of a non-Newtonian fluid outside a stretching permeable cylinder are obtained with regard to suction or blowing and the Soret and Dufour effects. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations by employing similarity transformations, and the obtained equations are solved numerically by using the shooting technique. The main purpose of the study is to investigate the effect of the governing parameters, namely, the Casson, Soret, and Dufour parameters, the suction/injection parameter, and the Prandtl and Reynolds numbers, on the velocity and temperature profiles, as well as on the skin friction coefficient and temperature gradient at the surface.

  2. Nexal membrane permeability to anions

    PubMed Central

    1978-01-01

    The permeability of the septa of the earthworm in the median axon has been calculated for the anions fluorescein and its halogen derivatives. The values ranged from 5.4 X 10(-5) to 4 X 10(-6) cm/s. Previously, the septa had been shown to contain nexuses. By using freeze-fracture material, the surface area of nexus on the septal membranes was determined to be 4.5%, very similar to the percentage of nexus in the intercalated disk of mammalian myocardium. Plasma membrane permeability to these dyes was also calculated and shown to be much less than that of the septal membranes. In addition, an estimate of cytoplasmic binding for each dye was made, and most dyes showed little or no binding with the exception of aminofluorescein. PMID:702107

  3. Wrinkled flames and geometrical stretch

    NASA Astrophysics Data System (ADS)

    Denet, Bruno; Joulin, Guy

    2011-07-01

    Localized wrinkles of thin premixed flames subject to hydrodynamic instability and geometrical stretch of uniform intensity (S) are studied. A stretch-affected nonlinear and nonlocal equation, derived from an inhomogeneous Michelson-Sivashinsky equation, is used as a starting point, and pole decompositions are used as a tool. Analytical and numerical descriptions of isolated (centered or multicrested) wrinkles with steady shapes (in a frame) and various amplitudes are provided; their number increases rapidly with 1/S>0. A large constant S>0 weakens or suppresses all localized wrinkles (the larger the wrinkles, the easier the suppression), whereas S<0 strengthens them; oscillations of S further restrict their existence domain. Self-similar evolutions of unstable many-crested patterns are obtained. A link between stretch, nonlinearity, and instability with the cutoff size of the wrinkles in turbulent flames is suggested. Open problems are evoked.

  4. Effect of surface permeability on the structure of a separated turbulent flow and heat transfer behind a backward-facing step

    NASA Astrophysics Data System (ADS)

    Terekhov, V. V.; Terekhov, V. I.

    2017-03-01

    The structure and heat transfer in a turbulent separated flow in a suddenly expanding channel with injection (suction) through a porous wall are numerically simulated with the use of two-dimensional averaged Navier-Stokes equations, energy equations, and v 2- f turbulence model. It is shown that enhancement of the intensity of the transverse mass flux on the wall reduces the separation region length in the case of suction and increases the separation region length in the case of injection up to complete boundary layer displacement. The maximum heat transfer coefficient as a function of permeability is accurately described by the asymptotic theory of a turbulent boundary layer.

  5. Skin stretching for primary closure of acute burn wounds.

    PubMed

    Verhaegen, Pauline D H M; Bloemen, Monica C T; van der Wal, Martijn B A; Vloemans, Adrianus F P M; Tempelman, Fenike R H; Beerthuizen, Gerard I J M; van Zuijlen, Paul P M

    2014-12-01

    In burn care, a well-acknowledged problem is the suboptimal scar outcome from skin grafted burn wounds. With the aim of improving this, we focused on a new technique: excision of the burn wound followed by primary closure, thereby using a skin-stretching device to stretch the adjacent healthy skin. The short- and long-term effect of Skin Stretch was compared to split skin grafting (SSG) in a randomized controlled trial. Patients with burn wounds were randomized for SSG or primary wound closure using Skin Stretch. Follow-up was performed at 3 and 12 months postoperatively. The scar surface area was calculated and the scar quality was assessed, using subjective and objective measurement methods. No significant differences between the SSG and the Skin Stretch group were found for scar surface area. In the Skin Stretch group, a significant reduction of the surface area from 65.4cm(2) (13.6-129.1) to 13.4cm(2) (3.0-36.6) was found at 3 months (p=0.028) and at 12 months postoperatively (65.4cm(2) (13.6-129.1) to 33.0cm(2) (8.9-63.7), p=0.046, Wilcoxon signed ranks test). Skin Stretch for primary closure of acute burn wounds is a suitable technique and can be considered for specific circumscript full-thickness burn wounds. However, future research should be performed to provide additional scientific evidence. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  6. Dentin permeability after toothbrushing with different toothpastes.

    PubMed

    Prati, C; Chersoni, S; Lucchese, A; Pashley, D H; Mongiorgi, R

    1999-08-01

    To evaluate the interaction of smear layer produced during brushing and dentifrice particles. Dentin disks were obtained from extracted human third molars. Dentin permeability was evaluated using a hydraulic pressure apparatus working at 1 psi of pressure. After preparation, each sample was connected to the hydraulic pressure apparatus to evaluate the permeability of dentin with the smear layer produced during specimen preparation. After 5 min of measurements dentin was etched with 37% phosphoric acid gel for 2 min, washed and gently dried with cotton to measure the permeability after smear layer removal. This was done to measure the maximum permeability of each specimen (expressed as 100%). Then a second smear layer was produced using a #400 carbide paper under water for 1 min. Dentin permeability of the smear layer covered dentin was then measured, and expressed as a percent of the maximum permeability of that specimen, permitting each specimen to serve as its own control. The three toothpastes used (Merfluan powder, Merfluan paste and Fluorigard) were applied on dentin surfaces using a small sponge to completely cover the dentin surface. After 5 s, each sample was connected to a mechanical device and brushed under water for 3 min with constant pressure of 250 gr using a Colgate medium toothbrush. After this treatment, each sample was gently washed with tap water, gently air dried for 3-5 s and connected with the pressure apparatus to remeasure the permeability after brushing. For SEM examination of dentin before and after treatment with toothpaste and brushing, each dentin and enamel sample was fixed in 2% buffered glutaraldehyde. Dentin permeability proved unaffected by dentifrice treatments. SEM observations demonstrated the presence of dentifrice particles on dentin surface and inside dentin tubules. Smear plugs produced during dentin brushing were not removed by dentifrices.

  7. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  8. Measurement of skin stretch using digital image speckle correlation.

    PubMed

    Staloff, Isabelle Afriat; Rafailovitch, Miriam

    2008-08-01

    The surface of the skin is covered by intersecting grooves and ridges which produce characteristic skin surface patterns. It has been suggested that these folds provide a reserve of tissue, allowing the skin to stretch during normal muscle movements. More so, skin is anisotropic and under constant tension. Therefore, to characterize skin displacement following stretch, a discrete, description of the in-plane skin displacement during stretch is of interest. We introduce the use of digital image speckle correlation (DISC), a non-contact technique, to map, in two dimensions, the surface deformation patterns resulting from skin stretching. We analyze skin stretch under the mechanical action of a film former applied on a defined square surface on the back of the hand. This is achieved by taking a series of images, during the drying process of the film former. The images are then analyzed with DISC to create vector diagram and projection maps, from which we can obtain spatially resolved information regarding the skin displacement. We first show that DISC can provide spatially resolved information at any time point during the drying process: areas of de-wetting, wetting were identified using projection maps; we then extracted the value of the drying time. Finally using a vector map, we show the orientation of the skin displacement during stretching and calculated the magnitude of the total stretch. We have shown previously that DISC can be used to determine skin mechanical properties and muscular activity. We show here that DISC, as a non-contact technique, can map, in two dimensions, the surface deformation patterns of a polymer solution on a substrate at any time point during the drying process. DISC analysis generates for each speckle of the sample analyzed, the orientation and magnitude of displacement of the polymer solution. DISC can map in two dimensions the deformation undergone by the substrate and skin stretch is measured in this particular case. We therefore

  9. Permeability of porour rhyolite

    NASA Astrophysics Data System (ADS)

    Cashman, K.; Rust, A.; Wright, H.; Roberge, J.

    2003-04-01

    The development of permeability in bubble-bearing magmas determines the efficiency of volatile escape during their ascent through volcanic conduits, which, in turn, controls their explosive potential. As permeability requires bubble connectivity, relationships between permeability and porosity in silicic magmas must be controlled by the formation, growth, deformation and coalescence of their constituent bubbles. Although permeability data on porous volcanic pyroclasts are limited, the database can be greatly extended by including data for ceramic and metallic foams1. Several studies indicate that a single number does not adequately describe the permeability of a foam because inertial effects, which predominate at high flow rates, cause deviations from Darcy's law. These studies suggest that permeability is best modeled using the Forschheimer equation to determine both the Darcy permeability (k1) and the non-Darcian (k2) permeability. Importantly, at the high porosities of ceramic foams (75-95%), both k1 and k2 are strongly dependent on pore size and geometry, suggesting that measurement of these parameters provides important information on foam structure. We determined both the connected porosity (by He-pycnometry) and the permeability (k1 and k2) of rhyolitic samples having a wide range in porosity (22-85%) and vesicle textures. In general, these data support previous observations of a power law relationship between connected porosity and Darcy permeability2. In detail, variations in k1 increase at higher porosities. Similarly, k2 generally increases in both mean and standard deviation with increasing porosity. Measurements made on three mutually perpendicular cores from individual pumice clasts suggest that some of the variability can be explained by anisotropy in the vesicle structure. By comparison with ceramic foams, we suggest that the remaining variability results from differences either in average vesicle size or, more likely, in the size of apertures

  10. Stretching-induced nanostructures on shape memory polyurethane films and their regulation to osteoblasts morphology.

    PubMed

    Xing, Juan; Ma, Yufei; Lin, Manping; Wang, Yuanliang; Pan, Haobo; Ruan, Changshun; Luo, Yanfeng

    2016-10-01

    Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming process. Here we found that stretching could induce the reassembly of hard domains and thereby change the nanostructures on the film surfaces with dependence on the stretching ratios (0%, 50%, 100%, and 200%). In as-cast polyurethane films, hard segments sequentially assembled into nano-scale hard domains, round or fibrillar islands, and fibrillar apophyses. Upon stretching, the islands packed along the stretching axis to form reoriented fibrillar apophyses along the stretching direction. Stretching only changed the chemical patterns on polyurethane films without significantly altering surface roughness, with the primary composition of fibrillar apophyses being hydrophilic hard domains. Further analysis of osteoblasts morphology revealed that the focal adhesion formation and osteoblasts orientation were in accordance with the chemical patterns of the underlying stretched films, which corroborates the vital roles of stretching-induced nanostructures in regulating osteoblasts morphology. These novel findings suggest that programming might hold great potential for patterning polyurethane surfaces so as to direct cellular behavior. In addition, this work lays groundwork for guiding the programming of shape memory polyurethanes to produce appropriate nanostructures for predetermined medical applications.

  11. Iterated Stretching of Viscoelastic Jets

    NASA Technical Reports Server (NTRS)

    Chang, Hsueh-Chia; Demekhin, Evgeny A.; Kalaidin, Evgeny

    1999-01-01

    We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of FENE and Oldroyd-B jets of initial radius r(sub 0), shear viscosity nu, Weissenberg number We, retardation number S, and capillary number Ca. The usual Rayleigh instability stretches the local uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius [Ca(1 - S)/ We](sup 1/2)r(sub 0) between two beads. The strain-rate within the filament remains constant while its radius (elastic stress) decreases (increases) exponentially in time with a long elastic relaxation time 3We(r(sup 2, sub 0)/nu). Instabilities convected from the bead relieve the tension at the necks during this slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from the resulting stretching. This iterated stretching is predicted to occur successively to generate high-generation filaments of radius r(sub n), (r(sub n)/r(sub 0)) = square root of 2[r(sub n-1)/r(sub 0)](sup 3/2) until finite-extensibility effects set in.

  12. Three Fresh Exposures, Stretched Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from NASA's Mars Exploration Rover Opportunity has been processed using a technique known as a decorrelation stretch to exaggerate the colors. The area in the image includes three holes created inside 'Endurance Crater' by Opportunity's rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004). Because color variations are so subtle in the pictured area, stretched images are useful for discriminating color differences that can alert scientists to compositional and textural variations. For example, without the exaggeration, no color difference would be discernable among the tailings left behind after the grinding of these holes, but in this stretched image, the tailings around 'London' (top) appear more red than those of the other holes ('Virginia,' middle, and 'Cobble Hill,' bottom). Scientists believe that is because the rock abrasion tool sliced through two 'blueberries,' or spherules (visible on the upper left and upper right sides of the circle). When the blades break up these spherules, composed of mostly gray hematite, the result is a bright red powder. In this image, you can see the rock layers that made the team want to grind holes in each identified layer. The top layer is yellowish red, the middle is yellowish green and the lower layer is green. Another advantage to viewing this stretched image is the clear detail of the distribution of the rock abrasion tool tailings (heading down-slope) and the differences in rock texture. This image was created using the 753-, 535- and 432-nanometer filters.

  13. Three Fresh Exposures, Stretched Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from NASA's Mars Exploration Rover Opportunity has been processed using a technique known as a decorrelation stretch to exaggerate the colors. The area in the image includes three holes created inside 'Endurance Crater' by Opportunity's rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004). Because color variations are so subtle in the pictured area, stretched images are useful for discriminating color differences that can alert scientists to compositional and textural variations. For example, without the exaggeration, no color difference would be discernable among the tailings left behind after the grinding of these holes, but in this stretched image, the tailings around 'London' (top) appear more red than those of the other holes ('Virginia,' middle, and 'Cobble Hill,' bottom). Scientists believe that is because the rock abrasion tool sliced through two 'blueberries,' or spherules (visible on the upper left and upper right sides of the circle). When the blades break up these spherules, composed of mostly gray hematite, the result is a bright red powder. In this image, you can see the rock layers that made the team want to grind holes in each identified layer. The top layer is yellowish red, the middle is yellowish green and the lower layer is green. Another advantage to viewing this stretched image is the clear detail of the distribution of the rock abrasion tool tailings (heading down-slope) and the differences in rock texture. This image was created using the 753-, 535- and 432-nanometer filters.

  14. A Purposeful Dynamic Stretching Routine

    ERIC Educational Resources Information Center

    Leon, Craig; Oh, Hyun-Ju; Rana, Sharon

    2012-01-01

    Dynamic stretching, which involves moving parts of the body and gradually increases range of motion, speed of movement, or both through controlled, sport-specific movements, has become the popular choice of pre-exercise warm-up. This type of warm-up has evolved to encompass several variations, but at its core is the principle theme that preparing…

  15. A Purposeful Dynamic Stretching Routine

    ERIC Educational Resources Information Center

    Leon, Craig; Oh, Hyun-Ju; Rana, Sharon

    2012-01-01

    Dynamic stretching, which involves moving parts of the body and gradually increases range of motion, speed of movement, or both through controlled, sport-specific movements, has become the popular choice of pre-exercise warm-up. This type of warm-up has evolved to encompass several variations, but at its core is the principle theme that preparing…

  16. Permeability of edible coatings.

    PubMed

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  17. Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    1999-01-01

    A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.

  18. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.

  19. Effects of contraction intensity on muscle fascicle and stretch reflex behavior in the human triceps surae.

    PubMed

    Cronin, Neil J; Peltonen, Jussi; Ishikawa, Masaki; Komi, Paavo V; Avela, Janne; Sinkjaer, Thomas; Voigt, Michael

    2008-07-01

    The aims of this study were to examine changes in the distribution of a stretch to the muscle fascicles with changes in contraction intensity in the human triceps surae and to relate fascicle stretch responses to short-latency stretch reflex behavior. Thirteen healthy subjects were seated in an ankle ergometer, and dorsiflexion stretches (8 degrees ; 250 degrees /s) were applied to the triceps surae at different moment levels (0-100% of maximal voluntary contraction). Surface EMG was recorded in the medial gastrocnemius, soleus, and tibialis anterior muscles, and ultrasound was used to measure medial gastrocnemius and soleus fascicle lengths. At low forces, reflex amplitudes increased despite a lack of change or even a decrease in fascicle stretch velocities. At high forces, lower fascicle stretch velocities coincided with smaller stretch reflexes. The results revealed a decline in fascicle stretch velocity of over 50% between passive conditions and maximal force levels in the major muscles of the triceps surae. This is likely to be an important factor related to the decline in stretch reflex amplitudes at high forces. Because short-latency stretch reflexes contribute to force production and stiffness regulation of human muscle fibers, a reduction in afferent feedback from muscle spindles could decrease the efficacy of human movements involving the triceps surae, particularly where high force production is required.

  20. Development of a Digital Aquifer Permeability Map for the ...

    EPA Pesticide Factsheets

    Researchers at the U.S. Environmental Protection Agency’s Western Ecology Division have been developing hydrologic landscape maps for selected U.S. states in an effort to create a method to identify the intrinsic watershed attributes of landscapes in regions with little data. Each hydrologic landscape unit is assigned a categorical value from five key indices of macro-scale hydrologic behavior, including annual climate, climate seasonality, aquifer permeability, terrain, and soil permeability. The aquifer permeability index requires creation of a from-scratch dataset for each state. The permeability index for the Pacific Southwest (California, Nevada, and Arizona) expands and modifies the permeability index for the Pacific Northwest (Oregon, Washington, and Idaho), which preceded it. The permeability index was created by assigning geologic map units to one of 18 categories with presumed similar values of permeability to create a hydrolithologic map. The hydrolithologies were then further categorized into permeability index classifications of high, low, unknown and surface water. Unconsolidated, carbonate, volcanic, and undifferentiated units are classified more conservatively to better address uncertainty in source data. High vs. low permeability classifications are assigned qualitatively but follow a threshold guideline of 8.5x10-2 m/day hydraulic conductivity. Estimates of permeability from surface lithology is the current best practice for broad-sca

  1. Development of a Digital Aquifer Permeability Map for the ...

    EPA Pesticide Factsheets

    Researchers at the U.S. Environmental Protection Agency’s Western Ecology Division have been developing hydrologic landscape maps for selected U.S. states in an effort to create a method to identify the intrinsic watershed attributes of landscapes in regions with little data. Each hydrologic landscape unit is assigned a categorical value from five key indices of macro-scale hydrologic behavior, including annual climate, climate seasonality, aquifer permeability, terrain, and soil permeability. The aquifer permeability index requires creation of a from-scratch dataset for each state. The permeability index for the Pacific Southwest (California, Nevada, and Arizona) expands and modifies the permeability index for the Pacific Northwest (Oregon, Washington, and Idaho), which preceded it. The permeability index was created by assigning geologic map units to one of 18 categories with presumed similar values of permeability to create a hydrolithologic map. The hydrolithologies were then further categorized into permeability index classifications of high, low, unknown and surface water. Unconsolidated, carbonate, volcanic, and undifferentiated units are classified more conservatively to better address uncertainty in source data. High vs. low permeability classifications are assigned qualitatively but follow a threshold guideline of 8.5x10-2 m/day hydraulic conductivity. Estimates of permeability from surface lithology is the current best practice for broad-sca

  2. Laser-induced structure formation on stretched polymer foils

    SciTech Connect

    Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter; Arenholz, Enno

    2007-04-15

    Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.

  3. Time stretch and its applications

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  4. Jaw stretch reflexes in children.

    PubMed

    Finan, Donald S; Smith, Anne

    2005-07-01

    The substantial morphological transformations that occur during human development present the nervous system with a considerable challenge in terms of motor control. Variability of skilled motor performance is a hallmark of a developing system. In adults, the jaw stretch reflex contributes to the functional stability of the jaw. We have investigated the response properties of the jaw stretch reflex in two groups of young children and a group of young adults. Response latencies increased with development, and all age groups produced stimulus-magnitude-dependent increases in reflex gain and resulting biting force. Reflex gain was largest for the older children (9-10 years), yet net increases in resulting biting force were comparable across age groups. These data and earlier experiments suggest that oral sensorimotor pathways mature throughout childhood in concert with the continued acquisition of complex motor skills.

  5. Polymer network stretching during electrospinning

    NASA Astrophysics Data System (ADS)

    Greenfeld, Israel; Arinstein, Arkadii; Fezzaa, Kamel; Rafailovich, Miriam; Zussman, Eyal

    2011-03-01

    Fast X-ray phase contrast imaging is used to observe the flow of a semi-dilute polyethylene oxide solution during electrospinning. Micron-size glass particles mixed in the polymer solution allow viewing of the jet flow field, and reveal a high-gradient flow that has both longitudinal and radial components that grow rapidly along the jet. The resulting hydrodynamic forces cause substantial longitudinal stretching and transversal contraction of the polymer network within the jet, as confirmed by random walk simulation and theoretical modeling. The polymer network therefore concentrates towards the jet center, and its conformation may transform from a free state to a fully-stretched state within a short distance from the jet start. We acknowledge the financial support of the United States - Israel Bi-National Science Foundation (grant 2006061).

  6. Studies on water transport through the sweet cherry fruit surface. 11. FeCl3 decreases water permeability of polar pathways.

    PubMed

    Weichert, Holger; Knoche, Moritz

    2006-08-23

    The effect of FeCl3 (10 mM) on osmotic water uptake into detached sweet cherry fruit (Prunus avium L.) and on the (3)H2O permeability (P(d)) of excised exocarp segments (ES) or enzymatically isolated cuticular membranes (CM) was investigated. ES or CM were mounted in an infinite dose diffusion system, where diffusion is monitored from a dilute donor solution through an interfacing ES or CM into a receiver solution under quasi steady-state conditions. In the absence of FeCl3, (3)H2O diffusion through stomatous ES was linear over time, indicating that P(d) was constant. Adding FeCl3 to the donor decreased P(d) by about 60%. P(d) remained at a decreased level when replacing the FeCl3 donor again by deionized water. The decrease in P(d) was positively and linearly related to the stomatal density of the ES. There was no effect of FeCl3 on the P(d) of astomatous sweet cherry fruit ES or CM regardless of the presence of wax (epicuticular or cuticular). FeCl3 decreased P(d) when added to the donor (-63%) or receiver (-16%), but there was no effect when it was added to donor and receiver solutions simultaneously. The decrease in P(d) depended on the pH of the receiver and the presence of citrate buffer. There was no effect of FeCl3 with citrate buffer as a receiver regardless of pH (range 2.0-6.0). When using nonbuffered receiver solutions with pH adjusted to pH 2.0, 3.0, 4.5, or 6.0, FeCl3 markedly decreased (3)H2O diffusion at pH > or = 3 but had no effect at pH 2.0. FeCl3 increased the energy of activation (E(a)) for (3)H2O diffusion (range 15-45 degrees C) through stomatous ES but had no significant effect in astomatous CM. The increase in E(a) by FeCl3 was positively related to stomatal density. FeCl3 decreased the P(d) for 2-(1-naphthyl)[1-(14)C]acetic acid (NAA) and 2,4-dichloro[U-(14)C]phenoxyacetic acid (2,4-D) in stomatous ES. The magnitude of the effect depended on the degree of dissociation and was larger for the dissociated acids (pH 6.2) than for the

  7. Effects of surface modification with Co3O4 nanoparticles on the oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Cheng, Jigui; Huang, Min; Liu, Meng; Li, Mingming; Xu, Chenxi

    2017-09-01

    To promote the oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) membranes, Co3O4 nanoparticle catalysts were loaded onto the surfaces of BSCF membranes by a dip-coating process. X-ray diffraction (XRD) results reveal that Co3O4 nanoparticles crystalize in spinel phase. Scanning electron microscope (SEM) observation indicates that the mean particle size of the Co3O4 nanoparticles is about 100 nm in diameter and 20 μm in thickness after annealing at 500 °C for 5 h. Energy dispersive spectrometer (EDS) results testify that the percentage of the elements in the modified layer are in accordance with the stoichiometric ratio of Co3O4. Oxygen permeation tests were made in a laboratory self-made device, and the results show that loading Co3O4 nanoparticle catalysts onto the surfaces of BSCF membranes can significantly increase the oxygen permeability of the BSCF membranes. The unmodified BSCF membranes have an oxygen permeation flux of 0.1080 ml cm-2 min-1 at 600 °C. This increases to 0.4302 ml cm-2 min-1, for the modified membranes, which is four times higher than that of the unmodified BSCF membranes. The oxygen permeation activation energy decreases from 91.42 to 50.71 kJ mol-1 at 600-800 °C by loading Co3O4 nanoparticle catalysts on the surface of BSCF membranes.

  8. Prophylactic stretching does not reduce cramp susceptibility.

    PubMed

    Miller, Kevin C; Harsen, James D; Long, Blaine C

    2017-08-10

    Some clinicians advocate stretching to prevent muscle cramps. It is unknown whether static or proprioceptive neuromuscular facilitation (PNF) stretching increases cramp threshold frequency (TFc ), a quantitative measure of cramp susceptibility. Fifteen individuals completed this randomized, counterbalanced, cross-over study. We measured passive hallux range of motion (ROM) and then performed 3 minutes of either static stretching, PNF stretching (hold-relax-with agonist contraction), or no stretching. ROM was reassessed and TFc was measured. PNF stretching increased hallux extension (pre-PNF 81 ± 11°, post-PNF 90 ± 10°; P < 0.05) but not hallux flexion (pre-PNF 40 ± 7°, post-PNF 40 ± 7°; P > 0.05). Static stretching increased hallux extension (pre-static 80 ± 11°, post-static 88 ± 9°; P < 0.05) but not hallux flexion (pre-static 38 ± 9°, post-static 39 ± 8°; P > 0.05). No ROM changes occurred with no stretching (P > 0.05). TFc was unaffected by stretching (no stretching 18 ± 7 Hz, PNF 16 ± 4 Hz, static 16 ± 5 Hz; P = 0.37). Static and PNF stretching increased hallux extension, but neither increased TFc . Acute stretching may not prevent muscle cramping. Muscle Nerve, 2017. © 2017 Wiley Periodicals, Inc.

  9. Permeable pavement study (Edison)

    EPA Pesticide Factsheets

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m2, lined sections that direct all infiltrate into 5.7-m3 tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry de

  10. 2D Si island nucleation on the Si(111) surface at initial and late growth stages: On the role of step permeability in pyramidlike growth

    NASA Astrophysics Data System (ADS)

    Rogilo, D. I.; Fedina, L. I.; Kosolobov, S. S.; Ranguelov, B. S.; Latyshev, A. V.

    2017-01-01

    Initial and late stages of 2D Si island nucleation and growth (2DNG) on extra-large ( 100 μm) and medium size (1-10 μm) atomically flat Si(111)-(7×7) terraces bordered by step bunches have been studied by in situ REM at T =600-750 °С. At first, the layer-by-layer 2DNG takes place on whole terraces and 2D island concentration dependence on deposition rate R corresponds to critical nucleus size i =1. Continuous 2DNG triggers morphological instabilities: elongated pyramidlike waves and separate pyramids emerge on all terraces at T ≤720 °С and T =750 °С, respectively. Both instabilities arise due to the imbalance of uphill/downhill adatom currents related with large Ehrlich-Schwöbel (ES) barriers and permeability of straight [ 11 bar 2 ] -type step edges. However, the first one is initiated by dominant downhill adatom current to distant sinks: bunches, wave's step edges, and "vacancy" islands emerging on terraces due to 2D island coalescence. As a result, top layer size decreases to the critical terrace width λ where 2DNG takes place. From the analysis of λ ∝ R - χ / 2 scaling at T =650 °C, we have found that i increases from i =2 on a three-layer wave to i =6-8 on a six-layer wave. This authenticates the significance of downhill adatom sink to distant steps related to the step permeability. The second instability type at T >720 °C is related to the raising of uphill adatom current due to slightly larger ES barrier for step-up attachment comparing to the step-down one (EES- 0.9 eV [Phys. Rev. Lett. 111 (2013) 036105]). This leads to "second layer" 2D nucleation on top layers, which triggers the growth of separate pyramids. Because of small difference between ES barriers, net uphill/downhill adatom currents are nearly equivalent, and therefore layer coverage distributions of both instabilities display similar linear slopes.

  11. BSDB: the Biomolecule Stretching Database

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  12. Stretched-exponential Doppler spectra in underwater acoustic communication channels.

    PubMed

    van Walree, P A; Jenserud, T; Otnes, R

    2010-11-01

    The theory of underwater sound interacting with the sea surface predicts a Gaussian-spread frequency spectrum in the case of a large Rayleigh parameter. However, recent channel soundings reveal more sharply peaked spectra with heavier tails. The measured Doppler spread increases with the frequency and differs between multipath arrivals. The overall Doppler spectrum of a broadband waveform is the sum of the spectra of all constituent paths and frequencies, and is phenomenologically described by a stretched or compressed exponential. The stretched exponential also fits well to the broadband spectrum of a single propagation path, and narrowband spectra summed over all paths.

  13. Boundary layer stagnation-point flow and heat transfer past a permeable exponentially shrinking sheet

    NASA Astrophysics Data System (ADS)

    Kasmuri, Juliana; Bachok, Norfifah; Ishak, Anuar

    2013-09-01

    An analysis is carried out to investigate the steady two-dimensional stagnation-point flow past a permeable exponentially stretching/shrinking sheet in its own plane. Using a similarity transformation, the governing mathematical equations are transformed into coupled, nonlinear ordinary differential equations which are then solved numerically. Effects of uniform suction and injection on the flow field and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique. The range of the stretching/shrinking parameter where the similarity solution exists is larger for the exponentially stretching/shrinking case compared to the linearly stretching/shrinking case. The results indicate that suction delays the boundary layer separation, while injection accelerates it.

  14. The Effects of Buoyancy and Transpiration on the Flow and Heat Transfer over a Moving Permeable Surface in a Parallel Stream in the Presence of Radiation

    NASA Astrophysics Data System (ADS)

    Olanrewaju, P. O.; Hayat, T.

    2014-07-01

    This paper is concerned with steady boundary layer flow over a moving permeable sheet in a viscous and incompressible fluid. In addition to mass transfer from the plate (suction or injection), the buoyancy term is included in the momentum equation and the viscous dissipation and radiation terms are also included in the energy equation. The sheet is assumed to move in the same or opposite direction to the free stream. Using a similarity variable, the steady-state governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by applying shooting iteration technique together with sixth-order Runge-Kutta integration scheme. In order to have a true similarity solution, the parameter Grx must be constant and not depend on x. This condition can be met if the thermal expansion coefficient β is proportional to x-1. The effects of Prandtl number, Eckert number, the local Grashof number, and the radiation parameter on the velocity and temperature profiles are illustrated and interpreted in physical terms. A comparison with previously published results on the special case of the problem shows excellent agreement.

  15. Transcription upregulation via force-induced direct stretching of chromatin

    NASA Astrophysics Data System (ADS)

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-12-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.

  16. On the effectiveness of viscous dissipation and Joule heating on steady Magnetohydrodynamic heat and mass transfer flow over an inclined radiate isothermal permeable surface in the presence of thermophoresis

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Rahman, M. M.; Sattar, M. A.

    2009-05-01

    The combined effect of viscous dissipation and joule heating on steady Magnetohydrodynamic heat and mass transfer flow of viscous incompressible fluid over an inclined radiate isothermal permeable surface in the presence of thermophoresis is studied. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as the local skin-friction coefficient, the local Nusselt number and the local Stanton number are displayed graphically for various physical parameters. Comparisons with previously published work are performed and the results are found to be in very good agreement. Results show that rate of heat transfer is sensitive for increasing angle of inclination parameter for the case of fluid injection and it decreases with the increase of magnetic field parameter and Eckert number.

  17. Structure of low-stretch methane nonpremixed flames

    SciTech Connect

    Han, Bai; Ibarreta, Alfonso F.; Sung, Chih-Jen; T'ien, James S.

    2007-04-15

    The present study experimentally and numerically investigates the structure associated with extremely low-stretch ({proportional_to}2 s{sup -1}) gaseous nonpremixed flames. The study of low-stretch flames aims to improve our fundamental understanding of the flame radiation effects on flame response and extinction limits. Low-stretch flames are also relevant to fire safety in reduced-gravity environments and to large buoyant fires, where localized areas of low stretch are attainable. In this work, ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. The large thickness of the resulting nonpremixed flame allows detailed mapping of the flame structure. Several advanced nonintrusive optical diagnostics are used to study the flame structure. Gas phase temperatures are measured by Raman scattering, while the burner surface temperatures are obtained by IR imaging. In addition, OH-PLIF and chemiluminescence imaging techniques are used to help characterize the extent of the flame reaction zone. These experimental results allow direct comparison with a quasi-one-dimensional numerical model including detailed chemistry, thermodynamic/transport properties, and radiation treatment. In addition, the radiative interactions between the flame and porous burner (modeled as a gray surface) are accounted for in the present model. The numerical modeling is demonstrated to be able to simulate the low-stretch flame structure. Using the current model, the extinction limits under different conditions are also examined. The computational results are consistent with experimental observations. (author)

  18. Update to Permeable Pavement Research at the Edison ...

    EPA Pesticide Factsheets

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in

  19. Aerothermodynamic properties of stretched flames in enclosures

    NASA Astrophysics Data System (ADS)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  20. Laser therapy of stretch marks.

    PubMed

    McDaniel, David H

    2002-01-01

    Striae distensae, better known as stretch marks, are a common disfiguring skin disorder of significant cosmetic concern. Many sources have reported the use of lasers to diminish the appearance of striae. Controlled clinical studies of the various treatment modalities available for striae are relatively uncommon, and much of the clinical data are anecdotal. The use of lasers alone or in combination with other therapeutic modalities can provide a safe and effective reduction in the appearance of both red and white striae distensae. Many of these therapies require special measures for darker skin phototypes. This article reviews the historical use of laser therapy for this disorder and discusses current therapeutic options.

  1. Structural determinants of glomerular permeability.

    PubMed

    Deen, W M; Lazzara, M J; Myers, B D

    2001-10-01

    Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines morphometric findings with water flow data in isolated GBM has predicted overall hydraulic permeabilities that are consistent with measurements in vivo. The resistance of the GBM to water flow, which accounts for roughly half that of the capillary wall, is strongly dependent on the extent to which the GBM surfaces are blocked by cells. The spatial frequency of filtration slits is predicted to be a very important determinant of the overall hydraulic permeability, in keeping with observations in several glomerular diseases in humans. Whereas the hydraulic resistances of the cell layers and GBM are additive, the overall sieving coefficient for a macromolecule (its concentration in Bowman's space divided by that in plasma) is the product of the sieving coefficients for the individual layers. Models for macromolecule filtration reveal that the individual sieving coefficients are influenced by one another and by the filtrate velocity, requiring great care in extrapolating in vitro observations to the living animal. The size selectivity of the glomerular capillary has been shown to be determined largely by the cellular layers, rather than the GBM. Controversial findings concerning glomerular charge selectivity are reviewed, and it is concluded that there is good evidence for a role of charge in restricting the transmural movement of albumin. Also discussed is an effect of albumin that has received little attention, namely, its tendency to increase the sieving coefficients of test macromolecules via steric interactions. Among the unresolved issues are the specific contributions of the

  2. Single, stretched membrane, structural module experiments

    SciTech Connect

    Wood, R.L.

    1986-02-01

    This report describes tests done on stretched-membrane heliostats used to reflect solar radiation onto a central receiver. The tests were used to validate prior analysis and mathematical models developed to describe module performance. The modules tested were three meters in diameter and had reflective polymer film laminated to the membrane. The frames were supported at three points equally spaced around the ring. Three modules were pneumatically attached with their weight suspended at the bottom support, two were pneumatically attached with their weight suspended from the upper mounts, and one was rigidly attached with its weight suspended at the bottom mount. By varying the membrane tension we could simulate a uniform wind loading normal to the mirror's surface. A video camera 15+ meters away from the mirror recorded the virtual image of a target grid as reflected by the mirrors' surface. The image was digitized and stored on a microcomputer. Using the law of reflection and analytic geometry, we computed the surface slopes of a sampling of points on the surface. The dominant module response was consistent with prior SERI analyses. The simple analytical model is quite adequate for designing and sizing single-membrane modules if the initial imperfections and their amplification are appropriately controlled. To avoid potential problems resulting from the fundamentally n = 2 deformation phenomena, we advise using either relatively stiffer ring frames or more than three support points.

  3. Permeability reduction in granite under hydrothermal conditions

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2001-01-01

    The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.

  4. Electrostatic effects in DNA stretching

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei V.

    2006-10-01

    The response of a semiflexible polyelectrolyte chain to stretching in the regimes of moderate and weak screening is studied theoretically, with a special focus on DNA experiments. By using the nonlinear Poisson-Boltzmann description of electrostatic self-interactions of the chain, we explicitly demonstrate the applicability of the concept of effective charge to certain aspects of the problem. This charge can be extracted from the far-field asymptotic behavior of the electrostatic potential of the fully aligned chain. Surprisingly, in terms of the effective charge, the electrostatically renormalized persistence length can be formally described by the classical Odijk-Skolnick-Fixman formula, whose domain of applicability is normally limited to the linearized Debye-Hückel (DH) approximation. However, the short-scale behavior of the chain in the nonlinear regime deviates from the of DH-based result, even upon charge renormalization. This difference is revealed in the calculated stretching curves for strongly charged DNA. These results are in good agreement with recent experiments. In the limit of weak screening we predict the elastic response to have a distinctive two-stage character, with a peculiar intermediate “unstretchable” regime.

  5. [The effect of carbachol on pulmonary vascular permeability and lung water content during oral fluid resuscitation of burn shock induced by a 50% total body surface area full-thickness flame injury in dogs].

    PubMed

    Hu, Sen; Chen, Jin-wei; Bao, Cheng-mei; Sheng, Zhi-yong

    2009-05-01

    To investigate the effects of carbachol (CAR) on pulmonary vascular permeability and pulmonary water content during oral fluid resuscitation of burn shock. Twelve male Beagle dogs with intubation of carotid artery and jugular vein for 24 hours were subjected to a 50% total body surface area (TBSA) full-thickness burn, then they were equally divided into oral resuscitation (OR) and OR plus CAR groups (OR+CAR). Dogs were given either a glucose-electrolyte solution (GES) in OR group or GES containing CAR (20 microg/kg) in OR+CAR group by gavage within 24 hours after burn. Dogs in each group were given intravenous fluid resuscitation after 24 post burn hour (PBH). The delivery rate and volume of GES was in accordance with that of Parkland formula. Respiratory rate (RR), arterial partial pressure of oxygen (PaO(2)), extravascular lung water index (ELWI) and pulmonary vascular permeability index (PVPI) were determined before burn (0 hour), and at 2, 4, 8, 24, 48 and 72 PBH. At 72 PBH or before death, dogs were sacrificed to collect lung tissue for evaluation of myeloperoxidase (MPO), malondialdehyde (MDA), and assessment of the tissue water content by dry to wet weight. Compared with those before burn, RR, ELWI and PVPI were greatly increased, and PaO(2) obviously decreased in two groups after burn (all P<0.01). At 72 PBH, PaO(2) returned to pre-burn level, while RR, ELWI and PVPI were still higher than pre-burn levels. RR, ELWI and PVPI at 4, 8 and 24 PBH, and PaO(2) at 8, 24, 48 PBH in OR+CAR group were respectively lower or higher than those in OR group (P<0.05 or P<0.01), but those measurements showed no statistical differences between two groups at 72 PBH (all P>0.05). MPO, MDA and lung water contents in OR+CAR group were significantly lower than those in OR group at 72 PBH [(2.64+/-0.38) U/mg vs.(4.12+/-0.46) U/mg, P<0.01; (3.60+/-0.54) micromol/mg vs.(5.14+/-0.62) micromol/mg, P<0.01; (77.40+/-0.56)% vs. (78.30+/-0.54)%, P<0.01]. The results indicate that CAR

  6. Study on stretching effect of multiple die forming technology

    NASA Astrophysics Data System (ADS)

    Park, Ji-woo; Kim, Jeong; Kang, Beom-soo

    2013-12-01

    The multiple die forming (MDF) technology is suitable for flexible manufacturing, and it affords several advantages including its applicability to various forming processes such as single-curved surface forming, and double-curved surface forming. In sheet metal forming process, the elastic recovery has become a problem. Therefore, the stretch forming process is applied MDF technology to reduce elastic recovery effect. Numerical simulation is carried out for a saddle-type surface forming using ABAQUS. Every simulation case performs spring-back analysis to find elastic recovery effect after forming simulation. In this simulation, urethane pads are defined based on a hyperelastic material model as a cushion for the smoothness of forming surface. The elastic recovery deformation behavior is also investigated to consider the exact result after the last forming process, and then, the actual experiments are performed to confirm the formability of this forming process. By comparing the simulation and the experimental results, the tendency of the decreased amount of elastic recovery from the application of stretch process is verified. Consequently, it is confirmed that the multiple die stretch forming process has the capability and feasibility of being used to manufacture the curved surfaces of sheet metal.

  7. Quantifying Evaporation in a Permeable Pavement System ...

    EPA Pesticide Factsheets

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. The U.S. Environmental Protection Agency (USEPA) constructed a 0.4-ha parking lot in Edison, NJ, that incorporated three different permeable pavement types in the parking lanes – permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). An impermeable liner installed 0.4 m below the driving surface in four 11.6-m by 4.74-m sections per each pavement type captures all infiltrating water and routes it to collection tanks that can contain events up to 38 mm. Each section has a design impervious area to permeable pavement area ratio of 0.66:1. Pressure transducers installed in the underdrain collection tanks measured water level for 24 months. Level was converted to volume using depth-to-volume ratios for individual collection tanks. Using a water balance approach, the measured infiltrate volume was compared to rainfall volume on an event-basis to determine the rainfall retained in the pavement strata and underlying aggregate. Evaporation since the previous event created additional storage in the pavement and aggregate layers. Events were divided into three groups based on antecedent dry period (ADP) and three, four-month categories of potential e

  8. Quasiclassical trajectory study of the effect of antisymmetric stretch mode excitation on the O({sup 3}P) + CH{sub 4}(ν{sub 3} = 1) → OH + CH{sub 3} reaction on an analytical potential energy surface. Comparison with experiment

    SciTech Connect

    Monge-Palacios, M.; González-Lavado, E.; Espinosa-Garcia, J.

    2014-09-07

    Motivated by a recent crossed-beam experiment on the title reaction reported by Pan and Liu [J. Chem. Phys. 140, 191101 (2014)], a detailed dynamics study was performed at three collision energies using quasiclassical trajectory (QCT) calculations based on a full-dimensional potential energy surface recently developed by our group (PES-2014). Although theory/experiment agreement is not yet quantitative, in general the theoretical results reproduce the experimental evidence: the vibrational branching ratio of OH(v = 1)/OH(v = 0) is ∼0.8/0.2, excitation of the antisymmetric CH stretching mode in methane increases reactivity by factor 2.28–1.50, although an equivalent amount as translational energy is more efficient in promoting the reaction and, finally, product angular distribution shifts from backward in the CH{sub 4}(ν = 0) ground-state to sideways when the antisymmetric CH stretching mode is excited. These results give confidence to the PES-2014 surface, depend on the quantization procedure used, are comparable with recent QCT calculations or improve previous theoretical studies using a different surface, and demonstrate the utility of the theory/experiment collaboration.

  9. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  10. Decorrelation Stretch Near Cerberus Fossae

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 25, 2004 On this image you can see two infrared frames of the same area on Mars. One of the images (in black and white) represents a single wavelength or band of the THEMIS IR instrument, while the other image (in false color) represents 3 different bands. The image with the various colors was created with a technique called Decorrelation Stretch (DCS). In this technique individual bands of the THEMIS IR instrument are stretched to better show compositional variations throughout the whole range. After the bands are stretched they are overlayed on one another and colors are assigned to each band. This makes up the colors in the image.

    As you can see, there is a difference in what is noticable in the single band IR image versus the false-colored one. On the color image the pink/magenta colors usually represent basaltic content, cyan often indicates the presence of water ice clouds, while green can represent dust.

    The bright purple and pink colors associated with the valley are due to basalt. There may be a thin veneer of dust present in the region (it was a dark colored region during the Viking mission in the 1970's) through which the basaltic material pokes out along the edges of the valley and the nearby knobby terrain.

    Image information: IR instrument. Latitude 10.7, Longitude 163 East (197 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  11. Expression of polyalanine stretches induces mitochondrial dysfunction.

    PubMed

    Toriumi, Kazuya; Oma, Yoko; Kino, Yoshihiro; Futai, Eugene; Sasagawa, Noboru; Ishiura, Shoichi

    2008-05-15

    In recent years, several novel types of disorders have been characterized, including what have been termed polyalanine diseases, in which patients have expanded triplet repeats in specific genes, resulting in the translation of aberrantly elongated polyalanine stretches. In this study, we showed that yellow fluorescent protein (YFP)-fused elongated polyalanine stretches localized exclusively to the cytoplasm and formed aggregates. Additionally, the polyalanine stretches themselves were toxic. We sought to identify proteins that bound directly to the polyalanine stretches, as factors that might be involved in triggering cell death. Many mitochondrial proteins were identified as polyalanine-binding proteins. We showed that one of the identified proteins, succinate dehydrogenase subunit A, was decreased in the mitochondria of cells expressing polyalanine stretches; as a result, succinate oxidative activity was decreased. Furthermore, the polyalanine stretches also associated directly with mitochondria. This suggests that polya-lanine stretches might directly induce cell death. Additionally, the mitochondrial membrane potential was reduced in cells expressing polyalanine stretches. We propose a novel mechanism by which polyalanine stretches may cause cytotoxicity through mitochondrial dysfunction. This may be a common mechanism underlying the pathogenesis of all polyalanine diseases.

  12. Cell reorientation under cyclic stretching

    PubMed Central

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-01-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations – cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells, measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity. PMID:24875391

  13. New method of measuring permeability of adhesive resin films

    PubMed Central

    Sword, Rhoda J.; Sword, Jeremy J.; Brackett, William W.; Tay, Franklin R.; Pashley, David H.

    2013-01-01

    Summary Objectives To develop a simple gravimetric method for measuring the permeability of adhesive resin films. Methods Using commercially available permeability cups designed for industrial permeability testing, the loss of mass of water vapour or liquid water from a stainless steel cup sealed with a resin film was measured over 1–2 days. The permeabilities of Parafilm (control), Clearfil SE Bond adhesive, Xeno IV and One-Up Bond F were compared. Results The lowest resin film permeability was obtained with Clearfil SE Bond films. The permeabilities of Xeno IV and One-Up Bond F to liquid water were 2.76 and 3.27-fold higher (p<0.001) than that of Clearfil SE Bond. Liquid water permeability was always 2.8 – 3.8-fold higher (p<0.05) than water vapour transmission rate. Conclusions Quantitative comparisons of the permeability properties of resin films can be made gravimetrically. The large permeability cups that are available commercially may be reduced in size in the future for measuring dentine adhesive films with smaller surface areas that are less liable to contain imperfections. PMID:21469402

  14. Kinematics analyses related to stretch-shortening cycle during soccer instep kicking after different acute stretching.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Mohammadkazemi, Reza; Sarafrazi, Soodeh; Riyahi-Malayeri, Shahin; Sotoodeh, Vahid

    2012-11-01

    The purpose of this study was to examine the effects of static and dynamic stretching within a preexercise warm-up on angular velocity of knee joint, deepest knee flexion (DKF), and duration of eccentric and concentric contractions, which are relative to the stretch-shortening cycle (SSC) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 Olympic professional male soccer players (height: 180.38 ± 7.34 cm; weight: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 digital video cameras at 50 Hz. There was a significant difference in the DKF after the dynamic stretching (-3.22 ± 3.10°) vs. static stretching (-0.18 ± 3.19°) relative to the no-stretching method with p < 0.001. Moreover, there was significant difference in eccentric duration after the dynamic stretching (0.006 ± 0.01 seconds) vs. static stretching (-0.003 ± 0.01 seconds) relative to the no-stretching method with p < 0.015. There was a significant difference in the concentric duration after the dynamic stretching (-0.007 ± 0.01 seconds) vs. static stretching (0.002 ± 0.01 seconds) relative to the no-stretching method with p < 0.001. There was also a significant difference in knee angular velocity after the dynamic stretching (4.08 ± 3.81 rad·s) vs. static stretching (-5.34 ± 4.40 rad·s) relative to the no-stretching method with p < 0.001. We concluded that dynamic stretching during warm-ups, as compared with static stretching, is probably the most effective way as preparation for the kinematics characteristics of soccer instep kick, which are relative to the SSC.

  15. Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study

    NASA Astrophysics Data System (ADS)

    Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.

    2017-09-01

    Using the density functional theory coupled with the nonorthogonal tight-binding model, we analyze the chemisorption of hydrogen atoms and hydroxyl groups on the unstrained and stretched graphene sheets. Drawback of finite cluster model of graphene for the chemisorption energy calculation in comparison with the QM/QM approach applied is discussed. It is shown that the chemisorption energy for the hydroxyl group is sufficiently lower than for hydrogen at stretching up to 7.5%. The simultaneous paired chemisorption of hydrogen and hydroxyl groups on the same hexagon has also been examined. Adsorption of two radicals in ortho and para positions is found to be more energetically favorable than those in meta position at any stretching considered. In addition the energy difference between adsorbent pairs in ortho and para positions decreases as the stretching rises. It could be concluded that the graphene stretching leads to the loss of preferred mutual arrangement of two radicals on its surface.

  16. Static Axial Stretching Enhances the Mechanical Properties and Cellular Responses of Fibrin Microthreads

    PubMed Central

    Grasman, Jonathan M.; Pumphrey, Laura; Dunphy, Melissa; Perez-Rogers, James; Pins, George D.

    2014-01-01

    Fibrin microthreads are a platform technology that can be used for a variety of applications, and therefore the mechanical requirements of these microthreads differ for each tissue or device application. To develop biopolymer microthreads with tunable mechanical properties, we analyzed fibrin microthread processing conditions to strengthen the scaffold materials without the use of exogenous crosslinking agents. Fibrin microthreads were extruded, dried, rehydrated, and static axially stretched 0-200% of their original lengths; then the mechanical and structural properties of the microthreads were assessed. Stretching significantly increased the tensile strength of microthreads threefold, yielding scaffolds with tensile strengths and stiffnesses that equaled or exceeded values reported previously for carbodiimide crosslinked threads without affecting intrinsic material properties such as strain hardening or Poisson's ratio. Interestingly, these stretching conditions did not affect the rate of proteolytic degradation of the threads. The swelling ratios of stretched microthreads decreased, and scanning electron micrographs showed increases in grooved topography with increased stretch, suggesting that stretching may increase the fibrillar alignment of fibrin fibrils. The average cell alignment with respect to the longitudinal axis of the microthreads increased twofold with increased stretch, further supporting the hypothesis that stretching microthreads increases the alignment of fibrin fibrils on the surfaces of the scaffolds. Together, these data suggest that stretching fibrin microthreads generates stronger materials without affecting their proteolytic stability, making stretched microthreads ideal for implantable scaffolds that require short degradation times and large initial loading properties. Further modifications to stretched microthreads, such as carbodiimide crosslinking, could generate microthreads to direct cell orientation and align tissue deposition, with

  17. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    PubMed

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.

  18. Role of Slip Velocity in a Magneto-Micropolar Fluid Flow from a Radiative Surface with Variable Permeability: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Sharma, B. K.; Tailor, V.; Goyal, M.

    2017-08-01

    An analysis is presented to describe the hydromagnetic mixed convection flow of an electrically conducting micropolar fluid past a vertical plate through a porous medium with radiation and slip flow regime. A uniform magnetic field has been considered in the study which absorbs the micropolar fluid with a varying suction velocity and acts perpendicular to the porous surface of the above plate. The governing non-linear partial differential equations have been transformed into linear partial differential equations, which are solved numerically by applying the explicit finite difference method. The numerical results are presented graphically in the form of velocity, micro-rotation, concentration and temperature profiles, the skin-friction coefficient, the couple stress coefficient, the rate of heat and mass transfers at the wall for different material parameters.

  19. Contact of a spherical probe with a stretched rubber substrate

    NASA Astrophysics Data System (ADS)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  20. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture.

    PubMed

    Arold, Stephen P; Bartolák-Suki, Erzsébet; Suki, Béla

    2009-04-01

    Secretion of pulmonary surfactant that maintains low surface tension within the lung is primarily mediated by mechanical stretching of alveolar epithelial type II (AEII) cells. We have shown that guinea pigs ventilated with random variations in frequency and tidal volume had significantly larger pools of surfactant in the lung than animals ventilated in a monotonous manner. Here, we test the hypothesis that variable stretch patterns imparted on the AEII cells results in enhanced surfactant secretion. AEII cells isolated from rat lungs were exposed to equibiaxial strains of 12.5, 25, or 50% change in surface area (DeltaSA) at 3 cycles/min for 15, 30, or 60 min. (3)H-labeled phosphatidylcholine release and cell viability were measured 60 min following the onset of stretch. Whereas secretion increased following 15-min stretch at 50% DeltaSA and 30-min stretch at 12.5% DeltaSA, 60 min of cyclic stretch diminished surfactant secretion regardless of strain. When cells were stretched using a variable strain profile in which the amplitude of each stretch was randomly pulled from a uniform distribution, surfactant secretion was enhanced both at 25 and 50% mean DeltaSA with no additional cell injury. Furthermore, at 50% mean DeltaSA, there was an optimum level of variability that maximized secretion implying that mechanotransduction in these cells exhibits a phenomenon similar to stochastic resonance. These results suggest that application of variable stretch may enhance surfactant secretion, possibly reducing the risk of ventilator-induced lung injury. Variable stretch-induced mechanotransduction may also have implications for other areas of mechanobiology.

  1. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier.

    PubMed

    Curtosi, Antonio; Pelletier, Emilien; Vodopivez, Cristian L; Mac Cormack, Walter P

    2007-09-20

    Although Antarctica is still considered as one of the most pristine areas of the world, the growing tourist and fisheries activities as well as scientific operations and their related logistic support are responsible for an increasing level of pollutants in this fragile environment. Soils and coastal sediments are significantly affected near scientific stations particularly by polycyclic aromatic hydrocarbons (PAHs). In this work sediment and soil were sampled in two consecutive summer Antarctic expeditions at Potter Cove and peninsula, in the vicinity of Jubany Station (South Shetland Islands). Two- and 3-ring PAHs (methylnaphthalene, fluorene, phenanthrene and anthracene) were the main compounds found in most sites, although total PAH concentrations showed relatively low levels compared with other human-impacted areas in Antarctica. Pattern distribution of PAHs observed in samples suggested that low-temperature combustion processes such as diesel motor combustion and open-field garbage burning are the main sources of these compounds. An increase in PAH concentrations was observed from surface to depth into the active soil layer except for a unique sampling site where a fuel spill had been recently reported and where an inverted PAH concentration gradient was observed. The highest level was detected in the upper layer of permafrost followed by a sharp decrease in depth, showing this layer is acting as a barrier for downward PAH migration. When PAH levels in soil from both sampling programs were compared a significant decrease (p<0.01) was observed in summer 2005 (range at 75-cm depth: 12+/-1-153+/-22 ng/g) compared to summer 2004 (range at 75-cm depth: 162+/-15-1182+/-113 ng/g) whereas concentrations in surface sediment collected nearby the station PAHs increased drastically in 2005 (range: 36+/-3-1908+/-114 ng/g) compared to 2004 (range: 28+/-3-312+/-24 ng/g). Precipitation regime and water run off suggest that an important wash out of soil-PAHs occurred during

  2. Stretching Impacts Inflammation Resolution in Connective Tissue.

    PubMed

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J; Colas, Romain A; Spite, Matthew; Serhan, Charles N; Langevin, Helene M

    2016-07-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 min twice daily reduced inflammation and improved pain, 2 weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch versus no stretch for 48 h, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue.

  3. STRETCHING IMPACTS INFLAMMATION RESOLUTION IN CONNECTIVE TISSUE

    PubMed Central

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J.; Colas, Romain A.; Spite, Matthew; Serhan, Charles N.; Langevin, Helene M.

    2016-01-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184

  4. Relative permeability through fractures

    SciTech Connect

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  5. Permeability-porosity relationships in sedimentary rocks

    USGS Publications Warehouse

    Nelson, Philip H.

    1994-01-01

    In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models

  6. Effects of CO2 laser energy on dentin permeability.

    PubMed

    Pashley, E L; Horner, J A; Liu, M; Kim, S; Pashley, D H

    1992-06-01

    The effect of a CO2 laser on the structure and permeability of smear layer-covered human dentin was evaluated in vitro. Three different energy levels were used (11, 113, and 566 J/cm2). The lowest exposure to the laser energy increased dentin permeability, measured as a hydraulic conductance, due to partial measured as a hydraulic conductance, due to partial loss of the superficial smear layer and smear plugs. The intermediate energy level also increased dentin permeability by crater formation, making the dentin thinner. The lack of uniform glazing of the surface of the crater, leaving its surface porous and in communication with the underlying dentinal tubules also contributed to the increase in dentin permeability seen with the intermediate laser energy. The highest laser energy produced complete glazing of the crater surfaces and sealed the dentinal tubules beneath the crater. However, it also completely removed the smear layer in a halo zone about 100-microns wide around each crater which increased the permeability of the pericrater dentin at the same time it decreased the permeability of the dentin within the crater. The combined use of scanning electron microscopy and permeability measurements provides important complementary information that is essential in evaluating the effects of lasers on dentin.

  7. Update to permeable pavement research at the Edison ...

    EPA Pesticide Factsheets

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers; porous concrete; and permeable asphalt. The parking lot is instrumented with water content reflectometers and thermistors for continuous monitoring and has four lined sections for each surface to capture permeable pavement infiltrate for water quality analyses.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, and infiltration and evaporation rates. Thispresentation summarizes past findings and addresses current water quality efforts. This presentation summarizes past findings and addresses current water quality efforts.

  8. Stretch reflex instability compared in three different human muscles.

    PubMed

    Durbaba, R; Taylor, A; Manu, C A; Buonajuti, M

    2005-06-01

    The possibility of causing instability in the stretch reflex has been examined in three different human muscles: biceps, first dorsal interosseous (FDI) of the hand and digastric. Tremor recorded as fluctuation of isometric force was compared with that occurring during contraction against a spring load. The spring compliance was selected to make the natural frequency of the part in each case appropriate for oscillations in the short latency stretch reflex. A computer model of the whole system was used to predict the frequency at which oscillations should be expected and to estimate the reflex gain required in each case to cause sustained oscillations. Estimates were computed of the autospectra of the force records and of the rectified surface EMG signals and of the coherence functions. Normal subjects showed no evidence of a distinct spectral peak during isometric recording from any of the three muscles. However, in anisometric conditions regular oscillations in force occurred in biceps, but not in FDI or digastric. The oscillations in biceps at 8-9 Hz were accompanied by similar oscillations in the EMG which were highly coherent with the force signal. The results are consistent with the presence of a strong segmental stretch reflex effect in biceps and weak or absent reflex in FDI. Digastric is known to contain no muscle spindles and therefore to lack a stretch reflex. In two subjects who volunteered that they had more tremor than normal, but had no known neurological abnormality, there was a distinct peak in the force spectrum at 8-9 Hz in biceps and FDI in isometric conditions with coherent EMG activity. The peak increased in size in anisometric conditions in biceps but not in FDI. This component appears to be of central rather than of reflex origin. No equivalent component was found in digastric records. The results are discussed in relation to the possible role of the short latency stretch reflex in the genesis of physiological tremor in different muscles.

  9. Wrinkling instability of an inhomogeneously stretched viscous sheet

    NASA Astrophysics Data System (ADS)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.

    2017-07-01

    Motivated by the redrawing of hot glass into thin sheets, we investigate the shape and stability of a thin viscous sheet that is inhomogeneously stretched in an imposed nonuniform temperature field. We first determine the associated base flow by solving the long-time-scale stretching flow of a flat sheet as a function of two dimensionless parameters: the normalized stretching velocity α and a dimensionless width of the heating zone β . This allows us to determine the conditions for the onset of an out-of-plane wrinkling instability stated in terms of an eigenvalue problem for a linear partial differential equation governing the displacement of the midsurface of the sheet. We show that the sheet can become unstable in two regions that are upstream and downstream of the heating zone where the minimum in-plane stress is negative. This yields the shape and growth rates of the most unstable buckling mode in both regions for various values of the stretching velocity and heating zone width. A transition from stationary to oscillatory unstable modes is found in the upstream region with increasing β , while the downstream region is always stationary. We show that the wrinkling instability can be entirely suppressed when the surface tension is large enough relative to the magnitude of the in-plane stress. Finally, we present an operating diagram that indicates regions of the parameter space that result in a required outlet sheet thickness upon stretching while simultaneously minimizing or suppressing the out-of-plane buckling, a result that is relevant for the glass redraw method used to create ultrathin glass sheets.

  10. Newtonian heating effect in nanofluid flow by a permeable cylinder

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.

    Here characteristics of Newtonian heating in permeable stretched flow of viscous nanomaterial are investigated. Adopted nanomaterial model incorporates the phenomena of Brownian motion and thermophoresis. Concept of boundary layer is employed for the formulation procedure. Convergent homotopic solutions are established for the nonlinear systems. Velocity, thermal and nanoparticles fields for nonlinear boundary value problems are computed and discussed. The velocity, temperature and concentration gradients are also evaluated. It is noticed that impacts of curvature and suction/injection parameters on skin friction coefficient are qualitatively similar. Moreover temperature distribution enhances for larger thermophoresis and Brownian motion parameters.

  11. Mars Under the Microscope (stretched)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This magnified look at the martian soil near the Mars Exploration Rover Opportunity's landing site, Meridiani Planum, shows coarse grains sprinkled over a fine layer of sand. The image was captured on the 10th day, or sol, of the rover's mission by its microscopic imager, located on the instrument deployment device, or 'arm.' Scientists are intrigued by the spherical rocks, which can be formed by a variety of geologic processes, including cooling of molten lava droplets and accretion of concentric layers of material around a particle or 'seed.'

    The examined patch of soil is 3 centimeters (1.2 inches) across. The circular grain in the lower left corner is approximately 3 millimeters (.12 inches) across, or about the size of a sunflower seed.

    This stretched color composite was obtained by merging images acquired with the orange-tinted dust cover open and closed. The varying hints of orange suggest differences in mineral composition. The blue tint at the lower right corner is a tag used by scientists to indicate that the dust cover is closed.

  12. Thermodynamic Anomalies in Stretched Water.

    PubMed

    Altabet, Y Elia; Singh, Rakesh S; Stillinger, Frank H; Debenedetti, Pablo G

    2017-09-08

    Via molecular dynamics simulations of the TIP4P/2005 water model, we study liquid water's anomalous behavior at large negative pressure produced through isochoric cooling. We find that isochores without a pressure minimum can display "reentrant" behavior whereby a system that cavitates upon cooling can then rehomogenize upon further cooling. This behavior is a consequence of the underlying density maximum along the spinodal, but its actual manifestation in simulations is strongly influenced by finite size effects. These observations suggest that water under strong hydrophilic confinement may display richer phase behavior than hitherto assumed. This also suggests that propensity toward cavitation does not always correlate with greater tension, contrary to the prevailing assumption for interpreting water stretching experiments. We also show that a maximum spinodal density in water results in a locus of maximum compressibility and a minimum speed of sound that are independent from any influence of a liquid-liquid critical point (LLCP). However, we demonstrate that structural signatures of a Widom line, which likely emanates from an LLCP at elevated pressure, extend to large negative pressure, but such signatures are only observed upon sampling water's underlying potential energy landscape, rather than the thermalized metastable liquid.

  13. Capillary stretching of elastic fibers

    NASA Astrophysics Data System (ADS)

    Protiere, Suzie; Stone, Howard A.; Duprat, Camille

    2014-11-01

    Fibrous media consisting of constrained flexible fibers can be found in many engineered systems (membranes in filters, woven textile, matted paper). When such materials interact with a liquid, the presence of liquid/air interfaces induces capillary forces that deform the fibers. To model this interaction we study the behaviour of a finite volume of liquid deposited on two parallel flexible fibers clamped at both ends. A tension along the fibers is imposed and may be varied. We show that the system undergoes various morphological changes as the interfiber distance, the elasticity and the tension of the fibers are varied. For a certain range of parameters, the liquid spreads along the fibers and pulls them together, leading to the ``zipping'' of the fibers. This capillary adhesion can then be enhanced or reduced by changing the tension within the fibers. We will show that balancing stretching and capillary forces allows the prediction of this transition as well as the conditions for which detachment of the fibers occurs. These results may be used to prevent the clogging of fibrous membranes or to optimize the capture of liquids.

  14. Mars Under the Microscope (stretched)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This magnified look at the martian soil near the Mars Exploration Rover Opportunity's landing site, Meridiani Planum, shows coarse grains sprinkled over a fine layer of sand. The image was captured on the 10th day, or sol, of the rover's mission by its microscopic imager, located on the instrument deployment device, or 'arm.' Scientists are intrigued by the spherical rocks, which can be formed by a variety of geologic processes, including cooling of molten lava droplets and accretion of concentric layers of material around a particle or 'seed.'

    The examined patch of soil is 3 centimeters (1.2 inches) across. The circular grain in the lower left corner is approximately 3 millimeters (.12 inches) across, or about the size of a sunflower seed.

    This stretched color composite was obtained by merging images acquired with the orange-tinted dust cover open and closed. The varying hints of orange suggest differences in mineral composition. The blue tint at the lower right corner is a tag used by scientists to indicate that the dust cover is closed.

  15. In-vivo Stretch of Term Human Fetal Membranes

    PubMed Central

    Joyce, EM; Diaz, P; Tamarkin, S; Moore, R; Strohl, A; Stetzer, B; Kumar, D; Sacks, MS; Moore, JJ

    2015-01-01

    Introduction Fetal membranes (FM) usually fail prior to delivery during term labor, but occasionally fail at preterm gestation, precipitating preterm birth. To understand the FM biomechanical properties underlying these events, study of the baseline in-vivo stretch experienced by the FM is required. This study's objective was to utilize high resolution MRI imaging to determine in-vivo FM stretch. Methods Eight pregnant women (38.4±0.4wks) underwent abdominal-pelvic MRI prior to (2.88±0.83d) caesarean delivery. Software was utilized to determine the total FM in-vivo surface area (SA) and that of its components: placental disc and reflected FM. At delivery, the SA of the disc and FM in the relaxed state were measured. In-vivo (stretched) to delivered SA ratios were calculated. FM fragments were then biaxially stretched to determine the force required to re-stretch the FM back to in-vivo SA. Results Total FM SA, in-vivo vs delivered, was 2135.51±108.47 cm2 vs 842.59±35.86 cm2; reflected FM was 1778.42±107.39 cm2 vs 545.41±22.90 cm2, and disc was 357.10±28.08 cm2 vs 297.18±22.14 cm2. The ratio (in-vivo to in-vitro SA) of reflected FM was 3.26±0.11 and disc was 1.22±0.10. Reflected FM re-stretched to in-vivo SA generated a tension of 72.26N/m, corresponding to approximate pressure of 15.4mmHg. FM rupture occurred at 295.08 ± 31.73N/m corresponding to approximate pressure of 34mmHg. Physiological SA was 70% of that at rupture. Discussion FM are significantly distended in-vivo. FM collagen fibers were rapidly recruited once loaded and functioned near the failure state during in-vitro testing, suggesting that, in-vivo, minimal additional (beyond physiological) stretch may facilitate rapid, catastrophic failure. PMID:26907383

  16. Stretch exercises increase tolerance to stretch in patients with chronic musculoskeletal pain: a randomized controlled trial.

    PubMed

    Law, Roberta Y W; Harvey, Lisa A; Nicholas, Michael K; Tonkin, Lois; De Sousa, Maria; Finniss, Damien G

    2009-10-01

    Stretch is commonly prescribed as part of physical rehabilitation in pain management programs, yet little is known about its effectiveness. A randomized controlled trial was conducted to investigate the effects of a 3-week stretch program on muscle extensibility and stretch tolerance in patients with chronic musculoskeletal pain. A within-subject design was used, with one leg of each participant randomly allocated to an experimental (stretch) condition and the other leg randomly allocated to a control (no-stretch) condition. Thirty adults with pain of musculoskeletal origin persisting for at least 3 months were recruited from patients enrolled in a multidisciplinary pain management program at a hospital in Sydney, Australia. The hamstring muscles of the experimental leg were stretched daily for 1 minute over 3 weeks; the control leg was not stretched. This intervention was embedded within a pain management program and supervised by physical therapists. Primary outcomes were muscle extensibility and stretch tolerance, which were reflected by passive hip flexion angles measured with standardized and nonstandardized torques, respectively. Initial measurements were taken before the first stretch on day 1, and final measurements were taken 1 to 2 days after the last stretch. A blinded assessor was used for testing. Stretch did not increase muscle extensibility (mean between-group difference in hip flexion was 1 degrees , 95% confidence interval=-2 degrees to 4 degrees ), but it did improve stretch tolerance (mean between-group difference in hip flexion was 8 degrees , 95% confidence interval=5 degrees to 10 degrees ). Three weeks of stretch increases tolerance to the discomfort associated with stretch but does not change muscle extensibility in patients with chronic musculoskeletal pain.

  17. Creams for preventing stretch marks in pregnancy.

    PubMed

    Young, G L; Jewell, D

    2000-01-01

    Many women develop stretch marks (striae gravidarum) during pregnancy. A number of creams have been used to remove these stretch marks. The objective of this review was to assess the effects of topical treatments to prevent the development of stretch marks. We searched the Cochrane Pregnancy and Childbirth Group trials register. In addition, the Cochrane Controlled Trials Register (CENTRAL/CCTR) was searched. Date of last search: April 1999. Randomised trials comparing active creams with placebo for the treatment of stretch marks in pregnant women. Trial quality was assessed and data were extracted independently by two reviewers. One study involving 100 women was included. Compared to placebo, treatment with a cream containing Centella asiatica extract, alpha tocopherol and collagen-elastin hydrolysates was associated with less women developing stretch marks (odds ratio 0.41, 95% confidence interval 0.17 to 0.99). One particular cream appears to help prevent the development of stretch marks in pregnancy, but only for women who had previously suffered stretch marks in pregnancy. There is no evidence of benefit for general use.

  18. Stretching micropatterned cells on a PDMS membrane.

    PubMed

    Carpi, Nicolas; Piel, Matthieu

    2014-01-22

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.

  19. Stretch induced hyperexcitability of mice callosal pathway

    PubMed Central

    Fan, Anthony; Stebbings, Kevin A.; Llano, Daniel A.; Saif, Taher

    2015-01-01

    Memory and learning are thought to result from changes in synaptic strength. Previous studies on synaptic physiology in brain slices have traditionally been focused on biochemical processes. Here, we demonstrate with experiments on mouse brain slices that central nervous system plasticity is also sensitive to mechanical stretch. This is important, given the host of clinical conditions involving changes in mechanical tension on the brain, and the normal role that mechanical tension plays in brain development. A novel platform is developed to investigate neural responses to mechanical stretching. Flavoprotein autofluoresence (FA) imaging was employed for measuring neural activity. We observed that synaptic excitability substantially increases after a small (2.5%) stretch was held for 10 min and released. The increase is accumulative, i.e., multiple stretch cycles further increase the excitability. We also developed analytical tools to quantify the spatial spread and response strength. Results show that the spatial spread is less stable in slices undergoing the stretch-unstretch cycle. FA amplitude and activation rate decrease as excitability increases in stretch cases but not in electrically enhanced cases. These results collectively demonstrate that a small stretch in physiological range can modulate neural activities significantly, suggesting that mechanical events can be employed as a novel tool for the modulation of neural plasticity. PMID:26300729

  20. Patterns of effective permeability of leaf cuticles to acids

    SciTech Connect

    Hauser, H.D.; Walters, K.D.; Berg, V.S. )

    1993-01-01

    Plants in the field are frequently exposed to anthropogenic acid precipitation with pH values of 4 and below. For the acid to directly affect leaf tissues, it must pass through the leaf cuticle, but little is known about the permeability of cuticles to protons, of about the effect of different anions on this permeability. We investigated the movement of protons through isolated astomatous leaf cuticles of grapefruit (Citrus x paradisi Macfady.), rough lemon (Citrus limon [L.] Burm. fils cv Ponderosa), and pear (Pyrus communis L.) using hydrochloric, sulfuric, and nitric acids. Cuticles were enzymically isolated from leaves and placed in a diffusion apparatus with pH 4 acid on the morphological outer surface of the cuticle and degassed distilled water on the inner surface. Changes in pH of the solution on the inner surface were used to determine rates of effective permeability of the cuticles to the protons of these acids. Most cuticles exhibited an initial low permeability, lasting hours to days, then after a short transition displayed a significant higher permeability, which persisted until equilibrium was approached. The change in effective permeability appears to be reversible. Effective permeabilities were higher for sulfuric acid than for the others. A model of the movement of protons through the cuticle is presented, proposing that dissociated acid groups in channels within the cutin are first protonated by the acid, accounting for the low initial effective permeability; then protons pass freely through the channels, resulting in a higher effective permeability. 26 refs., 6 figs., 2 tabs.

  1. Stretching and injury prevention: an obscure relationship.

    PubMed

    Witvrouw, Erik; Mahieu, Nele; Danneels, Lieven; McNair, Peter

    2004-01-01

    It is generally accepted that increasing the flexibility of a muscle-tendon unit promotes better performances and decreases the number of injuries. Stretching exercises are regularly included in warm-up and cooling-down exercises; however, contradictory findings have been reported in the literature. Several authors have suggested that stretching has a beneficial effect on injury prevention. In contrast, clinical evidence suggesting that stretching before exercise does not prevent injuries has also been reported. Apparently, no scientifically based prescription for stretching exercises exists and no conclusive statements can be made about the relationship of stretching and athletic injuries. Stretching recommendations are clouded by misconceptions and conflicting research reports. We believe that part of these contradictions can be explained by considering the type of sports activity in which an individual is participating. Sports involving bouncing and jumping activities with a high intensity of stretch-shortening cycles (SSCs) [e.g. soccer and football] require a muscle-tendon unit that is compliant enough to store and release the high amount of elastic energy that benefits performance in such sports. If the participants of these sports have an insufficient compliant muscle-tendon unit, the demands in energy absorption and release may rapidly exceed the capacity of the muscle-tendon unit. This may lead to an increased risk for injury of this structure. Consequently, the rationale for injury prevention in these sports is to increase the compliance of the muscle-tendon unit. Recent studies have shown that stretching programmes can significantly influence the viscosity of the tendon and make it significantly more compliant, and when a sport demands SSCs of high intensity, stretching may be important for injury prevention. This conjecture is in agreement with the available scientific clinical evidence from these types of sports activities. In contrast, when the type

  2. [Stretching--do current explanatory models suffice?].

    PubMed

    Freiwald, J; Engelhardt, M; Jäger, M; Gnewuch, A; Reuter, I; Wiemann, K; Starischka, S

    1998-06-01

    The opinion that mobility in the usual performance if the "straight leg raise" test for the evaluation of stretching techniques is subject to solety muscular limitations is critically appraised. With integration of recent results from molecular biological research and our own measurements, we can show that not only mechanical but also neurophysiological factors must be considered in the limitation of mobility. In the majority of the examined patients stretching of the ischiadic nerve seems to be responsible for restrictions in movement. The presented results cast doubt on the currently held assumptions and basic principles of stretching in therapy and sport.

  3. Rocks of low permeability

    NASA Astrophysics Data System (ADS)

    The 17th International Congress of the IAH (International Association of Hydrogeologists) will meet in Tucson, Ariz., January 7-10, 1985. The deadline for abstracts is March 1, 1984, and final papers are due October 15, 1984.The topic of the congress will be “Hydrogeology of Rocks of Low Permeability,” and speakers will include W. Back, J. F. Bredehoeft, G. de Marsily, J. E. Gale, P. Fritz, L. W. Gelhar, G. E. Grisak, C. W. Kreitler, M. R. Llamas, T. N. Narasimhan, I. Neretnieks, and E. P. Weeks. The congress will conclude with a panel discussion moderated by S. P. Neuman. Panelists include S. N. Davis, G. de Marsily, R. A. Freeze, P. A. Witherspoon, and I. Neretnieks.

  4. Placental Permeability of Lead

    PubMed Central

    Carpenter, Stanley J.

    1974-01-01

    The detection of lead in fetal tissues by chemical analysis has long been accepted as prima facie evidence for the permeability of the placenta to this nonessential trace metal. However, only a few investigations, all on lower mammalian species, have contributed any direct experimental data bearing on this physiological process. Recent radioactive tracer and radioautographic studies on rodents have shown that lead crosses the placental membranes rapidly and in significant amounts even at relatively low maternal blood levels. While it is not possible to extrapolate directly the results of these experiments to humans because of differences in placental structure and other factors, the results do serve as a warning of the possible hazard to the human embryo and fetus of even low levels of lead in the maternal system. PMID:4857497

  5. Long-term Metal Performance of Three Permeable Pavements ...

    EPA Pesticide Factsheets

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected for six years beginning in January 2010 and analyzed for twenty-two metals. Although the infiltrate metals concentrations varied by surface, metal concentrations in more than 99% of the permeable pavement infiltrate samples met both the groundwater effluent limitations and maximum contaminant levels in national primary drinking water regulations for barium, chromium, copper, manganese, nickel and zinc. Arsenic, cadmium, lead and antimony met those standards in 60% to 98% of the samples with no measurable difference found among pavements. Aluminum and iron in pervious concrete and porous asphalt infiltrates met standards at more than 90%, however permeable interlocking concrete paver infiltrates have 50% and 93% samples exceeds standards, respectively. Concentrations of arsenic, iron, potassium, lithium, magnesium, antimony, tin, manganese, and zinc in all permeable pavement infiltrates decreased with time, whereas, aluminum, barium, calcium, chromium and strontium in porous asphalt infiltrates increased. Most metal concentrations in permeable pavement infiltrates either exhibited no significant difference between snow/no-snow seasons or showed statistically larger concentrations

  6. Cyclic stretch disrupts apical junctional complexes in Caco-2 cell monolayers by a JNK-2-, c-Src-, and MLCK-dependent mechanism

    PubMed Central

    Samak, Geetha; Gangwar, Ruchika; Crosby, Lynn M.; Desai, Leena P.; Wilhelm, Kristina; Waters, Christopher M.

    2014-01-01

    The intestinal epithelium is subjected to various types of mechanical stress. In this study, we investigated the impact of cyclic stretch on tight junction and adherens junction integrity in Caco-2 cell monolayers. Stretch for 2 h resulted in a dramatic modulation of tight junction protein distribution from a linear organization into wavy structure. Continuation of cyclic stretch for 6 h led to redistribution of tight junction proteins from the intercellular junctions into the intracellular compartment. Disruption of tight junctions was associated with redistribution of adherens junction proteins, E-cadherin and β-catenin, and dissociation of the actin cytoskeleton at the actomyosin belt. Stretch activates JNK2, c-Src, and myosin light-chain kinase (MLCK). Inhibition of JNK, Src kinase or MLCK activity and knockdown of JNK2 or c-Src attenuated stretch-induced disruption of tight junctions, adherens junctions, and actin cytoskeleton. Paracellular permeability measured by a novel method demonstrated that cyclic stretch increases paracellular permeability by a JNK, Src kinase, and MLCK-dependent mechanism. Stretch increased tyrosine phosphorylation of occludin, ZO-1, E-cadherin, and β-catenin. Inhibition of JNK or Src kinase attenuated stretch-induced occludin phosphorylation. Immunofluorescence localization indicated that phospho-MLC colocalizes with the vesicle-like actin structure at the actomyosin belt in stretched cells. On the other hand, phospho-c-Src colocalizes with the actin at the apical region of cells. This study demonstrates that cyclic stretch disrupts tight junctions and adherens junctions by a JNK2, c-Src, and MLCK-dependent mechanism. PMID:24722904

  7. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility.

    PubMed

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-02-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups.

  8. Gyroid nanoporous membranes with tunable permeability.

    PubMed

    Li, Li; Schulte, Lars; Clausen, Lydia D; Hansen, Kristian M; Jonsson, Gunnar E; Ndoni, Sokol

    2011-10-25

    Understanding the relevant permeability properties of ultrafiltration membranes is facilitated by using materials and procedures that allow a high degree of control on morphology and chemical composition. Here we present the first study on diffusion permeability through gyroid nanoporous cross-linked 1,2-polybutadiene (1,2-PB) membranes with uniform pores that, if needed, can be rendered hydrophilic. The gyroid porosity has the advantage of isotropic percolation with no need for structure prealignment. Closed (skin) or opened (nonskin) outer surface can be simply realized by altering the interface energy in the process of membrane fabrication. The morphology of the membranes' outer surface was investigated by scanning electron microscopy, contact angle, and X-ray photoelectron spectroscopy. The effective diffusion coefficient of glucose decreases from nonskin, to one-sided skin to two-sided skin membranes, much faster than expected by a naive resistance-in-series model; the flux through the two-sided skin membranes even increases with the membrane thickness. We propose a model that captures the physics behind the observed phenomena, as confirmed by flow visualization experiments. The chemistry of 1,2-PB nanoporous membranes can be controlled, for example, by hydrophilic patterning of the originally hydrophobic membranes, which allows for different active porosity toward aqueous solutions and, therefore, different permeability. The membrane selectivity is evaluated by comparing the effective diffusion coefficients of a series of antibiotics, proteins, and other biomolecules; solute permeation is discussed in terms of hindered diffusion. The combination of uniform bulk morphology, isotropically percolating porosity, controlled surface chemistry, and tunable permeability is distinctive for the presented gyroid nanoporous membranes.

  9. Growth on demand: Reviewing the mechanobiology of stretched skin

    PubMed Central

    Zöllner, Alexander M.; Holland, Maria A.; Honda, Kord S.; Gosain, Arun K.; Kuhl, Ellen

    2013-01-01

    Skin is a highly dynamic, autoregulated, living system that responds to mechanical stretch through a net gain in skin surface area. Tissue expansion uses the concept of controlled overstretch to grow extra skin for defect repair in situ. While the short-term mechanics of stretched skin have been studied intensely by testing explanted tissue samples ex vivo, we know very little about the long-term biomechanics and mechanobiology of living skin in vivo. redHere we explore the long-term effects of mechanical stretch on the characteristics of living skin using a mathematical model for skin growth. We review the molecular mechanisms by which skin responds to mechanical loading and model their effects collectively in a single scalar-valued internal variable, the surface area growth. redThis allows us to adopt a continuum model for growing skin based on the multiplicative decomposition of the deformation gradient into a reversible elastic and an irreversible growth part.redTo demonstrate the inherent modularity of this approach, we implement growth as a user-defined constitutive subroutine into the general purpose implicit finite element program Abaqus/Standard. To illustrate the features of the model, we simulate the controlled area growth of skin in response to tissue expansion with multiple filling points in time. Our results demonstrate that the field theories of continuum mechanics can reliably predict the manipulation of thin biological membranes through mechanical overstretch. Our model could serve as a valuable tool to rationalize clinical process parameters such as expander geometry, expander size, filling volume, filling pressure, and inflation timing to minimize tissue necrosis and maximize patient comfort in plastic and reconstructive surgery. While initially developed for growing skin, our model can easily be generalized to arbitrary biological structures to explore the physiology and pathology of stretch-induced growth of other living systems such as hearts

  10. Permeable Boundaries in Organizational Learning

    NASA Astrophysics Data System (ADS)

    Hazy, James K.; Tivnan, Brian F.; Schwandt, David R.

    The nature of the organizational boundary is investigated in the context of organizational learning. Boundary permeability is defined and hypotheses relating it to performance are tested computationally using data from 5,500 artificial organizations. We find that matching boundary permeability to the environment predicts both agent and organization survival.

  11. Investing in a Large Stretch Press

    NASA Technical Reports Server (NTRS)

    Choate, M.; Nealson, W.; Jay, G.; Buss, W.

    1986-01-01

    Press for forming large aluminum parts from plates provides substantial economies. Study assessed advantages and disadvantages of investing in large stretch-forming press, and also developed procurement specification for press.

  12. Demonstrating the Stretch Reflex: A Mechanical Model.

    ERIC Educational Resources Information Center

    Batavia, Mitchell; McDonough, Andrew L.

    2000-01-01

    Explains the concept of stretch reflexes to students using a mechanical model. The model provides a dynamic multisensory experience using movement, light, and sound. Describes the construction design. (SAH)

  13. Demonstrating the Stretch Reflex: A Mechanical Model.

    ERIC Educational Resources Information Center

    Batavia, Mitchell; McDonough, Andrew L.

    2000-01-01

    Explains the concept of stretch reflexes to students using a mechanical model. The model provides a dynamic multisensory experience using movement, light, and sound. Describes the construction design. (SAH)

  14. Regional variability in the permeability of human dentine.

    PubMed

    Pashley, D H; Andringa, H J; Derkson, G D; Derkson, M E; Kalathoor, S R

    1987-01-01

    This was measured qualitatively by using dyes and quantitatively by hydraulic conductance in dentine discs and crown segments in vitro. Both types of preparation demonstrated large regional differences in permeability, with the highest values at the periphery and the lowest in the centre of the disc or crown. As dentine permeability may vary 3-10-fold across a few millimetres, investigators should use as large a surface area as possible to compensate for these regional differences.

  15. Permeability of the Body Wall of Romanomermis culicivorax to Lanthanum

    PubMed Central

    Platzer, Ann; Platzer, Edward G.

    1985-01-01

    Ultrastructural study of the body wall of preparasitic, parasitic, and postparasitic stages of Romanomermis culicivorax showed that the cuticle of all three stages was permeable to lanthanum. The cuticle of the parasitic stage was the thinnest and showed the greatest permeability. Lanthanum accumulated on the apical surfaces of the hypodermal cells but was not found intracellularly. The negative staining characteristics of lanthanum enhanced the detection of numerous smooth septate junctions in the hypodermis of the parasitic stage. PMID:19294092

  16. An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer

    NASA Astrophysics Data System (ADS)

    Jensen, Per; Bunker, P. R.; Epa, V. C.; Karpfen, A.

    1992-02-01

    We have previously determined an analytical ab initio six-dimensional potential energy surface for the HCl dimer, and have used it to determine the minimum energy path for the trans-tunneling motion. In the present paper we refine this path by fitting to data. We calculate a further 178 ab initio points in order to determine the HCl stretching energies, and HCl stretching dipole moment functions, at eight positions along the minimum energy path. We use these ab initio results to compute the stretching wavenumbers and transition moments from the v1 = v2 = 0 state to all states of (HCl) 2 that have v1 + v2 ≤ 3, where v1 and v2 are the local mode quantum numbers for the HCl stretching vibrations. In doing this calculation we have assumed an adiabatic separation of the HCl stretching motion from the other vibrational motions in the dimer, and have used the semirigid bender Hamiltonian to average over the trans-tunneling motion. We obtain the fundamental "free-H" stretch v1 at 2877 cm -1 and the fundamental "bound-H" stretch v2 at 2861 cm -1; the experimental values are 2880 and 2854 cm -1, respectively.

  17. Effect of water on hydrogen permeability

    NASA Technical Reports Server (NTRS)

    Hulligan, David; Tomazic, William A.

    1987-01-01

    Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.

  18. Comparison of two stretching methods and optimization of stretching protocol for the piriformis muscle.

    PubMed

    Gulledge, Brett M; Marcellin-Little, Denis J; Levine, David; Tillman, Larry; Harrysson, Ola L A; Osborne, Jason A; Baxter, Blaise

    2014-02-01

    Piriformis syndrome is an uncommon diagnosis for a non-discogenic form of sciatica whose treatment has traditionally focused on stretching the piriformis muscle (PiM). Conventional stretches include hip flexion, adduction, and external rotation. Using three-dimensional modeling, we quantified the amount of (PiM) elongation resulting from two conventional stretches and we investigated by use of a computational model alternate stretching protocols that would optimize PiM stretching. Seven subjects underwent three CT scans: one supine, one with hip flexion, adduction, then external rotation (ADD stretch), and one with hip flexion, external rotation, then adduction (ExR stretch). Three-dimensional bone models were constructed from the CT scans. PiM elongation during these stretches, femoral neck inclination, femoral head anteversion, and trochanteric anteversion were measured. A computer program was developed to map PiM length over a range of hip joint positions and was validated against the measured scans. ExR and ADD stretches elongated the PiM similarly by approximately 12%. Femoral head and greater trochanter anteversion influenced PiM elongation. Placing the hip joints in 115° of hip flexion, 40° of external rotation and 25° of adduction or 120° of hip flexion, 50° of external rotation and 30° of adduction increased PiM elongation by 30-40% compared to conventional stretches (15.1 and 15.3% increases in PiM muscle length, respectively). ExR and ADD stretches elongate the PiM similarly and therefore may have similar clinical effectiveness. The optimized stretches led to larger increases in PiM length and may be more easily performed by some patients due to increased hip flexion.

  19. Detection of semi-volatile organic compounds in permeable ...

    EPA Pesticide Factsheets

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  20. Hybrid green permeable pave with hexagonal modular pavement systems

    NASA Astrophysics Data System (ADS)

    Rashid, M. A.; Abustan, I.; Hamzah, M. O.

    2013-06-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  1. Permeability of protective coatings to tritium

    SciTech Connect

    Braun, J.M.; Williamson, A.S.

    1985-09-01

    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water is comparable. Marked differences were also evident among the four coatings, the vinyl exhibiting an abnormally high retention of free water because of a highly porous surface structure. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities.

  2. The acute effects of unilateral ankle plantar flexors static- stretching on postural sway and gastrocnemius muscle activity during single-leg balance tasks.

    PubMed

    Lima, Bráulio N; Lucareli, Paulo R G; Gomes, Willy A; Silva, Josinaldo J; Bley, Andre S; Hartigan, Erin H; Marchetti, Paulo H

    2014-09-01

    The aim of this study was to investigate the acute effects of unilateral ankle plantar flexors static- stretching on surface electromyography (sEMG) and the center of pressure (COP) during a single-leg balance task in both lower limbs. Fourteen young healthy, non-athletic individuals performed unipodal quiet standing for 30s before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch) a unilateral ankle plantar flexor static- stretching protocol [6 sets of 45s/15s, 70-90% point of discomfort (POD)]. Postural sway was described using the COP area, COP speed (antero-posterior and medio-lateral directions) and COP frequency (antero-posterior and medio-lateral directions). Surface EMG (EMG integral [IEMG] and Median frequency[FM]) was used to describe the muscular activity of gastrocnemius lateralis. Ankle dorsiflexion passive range of motion increased in the stretched limb before and after the static-stretching protocol (mean ± SD: 15.0° ± 6.0 and 21.5° ± 7.0 [p < 0.001]). COP area and IEMG increased in the stretch limb between pre-stretching and immediately post-stretching (p = 0.015 and p = 0.036, respectively). In conclusion, our static- stretching protocol effectively increased passive ankle ROM. The increased ROM appears to increase postural sway and muscle activity; however these finding were only a temporary or transient effect. Key PointsThe postural control can be affected by static- stretching protocol.The lateral gastrocnemius muscle action was increased after the static- stretching protocol.The static- stretching effects remain for less than 10 minutes.

  3. Permeability testing of biomaterial membranes.

    PubMed

    Dreesmann, L; Hajosch, R; Ahlers, M; Nuernberger, J Vaz; Schlosshauer, B

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  4. Direct observation of amyloid nucleation under nanomechanical stretching.

    PubMed

    Varongchayakul, Nitinun; Johnson, Sara; Quabili, Trina; Cappello, Joseph; Ghandehari, Hamidreza; Solares, Santiago De Jesus; Hwang, Wonmuk; Seog, Joonil

    2013-09-24

    Self-assembly of amyloid nanofiber is associated with both functional biological and pathological processes such as those in neurodegenerative diseases. Despite intensive studies, the stochastic nature of the process has made it difficult to elucidate a molecular mechanism for the key amyloid nucleation event. Here we investigated nucleation of the silk-elastin-like peptide (SELP) amyloid using time-lapse lateral force microscopy (LFM). By repeated scanning of a single line on a SELP-coated mica surface, we observed a sudden stepwise height increase. This corresponds to nucleation of an amyloid fiber, which subsequently grew perpendicular to the scanning direction. The lateral force profiles followed either a worm-like chain model or an exponential function, suggesting that the atomic force microscopy (AFM) tip stretches a single or multiple SELP molecules along the scanning direction. The probability of nucleation correlated with the maximum stretching force and extension, implying that stretching of SELP molecules is a key molecular event for amyloid nucleation. The mechanically induced nucleation allows for positional and directional control of amyloid assembly in vitro, which we demonstrate by generating single nanofibers at predetermined nucleation sites.

  5. Transcription upregulation via force-induced direct stretching of chromatin

    PubMed Central

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-01-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green-fluorescent-protein (GFP) tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription. PMID:27548707

  6. The stretching of an electrified non-Newtonian jet: A model for electrospinning

    NASA Astrophysics Data System (ADS)

    Feng, J. J.

    2002-11-01

    Electrospinning uses an external electrostatic field to accelerate and stretch a charged polymer jet, and may produce ultrafine "nanofibers." Many polymers have been successfully electrospun in the laboratory. Recently Hohman [et al.] [Phys. Fluids, 13, 2201 (2001)] proposed an electrohydrodynamic model for electrospinning Newtonian jets. A problem arises, however, with the boundary condition at the nozzle. Unless the initial surface charge density is zero or very small, the jet bulges out upon exiting the nozzle in a "ballooning instability," which never occurs in reality. In this paper, we will first describe a slightly different Newtonian model that avoids the instability. Well-behaved solutions are produced that are insensitive to the initial charge density, except inside a tiny "boundary layer" at the nozzle. Then a non-Newtonian viscosity function is introduced into the model and the effects of extension thinning and thickening are explored. Results show two distinct regimes of stretching. For a "mildly stretched" jet, the axial tensile force in the fiber resists stretching, so that extension thinning promotes stretching and thickening hinders stretching. For a "severely stretched" jet, on the other hand, the tensile force enhances stretching at the beginning of the jet and suppresses it farther downstream. The effects of extensional viscosity then depend on the competition between the upstream and downstream dynamics. Finally, we use an empirical correlation to simulate strain hardening typical of polymeric liquids. This generally steepens the axial gradient of the tensile stress. Stretching is more pronounced at the beginning but weakens later, and ultimately thicker fibers are produced because of strain hardening.

  7. Gas permeability and flow characterization of simulated lunar regolith

    NASA Astrophysics Data System (ADS)

    Toutanji, Houssam; Goff, Christopher M.; Ethridge, Edwin; Stokes, Eric

    2012-04-01

    Recent discoveries of water ice trapped within lunar topsoil (regolith) have placed a new emphasis on the recovery and utilization of water for future space exploration. Upon heating the lunar ice to sublimation, the resulting water vapor could theoretically transmit through the lunar regolith, to be captured on the surface. As the permeability of lunar regolith is essential to this process, this paper seeks to experimentally determine the permeability and flow characteristics of various gas species through simulated lunar regolith (SLR). Two different types of SLR were compacted and placed into the permeability setup to measure the flow-rate of transmitted gas through the sample. Darcy's permeability constant was calculated for each sample and gas combination, and flow characteristics were determined from the results. The results show that Darcy's permeability constant varies with SLR compaction density, and identified no major difference in permeable flow between the several tested gas species. Between the two tested SLR types, JSC-1A was shown to be more permeable than NU-LHT under similar conditions. In addition, a transition zone was identified in the flow when the gas pressure differential across the sample was less than ˜40 kPa.

  8. In silico model of drug permeability across sublingual mucosa.

    PubMed

    Goswami, Tarun; Kokate, Amit; Jasti, Bhaskara R; Li, Xiaoling

    2013-05-01

    The objective of this work was to develop an in silico model to predict the sublingual permeability of a drug based on physicochemical descriptors of a molecule. Fourteen model drugs with diverse physicochemical properties were selected for this study. Molecular volume, molecular weight, logP, logD (pH 6.8), pKa, total polar surface area, hydrogen bond acceptors and donors (HBD), number of rotatable bonds, solubility (pH 6.8), and melting point were used as molecular descriptors. Apparent permeability coefficients (Pe) of drugs across porcine sublingual mucosa were determined experimentally. Multiple linear regression (MLR) was used to develop the model with permeability as the response variable and various descriptors as the predictive variables. Q(2), the cross-validated correlation coefficient, was used to assess the prediction ability of the model. MLR analysis showed that HBD and logD were the significant descriptors (P<0.05, Q(2)=0.88) in the sublingual permeability model. The resulting model is expressed as the following equation:An excellent fit with R(2) of 0.93 was obtained between experimental and predicted permeabilities. The analysis of contributions of molecular descriptors to sublingual permeability revealed the molecular structure basis of permeation across sublingual mucosa. In conclusion, an in silico model was developed to predict sublingual permeability of drugs using known descriptors for evaluating the feasibility of sublingual drug delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Simple method of DNA stretching on glass substrate for fluorescence imaging and spectroscopy.

    PubMed

    Neupane, Guru P; Dhakal, Krishna P; Kim, Min Su; Lee, Hyunsoo; Guthold, Martin; Joseph, Vincent S; Hong, Jong-Dal; Kim, Jeongyong

    2014-05-01

    We demonstrate a simple method of stretching DNA to its full length, suitable for optical imaging and atomic force microscopy (AFM). Two competing forces on the DNA molecules, which are the electrostatic attraction between positively charged dye molecules (YOYO-1) intercalated into DNA and the negatively charged surface of glass substrate, and the centrifugal force of the rotating substrate, are mainly responsible for the effective stretching and the dispersion of single strands of DNA. The density of stretched DNA molecules could be controlled by the concentration of the dye-stained DNA solution. Stretching of single DNA molecules was confirmed by AFM imaging and the photoluminescence spectra of single DNA molecule stained with YOYO-1 were obtained, suggesting that our method is useful for spectroscopic analysis of DNA at the single molecule level.

  10. Design of a new membrane stretching device

    NASA Astrophysics Data System (ADS)

    Shao, Yiran

    Cell stretching device has been applied into the lab use for many years to help researchers study about the behavior of cells during the stretching process. Because the cell responses to the different mechanical stimuli, especially in the case of disease, the cell stretching device is a necessary tool to study the cell behavior in a controlled environment. However existing devices have limitations, such as too big to fit the culture chamber, unable to be observed during the stretching process and too expensive to fabricate. In this thesis, a new cell stretcher is designed to resolve these limitations. Many typical cell stretching devices only work under simple conditions. For instance they can only apply the strain on the cell in uniaxial or equibiaxial directions. On the other hand the environment of cells' survival is varying. Many new cell stretchers have been developed, which have the same property that cells can be stretched via the radical deformation of the elastomeric membrane. The aim of this new design is to create a cell stretching device that fits in general lab conditions. This device is designed to fit on a microscope to observe, as well as in the incubator. In addition, two small step motors are used to control the strain, adjust the frequency, and maintain the stability precisely. Problems such as the culture media leakage and the membrane breakage are solved by the usage of multiple materials for both the cell stretcher and the membrane. Based on the experimental results, this device can satisfy the requirements of target users with a reduced manufacturing cost. In the future, an auto-focus tracking function will be developed to allow real time observation of the cells' behavior.

  11. Revisiting the Galileo Probe results by a stretched atmospheric mode

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Ingersoll, Andrew P.; Janssen, Michael A.

    2015-11-01

    The Juno spacecraft will arrive at Jupiter in the late 2016. One of its major scientific target is to measure the deep water abundance through its Microwave Radiometer (MWR). Prior to the arrival of Juno, the only observation of the weather layer of Jupiter was the Galileo probe (Niemann et al. 1996; Wong et al. 2004), which returned puzzling results. In contrast to the detected 2 - 5 times enrichment of CH4, NH3 and H2S with respect to the solar values, the amount of water was severely subsolar. Three dimensional modeling (Showman & Dowling 2000) shows that dynamic dry downdrafts could create a huge trough in the material surface, such that air flowing through the hot spots undergoes a temporary increase in pressure by a factor of 2, though it is still too small to explain the Galileo probe results. Inspired by the 3D modeling result, we constructed a stretched atmospheric model to parameterize the alteration of the thermodynamic state of air parcel by dynamics. In our model, an air parcel is initially in its equilibrium condensation state and later has been dynamically stretched to higher pressure modeled by a multiplicative factor S. When S=1, the atmosphere is unaltered by dynamics, representing the equilibrium condensation model. We found that, when S=4, the mixing ratios of H2O, NH3 and H2S match all observations coming from the Galileo probe site. Thus, this stretch parameter provides a continuous representation of dynamic processes from the equilibrium condensation model to the Galileo probe results. We also show that the strength of stretch (S) can be retrieved from Juno/MWR limb darkening observations.

  12. Mitigating methane emissions and air intrusion in heterogeneous landfills with a high permeability layer.

    PubMed

    Jung, Yoojin; Imhoff, Paul T; Augenstein, Don; Yazdani, Ramin

    2011-05-01

    Spatially variable refuse gas permeability and landfill gas (LFG) generation rate, cracking of the soil cover, and reduced refuse gas permeability because of liquid addition can all affect CH(4) collection efficiency when intermediate landfill covers are installed. A new gas collection system that includes a near-surface high permeability layer beneath the landfill cover was evaluated for enhancing capture of LFG and mitigating CH(4) emissions. Simulations of gas transport in two-dimensional domains demonstrated that the permeable layer reduces CH(4) emissions up to a factor of 2 for particular spatially variable gas permeability fields. When individual macrocracks formed in the cover soil and the permeable layer was absent, CH(4) emissions increased to as much as 24% of the total CH(4) generated, double the emissions when the permeable layer was installed. CH(4) oxidation in the cover soil was also much more uniform when the permeable layer was present: local percentages of CH(4) oxidized varied between 94% and 100% across the soil cover with the permeable layer, but ranged from 10% to 100% without this layer for some test cases. However, the permeable layer had a minor effect on CH(4) emissions and CH(4) oxidation in the cover soil when the ratio of the gas permeability of the cover soil to the mean refuse gas permeability ≤ 0.05. The modeling approach employed in this study may be used to assess the utility of other LFG collection systems and management practices.

  13. Monitoring Strategies in Permeable Pavement Systems to Optimize Maintenance Scheduling

    EPA Science Inventory

    As the surface in a permeable pavement system clogs and performance decreases, maintenance is required to preserve the design function. Currently, guidance is limited for scheduling maintenance on an as needed basis. Previous research has shown that surface clogging in a permea...

  14. Monitoring Strategies in Permeable Pavement Systems to Optimize Maintenance Scheduling

    EPA Science Inventory

    As the surface in a permeable pavement system clogs and performance decreases, maintenance is required to preserve the design function. Currently, guidance is limited for scheduling maintenance on an as needed basis. Previous research has shown that surface clogging in a permea...

  15. Measuring Clogging with Pressure Transducers in Permeable Pavement Strips

    EPA Science Inventory

    Two issues that have a negative affect on the long term hydrologic performance of permeable pavement systems are surface clogging and clogging at the interface with the underlying soil. Surface clogging limits infiltration capacity and results in bypass if runoff rate exceeds in...

  16. Measuring Clogging with Pressure Transducers in Permeable Pavement Strips

    EPA Science Inventory

    Two issues that have a negative affect on the long term hydrologic performance of permeable pavement systems are surface clogging and clogging at the interface with the underlying soil. Surface clogging limits infiltration capacity and results in bypass if runoff rate exceeds in...

  17. Gastric mucosal barrier: hydrophobicity of stretched stomach lining.

    PubMed

    Hills, B A; Lichtenberger, L M

    1985-06-01

    Surface hydrophobicity of the luminal lining of the canine stomach has been studied as a very convenient means of following the adsorbed monolayer of surfactant believed to provide the gastric mucosal barrier. Hydrophobicity has been measured as the contact angle (theta) produced when a drop of saline is placed upon the surface. theta was found to decrease from 82 to 62 degrees upon 50% linear extension of samples of oxyntic mucosa from 10 dogs. When the phospholipid believed to cause the hydrophobicity was absorbed to glass slides, the contact angle was found to decrease with lower surface concentration. Thinning or "crazing" of the absorbed surfactant monolayer imparting the very hydrophobic nature of the luminal lining is discussed as a possible reason why ulcers tend to form at the crests of the folds, i.e., at points where the surface has been stretched and the monolayer disrupted.

  18. Dynamic electrowetting-on-dielectric (DEWOD) on unstretched and stretched teflon.

    PubMed

    Lee, Min Wook; Latthe, Sanjay S; Yarin, Alexander L; Yoon, Sam S

    2013-06-25

    Dynamic electrowetting-on-dielectric (DEWOD) of the unstretched and stretched Teflon is reported in the experiments with water drop impact and rebound. We explore experimentally and theoretically the situation with the capacitance different from the standard static electrowetting. Deionized water drops impact onto either an unstretched hydrophobic Teflon surface or Teflon stretched up to 250% strain normally to the impact direction. The surface roughness of the unstretched Teflon increased after stretching from 209.9 to 245.6 nm resulting in the increase in the equilibrium water contact angle from 96 ± 4° to 147 ± 5°, respectively. The electric arrangement used in the drop impact experiments on DEWOD results in a dramatically reduced capacitance and requires a much higher voltage to observe EW in comparison with the standard static case of a drop deposited on a dielectric layer and attached to an electrode. In the dynamic situation we found that as the EW sets in it can greatly reduce the superhydrophobicity of the unstretched and stretched Teflon. At 0 kV, the water drop rebound height (hmax) is higher for the stretched Teflon (hmax ≈ 5.13 mm) and lower for the unstretched Teflon (hmax ≈ 4.16 mm). The EW response of unstretched Teflon is weaker than that of the stretched one. At the voltage of 3 kV, the water drop sticks to the stretched Teflon without rebound, whereas water drops still partially rebound (hmax ≈ 2.8 mm) after a comparable impact onto the unstretched Teflon. We found a sharp dynamic EW response for the stretched Teflon. The contact angle of deionized water ranged from 147 ± 5° (superhydrophobic) to 67 ± 5° (partially hydrophilic) by applying external voltage of 0 and 3 kV, respectively. Dynamic electrowetting introduced in this work for the first time can be used to control spray cooling, painting, and coating and for drop transport in microfluidics.

  19. Near-Limit Flamelet Phenomena in Buoyant Low Stretch Diffusion Flames Beneath a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    2000-01-01

    A unique near-limit low stretch multidimensional stable flamelet phenomena has been observed for the first time which extends the material flammability limit beyond the one-dimensional low stretch flammability limit to lower burning rates and higher relative heat losses than is possible with uniform flame coverage. During low stretch experiments burning the underside of very large radii (greater than or = 75 cm stretch rate less than or = 3/s) cylindrical cast PMMA samples, multidimensional flamelets were observed, in contrast with a one-dimensional flame that was found to blanket the surface for smaller radii samples ( higher stretch rate). Flamelets were observed by decreasing the stretch rate or by increasing the conductive heat loss from the flame. Flamelets are defined as flames that cover only part of the burning sample at any given time, but persist for many minutes. Flamelet phenomena is viewed as the flame's method of enhancing oxygen flow to the flame, through oxygen transport into the edges of the flamelet. Flamelets form as heat losses (surface radiation and solid-phase conduction) become large relative to the weakened heat release of the low stretch flame. While heat loss rates remain fairly constant, the limiting factor in the heat release of the flame is hypothesized to be the oxygen transport to the flame in this low stretch (low convective) environment. Flamelet extinction is frequently caused by encroachment of an adjacent flamelet. Large-scale whole-body flamelet oscillations at 1.2 - 1.95 Hz are noted prior to extinction of a flamelet. This oscillation is believed to be due a repeated process of excess fuel leakage through the dark channels between the flamelets, fuel premixing with slow incoming oxidizer, and subsequent rapid flame spread and retreat of the flamelet through the premixed layer. The oscillation frequency is driven by gas-phase diffusive time scales.

  20. What Protects Certain Nerves from Stretch Injury?

    PubMed

    Schraut, Nicholas B; Walton, Sharon; Bou Monsef, Jad; Shott, Susan; Serici, Anthony; Soulii, Lioubov; Amirouche, Farid; Gonzalez, Mark H; Kerns, James M

    2016-01-01

    The human tibial nerves is less prone to injury following joint arthroplasty compared with the peroneal nerves. Besides the anatomical distribution, other features may confer protection from stretch injury. We therefore examined the size, shape and connective tissue distribution for the two nerves. The tibial and peroneal nerves from each side of nine fresh human cadavers we reharvested mid-thigh. Proximal segments manually stretched 20%-25% were fixed in aldehyde, while the adjacent distal segments were fixed in their natural length. Paraffin sections stained by Masson's trichrome method for connective tissue were examined by light microscopy. Tibial nerves had 2X more fascicles compared with the peroneal, but the axonal content appeared similar. Analysis showed that neither nerve had a significant reduction in cross sectional area of the fascicles following stretch. However, fascicles from stretched tibial nerves become significantly more oval compared with those from unstretched controls and peroneal nerves. Tibial nerves had a greater proportion that was extrafascicular tissue (50-55%) compared with peroneal nerves (38%-42%). This epineurium was typically adipose tissue. Perineurial thickness in both nerves was directly related to fascicular size. Tibial nerves have several unique histological features associated with size, shape and tissue composition compared with the peroneal nerve. We suggest that more fascicles with their tightly bound perineurium and more robust epineurium afford protection against stretch injury. Mechanical studies should clarify how size and shape contribute to nerve protection and/or neurapraxia.

  1. Movement and stretching imagery during flexibility training.

    PubMed

    Vergeer, Ineke; Roberts, Jenny

    2006-02-01

    The aim of this study was to examine the effect of movement and stretching imagery on increases in flexibility. Thirty volunteers took part in a 4 week flexibility training programme. They were randomly assigned to one of three groups: (1) movement imagery, where participants imagined moving the limb they were stretching; (2) stretching imagery, where participants imagined the physiological processes involved in stretching the muscle; and (3) control, where participants did not engage in mental imagery. Active and passive range of motion around the hip was assessed before and after the programme. Participants provided specific ratings of vividness and comfort throughout the programme. Results showed significant increases in flexibility over time, but no differences between the three groups. A significant relationship was found, however, between improved flexibility and vividness ratings in the movement imagery group. Furthermore, both imagery groups scored significantly higher than the control group on levels of comfort, with the movement imagery group also scoring significantly higher than the stretching imagery group. We conclude that the imagery had stronger psychological than physiological effects, but that there is potential for enhancing physiological effects by maximizing imagery vividness, particularly for movement imagery.

  2. Does motor imagery enhance stretching and flexibility?

    PubMed

    Guillot, Aymeric; Tolleron, Coralie; Collet, Christian

    2010-02-01

    Although several studies have demonstrated that motor imagery can enhance learning processes and improve motor performance, little is known about its effect on stretching and flexibility. The increased active and passive range of motion reported in preliminary research has not been shown to be elicited by motor imagery training alone. We thus compared flexibility scores in 21 synchronized swimmers before and after a 5-week mental practice programme that included five stretching exercises in active and passive conditions. The imagery training programme resulted in selective increased flexibility, independently of the stretching method. Overall, the improvement in flexibility was greater in the imagery group than in the control group for the front split (F(1,18) = 4.9, P = 0.04), the hamstrings (F(1,18) = 5.2, P = 0.035), and the ankle stretching exercises (F(1,18) = 5.6, P = 0.03). There was no difference in shoulders and side-split flexibility (F(1,18) = 0.1, P = 0.73 and F(1,18) = 3.3, P = 0.08 respectively). Finally, there was no correlation between individual imagery ability and improvement in flexibility. Psychological and physiological effects of motor imagery could explain the increase in range of motion, suggesting that imagery enhances joint flexibility during both active and passive stretching.

  3. Permeability studies on 3D Ni foam/graphene composites

    NASA Astrophysics Data System (ADS)

    Yang, Zhuxian; Chen, Hongmei; Wang, Nannan; Xia, Yongde; Zhu, Yanqiu

    2017-09-01

    This study investigates the permeability of new 3D Ni foam/graphene composites (Ni foam covered with graphene) using compressed air, Ar and N2 as the probe gases. The results show that the introduction of graphene on the surface of Ni foam via in situ chemical vapour deposition is not detrimental to the permeability of the composites; on the contrary, in some cases it improves permeability. A modified Ergun-type correlation has been proposed, which represents very well the permeability of the Ni foam/graphene composites, especially at flow rates higher than 0.3 m s-1. Further studies show that graphene also helps to improve the thermal conductivity of the composite. These results suggest that the graphene involvement will make the Ni foam/graphene composite a good candidate for potential applications such as filters or heat exchangers suitable for working under harsh conditions such as at high temperatures, in corrosive environments, etc.

  4. Geothermal Permeability Enhancement - Final Report

    SciTech Connect

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  5. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    PubMed Central

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation. PMID:22319684

  6. Permeability of soils in Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.

    1994-01-01

    The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.

  7. Smartly aligning nanowires by a stretching strategy and their application as encoded sensors.

    PubMed

    Wu, Yuchen; Su, Bin; Jiang, Lei

    2012-10-23

    The nanotechnology world is being more and more attracted toward high aspect ratio one-dimensional nanostructures due to their potentials as building blocks for electronic/optical devices. Here, we propose a novel method to generate nanowire patterns with assistance of superhydrophobic flexible polydimethylsiloxane (PDMS) substrates. Micropillar gaps are tunable via a stretching process of the PDMS surface; thus, diverse nanowire patterns can be formed by stretching the same PDMS surface in various ways. Importantly, square nanowire loops with alternative compositions can be generated through a double-stretching process, showing an advanced methodology in controlling the alignment of nanowires. Since alternative fluorescent molecules will be quenched by diverse chemical substances, this alternative nanowire loop shows a selective detection for diverse target compounds, which greatly improves the application of this nanowire patterning approach. Furthermore, such alternative nanowire patterns can be transferred from pillar-structured surfaces to flat films, indicating further potentials in microcircuits, sensitive sensors, and other organic functional nanodevices.

  8. Permeability of cork to gases.

    PubMed

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  9. Permeability theory and Palace Athena.

    PubMed

    Stamps, Arthur E

    2013-06-01

    Permeability theory suggests that safety in environments depends on how far and how easily one can perceive or move through environments. Parts of environments that limit perception or retard locomotion elicit impressions of being enclosed, so properties of environments that influence perceived enclosure are important in permeability theory. One prediction of permeability theory is that the more permeable the boundary, the less enclosed the region within that boundary will seem to be. Another prediction is that boundary depth will have little influence on perceived enclosure. These predictions were tested in the venue of Greek temples. 30 participants were tested (14 men, 16 women; M age = 40 yr.), who rated perceived enclosure for 18 stimuli. The stimuli were constructed using a virtual scene from the Tholos in Delphi with the positions of the columns forming the boundaries. The boundaries were designed to have different levels of permeability and depth. Data were analyzed in terms of effect sizes and focused comparisons. Results indicated that perceived enclosure was most strongly influenced by the visual permeability of the boundary, while depth of boundary had a much smaller effect on perceived enclosure.

  10. Optical Data Compression in Time Stretch Imaging

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Jalali, Bahram

    2015-01-01

    Time stretch imaging offers real-time image acquisition at millions of frames per second and subnanosecond shutter speed, and has enabled detection of rare cancer cells in blood with record throughput and specificity. An unintended consequence of high throughput image acquisition is the massive amount of digital data generated by the instrument. Here we report the first experimental demonstration of real-time optical image compression applied to time stretch imaging. By exploiting the sparsity of the image, we reduce the number of samples and the amount of data generated by the time stretch camera in our proof-of-concept experiments by about three times. Optical data compression addresses the big data predicament in such systems. PMID:25906244

  11. Binary-phase compression of stretched pulses

    NASA Astrophysics Data System (ADS)

    Lozovoy, Vadim V.; Nairat, Muath; Dantus, Marcos

    2017-10-01

    Pulse stretching and compression are essential for the energy scale-up of ultrafast lasers. Here, we consider a radical approach using spectral binary phases, containing only two values (0 and π) for stretching and compressing laser pulses. We numerically explore different strategies and present results for pulse compression of factors up to a million back to the transform limit and experimentally obtain results for pulse compression of a factor of one hundred, in close agreement with numerical calculations. Imperfections resulting from binary-phase compression are addressed by considering cross-polarized wave generation filtering, and show that this approach leads to compressed pulses with contrast ratios greater than ten orders of magnitude. This new concept of binary-phase stretching and compression, if implemented in a multi-layer optic, could eliminate the need for traditional pulse stretchers and more importantly expensive compressors.

  12. Stretched arc discharge in produced water.

    PubMed

    Cho, Y I; Wright, K C; Kim, H S; Cho, D J; Rabinovich, A; Fridman, A

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost.

  13. Homologous pairing in stretched supercoiled DNA

    PubMed Central

    Strick, T. R.; Croquette, V.; Bensimon, D.

    1998-01-01

    By using elastic measurements on single DNA molecules, we show that stretching a negatively supercoiled DNA activates homologous pairing in physiological conditions. These experiments indicate that a stretched unwound DNA locally denatures to alleviate the force-driven increase in torsional stress. This is detected by hybridization with 1 kb of homologous single-stranded DNA probes. The stretching force involved (≈2 pN) is small compared with those typically developed by molecular motors, suggesting that this process may be relevant to DNA processing in vivo. We used this technique to monitor the progressive denaturation of DNA as it is unwound and found that distinct, stable denaturation bubbles formed, beginning in A+T-rich regions. PMID:9724746

  14. Live Cell Imaging during Mechanical Stretch

    PubMed Central

    Rápalo, Gabriel; Herwig, Josh D.; Hewitt, Robert; Wilhelm, Kristina R.; Waters, Christopher M.; Roan, Esra

    2015-01-01

    There is currently a significant interest in understanding how cells and tissues respond to mechanical stimuli, but current approaches are limited in their capability for measuring responses in real time in live cells or viable tissue. A protocol was developed with the use of a cell actuator to distend live cells grown on or tissues attached to an elastic substrate while imaging with confocal and atomic force microscopy (AFM). Preliminary studies show that tonic stretching of human bronchial epithelial cells caused a significant increase in the production of mitochondrial superoxide. Moreover, using this protocol, alveolar epithelial cells were stretched and imaged, which showed direct damage to the epithelial cells by overdistention simulating one form of lung injury in vitro. A protocol to conduct AFM nano-indentation on stretched cells is also provided. PMID:26325607

  15. Impacts of a new analytical stretching function for terrain following vertical coordinates

    NASA Astrophysics Data System (ADS)

    Furner, Rachel; Siddorn, John; O'Dea, Enda

    2013-04-01

    Terrain following vertical coordinates are commonly used in coastal ocean models as they allow an accurate representation of the bottom boundary layer. However, the depth dependence of these coordinates results in horizontal variation in grid cell heights, with these variations becoming large in model domains which span large depth ranges. In the surface layer in particular this causes problems. Inconsistencies in the depth of the surface layer results in non physically-justifiable differences in the way atmospheric fluxes are applied to the ocean model. Also, when coupling to atmospheric models the depth variation of the surface grid cell leads to discrepancy in what is meant by 'sea surface values' meaning the boundary conditions provided to the atmospheric model are inconsistent. Stretching functions are commonly used to limit the horizontal variation of vertical resolution in parts of the water column. However in models spanning large depth ranges, such as the Met Office's Forecasting Ocean Assimilation Model (FOAM) Atlantic Margin Model (AMM7), commonly used stretching functions cannot suitably limit this variation near the surface without causing unacceptable loss of resolution in other parts of the water column. A new stretching function for terrain following coordinates is presented. The new stretching function allows a user-prescribed, constant surface (and bottom) cell height whilst maintaining resolution throughout the water column, and allowing increased resolution at the surface or sea bed as required. The impact of this is tested on simulations of FOAM AMM7 and results presented.

  16. Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability.

    PubMed

    Pardeshi, Chandrakantsing V; Belgamwar, Veena S

    2016-01-01

    In an experiment to explore the bioadhesion, biocompatibility, and membrane permeation properties, the controlled synthesis of N,N,N-trimethyl chitosan (TMC) was carried out by two-step reductive methylation of chitosan (CHT). Methylation was confirmed by (1)H NMR (δ=3.1 ppm) and FTIR analysis (CH stretch at 1,485 cm(-1)). The TMC was further characterized by DSC, TGA, XRD, HR-TEM, SEM, and elemental analysis. Findings revealed improved solubility, enhanced viscosity, increased swelling index and higher molecular weight of TMC over CHT. Comparative evaluation validated increased bioadhesion potential, and improved ex vivo biocompatibility of TMC compared to CHT. Increased bioadhesion of TMC NPs over CHT NPs can be attributed to the strong electrostatic interactions between cationic amino groups with anionic sialic and sulfonic acid moieties contained in the mucin of the nasal mucus. Ex vivo biocompatibility studies suggested that the NP formulations of both biopolymers were biocompatible and could be applied safely on the nasal epithelium. Ex vivo permeation studies executed on excised cattle nasal mucosa illustrated improved permeability of TMC NPs over CHT NPs. In the author's opinion, two-step reductive methylation of CHT could be an attractive strategy to improve its solubility, bioadhesion, and permeation characteristics without affecting biocompatibility across the mucosal surfaces.

  17. Overextended sarcomeres regain filament overlap following stretch.

    PubMed

    Panchangam, Appaji; Herzog, Walter

    2012-09-21

    Sarcomere overextension has been widely implicated in stretch-induced muscle injury. Yet, sarcomere overextensions are typically inferred based on indirect evidence obtained in muscle and fibre preparations, where individual sarcomeres cannot be observed during dynamic contractions. Therefore, it remains unclear whether sarcomere overextensions are permanent following injury-inducing stretch-shortening cycles, and thus, if they can explain stretch-induced force loss. We tested the hypothesis that overextended sarcomeres can regain filament overlap in isolated myofibrils from rabbit psoas muscles. Maximally activated myofibrils (n=13) were stretched from an average sarcomere length of 2.6±0.04μm by 0.9μm sarcomere(-1) at a speed of 0.1μm sarcomere(-1)s(-1) and immediately returned to the starting lengths at the same speed (sarcomere strain=34.1±2.3%). Myofibrils were then allowed to contract isometrically at the starting lengths (2.6μm) for ∼30s before relaxing. Force and individual sarcomere lengths were measured continuously. Out of the 182 sarcomeres, 35 sarcomeres were overextended at the peak of stretch, out of which 26 regained filament overlap in the shortening phase while 9 (∼5%) remained overextended. About 35% of the sarcomeres with initial lengths on the descending limb of the force-length relationship and ∼2% of the sarcomeres with shorter initial lengths were overextended. These findings provide first ever direct evidence that overextended sarcomeres can regain filament overlap in the shortening phase following stretch, and that the likelihood of overextension is higher for sarcomeres residing initially on the descending limb.

  18. The geometric mean concept for interpreting the permeability of heterogeneous geomaterials

    NASA Astrophysics Data System (ADS)

    Selvadurai, Patrick; Selvadurai, Paul

    2015-04-01

    Naturally occurring geomaterials are heterogeneous and the estimation of the effective permeability characteristics of such geomaterials presents a challenge not only in terms of the experimental procedures that should be used to ensure flow through the porous medium but also in the correct use of the theoretical concepts needed to accurately interpret the data. The general consensus is that the flow path in a test needs to be drastically reduced if steady state tests are considered as a suitable experimental technique. The disadvantage of flow path reduction is that the tested volume may not be altogether representative of the rock, particularly if it displays heterogeneity in the scale of the sample being tested. Also, if the sample is not correctly restrained, the differential pressures needed to initiate steady flow can introduce damage in the sample leading to erroneous estimates of permeability. The alternative approach is to use large enough samples that can capture the spatial heterogeneity but develop testing procedures that can test examine the steady state flow process as a problem in three-dimensional fluid flow that can capture the spatial distribution of permeability. The paper discusses theoretical and computational approaches that have been developed for the estimation of the spatial distribution of permeability in a cuboidal Indiana Limestone sample measuring 450 mm. The "Patch Permeability Test" developed in connection with the research allows the measurements of the surface permeability of the block and through kriging techniques estimate the permeability within the block sample. The research promotes the use of the "Geometric Mean" concept for the description of the effective permeability of the heterogeneous porous medium where the spatial distribution conforms to a lognormal pattern. The effectiveness of the approach is that the techniques can be applied to examine the effective permeability of heterogeneous low permeability materials such as

  19. Techniques to Determine Maintenace Frequency of Permeable Pavement Systems with Time Domain Reflectometers (TDRs

    EPA Science Inventory

    As the surface clogs in permeable pavement systems, they lose effectiveness and require maintenance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being conducted using multiple time domain reflectomete...

  20. Use of Time Domain Reflectometers (TDRs) in Permeable Pavement Systems to Predict Maintenance Needs and Effectiveness

    EPA Science Inventory

    As the surface in permeable pavement systems clogs, infiltration capacity decreases, so maintenance is required to maintain hydrologic performance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being co...

  1. Use of Time Domain Reflectometers (TDRs) in Permeable Pavement Systems to Predict Maintenance Needs and Effectiveness

    EPA Science Inventory

    As the surface in permeable pavement systems clogs, infiltration capacity decreases, so maintenance is required to maintain hydrologic performance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being co...

  2. Techniques to Determine Maintenace Frequency of Permeable Pavement Systems with Time Domain Reflectometers (TDRs

    EPA Science Inventory

    As the surface clogs in permeable pavement systems, they lose effectiveness and require maintenance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being conducted using multiple time domain reflectomete...

  3. Timescales for permeability reduction and strength recovery in densifying magma

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Farquharson, J. I.; Wadsworth, F. B.; Kolzenburg, S.; Russell, J. K.

    2015-11-01

    likely persistently re-fracture and keep the conduit margin permeable. The modelling therefore supports the notion that repeated fracture-healing cycles are responsible for the successive low-magnitude earthquakes associated with silicic dome extrusion. Taken together, our results indicate that the transition from effusive to explosive behaviour may rest on the competition between permeability reduction within the conduit and outgassing through fractures at the conduit margin. If the conditions for explosive behaviour are satisfied, the magma densification clock will be reset and the process will start again. The timescales of permeability reduction and strength recovery presented in this study may aid our understanding of the permeability evolution of conduit margin fractures, magma fracture-healing cycles, surface outgassing cycles, and the timescales required for pore pressure augmentation and the initiation of explosive eruptions.

  4. Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects

    NASA Astrophysics Data System (ADS)

    Wang, Jiulong; Song, Hongqing; Li, Tianxin; Wang, Yuhe; Gao, Xuhua

    2017-08-01

    This paper presents a theoretical method to simulate gas-water relative permeability for nanoscale porous media utilizing fractal theory. The comparison between the calculation results and experimental data was performed to validate the present model. The result shows that the gas-water relative permeability would be underestimated significantly without interfacial effects. The thinner the liquid film thickness, the greater the liquid-phase relative permeability. In addition, both liquid surface diffusion and gas diffusion coefficient can promote gas-liquid two-phase flow. Increase of liquid surface diffusion prefer to increase liquid-phase permeability obviously as similar as increase of gas diffusion coefficient to increase gas-phase permeability. Moreover, the pore structure will become complicated with the increase of fractal dimension, which would reduce the gas-water relative permeability. This study has provided new insights for development of gas reservoirs with nanoscale pores such as shale.

  5. Is the long-latency stretch reflex in human masseter transcortical?

    PubMed

    Pearce, Sophie L; Miles, Timothy S; Thompson, Philip D; Nordstrom, Michael A

    2003-06-01

    A long-latency stretch reflex (LLSR) has been described in the human masseter muscle, but its pathway remains uncertain. To investigate this, the excitability of corticomotoneuronal (CM) cells projecting to masseter motoneurons during the LLSR was assessed with transcranial magnetic stimulation (TMS). A facilitated response to TMS would be evidence of a LLSR pathway that traverses the motor cortex. Surface electromyogram electrodes were placed over the left or right masseter, and subjects ( n=10) bit on bars with their incisor teeth at 10% of maximal electromyographic activity (EMG). Servo-controlled displacements were imposed on the lower jaw to evoke a short- and long-latency stretch reflex in masseter. TMS intensity was just suprathreshold for a response in contralateral masseter. Trials consisted of: (1) stretch alone, (2) TMS alone, and (3) TMS with a preceding conditioning stretch at varied conditioning-testing (C-T) intervals chosen to combine TMS with the short-latency stretch reflex (3 ms, 5 ms) and the LLSR (23-41 ms). Masseter EMG was rectified and averaged. With TMS alone, mean (+/- SE) MEP area above baseline was 56+/-9%. The area of masseter MEPs above baseline in the C-T trials was calculated from each EMG average following subtraction of the response to stretch alone. Conditioning muscle stretch had no significant effect on masseter MEPs evoked by TMS with any C-T interval (ANOVA; P=0.90). In addition, subjects were unable to modify the SLSR or LLSR by voluntary command. It is concluded that the long-latency stretch reflex in the masseter does not involve the motor cortex and is not influenced by "motor set".

  6. Permeability parameter as a function of population density in classical infiltration equation

    NASA Astrophysics Data System (ADS)

    Abidin, Nor Hafizah; Ahmad, Rohanin; Nordin, Syarifah Zyurina

    2014-12-01

    Rapid development of urban areas has caused many problems especially related to water issues. The increase in urban development also means the increase in impervious surfaces due to expansion of buildings, roads, parking lots to name a few. Impervious surfaces have low water permeability compared to pervious surfaces. Also, infiltration capacity is dependent on the permeability of the area and subsequently permeability is dependent on the surface conditions. In this paper, we study the infiltration capacity with the assumption that permeability parameter can be described in the term of the population density of the area. The modified model is based on the original form of Green-Ampt equation. The new model with population density is able to describe permeability, hence the infiltration capacity of an area.

  7. How to determine local stretching and tension in a flow-stretched DNA molecule

    NASA Astrophysics Data System (ADS)

    Pedersen, Jonas N.; Marie, Rodolphe; Kristensen, Anders; Flyvbjerg, Henrik

    We determine the nonuniform stretching of and tension in a Mbp-long fragment of DNA that is flow-stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field-of-view. Instead we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. Fitted parameters agree well with simplified expressions, where the DNA is modeled as a cylinder in a parallel flow.

  8. Study on infrared differential thermal non-destructive testing technology of the permeability of hot mix asphalt pavements

    NASA Astrophysics Data System (ADS)

    Wang, Duanyi; Shi, Jicun

    2017-06-01

    In order to non-destructive test (NDT) the permeability coefficient of hot mix asphalt (HMA) pavements fast, A methodology for assessing the permeability coefficient was proposed by infrared differential thermal testing of pavement after rain. The relationship between permeability coefficient and air voids of HMA specimen deter-mined. Finite element method (FEM) models were built to calculate the surface temperature difference with different exposure time after precipitation. Simulated solar radiation source and fully saturated plate specimens were set in laboratory, tests verify that the different exposure time the specimen surface temperature difference. Infrared differential thermal detection permeable pavement hardware and corresponding software developed. Based on many test results, the evaluation index and criteria of permeability coefficient of HMA pavements tested by infrared differential thermal were developed. The results showed that: There is correlation between air voids and permeability coefficient of HMA specimen. Permeability coefficient of HMA pavements can be determined by different surface temperature at different exposure time. 9:00 am - 14:00 pm is the best time to detect permeability coefficient by infrared differential thermal NDT. Permeable asphalt pavement permeability can be achieved by infrared detector quickly and continuously, a lane testing; Per the permeable assessment criteria, in-place pavements permeability coefficients can be accurately evaluated.

  9. Models of Stretch-Activated Ventricular Arrhythmias

    PubMed Central

    Trayanova, Natalia A.; Constantino, Jason; Gurev, Viatcheslav

    2010-01-01

    One of the most important components of mechano-electric coupling is stretch-activated channels, sarcolemmel channels that open upon mechanical stimuli. Uncovering the mechanisms by which stretch-activated channels contribute to ventricular arrhythmogenesis under a variety of pathological conditions is hampered by the lack of experimental methodologies that can record the three-dimensional electromechanical activity simultaneously at high spatiotemporal resolution. Computer modeling provides such an opportunity. This goal of this review is to illustrate the utility of sophisticated, physiologically realistic, whole heart computer simulations in determining the role of mechano-electric coupling in ventricular arrhythmogeneisis. We first present the various ways by which stretch-activated channels have been modeled and demonstrate how these channels affect cardiac electrophysiological properties. Next, we employ an electrophysiological model of the rabbit ventricles to understand how so-called commotio cordis, the mechanical impact to the pre-cordial region of the heart, can initiate ventricular tachycardia via the recruitment of stretch-activated channels. Using the same model, we also provide mechanistic insight to the termination of arrhythmias by precordial thump under normal and globally-ischemic conditions. Lastly, we employ a novel anatomically-realistic dynamic 3D coupled electromechanical model of the rabbit ventricles to gain insight into the role of electromechanical dysfunction in arrhythmogenesis during acute regional ischemia. PMID:20638670

  10. Cloud Network Helps Stretch IT Dollars

    ERIC Educational Resources Information Center

    Collins, Hilton

    2012-01-01

    No matter how many car washes or bake sales schools host to raise money, adding funds to their coffers is a recurring problem. This perpetual financial difficulty makes expansive technology purchases or changes seem like a pipe dream for school CIOs and has education technologists searching for ways to stretch money. In 2005, state K-12 school…

  11. Cloud Network Helps Stretch IT Dollars

    ERIC Educational Resources Information Center

    Collins, Hilton

    2012-01-01

    No matter how many car washes or bake sales schools host to raise money, adding funds to their coffers is a recurring problem. This perpetual financial difficulty makes expansive technology purchases or changes seem like a pipe dream for school CIOs and has education technologists searching for ways to stretch money. In 2005, state K-12 school…

  12. Pyrotechnic deflagration velocity and permeability

    SciTech Connect

    Begeal, D R; Stanton, P L

    1982-01-01

    Particle size, porosity, and permeability of the reactive material have long been considered to be important factors in propellant burning rates and the deflagration-to-detonation transition in explosives. It is reasonable to assume that these same parameters will also affect the deflagration velocity of pyrotechnics. This report describes an experimental program that addresses the permeability of porous solids (particulate beds), in terms of particle size and porosity, and the relationship between permeability and the behavior of pyrotechnics and explosives. The experimental techniques used to acquire permeability data and to characterize the pyrotechnic burning are discussed. Preliminary data have been obtained on the burning characteristics of titanium hydride/potassium perchlorate (THKP) and boron/calcium chromate (BCCR). With THKP, the velocity of a pressure wave (from hot product gases) in the unburned region shows unsteady behavior which is related to the initial porosity or permeability. Simultaneous measurements with pressure gauges and ion gauges reveal that the pressure wave precedes the burn front. Steady burning of BCCR was observed with pressure gauge diagnostics and with a microwave interferometry technique.

  13. Platelets can enhance vascular permeability.

    PubMed

    Cloutier, Nathalie; Paré, Alexandre; Farndale, Richard W; Schumacher, H Ralph; Nigrovic, Peter A; Lacroix, Steve; Boilard, Eric

    2012-08-09

    Platelets survey blood vessels, searching for endothelial damage and preventing loss of vascular integrity. However, there are circumstances where vascular permeability increases, suggesting that platelets sometimes fail to fulfill their expected function. Human inflammatory arthritis is associated with tissue edema attributed to enhanced permeability of the synovial microvasculature. Murine studies have suggested that such vascular leak facilitates entry of autoantibodies and may thereby promote joint inflammation. Whereas platelets typically help to promote microvascular integrity, we examined the role of platelets in synovial vascular permeability in murine experimental arthritis. Using an in vivo model of autoimmune arthritis, we confirmed the presence of endothelial gaps in inflamed synovium. Surprisingly, permeability in the inflamed joints was abrogated if the platelets were absent. This effect was mediated by platelet serotonin accumulated via the serotonin transporter and could be antagonized using serotonin-specific reuptake inhibitor antidepressants. As opposed to the conventional role of platelets to microvascular leakage, this demonstration that platelets are capable of amplifying and maintaining permeability adds to the rapidly growing list of unexpected functions for platelets.

  14. Effective pressure law for permeability of E-bei sandstones

    NASA Astrophysics Data System (ADS)

    Li, M.; Bernabé, Y.; Xiao, W.-I.; Chen, Z.-Y.; Liu, Z.-Q.

    2009-07-01

    Laboratory experiments were conducted to determine the effective pressure law for permeability of tight sandstone rocks from the E-bei gas reservoir, China. The permeability k of five core samples was measured while cycling the confining pressure pc and fluid pressure pf. The permeability data were analyzed using the response-surface method, a statistical model-building approach yielding a representation of k in (pc, pf) space that can be used to determine the effective pressure law, i.e., peff = pc - κpf. The results show that the coefficient κ of the effective pressure law for permeability varies with confining pressure and fluid pressure as well as with the loading or unloading cycles (i.e., hysteresis effect). Moreover, κ took very small values in some of the samples, even possibly lower than the value of porosity, in contradiction with a well-accepted theoretical model. We also reanalyzed a previously published permeability data set on fissured crystalline rocks and found again that the κ varies with pc but did not observe κ values lower than 0.4, a value much larger than porosity. Analysis of the dependence of permeability on effective pressure suggests that the occurrence of low κ values may be linked to the high-pressure sensitivity of E-bei sandstones.

  15. Molecular Threading: Mechanical Extraction, Stretching and Placement of DNA Molecules from a Liquid-Air Interface

    PubMed Central

    Kemmish, Kent; Hamalainen, Mark; Bowell, Charlotte; Bleloch, Andrew; Klejwa, Nathan; Lehrach, Wolfgang; Schatz, Ken; Stark, Heather; Marblestone, Adam; Church, George; Own, Christopher S.; Andregg, William

    2013-01-01

    We present “molecular threading”, a surface independent tip-based method for stretching and depositing single and double-stranded DNA molecules. DNA is stretched into air at a liquid-air interface, and can be subsequently deposited onto a dry substrate isolated from solution. The design of an apparatus used for molecular threading is presented, and fluorescence and electron microscopies are used to characterize the angular distribution, straightness, and reproducibility of stretched DNA deposited in arrays onto elastomeric surfaces and thin membranes. Molecular threading demonstrates high straightness and uniformity over length scales from nanometers to micrometers, and represents an alternative to existing DNA deposition and linearization methods. These results point towards scalable and high-throughput precision manipulation of single-molecule polymers. PMID:23935923

  16. Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder.

    PubMed

    Najib, Najwa; Bachok, Norfifah; Arifin, Norihan Md; Ishak, Anuar

    2014-02-26

    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.

  17. Grafted polymers inside cylindrical tubes: chain stretching vs layer thickness.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2013-04-28

    We present a study of the detailed structure of grafted polymer chains and the layers they form inside cylindrical tubes, using the finitely extensible nonlinear elastic chain model and numerical self-consistent field theory. For very large tube radius, the chain stretching and layer thicknesses are the same as for polymers grafted to a planar surface. For decreasing radius, our calculations indicate that the layer almost always gets thinner, although there can be situations where it is very slightly thicker. However, we find that this thinning is not necessarily due to changes to the polymers: in fact, the root-mean-squared layer thickness would decrease even if the polymers themselves are completely unchanged. Furthermore, we find that the polymer stretching can increase at the same time that the layer thickness decreases. These apparent paradoxes are resolved by analyzing and distinguishing between the volume fraction profiles and monomer number distributions in these systems, including how they change and why. We also find that, in a given system, parts of each polymer move towards the curved surface and parts away from it, and that these differences are key to understanding the behavior.

  18. Permeability diagnosis model in drug discovery: a diagnostic tool to identify the most influencing properties for gastrointestinal permeability.

    PubMed

    Wang, Jianling; Skolnik, Suzanne

    2013-01-01

    Permeability is important in governing the ability of drug substances to transport across gastrointestinal membrane and also crucial for proper drug distribution to pharmacological target organs and cells, and is therefore frequently utilized in drug discovery and development. In this report, we have performed a systematic analysis, using principal component analysis on the historically measured permeability data from in-house Caco-2 and parallel artificial membrane permeability assays on discovery new chemical entities from multiple projects. This work allows for establishment of a permeability diagnosis model by purposefully identifying most influencing physicochemical properties of the permeability issues, including polarity-lipophilicity line contributed primarily by polar surface area and LogP, number of rotation bond, fractional ionization at neutral pH and efflux ratio. A number of cases were also shown to demonstrate the applicability of the current model. The analysis of the model over internal drug discovery compounds exhibited promising diagnostic and predictive power of the model. The advantages and limitation of the model as well as the integral strategy to apply it in drug discovery to guide projects for permeability-related optimization were also presented.

  19. How to determine local stretching and tension in a flow-stretched DNA molecule

    NASA Astrophysics Data System (ADS)

    Pedersen, Jonas N.; Marie, Rodolphe; Kristensen, Anders; Flyvbjerg, Henrik

    2016-04-01

    We determine the nonuniform stretching of and tension in a mega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies.

  20. Buoyant low stretch stagnation point diffusion flames over a solid fuel

    NASA Astrophysics Data System (ADS)

    Olson, Sandra L.

    Many diffusion flames in microgravity are subject to very low stretch. To study flame structure and extinction characteristics of these unusual flames, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Solid-phase conductive heat loss was also varied by modifying the back surface boundary conditions on the samples. Burning rates, flame thickness and standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 7-8 secsp{-1}, as determined by the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame. Applications of this work include fire safety in spacecraft where low velocity flows from spacecraft ventilation equipment or small cooling fans for electronic hardware can impinge upon flammable surface materials and create low stretch environments. Knowledge of the characteristics of these potential fires is vital to prompt detection and proper response to such events.

  1. Periosteum, bone's "smart" bounding membrane, exhibits direction-dependent permeability.

    PubMed

    Evans, Sarah F; Parent, Jonathan B; Lasko, Colin E; Zhen, Xiaowen; Knothe, Ulf R; Lemaire, Thibault; Knothe Tate, Melissa L

    2013-03-01

    The periosteum serves as bone's bounding membrane, exhibits hallmarks of semipermeable epithelial barrier membranes, and contains mechanically sensitive progenitor cells capable of generating bone. The current paucity of data regarding the periosteum's permeability and bidirectional transport properties provided the impetus for the current study. In ovine femur and tibia samples, the periosteum's hydraulic permeability coefficient, k, was calculated using Darcy's Law and a custom-designed permeability tester to apply controlled, volumetric flow of phosphate-buffered saline through periosteum samples. Based on these data, ovine periosteum demonstrates mechanically responsive and directionally dependent (anisotropic) permeability properties. At baseline flow rates comparable to interstitial fluid flow (0.5 µL/s), permeability is low and does not exhibit anisotropy. In contrast, at high flow rates comparable to those prevailing during traumatic injury, femoral periosteum exhibits an order of magnitude higher permeability compared to baseline flow rates. In addition, at high flow rates permeability exhibits significant directional dependence, with permeability higher in the bone to muscle direction than vice versa. Furthermore, compared to periosteum in which the intrinsic tension (pre-stress) is maintained, free relaxation of the tibial periosteum after resection significantly increases its permeability in both flow directions. Hence, the structure and mechanical stress state of periosteum influences its role as bone's bounding membrane. During periods of homeostasis, periosteum may serve as a barrier membrane on the outer surface of bone, allowing for equal albeit low quiescent molecular communication between tissue compartments including bone and muscle. In contrast, increases in pressure and baseline flow rates within the periosteum resulting from injury, trauma, and/or disease may result in a significant increase in periosteum permeability and consequently in

  2. Permeability study of cancellous bone and its idealised structures.

    PubMed

    Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Harun, Muhamad Nor; Öchsner, Andreas

    2015-01-01

    Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones.

  3. Aneurysm permeability following coil embolization: packing density and coil distribution

    PubMed Central

    Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J

    2015-01-01

    Background Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Methods Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. Results All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r2=0.73) than with packing density alone (r2=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. Conclusions A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. PMID:25031179

  4. Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges

    NASA Astrophysics Data System (ADS)

    Ambravaneswaran, Bala; Basaran, Osman A.

    1999-05-01

    During the emission of single drops and the atomization of a liquid from a nozzle, threads of liquid are stretched and broken. A convenient setup for studying in a controlled manner the dynamics of liquid threads is the so-called liquid bridge, which is created by holding captive a volume of liquid between two solid disks and pulling apart the two disks at a constant velocity. Although the stability of static bridges and the dynamics of stretching bridges of pure liquids have been extensively studied, even a rudimentary understanding of the dynamics of the stretching and breakup of bridges of surfactant-laden liquids is lacking. In this work, the dynamics of a bridge of a Newtonian liquid containing an insoluble surfactant are analyzed by solving numerically a one-dimensional set of equations that results from a slender-jet approximation of the Navier-Stokes system that governs fluid flow and the convection-diffusion equation that governs surfactant transport. The computational technique is based on the method-of-lines, and uses finite elements for discretization in space and finite differences for discretization in time. The computational results reveal that the presence of an insoluble surfactant can drastically alter the physics of bridge deformation and breakup compared to the situation in which the bridge is surfactant free. They also make clear how the distribution of surfactant along the free surface varies with stretching velocity, bridge geometry, and bulk and surface properties of the liquid bridge. Gradients in surfactant concentration along the interface give rise to Marangoni stresses which can either retard or accelerate the breakup of the liquid bridge. For example, a high-viscosity bridge being stretched at a low velocity is stabilized by the presence of a surfactant of low surface diffusivity (high Peclet number) because of the favorable influence of Marangoni stresses on delaying the rupture of the bridge. This effect, however, can be lessened or

  5. Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges

    SciTech Connect

    Ambravaneswaran, B.; Basaran, O.A.

    1999-05-01

    During the emission of single drops and the atomization of a liquid from a nozzle, threads of liquid are stretched and broken. A convenient setup for studying in a controlled manner the dynamics of liquid threads is the so-called liquid bridge, which is created by holding captive a volume of liquid between two solid disks and pulling apart the two disks at a constant velocity. Although the stability of static bridges and the dynamics of stretching bridges of pure liquids have been extensively studied, even a rudimentary understanding of the dynamics of the stretching and breakup of bridges of surfactant-laden liquids is lacking. In this work, the dynamics of a bridge of a Newtonian liquid containing an insoluble surfactant are analyzed by solving numerically a one-dimensional set of equations that results from a slender-jet approximation of the Navier{endash}Stokes system that governs fluid flow and the convection-diffusion equation that governs surfactant transport. The computational technique is based on the method-of-lines, and uses finite elements for discretization in space and finite differences for discretization in time. The computational results reveal that the presence of an insoluble surfactant can drastically alter the physics of bridge deformation and breakup compared to the situation in which the bridge is surfactant free. They also make clear how the distribution of surfactant along the free surface varies with stretching velocity, bridge geometry, and bulk and surface properties of the liquid bridge. Gradients in surfactant concentration along the interface give rise to Marangoni stresses which can either retard or accelerate the breakup of the liquid bridge. For example, a high-viscosity bridge being stretched at a low velocity is stabilized by the presence of a surfactant of low surface diffusivity (high Peclet number) because of the favorable influence of Marangoni stresses on delaying the rupture of the bridge. This effect, however, can be

  6. NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM (LATER FILL ENCROACHING LEFT) NEAR CENTER OF THIS STRETCH; VIEW TO SOUTHWEST - Blackstone Canal Worcester-Millbury Segment, Eastern bank of Blackstone River, Millbury, Worcester County, MA

  7. Characterization of Biaxial Stretch as an In Vitro Model of Traumatic Brain Injury to the Blood-Brain Barrier.

    PubMed

    Rosas-Hernandez, Hector; Cuevas, Elvis; Escudero-Lourdes, Claudia; Lantz, Susan M; Gomez-Crisostomo, Nancy P; Sturdivant, Nasya M; Balachandran, Kartik; Imam, Syed Z; Slikker, William; Paule, Merle G; Ali, Syed F

    2017-08-25

    Traumatic brain injury (TBI) is one of the major causes of disability in the USA. It occurs when external mechanical forces induce brain damage that causes deformation of brain tissue. TBI is also associated with alterations of the blood-brain barrier (BBB). Using primary rat brain microvascular endothelial cells as an in vitro BBB model, the effects of biaxial stretch were characterized at 5, 10, 15, 25, and 50% deformation using a commercially available system. The results were compared to the effects of mild and moderate TBI in vivo, induced by the weight-drop method in mice. In vitro, live/dead cells, lactate dehydrogenase (LDH) release, caspase 3/7 staining, and tight junction (TJ) protein expression were evaluated 24 h after a single stretch episode. In vivo, Evans blue extravasation, serum levels of S100β, and TJ protein expression were evaluated. Stretch induced a deformation-dependent increase in LDH release, cell death, and activation of caspase 3/7, suggesting the induction of apoptosis. Interestingly, low magnitudes of deformation increased the expression of TJ proteins, likely in an attempt to compensate for stretch damage. High magnitudes of deformation decreased the expression of TJ proteins, suggesting that the damage was too severe to counteract. In vivo, mild TBI did not affect BBB permeability or the expression of TJ proteins. However, moderate TBI significantly increased BBB permeability and decreased the expression of these proteins, similar to the results obtained with a high magnitude deformation. These data support the use biaxial stretch as valuable tool in the study of TBI in vitro.

  8. Stretch-activated whole-cell currents in smooth muscle cells from mesenteric resistance artery of guinea-pig.

    PubMed Central

    Setoguchi, M; Ohya, Y; Abe, I; Fujishima, M

    1997-01-01

    1. Stretch-activated (SA) channels were studied in smooth muscle cells isolated from mesenteric resistance arteries using the whole-cell patch-clamp method. Membrane stretch was achieved by cell inflation after application of positive pressure through a patch electrode. 2. In the voltage-clamp configuration, cell inflation increased and cell deflation decreased the membrane conductance. Conductance of the evoked current depended on the increase in cross-sectional area of the cell. The current-voltage relationship was linear between -80 and 0 mV, while further hyperpolarization showed a slight inward rectification. 3. The reversal potential of the SA current depended on the extracellular Na+ concentration, suggesting that the inward SA current was carried predominantly by Na+. The SA current was also carried by other cations, suggesting that the channel responsible for this current is a non-selective cation channel. The permeability sequence of cations as assessed by reversal potential was as follows: K+ > or = CS+ > or = Na+ > Li+. The channel was also permeable to Ca2+. 4. Extracellular Ca2+ and Gd3+ inhibited the SA current carried by monovalent cations in a concentration-dependent manner with IC50 (concentration giving 50% of maximal inhibition) values of 0.9 mM and 14 microM, respectively. 5. In the current-clamp configuration, membrane stretch depolarized the cell, and 100 microM Gd3+ inhibited the stretch-induced depolarization. 6. The results suggest that SA cation channels exist in arterial smooth muscle cells. Activation of the channels may modify membrane potential and intracellular ionic environment, and promote stretch-mediated cell responses. Images Figure 1 PMID:9192306

  9. Effect of endodontic procedures on root dentin permeability.

    PubMed

    Tao, L; Anderson, R W; Pashley, D H

    1991-12-01

    The purpose of this study was to quantitate the sequential effects of endodontic procedures on the permeability of human root dentin in vitro. Forty single-rooted teeth were used. Both the crown and the apical 2 mm of the root were removed. The hydraulic conductance of the root before and after various endodontic procedures was measured using a fluid filtration method. Measurements were also made of dentin thickness, intracanal diameter changes, and changes in intracanal surface area. The results showed that instrumentation by K files alone or in combination with Gates Glidden drills did not alter radicular dentin permeability when the cementum remained intact. After removing the cementum, the creation of a smear layer and smear plugs on the canal surface tended to offset the expected increase in dentin permeability created by increasing the intracanal surface area and decreasing root dentin thickness. EDTA treatment inside the instrumented canal to remove the smear layer did not increase permeability significantly. The use of K files followed by Gates Glidden drills tended to remove more cervical dentin, increased the intracanal surface area, and increased the hydraulic conductance of root dentin more than the use of K files alone.

  10. Trench infiltration for managed aquifer recharge to permeable bedrock

    USGS Publications Warehouse

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  11. Permeability dependence of streaming potential in rocks for various fluid conductivities

    NASA Astrophysics Data System (ADS)

    Jouniaux, Laurence; Pozzi, Jean-Pierre

    1995-02-01

    Streaming potentials have been measured on sandstone and limestone samples in a large range of permeabilities. The electrokinetic coupling coefficient increases with permeability and we explain this effect by the related variation of surface conductivity. A model is proposed to study this effect for various fluid conductivities and it is shown that the dependence of the electrokinetic coupling coefficient on permeability is stronger for high fluid resistivity and is weaker for lower fluid resistivity. When fluid resistivity is below 1 Ohm-meter permeability and streaming potential are no more related.

  12. Rigid gas permeable extended wear.

    PubMed

    Maehara, J R; Kastl, P R

    1994-04-01

    We have reviewed the pertinent literature on rigid gas permeable (RGP) extended wear contact lenses, and we discuss the benefits and adverse reactions of this contact lens modality, drawing conclusions from reviewed studies. We suggest parameters for success with these lenses and guidelines for the prevention of adverse reactions.

  13. A tunable hemispherical platform for non-stretching curved flexible electronics and optoelectronics

    SciTech Connect

    Zhuang, Jinda; Ju, Y. Sungtaek

    2014-07-28

    One major challenge in incorporating flexible electronics or optoelectronics on curved surfaces is the requirement of significant stretchability. We report a tunable platform for incorporating flexible and yet non-stretching device layers on a hemisphere. In this configuration, an array of planar petals contractively maps onto the surface of an inflatable hemisphere through elastocapillary interactions mediated by an interface liquid. A mechanical model is developed to elucidate the dependence of the conformality of the petal structures on their elastic modulus and thickness and the liquid surface tension. The modeling results are validated against experimental results obtained using petal structures of different thicknesses, restoring elastic spring elements of different spring constants, and liquids with different surface tension coefficients. Our platform will enable facile integration of non-stretching electronic and optoelectronic components prepared using established planar fabrication techniques on tunable hemispherical surfaces.

  14. Low Stretch PMMA Burning in Microgravity: Status of the Ground-Based Program and New ISS Glovebox Experiment SALSA

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.; Armstrong, J. B.

    2001-01-01

    The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).

  15. Modeling aftershocks as a stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2015-11-01

    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.

  16. The role of stretching in tendon injuries.

    PubMed

    Witvrouw, E; Mahieu, N; Roosen, P; McNair, P

    2007-04-01

    The function of tendons can be classified into two categories: tensile force transmission, and storage and release of elastic energy during locomotion. The action of tendons in storing and releasing energy is mainly seen in sports activities with stretch-shortening cycles (SSCs). The more intense the SSC movements are (jumping-like activities), the more frequently tendon problems are observed. High SSC movements impose high loads on tendons. Consequently, tendons that frequently deal with high SSC motion require a high energy-absorbing capacity to store and release this large amount of elastic energy. As the elasticity of tendon structures is a leading factor in the amount of stored energy, prevention and rehabilitation programmes for tendon injuries should focus on increasing this tendon elasticity in athletes performing high SSC movements. Recently, it has been shown that ballistic stretching can significantly increase tendon elasticity. These findings have important clinical implications for treatment and prevention of tendon injuries.

  17. Stretched cell cycle model for proliferating lymphocytes

    PubMed Central

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  18. Stretching cells and delivering drugs with bubbles

    NASA Astrophysics Data System (ADS)

    Ohl, Claus-Dieter; Li, Fenfang; Chon U, Chan; Gao, Yu; Xu, Chenjie

    2015-11-01

    In this talk we'll review our work on impulsive cell stretching using cavitation bubbles and magnetic microbubbles for drug delivery. For sufficient short times cells can sustain a much larger areal strain than the yield strain obtained from quasi-static stretching. Experiments with red blood cells show that even then the rupture of the cell is slow process; it is caused by diffusive swelling rather than mechanical violation of the plasma membrane. In the second part we'll discuss bubbles coated with magnetic and drug loaded particles. These bubbles offer an interesting vector for on demand delivery of drugs using mild ultrasound and magnetic fields. We report on basic experiments in microfluidic channels revealing the release of the agent during bubble oscillations and first in vivo validation with a mouse tumor model. Singapore National Research Foundations Competitive Research Program funding (NRF-CRP9-2011-04).

  19. Vibrational overtone stretching transitions in sarin

    NASA Astrophysics Data System (ADS)

    Petryk, Michael W. P.

    2006-10-01

    The CH stretching overtone transitions of the nerve agent sarin (O-isopropyl methylphosphonofluoridate) are of interest to the standoff detection of chemical warfare agents, as many of these transitions occur near regions where small, efficient, portable diode lasers (originally developed for use in the telecommunications industry) operate. However, the interpretation of experimental vibrational overtone spectra is often difficult, and the computational simulation of overtone transitions in a molecule is challenging. Presented herein are the simulated CH overtone stretching transitions in sarin. Spectral regions are simulated from overtone transition energies and intensities, both of which are calculated within the harmonically coupled anharmonic oscillator (HCAO) model. Data for HCAO calculations are obtained from ab initio calculations, without any recourse to experimental data.

  20. Permeability Evolution of Propped Artificial Fractures in Green River Shale

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Feng, Zijun; Han, Gang; Elsworth, Derek; Marone, Chris; Saffer, Demian; Cheon, Dae-Sung

    2017-06-01

    This paper compares the evolution of permeability with effective stress in propped fractures in shale for native CH4 compared with that for sorbing CO2, slightly sorbing N2 and non-sorbing He. We examine the response for laboratory experiments on artificial propped fractures in Green River Shale to explore mechanisms of proppant embedment and fracture diagenesis. Split cylindrical specimens sandwich a proppant bead-pack at a constant confining stress of 20 MPa and with varied pore pressure. Permeability and sorption characteristics are measured with the pulse transient method. To explore the effect of swelling and embedment on fracture surface geometry, we measure the evolution of conductivity characteristics for different proppant geometries (single layer vs. multilayer), gas saturation and specimen variation in order to simulate both production and enhanced gas recovery. The resulting morphology of embedment is measured by white light interferometry and characterized via surface roughness parameter of mean, maximum and root-mean-square amplitudes. For both strongly (CO2, CH4) and slightly adsorptive gases (N2), the permeability first decreases with an increase in gas pressure due to swelling before effective stress effects dominate above the Langmuir pressure threshold. CO2 with its highest adsorption affinity produces the lowest permeability among these three gas permeants. Monolayer propped specimens show maximum swelling and lowered k/k 0 ratio and increased embedment recorded in the surface roughness relative to the multilayered specimens. Permeabilities measured for both injection and depletion cycles generally overlap and are repeatable with little hysteresis. This suggests the dominant role of reversible swelling over irreversible embedment. Gas permeant composition and related swelling have an important effect on the permeability evolution of shales.

  1. Asymptotic Symmetries of Spacelike Stretched ADS Gravity

    NASA Astrophysics Data System (ADS)

    Blagojević, Milutin; Cvetković, Branislav

    We study asymptotic symmetries in the spacelike stretched AdS sector of topologically massive gravity. The Poisson bracket algebra of the canonical generators is shown to be centrally extended semi-direct sum of the Virasoro and u(1) Kac-Moody algebra. By using the Sugawara construction, we prove that the asymptotic symmetry coincides with the conformal symmetry, described by two independent Virasoro algebras with central charges.

  2. Image enhancement by local histogram stretching

    NASA Astrophysics Data System (ADS)

    Alparslan, E.; Fuatince, Mr.

    1981-05-01

    An image enhancement algorithm that makes use of local histogram stretching is introduced. This algorithm yields considerable improvements in human observation of details in an image, compared to straightforward histogram equalization and a number of other enhancement techniques. The algorithm is especially suitable for producing hard copies of images on electrostatic plotters with limited gray levels, as shown in applications to the Girl's image and a Landsat image.

  3. NASA/MSFC Large Stretch Press Study

    NASA Technical Reports Server (NTRS)

    Choate, M. W.; Nealson, W. P.; Jay, G. C.; Buss, W. D.

    1985-01-01

    The purpose of this study was to: A. assess and document the advantages/disadvantages of a government agency investment in a large stretch form press on the order of 5000 tons capacity (per jaw); B. develop a procurement specification for the press; and C. provide trade study data that will permit an optimum site location. Tasks were separated into four major elements: cost study, user survey, site selection, and press design/procurement specification.

  4. Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation

    SciTech Connect

    Garbesi, K.; Sextro, R.G.; Robinson, Arthur L.; Wooley, J.D.; Owens, J.A.; Nazaroff, W.W.

    1995-11-01

    This work investigates the dependence soil air-permeability on sampling scale in near-surface unsaturated soils. A new dual-probe dynamic pressure technique was developed to measure permeability in situ over different length scales and different spatial orientations in the soil. Soils at three sites were studied using the new technique. Each soil was found to have higher horizontal than vertical permeability. Significant scale dependence of permeability was also observed at each site. Permeability increased by a factor of 20 as sampling scale increased from 0.1 to 2 m in a sand soil vegetated with dry grass, and by a factor of 15 as sampling scale increased from 0.1 to 3.5 m in a sandy loam with mature Coast Live Oak trees (Quercus agrifolia). The results indicate that standard methods of permeability assessment can grossly underestimate advective transport of gas-phase contaminants through soils.

  5. High membrane permeability for melatonin

    PubMed Central

    Yu, Haijie; Dickson, Eamonn J.; Jung, Seung-Ryoung; Koh, Duk-Su

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be “secreted” from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  6. Laser treatment of stretch marks: preliminary results

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Piccinetti, A. L.; Monache, G. D.; Botta, G.; Mancini, S.

    2000-06-01

    The best treatment of these stretch mark is still unknown. Some authors proposed the treatment with flash-lamp-pumped dye laser 585 nm, with fluence over 8 J/cm2. Reviewing our experiences on no-surgical effects of lasers in the various phases of the wound healing, including the re- epithelization, we would like to apply the no-surgical laser therapy treating the stretch marks of breast, abdomen and lumbo-sacral region. The goal is to inhibit the fibrous tissue metabolism, encouraging the destruction of the collagen fibers with inflammatory mechanism, and increasing the reconstitution of the superficial dermis layers. We treated five cases of stretch marks in women 22-35 years old, since May 1999, with a cycle of applications of double lasers, 511 and 577 nm, with energy of 20 Joule for spot, respecting the maximum thermal relaxation times of the skin. We waited two weeks interval between the applications. Results obtained after five applications are very positive, and we are encouraged to continue this experimentation.

  7. Dynamics and structure of stretched flames

    SciTech Connect

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  8. Stretch Moduli of Ribonucleotide Embedded Short DNAs

    NASA Astrophysics Data System (ADS)

    Chiu, Hsiang-Chih; Koh, Kyung Duk; Riedo, Elisa; Storici, Francesca

    2013-03-01

    Understanding the mechanical properties of DNA is essential to comprehending the dynamics of many cellular functions. DNA deformations are involved in many mechanisms when genetic information needs to be stored and used. In addition, recent studies have found that Ribonucleotides (rNMPs) are among the most common non-standard nucleotides present in DNA. The presences of rNMPs in DNA might cause mutation, fragility or genotoxicity of chromosome but how they influence the structure and mechanical properties of DNA remains unclear. By means of Atomic Force Microscopy (AFM) based single molecule spectroscopy, we measure the stretch moduli of double stranded DNAs (dsDNA) with 30 base pairs and 5 equally embedded rNMPs. The dsDNAs are anchored on gold substrate via thiol chemistry, while the AFM tip is used to pick up and stretch the dsDNA from its free end through biotin-streptavidin bonding. Our preliminary results indicate that the inclusion of rNMPs in dsDNA might significantly change its stretch modulus, which might be important in some biological processes.

  9. Dynamo theory, vorticity generation, and exponential stretching.

    PubMed

    Friedlander, Susan; Vishik, Misha M.

    1991-08-01

    A discussion is given of the analogy between the dynamo equation for the generation of a magnetic field by the motion of an electrically conducting fluid and the equation for the evolution of vorticity of a viscous fluid. In both cases exponential stretching is an important feature of the underlying instability problem. For the "fast" dynamo problem, the existence of exponential stretching (i.e., the positivity of the Lyapunov exponent) somewhere in the flow is a necessary condition when the flow is smooth. An example is presented of a flow with exponential stretching (an Anosov flow) that supports fast dynamo action. A parallel treatment is described for the linearized Navier-Stokes equations for the motion of a viscous fluid. In this problem the analogous necessary condition for "fast vorticity generation" is the existence of some instability in the corresponding Euler (i.e., inviscid) equation. Dynamo theory methods give a second related result, namely a universal geometric estimate from below on the growth rate of a small perturbation in an inviscid fluid. This bound gives an effective sufficient condition for local instability for Eulers equations. In particular, it is proved that a steady flow with a hyperbolic stagnation point is unstable. The growth rate of an infinitesimal perturbation in a metric with derivatives depends on this metric. This dependence is completely described.

  10. Sequencing of long stretches of repetitive DNA

    PubMed Central

    De Bustos, Alfredo; Cuadrado, Angeles; Jouve, Nicolás

    2016-01-01

    Repetitive DNA is widespread in eukaryotic genomes, in some cases making up more than 80% of the total. SSRs are a type of repetitive DNA formed by short motifs repeated in tandem arrays. In some species, SSRs may be organized into long stretches, usually associated with the constitutive heterochromatin. Variation in repeats can alter the expression of genes, and changes in the number of repeats have been linked to certain human diseases. Unfortunately, the molecular characterization of these repeats has been hampered by technical limitations related to cloning and sequencing. Indeed, most sequenced genomes contain gaps owing to repetitive DNA-related assembly difficulties. This paper reports an alternative method for sequencing of long stretches of repetitive DNA based on the combined use of 1) a linear vector to stabilize the cloning process, and 2) the use of exonuclease III for obtaining progressive deletions of SSR-rich fragments. This strategy allowed the sequencing of a fragment containing a stretch of 6.2 kb of continuous SSRs. To demonstrate that this procedure can sequence other kinds of repetitive DNA, it was used to examine a 4.5 kb fragment containing a cluster of 15 repeats of the 5S rRNA gene of barley. PMID:27819354

  11. Photoluminescence of zirconium hydroxide: Origin of a chemisorption-induced ‘red-stretch'

    NASA Astrophysics Data System (ADS)

    Watters, Evan J.; Sengupta, Sandip K.; Peterson, Gregory W.; Whitten, James E.

    2014-01-01

    Zirconium hydroxide particles are reactive and photoluminescent, emitting blue light under ultraviolet (UV) irradiation. Adsorption-induced changes in the photoluminescence (PL) offer opportunities for gas sensor/filtration applications. The PL of Zr(OH)4 is quenched in the presence of molecular oxygen, likely through trapping of surface electrons via the formation of O2-. Heating the powder high enough to desorb hydroxyl groups broadens the PL spectrum toward longer wavelengths. This 'red-stretch' also occurs upon reaction with sulfur dioxide, which replaces terminal hydroxyl groups with sulfite ones. Excessive UV irradiation correspondingly induces this effect. A mechanism is proposed to account for the red-stretch.

  12. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  13. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    PubMed Central

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  14. A Large Block Experiment for Measurement of the Effective Permeability of Indiana Limestone

    NASA Astrophysics Data System (ADS)

    Selvadurai, P. A.; Selvadurai, A. P.

    2009-12-01

    The measurement of permeability of large specimens of a rock specimen is bound to provide a clearer picture of the distribution of permeability of predominantly sedimentary rocks. Such distributions can be the basis for evaluating the effective permeability of the rock specimen in the presence of permeability inhomogeneity. This paper discusses the development of a patch permeability test that can be used to measure the near surface permeability characteristics of a large cuboidal block of Indiana Limestone measuring 508 mm. The test is used to generate the near surface permeability of six faces of the cuboid and these estimates are used to generate, via a kriging procedure, the interior permeability distributions of permeability. These permeability distributions are used to examine the validity of theoretical estimates that have been developed in the literature to determine the effective permeability of the material. The classical Wiener (1912) bounds, the estimates provided by Matheron (1967) and Journel et al. (1993) are developed using the experimentally derived data. The procedure is also validated by conducting computational experiments involving one-dimensional flow along three orthogonal directions. References: Wiener, O. (1912) Die Theorie des Mischkörpers für das Feld des stationaären Strömung. Erste Abhandlung die Mittelswertesätsze für Kraft, Polarisation und Energie. Abh. Math.-Physischen Klasse Königl. Säcsh Gesell. Wissen, 32: 509-604. Matheron, G. (1967) Eléments pour une Théorie des Milieux Poroeux, Masson, Paris. Journel, A.G, Deutsch, C.V. and Desbrats, A.J. (1986) Power averaging for block effective permeability, SPE 15128, Society of Petroleum Engineers.

  15. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  16. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  17. Drug permeability prediction using PMF method.

    PubMed

    Meng, Fancui; Xu, Weiren

    2013-03-01

    Drug permeability determines the oral availability of drugs via cellular membranes. Poor permeability makes a drug unsuitable for further development. The permeability may be estimated as the free energy change that the drug should overcome through crossing membrane. In this paper the drug permeability was simulated using molecular dynamics method and the potential energy profile was calculated with potential of mean force (PMF) method. The membrane was simulated using DPPC bilayer and three drugs with different permeability were tested. PMF studies on these three drugs show that doxorubicin (low permeability) should pass higher free energy barrier from water to DPPC bilayer center while ibuprofen (high permeability) has a lower energy barrier. Our calculation indicates that the simulation model we built is suitable to predict drug permeability.

  18. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet

    PubMed Central

    2012-01-01

    In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles. PMID:22520273

  19. New approach to the exact solution of viscous flow due to stretching (shrinking) and porous sheet

    NASA Astrophysics Data System (ADS)

    Ali, Azhar; Khan Marwat, Dil Nawaz; Asghar, S.

    Exact analytical solutions for the generalized stretching (shrinking) of a porous surface, for the variable suction (injection) velocity, is presented in this paper. The solution is generalized in the sense that the existing solutions that correspond to various stretching velocities are recovered as a special case of this study. A suitable similarity transformation is introduced to find self-similar solution of the non-linear governing equations. The flow is characterized by a few non-dimensional parameters signifying the problem completely. These parameters are such that the whole range of stretching (shrinking) problems discussed earlier can be recovered by assigning appropriate values to these parameters. A key point of the whole narrative is that a number of earlier works can be abridged into one generalized problem through the introduction of a new similarity transformation and finding its exact solution encompassing all the earlier solutions.

  20. The effectiveness of FE model for increasing accuracy in stretch forming simulation of aircraft skin panels

    NASA Astrophysics Data System (ADS)

    Kono, A.; Yamada, T.; Takahashi, S.

    2013-12-01

    In the aerospace industry, stretch forming has been used to form the outer surface parts of aircraft, which are called skin panels. Empirical methods have been used to correct the springback by measuring the formed panels. However, such methods are impractical and cost prohibitive. Therefore, there is a need to develop simulation technologies to predict the springback caused by stretch forming [1]. This paper reports the results of a study on the influences of the modeling conditions and parameters on the accuracy of an FE analysis simulating the stretch forming of aircraft skin panels. The effects of the mesh aspect ratio, convergence criteria, and integration points are investigated, and better simulation conditions and parameters are proposed.