Science.gov

Sample records for permeables al gas

  1. Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Bokerman, Gary (Inventor); Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2013-01-01

    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.

  2. Gas Permeability in Rubbery Polyphosphazene Membranes

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme; John R. Klaehn; Mason K. Harrup; Thomas A. Luther; Eric S. Peterson

    2006-09-01

    The synthesis, characterization, and gas permeability of ten new polyphosphazenes has been studied. Additionally, the first gas permeation data has been collected on hydrolytically unstable poly[bis-(chloro)phosphazene]. Gases used in this study include CO2, CH4, O2, N2, H2, and Ar. CO2 was the most permeable gas through any of the phosphazenes and a direct correlation between the Tg of the polymer and CO2 transport was noted with permeability increasing with decreasing polymer Tg. To a lesser degree, permeability of all the other gases studied also yielded increases with decreasing polymer Tg. The trend observed for these new polymers was further supported by published data for other phosphazenes. Furthermore, permeability data for all gases were found to correlate to the gas condensability and the gas critical pressures, except for hydrogen, suggesting that the nature of the gas is also a significant factor for permeation through rubbery phosphazene membranes. Ideal separation factors (á) for the CO2/H2 and CO2/CH4 gas pairs were calculated. For CO2/CH4, no increase in á was observed with decreasing Tg, however increases in á were noted for the CO2/H2 pair.

  3. Compact rock material gas permeability properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanling; Xu, Weiya; Zuo, Jing

    2014-09-01

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO2, shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10-19 m2; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10-17 m2; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens' permeability evolution is related to the relative particle movements and microcrack closure.

  4. SINGLE-INTERVAL GAS PERMEABILITY ESTIMATION

    EPA Science Inventory

    Single-interval, steady-steady-state gas permeability testing requires estimation of pressure at a screened interval which in turn requires measurement of friction factors as a function of mass flow rate. Friction factors can be obtained by injecting air through a length of pipe...

  5. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, Frank A.; Townsend, Carl W.

    1989-01-01

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  6. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  7. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  8. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  9. A relative permeability modifier for water control of gas wells in a low-permeability reservoir

    SciTech Connect

    Chen Tielong; Zhao Yong; Peng Kezong; Pu Wanfeng

    1996-08-01

    Water control in gas wells is a major measure to enhance gas recovery. The work is concentrated on finding a highly selective polymer to reduce water production without affecting gas production from gas wells in low-permeability reservoirs. This paper presents the conceptions of residual resistance factors (RRF`s) to both wetting and non-wetting phases and the laboratory experimental and field trial results of relative permeability modifiers for water control in gas wells.

  10. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  11. A New Model for Gas Transfer and Storage in a Permeable Volcanic Edifice

    NASA Astrophysics Data System (ADS)

    Collinson, A. D.; Neuberg, J.

    2011-12-01

    There is a marked contrast between the behaviour of a volcano in an open system compared to one which is closed. It is therefore essential to understand degassing, to appreciate how much gas is lost and where. Previous studies by a variety of scientists have led to the accumulation of data via field evidence from both active and fossil volcanoes (Stasiuk et al., 1996), laboratory experiments (Moore et al., 1994) and conceptual modelling, in which Darcy's law has become increasingly applicable (Eichelberger et al., 1986; Edmonds et al., 2003). Of particular interest for this study, is the effect different permeabilities have on the degree and pattern of the gas flux. A new method has been devised to investigate gas transport and storage in a permeable volcanic edifice. The continuity equation and Darcy's law are amalgamated to derive a partial differential equation which is solved using a finite element method to obtain the gas pressure. The associated pressure gradient is then used within Darcy's law to calculate the gas flux. The properties of the gas are described by the ideal gas law. The strength of this method is that it allows the modelling of two and three dimensional structures both in stationary equilibrium and as a time dependent progression. A geometry is created and the pressure and permeabilites incorporated into the model as boundary and domain conditions respectively. The aim of the model is to investigate how variable permeability and pressure gradients influence the gas flux, for example highly permeable cracks in the dome, or impermeable layers within the volcanic structure. We also use this gas model to complement the model of Neuberg et al. (2006) in which brittle failure of the conduit-wall boundary is used as a trigger mechanism of low-frequency earthquakes. The associated behaviour of the gas in response to the brittle failure is simulated in our model by increasing the permeability through a narrow zone at the boundary between the conduit

  12. Water retention and gas relative permeability of two industrial concretes

    SciTech Connect

    Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic; Davy, C.A.; Bourbon, Xavier; Talandier, Jean

    2012-07-15

    This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

  13. Nonequilibrium gas absorption in rotating permeable media

    NASA Astrophysics Data System (ADS)

    Baev, V. K.; Bazhaikin, A. N.

    2016-08-01

    The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.

  14. Permeability changes in coal resulting from gas desorption

    SciTech Connect

    Levine, J.R.; Johnson, P.M.

    1992-01-01

    Research continued on the study of coal permeability and gas desorption. This quarter, most of the effort involved identifying problems with the microbalance and then getting it repaired. Measurement of the amount of gas adsorbed with the microbalance involved corrections for the buoyancy change with pressure and several experiments with helium were made to determine this correction.

  15. Gas permeability measurements for film envelope materials

    DOEpatents

    Ludtka, G.M.; Kollie, T.G.; Watkin, D.C.; Walton, D.G.

    1998-05-12

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the ``body-filled panel.`` Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials. 4 figs.

  16. Gas permeability measurements for film envelope materials

    DOEpatents

    Ludtka, Gerard M.; Kollie, Thomas G.; Watkin, David C.; Walton, David G.

    1998-01-01

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the "body-filled panel". Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials.

  17. Ammonia recovery from livestock waste using gas permeable membrane technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation shows new methods and systems being developed for reducing ammonia emissions from livestock waste and recovering concentrated liquid nitrogen that could be sold as fertilizer. These systems use gas-permeable membranes as components of new processes to capture and recover the ammoni...

  18. Ammonia recovery from livestock wastewater with gas permeable membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation shows new methods and systems being developed for reducing ammonia emissions from livestock waste and recovering concentrated liquid nitrogen that could be sold as fertilizer. These systems use gas-permeable membranes as components of new processes to capture and recover the ammoni...

  19. Evolution of gas saturation and relative permeability during gas production from hydrate-bearing sediments: Gas invasion vs. gas nucleation

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon; Santamarina, J. Carlos

    2014-01-01

    Capillarity and both gas and water permeabilities change as a function of gas saturation. Typical trends established in the discipline of unsaturated soil behavior are used when simulating gas production from hydrate-bearing sediments. However, the evolution of gas saturation and water drainage in gas invasion (i.e., classical soil behavior) and gas nucleation (i.e., gas production) is inherently different: micromodel experimental results show that gas invasion forms a continuous flow path while gas nucleation forms isolated gas clusters. Complementary simulations conducted using tube networks explore the implications of the two different desaturation processes. In spite of their distinct morphological differences in fluid displacement, numerical results show that the computed capillarity-saturation curves are very similar in gas invasion and nucleation (the gas-water interface confronts similar pore throat size distribution in both cases); the relative water permeability trends are similar (the mean free path for water flow is not affected by the topology of the gas phase); and the relative gas permeability is slightly lower in nucleation (delayed percolation of initially isolated gas-filled pores that do not contribute to gas conductivity). Models developed for unsaturated sediments can be used for reservoir simulation in the context of gas production from hydrate-bearing sediments, with minor adjustments to accommodate a lower gas invasion pressure Po and a higher gas percolation threshold.

  20. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2004-09-28

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  1. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2009-07-21

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  2. Discovery sequence and the nature of low permeability gas accumulations

    USGS Publications Warehouse

    Attanasi, E.D.

    2005-01-01

    There is an ongoing discussion regarding the geologic nature of accumulations that host gas in low-permeability sandstone environments. This note examines the discovery sequence of the accumulations in low permeability sandstone plays that were classified as continuous-type by the U.S. Geological Survey for the 1995 National Oil and Gas Assessment. It compares the statistical character of historical discovery sequences of accumulations associated with continuous-type sandstone gas plays to those of conventional plays. The seven sandstone plays with sufficient data exhibit declining size with sequence order, on average, and in three of the seven the trend is statistically significant. Simulation experiments show that both a skewed endowment size distribution and a discovery process that mimics sampling proportional to size are necessary to generate a discovery sequence that consistently produces a statistically significant negative size order relationship. The empirical findings suggest that discovery sequence could be used to constrain assessed gas in untested areas. The plays examined represent 134 of the 265 trillion cubic feet of recoverable gas assessed in undeveloped areas of continuous-type gas plays in low permeability sandstone environments reported in the 1995 National Assessment. ?? 2005 International Association for Mathematical Geology.

  3. Preparation and gas permeabilities of zeolite membranes

    SciTech Connect

    Jinqu Wang; Yongfeng Wang; Shuanshi Fan

    1994-12-31

    Zeolites with less than 10 {angstrom} pore are desirable membrane materials, due to their crystallinity, resistance to high temperature, and chemical inertness. A variety of new membranous materials were synthesized composed of a continuous intergrowth of 5-50 micrometer type A, X, Y, or ZSM-5 crystals. The membranes were crystallized under hydrothermal conditions at 90 to 220{degrees}C on the external surface of a porous ceramics. The reagents used were aluminum sulphate, water glass (20.1 wt% SiO{sub 2}, 6.09 wt% Na{sub 2}O, 73.8 wt% water), sodium hydroxide, sulphuric acid, deionized water and templating agents. The molar composition was: 0.1-0.5 Na{sub 2}O:1 SiO{sub 2}:0.04-0.05 Al{sub 2}O{sub 3}:20-60H{sub 2}O.

  4. [Contact lenses permeable to gas. Literature review].

    PubMed

    Livshiys, V S; Popova, T A; Zaikov, G E; Kuś, H

    1989-01-01

    Some medical-technical requirements concerning ophthalmic contact lenses were formulated. A whole series of scientific descriptions of contact lenses was analysed. A short characterization of lenses was given on the basis of PMMA (polymethacrylate of methyl), silicon rubber, poly-2-methacrylic cellulose and cellulose acetate-butyrate; the properties of contact lenses made of materials achieved through a modification of the above-mentioned ones as well as made of new materials were also examined. The problems of transmission of gases of contact lenses were described and the calculations necessary for a minimum of the gas transmittance were mentioned, starting from partial oxygen to the eye cornea. Some ways of solving the problems concerning the insertion of therapeutic substances into contact lenses are described together with prevention of the accumulation of lacrimation fluid protein on their surfaces. PMID:2682577

  5. Correlation between gas permeability and pore structure of coal matrix

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yang, J.; Gao, F.; Li, Y.; Niu, H.; Gao, H.

    2012-04-01

    The sequestration of CO2 in unminable coal seams represents a promising option for CO2 geologic storage, because the injected CO2 may enhance coalbed methane recovery (CO2-ECBM), which could partly offset the costs of the storage process. The CO2-ECBM technology is based on the relative affinity of CO2 and CH4 to coals under given pressure and temperature conditions. The excess sorption capacity of coals for CO2 is generally higher than the sorption capacity for methane. The coal seams are characterized by a dual porosity structure including cleat and matrix pores. The cleats in the coal seams are considered as highways for gas and water flow, while the matrix is the storage location of gas by adsorption. The slow transport process of gas in coal matrix may constrain the efficiency of the displacement of CH4 by CO2 due to the compacted pore structure of the coal matrix. Therefore, a detailed understanding of the correlation between permeability of gas and pore structure in coal matrix is crucial for the CO2-ECBM processes. Yangquan coals originating from the Qingshui basin, which contains gas-rich coals in China, were selected for the tests in this study. Yangquan coals are classified as anthracite. In order to avoid the influence of coal cleats on fluid flow, small coal plugs (~6 mm in diameter, ~13 mm in length) were selected and fixed in the sample compartment by special glue. A test system for simultaneously measuring adsorption-porosity-permeability on the coal matrix blocks in its free state is constructed. The permeability of gas and porosity in coal plugs to He under different gas pressure and temperature conditions were simultaneously investigated. The permeability and excess sorption capacity of the coal plugs to He, N2, CH4 and CO2 were compared at a constant gas pressure and temperature. It is expected that gas break through a cleat-plug is much faster than that through a coal matrix-plug. Different sample plugs with the different pore structure results

  6. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid gas permeable contact lens care products... contact lens care products. (a) Identification. A rigid gas permeable contact lens care product is a... rigid gas permeable contact lens. This includes all solutions and tablets used together with rigid...

  7. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens care products... contact lens care products. (a) Identification. A rigid gas permeable contact lens care product is a... rigid gas permeable contact lens. This includes all solutions and tablets used together with rigid...

  8. Porosity and permeability of eastern Devonian gas shale

    SciTech Connect

    Soeder, D.J.

    1986-01-01

    High-precision core analysis has been performed on eight samples of Devonian gas shale from the Appalachian Basin. Seven of the core samples consist of the Upper Devonian age Huron Member of the Ohio Shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eighth core sample consists of Middle Devonian age Marcellus Shale obtained from a well in Morgantown, West Virginia. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the results have also shown that there are a number of previously unknown factors which influence or control gas production from organic-rich shales of the Appalachian Basin. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron Shale samples effectively limits the gas porosity of this formation to less than 0.2%, and permeability of the rock matrix to gas is less than 0.1 microdarcy at reservoir stress. The Marcellus Shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10% under stress with a fairly strong ''adsorption'' component. Permeability to gas (K/sub infinity/ was highly stress-dependent, ranging from about 20 microdarcies at a net stress of 3000 psi down to about 5 microdarcies at a net stress of 6000 psi. The conclusion reached from this study is that Devonian shale in the Appalachian Basin is a considerably more complex natural gas resource than previously thought. Production potential varies widely with geographic location and stratigraphy, just as it does with other gas and oil resources. 15 refs., 8 figs., 3 tabs.

  9. Permeability changes in coal resulting from gas desorption. Final report

    SciTech Connect

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  10. Permeability changes in coal resulting from gas desorption

    SciTech Connect

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  11. Surface gas permeability of porous building materials: measurement, analysis and applications

    NASA Astrophysics Data System (ADS)

    Grover, David K. W.

    In many events affecting our civil infrastructure, such as contamination or weathering, it is likely that only the surfaces of the affected building materials will be available for non-destructive measurements. In this work, we describe and analyze surface gas permeability measurements on a variety of natural and engineered building materials using two types of relatively new, non-destructive surface permeameters. It is shown that the surface gas permeability measurements correlate well with each other and could provide rapid estimates of macroscopic gas permeability and degradation of materials due to weathering. It is hypothesized that surface permeability can be used to predict macroscopic wicking of water. The results indicated that macroscopic wicking correlated reasonably well with surface permeability measurements of uniform materials with low permeabilities such as sandstones and clay brick.

  12. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    EPA Science Inventory

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  13. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  14. Gas permeability through thin-foil x-ray filters

    NASA Astrophysics Data System (ADS)

    Tveekrem, June L.; Keski-Kuha, Ritva A.; Webb, Andrew T.

    1997-10-01

    We have measured the permeation rates of helium and water through thin-foil UV-blocking filters used in the ASTRO-E/x- ray spectrometer (XRS) instrument. In the XRS program, there is a concern that outgassed contaminants such as water could permeate through the outermost filter which will be at room temperature and freeze on the inner filters which will be at cryogenic temperatures. The filters tested consisted of approximately 1000 angstroms Al on approximately 1000 angstroms of either Lexan or polyimide. Measurements were made using a vacuum apparatus consisting essentially of two small chambers separated by the filter under test. A helium leak detector was used to measure helium permeation rates, and a residual gas analyzer (RGA) was used to detect water. Results discussed include permeation rate as a function of pressure difference across a filter, the ratio of helium permeation rate over water permeation rate, and the effect of the aluminum layer thickness on permeation.

  15. A 3D Model for Gas Transfer, Storage and Resulting Displacement in a Permeable Volcanic Edifice

    NASA Astrophysics Data System (ADS)

    Collinson, Amy; Neuberg, Jurgen

    2014-05-01

    The total volume of gas in a magma, dissolved and subsequently exsolved, greatly influences the degree of explosiveness of a volcanic system. There is a marked contrast between the behaviour of a volcano in an open system compared to one which is closed. Whilst gas release is evident from surface gas emission measurements, gas storage is also thought to play an important role, as evidenced by large gas emissions after some large dome collapse events, suggesting gas may be stored in large volumes at shallow depths within the dome and edifice. Consequently, it is essential to understand degassing, to appreciate how much gas may be stored and where, and under what conditions it may be transferred or emitted to the atmosphere. We use previous experimental data on permeabilities to create 3D numerical models to investigate gas transport and storage in a permeable volcanic edifice. We combine the continuity equation, Darcy's law and the ideal gas law to derive a partial differential equation which is solved using a finite element method to obtain the gas pressure. The associated pressure gradient is then used within Darcy's law to calculate the gas velocity. In addition, we use the momentum equation to investigate how the presence of gas and variations in permeability influence the rate and degree of deformation in the volcanic edifice. Hence this provides two important surface constraints: gas emissions and surface displacement. Geometries are created to simulate the topography of actual volcanoes and the pressure and permeabilities incorporated into the model as boundary and domain conditions, respectively. This method is applied to investigate a variety of volcanological phenomena affecting gas, for example regions of high permeability due to fractures, or low permeability due to sealing.

  16. Gas permeability of biochar-amended clay: potential alternative landfill final cover material.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Ng, Charles Wang Wai; Wong, Ming Hung

    2016-04-01

    Compacted biochar-amended clay (BAC) has been proposed as an alternative landfill final cover material in this study. Biochar has long been proposed to promote crop growth, mitigate odor emission, and promote methane oxidation in field soils. However, previous studies showed that soil-gas permeability was increased upon biochar application, which will promote landfill gas emission. The objective of the present study is to investigate the possibility of using compacted BAC as an alternative material in landfill final cover by evaluating its gas permeability. BAC samples were prepared by mixing 425-μm-sieved peanut shell biochar with kaolin clay in different ratios (0, 5, 10, and 15 %, w/w) and compacting at different degrees of compactions (DOC) (80, 85, and 90 %) with an optimum water content of 35 %. The gas permeability of the BACs was measured by flexible wall gas permeameter and the microstructure of the BACs was analyzed by SEM with energy-dispersive x-ray spectroscopy (EDX). The results show that the effects of biochar content on BAC gas permeability is highly dependent on the DOC. At high DOC (90 %), the gas permeability of BAC decreases with increasing biochar content due to the combined effect of the clay aggregation and the inhibition of biochar in the gas flow. However, at low DOC (80 %), biochar incorporation has no effects on gas permeability because it no longer acts as a filling material to the retard gas flow. The results from the present study imply that compacted BAC can be used as an alternative final cover material with decreased gas permeability when compared with clay.

  17. Gas permeability of biochar-amended clay: potential alternative landfill final cover material.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Ng, Charles Wang Wai; Wong, Ming Hung

    2016-04-01

    Compacted biochar-amended clay (BAC) has been proposed as an alternative landfill final cover material in this study. Biochar has long been proposed to promote crop growth, mitigate odor emission, and promote methane oxidation in field soils. However, previous studies showed that soil-gas permeability was increased upon biochar application, which will promote landfill gas emission. The objective of the present study is to investigate the possibility of using compacted BAC as an alternative material in landfill final cover by evaluating its gas permeability. BAC samples were prepared by mixing 425-μm-sieved peanut shell biochar with kaolin clay in different ratios (0, 5, 10, and 15 %, w/w) and compacting at different degrees of compactions (DOC) (80, 85, and 90 %) with an optimum water content of 35 %. The gas permeability of the BACs was measured by flexible wall gas permeameter and the microstructure of the BACs was analyzed by SEM with energy-dispersive x-ray spectroscopy (EDX). The results show that the effects of biochar content on BAC gas permeability is highly dependent on the DOC. At high DOC (90 %), the gas permeability of BAC decreases with increasing biochar content due to the combined effect of the clay aggregation and the inhibition of biochar in the gas flow. However, at low DOC (80 %), biochar incorporation has no effects on gas permeability because it no longer acts as a filling material to the retard gas flow. The results from the present study imply that compacted BAC can be used as an alternative final cover material with decreased gas permeability when compared with clay. PMID:26092359

  18. Determination of permeabilities for two gases from recording the partial pressure of one gas.

    PubMed

    Hoofd, L; de Koning, J; Kreuzer, F; Lamboo, A

    1986-09-01

    When a flexible diffusion layer separates two closed gas chambers containing different mixtures of several gases, the different permeabilities of the layer for these gases lead to differences in the total gas pressures of the two chambers resulting in bulging of the layer and consequent changes in the chamber volumes. Application of the gas laws to binary gas mixtures provides two equations relating the partial pressure changes of one gas in any of the two chambers to the partial pressure difference between the two chambers across the layer. This permits the calculation of the two unknown factors, permeability (or Krogh's diffusion coefficient) of the layer for the measured gas and the permeability ratio of the two gases. Thus the permeabilities of both gases can be determined from recording the partial pressure of one of the gases only. We filled the gas chambers with different mixtures of oxygen and a second gas (nitrogen or carbon dioxide) at atmospheric pressure, closed the chambers, and measured the diffusion of the gases across thin (12-500 microns) layers of various materials by recording the oxygen partial pressure in both chambers with polarographic oxygen electrodes. Permeabilities of these layers for oxygen and the other gas were determined for plastic layers (MEM213, Silastic, Teflon), as well as water and methemoglobin solutions either in a fluid layer or soaked in Millipore filters. The data agreed well with those obtained from other studies in most cases.

  19. Water Retention Curve and Relative Permeability for Gas Production from Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Mahabadi, N.; Dai, S.; Seol, Y.; Jang, J.

    2014-12-01

    Water retention curve (soil water characteristic curve SWCC) and relative permeability equations are important to determine gas and water production for gas hydrate development. However, experimental studies to determine fitting parameters of those equations are not available in the literature. The objective of this research is to obtain reliable parameters for capillary pressure functions and relative permeability equations applicable to hydrate dissociation and gas production. In order to achieve this goal, (1) micro X-ray Computer Tomography (CT) is used to scan the specimen under 10MPa effective stress, (2) a pore network model is extracted from the CT image, (3) hydrate dissociation and gas expansion are simulated in the pore network model, (4) the parameters for the van Genuchten-type soil water characteristic curve and relative permeability equation during gas expansion are suggested. The research outcome will enhance the ability of numerical simulators to predict gas and water production rate.

  20. Estimation of Permeability from NMR Logs Based on Formation Classification Method in Tight Gas Sands

    NASA Astrophysics Data System (ADS)

    Wei, Deng-Feng; Liu, Xiao-Peng; Hu, Xiao-Xin; Xu, Rui; Zhu, Ling-Ling

    2015-10-01

    The Schlumberger Doll Research (SDR) model and cross plot of porosity versus permeability cannot be directly used in tight gas sands. In this study, the HFU approach is introduced to classify rocks, and determine the involved parameters in the SDR model. Based on the difference of FZI, 87 core samples, drilled from tight gas sandstones reservoirs of E basin in northwest China and applied for laboratory NMR measurements, were classified into three types, and the involved parameters in the SDR model are calibrated separately. Meanwhile, relationships of porosity versus permeability are also established. The statistical model is used to calculate consecutive FZI from conventional logs. Field examples illustrate that the calibrated SDR models are applicable in permeability estimation; models established from routine core analyzed results are effective in reservoirs with permeability lower than 0.3 mD, while the unified SDR model is only valid in reservoirs with permeability ranges from 0.1 to 0.3 mD.

  1. Impact of Gas Adsorption Induced Coal Matrix Damage on the Evolution of Coal Permeability

    NASA Astrophysics Data System (ADS)

    Zhu, W. C.; Wei, C. H.; Liu, J.; Xu, T.; Elsworth, D.

    2013-11-01

    It has been widely reported that coal permeability can change from reduction to enhancement due to gas adsorption even under the constant effective stress condition, which is apparently inconsistent with the classic theoretical solutions. This study addresses this inconsistency through explicit simulations of the dynamic interactions between coal matrix swelling/shrinking induced damage and fracture aperture alteration, and translations of these interactions to permeability evolution under the constant effective stress condition. We develop a coupled coal-gas interaction model that incorporates the material heterogeneity and damage evolution of coal, which allows us to couple the progressive development of damage zone with gas adsorption processes within the coal matrix. For the case of constant effective stress, coal permeability changes from reduction to enhancement while the damage zone within the coal matrix develops from the fracture wall to further inside the matrix. As the peak Langmuir strain is approached, the decrease of permeability halts and permeability increases with pressure. The transition of permeability reduction to permeability enhancement during gas adsorption, which may be closely related to the damage zone development in coal matrix, is controlled by coal heterogeneity, external boundary condition, and adsorption-induced swelling.

  2. Shallow, low-permeability reservoirs of northern Great Plains - assessment of their natural gas resources.

    USGS Publications Warehouse

    Rice, D.D.; Shurr, G.W.

    1980-01-01

    Major resources of natural gas are entrapped in low-permeability, low-pressure reservoirs at depths less than 1200m in the N.Great Plains. This shallow gas is the product of the immature stage of hydrocarbon generation and is referred to as biogenic gas. Prospective low-permeability, gas-bearing reservoirs range in age from late Early to Late Cretaceous. The following facies were identified and mapped: nonmarine rocks, coastal sandstones, shelf sandstones, siltstones, shales, and chalks. The most promising low-permeability reservoirs are developed in the shelf sandstone, siltstone, and chalk facies. Reservoirs within these facies are particularly attractive because they are enveloped by thick sequences of shale which serve as both a source and a seal for the gas.-from Author

  3. Quantifying tight-gas sandstone permeability via critical path analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rock permeability has been actively investigated over the past several decades by the geosciences community. However, its accurate estimation still presents significant technical challenges, especially in spatially complex rocks. In this letter, we apply critical path analysis (CPA) to estimate perm...

  4. General slip regime permeability model for gas flow through porous media

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong

    2016-07-01

    A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.

  5. Gas sorption and the consequent volumetric and permeability change of coal

    NASA Astrophysics Data System (ADS)

    Lin, Wenjuan

    Experimental and numerical investigations of gas sorption on coal, and the subsequent volumetric and permeability changes of the coal were conducted. The goals of the study were to investigate the magnitude of permeability change caused by gas sorption, and develop an algorithm to simulate numerically gas sorption and sorption-induced permeability change. The amount of gas sorption and the subsequent volumetric and permeability change of coal samples as a function of pore pressure and injection gas composition were measured in the laboratory. A constant effective confining pressure (difference between the confining pressure and pore pressure) was maintained in the process of the experiments; therefore, the role of effective stress on permeability was eliminated. Several gases, including pure CO2, pure N2, and binary mixtures of CO2 and N2 of various compositions were used as the injection gas. The coal sample was first allowed to adsorb an injection gas fully at a particular pressure. The total amount (moles) of adsorption was calculated based on a volumetric method. After adsorption equilibrium was reached, gas samples were taken from the equilibrium gaseous phase and analyzed afterwards. The composition of the gaseous phase prior to and after the adsorption was used to calculate the composition of the adsorbed phase based on material balance. Permeability of the sample was then measured by flowing the injection gas through the core at varying pressure gradient or varying flow rate, and an average permeability was obtained based on Darcy's law for compressible systems. The change of the total volume of the core was monitored and recorded in the whole process of the experiment. Volumetric strain was thereby calculated. Experimental results showed that the greater the pressure the greater the amount of adsorption for all tested gases. At the same pressure, the amount of adsorption was greater for CO2 than N2. For the binary mixtures, the greater the fraction of CO 2

  6. Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities

    USGS Publications Warehouse

    Lee, Myung W.

    2008-01-01

    Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.

  7. Thermal Damage on LX-04 Mock Material and Gas Permeability Assessment

    SciTech Connect

    Hsu, P C; Dehaven, M; McClelland, M; Maienschein, J

    2004-11-15

    RM-04-BR, a mock material for the plastic-bonded HMX-based explosive LX-04, is characterized after being thermally damaged at 140 C and 190 C. We measured the following material properties before and after the thermal experiments: sample volume, density, sound speed, and gas permeability in the material. Thermal treatment of the mock material leads to de-coloring and insignificant weight loss. Sample expanded, resulting in density reductions of 1.0% to 2.5% at 140 C and 190 C, respectively. Permeability in the mock samples was found to increase from 10{sup -15} to 10{sup -16} m{sup 2}, as the porosity increased. The permeability measurements are well represented by the Blake-Kozeny equation for laminar flow through porous media. The results are similar to the gas permeability in PBX-9501 obtained by other researchers.

  8. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    SciTech Connect

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gas causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production

  9. Verification of capillary functions and relative permeability equations for gas production from hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Mahabadi Mahabad, N.; Jang, J.

    2013-12-01

    There are several studies of numerical simulation on predicting long-term behavior of hydrate-bearing sediments during gas production. Numerical simulators explore coupled processes that require numerous equations and parameters. Important equations for the estimation of gas production from hydrate-bearing sediments are soil-water characteristic curves and relative permeability equations. These equations require empirical parameters, laboratory and in-situ experiments which are very difficult and expensive. In this research, pore-network model simulation is performed to obtain the fitting parameters for capillary pressure functions and relative permeability equations. First, several sediment packings similar to in-situ sediment are generated by discrete element method. Then, the pore-network model is extracted from the pore space of sediment packing as a system of pores connected at throats. Numerical algorithm to simulate gas hydrate dissociation and gas expansion, and calculate gas and water relative permeability at every saturation is developed for the pore-network model. The assessment of water pore connectivity and the identification of gas clusters are performed using Hoshen-Kopelman algorithm. Finally, reliable fitting parameters for capillary pressure functions and relative permeability equations during gas production will be suggested for further use.

  10. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE PAGES

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  11. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels.

    PubMed

    Itel, Fabian; Al-Samir, Samer; Öberg, Fredrik; Chami, Mohamed; Kumar, Manish; Supuran, Claudiu T; Deen, Peter M T; Meier, Wolfgang; Hedfalk, Kristina; Gros, Gerolf; Endeward, Volker

    2012-12-01

    Recent observations that some membrane proteins act as gas channels seem surprising in view of the classical concept that membranes generally are highly permeable to gases. Here, we study the gas permeability of membranes for the case of CO(2), using a previously established mass spectrometric technique. We first show that biological membranes lacking protein gas channels but containing normal amounts of cholesterol (30-50 mol% of total lipid), e.g., MDCK and tsA201 cells, in fact possess an unexpectedly low CO(2) permeability (P(CO2)) of ∼0.01 cm/s, which is 2 orders of magnitude lower than the P(CO2) of pure planar phospholipid bilayers (∼1 cm/s). Phospholipid vesicles enriched with similar amounts of cholesterol also exhibit P(CO2) ≈ 0.01 cm/s, identifying cholesterol as the major determinant of membrane P(CO2). This is confirmed by the demonstration that MDCK cells depleted of or enriched with membrane cholesterol show dramatic increases or decreases in P(CO2), respectively. We demonstrate, furthermore, that reconstitution of human AQP-1 into cholesterol-containing vesicles, as well as expression of human AQP-1 in MDCK cells, leads to drastic increases in P(CO2), indicating that gas channels are of high functional significance for gas transfer across membranes of low intrinsic gas permeability.

  12. Method and apparatus for measuring the gas permeability of a solid sample

    DOEpatents

    Carstens, D.H.W.

    1984-01-27

    The disclosure is directed to an apparatus and method for measuring the permeability of a gas in a sample. The gas is allowed to reach a steady flow rate through the sample. A measurable amount of the gas is collected during a given time period and then delivered to a sensitive quadrupole. The quadrupole signal, adjusted for background, is proportional to the amount of gas collected during the time period. The quadrupole can be calibrated with a standard helium leak. The gas can be deuterium and the sample can be polyvinyl alcohol.

  13. Gas permeability measurements on asphalts using the electrodynamic balance

    SciTech Connect

    Periasamy, R.; Newsome, J.R.; Andrady, A.L.; Ensor, D.S. )

    1990-07-01

    Volatilization, oxide degradation, and steric hardening are the degradation processes believed to be responsible for the weathering of asphalts. The fundamental mechanisms that govern the rates at which these degradation processes occur are not understood, but the transport of oxygen through the asphalt matrix is an important aspect of the weathering of asphalts under field conditions. Therefore, the measurement of diffusion, solubility, and permeability constants for oxygen in asphalts is crucial to better understand the long-term weathering of the asphalt materials. A novel and precise gravimetric technique, hitherto not applied in asphalt research is described here: an electrodynamic balance is used in this technique for the measurement of key transport properties for oxygen in micrometer-size asphalt particle samples.

  14. Permeability changes in coal resulting from gas desorption

    SciTech Connect

    Levine, J.R.; Tsay, F.

    1990-01-01

    Measurement of sorption capacity of coals by microbalance in a high pressure environment requires that corrections be made for the buoyancy of the gas that is displaced by the solid coal. As the pressure increases, the gas density increases, requiring that a correction factor be applied to the weight of the sample as measured by microbalance. A brief report summarizing this correction is attached as Appendix A.

  15. Effect of rigid gas permeable lens flexure on vision.

    PubMed

    Sorbara, L; Fonn, D; MacNeill, K

    1992-12-01

    The flexure of spherical rigid lenses (various materials) and a soft lens was measured using automated over-keratometry on 6 adapted rigid lens wearers (12 eyes) whose corneal toricity ranged from 1.37 to 3.87 D. The results showed: (1) that there was no significant difference in flexure between polymethyl methacrylate (PMMA), silicone acrylate, and the fluorosilicone acrylate lenses (whose Dks ranged from 0 to 115). However, Advent (fluoropolymer) did flex significantly more than the other rigid lenses, and significantly less than the soft lens (Bausch & Lomb U4) and (2) that lens flexure of the rigid lenses did not alter over a 2-h period. We also measured high and low contrast visual acuity (HCVA and LCVA), and the results from subjects wearing Advent and the soft lens were significantly worse than with the other rigid lenses. Finally, the results of this study showed no correlation between rigid lens flexure and permeability and between rigid lens flexure and visual acuity when Advent was excluded from the linear regression analysis.

  16. Recovery of ammonia from poultry litter using flat gas permeable membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of flat gas-permeable membranes was investigated as components of a new process to capture and recover ammonia (NH3) in poultry houses. This process includes the passage of gaseous NH3 through a microporous hydrophobic membrane, capture with a circulating dilute acid on the other side of the...

  17. CORRELATION OF FLORIDA SOIL-GAS PERMEABILITIES WITH GRAIN SIZE, MOISTURE, AND POROSITY

    EPA Science Inventory

    The report describes a new correlation or predicting gas permeabilities of undisturbed or recompacted soils from their average grain diameter (d), moisture saturation factor (m), and porosity (p). he correlation exhibits a geometric standard deviation (GSD) of only 1.27 between m...

  18. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gas-permeable membranes can recover ammonia from manure, reducing pollution whilst converting ammonia into ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali. In this study a new strategy to avoid the...

  19. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonia recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1375 to 2089 milligram am...

  20. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rigid gas permeable contact lens care products. 886.5918 Section 886.5918 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... device intended for use in the cleaning, conditioning, rinsing, lubricating/rewetting, or storing of...

  1. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rigid gas permeable contact lens care products. 886.5918 Section 886.5918 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... device intended for use in the cleaning, conditioning, rinsing, lubricating/rewetting, or storing of...

  2. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rigid gas permeable contact lens care products. 886.5918 Section 886.5918 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... device intended for use in the cleaning, conditioning, rinsing, lubricating/rewetting, or storing of...

  3. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gas-permeable membrane process can recover ammonia from wastewater with high nitrogen load, reducing pollution whilst converting ammonia into an ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali....

  4. Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface Roughness

    SciTech Connect

    Chih-Ying Chen

    2005-06-30

    and between smooth-walled and rough-walled fractures. We then used these experimental data to verify and calibrate a field-scale method for inferring steam-water relative permeabilities from production data. After that, actual production data from active geothermal fields at The Geysers and Salton Sea in California were used to calculate the relative permeabilities of steam and water. These theoretical, experimental, and in-situ results provide better understanding of the likely behavior of geothermal, gascondensate, and steam injection reservoirs. From this work, the main conclusions are: (1) the liquid-gas relative permeabilities in fractures can be modeled by characterizing the flow structures which reflect the interactions among fluids and the rough fracture surface; (2) the steam-water flow behavior in fractures is different from air-water flow in the aspects of relative permeability, flow structure and residual/immobile phase saturations.

  5. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of waste strength and pH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen recovery of swine manure was investigated using gas-permeable membranes. The process involved a continuous recirculation of an acidic solution through a tubular gas-permeable membrane submerged in a manure filled vessel. Ammonia contained in manure was concentrated in the acidic solution ...

  6. Enhanced recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membranes and aeration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric ammonia pollution from livestock wastes can be reduced using gas-permeable membrane technology by converting ammonia contained in the manure into ammonium salt for use in fertilizers. In this study, gas-permeable membrane technology was enhanced using aeration combined with nitrificatio...

  7. Numerical investigations on mapping permeability heterogeneity in coal seam gas reservoirs using seismo-electric methods

    NASA Astrophysics Data System (ADS)

    Gross, L.; Shaw, S.

    2016-04-01

    Mapping the horizontal distribution of permeability is a key problem for the coal seam gas industry. Poststack seismic data with anisotropy attributes provide estimates for fracture density and orientation which are then interpreted in terms of permeability. This approach delivers an indirect measure of permeability and can fail if other sources of anisotropy (for instance stress) come into play. Seismo-electric methods, based on recording the electric signal from pore fluid movements stimulated through a seismic wave, measure permeability directly. In this paper we use numerical simulations to demonstrate that the seismo-electric method is potentially suitable to map the horizontal distribution of permeability changes across coal seams. We propose the use of an amplitude to offset (AVO) analysis of the electrical signal in combination with poststack seismic data collected during the exploration phase. Recording of electrical signals from a simple seismic source can be closer to production planning and operations. The numerical model is based on a sonic wave propagation model under the low frequency, saturated media assumption and uses a coupled high order spectral element and low order finite element solver. We investigate the impact of seam thickness, coal seam layering, layering in the overburden and horizontal heterogeneity of permeability.

  8. Permeability characterization and quality control of reinforcement in resin transfer molding by the gas flow method

    NASA Astrophysics Data System (ADS)

    Opperer, Jeremy G.

    Resin transfer molding (RTM) requires the permeation of a viscous fluid through a mold enclosed preform. The in-plane flow pattern, rate of flow, and gate pressures are essential to the design of an efficient RTM process. This information can be calculated using Darcy's Law, which is dependent on the constituent material properties, fluid viscosity and preform permeability. Established methods and databases are available to determine viscosity, however, there are no established procedures for quantifying RTM preform permeability. This work discusses previous techniques for permeability estimation using liquid flow methods. Problems associated with such approaches are addressed and experienced firsthand, through laboratory experimentation. A gas flow method (GFM) for permeability measurement is introduced. It is proven to be robust and facilitates the rapid acquisition of permeability data without contaminating the material while it is in the mold. The feasibility of this method is demonstrated using a mold with multiple ports for gas injection and pressure measurement, and yielded consistent and reliable results. The GFM is applied to determine the quality of fibrous preforms in an RTM mold prior to resin injection. Defects resulting from preform misplacement, accidental inclusions, material preparation, etc., are quantified. Unintentional permeability variations, due to such defects, can result in defective part production and excessive part scrapping. Pressure profiles generated during steady-state gas flow are affected by such variations. To determine the anomaly type, location, and severity, a multivariate statistical approach called discriminant analysis (DA) is applied to compare measured quantities from a test preform with quantities obtained from known groups. The tested preform is then classified into a defect free group or any one of several groups associated with specific types of defects, such as inclusions, shear, and race tracking. Application of this

  9. Permeability changes in coal resulting from gas desorption

    SciTech Connect

    Not Available

    1992-01-01

    Eventually, the weight stabilized and the measurements commenced. Helium pressure was increased slowly and carefully, first to 15 psig then to 28 psig. The readout for the balance unit continued to exhibit unexplained fluctuation and output. Buoyancy of the empty pan was measured at pressures ranging up to 800 psig measured at approximately 100 psig increments. The balance weighing unit exhibited a progressive increase in weight with increasing pressure demonstrating that the displacement volume of the tare weight side of the balance was greater than the displacement volume of the weighing pan side of the balance. Therefore, the increased gas pressure produced a greater buoyancy of the tare side, producing a net increase in weight. The carefully collected data showed a linear change in weight with pressure (see accompanying diagram). A schematic diagram of the new configuration of the sorption apparatus is depicted in the accompanying figure.

  10. Dispersion and dissolution of a buoyancy driven gas plume in a layered permeable rock

    NASA Astrophysics Data System (ADS)

    Woods, Andrew W.; Norris, Simon

    2016-04-01

    Using a series of simplified models, we explore the controls on the migration, dispersion and eventual dissolution of a plume of hydrogen gas which may, in principle, rise under buoyancy through a layered permeable rock if released from a Geological Disposal Facility (GDF). We show that the presence of low permeability shale barriers causes the gas to spread laterally as it rises. Averaging over the length scale of the barriers, we use expressions for the Darcy velocity of the gas to describe the dispersion of a tracer and illustrate the effect with a new experiment using a baffled Hele-Shaw cell. While the plume is flowing, a large volume of gas may build up beneath the barriers. If the gas flux subsequently wanes, much of the gas will drain upward through the formation and spread on the upper impermeable boundary of the formation. However, a significant capillary-trapped wake of gas may develop beneath each barrier. Owing to the low solubility of hydrogen in water and assuming relatively slow groundwater flow rates, this trapped hydrogen may require a period of tens to hundreds of thousands of years to dissolve and form a cloud of hydrogen rich water. Although simplified, these models provide a framework to assess the possible travel times and pathways of such a gas plume.

  11. Permeability changes in coal resulting from gas desorption

    SciTech Connect

    Levine, J.R.; Johnson, P.M.

    1992-01-01

    During this quarter, work was continued on measuring the methane sorption capacity of dispersed organic matter in gas shales and maceral concentrates derived from a Kentucky coal. Although previous results have demonstrated that the microbalance technique is successful in generating sorption isotherm curves, the accuracy of the technique has not been well established. The only previous test that allowed a comparison between gravimetric data and volumetric data showed a significant discrepancy with the gravimetric data indicating a considerably greater sorption quantities than the volumetric data. During the present quarter we took advantage of an opportunity to join in a round-robin analysis of sorption capacity of carbonatious shales. A suite of four samples was sent to six laboratories with each lab measuring sorption capacity for methane and reporting the results to a central lab which would compile all of the data for comparitive purposes. Of course, none of the other laboratories were using the gravimetric approach for measuring methane sorption capacity. So this provides a unique opportunity to test the accuracy of our methods.

  12. Simultaneous gas-chromatographic urinary measurement of sugar probes to assess intestinal permeability: use of time course analysis to optimize its use to assess regional gut permeability

    PubMed Central

    Shaikh, Maliha; Rajan, Kumar; Forsyth, Christopher B.; Voigt, Robin M.; Keshavarzian, Ali

    2015-01-01

    Background Measurement of intestinal permeability is important in several diseases but currently several methods are employed. We sought to: (1) develop a new GC based method to measure urinary mannitol, lactulose and sucralose to assess regional and total gut permeability; (2) analyze the kinetics of these sugars in the urine to determine which ratio is useful to represent intestinal permeability; and (3) determine whether age, gender, race and BMI impact these values. Methods Subjects drank a cocktail of sucrose, lactulose, mannitol and sucralose and these sugars were measured in the urine at 5, 12 and 24 h with gas chromatography. Results Urinary mannitol exhibited significantly different kinetics than lactulose and sucralose which were similar to each other and varied little over the 24 h. No permeability differences were observed for renal function, age, race, sex, or BMI. Conclusions Our data do not support the use of the widely used L/M ratio as an accurate estimate of intestinal permeability. Our data support the use of: The sucralose/lactulose (S/M) ratio to measure: small intestine permeability (first 5 h); small and large intestine (first 12 hours), and total gut permeability (24 h). This was also found to be true in a Parkinson’s disease model. PMID:25591964

  13. Effective permeabilities of abandoned oil and gas wells: analysis of data from Pennsylvania.

    PubMed

    Kang, Mary; Baik, Ejeong; Miller, Alana R; Bandilla, Karl W; Celia, Michael A

    2015-04-01

    Abandoned oil and gas (AOG) wells can provide pathways for subsurface fluid migration, which can lead to groundwater contamination and gas emissions to the atmosphere. Little is known about the millions of AOG wells in the U.S. and abroad. Recently, we acquired data on methane emissions from 42 plugged and unplugged AOG wells in five different counties across western Pennsylvania. We used historical documents to estimate well depths and used these depths with the emissions data to estimate the wells' effective permeabilities, which capture the combined effects of all leakage pathways within and around the wellbores. We find effective permeabilities to range from 10(-6) to 10(2) millidarcies, which are within the range of previous estimates. The effective permeability data presented here provide perspective on older AOG wells and are valuable when considering the leakage potential of AOG wells in a wide range of applications, including geologic storage of carbon dioxide, natural gas storage, and oil and gas development.

  14. Effective permeabilities of abandoned oil and gas wells: analysis of data from Pennsylvania.

    PubMed

    Kang, Mary; Baik, Ejeong; Miller, Alana R; Bandilla, Karl W; Celia, Michael A

    2015-04-01

    Abandoned oil and gas (AOG) wells can provide pathways for subsurface fluid migration, which can lead to groundwater contamination and gas emissions to the atmosphere. Little is known about the millions of AOG wells in the U.S. and abroad. Recently, we acquired data on methane emissions from 42 plugged and unplugged AOG wells in five different counties across western Pennsylvania. We used historical documents to estimate well depths and used these depths with the emissions data to estimate the wells' effective permeabilities, which capture the combined effects of all leakage pathways within and around the wellbores. We find effective permeabilities to range from 10(-6) to 10(2) millidarcies, which are within the range of previous estimates. The effective permeability data presented here provide perspective on older AOG wells and are valuable when considering the leakage potential of AOG wells in a wide range of applications, including geologic storage of carbon dioxide, natural gas storage, and oil and gas development. PMID:25768798

  15. First gas flux measurements of conduit permeability decrease prior to Strombolian eruption at Stromboli volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Tamburello, Giancarlo; Aiuppa, Alessandro; Lo Coco, Eleonora; Delle Donne, Dario; Ripepe, Maurizio; Bitetto, Marcello; D'Aleo, Roberto

    2016-04-01

    Strombolian eruptions can be described in terms of growth, coalescence, and rise of a gas pocket (aka slug) bursting at the surface of a vent. This model overlooks that the transition to explosive regimes is mostly controlled by the permeability in the upper part of a volcanic conduit. We report here on the first gas flux measurements of Strombolian explosions from a vent that exhibited a significant decrease of passive degassing tens of second prior to the onset of the explosion. This particular explosive activity took place during the July 2014 lava overflows, when the magma level inside the conduit rose up to the crater terrace. The amount of gas that accumulated before the eruption is incredibly similar to the amount of gas ejected during the explosion. This similarity suggests a mechanism of decrease of the shallow conduit permeability and a subsequent accumulation of gas behind a cap of cold magma. The accumulated gas is then released when the over-pressure can open a leak on the cap of cold magma. Our unprecedented results offer key and novel insights into the explosive degassing dynamics within the shallow conduit systems of this open-vent volcano and probably at many other basaltic volcanoes.

  16. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  17. Captura de amonio procedente de estiercol mediante membranas permeables de gases (capture of ammonnia from turkey manure using gas-permeable membranes)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper, written in Spanish, describes the capture and recovery of gaseous ammonia from turkey manure using gas-permeable membranes technology with formation of stabilized ammonium salts. Bench experiments were carried out in Maryland using a pilot prototype system with turkey litter inside contr...

  18. Mechanical properties and permeability of hydrogen isotopes through CrNi35WTiAl alloy, containing radiogenic helium

    SciTech Connect

    Maksimkin, I.P.; Yukhimchuk, A.A.; Boitsov, I.Y.; Malkov, I.L.; Musyaev, R.K.; Baurin, A.Y.; Shevnin, E.V.; Vertey, A.V.

    2015-03-15

    The long-term contact of structural materials (SM) with tritium-containing media makes their properties in terms of kinetic permeability of hydrogen isotopes change. This change is the consequence of the defect formation in SM due to the result of {sup 3}He build-up generated by the radioactive decay of tritium dissolved in SM. This paper presents the experimental results concerning the permeability of hydrogen isotopes through CrNi35WTiAl alloy containing {sup 3}He and the impact of the presence of {sup 3}He and H on its mechanical properties. Tensile tests of cylindrical samples containing various concentrations of {sup 3}He (90, 230 and 560 appm) have been performed in inert and hydrogen atmospheres. The build-up of {sup 3}He has been made using the 'helium trick' technique. The maximal decrease in the plastic characteristics of the CrNi35WTiAl alloy occurs in samples with the highest {sup 3}He (560 appm) content at 873 K. The permeability of deuterium through the CrNi35WTiAl alloy in the initial state and that with 560 appm of {sup 3}He content was explored. The presence of this {sup 3}He concentration has shown an increase in deuterium permeability, evidently due to structural changes in the material under the impact of radiogenic helium.

  19. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    PubMed

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms.

  20. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect

    C. Cooper; M. Ye; J. Chapman

    2008-04-01

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to

  1. Closed system cell culture protocol using HYPERStack vessels with gas permeable material technology.

    PubMed

    Titus, Kim; Klimovich, Vitaly; Rothenberg, Mark; Pardo, Pilar; Tanner, Allison; Martin, Greg

    2010-11-29

    Large volume adherent cell culture is currently standardized on stacked plate cell growth products when microcarrier beads are not an optimal choice. HYPERStack vessels allow closed system scale up from the current stacked plate products and delivers >2.5X more cells in the same volumetric footprint. The HYPERStack vessels function via gas permeable material which allows gas exchange to occur, therefore eliminating the need for internal headspace within a vessel. The elimination of headspace allows the compartment where cell growth occurs to be minimized to reduce space, allowing more layers of cell growth surface area within the same volumetric footprint. For many applications such as cell therapy or vaccine production, a closed system is required for cell growth and harvesting. The HYPERStack vessel allows cell and reagent addition and removal via tubing from media bags or other methods. This protocol will explain the technology behind the gas permeable material used in the HYPERStack vessels, gas diffusion results to meet the metabolic needs of cells, closed system cell growth protocols, and various harvesting methods.

  2. Closed System Cell Culture Protocol Using HYPERStack Vessels with Gas Permeable Material Technology

    PubMed Central

    Rothenberg, Mark; Martin, Greg

    2010-01-01

    Large volume adherent cell culture is currently standardized on stacked plate cell growth products when microcarrier beads are not an optimal choice. HYPERStack vessels allow closed system scale up from the current stacked plate products and delivers >2.5X more cells in the same volumetric footprint. The HYPERStack vessels function via gas permeable material which allows gas exchange to occur, therefore eliminating the need for internal headspace within a vessel. The elimination of headspace allows the compartment where cell growth occurs to be minimized to reduce space, allowing more layers of cell growth surface area within the same volumetric footprint. For many applications such as cell therapy or vaccine production, a closed system is required for cell growth and harvesting. The HYPERStack vessel allows cell and reagent addition and removal via tubing from media bags or other methods. This protocol will explain the technology behind the gas permeable material used in the HYPERStack vessels, gas diffusion results to meet the metabolic needs of cells, closed system cell growth protocols, and various harvesting methods. PMID:21189467

  3. Long-term monitoring of soil gas radon and permeability at two reference sites.

    PubMed

    Chen, Jing; Falcomer, Renato; Ly, Jim; Wierdsma, Jessica; Bergman, Lauren

    2008-01-01

    The long-term monitoring of soil radon variations was conducted at two reference sites in Ottawa. The purpose of this study was to determine whether a single soil radon survey could provide a representative soil radon characteristic of the site. Results showed that during the normal field survey period from June to September in Canada, a single field survey with multiple measurements of soil gas radon concentrations at a depth of 80 cm can characterise the soil radon level of a site within a deviation of +/-30%. Direct in situ soil permeability measurements exhibited, however, large variations even within an area of only 10 x 10 m(2). Considering such large variations and the weight of the equipment, soil permeability can be determined by direct measurements whenever possible or by other qualitative evaluation methods for sites that are hard to access with heavy equipment.

  4. Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices

    NASA Astrophysics Data System (ADS)

    Filomena, C. M.; Hornung, J.; Stollhofen, H.

    2013-08-01

    Permeability is one of the most important petrophysical parameters to describe the reservoir potential of sedimentary rocks, contributing to problems in hydrology, geothermics, or hydrocarbon reservoir analysis. Outcrop analog studies, well core measurements, or individual sample analysis take advantage of a variety of commercially available devices for permeability measurements. Very often, permeability data derived from different devices need to be merged within one study, e.g. outcrop mini-permeametry and lab-based core plug measurements. To enhance accuracy of different gas-driven permeability measurements, device-specific aberrations need to be taken into account. The application of simple one-to-one correlations may draw a wrong picture of permeability trends. For this purpose, transform equations need to be established. This study presents a detailed comparison of permeability data derived from a selection of commonly used Hassler cells and probe permeameters. As a result of individual cross-plots, typical aberrations and transform equations are elaborated which enable corrections for the specific permeameters. Permeability measurements of the commercially available ErgoTech Gas Permeameter and the TinyPerm II probe-permeameter are well-comparable over the entire range of permeability, with R2 = 0.967. Major aberrations are identified among the TinyPerm II and the mini-permeameter/Hassler-cell combination at Darmstadt University, which need to be corrected and standardized within one study. However, transforms are critical to their use, as aberrations are frequently limited to certain permeability intervals. In the presented examples, deviations typically tend to occur in the lower permeability range < 10 mD. Applying standardizations which consider these aberration intervals strongly improve the comparability of permeability datasets and facilitate the combination of measurement principles. Therefore, the utilization of such correlation tests is highly

  5. Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.

    2006-01-01

    Membranes made of silanized alumina have been prepared and tested as prototypes of derivatized ceramic membranes that are both highly permeable to oxygen and hydrophobic. Improved oxygen-permeable, hydrophobic membranes would be attractive for use in several technological disciplines, including supporting high-temperature aqueousphase oxidation in industrial production of chemicals, oxygenation of aqueous streams for bioreactors, and oxygenation of blood during open-heart surgery and in cases of extreme pulmonary dysfunction. In comparison with organic polymeric oxygen-permeable membranes now commercially available, the derivatized ceramic membranes are more chemically robust, are capable of withstanding higher temperatures, and exhibit higher oxygen-diffusion coefficients.

  6. Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices

    NASA Astrophysics Data System (ADS)

    Filomena, C. M.; Hornung, J.; Stollhofen, H.

    2014-01-01

    Permeability is one of the most important petrophysical parameters to describe the reservoir properties of sedimentary rocks, pertaining to problems in hydrology, geothermics, and hydrocarbon reservoir analysis. Outcrop analogue studies, well core measurements, and individual sample analysis take advantage of a variety of commercially available devices for permeability measurements. Very often, permeability data derived from different devices need to be merged within one study (e.g. outcrop minipermeametry and lab-based core plug measurements). To enhance accuracy of different gas-driven permeability measurements, device-specific aberrations need to be taken into account. The application of simple one-to-one correlations may draw the wrong picture of permeability trends. For this purpose, transform equations need to be established. This study presents a detailed comparison of permeability data derived from a selection of commonly used Hassler cells and probe permeameters. As a result of individual cross-plots, typical aberrations and transform equations are elaborated, which enable corrections for the specific permeameters. Permeability measurements of the commercially available ErgoTech gas permeameter and the TinyPerm II probe permeameter are well-comparable over the entire range of permeability, with R2 = 0.955. Aberrations are mostly identified in the permeability range < 10 mD, regarding the TinyPerm II and the minipermeameter/Hassler-cell combination at Darmstadt University, which need to be corrected and standardized. Applying standardizations which consider these aberration intervals strongly improves the comparability of permeability data sets and facilitates the combination of measurement principles. Therefore, the utilization of such correlation tests is highly recommended for all kinds of reservoir studies using integrated permeability databases.

  7. The generation and evolution of anisotropic gas-permeability during viscous deformation in conduit-filling ignimbrites

    NASA Astrophysics Data System (ADS)

    Kolzenburg, Stephan; Russell, Kelly

    2015-04-01

    Gas-permeability plays a governing role in the pre-explosive pressurization of volcanic edifices. Pressurization may only occur once the total volume flux of gases emitted by an underlying magmatic or hydrothermal source exceeds the flow capacity of the permeable pathways present in the edifice. We have measured the physical properties (strain, porosity, permeability and ultrasonic wave velocities) of breadcrust bombs recovered from the deposits of the 2350 B.P. eruption of Mt Meager, BC, Canada. These rocks represent a conduit-infilling pyroclastic breccia that underwent various degrees of welding and deformation and present a remarkable opportunity to constrain the nature and timescale of mechanical processes operating within explosive volcanic conduits during repose periods between eruptive cycles. Here we present data from permeability measurements along the directions of maximum and minimum shortening which help quantifying the effect of vesicle microstructure on permeability. Permeability is measured by applying a range of confining pressures (between 3.4 and 17.2 MPa) to each sample and imposing a constant head (of 0.2 to 3.5 MPa) across the sample. The permeability is then determined using a modified version of Darcy's law applicable to compressible fluids. These rocks display a profound directionality in the measured physical properties resulting from the deformation-induced fabric. For all samples the permeability across the elongation fabric is highly correlated to the sample porosity whereas along the elongation fabric there is little effect of porosity on permeability. At porosity values of about 20% the permeability seems to reach a minimum at 10-16 m2 and does not change significantly with further reduction of porosity. Further, the effect of confining pressure on the permeability of these samples appears to be more pronounced across the elongation fabric than along the elongation fabric. The deformation fabric has a significant effect on the gas-permeability

  8. Permeability changes in coal resulting from gas desorption. Tenth quarterly report, January 1, 1992--March 31, 1992

    SciTech Connect

    Levine, J.R.; Johnson, P.M.

    1992-12-31

    Research continued on the study of coal permeability and gas desorption. This quarter, most of the effort involved identifying problems with the microbalance and then getting it repaired. Measurement of the amount of gas adsorbed with the microbalance involved corrections for the buoyancy change with pressure and several experiments with helium were made to determine this correction.

  9. Synthesis and analysis of novel polymers with high permselectivity and permeability in gas separation applications

    SciTech Connect

    Koros, W.J.; Paul, D.R.

    1991-11-15

    We have synthesized and completed characterization of permeability and selectivity properties of a group of polysulfones and polyether ketones with the potential for higher use temperatures, as well as members of a series of polyesters derived from spirobiindane bisphenol monomer in conjunction with meta and para substituted diacid chlorides. We have also synthesized and characterized the gas transport and thermal properties of diphenyl substituted polyphenylene oxide. The diphenyl substituted material has a potential for higher temperature applications than the standard dimethyl substituted polymer. The temperature dependence of the gas transport properties for the oxygen/nitrogen system was characterized over the range from 35 to 65{degree}C for both of these analog materials.

  10. Commercially Available Gas-Permeable Cell Culture Bags May Not Prevent Anoxia in Cultured or Shipped Islets

    PubMed Central

    Avgoustiniatos, E.S.; Hering, B.J.; Rozak, P.R.; Wilson, J.R.; Tempelman, L.A.; Balamurugan, A.N.; Welch, D.P.; Weegman, B.P.; Suszynski, T.M.; Papas, K.K.

    2009-01-01

    Prolonged anoxia has deleterious effects on islets. Gas-permeable cell culture devices can be used to minimize anoxia during islet culture and especially during shipment when elimination of gas-liquid interfaces is required to prevent the formation of damaging gas bubbles. Gas-permeable bags may have several drawbacks, such as propensity for puncture and contamination, difficult islet retrieval, and significantly lower oxygen permeability than silicone rubber membranes (SRM). We hypothesized that oxygen permeability of bags may be insufficient for islet oxygenation. We measured oxygen transmission rates through the membrane walls of three different types of commercially available bags and through SRM currently used for islet shipment. We found that the bag membranes have oxygen transmission rates per unit area about 100-fold lower than SRM. We solved the oxygen diffusion-reaction equation for 150-μm diameter islets seeded at 3000 islet equivalents per cm2, a density adequate to culture and ship an entire human or porcine islet preparation in a single gas-permeable device, predicting that about 40% of the islet volume would be anoxic at 22°C and about 70% would be anoxic at 37°C. Islets of larger size or islets accumulated during shipment would be even more anoxic. The model predicted no anoxia in islets similarly seeded in devices with SRM bottoms. We concluded that commercially available bags may not prevent anoxia during islet culture or shipment; devices with SRM bottoms are more suitable alternatives. PMID:18374080

  11. Permeable weak layer in the gas hydrate reservoir presumed by logging-while-drilling log data

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Fujii, T.; Takayama, T.

    2015-12-01

    One of the specific intervals attracted attention to analyze the 2012 gas-production test from methane-hydrate reservoir, because its pressure and temperature behavior was different from other intervals of the production zone. The pressure and temperature behavior implied the interval should be high permeability. We analyzed the interval to characterize the properties before gas-production test; i.e. the original properties of the interval. We checked the data of the logging-while-drilling data of AT1-MC, which was one of the monitoring wells at the gas-production test. The specific interval was described as 1290-1298m, where was boundary between upper sand and mud alteration layer and middle clayey zone. The first, we noticed that there were several layers that showed broad T2 distributions of nuclear magnetic resonance (NMR). On the basis of the T2 distributions and the resistivity data of the interval, there were large pores that showed the T2 distribution around 100ms, even though some amount of methane hydrate were contained. This result could be explained the interval showed high permeability below the 1294m. After checking their ultra-sonic caliper data in detail, we found interesting difference in the interval. The specific interval of 1294-1295m had different borehole-enlargement direction from other intervals of the methane-hydrate bearing zone, even though diameter of borehole was slightly enlarged. Other layers in the methane hydrate reservoir showed NW-SE directions of enlargement, however, the specific interval had NE-SW direction of enlargement. Hence, H-max stress and H-min stress of this specific interval could be very close values. Thus, near the 1294m, the lithology of the layer was permeable and weak. It might be useful to understand many phenomena occured during the gas-production test. This research was conducted as a part of the MH21 research, and the authors would like to express their sincere appreciation to MH21 and the Ministry of Economy

  12. STEADY-FATE FIELD-SCALE GAS PERMEABILITY ESTIMATION AND PORE-GAS VELOCITY CALCULATION IN A DOMAIN OPEN TO THE ATMOSPHERE

    EPA Science Inventory

    Field-scale estimation of gas permeability and subsequent computation of pore-gas velocity profiles are critical elements of sound soil venting design. It has been our experience however in U.S. EPA's technical assistance program, provided by the Office of Research and Developme...

  13. Measurements of Gas-Water Relative Permeability for Methane-Hydrate-Bearing Sediments using X-ray Computed-Tomography

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Jin, Y.; Nagao, J.

    2012-04-01

    Oceanic gas hydrate deposits at high saturations have been found within sandy sediments in areas such as the Eastern Nankai Trough and the Gulf of Mexico. The recent discovery of these deposits has stimulated research and development programs exploring the use of gas hydrates as energy resources. Depressurization is thought to be a promising method for gas recovery from gas hydrates deposits; however, considerable water production is expected when this method is applied for oceanic gas hydrate deposits. The prediction of water production is a critical problem for successful gas production from these deposits. The gas-water relative permeability of gas-hydrate-bearing sediments is a key parameter to predict gas-water-ratio (GWR) during gas production. However, the experimental measurement of gas-water relative permeability for gas-hydrate-bearing sediments is a challenging problem due to a phase change (gas hydrate formation/dissociation) during gas-water flooding test. We used X-ray computed tomography (CT) and a newly-developed core holder to measure gas-water relative permeability for gas-hydrate-bearing sediments. X-ray CT was used to image a displacement front and quantify density changes during water flooding test in methane-hydrate-bearing cores. We obtained CT images every two minutes during a water flooding test for a gas-saturated methane-hydrate-bearing core. The movement of displacement front was captured from these CT images. Quantitative analysis of density change was also done to analyze the change of gas/water saturations. We developed a multi-sensor-tap core holder to minimize capillary end effect on the pressure measurements. To be able to obtain CT images by X-ray, the core holder was made of aluminum alloy. We successfully measured pressure differences of the intermediate section of the core during water flooding test. The change of pressure differences during water flooding test showed strong correlation with the movement of displacement front

  14. A field study to estimate the vertical gas diffusivity and permeability of compacted MSW using a barometric pumping analytical model.

    PubMed

    Larson, Judd; Kumar, Sendhil; Gale, S Adrian; Jain, Pradeep; Townsend, Timothy

    2012-03-01

    The measurement of vertical gas diffusivity and permeability of compacted municipal solid waste (MSW) using an analytical gas flow and transport model was evaluated. A series of pressure transducers were buried in a MSW landfill and in situ pressures were modelled using an algorithm that predicts soil-gas pressures based on field-measured barometric pressure data and vertical diffusivity. The vertical gas diffusivity that represented the best-fit of the measured pressures was estimated at 20 locations and ranged from 0.002 to 0.052 m2 s(-1). The vertical gas permeability ranged from 3.3 × 10(-14) to 4.5 × 10(-12) m2 for the upper-most 3 to 6 m of compacted MSW. The shortfalls of applying this method to landfill conditions are also discussed.

  15. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1

    PubMed Central

    Althumayri, Khalid; Harrison, Wayne J.; Shin, Yuyoung; Gardiner, John M.; Casiraghi, Cinzia; Bernardo, Paola; Clarizia, Gabriele

    2016-01-01

    Gas permeability data are presented for mixed matrix membranes (MMMs) of few-layer graphene in the polymer of intrinsic microporosity PIM-1, and the results compared with previously reported data for two other nanofillers in PIM-1: multiwalled carbon nanotubes functionalized with poly(ethylene glycol) (f-MWCNTs) and fused silica. For few-layer graphene, a significant enhancement in permeability is observed at very low graphene content (0.05 vol.%), which may be attributed to the effect of the nanofiller on the packing of the polymer chains. At higher graphene content permeability decreases, as expected for the addition of an impermeable filler. Other nanofillers, reported in the literature, also give rise to enhancements in permeability, but at substantially higher loadings, the highest measured permeabilities being at 1 vol.% for f-MWCNTs and 24 vol.% for fused silica. These results are consistent with the hypothesis that packing of the polymer chains is influenced by the curvature of the nanofiller surface at the nanoscale, with an increasingly pronounced effect on moving from a more-or-less spherical nanoparticle morphology (fused silica) to a cylindrical morphology (f-MWCNT) to a planar morphology (graphene). While the permeability of a high-free-volume polymer such as PIM-1 decreases over time through physical ageing, for the PIM-1/graphene MMMs a significant permeability enhancement was retained after eight months storage. PMID:26712643

  16. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1.

    PubMed

    Althumayri, Khalid; Harrison, Wayne J; Shin, Yuyoung; Gardiner, John M; Casiraghi, Cinzia; Budd, Peter M; Bernardo, Paola; Clarizia, Gabriele; Jansen, Johannes C

    2016-02-13

    Gas permeability data are presented for mixed matrix membranes (MMMs) of few-layer graphene in the polymer of intrinsic microporosity PIM-1, and the results compared with previously reported data for two other nanofillers in PIM-1: multiwalled carbon nanotubes functionalized with poly(ethylene glycol) (f-MWCNTs) and fused silica. For few-layer graphene, a significant enhancement in permeability is observed at very low graphene content (0.05 vol.%), which may be attributed to the effect of the nanofiller on the packing of the polymer chains. At higher graphene content permeability decreases, as expected for the addition of an impermeable filler. Other nanofillers, reported in the literature, also give rise to enhancements in permeability, but at substantially higher loadings, the highest measured permeabilities being at 1 vol.% for f-MWCNTs and 24 vol.% for fused silica. These results are consistent with the hypothesis that packing of the polymer chains is influenced by the curvature of the nanofiller surface at the nanoscale, with an increasingly pronounced effect on moving from a more-or-less spherical nanoparticle morphology (fused silica) to a cylindrical morphology (f-MWCNT) to a planar morphology (graphene). While the permeability of a high-free-volume polymer such as PIM-1 decreases over time through physical ageing, for the PIM-1/graphene MMMs a significant permeability enhancement was retained after eight months storage. PMID:26712643

  17. Recovery of ammonia from swine manure using gas-permeable membranes: effect of aeration.

    PubMed

    García-González, M C; Vanotti, M B; Szogi, A A

    2015-04-01

    The gas-permeable membrane process can recover ammonia from manure, reducing pollution whilst converting ammonia into an ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4(+)) recovery rate that is normally carried out using an alkali. In this study a new strategy to avoid the use of alkali was tested applying low-rate aeration and nitrification inhibition. The wastewater used was raw swine manure with 2390 mg NH4(+)-N/L. Results showed that aeration increased pH above 8.5 allowing quick transformation of NH4(+) into gaseous ammonia (NH3) and efficient recovery by permeation through the submerged membrane. The overall NH4(+) recovery obtained with aeration was 98% and ammonia emissions losses were less than 1.5%. The new approach can substitute large amounts of alkali chemicals needed to obtain high NH4(+) recovery with important economic and environmental savings. PMID:25602923

  18. A high-porosity limit for the transition from conductive to convective burning in gas-permeable explosives

    SciTech Connect

    Kagan, Leonid; Sivashinsky, Gregory

    2010-02-15

    The experimentally known phenomenon of an abrupt transition from slow conductive to fast convective (penetrative) burning in a confined gas-permeable explosive is discussed. A simple model, involving only the most essential physical ingredients, is formulated and analyzed. In addition to commonly utilized assumptions of the solid-gas thermal equilibrium, validity of Darcy's law, immobility of the solid phase, and one-step Arrhenius kinetics, the model employs the distinguished limit combining high-porosity with high solid/gas density ratio, resulting in conservation of enthalpy, advantageous for theoretical analysis. A good qualitative agreement between theoretical and experimental dependencies is obtained. The transition is triggered by a localized autoignition in the extended resistance-induced preheat zone formed ahead of the advancing deflagration, provided the pressure difference between hot gas products and gases deep inside the pores of the unburned solid exceeds a certain critical level. In line with observations the critical overpressure increases with diminishing permeability. (author)

  19. Recovery of nitrogen from swine manure containing high-ammonia using gas-permeable membrane technology and reduced chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are presenting a new and effective way of recovering ammonia from liquid manures. The recovery of nutrients from wastes for re-use as concentrated plant fertilizers is a new paradigm in manure management. In the work presented in this paper a new process using gas-permeable membranes at low press...

  20. Ionic Conductivity and Gas Permeability of Polymerized Ionic Liquid Block Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Sanoja, Gabriel; Schneider, Yanika; Modestino, Miguel; Segalman, Rachel; Joint CenterArtificial Photosynthesis Team

    2014-03-01

    Polymer membranes for many energy applications, such as solar-to-hydrogen fuel production, require ionic conductivity while acting as gas diffusion barriers. We have synthesized a diblock copolymer consisting of poly(styrene-block-(4-(2-methacrylamidoethyl)-imidazolium trifluoroacetate) by treating poly(styrene-block-histamine methacrylamide) (PS- b-PHMA) with trifluoroacetic acid. The PS block serves as the structural support while the imidazolium derivative is an ion conducting polymerized ionic liquid (PIL). Small angle X-ray scattering and transmission electron microscopy demonstrate that the block copolymer self-assembles into well-ordered nanostructures, with lamellae and hexagonally packed cylindrical morphologies. The ionic conductivities of the PS-b-PHMA materials were as high as 2 x 10-4 S/cm while an order of magnitude increase in conductivity was observed upon conversion to PS-b-PIL. The ionic conductivity of the PS-b-PIL increased by a factor of ~ 4 up to 1.2 x 10-3 S/cm as the PIL domain size increased from 20 to 40 nm. These insights allow for the rational design of high performance ion conducting membranes with even greater conductivities via precise morphological control. Additionally, the role of thermal annealing on the ionic conductivity and gas permeability of copolymer membranes was investigated.

  1. Natural and Induced Fracture Diagnostics from 4-D VSP Low Permeability Gas Reservoirs

    SciTech Connect

    Mark E. Willis; Daniel R. Burns; M. Nafi Toksoz

    2008-09-30

    Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

  2. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology.

    PubMed

    Dube, P J; Vanotti, M B; Szogi, A A; García-González, M C

    2016-03-01

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonium (NH4(+)) recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1465-2097 mg NH4(+)-N L(-1) were treated using submerged membranes (0.13 cm(2) cm(-3)), low-rate aeration (120 mL air L-manure(-1) min(-1)) and nitrification inhibitor (22 mg L(-1)) to prevent nitrification. The experiment included a control without aeration. The pH of the manure with aeration rose from 8.6 to 9.2 while the manure without aeration decreased from 8.6 to 8.1. With aeration, 97-99% of the NH4(+) was removed in about 5 days of operation with 96-98% recovery efficiency. In contrast, without aeration it took 25 days to treat the NH4(+). Therefore, the recovery of NH4(+) was five times faster with the low-rate aeration treatment. This enhancement could reduce costs by 70%. PMID:26739456

  3. Mascara pigmentation of the bulbar conjunctiva associated with rigid gas permeable lens wear.

    PubMed

    Davis, L J; Paragina, S; Kincaid, M C

    1992-01-01

    We present three patients who were found to have unusual pigmentation of the bulbar conjunctiva. The areas, 1 to 2 mm in size, were translucent with dark black dust-like particles randomly placed within well defined borders. These specks were usually elevated, had a granular texture, and appeared to be overlying pingueculae. All three patients wore rigid gas permeable contact lenses, were found to have either a short tear break-up time or deficient tear aqueous layer, had associated 3:00 and 9:00 o'clock staining, and routinely used heavy mascara and/or eyeliner. In one patient, the areas resolved on discontinuing contact lens wear. The elevated areas may be associated with minor discomfort. We propose that a deficient tear layer and drying adjacent to the lens edge may compromise the conjunctival epithelium and prevent efficient washing of the pigment particles from the conjunctiva, allowing these granules to become embedded in the epithelium. Additional causes of conjunctival pigmentation are discussed.

  4. Regional geology of the low-permeability, gas-bearing Cleveland Formation, western Anadarko Basin, Texas Panhandle: Lithologic and depositional facies, structure, and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Hentz, Tucker F.

    1992-09-01

    The Upper Pennsylvania (lower Missourian) Cleveland formation produces gas from low-permeability ('tight') sandstone reservoirs in the western Anadarko Basin of the northeastern Texas Panhandle. In the six-county region, these reservoirs had produced more than 412 Bcf of natural gas through December 31, 1989. Because of their typically low permeability, the Cleveland sandstones require acidizing and hydraulic fracture treatment to produce gas at economic rates. Since 1982, the Gas Research Institute has supported geological investigations throughout the United States to develop the scientific and technological knowledge for producing from low-permeability, gas-bearing sandstones. As part of the program and the GRI Tight Gas Sands project, the Bureau of Economic Geology has been conducting research on low-permeability sandstones in the Cleveland formation and on several other sandstone units of similar character in Texas and Wyoming.

  5. Effects of heterogeneous structure and diffusion permeability of body tissues on decompression gas bubble dynamics.

    PubMed

    Nikolaev, V P

    2000-07-01

    To gain insight into the special nature of gas bubbles that may form in astronauts, aviators and divers, we developed a mathematical model which describes the following: 1) the dynamics of extravascular bubbles formed in intercellular cavities of a hypothetical tissue undergoing decompression; and 2) the dynamics of nitrogen tension in a thin layer of intercellular fluid and in a thick layer of cells surrounding the bubbles. This model is based on the assumption that, due to limited cellular membrane permeability for gas, a value of effective nitrogen diffusivity in the massive layer of cells in the radial direction is essentially lower compared to conventionally accepted values of nitrogen diffusivity in water and body tissues. Due to rather high nitrogen diffusivity in intercellular fluid, a bubble formed just at completion of fast one-stage reduction of ambient pressure almost instantly grows to the size determined by the initial volume of the intercellular cavity, surface tension of the fluid, the initial nitrogen tension in the tissue, and the level of final pressure. The rate of further bubble growth and maximum bubble size depend on comparatively low effective nitrogen diffusivity in the cell layer, the tissue perfusion rate, the initial nitrogen tension in the tissue, and the final ambient pressure. The tissue deformation pressure performs its conservative action on bubble dynamics only in a limited volume of tissue (at a high density of formed bubbles). Our model is completely consistent with the available data concerning the random latency times to the onset of decompression sickness (DCS) symptoms associated with hypobaric decompressions simulating extravehicular activity. We believe that this model could be used as a theoretical basis for development of more adequate methods for the DCS risk prediction.

  6. Free and Forced Convection in High Permeability Porous Media: Impact on Gas Flux at the Earth-atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Levintal, E.; Dragila, M. I.; Kamai, T.

    2015-12-01

    Gas movement within the earth's subsurface and its exchange with the atmosphere is one of the principal elements contributing to soil and atmospheric function. As the soil permeability increases, gas circulation by convective mechanisms becomes significantly greater than the diffusion. Two of the convective mechanisms, which can be of great importance, are being explored in this research. The first one is thermal convection venting (TCV), which develops when there are unstable density gradients. The second mechanism is wind induced convection (WIC), which develops due to surface winds that drive air movement. Here, we report the results of a study on the relationships between the porous media permeability and particle size, and the development and magnitude of TCV and WIC with the development of thermal differences and surface winds. The research included large high-permeability column experiments carried out under highly controlled laboratory conditions, using well-defined single-sized spherical particles while surface winds and thermal differences were forced and monitored. CO2 enriched air, functioned as a tracer, was used to quantify the impact of TCV and WIC on gas migration in the porous media. Results show that in homogenous porous media a permeability range of 10-7 to 10-6 m2 is the threshold value for TCV onset under standard atmospheric conditions. Adding surface wind with an average velocity of 1.5 m s-1 resulted in WIC effect to a depth of -0.3 m in most experimental settings; however, it did not caused additional air circulation at the reference depth of -0.9 m. Furthermore, given the appropriate conditions, a combined effect of TCV and WIC did significantly increase the overall media ventilation. Simulations of temperature profiles in soil under that permeability, showed that as the thermal gradient changes with depth and is a continuous function, TCV cells can be developed in local sections of the profile, not necessarily reaching the atmosphere.

  7. Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.

    2014-02-01

    The physical structure of polar firn plays a key role in the mechanisms by which glaciers and ice sheets preserve a natural archive of past atmospheric composition. This study presents the first measurements of gas diffusivity and permeability along with microstructural information measured from the near-surface firn through the firn column to pore close-off. Both fine- and coarse-grained firn from Summit, Greenland are included in this study to investigate the variability in firn caused by seasonal and storm-event layering. Our measurements reveal that the porosity of firn (derived from density) is insufficient to describe the full profiles of diffusivity and permeability, particularly at porosity values above 0.5. Thus, even a model that could perfectly predict the density profile would be insufficient for application to issues involving gas transport. The measured diffusivity profile presented here is compared to two diffusivity profiles modeled from firn air measurements from Summit. Because of differences in scale and in firn processes between the true field situation, firn modeling, and laboratory measurements, the results follow a similar overall pattern but do not align; our results constitute a lower bound on diffusive transport. In comparing our measurements of both diffusivity and permeability to previous parameterizations from numerical 3-D lattice-Boltzmann modeling, it is evident that the previous relationships to porosity are likely site-specific. We present parameterizations relating diffusivity and permeability to porosity as a possible tool, though use of direct measurements would be far more accurate when feasible. The relationships between gas transport properties and microstructural properties are characterized and compared to existing relationships for general porous media, specifically the Katz-Thompson (KT), Kozeny-Carman (KC), and Archie's law approximations. While those approximations can capture the general trend of gas transport

  8. Direct numerical simulation of supercritical gas flow in complex nanoporous media: Elucidating the relationship between permeability and pore space geometry

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2015-12-01

    Mudrocks and shales are currently a significant source of natural gas and understanding the basic transport properties of these formations is critical to predicting long-term production, however, the nanoporous nature of mudrocks presents a unique challenge. Mudrock pores are predominantly in the range of 1-100 nm, and within this size range the flow of gas at reservoir conditions will fall within the slip-flow and early transition-flow regime (0.001 < Kn < 1.0). Therefore, flow-rates will significantly deviate from Navier-Stokes predictions. Currently, the study of slip-flows is mostly limited to simple tube and channel geometries, but the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Here we present a local effective viscosity lattice Boltzmann model (LEV-LBM) constructed for flow simulation in the slip- and early-transition flow regimes, adapted here for complex geometries. At the macroscopic scale the LEV-LBM is parameterized with local effective viscosities at each node to capture the variance of the mean free path of gas molecules in a bounded system. The LEV-LBM is first validated in simple tube geometries, where excellent agreement with linearized Boltzmann solutions is found for Knudsen numbers up to 1.0. The LEV-LBM is then employed to quantify the length effect on the apparent permeability of tubes, which suggests pore network modeling of flow in the slip and early-transition regime will result in overestimation unless the length effect is considered. Furthermore, the LEV-LBM is used to evaluate the predictive value of commonly measured pore geometry characteristics such as porosity, pore size distribution, and specific solid surface area for the calculation of permeability. We show that bundle of tubes models grossly overestimate apparent permeability, as well as underestimate the increase in apparent permeability with decreasing pressure as a result of excluding topology and pore shape from calculations.

  9. Sedimentology and permeability architecture of Atokan Valley-fill natural gas reservoirs, Boonsville Field, north-central Texas

    SciTech Connect

    Burn, M.J.; Carr, D.L.; Stuede, J.

    1994-09-01

    The Boonsville {open_quotes}Bend Conglomerate{close_quotes} gas field in Jack and Wise counties comprises numerous thin (10-20 ft) conglomerate sandstone reservoirs within an approximately 1000-ft-thick section of Atokan strata. Reservoir sandstone bodies commonly overlie sequence-boundary unconformities and exhibit overall upward-fining grain-size trends. Many represent incised valleyfill deposits that accumulated during postunconformity baselevel rise. This stratal architecture is repeated at several levels throughout the Bend Conglomerate, suggesting that sediment accumulation occurred in a moderate-to low-accommodation setting and that base level fluctuated frequently. The reservoir units were deposited by low-sinuosity fluvial processes, causing a hierarchy of bed forms and grain-avalanche bar-front processes to produce complex grain-size variations. Permeability distribution is primarily controlled by depositional factors but may also be affected by secondary porosity created by the selective dissolution of chert clasts. High-permeability zones (up to 2.8 darcys) are characterized by macroscopic vugs comprised of clast-shaped moldic voids (up to 5 mm in diameter). Tight (low-permeability) zones are heavily cemented by silica, calcite, dolomite, and ankerite and siderite cements. Minipermeameter, x-radiograph, and petrographic studies and facies analysis conducted on cores from two Bend Conglomerate reservoirs illustrate the hierarchy of sedimentological and diagenetic controls on permeability architecture.

  10. Sedimentology and permeability architecture of Atokan Valley-Fill natural gas reservoirs, Boonsville Field, North-Central Texas

    SciTech Connect

    Burn, M.J.; Carr, D.L.; Stuede, J.

    1994-12-31

    The Boonsville {open_quotes}Bend Conglomerate{close_quotes} gas field in Jack and Wise Counties comprises numerous thin (10-20 ft) conglomeratic sandstone reservoirs within an approximately 1,000-ft-thick section of Atokan strata. Reservoir sandstone bodies commonly overlie sequence-boundary unconformities and exhibit overall upward-fining grain-size trends. Many represent incised valley-fill deposits that accumulated during postunconformity base-level rise. This stratal architectures is repeated at several levels throughout the Bend Conglomerate, suggesting that sediment accumulation occurred in a moderate- to low-accommodation setting and that base level fluctuated frequently. The reservoir units were deposited by low-sinuosity fluvial processes, causing a hierarchy of bed forms and grain-avalanche bar-front processes to produce complex grain-size variations. Permeability distribution is primarily controlled by depositional factors but may also be affected by secondary porosity created by the selective dissolution of chert clasts. High-permeability zones ({approximately}2.8 darcys) are characterized by macroscopic vugs composed of clast-shaped moldic voids ({approximately}5 mm in diameter). Tight (low-permeability) zones are heavily cemented by silica, calcite, dolomite, and ankerite and siderate cements. Minipermeameter, x-radiography, and petrographic studies and facies analysis conducted on cores from two Bend Conglomerate reservoirs (Threshold Development Company, I.G. Yates 33, and OXY U.S.A. Sealy {open_quotes}C{close_quotes} 2) illustrate the hierarchy of sedimentological and diagenetic controls on permeability architecture.

  11. REDUCING RISK IN LOW-PERMEABILITY GAS FORMATIONS: UNDERSTANDING THE ROCK/FLUID CHARACTERISTICS OF ROCKY MOUNTAIN LARAMIDE BASINS

    SciTech Connect

    Ronald C. Surdam

    2003-12-29

    An anomalous velocity model was constructed for the Wind River Basin (WRB) based on {approx}2000 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. Ten cross sections were constructed through the model coincident with known gas fields. In each cross section, an intense, anomalously slow velocity domain coincided with the gas-productive rock/fluid interval. The anomalous velocity model: (1) Easily isolates gas-charged rock/fluid systems characterized by anomalously slow velocities and water-rich rock/fluid systems characterized by normal velocities; and (2) Delineates the regional velocity inversion surface, which is characterized by steepening of the Ro/depth gradient, a significant increase in capillary displacement pressure, a significant change in formation water composition, and acceleration of the reaction rate of smectite-to-illite diagenesis in mixed-layer clays. Gas chimneys are observed as topographic highs on the regional velocity inversion surface. Beneath the surface are significant fluid-flow compartments, which have a gas-charge in the fluid phase and are isolated from meteoric water recharge. Water-rich domains may occur within regional gas-charged compartments, but are not being recharged from the meteoric water system (i.e., trapped water). The WRB is divided into at least two regionally prominent fluid-flow compartments separated by the velocity inversion surface: a water-dominated upper compartment likely under strong meteoric water drive and a gas-charged, anomalously pressured lower compartment. Judging from cross sections, numerous gas-charged subcompartments occur within the regional compartment. Their geometries and boundaries are controlled by faults and low-permeability rocks. Commercial gas production results when a reservoir interval characterized by enhanced porosity/permeability intersects one of these gas-charged subcompartments. The rock/fluid characteristics of the Rocky Mountain Laramide

  12. Local permeability changes, passive degassing and related gas hazard at the Baia di Levante area (Vulcano island, Italy)

    NASA Astrophysics Data System (ADS)

    Diliberto, Iole Serena; Cangemi, Marianna; Gagliano, Antonina Lisa; Inguaggiato, Salvatore; Madonia, Paolo; Pedone, Maria; Fabio Pisciotta, Antonino

    2016-04-01

    Vulcano, the southernmost island of the Aeolian archipelago (Italy), is presently characterized by active fumarolic fields located along the rim of La Fossa cone and the shoreline of the Baia di Levante beach, in the northern portion of the island.The Baia di Levante fumarolic vents are fed by a shallow hydrothermal aquifer heated by magmatic gases rising from the deep down, with a spatial distribution strongly affected by the local fracture network. These fractures are the expression of a deformation field, dominated by a northward motion to Lipari, abruptly decaying to the Vulcanello peninsula, immediately northward of the Baia di Levante beach. Variable rates of fluid transfer to the surface, following permeability changes affecting the fracture network are among the results of stress field variations over time which induce fluctuations in the pressure state of the hydrothermal system. Under these conditions, increments in hydrothermal gas flow, able to cause an increase of gas hazard, could be determined by a rearrangement of the shallow permeability distribution induced by changes in the deformation field. In this case not associated to any variation in the volcanic activity state. Since 2009 an huge gas flow increment has been noticed in some undersea vents of the Baia di Levante area, leading to increase of gas hazard in their immediate surroundings. On the contrary, the acquired data from the INGV volcanic surveillance program didn't suggest any correlated increase of the magmatic fluid component in the degassing activity.In July 2015, we carried out multi-parametric geochemical surveys in this area, based on direct (thermocouple) and indirect (thermal infrared camera and pyrometer) soil temperature, soil CO2 flux, atmospheric concentration of CO2 and H2S measurements at low elevation (one meter a.s.l.). The chemical and isotopic composition of low temperature fumarole gases was determined too.The comparison of the new data with previous surveys carried out

  13. Dissolution of Si in Molten Al with Gas Injection

    NASA Astrophysics Data System (ADS)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which

  14. Device and method for the measurement of gas permeability through membranes

    DOEpatents

    Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh

    2006-08-08

    A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.

  15. In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1

    PubMed Central

    Frentrup, Hendrik; Hart, Kyle E.; Colina, Coray M.; Müller, Erich A.

    2015-01-01

    We study the permeation dynamics of helium and carbon dioxide through an atomistically detailed model of a polymer of intrinsic microporosity, PIM-1, via non-equilibrium molecular dynamics (NEMD) simulations. This work presents the first explicit molecular modeling of gas permeation through a high free-volume polymer sample, and it demonstrates how permeability and solubility can be obtained coherently from a single simulation. Solubilities in particular can be obtained to a very high degree of confidence and within experimental inaccuracies. Furthermore, the simulations make it possible to obtain very specific information on the diffusion dynamics of penetrant molecules and yield detailed maps of gas occupancy, which are akin to a digital tomographic scan of the polymer network. In addition to determining permeability and solubility directly from NEMD simulations, the results shed light on the permeation mechanism of the penetrant gases, suggesting that the relative openness of the microporous topology promotes the anomalous diffusion of penetrant gases, which entails a deviation from the pore hopping mechanism usually observed in gas diffusion in polymers. PMID:25764366

  16. Supersonic flow around a cylinder with front gas-permeable insert which modeled by skeleton of porous material

    NASA Astrophysics Data System (ADS)

    Poplavskaya, T. V.; Kirilovskiy, S. V.; Mironov, S. G.

    2016-10-01

    Experimental data and results of numerical simulation of a supersonic flow around a streamwise aligned cylinder with a frontal gas-permeable insert made of a high-porosity cellular material are presented. The porous material structure is modeled by a system of staggered rings of different diameters (discrete model of a porous medium). The model skeleton of the material corresponds to the pore size (diameter 1mm) and porosity (0.95) of a real cellular porous material. The computed results are compared with the data of wind tunnel experiments performed in a T-327B supersonic continuous-flow wind tunnel at the flow Mach number M∞ = 4.85.

  17. Assessment of gas resources in low-permeability sandstones of Upper Cretaceous Mesaverde Group, Piceance Basin, Colorado

    SciTech Connect

    Johnson, R.C.; Crovelli, R.A.; Spencer, C.W.; Mast, R.F.

    1988-01-01

    A modified volumetric approach is used to estimate gas resources in the low-permeability sandstones of the Upper Cretaceous Mesaverde Group in the Piceance basin of western Colorado. The Mesaverde Group was divided into three plays based on stratigraphy - the Williams Fork Formation, the Iles Formation, and the Rollins Sandstone Member (Mesaverde Formation) or Trout Creek Sandstone Member (Iles Formation). Each of these plays was subdivided into a deep-gas play and a shallower gas-water transition play. Variations in thermal maturity were used to define the boundaries of the plays. The aggregated mean in-place gas for all six plays is 419.55 tcf. The mean in-place resource numbers were run through probability programs, which assign estimates of the gas potential at the 95%, 75%, 50%, 25%, and 5% probability levels both for individual plays and for the aggregate of all six plays. Assuming a 75% degree of dependency between the plays, there is a 95% chance of at least 274.45 tcf of total inplace gas, a 50% chance of 407.60 tcf, and a 5% chance of 605.33 tcf. Next, six different recovery factors were used. The first three assume current technology and a gas price of $5/mcf, and the second three assume future advanced technology without a gas price specified. The most likely estimated recoverable gas figures for the six plays at the 95%, 50%, and 5% probability levels using current technology are 8.75, 13.03, and 19.41 tcf, and using future advanced technology are 44.23, 65.97, and 98.39 tcf.

  18. Compaction and gas loss in welded pyroclastic deposits as revealed by porosity, permeability, and electrical conductivity measurements of the Shevlin Park Tuff

    USGS Publications Warehouse

    Wright, Heather M.; Cashman, Katharine V.

    2014-01-01

    Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and

  19. Distribution of Liquid Flow Rates in the Process of Bubbling with Gas Through Gas-Permeable Inserts

    NASA Astrophysics Data System (ADS)

    Gizatulin, R. A.; Valuev, D. V.; Dariev, R. S.; Trifonov, V. A.; Borovikov, I. F.

    2016-08-01

    The authors studied the distribution of the vertical components of the rate in the ascending gas-liquid flow when blowing through the bottom nozzle at two levels under three modes of neutral gas supply. It was estimated that under the intensities of gas (nitrogen) of 2 and 4 L/min-t the type of rates distribution in both cross-sections does not differ from the generally accepted one and practically does not depend upon the intensity of gas supply.

  20. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    PubMed Central

    Oldenburg, Curtis M.; Freifeld, Barry M.; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J.

    2012-01-01

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177

  1. Influence of dissolved inorganic carbon and calcium on gas formation and accumulation in iron permeable reactive barriers.

    PubMed

    Ruhl, Aki S; Weber, Anne; Jekel, Martin

    2012-11-01

    Uncertainties in long-term reactivity and gas accumulation in Fe(0) permeable reactive barriers still hinder a broad application of this groundwater remediation technology. In this study long-term column experiments were conducted under varying geochemical conditions. Generation of hydrogen by anaerobic corrosion in Fe(0) reactive filters was mainly influenced by the mass flux of dissolved inorganic carbon. Both increased concentrations and volume flows led to a substantial rise in gas generation but only to slight differences of gas accumulation within the pores of the reactive filter. Comparisons of columns with different lengths showed higher averaged corrosion rates in the shorter and lower corrosion rates in the longer columns. Calcium in conjunction with dissolved inorganic carbon formed compact and localized aragonite minerals, while in the absence of calcium chukanovite dominated, which covered and passivated the reactive surface to a higher extent. Magnetite was the major crystalline corrosion product in the absence of carbonate and no decline in long term corrosion rates was observed within up to 700 days of operation. Total gas yields of columns were restricted by passivation and approached a volume of approximately 13.5 mL/g granulated cast iron.

  2. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  3. Faulting of gas-hydrate-bearing marine sediments - contribution to permeability

    USGS Publications Warehouse

    Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael

    1997-01-01

    Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.

  4. Micromechanics, Fracture Mechanics and Gas Permeability of Composite Laminates for Cryogenic Storage Systems

    NASA Technical Reports Server (NTRS)

    Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.

    2005-01-01

    investigate the effect of cryogenic cycling on permeability for various composite material systems. Textile composites have lower permeability than laminated composites even with increasing number of cryogenic cycle. Nano-particles dispersed in laminated composites do not show improvement on permeability. The optical inspection is performed to investigate the microcrack propagation and void content in laminated composites and compared the microscopic results before and after cryogenic cycling.

  5. Geotechnology for low permeability gas reservoirs; [Progress report], April 1, 1992--September 30, 1993

    SciTech Connect

    Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.

    1993-11-01

    The objectives of this program are (1) to use and refine a basinal analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteritics of natural fracture systems for their use in completion, stimulation and production operations. Continuing work on this project has demonstrated that natural fracture systems and their flow characteristics can be defined by a thorough study of well and outcrop data within a basin. Outcrop data provides key information on fracture sets and lithologic controls, but some fracture sets found in the outcrop may not exist at depth. Well log and core data provide the important reservoir information to obtain the correct synthesis of the fracture data. In situ stress information is then linked with the natural fracture studies to define permeability anisotropy and stimulation effectiveness. All of these elements require field data, and in the cases of logs, core, and well test data, the cooperation of an operator.

  6. Apparatus and method for determining the gas permeability and flux of helium through the materials and coatings

    NASA Astrophysics Data System (ADS)

    Barchenko, V. T.; Lisenkov, A. A.; Vinogradov, M. L.

    2014-11-01

    Apparatus and method for measuring flow of helium through the materials and coatings, obtained by ion-plasma technologies, are developed and tested. The apparatus for the measurement is designed on the basis of a helium leak detector TI1-14, produced by JSC "Zavod Izmeriter, that provides a minimum detectable flow of helium 7.10-13 Pa.m3/s. The purpose of the study is the creating apparatus and method to determine gas permeability and helium flux through new materials and coatings to create the hermetic devices with special properties. This devices are made from polymer coated with metals, and they should replace full metals device analogues in the field of aerospace engineering.

  7. Soil features and indoor radon concentration prediction: radon in soil gas, pedology, permeability and 226Ra content.

    PubMed

    Lara, E; Rocha, Z; Santos, T O; Rios, F J; Oliveira, A H

    2015-11-01

    This work aims at relating some physicochemical features of soils and their use as a tool for prediction of indoor radon concentrations of the Metropolitan Region of Belo Horizonte (RMBH), Minas Gerais, Brazil. The measurements of soil gas radon concentrations were performed by using an AlphaGUARD monitor. The (226)Ra content analysis was performed by gamma spectrometry (high pure germanium) and permeabilities were performed by using the RADON-JOK permeameter. The GEORP indicator and soil radon index (RI) were also calculated. Approximately 53 % of the Perferric Red Latosols measurement site could be classified as 'high risk' (Swedish criteria). The Litholic Neosols presented the lowest radon concentration mean in soil gas. The Perferric Red Latosols presented significantly high radon concentration mean in soil gas (60.6 ± 8.7 kBq m(-3)), high indoor radon concentration, high RI, (226)Ra content and GEORP. The preliminary results may indicate an influence of iron formations present very close to the Perferric Red Latosols in the retention of uranium minerals.

  8. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect

    Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

  9. Soil features and indoor radon concentration prediction: radon in soil gas, pedology, permeability and 226Ra content.

    PubMed

    Lara, E; Rocha, Z; Santos, T O; Rios, F J; Oliveira, A H

    2015-11-01

    This work aims at relating some physicochemical features of soils and their use as a tool for prediction of indoor radon concentrations of the Metropolitan Region of Belo Horizonte (RMBH), Minas Gerais, Brazil. The measurements of soil gas radon concentrations were performed by using an AlphaGUARD monitor. The (226)Ra content analysis was performed by gamma spectrometry (high pure germanium) and permeabilities were performed by using the RADON-JOK permeameter. The GEORP indicator and soil radon index (RI) were also calculated. Approximately 53 % of the Perferric Red Latosols measurement site could be classified as 'high risk' (Swedish criteria). The Litholic Neosols presented the lowest radon concentration mean in soil gas. The Perferric Red Latosols presented significantly high radon concentration mean in soil gas (60.6 ± 8.7 kBq m(-3)), high indoor radon concentration, high RI, (226)Ra content and GEORP. The preliminary results may indicate an influence of iron formations present very close to the Perferric Red Latosols in the retention of uranium minerals. PMID:25920786

  10. Structural tailoring of hydrogen-bonded poly(acrylic acid)/poly(ethylene oxide) multilayer thin films for reduced gas permeability.

    PubMed

    Xiang, Fangming; Ward, Sarah M; Givens, Tara M; Grunlan, Jaime C

    2015-02-01

    Hydrogen bonded poly(acrylic acid) (PAA)/poly(ethylene oxide) (PEO) layer-by-layer assemblies are highly elastomeric, but more permeable than ionically bonded thin films. In order to expand the use of hydrogen-bonded assemblies to applications that require a better gas barrier, the effect of assembling pH on the oxygen permeability of PAA/PEO multilayer thin films was investigated. Altering the assembling pH leads to significant changes in phase morphology and bonding. The amount of intermolecular hydrogen bonding between PAA and PEO is found to increase with increasing pH due to reduction of COOH dimers between PAA chains. This improved bonding leads to smaller PEO domains and lower gas permeability. Further increasing the pH beyond 2.75 results in higher oxygen permeability due to partial deprotonation of PAA. By setting the assembling pH at 2.75, the negative impacts of COOH dimer formation and PAA ionization on intermolecular hydrogen bonding can be minimized, leading to a 50% reduction in the oxygen permeability of the PAA/PEO thin film. A 20 bilayer coating reduces the oxygen transmission rate of a 1.58 mm natural rubber substrate by 20 ×. These unique nanocoatings provide the opportunity to impart a gas barrier to elastomeric substrates without altering their mechanical behavior.

  11. Depositional systems and productive characteristics of major low-permeability gas sandstones in Texas

    SciTech Connect

    Finely, R.J.; Seni, S.J.; Tyler, N.; Lin, Z.S.

    1984-04-01

    Major tight gas sandstones in Texas range from lenticular to blanket geometry, from hydropressured to geopressured, and from Pennsylvanian to Eocene in age. The Cotton Valley sandstone (East Texas basin) includes barrier- and marine-bar sandstones (blanket) derived from prograding fan deltas with associated braided stream, delta-front, and prodelta deposits. Estimated gas in place varies from 53 tcf (Cotton Valley) to 25 tcf (Travis Peak); most wells initially produce from 500 to 1500 mcf and few wells produce 2500 mcf. Tight gas sandstones in the Wilcox and Vicksburg Groups (Gulf Coast basin) are mostly geopressured delta-front, shelf, and slope deposits. Initial well yields are most 300 to 2400 mcfd; resource estimates for tight Wilcox and Vicksburg trends are not available. Canyon Group sandstones of the Sonora basin (parts of the Ozona arch, Concho platform and Val Verde basin) contain 24 tcf of estimated gas in place and initial flow rates are commonly 100 to 1000 mcf. These sandstones are broadly lenticular and are interpreted to be submarine fan and possibly shelf-margin deposits. The Olmos Formation (Maverick basin) contains gas within broadly lenticular delta-front deposits of high-constructive delta systems; liquid hydrocarbons in the Olmos are trapped in more proximal facies. Gas in place in the Olmos is estimated to be 5 tcf and initial well yields are 300 to 3000 mcf. In 1980, 893 wells were completed in formations designated as partially or completely tight by the Railroad Commission of Texas. These completions represent 2.5% of new gas wells in the state, but 28.0% of those completed in the 5000 to 15,000-ft depth range in that year.

  12. Increasing Production from Low-Permeability Gas Reservoirs by Optimizing Zone Isolation for Successful Stimulation Treatments

    SciTech Connect

    Fred Sabins

    2005-03-31

    Maximizing production from wells drilled in low-permeability reservoirs, such as the Barnett Shale, is determined by cementing, stimulation, and production techniques employed. Studies show that cementing can be effective in terms of improving fracture effectiveness by 'focusing' the frac in the desired zone and improving penetration. Additionally, a method is presented for determining the required properties of the set cement at various places in the well, with the surprising result that uphole cement properties in wells destined for multiple-zone fracturing is more critical than those applied to downhole zones. Stimulation studies show that measuring pressure profiles and response during Pre-Frac Injection Test procedures prior to the frac job are critical in determining if a frac is indicated at all, as well as the type and size of the frac job. This result is contrary to current industry practice, in which frac jobs are designed well before the execution, and carried out as designed on location. Finally, studies show that most wells in the Barnett Shale are production limited by liquid invasion into the wellbore, and determinants are presented for when rod or downhole pumps are indicated.

  13. Removal and recovery of ammonia from livestock wastewater using hydrophobic gas-permeable membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The costs of fertilizers have rapidly increased in recent years, especially nitrogen fertilizer such as anhydrous ammonia which is made from natural gas. Thus, new treatment technologies for abatement of ammonia emissions in livestock operations are being focused on nitrogern (N) recovery in additio...

  14. Improved recovery of ammonia from swine manure using gas-permeable membrane technology and aeration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant efforts are required to abate ammonia emissions from livestock operations. In addition, the costs of fertilizers have rapidly increased in recent years, especially nitrogen fertilizer such as anhydrous ammonia which is made from natural gas. Thus, new technologies for abatement of ammoni...

  15. Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes

    PubMed Central

    Smith, Stefan J. D.; Ladewig, Bradley P.; Hill, Anita J.; Lau, Cher Hon; Hill, Matthew R.

    2015-01-01

    Gas separation membranes are one of the lowest energy technologies available for the separation of carbon dioxide from flue gas. Key to handling the immense scale of this separation is maximised membrane permeability at sufficient selectivity for CO2 over N2. For the first time it is revealed that metals can be post-synthetically exchanged in MOFs to drastically enhance gas transport performance in membranes. Ti-exchanged UiO-66 MOFs have been found to triple the gas permeability without a loss in selectivity due to several effects that include increased affinity for CO2 and stronger interactions between the polymer matrix and the Ti-MOFs. As a result, it is also shown that MOFs optimized in previous works for batch-wise adsorption applications can be applied to membranes, which have lower demands on material quantities. These membranes exhibit exceptional CO2 permeability enhancement of as much as 153% when compared to the non-exchanged UiO-66 mixed-matrix controls, which places them well above the Robeson upper bound at just a 5 wt.% loading. The fact that maximum permeability enhancement occurs at such low loadings, significantly less than the optimum for other MMMs, is a major advantage in large-scale application due to the more attainable quantities of MOF needed. PMID:25592747

  16. Synthesis and analysis of novel polymers with high permselectivity and permeability in gas separation applications. Final report

    SciTech Connect

    Koros, W.J.; Paul, D.R.

    1995-05-01

    During the three years of support under this grant, ten novel polymer structures have been synthesized and characterized in detail in terms of sorption and transport properties to test the hypotheses on strategies to develop advanced materials for gas separation membranes. The extremely important O{sub 2}/N{sub 2} and CO{sub 2}/CH{sub 4} systems have been the focus of this work. Data for permeabilities and permselectivities for O{sub 2}/N{sub 2} and CO{sub 2}/CH{sub 4} at 35 C at approximately 2 atm feed pressure for O{sub 2} and N{sub 2} and 10 atm for CO{sub 2} and CH{sub 4} are reported in two tables and will be discussed in two parts, one related to each of the groups of structures in these two tables. For the sake of efficiency, the author will only consider the O{sub 2}/N{sub 2} data; however, similar trends apply for the CO{sub 2}/CH{sub 4} system as well. This gas pair is useful, since solubility selectivity effects are generally of much smaller importance than for the CO{sub 2}/CH{sub 4} pair, so even without detailed solubility and diffusivity data, mobility selectivity based arguments tend to be adequate.

  17. Synthesis and analysis of novel polymers with high permselectivity and permeability in gas separation applications

    SciTech Connect

    Koros, W.J.; Paul, D.R.

    1991-12-31

    Significant progress was made toward developing advanced materials for gas separation membrane applications and rationalizing molecular structure and efficacy: Synthesized and tested polyarylates based on terephthalic or isophthalic acid or a tertiary butyl derivative of the isophthalic acid with different diols to illustrate the effects of: opening'' the matrix by incorporation of bulky packing inhibiting groups such as the tertiary butyl moiety inhibition of backbone motion via meta connected backbone connections and tightening'' of the matrix by incorporation of polar halogens. Completed high temperature characterization of sorption and transport properties for novel materials. Continued studies of the phenyl-substituted polymers aimed at producing super stable high temperature useful polymers for gas separations. Synthesized a polyarylate based on the spirobiindane diol and bibenzoyl acid chloride to incorporate long flat packable bibenzoyl units between packing disruptive spirobiindane units in an attempt to control the segmental level morphology to produce highly selective bottleneck'' regions between highly open regions.

  18. Nonassociated gas resources in low-permeability sandstone reservoirs, lower tertiary Wasatch Formation, and upper Cretaceous Mesaverde Group, Uinta Basin, Utah

    SciTech Connect

    Fouch, T.D.; Schmoker, J.W.; Boone, L.E.; Wandrey, C.J.; Crovelli, R.A.; Butler, W.C.

    1994-08-01

    The US Geological Survey recognizes six major plays for nonassociated gas in Tertiary and Upper Cretaceous low-permeability strata of the Uinta Basin, Utah. For purposes of this study, plays without gas/water contacts are separated from those with such contacts. Continuous-saturation accumulations are essentially single fields, so large in areal extent and so heterogeneous that their development cannot be properly modeled as field growth. Fields developed in gas-saturated plays are not restricted to structural or stratigraphic traps and they are developed in any structural position where permeability conduits occur such as that provided by natural open fractures. Other fields in the basin have gas/water contacts and the rocks are water-bearing away from structural culmination`s. The plays can be assigned to two groups. Group 1 plays are those in which gas/water contacts are rare to absent and the strata are gas saturated. Group 2 plays contain reservoirs in which both gas-saturated strata and rocks with gas/water contacts seem to coexist. Most units in the basin that have received a Federal Energy Regulatory Commission (FERC) designation as tight are in the main producing areas and are within Group 1 plays. Some rocks in Group 2 plays may not meet FERC requirements as tight reservoirs. However, we suggest that in the Uinta Basin that the extent of low-permeability rocks, and therefore resources, extends well beyond the limits of current FERC designated boundaries for tight reservoirs. Potential additions to gas reserves from gas-saturated tight reservoirs in the Tertiary Wasatch Formation and Cretaceous Mesaverde Group in the Uinta Basin, Utah is 10 TCF. If the potential additions to reserves in strata in which both gas-saturated and free water-bearing rocks exist are added to those of Group 1 plays, the volume is 13 TCF.

  19. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    SciTech Connect

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass

  20. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    NASA Astrophysics Data System (ADS)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  1. Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    DOEpatents

    Hall, Mark N.

    1996-01-01

    Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

  2. LOx breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    DOEpatents

    Hall, M.N.

    1996-04-30

    Life support apparatus is composed of: a garment for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment; a portable receptacle holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous state when at standard temperature and pressure; a fluid flow member secured within the garment and coupled to the receptacle for conducting the fluid in liquid state from the receptacle to the interior of the garment; and a fluid flow control device connected for causing fluid to flow from the receptacle to the fluid flow member at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer. 6 figs.

  3. Effect of heat treatment on longitudinal gas and liquid permeability of circular and square-shaped native hardwood specimens

    NASA Astrophysics Data System (ADS)

    Taghiyari, Hamid Reza; Moradi Malek, Bahman

    2014-08-01

    Effects of heat-treatment on longitudinal permeability of circular and square wood specimens were studied here. Specimens were heated to 50, 75, 100, 125, 150, and 185 °C. Results showed that permeability increased at the lowest temperature due to shrinkage; then, it decreased due to irreversible hydrogen bonding and stiffness. The highest temperature increased permeability due to micro-cracks. The higher perimeter in the square specimens aggravated the effects of heat treatment.

  4. Development of a new quantitative gas permeability method for dental implant-abutment connection tightness assessment

    PubMed Central

    2011-01-01

    Background Most dental implant systems are presently made of two pieces: the implant itself and the abutment. The connection tightness between those two pieces is a key point to prevent bacterial proliferation, tissue inflammation and bone loss. The leak has been previously estimated by microbial, color tracer and endotoxin percolation. Methods A new nitrogen flow technique was developed for implant-abutment connection leakage measurement, adapted from a recent, sensitive, reproducible and quantitative method used to assess endodontic sealing. Results The results show very significant differences between various sealing and screwing conditions. The remaining flow was lower after key screwing compared to hand screwing (p = 0.03) and remained different from the negative test (p = 0.0004). The method reproducibility was very good, with a coefficient of variation of 1.29%. Conclusions Therefore, the presented new gas flow method appears to be a simple and robust method to compare different implant systems. It allows successive measures without disconnecting the abutment from the implant and should in particular be used to assess the behavior of the connection before and after mechanical stress. PMID:21492459

  5. Development of a cell permeable red-shifted CHEF-based chemosensor for Al(3+) ion by controlling PET.

    PubMed

    Mukherjee, Manjira; Sen, Buddhadeb; Pal, Siddhartha; Maji, Abhishek; Budhadev, Darshita; Chattopadhyay, Pabitra

    2016-03-15

    A structurally modified quinazoline derivative (L) acts as highly selective chemosensor for Al(3+) ions in DMSO-H2O (1:9, v/v) over the other competitive metal ions. L shows a red shifted fluorescence after the addition of Al(3+) ions and later the further fluorescence enhancement is due to chelation enhanced fluorescence (CHEF) through inhibition of photoinduced electron transfer (PET). This probe (L) detects Al(3+) ions as low as 9nM in DMSO-H2O (1:9, v/v) at biological pH. The non-cytotoxic probe (L) can efficiently detect the intercellular distribution of Al(3+) ions in living cells under a fluorescence microscope to exhibit its sensible applications in the biological systems.

  6. Development of a cell permeable red-shifted CHEF-based chemosensor for Al3 + ion by controlling PET

    NASA Astrophysics Data System (ADS)

    Mukherjee, Manjira; Sen, Buddhadeb; Pal, Siddhartha; Maji, Abhishek; Budhadev, Darshita; Chattopadhyay, Pabitra

    2016-03-01

    A structurally modified quinazoline derivative (L) acts as highly selective chemosensor for Al3 + ions in DMSO-H2O (1:9, v/v) over the other competitive metal ions. L shows a red shifted fluorescence after the addition of Al3 + ions and later the further fluorescence enhancement is due to chelation enhanced fluorescence (CHEF) through inhibition of photoinduced electron transfer (PET). This probe (L) detects Al3 + ions as low as 9 nM in DMSO-H2O (1:9, v/v) at biological pH. The non-cytotoxic probe (L) can efficiently detect the intercellular distribution of Al3 + ions in living cells under a fluorescence microscope to exhibit its sensible applications in the biological systems.

  7. Radon concentration in soil gas and its correlations with pedologies, permeabilities and 226Ra content in the soil of the Metropolitan Region of Belo Horizonte - RMBH, Brazil

    NASA Astrophysics Data System (ADS)

    Lara, E.; Rocha, Z.; Palmieri, H. E. L.; Santos, T. O.; Rios, F. J.; Oliveira, A. H.

    2015-11-01

    The radon concentration in soil gas is directly dependent on the geological characteristics of the area, such as lithology, pedology and on geochemicals, physicals and mineralogicals parameters of the soil. This paper looks for correlations between radon concentrations in soil gas and its soil permeability, 238U, 232Th and 226Ra contents in the soil groups classified by pedologies of Metropolitan Region of Belo Horizonte (RMBH), Minas Gerais, Brazil. The soil gas radon concentrations were determined by using an AlphaGUARD® monitor at about 150 measurement points. In soil samples of the same measurement points, the concentrations of 226Ra were determined by gamma spectrometry (HPGe), and 238U and 232Th by ICP-MS. The soil permeabilities were determined by using the RADON-JOK® permeameter. The mean concentrations of radon in soil gas ranged from 13.6±3.0 kBq m-3 for Litholic Neosols until 60.6±8.7 kBq m-3 for Perferric Red Latosols. The mean of 226Ra activity concentrations presented variation of 12.4±2.5 Bq kg-1 for Litholic Neosols until 50.3±13 Bq kg-1 for Perferric Red Latosols. Approximately 40% of the soils presented high permeability. The areas of different pedologies were classified by Soil Radon Index (SRI), determined by the soil gas radon concentration and permeability. Approximately 53% of the Perferric Red Latosols measurement site could be classified as "High Risk" (Swedish criteria). The preliminary results may indicate an influence of iron formations present very close to the Perferric Red Latosols in the retention of uranium minerals, and hence an increase in the concentration of radon and radium, whereas the series are in equilibrium in the environment.

  8. AL-SX permeation studies and evaluation using tritium gas

    SciTech Connect

    Roth, R.W. )

    1992-04-01

    The AL-SX/2 and AL-SX/3 are recently certified Type B shipping containers for tritium reservoirs. Both AL-SX models are sealed with elastomeric O-rings. O-rings of this type allow gases to permeate through the elastomeric material. This report summarizes experiments conducted on a full-size mock-up of the AL-SX sealing geometry that quantify permeation rates through the O-rings. Also, a six month experiment was conducted with tritium and showed that a tritium getter could be used in combination with elastomeric O-rings to meet normal condition leak rate requirements of 10 CFR 71.

  9. Initial gas phase reactions between Al(CH3)3/AlH3 and ammonia: theoretical study.

    PubMed

    Lisovenko, Anna S; Morokuma, Keiji; Timoshkin, Alexey Y

    2015-01-29

    Mechanisms of initial stages of gas phase reactions between trimethylaluminum and ammonia have been explored by DFT studies. Subsequent substitution of CH3 groups in AlMe3 by amido groups and substitution of hydrogen atoms in ammonia by AlMe2 groups have been considered. Structures of Al(CH3)x(NH2)3-x, NHx(Al(CH3)2)3-x (x = 0-3) and related donor-acceptor complexes, dimerization products, and reaction pathways for the methane elimination have been obtained. The transition state for the first methane elimination from Al(CH3)3NH3 adduct is the highest point on the reaction pathway; subsequent processes are exothermic and do not require additional activation energy. In excess ammonia, subsequent methane elimination reactions may lead to formation of [Al(NH2)3]2, while in excess trimethylaluminum, formation of N(AlMe2)3 is feasible. Formation of [AlMe2NH2]2 dimer is very favorable thermodynamically. Studies on model reactions between AlH3 and NH3 indicate that reaction barriers obtained for hydrogen-substituted species may serve as an upper estimate in studying the reactivity of methyl-substituted analogues in more complex systems. PMID:25536172

  10. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.

    PubMed

    Malykh, O V; Golub, A Yu; Teplyakov, V V

    2011-05-11

    Membrane gas separation technologies (air separation, hydrogen recovery from dehydrogenation processes, etc.) use traditionally the glassy polymer membranes with dominating permeability of "small" gas molecules. For this purposes the membranes based on the low free volume glassy polymers (e.g., polysulfone, tetrabromopolycarbonate and polyimides) are used. On the other hand, an application of membrane methods for VOCs and some toxic gas recovery from air, separation of the lower hydrocarbons containing mixtures (in petrochemistry and oil refining) needs the membranes with preferable penetration of components with relatively larger molecular sizes. In general, this kind of permeability is characterized for rubbers and for the high free volume glassy polymers. Data files accumulated (more than 1500 polymeric materials) represent the region of parameters "inside" of these "boundaries." Two main approaches to the prediction of gas permeability of polymers are considered in this paper: (1) the statistical treatment of published transport parameters of polymers and (2) the prediction using model of ≪diffusion jump≫ with consideration of the key properties of the diffusing molecule and polymeric matrix. In the frames of (1) the paper presents N-dimensional methods of the gas permeability estimation of polymers using the correlations "selectivity/permeability." It is found that the optimal accuracy of prediction is provided at n=4. In the frames of the solution-diffusion mechanism (2) the key properties include the effective molecular cross-section of penetrating species to be responsible for molecular transportation in polymeric matrix and the well known force constant (ε/k)(eff i) of {6-12} potential for gas-gas interaction. Set of corrected effective molecular cross-section of penetrant including noble gases (He, Ne, Ar, Kr, Xe), permanent gases (H(2), O(2), N(2), CO), ballast and toxic gases (CO(2), NO(,) NO(2), SO(2), H(2)S) and linear lower hydrocarbons (CH(4

  11. Development of modified flyash as a permeable reactive barrier medium for a former manufactured gas plant site, Northern Ireland

    NASA Astrophysics Data System (ADS)

    Doherty, R.; Phillips, D. H.; McGeough, K. L.; Walsh, K. P.; Kalin, R. M.

    2006-05-01

    A sequential biological permeable reactive barrier (PRB) was determined to be the best option for remediating groundwater that has become contaminated with a wide range of organic contaminants (i.e., benzene, toluene, ethylbenzene, xylene and polyaromatic hydrocarbons), heavy metals (i.e., lead and arsenic), and cyanide at a former manufactured gas plant after 150 years of operation in Portadown, Northern Ireland. The objective of this study was to develop a modified flyash that could be used in the initial cell within a sequential biological PRB to filter complex contaminated groundwater containing ammonium. Flyash modified with lime (CaOH) and alum was subjected to a series of batch tests which investigated the modified cation exchange capacity (CEC) and rate of removal of anions and cations from the solution. These tests showed that a high flyash composition medium (80%) could remove 8.65 mol of ammonium contaminant for every kilogram of medium. The modified CEC procedure ruled out the possibility of cation exchange as the major removal mechanism. The medium could also adsorb anions as well as cations (i.e., Pb and Cr), but not with the same capacity. The initial mechanism for Pb and Cr removal is probably precipitation. This is followed by sorption, which is possibly the only mechanism for the removal of dichromate anions. Scanning electron microscopic analysis revealed very small (<1 μm) cubic highly crystalline precipitates on the flyash, although this new crystalline zeolite growth did not occur rapidly enough to enable productive zeolite formation. Surface area measurements showed that biofilm growth on the medium could be a major factor in the comparative reduction of surface area between real and synthetic contaminant groundwaters. The modified flyash was found to be a highly sorptive granular material that did not inhibit microbiological activity, however, leaching tests revealed that the medium would fail as a long-term barrier material.

  12. Contact lens impact on quality of life in keratoconus patients: rigid gas permeable versus soft silicone-hydrogel keratoconus lenses

    PubMed Central

    Yildiz, Elvin Hatice; Erdurmus, Mesut; Elibol, Emine Savran; Acar, Banu; Vural, Ece Turan

    2015-01-01

    AIM To determine the impact of rigid gas permeable (RGP) and silicone-hydrogel keratoconus lenses on the quality of life (QoL) in keratoconus (KCN) patients using the self-reported results from the Contact Lens Impact on Quality of Life (CLIQ) Questionnaire. METHODS From January 2013 to April 2013, 27 consecutive KCN patients who wore RGP contact lenses (conflexair100 UV KE Zeiss-Wöhlk) or soft silicone-hydrogel contact lenses (SHCLs) for KCN (KeraSoft IC- Bausch&Lomb or Hydrocone Toris K–Swiss lens) completed the CLIQ questionnaire. RESULTS The mean age of 27 patients was 29.6±8.0y. Fifteen patients were RGP user. The groups were comparable with respect to the mean patient age, sex, and mean K values (P=0.1, P=0.8 and P=0.1, respectively). The mean CLIQperson measure was 42.8±5.5 in RGP group and 39.6±5.5 in SHCLs for KCN group (P=0.06). CLIQperson measure was positively correlated with steep K value (r=0.301, P=0.04). When eyes were stratified by visual acuity with contact lenses, the mean CLIQperson measure was 42.01±5.6 in eyes with a visual acuity of 20/20-20/25 (n=44) and 38.4±5.26 in eyes with a visual acuity of 20/32 or less (n=10; P=0.097). CONCLUSION RGP lenses and SHCLs for KCN have similar impact on QoL. PMID:26558228

  13. Increased viscosity of hemoglobin-based oxygen carriers retards NO-binding when perfused through narrow gas-permeable tubes.

    PubMed

    Sakai, Hiromi; Okuda, Naoto; Takeoka, Shinji; Tsuchida, Eishun

    2011-03-01

    Increased fluid viscosity of a solution of hemoglobin-based oxygen carriers (HBOCs) reduces vasoconstrictive effects because increased shear stress on the vascular wall enhances the production of vasorelaxation factors such as NO. Nevertheless, on a microcirculatory level, it remains unclear how viscosity affects the reaction of HBOCs and NO. In this study, different HBOCs were perfused through narrow gas-permeable tubes (25 μm inner diameter at 1 mm/s centerline velocity; hemoglobin concentration [Hb]=5 g/dL). The reaction was examined microscopically based on the Hb visible-light absorption spectrum. When immersed in a NO atmosphere, the NO-binding of deoxygenated Hb solution (viscosity, 1.1 cP at 1000 s(-1)) in the tube occurred about twice as rapidly as that of red blood cells (RBCs): 1.6 cP. Binding was reduced by PEGylation (PEG-Hb, 7.7 cP), by addition of a high molecular weight hydroxyethyl starch (HES) (2.8 cP), and by encapsulation to form Hb-vesicles (HbVs, 1.5 cP; particle size 279 nm). However, the reduction was not as great as that shown for RBCs. A mixture of HbVs and HES (6.2 cP) showed almost identical NO-binding to that of RBCs. Higher viscosity and particle size might reduce lateral diffusion when particles are flowing. The HbVs with HES showed the slowest NO-binding. Furthermore, Hb encapsulation and PEGylation, but not HES-addition, tended to retard CO-binding. Increased viscosity reportedly enhances production of endothelium NO. In addition, our results show that the increased viscosity also inhibits the reaction with NO. Each effect might mitigate vasoconstriction.

  14. Permeability Asymmetry in Composite Porous Ceramic Membranes

    NASA Astrophysics Data System (ADS)

    Kurcharov, I. M.; Laguntsov, N. I.; Uvarov, V. I.; Kurchatova, O. V.

    The results from the investigation of transport characteristics and gas transport asymmetry in bilayer composite membranes are submitted. These membranes are produced by SHS method. Asymmetric effect and hysteresis of permeability in nanoporous membranes are detected. It's shown, that permeability ratio (asymmetry value of permeability) increases up to several times. The asymmetry of permeability usually decreases monotonically with the pressure decrease.

  15. Kinky vitrinite reflectance well profiles: evidence of paleopore pressure in low-permeability, gas-bearing sequences in Rocky Mountain foreland basins

    USGS Publications Warehouse

    Law, B.E.; Nuccio, V.F.; Barker, C.E.

    1989-01-01

    Vitrinite reflectance (Rm) profiles of wells drilled in abnormally pressured, low-permeability gas-bearing sequences in Rocky Mountain foreland basins are commonly non-linear with two or more nonparallel segments. These kinky profiles are most likely due to perturbations of the thermal gradient caused by contrasting heat transfer processes associated with the development of abnormally high pressures. We interpret the intersection of the shallow and intermediate Rm segments to mark the approximate original boundary between normal-pressured, water-bearing rocks and underlying overpressured gas- and water-bearing rocks. The intersection of the intermediate and deep Rm segments marks the approximate original boundary between overpressured gas- and water-bearing rocks and underlying overpressured gas-bearing rocks. However, because overpressuring is a transient condition that eventually evolves into normal pressuring or underpressuring, these intersections may not coincide with the present top of abnormal pressuring. -from Authors

  16. Monitoring water stable isotope composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-04-01

    The water stable isotopologues 1H2H16O and 1H218O are powerful tracers of processes occurring in nature. Their slightly different masses as compared to the most abundant water isotopologue (1H216O) affect their thermodynamic (e.g. during chemical equilibrium reactions or physical phase transitions with equilibration) and kinetic (liquid and vapor phases transport processes and chemical reactions without equilibration) properties. This results in measurable differences of the isotopic composition of water within or between the different terrestrial ecosystem compartments (i.e. sub-soil, soil, surface waters, plant, and atmosphere). These differences can help addressing a number of issues, among them water balance closure and flux partitioning from the soil-plant-atmosphere continuum at the field to regional scales. In soils particularly, the isotopic composition of water (δ2H and δ18O) provides qualitative information about whether water has only infiltrated or already been re-evaporated since the last rainfall event or about the location of the evaporation front. From water stable isotope composition profiles measured in soils, it is also possible, under certain hypotheses, to derive quantitative information such as soil evaporation flux and the identification of root water uptake depths. In addition, water stable isotopologues have been well implemented into physically based Soil-Vegetation-Atmosphere Transfer models (e.g. SiSPAT-Isotope; Soil-Litter iso; TOUGHREACT) and have demonstrated their potential. However, the main disadvantage of the isotope methodology is that, contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here, we present a non-destructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling and measuring water vapor equilibrated with soil water using gas-permeable

  17. Characterizing flow behavior for gas injection: Relative permeability of CO2-brine and N2-water in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Krevor, S.

    2015-12-01

    We provide a comprehensive experimental study of steady state, drainage relative permeability curves with CO2-brine and N2-deionized water, on a single Bentheimer sandstone core with a simple two-layer heterogeneity. We demonstrate that, if measured in the viscous limit, relative permeability is invariant with changing reservoir conditions, and is consistent with the continuum-scale multiphase flow theory for water wet systems. Furthermore, we show that under capillary limited conditions, the CO2-brine system is very sensitive to heterogeneity in capillary pressure, and by performing core floods under capillary limited conditions, we produce effective relative permeability curves that are flow rate and fluid parameter dependent. We suggest that the major uncertainty in past observations of CO2-brine relative permeability curves is due to the interaction of CO2 flow with pore space heterogeneity under capillary limited conditions and is not due to the effects of changing reservoir conditions. We show that the appropriate conditions for measuring intrinsic or effective relative permeability curves can be selected simply by scaling the driving force for flow by a quantification of capillary heterogeneity. Measuring one or two effective curves on a core with capillary heterogeneity that is representative of the reservoir will be sufficient for reservoir simulation.

  18. Measurements of radon gas concentrations in dwellings of Al-Madinah Al-Munawarah province in Saudi Arabia.

    PubMed

    Mohamed, R I; Alfull, Z Z; Dawood, N D

    2014-01-01

    Indoor radon concentration levels in a large number of dwellings in Al-Madinah Al-Munawarah Province have been measured. Al-Madinah Al-Munawarah is in the western region of Saudi Arabia. It is the second holiest city in Islam after Mecca, because it is the burial place of the Islamic Prophet Muhammad. The city was divided into four regions: western (contains nine sites), eastern (contains six sites), northern (contains nine sites) and southern (contains five sites). Radon gas concentration was measured using the closed chamber technique employing 2×2 cm(2) sheets of CR-39 solid-state nuclear track detectors. The detectors were kept for a period of 5 to 6 months from September 2010 to February 2011 in order to expose to radon gas. The results of the survey in the western and eastern sites showed that the overall minimum, maximum and average radon concentration levels were 20±1.6, 27±3.2 and 21±2.5 Bq m(-3), respectively. The lowest average radon concentration (20±1.6 Bq m(-3)) was found in Al Anabes and Al Suqya in the western region and Bani Dhafar in the eastern region, while the highest average concentration (27±3.2 Bq m(-3)) was found in Teeyba in the western region and Al 'Aridh in the eastern region, with an average of 21±2.5 Bq m(-3) in the western and eastern sites of Al-Madinah Al-Munawarah. Also in the northern region, the minimum radon concentration was 20±1.6 Bq m(-3) in Oyun, while the maximum was 42±1.6 Bq m(-3) in Sayyed al Shuhadd and Hai Nasr. In the southern region, the minimum radon concentration was 25±2.6 Bq m(-3) at Hai Al Hejrah, while the maximum value was 37±2.6 Bq m(-3) at Al Awali and Dawadia. The average radon concentration was 26±2.5 Bq m(-3) for Al-Madinah Al-Munawarah (western, eastern, northern and southern regions). The corresponding annual effective dose E (mSv y(-1)) to public from (222)Rn and its progeny was estimated to be 0.66 mSv y(-1) as an average value for Al-Madinah Al-Munawarah. The authors concluded that all

  19. Sub-70 nm resolution patterning of high etch-resistant epoxy novolac resins using gas permeable templates in ultraviolet nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto

    2016-05-01

    This study aimed to expand the resolution limits of epoxy novolac resins that have enhanced etch resistance as one of the desirable resist properties for next-generation devices. Epoxy novolac resins have high etch resistance. However, because epoxy novolac resins are either solid or semisolid at room temperature, and because the use of volatile solvents in resist can be a cause of pattern failure in nanoimprint lithography, epoxy novolac resins have been of limited utility as resist. Excellent sub-70 nm resolution patterning can be achieved by diluting 15 wt % acetone in an ultraviolet nanoimprint lithography using gas-permeable templates.

  20. Permeability of alkaline magmas: a study from Campi Flegrei, Italy

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Bouvet de Maissoneuve, C.; Giordano, D.; Piochi, M.; Degruyter, W.; Bachmann, O.; Mancini, L.

    2012-04-01

    Knowledge of permeability is of paramount importance for understanding the evolution of magma degassing during pre-, syn- and post-eruptive volcanic processes. Most permeability estimates existing to date refer to magmas of calc-alkaline compositions. We report here the preliminary results of permeability measurements performed on alkali-trachyte products erupted from the Campanian Ignimbrite (CI) and Monte Nuovo (MTN), two explosive eruptions from Campi Flegrei (CF), an active, hazardous caldera west of Naples, Southern Italy. Darcian (viscous) permeability spans a wide range between 10^-11 and 10^-14 m^2. We observe that the most permeable samples are the scoria clasts from the upper units of MTN; pumice samples from the Breccia Museo facies of CI are instead the least permeable. Non-Darcian (inertial) permeability follows the same trend as Darcian permeability. The first implication of this study is that porosity in alkaline as well as calc-alkaline magmas does not exert a first order control on permeability (e.g. the MTN samples are the most permeable but not the most porous). Second, sample geometry exhibits permeability anisotropy (higher permeability in the direction of vesicle elongation), suggesting stronger degassing in the vertical direction in the conduit. In addition, inertial effects are higher across the sample. As inertial effects are potentially generated by tortuosity (or tortuous vesicle paths), tortuosity is likely higher horizontally than vertically in the conduit. Finally, the measured CF permeability values overlap with those of rhyolitic pumice clasts from the Kos Plateau Tuff (Bouvet de Maisonneuve et al., 2009), together with CI one of the major Quaternary explosive eruptions of the Mediterranean region. This indicates that gas flow is strongly controlled by the geometry of the porous media, which is generated by the bubble dynamics during magma ascent. Therefore, permeability will depend on composition through the rheological properties

  1. The Impacts of Rock Composition and Properties on the Ability to Stimulate Production of Ultra-Low Permeability Oil and Gas Reservoirs Through Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Sone, H.; Kohli, A. H.; Heller, R. J.

    2014-12-01

    In this talk, we present the results of several research projects investigating how rock properties, natural fractures and the state of stress affect the success of hydraulic fracturing operations during stimulation of shale gas and tight oil reservoirs. First, through laboratory measurements on samples of the Barnett, Eagle Ford, Haynesville and Horn River shales, we discuss pore structure, adsorption and permeability as well as the importance of clay content on the viscoplastic behavior of shale formations. Second, we present several lines of evidence that indicates that the principal way in which hydraulic fracturing stimulates production from shale gas reservoirs is by inducing slow slip on pre-existing fractures and faults, which are not detected by conventional microseismic monitoring, Finally, we discuss how hydraulic fracturing can be optimized in response to variations of rock properties.

  2. Synthesis and analysis of novel polymers with high permselectivity and permeability in gas separation applications. Progress report, December 1990--November 1991

    SciTech Connect

    Koros, W.J.; Paul, D.R.

    1991-11-15

    We have synthesized and completed characterization of permeability and selectivity properties of a group of polysulfones and polyether ketones with the potential for higher use temperatures, as well as members of a series of polyesters derived from spirobiindane bisphenol monomer in conjunction with meta and para substituted diacid chlorides. We have also synthesized and characterized the gas transport and thermal properties of diphenyl substituted polyphenylene oxide. The diphenyl substituted material has a potential for higher temperature applications than the standard dimethyl substituted polymer. The temperature dependence of the gas transport properties for the oxygen/nitrogen system was characterized over the range from 35 to 65{degree}C for both of these analog materials.

  3. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah. Final report

    SciTech Connect

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey`s Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  4. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah

    SciTech Connect

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey's Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  5. Production of Mg and Al Auger electrons by noble gas ion bombardment of Mg and Al surfaces

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Pepper, S. V.

    1976-01-01

    Relative production efficiencies of Mg and Al Auger electrons by He, Ne, Ar, Kr, and Xe ion bombardment are reported as a function of ion energy for energies not exceeding 3 keV. The experimental apparatus employed consisted of a LEED-Auger system equipped with an ion gun and a four-grid retarding-potential analyzer. It is found that: (1) the shape of the ion-excited Auger signal was independent of the rare gas and quite symmetric; (2) the Al signal was about an order of magnitude smaller than the Mg signal for a given bombarding species and ion-gun voltage; (3) no signal was observed for He(+) bombardment under any of the experimental conditions; (4) signal strengths were independent of temperature and ion dose; (5) the Auger production efficiencies differed by no more than a factor of two among the different gases - except for He(+) - on a given metal; (6) all the signal strengths increased with increasing ion-gun voltage, with no maximum exhibited; and (7) the apparent threshold energy for the Al signal was higher than that for the Mg signal. The differences between the results for the two metals are attributed to the fact that the Al 2p orbital lies deeper in energy and closer to the nucleus than the corresponding Mg orbital.

  6. First principles prediction of the gas-phase precursors for AlN sublimation growth.

    PubMed

    Li, Yanxin; Brenner, Donald W

    2004-02-20

    Using a new, parameter-free first principles strategy for modeling sublimation growth, we show that while Al and N2 dominate gas concentrations in AlN sublimation growth chambers under typical growth conditions, N2 is undersaturated with respect to the crystal and therefore cannot be a growth precursor. Instead, our calculations predict that the nitrogen-containing precursors are Al(n)N (n=2,3,4), in stark contrast to assumptions used in all previous modeling studies of this system.

  7. Electrodeposited MCrAlY Coatings for Gas Turbine Engine Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-11-01

    Electrolytic codeposition is a promising alternative process for fabricating MCrAlY coatings. The coating process involves two steps, i.e., codeposition of CrAlY-based particles and a metal matrix of Ni, Co, or (Ni,Co), followed by a diffusion heat treatment to convert the composite coating to the desired MCrAlY microstructure. Despite the advantages such as low cost and non-line-of-sight, this coating process is less known than electron beam-physical vapor deposition and thermal spray processes for manufacturing high-temperature coatings. This article provides an overview of the electro-codeposited MCrAlY coatings for gas turbine engine applications, highlighting the unique features of this coating process and some important findings in the past 30 years. Challenges and research opportunities for further optimization of this type of MCrAlY coatings are also discussed.

  8. Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode

    SciTech Connect

    Das, Subhashis Majumdar, S.; Kumar, R.; Bag, A.; Chakraborty, A.; Biswas, D.

    2015-08-28

    Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.

  9. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  10. Structure/Permeability Relationships Of Polyimide Membranes

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; Yamamoto, H.; Mi, Y.; Stern, S. A.

    1995-01-01

    Report describes experimental study of permeabilities, by each of five gases, of membranes made of four different polyimides. Conducted to gain understanding of effects of molecular structures of membranes on permeabilities and to assess potential for exploitation of selective permeability in gas-separation processes. Gases used: H2, O2, N2, CO2, and CH4.

  11. A Fast Network Flow Model is used in conjunction with Measurements of Filter Permeability to calculate the Performance of Hot Gas Filters

    SciTech Connect

    VanOsdol, J.G.; Chiang, T-K.

    2002-09-19

    Two different technologies that are being considered for generating electric power on a large scale by burning coal are Pressurized Fluid Bed Combustion (PFBC) systems and Integrated Gasification and Combined Cycle (IGCC) systems. Particulate emission regulations that have been proposed for future systems may require that these systems be fitted with large scale Hot Gas Clean-Up (HGCU) filtration systems that would remove the fine particulate matter from the hot gas streams that are generated by PFBC and IGCC systems. These hot gas filtration systems are geometrically and aerodynamically complex. They typically are constructed with large arrays of ceramic candle filter elements (CFE). The successful design of these systems require an accurate assessment of the rate at which mechanical energy of the gas flow is dissipated as it passes through the filter containment vessel and the individual candle filter elements that make up the system. Because the filtration medium is typically made of a porous ceramic material having open pore sizes that are much smaller than the dimensions of the containment vessel, the filtration medium is usually considered to be a permeable medium that follows Darcy's law. The permeability constant that is measured in the lab is considered to be a function of the filtration medium only and is usually assumed to apply equally to all the filters in the vessel as if the flow were divided evenly among all the filter elements. In general, the flow of gas through each individual CFE will depend not only on the geometrical characteristics of the filtration medium, but also on the local mean flows in the filter containment vessel that a particular filter element sees. The flow inside the CFE core, through the system manifolds, and inside the containment vessel itself will be coupled to the flow in the filter medium by various Reynolds number effects. For any given filter containment vessel, since the mean flows are different in different locations

  12. Numerical investigation of permeability models for low viscosity magmas: application to the 2007 Stromboli effusive eruption

    NASA Astrophysics Data System (ADS)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Landi, Patrizia; Polacci, Margherita

    2016-04-01

    Magma permeability is the most important factor controlling the transition between effusive and explosive activity of a basaltic eruption. Indeed, when low viscosity magmas are not permeable enough, volatiles stay trapped into the melt, expanding and pushing up more and more magma as the pressure decreases. As soon as the volume fraction of the gas, or the overpressure of the bubbles, or the strain rate of the melt becomes too large, magma fragments, generating an explosive eruption. On the contrary, if magma is sufficiently permeable, gas is able to decouple from the melt and fragmentation does not occur, causing, thus, an effusive eruption. A correct modelisation of gas/magma decoupling is, therefore, fundamental to properly understand the ascent dynamics occurring during an eruption. Here we study several permeability models for a low viscosity magma using a 1D steady-state model for magma ascent dynamics, focussing, in particular, on the 2007 effusive eruption at Stromboli volcano, Italy. We compare the numerical solutions computed using respectively Darcy's and Forchheimer's law. We also take into account the different expressions for Darcian permeability introduced by Bai et al. (2010, 2011) for Stromboli volcano, comparing them against a new expression for permeability derived from the data collected by Polacci et al. (2009) on Stromboli scoria. The numerical results show that using the permeability expressions of Bai et al. (2010, 2011) with Darcy's law, magma fragments into an explosive eruption. Using the new permeability model, instead, the decoupling between gas and magma is sufficient to generate an effusive eruption. However, when Forchheimer's law is adopted, fragmentation is always achieved, even with our new permeability. For a broader investigation on permeability, we also adopt the permeability relation introduced by Degruyter et al. (2012) as a function of three parameters: bubble number density, throat-bubble size ratio, and tortuosity factor

  13. Chemically Designed Molecular Interfaces in Cross-Linked Poly(ethylene glycol)/Silica Nanocomposites Reveal Strong Size-Dependent Trends in Gas Permeability

    NASA Astrophysics Data System (ADS)

    Su, Norman; Urban, Jeffrey

    2015-03-01

    Polymer nanocomposite membranes can exhibit gas separation performance that surpasses conventional polymeric membranes. While promising, the optimization of nanocomposite membranes requires a fundamental understanding of the transport mechanism and interfacial effects between the inorganic and polymer phase that is currently limited to empirical relationships. Synthesized nanocomposites often consist of poorly distributed and polydisperse inorganic nanomaterials. It is known that polymer dynamics can change drastically upon introduction of an inorganic phase, which can dramatically alter molecular transport behavior. Here, we systematically explore the role of nanoparticle sizes from 12 to 130 nm on polymer dynamics and permeability in a series of cross-linked poly(ethylene glycol)/silica nanocomposite membranes. The nanocomposites are well-dispersed and display excellent homogeneity throughout. Size-dependent broadening of the Tg indicates strong attractive interactions especially at high surface area loadings, which lead to deviations in permeability not captured by Maxwell's model. Chemical modifications of silica at this interface can yield significantly different polymer dynamics than previously observed with enhanced transport and mechanical properties.

  14. Ammonia quantitative analysis model based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model

    PubMed Central

    Ma, Rongfei

    2015-01-01

    In this paper, ammonia quantitative analysis based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model was proposed. Al plate anodic gas-ionization sensor was used to obtain the current-voltage (I-V) data. Measurement data was processed by non-linear bistable dynamics model. Results showed that the proposed method quantitatively determined ammonia concentrations. PMID:25975362

  15. Theoretical investigation of the long-lived metastable AlO2+ dication in gas phase

    NASA Astrophysics Data System (ADS)

    Sghaier, Onsi; Abdallah, Hassan H.; Abdullah, Hewa Y.; Jaidane, Nejm Eddine; Al Mogren, Muneerah Mogren; Hochlaf, Majdi

    2016-09-01

    We report the results of a detailed theoretical study of the electronic ground and excited states of the gas-phase doubly charged ion AlO2+ using high-level ab initio computer calculations. Both standard and explicitly correlated methods were used to calculate their potential energy curves and spectroscopic parameters. These computations show that the ground state of AlO2+ is X2Π. The internuclear equilibrium distance of AlO2+(X2Π) is computed 1.725 Å. We also deduced the adiabatic double ionization and charge stripping energies of AlO to be about 27.45 eV and 17.80 eV, respectively.

  16. Permeability changes in coal resulting from gas desorption. Second quarterly report, November 15, 1989--February 15, 1990

    SciTech Connect

    Levine, J.R.; Tsay, F.

    1990-12-31

    Measurement of sorption capacity of coals by microbalance in a high pressure environment requires that corrections be made for the buoyancy of the gas that is displaced by the solid coal. As the pressure increases, the gas density increases, requiring that a correction factor be applied to the weight of the sample as measured by microbalance. A brief report summarizing this correction is attached as Appendix A.

  17. The beneficial effects of a gas-permeable flask for expansion of Tumor-Infiltrating lymphocytes as reflected in their mitochondrial function and respiration capacity

    PubMed Central

    Forget, Marie-Andrée; Haymaker, Cara; Dennison, Jennifer B; Toth, Christopher; Maiti, Sourindra; Fulbright, Orenthial J; Cooper, Laurence J N; Hwu, Patrick; Radvanyi, Laszlo G; Bernatchez, Chantale

    2016-01-01

    Adoptive transfer of autologous ex vivo expanded tumor-infiltrating lymphocytes (TIL) is a highly successful cell therapy approach in the treatment of late-stage melanoma. Notwithstanding the success of this therapy, only very few centers worldwide can provide it. To make this therapy broadly available, one of the major obstacles to overcome is the complexity of culturing the TIL. Recently, major efforts have been deployed to resolve this issue. The use of the Gas-permeable flask (G-Rex) during the REP has been one application that has facilitated this process. Here we show that the use of this new device is able to rescue poor TIL growth and maintain clonal diversity while supporting an improved mitochondrial function. PMID:27057427

  18. CO2 gas detection properties of a TIO2/Al2O3 heterostructure under UV light irradiation

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Demir, Mehmet; Yıldız, Dilber Esra; Acar, Selim

    2015-05-01

    Al/TiO2/p-Si and Al/TİO2/Al2O3/p-Si samples were prepared using the atomic layer deposition method (ALD) and their gas sensing properties were investigated. The electrical properties of the samples were studied using a two probe method in the temperature range 25-230 °C and at room temperature UV conditions. The TiO2/Al2O3 heterojunction sample exhibited an excellent gas sensing response to CO2 gas at room temperature and improved the effect of UV light irradiation. The results showed that heterostructures helped to improve the gas sensor properties, affected the sensing at room temperature and thus guided the design of photocatalysts. The TiO2/Al2O3 heterojunction prepared using this method can be used as a material for semiconductor gas sensors detecting poisonous gases like CO2 at room temperature with high sensitivity and selectivity.

  19. Effects of water and stress upon permeability to gas of paludal and coastal sands: USDOE multiwell experiment. [Mesa Verde sandstones from Garfield County, Colorado

    SciTech Connect

    Randolph, P.; Soeder, D.J.; Chowdiah, P.

    1985-02-01

    Detailed parametric analyses of the effects of (1) net stress on the rock matrix and (2) fractional water saturation of pore volume upon permeability to gas were performed for four samples from each of two Mesa Verde depositional environments (paludal and coastal). This included measurement of the Klinkenberg parameters for the two net stresses for each sample and calculation of flow path characteristics (width and upper limit of tortuosity). The work simultaneously involved three categories of activity: (1) measuring matrix parameter values for computer simulation of production from DOE's MWX experiment; (2) improving understanding of tight sandstone pore morphology and the physical principles that control gas content and gas transport in the in-situ reservoir; and (3) advancing laboratory core analysis technology such that results are more likely to provide a valid description of the undisturbed in-situ reservoir from which the samples were obtained. Conclusions, implications of results obtained, and recommendations for future action on each of these topics are presented under the following subheadings: matrix parameters for computer simulation of production; pore morphology and the physics of fluid transport; and advances in core analysis technology. 9 refs., 38 figs., 10 tabs.

  20. First Principles Prediction of the Gas-Phase Precursors for AlN Sublimation Growth

    NASA Astrophysics Data System (ADS)

    Li, Yanxin; Brenner, Donald W.

    2004-02-01

    Using a new, parameter-free first principles strategy for modeling sublimation growth, we show that while Al and N2 dominate gas concentrations in AlN sublimation growth chambers under typical growth conditions, N2 is undersaturated with respect to the crystal and therefore cannot be a growth precursor. Instead, our calculations predict that the nitrogen-containing precursors are AlnN (n=2,3,4), in stark contrast to assumptions used in all previous modeling studies of this system.

  1. Determination of permeability index using Stoneley slowness analysis, NMR models, and formation evaluations: a case study from a gas reservoir, south of Iran

    NASA Astrophysics Data System (ADS)

    Hosseini, Mirhasan; Javaherian, Abdolrahim; Movahed, Bahram

    2014-10-01

    In hydrocarbon reservoirs, permeability is one of the most critical parameters with a significant role in the production of hydrocarbon resources. Direct determination of permeability using Stoneley waves has always had some difficulties. In addition, some un-calibrated empirical models such as Nuclear Magnetic Resonance (NMR) models and petrophysical evaluation model (intrinsic permeability) do not provide reliable estimates of permeability in carbonate formations. Therefore, utilizing an appropriate numerical method for direct determination of permeability using Stoneley waves as well as an appropriate calibration method for the empirical models is necessary to have reliable results. This paper shows the application of a numerical method, called bisection method, in the direct determination of permeability from Stoneley wave slowness. In addition, a linear regression (least squares) method was used to calibrate the NMR models including Schlumberger Doll Research (SDR) and Timur-Coates models as well as the intrinsic permeability equation (permeability from petrophysical evaluations). The Express Pressure Tester (XPT) permeability was considered as an option for the reference permeability. Therefore, all permeability models were validated for the Stoneley permeability and calibrated for the empirical models with the XPT permeability. In order to have a quantitative assessment on the results and compare the results before and after the calibration, the Root Mean Squares Error (RMSE) was calculated for each of the used models. The results for the Stoneley permeability showed that, in many points there was not much difference between the Stoneley permeability calculated by the bisection method and the XPT permeability. Comparing the results showed that the calibration of the empirical models reduced their RMSE values. As a result of the calibration, the RMSE was decreased by about 39% for the SDR model, 18% for the Timur-Coates model, and 91% for the petrophysical

  2. Corrosion Resistance of Fe-Al/Al2O3 Duplex Coating on Pipeline Steel X80 in Simulated Oil and Gas Well Environment

    NASA Astrophysics Data System (ADS)

    Huang, Min; Wang, Yu; Wang, Ping-Gu; Shi, Qin-Yi; Zhang, Meng-Xian

    2015-04-01

    Corrosion resistant Fe-Al/Al2O3 duplex coating for pipeline steel X80 was prepared by a combined treatment of low-temperature aluminizing and micro-arc oxidation (MAO). Phase composition and microstructure of mono-layer Fe-Al coating and Fe-Al/Al2O3 duplex coating were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). Corrosion resistance of the coated pipeline steel X80 in a simulated oil and gas well condition was also investigated. Mono-layer Fe-Al coating consists of Fe2Al5 and FeAl, which is a suitable transitional layer for the preparation of ceramic coating by MAO on the surface of pipeline steel X80. Under the same corrosion condition at 373 K for 168 h with 1 MPa CO2 and 0.1 MPa H2S, corrosion weight loss rate of pipeline steel X80 with Fe-Al/Al2O3 duplex coating decreased to 23% of original pipeline steel X80, which improved by 10% than that of pipeline steel X80 with mono-layer Fe-Al coating. It cannot find obvious cracks and pits on the corrosion surface of pipeline steel X80 with Fe-Al/Al2O3 duplex coating.

  3. Nitrogen recovery from liquid manure using gas-permeable membranes: Effect of wastewater strength and pH control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The costs of fertilizers have rapidly increased in recent years, especially nitrogen (N) fertilizer such as anhydrous ammonia which is made from natural gas. Thus, new treatment technologies for abatement of ammonia emissions in livestock operations are being focused on N recovery in addition to the...

  4. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  5. Luminescence study of nanosized Al2O3:Tb3+ obtained by gas-dispersed synthesis

    NASA Astrophysics Data System (ADS)

    Berezovskaya, I. V.; Poletaev, N. I.; Khlebnikova, M. E.; Zatovsky, I. V.; Bychkov, K. L.; Efryushina, N. P.; Khomenko, O. V.; Dotsenko, V. P.

    2016-09-01

    Terbium-doped Al2O3 samples were obtained by gas-dispersed synthesis. It was shown that the resulting powders, with particle sizes of 10-70 nm, consist of a mixture of transition aluminas, among which the δ *-polymorph is dominant. The luminescence properties of Al2O3:Tb3+ have been studied upon excitation in the UV-visible range of the spectrum. It was found that Tb3+ ions cause several groups of inhomogeneously broadened emission bands in the range of 470-640 nm, which are characteristic for disordered materials. In addition, the emission spectra contain a broad band at about 450 nm and several narrower ones in the 680-720 nm region. These features are attributed to surface defects and impurity Cr3+ ions occupying Al3+ octahedral positions, respectively.

  6. Luminescence study of nanosized Al2O3:Tb3+ obtained by gas-dispersed synthesis

    NASA Astrophysics Data System (ADS)

    Berezovskaya, I. V.; Poletaev, N. I.; Khlebnikova, M. E.; Zatovsky, I. V.; Bychkov, K. L.; Efryushina, N. P.; Khomenko, O. V.; Dotsenko, V. P.

    2016-09-01

    Terbium-doped Al2O3 samples were obtained by gas-dispersed synthesis. It was shown that the resulting powders, with particle sizes of 10–70 nm, consist of a mixture of transition aluminas, among which the δ *-polymorph is dominant. The luminescence properties of Al2O3:Tb3+ have been studied upon excitation in the UV–visible range of the spectrum. It was found that Tb3+ ions cause several groups of inhomogeneously broadened emission bands in the range of 470–640 nm, which are characteristic for disordered materials. In addition, the emission spectra contain a broad band at about 450 nm and several narrower ones in the 680–720 nm region. These features are attributed to surface defects and impurity Cr3+ ions occupying Al3+ octahedral positions, respectively.

  7. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    PubMed

    Weiszenstein, Martin; Pavlikova, Nela; Elkalaf, Moustafa; Halada, Petr; Seda, Ondrej; Trnka, Jan; Kovar, Jan; Polak, Jan

    2016-01-01

    Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2) on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated). Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.

  8. PAH assessment in the main Brazilian offshore oil and gas production area using semi-permeable membrane devices (SPMD) and transplanted bivalves

    NASA Astrophysics Data System (ADS)

    André Lourenço, Rafael; Francisco de Oliveira, Fábio; Haddad Nudi, Adriana; Rebello Wagener, Ângela de Luca; Guadalupe Meniconi, Maria de Fátima; Francioni, Eleine

    2015-06-01

    The Campos Basin is Brazil's main oil and gas production area. In 2013, more than 50 million cubic meters of produced water (PW) was discharged into these offshore waters. Despite the large volumes of PW that are discharged in the Campos Basin each day, the ecological concern of the chemicals in the PW are not completely understood. Polycyclic aromatic hydrocarbons (PAH) are the most important contributors to the ecological hazards that are posed by discharged PW. This study aimed to evaluate the potential bioaccumulation of PAH using transplanted bivalves (Nodipecten nodosus) and semi-permeable membrane devices (SPMD). The study was conducted in two platforms that discharge PW (P19 and P40). Another platform that does not discharge PW (P25) was investigated for comparison with the obtained results. Time-integrated hydrocarbon concentrations using SPMD and transplanted bivalves were estimated from the seawater near the three platforms. The bioaccumulation of the PAH in the transplanted bivalves at platforms P19 and P40 were up to fivefold greater than the bioaccumulation of the PAH at platform P25. The lowest PAH concentrations were estimated for platform P25 (4.3-6.2 ng L-1), and the highest PAH concentrations were estimated for platform P19 (9.2-37.3 ng L-1). Both techniques were effective for determining the bioavailability of the PAH and for providing time-integrated hydrocarbon concentrations regarding oil and gas production activities.

  9. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware

    PubMed Central

    Weiszenstein, Martin; Pavlikova, Nela; Elkalaf, Moustafa; Halada, Petr; Seda, Ondrej; Trnka, Jan; Kovar, Jan; Polak, Jan

    2016-01-01

    Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2) on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated). Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux. PMID:27023342

  10. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    PubMed

    Weiszenstein, Martin; Pavlikova, Nela; Elkalaf, Moustafa; Halada, Petr; Seda, Ondrej; Trnka, Jan; Kovar, Jan; Polak, Jan

    2016-01-01

    Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2) on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated). Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux. PMID:27023342

  11. Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating

    NASA Astrophysics Data System (ADS)

    Rosli, Z. M.; Kwan, W. L.; Juoi, J. M.

    2016-07-01

    Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (RN), and substrate temperature (TS). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % RN. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB2 phase within the coatings. The TS, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.

  12. Permeability changes in coal resulting from gas desorption. Ninth quarterly report, October 1, 1991--December 31, 1991

    SciTech Connect

    Not Available

    1992-12-31

    Eventually, the weight stabilized and the measurements commenced. Helium pressure was increased slowly and carefully, first to 15 psig then to 28 psig. The readout for the balance unit continued to exhibit unexplained fluctuation and output. Buoyancy of the empty pan was measured at pressures ranging up to 800 psig measured at approximately 100 psig increments. The balance weighing unit exhibited a progressive increase in weight with increasing pressure demonstrating that the displacement volume of the tare weight side of the balance was greater than the displacement volume of the weighing pan side of the balance. Therefore, the increased gas pressure produced a greater buoyancy of the tare side, producing a net increase in weight. The carefully collected data showed a linear change in weight with pressure (see accompanying diagram). A schematic diagram of the new configuration of the sorption apparatus is depicted in the accompanying figure.

  13. Gas-tight triblock-copolymer membranes are converted to CO2 permeable by insertion of plant aquaporins

    PubMed Central

    Uehlein, Norbert; Otto, Beate; Eilingsfeld, Adrian; Itel, Fabian; Meier, Wolfgang; Kaldenhoff, Ralf

    2012-01-01

    We demonstrate that membranes consisting of certain triblock-copolymers were tight for CO2. Using a novel approach, we provide evidence for aquaporin facilitated CO2 diffusion. Plant aquaporins obtained from heterologous expression were inserted into triblock copolymer membranes. These were employed to separate a chamber with a solution maintaining high CO2 concentrations from one with depleted CO2 concentrations. CO2 diffusion was detected by measuring the pH change resulting from membrane CO2 diffusion from one chamber to the other. An up to 21 fold increase in diffusion rate was determined. Besides the supply of this proof of principle, we could provide additional arguments in favour of protein facilitated CO2 diffusion to the vivid on-going debate about the principles of membrane gas diffusion in living cells. PMID:22844579

  14. Ultraporous superhydrophobic gas-permeable nano-layers by scalable solvent-free one-step self-assembly

    NASA Astrophysics Data System (ADS)

    Liu, Guanyu; Wong, William S. Y.; Nasiri, Noushin; Tricoli, Antonio

    2016-03-01

    Superhydrophobic materials with excellent humidity tolerance, high porosity and light transmittance are being investigated for numerous applications including moisture-sensitive catalysts and perovskite solar cells. Here, we report the one-step solvent-free synthesis of ultraporous superhydrophobic nano-layers by the on-the-fly functionalization of nanoparticle aerosols. Short exposure of surfaces to hot Mn3O4, ZnO and TiO2 aerosols results in ultraporous nanoparticle networks with repulsive dewetting state approaching ideal Cassie-Baxter superhydrophobicity. In addition to showcasing sliding angles of ca. 0° and very low contact angle hysteresis of 3° +/- 2°, these optimal nano-layers have up to 98% porosity and pore size of several micrometres, a key feature to enable efficient penetration of gases to the substrate surface. The stability of this ultraporous superhydrophobic morphology is demonstrated by rapidly applying Moses effect-functionality to substrates that parts water up to 5 mm high. This scalable synthesis method offers a flexible and rapid approach for the production of numerous moisture-resistant devices including gas sensors, catalysts and perovskite solar cells.Superhydrophobic materials with excellent humidity tolerance, high porosity and light transmittance are being investigated for numerous applications including moisture-sensitive catalysts and perovskite solar cells. Here, we report the one-step solvent-free synthesis of ultraporous superhydrophobic nano-layers by the on-the-fly functionalization of nanoparticle aerosols. Short exposure of surfaces to hot Mn3O4, ZnO and TiO2 aerosols results in ultraporous nanoparticle networks with repulsive dewetting state approaching ideal Cassie-Baxter superhydrophobicity. In addition to showcasing sliding angles of ca. 0° and very low contact angle hysteresis of 3° +/- 2°, these optimal nano-layers have up to 98% porosity and pore size of several micrometres, a key feature to enable efficient

  15. Mechanical properties of aluminized CoCrAlY coatings in advanced gas turbine blades

    SciTech Connect

    Kameda, J.; Bloomer, T.E. |; Sugita, Y.; Ito, A.; Sakurai, S.

    1997-07-01

    The microstructure/composition and mechanical properties (22-950 C) in aluminized CoCrAlY coatings of advanced gas turbine blades have been examined using scanning Auger microprobe and a small punch (SP) testing method. Aluminized coatings were made of layered structure divided into four regimes: (1) Al enriched and Cr depleted region, (2) Al and Cr graded region, (3) fine grained microstructure with a mixture of Al and Cr enriched phases and (4) Ni/Co interdiffusion zone adjacent to the interface SP tests demonstrated strong dependence of the deformation and fracture behavior on the various coatings regimes. Coatings 1 and 2 showed higher microhardness and easier formation of brittle cracks in a wide temperature range, compared to coatings 3 and 4. The coating 3 had lower room temperature ductility and conversely higher elevated temperature ductility than the coating 4 due to a precipitous ductility increase above 730 C. The integrity of aluminized coatings while in-service is discussed in light of the variation in the low cycle fatigue life as well as the ductility in the layered structure.

  16. Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers.

    PubMed

    Hvozdara, L; Gianordoli, S; Strasser, G; Schrenk, W; Unterrainer, K; Gornik, E; Murthy, C S; Kraft, M; Pustogow, V; Mizaikoff, B; Inberg, A; Croitoru, N

    2000-12-20

    We demonstrate what we believe is the first application of the recently developed electrically pumped GaAs/AlGaAs quantum-cascade lasers in a spectroscopic gas-sensing system by use of hollow waveguides. Laser light with an emission maximum at 10.009 microm is used to investigate the mid-infrared absorption of ethene at atmospheric pressure. We used a 434-mm-long silver-coated silica hollow waveguide as a sensing element, which served as a gas absorption cell. Different mixtures of helium and ethene with known concentrations are flushed through the waveguide while the laser radiation that passes through the waveguide is analyzed with a Fourier-transform infrared spectrometer. The experimentally obtained discrete ethene spectrum agrees well with the calculated spectrum. A detection threshold of 250 parts per million is achieved with the current setup.

  17. Permeability changes in coal resulting from gas desorption. Twelfth quarterly report, June 1, 1992--August 31, 1992

    SciTech Connect

    Levine, J.R.; Johnson, P.M.

    1992-12-31

    During this quarter, work was continued on measuring the methane sorption capacity of dispersed organic matter in gas shales and maceral concentrates derived from a Kentucky coal. Although previous results have demonstrated that the microbalance technique is successful in generating sorption isotherm curves, the accuracy of the technique has not been well established. The only previous test that allowed a comparison between gravimetric data and volumetric data showed a significant discrepancy with the gravimetric data indicating a considerably greater sorption quantities than the volumetric data. During the present quarter we took advantage of an opportunity to join in a round-robin analysis of sorption capacity of carbonatious shales. A suite of four samples was sent to six laboratories with each lab measuring sorption capacity for methane and reporting the results to a central lab which would compile all of the data for comparitive purposes. Of course, none of the other laboratories were using the gravimetric approach for measuring methane sorption capacity. So this provides a unique opportunity to test the accuracy of our methods.

  18. Ultraporous superhydrophobic gas-permeable nano-layers by scalable solvent-free one-step self-assembly.

    PubMed

    Liu, Guanyu; Wong, William S Y; Nasiri, Noushin; Tricoli, Antonio

    2016-03-21

    Superhydrophobic materials with excellent humidity tolerance, high porosity and light transmittance are being investigated for numerous applications including moisture-sensitive catalysts and perovskite solar cells. Here, we report the one-step solvent-free synthesis of ultraporous superhydrophobic nano-layers by the on-the-fly functionalization of nanoparticle aerosols. Short exposure of surfaces to hot Mn3O4, ZnO and TiO2 aerosols results in ultraporous nanoparticle networks with repulsive dewetting state approaching ideal Cassie-Baxter superhydrophobicity. In addition to showcasing sliding angles of ca. 0° and very low contact angle hysteresis of 3° ± 2°, these optimal nano-layers have up to 98% porosity and pore size of several micrometres, a key feature to enable efficient penetration of gases to the substrate surface. The stability of this ultraporous superhydrophobic morphology is demonstrated by rapidly applying Moses effect-functionality to substrates that parts water up to 5 mm high. This scalable synthesis method offers a flexible and rapid approach for the production of numerous moisture-resistant devices including gas sensors, catalysts and perovskite solar cells.

  19. Use of fluid-ventilated, gas-permeable scleral lens for management of severe keratoconjunctivitis sicca secondary to chronic graft-versus-host disease.

    PubMed

    Takahide, Kikuchi; Parker, Pablo M; Wu, Michael; Hwang, William Y K; Carpenter, Paul A; Moravec, Carina; Stehr, Barbara; Martin, Paul J; Rosenthal, Perry; Forman, Stephen J; Flowers, Mary E D

    2007-09-01

    Keratoconjunctivitis sicca (KCS) occurs in 40%-60% of patients with chronic graft-versus-host-disease (cGVHD) after allogeneic hematopoietic cell transplantation. Although immunosuppressive therapy is the primary treatment of chronic GVHD, ocular symptoms require measures to improve ocular lubrication, decrease inflammation, and maintain mucosal integrity. The liquid corneal bandage provided by a fluid-ventilated, gas-permeable scleral lens (SL) has been effective in mitigating symptoms and resurfacing corneal erosions in patients with KCS related to causes other than cGVHD. We report outcomes in 9 consecutive patients referred for SL fitting for cGVHD-related severe KCS that was refractory to standard treatments. All patients reported improvement of ocular symptoms and reduced the use of topical lubricants after SL fitting resulting from decreased evaporation. No serious adverse events or infections attributable to the SL occurred. The median Ocular Surface Disease Index improved from 81 (75-100) to 21 (6-52) within 2 weeks after SL fitting, and was 12 (2-53) at the time of last contact, 1-23 months (median, 8.0) after SL fitting. Disability related to KCS resolved in 7 patients after SL fitting. The use of SL appears to be safe and effective in patients with severe cGVHD-related KCS refractory to conventional therapies.

  20. A cost-efficient and portable sulfide device with in situ integrating gas-permeable porous tube isolation and long path absorbance detection.

    PubMed

    Yang, Xuemei; Du, Jianxiu; Li, Yinhuan

    2015-08-15

    A cost-efficient and portable device for detecting sulfide at submicromolar level was fabricated by in situ integrating gas-permeable porous tube isolation and long path absorbance detection. The device consisted of a pair of petri dish, having a diametrically strung porous membrane tube in the top cover. The ends of the tube were terminated by a light emitting diode and a photodiode via plugging acrylic optical fiber into the light input/output of tees. Sulfide put in the bottom dish was liberated by addition of diluted acid through a port on the cover. The liberated hydrogen sulfide diffused into the porous membrane tube and reacted with alkaline nitroprusside acceptor in the tube. The color change in the long path porous membrane tube cell was real-time monitored in the transmission mode. The device responded linearly to sulfide concentration over the range of 0.5-150.0μmol/L with relative standard deviations less than 5% in all cases. The limits of detection for sulfide were within the range 0.2-1.5μmol/L in aqueous standard and newborn calf serum. The device was successfully applied to the determination of sulfide in human serum samples.

  1. A cost-efficient and portable sulfide device with in situ integrating gas-permeable porous tube isolation and long path absorbance detection.

    PubMed

    Yang, Xuemei; Du, Jianxiu; Li, Yinhuan

    2015-08-15

    A cost-efficient and portable device for detecting sulfide at submicromolar level was fabricated by in situ integrating gas-permeable porous tube isolation and long path absorbance detection. The device consisted of a pair of petri dish, having a diametrically strung porous membrane tube in the top cover. The ends of the tube were terminated by a light emitting diode and a photodiode via plugging acrylic optical fiber into the light input/output of tees. Sulfide put in the bottom dish was liberated by addition of diluted acid through a port on the cover. The liberated hydrogen sulfide diffused into the porous membrane tube and reacted with alkaline nitroprusside acceptor in the tube. The color change in the long path porous membrane tube cell was real-time monitored in the transmission mode. The device responded linearly to sulfide concentration over the range of 0.5-150.0μmol/L with relative standard deviations less than 5% in all cases. The limits of detection for sulfide were within the range 0.2-1.5μmol/L in aqueous standard and newborn calf serum. The device was successfully applied to the determination of sulfide in human serum samples. PMID:25966404

  2. In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good manufacturing practice.

    PubMed

    Amps, K J; Jones, M; Baker, D; Moore, H D

    2010-06-01

    The development of efficient and robust methods for the cryopreservation of human embryonic stem cells (hESCs) is important for the production of master and working cell banks for future clinical applications. Such methods must meet requirements of good manufacturing practice (GMP) and maintain genetic stability of the cell line. We investigated the culture of four Shef hESC lines in gas permeable 'culture cassettes' which met GMP compliance. hESCs adhered rapidly to the membrane and colonies displayed good proliferation and expansion. After 5-7 days of culture, hESCs were cryopreserved in situ using 10% dimethyl sulphoxide in foetal calf serum at approximately 1 degrees C/min. This method was compared with a control of standard flask culture and cryopreservation in vials. Post-thaw cassette culture displayed relative proliferation ratios (fold increase above flask/cryovial culture) of 114 (Shef 4), 8.2 (Shef 5), 195 (shef 6) and 17.5 (Shef 7). The proportion of cells expressing pluripotency markers after cryopreservation was consistently greater in cassette culture than for the control with the markers SSEA3 and SSEA4 exhibiting a significant increase (P> or =0.05). The efficiency of cell line culture in cassette was associated with the overall passage number of the cell line. The procedure enables cryopreservation of relatively large quantities of hESCs in situ, whilst returning high yields of viable, undifferentiated stem cells, thereby increasing capacity to scale up with greater efficacy.

  3. In situ O2 dynamics in submerged Isoetes australis: varied leaf gas permeability influences underwater photosynthesis and internal O2.

    PubMed

    Pedersen, Ole; Pulido, Cristina; Rich, Sarah Meghan; Colmer, Timothy David

    2011-08-01

    A unique type of vernal pool are those formed on granite outcrops, as the substrate prevents percolation so that water accumulates in depressions when precipitation exceeds evaporation. The O(2) dynamics of small, shallow vernal pools with dense populations of Isoetes australis were studied in situ, and the potential importance of the achlorophyllous leaf bases to underwater net photosynthesis (P(N)) and radial O(2) loss to sediments is highlighted. O(2) microelectrodes were used in situ to monitor pO(2) in leaves, shallow sediments, and water in four vernal pools. The role of the achlorophyllous leaf bases in gas exchange was evaluated in laboratory studies of underwater P(N), loss of tissue water, radial O(2) loss, and light microscopy. Tissue and sediment pO(2) showed large diurnal amplitudes and internal O(2) was more similar to sediment pO(2) than water pO(2). In early afternoon, sediment pO(2) was often higher than tissue pO(2) and although sediment O(2) declined substantially during the night, it did not become anoxic. The achlorophyllous leaf bases were 34% of the surface area of the shoots, and enhanced by 2.5-fold rates of underwater P(N) by the green portions, presumably by increasing the surface area for CO(2) entry. In addition, these leaf bases would contribute to loss of O(2) to the surrounding sediments. Numerous species of isoetids, seagrasses, and rosette-forming wetland plants have a large proportion of the leaf buried in sediments and this study indicates that the white achlorophyllous leaf bases may act as an important area of entry for CO(2), or exit for O(2), with the surrounding sediment.

  4. Gas Permeability and Ideal Selectivity of Poly[bis-(phenoxy)phosphazene], Poly[bis-(4-tert-butylphenoxy)phosphazene], and Poly[bis-(3,5-di-tert-butylphenoxy)1.2(chloro)0.8phosphazene

    SciTech Connect

    Christopher J. Orme; John R. Klaehn; Frederick F. Stewart

    2004-07-01

    Described in this paper is the synthesis and gas permeability characterization of poly[bis-(4-tert-butylphenoxy)phosphazene], and poly[bis-(3,5-di-tert-butylphenoxy)1.2(chloro)0.8phosphazene]. In general, linear chloro-containing polyphosphazenes are hydrolytically unstable. However, in this work, a novel polymer, poly[bis-(3,5-di-tert-butylphenoxy)1.2(chloro)0.8phosphazene], was observed to have an unusually high degree of hydrolytic stability and excellent membrane formation characteristics. Data derived from these polymers were compared to that of the more common poly[(bis-phenoxy)phosphazene]. These comparisons showed higher gas permeabilities and ideal separation factors for both of the alkyl-substituted phenoxy-phosphazenes, thus validating the concept that adding sterically bulky pendant groups to phosphazenes can affect membrane performance through disruption of orderly chain packing. Chemical characterization of these polymers was conducted using NMR spectroscopy, thermal analysis, helium pycnometry, elemental analysis, and multi-angle laser light scattering. Membranes were formed by solution casting and were characterized for their pure gas permeability using the following gases: H2, Ar, N2, O2, CH4, CO2, and H2S. Additionally, ideal selectivities of the significant O2/N2 and CO2/CH4 gas pairs are discussed.

  5. Measuring Vascular Permeability In Vivo.

    PubMed

    Meijer, Eelco F J; Baish, James W; Padera, Timothy P; Fukumura, Dai

    2016-01-01

    Over the past decades, in vivo vascular permeability measurements have provided significant insight into vascular functions in physiological and pathophysiological conditions such as the response to pro- and anti-angiogenic signaling, abnormality of tumor vasculature and its normalization, and delivery and efficacy of therapeutic agents. Different approaches for vascular permeability measurements have been established. Here, we describe and discuss a conventional 2D imaging method to measure vascular permeability, which was originally documented by Gerlowski and Jain in 1986 (Microvasc Res 31:288-305, 1986) and further developed by Yuan et al. in the early 1990s (Microvasc Res 45:269-289, 1993; Cancer Res 54:352-3356, 1994), and our recently developed 3D imaging method, which advances the approach originally described by Brown et al. in 2001 (Nat Med 7:864-868, 2001). PMID:27581015

  6. Relative Permeability of Fractured Rock

    SciTech Connect

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  7. Relative permeability through fractures

    SciTech Connect

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  8. A method of determination of permeability

    SciTech Connect

    Kuznetsov, S.V.; Trofimov, V.A.

    2007-11-15

    A method is proposed for determining permeability of coals under conditions of steady-state deformation and stationary filtration mode by employing a reference core made of gas-non-sorbing material with a known permeability. The approach has been developed to assess the time of transition to the stable filtration.

  9. Changes in rock salt permeability due to nearby excavation

    SciTech Connect

    Stormont, J C; Howard, C L

    1991-07-01

    Changes in brine and gas permeability of rock salt as a result of nearby excavation (mine-by) have been measured from the underground workings of the WIPP facility. Prior to the mine-by, the formation responds as a porous medium with a very low brine permeability, a significant pore (brine) pressure and no measurable gas permeability. The mine-by excavation creates a dilated, partially saturated zone in the immediate vicinity of the excavation with an increased permeability to brine and a measurable permeability to gas. The changes in hydrologic properties are discussed in the context of pore structure changes.

  10. Evaluation of organic matter, subsurface temperature and pressure with regard to gas generation in low-permeability Upper Cretaceous and Lower Tertiary sandstones in Pacific Creek area, Sublette and Sweetwater Counties, Wyoming.

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.; Bostick, N.H.

    1980-01-01

    The onset of overpressuring occurs at c.3,500 m, near the base of the U. Cretaceous Lance Formation. The development of overpressuring may involve several processes; however, interpretation of the available information indicates that active generation of large amounts of wet gas is one of the more important processes. The present minimum temperature at the top of overpressuring is at least 88oC. The preservation of abnormally high pressures is due to presently active generation of gas in a thick interval of discontinuous, very low-permeability shales, siltstones, and sandstones. - from Authors

  11. Permeability of rayon based polymer composites

    NASA Technical Reports Server (NTRS)

    Stokes, E. H.

    1992-01-01

    Several types of anomalous rayon based phenolic behavior have been observed in post-fired nozzles and exit cones. Many of these events have been shown to be related to the development of internal gas pressure within the material. The development of internal gas pressure is a function of the amount of gas produced within the material and the rate at which that gas is allowed to escape. The latter property of the material is referred to as the material's permeability. The permeability of two dimensional carbonized rayon based phenolic composites is a function of material direction, temperature, and stress/strain state. Recently significant differences in the permeability of these materials has been uncovered which may explain their inconsistent performance. This paper summarizes what is known about the permeability of these materials to date and gives possible implications of these finding to the performance of these materials in an ablative environment.

  12. The effects of HIP processing in Ti-48Al-2Mn-2Nb gas atomized powder

    SciTech Connect

    Gouma, P.I.; Loretto, M.H.; Davey, S.; Ashworth, M.A.; Blenkinsop, P.A.

    1996-12-31

    This paper deals with the examination of a {gamma}-titanium aluminide powder produced by gas atomization. The as-solidified microstructure was found to be a function of the powder particle size. The influence of as-solidified microstructural variations on the final HIP product were investigated for both the complete size range and selected individual size fractions. The HIPed microstructures are compared. The effects of different HIP process parameters (i.e., temperatures corresponding to the various phase fields of the TiAl system) were also investigated and the resulting microstructures are discussed. SEM analysis of the surfaces of in-situ Auger fracture specimens, of different size fractions, has provided information on the effect of HIPed microstructures on fracture mechanisms.

  13. Gas nitriding of Ti-6Al-4V by induction heating

    SciTech Connect

    Grosch, J.; Saglitz, M.

    1995-12-31

    The usually poor wear behavior of titanium materials can be improved by thermochemical surface heat treatment. In contrast to conventional procedures, which necessitate prolonged treatment, it is possible to reduce the heat treatment period considerably by means of HF induction. Serving as an example in this context is a Ti-6Al-4V titanium alloy that is to demonstrate the possibilities of induction gas nitriding. Temperature variations between 900 C and 1,600 C have resulted in homogeneous surface structures whose microstructures can basically be explained by the titanium-nitrogen diagram. In particular with the 1,600 C variant, the wear resistance has been improved, compared with the untreated titanium material there is a seventyfold increase in wear resistance.

  14. Optimization of an oxide dispersion strengthened Ni-Cr-Al alloy for gas turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.; Grierson, R.

    1975-01-01

    The investigation was carried out to determine the optimum alloy within the Ni-16Cr-Al-Y2O3 system for use as a vane material in advanced aircraft gas turbine engines. Six alloys containing nominally 4%, 5% and 6% Al with Y2O3 levels of 0.8% and 1.2% were prepared by mechanical attrition. Six small-scale, rectangular extrusions were produced from each powder lot for property evaluation. The approximate temperatures for incipient melting were found to be 1658 K (2525 F), 1644 K (2500 F) and 1630 K (2475 F) for the 4%, 5% and 6% aluminum levels, respectively. With the exception of longitudinal crystallographic texture, the eight extrusions selected for extensive evaluation either exceeded or were close to mechanical property goals. Major differences between the alloys became apparent during dynamic oxidation testing, and in particular during the 1366 K (2000 F)/500 hour Mach 1 tests carried out by NASA-Lewis. An aluminum level of 4.75% was subsequently judged to be optimum based on considerations of dynamic oxidation resistance, susceptibility to thermal fatigue cracking and melting point.

  15. Characteristics of Nb/Al superconducting tunnel junctions fabricated using ozone gas

    NASA Astrophysics Data System (ADS)

    Masahiro, Ukibe; Go, Fujii; Masataka, Ohkubo

    2015-09-01

    To improve the energy resolution (ΔE) of Nb/Al superconducting tunnel junctions (STJs), an ozone (O3) oxidation process has been developed to fabricate a thin defect-free tunnel barrier that simultaneously shows high critical current JC > 1000 A/cm2 and high normalized dynamic resistance RDA > 100 MΩ · μm2, where A is the size of the STJ. The 50-μm2 STJs produced by O3 exposure of 0.26 Pa· min with an indirect spray of O3 gas, which is a much lower level of exposure than the O2 exposure used in a conventional O2 oxidation process, exhibit a maximum JC = 800 A/cm2 and a high RDA = 372 MΩ · μm2. The 100-pixel array of the 100-μm2 STJs produced using the same O3 oxidation conditions exhibits a constant leak current Ileak = 14.9 ± 3.2 nA at a bias point around Δ /e (where e is half the energy gap of an STJ), and a high fabrication yield of 87%. Although the Ileak values are slightly larger than those of STJs produced using the conventional O2 oxidation process, the STJ produced using O3 oxidation shows a ΔE = 10 eV for the C-Kα line, which is the best value of our Nb/Al STJ x-ray detectors.

  16. Nanocomposite Fe-Al Intermetallic Coating Obtained by Gas Detonation Spraying of Milled Self-Decomposing Powder

    NASA Astrophysics Data System (ADS)

    Senderowski, Cezary

    2014-10-01

    The nanocomposite structure of Fe-Al intermetallic coating, created in situ during gas detonation spraying (GDS) of as-milled self-decomposing powder and containing disordered 8 nm FeAl nanocrystals, was analyzed using scanning electron microscopy (SEM) with energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and x-ray diffraction methods. It is found that the Fe-Al coating is characterized by a sublayer morphology consisting of flattened and partially melted splats containing a wide Al range from about 26 to 52 at.%, as well as Al2O3 oxides, created in situ at the internal interfaces of splats during the GDS process. The complex oxide films, identified as amorphous Al2O3, which are formed in the nanocrystalline Fe-Al matrix of the GDS coating behave like a composite reinforcement in the intermetallic Fe-Al coating. The combined presence of nanosized subgrains in the Fe-Al matrix and the Al2O3 nanoceramic dispersoids significantly increases the microhardness of the coating.

  17. Permeability Barrier Generation in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  18. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    PubMed

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability.

  19. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    PubMed

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability. PMID:27165172

  20. The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers

    SciTech Connect

    Barillas, Mary Katharine; Enick, Robert M.; O’Brien, Michael; Perry, Robert; Luebke, David R.; Morreale, Bryan D.

    2011-04-01

    The objective of this work was to design polymeric membranes that have very high CO2 permeability and high mixed gas selectivity toward CO2 rather than hydrogen. Therefore the membranes were based on "CO2-philic" polymers that exhibit thermodynamically favorable Lewis acid:Lewis base and hydrogen bonding interactions with CO2. CO2-philic polymers that are solid at ambient temperature include polyfluoroacrylate (PFA); polyvinyl acetate (PVAc); and amorphous polylactic acid (PLA). Literature CO2 permeability values for PVAc and PLA are disappointingly low. The cast PFA membranes from this study had low permeabilities (45 barrers at 25º C) and very low CO2/H2 selectivity of 1.4. CO2-philic polymers that are liquid at ambient conditions include polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene glycol with a linear -((CH2)4O)-repeat unit (i.e., polytetramethylene ether glycol (PTMEG)), polybutylene glycol (PBG) with a branched repeat unit, perfluoropolyether (PFPE), poly(dimethyl siloxane) (PDMS), and polyacetoxy oxetane (PAO). A small compound, glycerol triacetate (GTA) was also considered because it is similar in chemical structure to a trimer of PVAc. These liquids were tested as supported liquid membranes (SLM) and also (with the exception of PAD and GTA) as rubbery, crosslinked materials. Mixed gas permeability was measured using equimolar mixtures of CO2 and H2 feed streams at one atmosphere total pressure in steady-state flux experiments over the 298-423 K temperature range. The most promising SLMs were those composed of PEG, PTMEG, GTA, and PDMS. For example, at 37º C the PEG-, PTMEG-, GTA- and PDMS-based SLMs exhibited CO2/H2 selectivity values of ~11, 9, 9, and 3.5, respectively, and CO2 permeability values of ~800, 900, 1900, and 2000 barrers, respectively

  1. Permeable membrane experiment

    NASA Technical Reports Server (NTRS)

    Slavin, Thomas J.; Cao, Tuan Q.; Kliss, Mark H.

    1993-01-01

    The purpose of the Permeable Membrane Experiment is to gather flight data on three areas of membrane performance that are influenced by the presence of gravity. These areas are: (1) Liquid/gas phase separation, (2) gas bubble interference with diffusion through porous membranes and (3) wetting characteristics of hydrophilic membrane surfaces. These data are important in understaning the behavior of membrane/liquid/gas interfaces where surface tension forces predominate. The data will be compared with 1-g data already obtained and with predicted micrograviity behavior. The data will be used to develop designs for phase separation and plant nutrient delivery systems and will be available to the life support community for use in developing technologies which employ membranes. A conceptual design has been developed to conduct three membrane experiments, in sequence, aboard a single Complex Autonomous Payload (CAP) carrier to be carried in the Shuttle Orbiter payload bay. One experiment is conducted for each of the three membrane performance areas under study. These experiments are discussed in this paper.

  2. DRAM concept based on the hole gas transient effect in a AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Bawedin, M.; Uren, M. J.; Udrea, F.

    2010-06-01

    In this paper, a concept for a 1T-DRAM in AlGaN/GaN based HEMTs is presented for the first time - the Hetero-RAM (HRAM). This memory takes advantage of the natural coexistence of both hole and electron gases and uses hole gas transient and dynamic capacitive coupling effects. It is interesting to note that up to now the hole gas has been considered as parasitic, since it was seen to trigger hysteresis and transient effects within the HEMT output characteristics. We discuss an implementation of the memory concept in a GaN/AlN/AlGaN HEMT structure with a Schottky gate, separated from the source and drain contacts via spacers which are used as storage nodes. The HRAM uses only one transistor and offers non-destructive read, relatively long retention time and fast programming while it is amenable to integration with conventional HEMT based technology.

  3. Permeability of the San Andreas Fault Zone at Depth

    NASA Astrophysics Data System (ADS)

    Rathbun, A. P.; Song, I.; Saffer, D.

    2010-12-01

    to 90 MPa axial stress. In these tests, axial stress is increased via a constant rate of displacement, and the excess pore pressure build up at the base of the sample is measured. Stress, pore pressure and strain are monitored to calculate coefficient of consolidation and volumetric compressibility in addition to permeability. In triaxial experiments, permeability is measured from by flow through tests under constant head boundary conditions. Permeability of the CDZ rapidly decreases to ~10-19 m2 by 20 MPa axial stress in our CRS tests. Over axial stresses from 20-85 MPa, permeability decreases log-linearly with effective stress from 8x10-20 m2 to 1x10-20 m2. Flow-through tests in the triaxial system under isostatic conditions yield permeabilities of 2.2x10-19 m2 and 1x10-20 m2 at 5 and 10 MPa, respectively. Our results are consistent with published geochemical data from SAFOD mud gas samples and inferred pore pressures during drilling [Zoback et al., 2010], which together suggest that the fault is a barrier to regional fluid flow. Our results indicate that the permeability of the fault core is sufficiently low to result in effectively undrained behavior during slip, thus allowing dynamic processes including thermal pressurization and dilatancy hardening to affect slip behavior.

  4. Effect of metal-precursor gas ratios on AlInN/GaN structures for high efficiency ultraviolet photodiodes

    NASA Astrophysics Data System (ADS)

    Sakai, Y.; Khai, P. C.; Egawa, T.

    2011-11-01

    The authors report on the effect of metal-precursor gas ratios on AlInN/GaN structures for high efficiency ultraviolet photodiodes. AlInN/GaN structures with the different metal-precursor gas ratio, namely V/III ratio, were grown on AlN templates by metal organic chemical vapor deposition. Nearly lattice-matched AlInN layer is obtained at the higher temperature by decreasing the V/III ratio. AlInN layers are found to have good crystal qualities with no dependency on the V/III ratio. However, pit density depends slightly on the V/III ratio, indicating good surface morphology is obtained by decreasing the V/III ratio. The fabricated photodiodes also show good device characteristics by decreasing the V/III ratio. The spectral responsivity at the cutoff wavelength increases from 1 to 20 mA/W, indicating that the quantum efficiency is greatly improved. We believe that the further optimization of the growth parameters for AlInN/GaN structures is one of the effective approaches in realizing high efficiency ultraviolet photodiodes.

  5. EPA Permeable Surface Research

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  6. Superconductors coupled with a two-dimensional electron gas in GaAs/AlGaAs and InAs/AlGaSb heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, J. R.; Heida, J. P.; van Wees, B. J.; Klapwijk, T. M.; Borghs, G.; Foxon, C. T.

    1994-03-01

    We fabricated superconducting Sn/Pd contacts to a two-dimensional electron gas (2DEG) in GaAs/AlGaAs heterostructures by an alloying technique. A dip around zero bias and peaks at finite voltages have been observed in the differential resistance of a 2DEG between two superconductors. The resistance dip may be a result of Andreev reflection at 2DEG-superconductor interlaces and the peaks are probably due to the Josephson coupling between two very close superconducting islands in a superconducting contact region, which may be formed by alloying. Alternatively, we made superconducting Nb contacts to a 2DEG in an InAs/AlGaSb quantum well structure. The resistance of Nb-2DEG-Nb devices shows a clear indication of Andrccv reflection.

  7. Pneumatic fracturing of low permeability media

    SciTech Connect

    Schuring, J.R.

    1996-08-01

    Pneumatic fracturing of soils to enhance the removal and treatment of dense nonaqueous phase liquids is described. The process involves gas injection at a pressure exceeding the natural stresses and at a flow rate exceeding the permeability of the formation. The paper outlines geologic considerations, advantages and disadvantages, general technology considerations, low permeability media considerations, commercial availability, efficiency, and costs. Five case histories of remediation using pneumatic fracturing are briefly summarized. 11 refs., 2 figs., 1 tab.

  8. Pressure sensitivity of low permeability sandstones

    USGS Publications Warehouse

    Kilmer, N.H.; Morrow, N.R.; Pitman, J.K.

    1987-01-01

    Detailed core analysis has been carried out on 32 tight sandstones with permeabilities ranging over four orders of magnitude (0.0002 to 4.8 mD at 5000 psi confining pressure). Relationships between gas permeability and net confining pressure were measured for cycles of loading and unloading. For some samples, permeabilities were measured both along and across bedding planes. Large variations in stress sensitivity of permeability were observed from one sample to another. The ratio of permeability at a nominal confining pressure of 500 psi to that at 5000 psi was used to define a stress sensitivity ratio. For a given sample, confining pressure vs permeability followed a linear log-log relationship, the slope of which provided an index of pressure sensitivity. This index, as obtained for first unloading data, was used in testing relationships between stress sensitivity and other measured rock properties. Pressure sensitivity tended to increase with increase in carbonate content and depth, and with decrease in porosity, permeability and sodium feldspar. However, scatter in these relationships increased as permeability decreased. Tests for correlations between pressure sensitivity and various linear combinations of variables are reported. Details of pore structure related to diagenetic changes appears to be of much greater significance to pressure sensitivity than mineral composition. ?? 1987.

  9. Photoluminescence related to the 2-dimensional electron gas in modulation doped GaN/AlGaN structures

    SciTech Connect

    Bergman, J.P.; Lundstroem, T.; Monemar, B.; Amano, H.; Akasaki, I.

    1996-11-01

    The authors report low temperature photoluminescence (PL) spectra related to a two-dimensional electron gas confined at a GaN/AlGaN heterointerface. The recombination between electrons confined in the bottom of the interface potential and photoexcited holes causes a broad PL emission about 50 meV below the bulk GaN exciton emission. A second emission, attributed to the recombination of electrons in the first excited level at the interface, is also observed close to the excitonic band gap in GaN. The data agrees with a self consistent calculation of the energy levels and the electron concentration at the interface. Similar PL data from a modulation doped AlGaN/GaN quantum well exhibit three PL emissions related to the 2D electron gas.

  10. Improved plasma sprayed MCrAlY coatings for aircraft gas turbine applications

    NASA Technical Reports Server (NTRS)

    Pennisi, F. J.; Gupta, D. K.

    1981-01-01

    Eighteen plasma sprayed coating systems, nine based on the NiCoCrAlY chemistry and nine based on the CoCrAlY composition, were evaluated to identify coating systems which will provide equivalent or superior life to that shown by the electron beam physical vapor deposited NiCoCrAlY and CoCrAlY coatings respectively. NiCoCrAlY-type coatings were examined on a single crystal alloy and the CoCrAlY based coatings were optimized on the B1900 + Hf alloy. Cyclic burner rig oxidation and hot corrosion and tensile ductility tests were used to evaluate the various coating candidates. For the single crystal alloy, a low pressure chamber plasma sprayed NiCoCrAlY + Si coating exhibited a 2X oxidation life improvement at 1121 C (2050 F) over the vapor deposited NiCoCrAlY material while showing equivalent tensile ductility. A silicon modified low pressure chamber plasma sprayed CoCrAlY coating was found to be more durable than the baseline vapor deposited CoCrAlY coating on the B1900 + Hf alloy.

  11. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  12. Origin of Permeability and Structure of Flows in Fractured Media

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.

    2013-12-01

    After more than three decades of research, flows in fractured media have been shown to result from multi-scale geological structures. Flows result non-exclusively from the damage zone of the large faults, from the percolation within denser networks of smaller fractures, from the aperture heterogeneity within the fracture planes and from some remaining permeability within the matrix. While the effect of each of these causes has been studied independently, global assessments of the main determinisms is still needed. We propose a general approach to determine the geological structures responsible for flows, their permeability and their organization based on field data and numerical modeling [de Dreuzy et al., 2012b]. Multi-scale synthetic networks are reconstructed from field data and simplified mechanical modeling [Davy et al., 2010]. High-performance numerical methods are developed to comply with the specificities of the geometry and physical properties of the fractured media [Pichot et al., 2010; Pichot et al., 2012]. And, based on a large Monte-Carlo sampling, we determine the key determinisms of fractured permeability and flows (Figure). We illustrate our approach on the respective influence of fracture apertures and fracture correlation patterns at large scale. We show the potential role of fracture intersections, so far overlooked between the fracture and the network scales. We also demonstrate how fracture correlations reduce the bulk fracture permeability. Using this analysis, we highlight the need for more specific in-situ characterization of fracture flow structures. Fracture modeling and characterization are necessary to meet the new requirements of a growing number of applications where fractures appear both as potential advantages to enhance permeability and drawbacks for safety, e.g. in energy storage, stimulated geothermal energy and non-conventional gas productions. References Davy, P., et al. (2010), A likely universal model of fracture scaling and

  13. Permeability of Rigid Fibrous Refractory Insulations

    NASA Technical Reports Server (NTRS)

    Marschall, J.; Milos, F. S.; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    Rigid fibrous refractory insulations (TPS tiles) are integral components of many spacecraft thermal protection systems. These materials are composed of refractory fibers With diameters on the order of 1 to 15 micrometers. They are lightweight and have an open, highly porous microstructure. Typical densities are less than 500 kilograms per cubic meters, and porosities generally exceed 0.8. Because of their open porosity, these materials are permeable to gas glow. There are numerous instances in which internal gas transport in a thermal protection system could be important; examples include the penetration of hot boundary-layer gases into the insulation, the flow of decomposition (pyrolysis) products from the interior, the use of convective flows to mitigate ice formation caused by cryopumping, and the design of refractory vents for pressure equilibration during atmospheric entry. Computational analysis of gas flow through porous media requires values of permeability which have not previously been available for the rigid fibrous insulations used in thermal protection systems. This paper will document measurements of permeability for a variety of insulations from NASA's LI, FRCI, and AETB families of lightweight ceramic ablators. The directional anisotropy of permeability and its dependence on gas pressure and material density will be presented. It will be shown that rarified-flow effects are significant in the flow through such materials. Connections will be drawn between the insulation microstructure and permeability. The paper will also include representative computations of flow through rigid fibrous insulations.

  14. Permeability and relative permeability in rocks

    SciTech Connect

    Blair, S.C.; Berryman, J.G.

    1990-10-01

    Important features of the topology of the pore space of rocks can be usefully quantified by analyzing digitized images of rock cross sections. One approach computes statistical correlation functions using modern image processing techniques. These correlation functions contain information about porosity, specific surface area, tortuosity, formation factor, and elastic constants, as well as the fluid permeability and relative permeability. The physical basis of this approach is discussed and examples of the results for various sandstones are presented. The analysis shows that Kozeny-Carman relations and Archie's empirical laws must be modified to account for finite percolation thresholds in order to avoid unphysical behavior in the calculated relative permeabilities. 33 refs., 4 figs., 1 tab.

  15. Nanochannel flow past permeable walls via molecular dynamics

    NASA Astrophysics Data System (ADS)

    Xie, Jian-Fei; Cao, Bing-Yang

    2016-07-01

    The nanochannel flow past permeable walls with nanopores is investigated by molecular dynamics (MD) simulations, including the density distribution, velocity field, molecular penetration mechanism and surface friction coefficient. A low density distribution has been found at the gas-wall interface demonstrating the low pressure region. In addition, there exists a jump of the gas density on the permeable surface, which indicates the discontinuity of the density distribution across the permeable surface. On the other hand, the nanoscale vortices are observed in nanopores of the permeable wall, and the reduced mass flux of the flow in nanopores results in a shifted hydrodynamic boundary above the permeable surface. Particularly the slip length of the gas flow on the permeable surface is pronounced a non-linear function of the molecular mean free path, which produces a large value of the tangential momentum accommodation coefficient (TMAC) and a big portion of the diffusive refection. Moreover, the gas-gas interaction and multi-collision among gas molecules may take place in nanopores, which contribute to large values of TMAC. Consequently the boundary friction coefficient on the permeable surface is increased because of the energy dissipation consumed by the nanoscale vortices in nanopores. The molecular boundary condition provides us with a new picture of the nanochannel flow past the permeable wall with nanopores.

  16. Effect of Monomer Structure on Curing Behavior, CO2 Solubility, and Gas Permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-Gels

    SciTech Connect

    McDanel, WM; Cowan, MG; Barton, JA; Gin, DL; Noble, RD

    2015-04-29

    New imidazolium- and pyrrolidinium-based bis(epoxide)-functionalized ionic liquid (IL) monorners were synthesized: and reacted with multifunctional amine monomers to produce cross-linked, epoxy-amine poly(ionic liquid) (PIL) resins and PIL/IL ion-gel membranes. The length and chemical nature (i.e., alkyl versus ether) between the irrildazolium group and epokitie groups were studied to determine their effects on CO2 affinity. The CO2 uptake (millimoles per gram) of the epoxy amine resins (between 0.1 and 1 mmol/g) was found to depend predominately on the epoxide-to-amine ratio and the bis(epoxide) IL molecular weight. The effect of using a primary versus a secondary amine-containing multifunctional monoiner was also assessed for the resin-synthesis. Secondary amines can increase CO2 permeability but also increase the iime required for biS(epoxide) coriversion. When either the epoxide or athine monomer structure is changed, the CO2 solubility and permeability of the resulting PIL resins and ion-sel membranes can be tuned.

  17. Europium location in the AlN: Eu green phosphor prepared by a gas-reduction-nitridation route

    NASA Astrophysics Data System (ADS)

    Yin, Liang-Jun; Zhu, Qiang-Qiang; Yu, Wei; Hao, Lu-Yuan; Xu, Xin; Hu, Feng-Chun; Lee, Ming-Hsien

    2012-03-01

    Eu doped aluminum nitride phosphors were successfully synthesized by a novel gas-reduction-nitridation route with a reaction temperature of 1400 °C and a soaking time of 3 h. The obtained AlN:Eu phosphors were analyzed to elucidate the location of the Eu luminescent center. High-resolution transmission electron microscopy and transmission electron microscopy-energy dispersive spectra proved that Eu was located in the crystal lattice of AlN, then EXAFS revealed that Eu occupied a highly distorted Al site coordinated by four nitrogen at about 2.30-2.40 Å, and the second nearest neighbors of Eu were 12 Al. This could be confirmed by the first-principles calculations based on the obtained local structure around the Eu luminescence center, where the theoretical absorption spectrum was similar to the experimental excitation spectrum. X-ray appearance near edge structure showed that Eu existed in terms of both Eu3+ and Eu2+ ions, which could be related to the limited location space of Eu. High temperature treatment could significantly increase the amount of Eu2+ by the expansion of the crystal lattice, leading to an increased green luminescence of the obtained AlN:Eu phosphors.

  18. Mitigating methane emissions and air intrusion in heterogeneous landfills with a high permeability layer.

    PubMed

    Jung, Yoojin; Imhoff, Paul T; Augenstein, Don; Yazdani, Ramin

    2011-05-01

    Spatially variable refuse gas permeability and landfill gas (LFG) generation rate, cracking of the soil cover, and reduced refuse gas permeability because of liquid addition can all affect CH(4) collection efficiency when intermediate landfill covers are installed. A new gas collection system that includes a near-surface high permeability layer beneath the landfill cover was evaluated for enhancing capture of LFG and mitigating CH(4) emissions. Simulations of gas transport in two-dimensional domains demonstrated that the permeable layer reduces CH(4) emissions up to a factor of 2 for particular spatially variable gas permeability fields. When individual macrocracks formed in the cover soil and the permeable layer was absent, CH(4) emissions increased to as much as 24% of the total CH(4) generated, double the emissions when the permeable layer was installed. CH(4) oxidation in the cover soil was also much more uniform when the permeable layer was present: local percentages of CH(4) oxidized varied between 94% and 100% across the soil cover with the permeable layer, but ranged from 10% to 100% without this layer for some test cases. However, the permeable layer had a minor effect on CH(4) emissions and CH(4) oxidation in the cover soil when the ratio of the gas permeability of the cover soil to the mean refuse gas permeability ≤ 0.05. The modeling approach employed in this study may be used to assess the utility of other LFG collection systems and management practices.

  19. Fracture-permeability behavior of shale

    SciTech Connect

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  20. Fracture-permeability behavior of shale

    DOE PAGES

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  1. Preliminary results on the characterization of Cretaceous and lower Tertiary low-permeability (tight) gas-bearing rocks in the Wind River Basin, Wyoming

    SciTech Connect

    Fouch, T.D.; Keefer, W.R.; Finn, T.M.

    1993-12-31

    The Wind River Basin is a structural and sedimentary basin in central Wyoming (Figure 1) that was created during the Laramide orogeny from Late Cretaceous through Eocene time. The objectives of the Wind River Basin tight gas sandstone project are to define the limits of the tight gas accumulation in the basin and to estimate in-place and recoverable gas resources. The approximate limits of the tight gas accumulation are defined from available drillhole information. Geologic parameters, which controlled the development of the accumulation, are studied in order to better understand the origins of tight gas accumulations, and to predict the limits of the accumulation in areas where little drillhole information is available. The architecture of sandstone reservoirs are studied in outcrop to predict production characteristics of similar reservoirs within the tight gas accumulation. Core and cuttings are used to determine thermal maturities, quality of source rocks, and diagenetic histories. Our work thus far has concentrated in the Wind River Indian Reservation in the western part of the basin.

  2. Oxygen-for-Sulfur Switching in the Gas Phase: Reactions of Al and Si Oxyanions with H2S

    SciTech Connect

    Groenewold, Gary Steven; Hodges, Brittany DM; Scott, Jill Rennee; Gianotto, Anita Kay; Appelhans, Anthony David; Kessinger, Glen Frank; Wright, J. B.

    2001-03-01

    Gas-phase Si and Al oxyanions were formed by particle bombardment, isolated by mass, and then reacted with H{sub 2}S in an ion trap secondary ion mass spectrometer (IT-SIMS). The reactions proceeded by different reaction pathways depending on whether the oxyanions were even- or odd-electron species. The radical anion SiO{sub 2}{sm_bullet}{sup -} reacted with H{sub 2}S by abstracting a {sm_bullet}SH radical to form the even-electron SiO{sub 2}SH{sup -}. Once formed, the even electron SiO{sub 2}SH{sup -} reacted with a second H{sub 2}S molecule by O-for-S exchange to form SiOS{sub 2}H{sup -}. The radical anion SiO{sub 3}{sm_bullet}{sup -} abstracted an {sm_bullet}H radical from H{sub 2}S to form even-electron SiO{sub 3}H{sup -}, which then underwent two consecutive O-for-S exchange reactions with H{sub 2}S to form SiO{sub 2}SH{sup -} and SiOS{sub 2}H{sup -}. For the reactions of the even-electron anion AlO{sub 2}{sup -}, the products of two consecutive O-for-S exchange reactions with H{sub 2}S were AlOS{sup -} and AlS{sub 2}{sup -}. The radical abstraction reactions and the O-for-S exchange reactions of SiO3H{sup -}, AlO{sub 2}{sup -}, and AlOS{sup -} were efficient in the 30-50% range. The efficiency of the O-for-S exchange reaction of SiO{sub 2}SH{sup -} (producing SiOS{sub 2}H{sup -}) was substantially less efficient at 8%.

  3. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift

    SciTech Connect

    Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

    2008-03-07

    Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

  4. Impact of N{sub 2} and forming gas plasma exposure on the growth and interfacial characteristics of Al{sub 2}O{sub 3} on AlGaN

    SciTech Connect

    Qin, Xiaoye; Dong, Hong; Brennan, Barry; Azacatl, Angelica; Kim, Jiyoung; Wallace, Robert M.

    2013-11-25

    The interface and atomic layer deposition (ALD) of Al{sub 2}O{sub 3} on the annealed, N{sub 2} plasma and forming gas (N{sub 2}:H{sub 2}) exposed Al{sub 0.25}Ga{sub 0.75}N surface was studied using in situ X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. Exposure of the Al{sub 0.25}Ga{sub 0.75}N surface to the plasma treatments is able to remove spurious carbon, and readily facilitate uniform ALD Al{sub 2}O{sub 3} nucleation.

  5. Laser vaporization generation of Al sup 12 C, Al sup 13 C, Al sup 12 C sub 2 , and Al sup 13 C sub 2 for rare gas matrix electron spin resonance studies: Experimental--theoretical comparisons

    SciTech Connect

    Knight, L.B. Jr.; Cobranchi, S.T.; Herlong, J.O.; Arrington, C.A. )

    1990-05-15

    The metal carbide radicals AlC and AlC{sub 2} have been generated by the laser vaporization of aluminum carbide and trapped in neon and argon matrices at 4 K for electron spin resonance (ESR) characterization. These results provide the first experimental evidence showing that AlC has a {sup 4}{Sigma} ground electronic state and that AlC{sub 2} is {ital X} {sup 2}{ital A}{sub 1}. {ital Ab} {ital initio} theoretical calculations were conducted for the geometries and various nuclear hyperfine parameters in both radicals which yielded {ital A} values in reasonable agreement with the observed. In AlC, the three unpaired electrons reside primarily on carbon with the following neon matrix magnetic parameters (MHz): {ital g}{sub {parallel}}=2.000(1); {ital g}{sub {perpendicular}}=2.0010(5); {vert bar}{ital A}{sub {perpendicular}}(Al){vert bar}=33.2(5); {vert bar}{ital A}{sub {parallel}}(Al){vert bar}=3(3); {ital A}{sub {perpendicular}}({sup 13}C)=52.1(5); {ital A}{sub {parallel}}({sup 13}C)=52(2); and {ital D}(zero field splitting)=374(1). For AlC{sub 2}, the spin density resides predominantly in an aluminum 3{ital p}{sub {ital z}}/3{ital s} hybrid directed away from C{sub 2}. The neon magnetic parameters (MHz) are: {ital g}{sub {parallel}}=2.0005(5); {ital g}{sub {perpendicular}}=1.9965(3); {ital A}{sub {perpendicular}}(Al)=941.5(5); {ital A}{sub {parallel}}(Al)=1067(1); {vert bar}{ital A}{sub {parallel}}({sup 13}C){vert bar}=59(1); and {vert bar}{ital A}{sub {perpendicular}}({sup 13}C){vert bar}=52(1).

  6. Permeability Measurements in Carbon-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zdenek, Michael J.

    1999-01-01

    To determine the permeability of the composite feedline, that is proposed to be used in the X-33 Reusable Launch Vehicle (RLV), three 8 x 8-in. coupons were constructed. Two of the coupons were layed-up with 4 plies of plain weave prepreg [0/90, plus or minus 45, plus or minus 45, 0/90] and the other one layed-up with 4 plies of unidirectional prepreg [0, 90, 90, 0]. The coupons were vacuumed bagged and cured to manufactures specifications. The coupons were then placed in an apparatus to test for permeability. Nitrogen gas was used to permeate through the coupons at a pressure of 5 psig. A manometer was placed on the opposite side of the coupons and was used to measure the height of the fluid with respect to time. From this data the mass flow rate of the gas could be calculated since the area of the manometer and the density of the gas is known. The results of the test are given. The permeability constant was calculated using Darcy's law, which related the pressure drop, flow rate of the permeating gas and resistance to flow through the coupon created. To put the results into prospective the permeability of sand stone and granite is 1E-15 and 1E-20 respectively.

  7. The influence of slip velocity and temperature on permeability during and after high-velocity fault slip

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.

    2011-12-01

    Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism

  8. Iron Sulfide as a Sustainable Reactive Material for Permeable Reactive Barriers

    NASA Astrophysics Data System (ADS)

    Henderson, A. D.; Demond, A. H.

    2012-12-01

    Permeable reactive barriers (PRBs) are gaining acceptance for groundwater remediation, as they operate in situ and do not require continuous energy input. The majority of PRBs use zero-valent iron (ZVI). However, some ZVI PRBs have hydraulically failed [1,2], due to the fact that ZVI may reduce not only contaminants but also water and non-contaminant solutes. These reactions may form precipitates or gas phases that reduce permeability. Therefore, there is a need to assess the hydraulic suitability of possible alternatives, such as iron sulfide (FeS). The capability of FeS to remove both metals and halogenated organics from aqueous systems has been demonstrated previously [3,4], and FeS formed in situ within a ZVI PRB has been linked to contaminant removal [5]. These results suggest possible applications in groundwater remediation as a permeable reactive barrier (PRB) material. However, the propensity of FeS for permeability loss, due to solids and gas production, must be evaluated in order to address its suitability for PRBs. The reduction in permeability for FeS-coated sands under the anoxic conditions often encountered at contaminated groundwater sites was examined through column experiments and geochemical modeling under conditions of high calcium and nitrate, which have been previously shown to cause significant permeability reduction in zero-valent iron (ZVI) systems [6]. The column experiments showed negligible production of both solids and gases. The geochemical model was used to estimate solid and gas volumes generated under conditions of varying FeS concentration. Then, the Kozeny-Carman equation and a power-law relationship was used to predict permeability reduction, with a maximum reduction in permeability of 1% due to solids and about 30% due to gas formation under conditions for which a complete loss of permeability was predicted for ZVI systems. This difference in permeability reduction is driven by the differences in thermodynamic stability of ZVI

  9. Permeability of edible coatings.

    PubMed

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  10. Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites.

    PubMed

    Sankaranarayanan, T M; Banu, M; Pandurangan, A; Sivasanker, S

    2011-11-01

    Mixtures of sunflower oil and a straight run gas oil in the diesel fuel range were hydroprocessed over sulfided NiO(3%)-MoO3(12%)-γ-Al2O3 incorporating 0, 15 or 30 wt.% zeolite beta (BEA). The studies were carried out at 320-350 °C; 30-60 bars, and weight hourly space velocities (WHSV), 1-4 h(-1). Catalyst containing 30% BEA achieved nearly 100 % conversion of the vegetable oil into hydrocarbons at 330 °C, 60 bars and a WHSV of 2 h(-1) compared to 95.5% by the Ni-Mo-γ-alumina catalyst without BEA. Hydroprocessing with blends containing oleic acid revealed that the catalysts were able to transform the acid into hydrocarbons. An analysis of the ratios of the n-C18 and n-C17 paraffins formed from the vegetable oil at different process conditions revealed that the catalyst containing 15% BEA was most active for hydrodeoxygenation. The gas oil-hydrodesulfurization activity of the Ni-Mo-Al2O3 was enhanced by the addition of BEA by more than 10%. PMID:21945166

  11. Contribution of alloy clustering to limiting the two-dimensional electron gas mobility in AlGaN/GaN and InAlN/GaN heterostructures: Theory and experiment

    SciTech Connect

    Ahmadi, Elaheh; Mishra, Umesh K.; Chalabi, Hamidreza; Kaun, Stephen W.; Shivaraman, Ravi; Speck, James S.

    2014-10-07

    The influence of alloy clustering on fluctuations in the ground state energy of the two-dimensional electron gas (2DEG) in AlGaN/GaN and InAlN/GaN heterostructures is studied. We show that because of these fluctuations, alloy clustering degrades the mobility even when the 2DEG wavefunction does not penetrate the alloy barrier unlike alloy disorder scattering. A comparison between the results obtained for AlGaN/GaN and InAlN/GaN heterostructures shows that alloy clustering limits the 2DEG mobility to a greater degree in InAlN/GaN heterostructures. Our study also reveals that the inclusion of an AlN interlayer increases the limiting mobility from alloy clustering. Moreover, Atom probe tomography is used to demonstrate the random nature of the fluctuations in the alloy composition.

  12. Petrophysics of low-permeability medina sandstone, northwestern Pennsylvania, Appalachian Basin

    USGS Publications Warehouse

    Castle, J.W.; Byrnes, A.P.

    1998-01-01

    Petrophysical core testing combined with geophysical log analysis of low-permeability, Lower Silurian sandstones of the Appalachian basin provides guidelines and equations for predicting gas producibility. Permeability values are predictable from the borehole logs by applying empirically derived equations based on correlation between in-situ porosity and in-situ effective gas permeability. An Archie-form equation provides reasonable accuracy of log-derived water saturations because of saturated brine salinities and low clay content in the sands. Although measured porosity and permeability average less than 6% and 0.1 mD, infrequent values as high as 18% and 1,048 mD occur. Values of effective gas permeability at irreducible water saturation (Swi) range from 60% to 99% of routine values for the highest permeability rocks to several orders of magnitude less for the lowest permeability rocks. Sandstones having porosity greater than 6% and effective gas permeability greater than 0.01 mD exhibit Swi less than 20%. With decreasing porosity, Swi sharply increases to values near 40% at 3 porosity%. Analysis of cumulative storage and flow capacity indicates zones with porosity greater than 6% generally contain over 90% of flow capacity and hold a major portion of storage capacity. For rocks with Swi < 20%, gas relative permeabilities exceed 45%. Gas relative permeability and hydrocarbon volume decrease rapidly with increasing Swi as porosity drops below 6%. At Swi above 40%, gas relative permeabilities are less than approximately 10%.

  13. Hysteresis phenomena of the two dimensional electron gas density in lattice-matched InAlN/GaN heterostructures

    SciTech Connect

    Sang, Ling; Yang, Xuelin Cheng, Jianpeng; Guo, Lei; Hu, Anqi; Xiang, Yong; Yu, Tongjun; Xu, Fujun; Tang, Ning; Jia, Lifang; He, Zhi; Wang, Maojun; Wang, Xinqiang; Shen, Bo; Ge, Weikun

    2015-08-03

    High-temperature transport properties in high-mobility lattice-matched InAlN/GaN heterostructures have been investigated. An interesting hysteresis phenomenon of the two dimensional electron gas (2DEG) density is observed in the temperature-dependent Hall measurements. After high-temperature thermal cycles treatment, the reduction of the 2DEG density is observed, which is more serious in thinner InAlN barrier samples. This reduction can then be recovered by light illumination. We attribute these behaviors to the shallow trap states with energy level above the Fermi level in the GaN buffer layer. The electrons in the 2DEG are thermal-excited when temperature is increased and then trapped by these shallow trap states in the buffer layer, resulting in the reduction and hysteresis phenomenon of their density. Three trap states are observed in the GaN buffer layer and C{sub Ga} may be one of the candidates responsible for the observed behaviors. Our results provide an alternative approach to assess the quality of InAlN/GaN heterostructures for applications in high-temperature electronic devices.

  14. Synthesis and analysis of novel polymers with high permselectivity and permeability in gas separation applications. Progress report, December 1991--December 1992

    SciTech Connect

    Koros, W.J.; Paul, D.R.

    1991-12-31

    Significant progress was made toward developing advanced materials for gas separation membrane applications and rationalizing molecular structure and efficacy: Synthesized and tested polyarylates based on terephthalic or isophthalic acid or a tertiary butyl derivative of the isophthalic acid with different diols to illustrate the effects of: ``opening`` the matrix by incorporation of bulky packing inhibiting groups such as the tertiary butyl moiety inhibition of backbone motion via meta connected backbone connections and ``tightening`` of the matrix by incorporation of polar halogens. Completed high temperature characterization of sorption and transport properties for novel materials. Continued studies of the phenyl-substituted polymers aimed at producing super stable high temperature useful polymers for gas separations. Synthesized a polyarylate based on the spirobiindane diol and bibenzoyl acid chloride to incorporate long flat packable bibenzoyl units between packing disruptive spirobiindane units in an attempt to control the segmental level morphology to produce highly selective ``bottleneck`` regions between highly open regions.

  15. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.

  16. Gas nitriding and subsequent oxidation of Ti-6Al-4V alloys

    PubMed Central

    2012-01-01

    Ti-6Al-4V alloys consisting of α-Ti grains and intergranular β-Ti islands were nitrided at 850°C for 1 to 12 h under a nitrogen pressure of 1 Pa. With increasing nitriding time, the Ti-N compound layer became thicker, and the α-Ti diffusion zone containing dissolved nitrogen became wider. In the Ti-N compound layer, the initially formed Ti2N became TiN as the nitriding progressed. The nitride layers were oxidized to rutile-TiO2 after oxidation at 700°C for 10 h in air. PMID:22221679

  17. Synthesis and characterization of nanoscale Al-Si-O gradient membranes

    SciTech Connect

    Trouillet, V.; Troesse, H.; Bruns, M.; Nold, E.; White, R. G.

    2007-07-15

    Novel ultrathin gas-permeable Al-Si-oxide membranes have been developed by means of ion induced chemical vapor deposition in order to improve the gas analytical performance of an electronic nose. Dependent on the used precursor tailored Al/Si concentration ratios and even concentration gradients are attainable. The diversity in chemical composition and thickness across the gas sensor microarray has been proven by the combination of ellipsometry for the freshly prepared membrane and line scans derived from Auger electron spectroscopy and angle resolved x-ray photoelectron spectroscopy, respectively, for the baked membrane.

  18. Modeling Hysteresis Effect in Three-Phase Relative Permeability

    NASA Astrophysics Data System (ADS)

    Kianinejad, A.; Chen, X.; DiCarlo, D. A.

    2014-12-01

    Simulation and fluid flow prediction of many petroleum enhanced oil recovery methods as well as environmental processes such as carbon dioxide (CO2) geological storage requires accurate modeling and determination of relative permeability under different saturation histories. Based on this critical need, there has been several different three-phase relative permeability models developed to predict the hysteresis effects in relative permeability, most of which requiring many different parameters which introduce extreme complexity to the models for practical purposes. In this work, we experimentally measured three-phase, water/oil/gas, relative permeability in a 1-m long water-wet sand pack, under several different flow histories. We measured the in-situ saturations along the sand pack using a CT scanner. We then determined the relative permeabilities directly from the measured in-situ saturations, using unsteady-state method. Based on our results, good estimation of residual saturations yields in excellent three-phase relative permeability estimations by just using the simple, standard relative permeability models such as, Saturation Weighted Interpolation (SWI), Corey's and Stones. Our results show that, the key parameter to model the hysteresis in three-phase relative permeability (effect of saturation history) is the residual saturations. Once the residual saturations were correctly determined for each specific saturation path, the standard relative permeability models can predict the three-phase relative permeabilities perfectly.

  19. Microstructure and High-Temperature Oxidation Behavior of Cold Gas-sprayed Ni-Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Sirvent, P.; Cruz, D.; Múnez, C. J.; Poza, P.

    2016-04-01

    Cermet coatings are widely used for high-temperature industrial applications. This study investigates the effect of high-temperature oxidation on cold gas dynamic-sprayed Ni-Al2O3 coatings. For this purpose, high-temperature oxidation tests were performed at 520 and 640 °C. The selected exposure times were 24, 48, 72, 168, and 336 h. The microstructural evolution during exposure at high temperature was analyzed by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and x-ray diffraction (XRD). The oxidation kinetics was estimated by thickness measurements. The results show that the coatings protect the substrates against oxidation. In order to study possible changes in the mechanical properties of the system, Vickers microhardness experiments on the coatings and on the 10CrMo9-10 steel substrates were conducted. It was observed that hardness decreased by exposing the specimens to high temperature.

  20. Surface Remelting Treated High Velocity arc Sprayed FeNiCrAlBRE Coating by Tungsten Inert Gas

    NASA Astrophysics Data System (ADS)

    Tian, H. L.; Wei, S. C.; Chen, Y. X.; Tong, H.; Liu, Y.; Xu, B. S.

    This study aims at evaluating the effect of the TIG (Tungsten Inert Gas) remelting treatment of self-fluxing FeNiCrAlBRE alloy coatings, formed by means of high velocity arc spraying on steel surfaces. The treated and untreated samples were subjected to comparative structural examination using scanning electron microscopes. For quantitative investigation of porosity, a computer image analyser was used. Additionally, the wear resistance and wear volume loss of the worn tracks before and after the remelting process were contrastively evaluated in details. After the sprayed coatings were treated by TIG remelting in a proper conditions, the microstructure examination of the remelted coatings showed that a change of the microstructure from lamellar to cellular structure. Also, the results show that the remelting process decrease the coating defects and make the coating more wearable.

  1. In situ permeability testing of rock salt

    SciTech Connect

    Peterson, E.W.; Lagus, P.L.; Broce, R.D.; Lie, K.

    1981-04-01

    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 ..mu..darcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section.

  2. Permeability anisotropy of serpentinite and fluid pathways in a subduction zone

    NASA Astrophysics Data System (ADS)

    Katayama, I.; Kawano, S.; Okazaki, K.

    2011-12-01

    Subduction zones are the only sites where water is transported into the Earth's deep interior. Although the fluid released into the mantle wedge is generally believed to ascend under buoyancy, it is possible that fluid movement is influenced by anisotropic permeability in localized shear zones. The mantle rocks at the plate interface of a subducting slab are subjected to non-coaxial stress and commonly develop a strong foliation. Indeed, the existence of foliated serpentinite is indicated by strong seismic anisotropy in the forearc mantle wedge (e.g., Katayama et al., 2009; Bezacier et al., 2010). Therefore, fluid pathways in the mantle wedge may be controlled by the preferred orientation of highly anisotropic minerals. In this study, we measured the permeability of highly foliated natural serpentinite, in directions parallel and perpendicular to the foliation, and we discuss the influence of permeability anisotropy on fluid flow in subduction zones. The permeability was measured by an intra-vessel deformation and fluid flow apparatus housed at Hiroshima University. In the measurements, we used nitrogen gas as a pore fluid and maintained constant pore pressure during the measurements (Pp < 6 MPa). The obtained gas permeability was then converted to intrinsic permeability using the Klinkenberg effect, which is known to be insensitive to the type of pore fluid. Under low confining pressure, all the experiments show similar permeability, in the order of 10-19 m2. However, permeability anisotropy appears under high confining pressures, with the specimens oriented parallel to the foliation having higher permeability than those oriented normal to the foliation. At a confining pressure of 50 MPa, the difference in permeability between the samples with contrasting orientations reaches several orders of magnitude, possibly reflecting the pore tortuosity of the highly sheared serpentinite, as indicated by the Kozeny-Carman relation. The present experimental data show that

  3. Permeability Changes in Reaction Induced Fracturing

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv

    2013-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and

  4. The Permeable Classroom.

    ERIC Educational Resources Information Center

    Sandy, Leo R.

    1998-01-01

    Discusses the concept of permeability as knowledge flow into and out of the classroom and applies it to three college courses taught by the author at Plymouth State College (New Hampshire). Experiential knowledge comes into the classroom through interviews, guest speakers, and panel presentations, and flows out through service-learning students…

  5. Determination of Coal Permeability Using Pressure Transient Methods

    SciTech Connect

    McLendon, T.R.; Siriwardane, H.; Haljasmaa, I.V.; Bromhal, G.S.; Soong, Y.; Irdi, G.A.

    2007-05-01

    Coalbed methane is a significant natural resource in the Appalachian region. It is believed that coalbed methane production can be enhanced by injection of carbon dioxide into coalbeds. However, the influence of carbon dioxide injection on coal permeability is not yet well understood. Competitive sorption of carbon dioxide and methane gases onto coal is a known process. Laboratory experiments and limited field experience indicate that coal will swell during sorption of a gas and shrink during desorption of a gas. The swelling and shrinkage may change the permeability of the coal. In this study, the permeability of coal was determined by using carbon dioxide as the flowing fluid. Coal samples with different dimensions were prepared for laboratory permeability tests. Carbon dioxide was injected into the coal and the permeability was determined by using pressure transient methods. The confining pressure was variedto cover a wide range of depths. The permeability was also determined as a function of exposure time of carbon dioxide while the confining stress was kept constant. CT scans were taken before and after the introduction of carbon dioxide. Results show that the porosity and permeability of the coal matrix was very low. The paper presents experimental data and theoretical aspects of the flow of carbon dioxide through a coal sample during pressure transient tests. The suitability of the pressure transient methods for determining permeability of coal during carbon dioxide injection is discussed in the paper.

  6. Scales of rock permeability

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Gavrilenko, P.; Le Ravalec, M.

    1996-05-01

    Permeability is a transport property which is currently measured in Darcy units. Although this unit is very convenient for most purposes, its use prevents from recognizing that permeability has units of length squared. Physically, the square root of permeability can thus be seen as a characteristic length or a characteristic pore size. At the laboratory scale, the identification of this characteristic length is a good example of how experimental measurements and theoretical modelling can be integrated. Three distinct identifications are of current use, relying on three different techniques: image analysis of thin sections, mercury porosimetry and nitrogen adsorption. In each case, one or several theoretical models allow us to derive permeability from the experimental data (equivalent channel models, statistical models, effective media models, percolation and network models). Permeability varies with pressure and temperature and this is a decisive point for any extrapolation to crustal conditions. As far as pressure is concerned, most of the effect is due to cracks and a model which does not incorporate this fact will miss its goal. Temperature induced modifications can be the result of several processes: thermal cracking (due to thermal expansion mismatch and anisotropy, or to fluid pressure build up), and pressure solution are the two main ones. Experimental data on pressure and temperature effects are difficult to obtain but they are urgently needed. Finally, an important issue is: up to which point are these small scale data and models relevant when considering formations at the oil reservoir scale, or at the crust scale? At larger scales the identification of the characteristic scale is also a major goal which is examined.

  7. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    SciTech Connect

    Kishore K. Mohanty

    2002-09-30

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  8. Selective detection of toxic cyanogen gas in the presence of O2, and H2O molecules using a AlN nanocluster

    NASA Astrophysics Data System (ADS)

    Solimannejad, Mohammad; Kamalinahad, Saeedeh; Shakerzadeh, Ehsan

    2016-08-01

    The interaction of cyanogen molecule with Al12N12 nanocage has been studied using density functional theory (DFT) at CAM-B3LYP/6-31+G(d) level. Geometric, electronic structure and natural bond orbitals (NBO) analysis display that adsorption of cyanogen onto exterior surface of Al12N12 is physisorption with adsorption energy (Eads) equal to -55.36 kJ/mol. UV-vis study shows a high intensity peak in 388.9 nm due to interaction of gas with nanocage. It is expected that Al12N12 will be used in designing novel materials for potential applications to detect toxic cyanogen molecule.

  9. Permeability of coal to CH4 under fixed volume boundary conditions: the effect of stress-strain-sorption behaviour

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Fokker, Peter; Spiers, Christopher

    2016-04-01

    Permeability evolution in coal reservoirs during CO2-Enhanced Coalbed Methane (ECBM) production is strongly influenced by swelling/shrinkage effects related to sorption and desorption of CO2 and CH4, respectively. Numerous permeability models, coupling the swelling response of coal to gas sorption, have been developed to predict in-situ coal seam permeability evolution during (E)CBM. However, experimental studies, aimed at testing such models, have mainly focused on the permeability changes occurring under constant lateral stress conditions, which are inconsistent with the in-situ boundary condition of (near) zero lateral strain. We performed CH4 permeability measurements, using the steady-state method, on a cylindrical sample of high volatile bituminous coal (25mm in diameter), under (near) fixed volume versus fixed stress conditions. The sample possessed a clearly visible cleat system. To isolate the effect of sorption on permeability evolution, helium (non-sorbing gas) was used as a control fluid. The bulk sample permeability to helium, under stress control conditions, changed from 4.07×10‑17to 7.5×10‑18m2, when the effective stress increased from 19.1 to 35.2MPa. Sorption of CH4 at a constant pressure of 10MPa, under fixed volume boundary conditions, resulted in a confining pressure increase from a poroelastically supported value of 29.3MPa to a near-equilibrium value of 38.6MPa over 171 hours. This is caused by the combined effect of the sorption-induced swelling and the self-compression of the sample. The concentration of CH4 adsorbed by the sample was 0.113 mmol/gcoal. During the adsorption process, the permeability to CH4 also decreased from 2.38×10‑17 to 4.91×10‑18m2, proving a strong influence of stress-strain-sorption behavior (c.f. Hol et al., 2012) on fracture permeability evolution. The CH4 permeability subsequently measured under stress controlled conditions varied from 1.37×10‑17 to 4.33×10‑18m2, for same change in confining

  10. Examination of the coordination sphere of Al(III) in trifluoromethyl-heteroarylalkenolato complex ions by gas-phase IRMPD spectroscopy and computational modelling.

    PubMed

    Brückmann, Lisa; Tyrra, Wieland; Mathur, Sanjay; Berden, Giel; Oomens, Jos; Meijer, Anthony J H M; Schäfer, Mathias

    2012-06-01

    A series of aluminium complex ions with trifluoromethyl-heteroarylalkenolato (TMHA) ligands are studied by gas-phase infrared multiphoton-dissociation (IRMPD) spectroscopy and computational modelling. The selected series of aluminium TMHA complex ions are promising species for the initial study of intrinsic binding characteristics of Al(III) cations in the gas phase as corresponding molecular ions. They are readily available for examination by (+) and (-) electrospray ionization mass spectrometry (ESI-MS) by spraying of [Al(3+)⋅(L(-))(3)] solutions. The complex ions under investigation contain trivalent Al(3+) cations with two chelating anionic enolate ligands, [Al(3+)⋅(L(-))(2)](+), providing insights in the nature of the heteroatom-Al bonds. Additionally, the structure of a deprotonated benzimidazole ligand, L(-,) and an anionic complex ion of Al(III) with two doubly deprotonated benzimidazole ligands, [Al(3+)⋅(L(2-))(2)](-), are examined by (-)ESI-IRMPD spectroscopy. Experimental and computational results are highly consistent and allow a reliable identification of the ion structures. In all complex ions examined the planar TMHA ligands are oriented perpendicular to each other around the metal ion, leading to a tetrahedral coordination sphere in which aluminium interacts with the enolate oxygen and heteroaryl nitrogen atoms available in each of the bidentate ligands. PMID:22442004

  11. Examination of the coordination sphere of Al(III) in trifluoromethyl-heteroarylalkenolato complex ions by gas-phase IRMPD spectroscopy and computational modelling.

    PubMed

    Brückmann, Lisa; Tyrra, Wieland; Mathur, Sanjay; Berden, Giel; Oomens, Jos; Meijer, Anthony J H M; Schäfer, Mathias

    2012-06-01

    A series of aluminium complex ions with trifluoromethyl-heteroarylalkenolato (TMHA) ligands are studied by gas-phase infrared multiphoton-dissociation (IRMPD) spectroscopy and computational modelling. The selected series of aluminium TMHA complex ions are promising species for the initial study of intrinsic binding characteristics of Al(III) cations in the gas phase as corresponding molecular ions. They are readily available for examination by (+) and (-) electrospray ionization mass spectrometry (ESI-MS) by spraying of [Al(3+)⋅(L(-))(3)] solutions. The complex ions under investigation contain trivalent Al(3+) cations with two chelating anionic enolate ligands, [Al(3+)⋅(L(-))(2)](+), providing insights in the nature of the heteroatom-Al bonds. Additionally, the structure of a deprotonated benzimidazole ligand, L(-,) and an anionic complex ion of Al(III) with two doubly deprotonated benzimidazole ligands, [Al(3+)⋅(L(2-))(2)](-), are examined by (-)ESI-IRMPD spectroscopy. Experimental and computational results are highly consistent and allow a reliable identification of the ion structures. In all complex ions examined the planar TMHA ligands are oriented perpendicular to each other around the metal ion, leading to a tetrahedral coordination sphere in which aluminium interacts with the enolate oxygen and heteroaryl nitrogen atoms available in each of the bidentate ligands.

  12. Nearly lattice-matched InAlN/AlGaN two-dimensional electron gas heterostructures grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Miyoshi, Makoto; Fujita, Shu; Egawa, Takashi

    2015-02-01

    Nearly lattice-matched InAlN/AlxGa1-xN (x = 0.1, 0.21, and 0.34) heterostructures with a 1-nm-thick AlN interfacial layer were grown on AlN/sapphire templates by metalorganic chemical vapor deposition. Capacitance-voltage and Hall effect measurements revealed that two-dimensional electron gases (2DEGs) with high densities exceeding 2 × 1013/cm2 were generated at the heterointerface for all samples. It was confirmed that the generation of high-density 2DEGs can be explained as being due to internal polarization effects. The sheet resistance increased from 1,267 to 1,919 Ω/sq with the increase in Al content in the AlGaN channel, owing to the decreases in 2DEG density and mobility.

  13. EPA Permeable Surface Research - Poster

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  14. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect

    Liu, Fei; Wang, Hongyang; Liu, Liming

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  15. Development of a Nonisothermal Dual Permeability Model for Structured Soils

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Mohanty, B.

    2015-12-01

    The Philip and de Vries (1957) model and its extensions (e.g., Smits et al. (2011) ) cannot appropriately characterize preferential flow processes in the structured heterogeneous soils including macropores (fractures, cracks, root channels, etc.), which is ubiquitous at the terrestrial surfaces. The macropores in the vadose zone not only provide pathways for increased downward liquid flow and may enhance fast transport of nonvolatile contaminants to the groundwater, but also provide pathways for gas and vapor transport and may enhance upward movement of volatile contaminants (Scanlon et al., 1997). In other words, with respect to the structured soils, the wetting phases (e.g., liquid water) will preferentially reside in the small pores such as soil matrix, while the nonwetting phases (e.g., air and vapor) will tend to occupy the larger pores such as fractures. As a result of such phase distribution, the temperatures in the matrix and macropores are also expected to be different. In this work, we attempted to formulate and develop a dual permeability model in heterogeneous soils suitable for coupled water and heat flow descriptions. We defined two continua (each continuum has its own set of parameters and variables) and solved separate mass and energy balance equations in each continuum. The water and heat transport equations in each continuum are coupled by exchange terms. This dual permeability coupled water and heat flow model has the capability to correctly simulate preferential evaporation over fine-textured soils due to the fact that the capillary forces divert the pore water from coarse-textured soils (high temperature region) toward the fine-textured soils (low temperature region).

  16. Porosity and Permeability of Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Corrigan, Catherine M.; Dahl, Jason; Long, Michael

    1996-01-01

    We have investigated the porosity of a large number of chondritic interplanetary dust particles and meteorites by three techniques: standard liquid/gas flow techniques, a new, non-invasive ultrasonic technique, and image processing of backscattered images . The latter technique is obviously best suited to sub-kg sized samples. We have also measured the gas and liquid permeabilities of some chondrites by two techniques: standard liquid/gas flow techniques, and a new, non-destructive pressure release technique. We find that chondritic IDP's have a somewhat bimodal porosity distribution. Peaks are present at 0 and 4% porosity; a tail then extends to 53%. These values suggest IDP bulk densities of 1.1 to 3.3 g/cc. Type 1-3 chondrite matrix porosities range up to 30%, with a peak at 2%. The bulk porosities for type 1-3 chondrites have the same approximate range as exhibited by matrix, indicating that other components of the bulk meteorites (including chondrules and aggregates) have the same average porosity as matrix. These results reveal that the porosity of primitive materials at scales ranging from nanogram to kilogram are similar, implying similar accretion dynamics operated through 12 orders of size magnitude. Permeabilities of the investigated chondrites vary by several orders of magnitude, and there appears to be no simple dependence of permeability with degree of aqueous alteration, or chondrite type.

  17. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  18. [Venoruton and capillary permeability].

    PubMed

    Cesarone, M R; Laurora, G; Gabini, M; Errichi, B M; Candiani, C; Belcaro, G

    1989-05-01

    A new system to evaluate capillary permeability, the vacuum suction chamber (VSC) device, was used to assess the effects of Venoruton in patients with venous hypertension. A temporary, superficial skin lesion (wheal) was produced with the VSC device by negative pressure (30 mmHg) applied for 10 minutes on the internal, perimalleolar region. Wheals disappear in less than 60 minutes in normals while in patients with venous hypertension the wheal is more persistent, requiring a significantly longer time to disappear. This new technique was used in association with laser-Doppler flowmetry to evaluate the efficacy of Venoruton (1000 mgs t.i.d.) administered for 2 weeks on venous hypertension. Results indicate a positive effect of Venoruton in reducing the abnormally increased capillary permeability in venous hypertension and are proportional to the changes observed in signs and symptoms after treatment.

  19. A Honeycomb-Structured Ti-6Al-4V Oil-Gas Separation Rotor Additively Manufactured by Selective Electron Beam Melting for Aero-engine Applications

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Wang, Q. B.; Yang, G. Y.; Gu, J.; Liu, N.; Jia, L.; Qian, M.

    2016-03-01

    Oil -gas separation is a key process in an aero-engine lubrication system. This study reports an innovative development in oil -gas separation. A honeycomb-structured rotor with hexagonal cone-shaped pore channels has been designed, additively manufactured from Ti-6Al-4V using selective electron beam melting (SEBM) and assessed for oil -gas separation for aero-engine application. The Ti-6Al-4V honeycomb structure showed a high compressive strength of 110 MPa compared to less than 20 MPa for metal foam structures. The oil -gas separation efficiency of the honeycomb-structured separation rotor achieved 99.8% at the rotation speed of 6000 rpm with much lower ventilation resistance (17.3 kPa) than that of the separator rotor constructed using a Ni-Cr alloy foam structure (23.5 kPa). The honeycomb-structured Ti-6Al-4V separator rotor produced by SEBM provides a promising solution to more efficient oil -gas separation in the aero-engine lubrication system.

  20. Strain-dependent permeability of volcanic rocks.

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie; Heap, Michael; Baud, Patrick

    2016-04-01

    We explore permeability evolution during deformation of volcanic materials using a suite of rocks with varying compositions and physical properties (such as porosity ϕ). 40 mm × 20 mm cylindrical samples were made from a range of extrusive rocks, including andesites from Colima, Mexico (ϕ˜0.08; 0.18; 0.21), Kumamoto, Japan (ϕ˜0.13), and Ruapehu, New Zealand (ϕ˜0.15), and basalt from Mt Etna, Italy (ϕ˜0.04). Gas permeability of each sample was measured before and after triaxial deformation using a steady-state benchtop permeameter. To study the strain-dependence of permeability in volcanic rocks, we deformed samples to 2, 3, 4, 6, and 12 % axial strain at a constant strain rate of 10‑5 s‑1. Further, the influence of failure mode - dilatant or compactant - on permeability was assessed by repeating experiments at different confining pressures. During triaxial deformation, porosity change of the samples was monitored by a servo-controlled pore fluid pump. Below an initial porosity of ˜0.18, and at low confining pressures (≤ 20 MPa), we observe a dilatant failure mode (shear fracture formation). With increasing axial strain, stress is accommodated by fault sliding and the generation of ash-sized gouge between the fracture planes. In higher-porosity samples, or at relatively higher confining pressures (≥ 60 MPa), we observe compactant deformation characterised by a monotonous decrease in porosity with increasing axial strain. The relative permeability k' is given by the change in permeability divided by the initial reference state. When behaviour is dilatant, k' tends to be positive: permeability increases with progressive deformation. However, results suggest that after a threshold amount of strain, k' can decrease. k' always is negative (permeability decreases during deformation) when compaction is the dominant behaviour. Our results show that - in the absence of a sealing or healing process - the efficiency of a fault to transmit fluids is

  1. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  2. The mitochondrial permeability transition from yeast to mammals

    PubMed Central

    Azzolin, Luca; von Stockum, Sophia; Basso, Emy; Petronilli, Valeria; Forte, Michael A.; Bernardi, Paolo

    2010-01-01

    Regulated permeability changes have been detected in mitochondria across species. We review here their key features, with the goal of assessing whether a “permeability transition” similar to that observed in higher eukaryotes is present in other species. The recent discoveries (i) that treatment with cyclosporin A unmasks an inhibitory site for Pi [Basso et al. (2008) J. Biol Chem. 283, 26307–26311], the classical inhibitor of the permeability transition of yeast; and (ii) that under proper experimental conditions a matrix Ca2+-dependence can be demonstrated in yeast as well [Yamada et al. (2009) Biochim. Biophys. Acta 1787, 1486–1491] suggest that the mitochondrial permeability transition has been conserved during evolution. PMID:20398660

  3. In-depth understanding of the relation between CuAlO₂ particle size and morphology for ozone gas sensor detection at a nanoscale level.

    PubMed

    Thirumalairajan, S; Mastelaro, Valmor R; Escanhoela, Carlos A

    2014-12-10

    A morphology-dependent nanomaterial for energy and environment applications is one of the key challenges for materials science and technology. In this study, we investigate the effect of the particle size of CuAlO2 nanostructures prepared through the facile and hydrothermal process to detect ozone gas. Phase analysis and structural information were obtained using X-ray diffraction and micro-Raman studies. The chemical states of CuAlO2 atomic species were determined by X-ray photoelectron spectroscopy. Electron microscopy images revealed the flower and hexagonal shape constituted of pentagon and oval CuAlO2 nanoparticles with average size ∼40 and 80 nm. The specific surface area was measured and found to be 59.8 and 70.8 m(2) g(-1), respectively. The developed CuAlO2 nanostructures not only possess unique morphology but also influence the ozone gas sensing performance. Among the two structures, CuAlO2, with hexagonal morphology, exhibited superior ozone detection for 200 ppb at 250 °C, with a response and good recovery time of 25 and 39 s compared to the flower morphology (28 and 69 s). These results show that not only does the morphology play an major role but also the particle size, surface area, gas adsorption/desorption, and grain-grain contact, as proposed in the gas sensing mechanism. Finally, we consider CuAlO2 material as a good candidate for environment monitoring applications. PMID:25401778

  4. Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Zhongxin, Zheng; Jiandong, Sun; Yu, Zhou; Zhipeng, Zhang; Hua, Qin

    2015-10-01

    The broadband terahertz (THz) emission from drifting two-dimensional electron gas (2DEG) in an AlGaN/GaN heterostructure at 6 K is reported. The devices are designed as THz plasmon emitters according to the Smith-Purcell effect and the ‘shallow water’ plasma instability mechanism in 2DEG. Plasmon excitation is excluded since no signature of electron-density dependent plasmon mode is observed. Instead, the observed THz emission is found to come from the heated lattice and/or the hot electrons. Simulated emission spectra of hot electrons taking into account the THz absorption in air and Fabry-Pérot interference agree well with the experiment. It is confirmed that a blackbody-like THz emission will inevitably be encountered in similar devices driven by a strong in-plane electric field. A conclusion is drawn that a more elaborate device design is required to achieve efficient plasmon excitation and THz emission. Project supported by the National Basic Research Program of China (No. G2009CB929303), the National Natural Science Foundation of China (No. 61271157), the China Postdoctoral Science Foundation (No. 2014M551678), and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1301054B).

  5. Precipitate microstructures and resulting properties of Al-Zn-Mg metal inert gas-weld heat-affected zones

    NASA Astrophysics Data System (ADS)

    Nicolas, M.; Deschamps, A.

    2004-05-01

    Using the combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), the precipitate microstructure is quantitatively investigated in the heat-affected zones (HAZs) of Al-Zn-Mg metal inert gas (MIG)-welds, and the resulting mechanical properties are determined by hardness measurements. Three initial states prior to welding (T4, T6, and T7) are investigated, and the subsequent microstructure evolution during natural aging and postwelding heat treatments (PWHTs) is assessed. The critical part of the HAZ is shown to be the transition region where partial dissolution of the initially present precipitates occurs. In this transition zone, precipitate coarsening is shown to occur for the T6 and T7 initial states, contrarily to the T4 material. After PWHT, the T6 and T7 materials experience a weak region related to this coarsening behavior, whereas the T4 material HAZ is able to recover a homogeneous microstructure after a suitably chosen PWHT. Simple model ramp heat treatments are shown to describe the main phenomena involved in the HAZ. Finally, a precipitation hardening model is successfully applied to the microstructural data to describe the hardness profiles in the various HAZs.

  6. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08

    The relative permeability to fluids in hydrate-bearing sediments is an important parameter for predicting natural gas production from gas hydrate reservoirs. We estimated the relative permeability parameters (van Genuchten alpha and m) in a hydrate-bearing sand by means of inverse modeling, which involved matching water saturation predictions with observations from a controlled waterflood experiment. We used x-ray computed tomography (CT) scanning to determine both the porosity and the hydrate and aqueous phase saturation distributions in the samples. X-ray CT images showed that hydrate and aqueous phase saturations are non-uniform, and that water flow focuses in regions of lower hydrate saturation. The relative permeability parameters were estimated at two locations in each sample. Differences between the estimated parameter sets at the two locations were attributed to heterogeneity in the hydrate saturation. Better estimates of the relative permeability parameters require further refinement of the experimental design, and better description of heterogeneity in the numerical inversions.

  7. Metalorganic Chemical Vapor Deposition and Material Characterization of Lattice-Matched InAlN/GaN Two-Dimensional Electron Gas Heterostructures

    NASA Astrophysics Data System (ADS)

    Miyoshi, Makoto; Kuraoka, Yoshitaka; Tanaka, Mitsuhiro; Egawa, Takashi

    2008-08-01

    InAlN/GaN two-dimensional electron gas (2DEG) heterostructures were successfully grown by metalorganic chemical vapor deposition. X-ray photoelectron spectroscopy and X-ray diffraction measurements revealed that the barrier layer consists of a ternary In0.18Al0.82N alloy, a composition nearly lattice-matched to GaN. The bandgap energy of the In0.18Al0.82N barrier layer was estimated to be approximately 4.3 eV by spectroscopic ellipsometry analysis. Electrical characterization results showed that 2DEG mobility can be improved with the insertion of a thin AlN layer at the InAlN/GaN heterointerface. Very high 2DEG densities of more than 2.6×1013 cm-2 and high 2DEG mobilities of 1170 cm2/(V s) were achieved for InAlN/AlN/GaN structures with the barrier thickness of more than 15 nm. These 2DEG properties are almost equal to the best ones ever reported for InAlN/GaN 2DEG structures.

  8. Mechanical properties of Ta-Al-N thin films deposited by cylindrical DC magnetron sputtering: Influence of N2% in the gas mixture

    NASA Astrophysics Data System (ADS)

    Darabi, Elham; Moghaddasi, Naghmeh; Reza Hantehzadeh, Mohammad

    2016-06-01

    Ta-Al-N thin films were deposited by cylindrical DC magnetron sputtering on a stainless steel substrate under varying nitrogen flow ratios ( N2 with respect to N2 + Ar in the range of 1.5%-9%. The effect of the N2 content in the reactive gas mixture on crystalline structure, surface morphology, and mechanical properties of Ta-Al-N thin films was investigated. The amount of Al and Ta in deposited films was obtained by energy dispersive X-ray spectroscopy (EDX) analysis and films thickness was measured by surface step profilometer. X-ray diffraction analysis (XRD) revealed that the crystalline structure of the Ta-Al-N polycrystalline thin film is a mixture of TaAl, TaN, and AlN crystalline phases. Surface morphology, roughness, and grain size were investigated by atomic force microscopy (AFM). The nano hardness of Ta-Al-N thin films, measured by the nanoindentation method, was about 9GPa maximum for samples prepared under 3% N2 , and the friction coefficient, obtained by nanoscratch analysis, was approximately 0.2 for all Ta-Al-N thin films. Other results were found to be affected considerably by increasing the N2 amount.

  9. Permeability of WIPP Salt During Damage Evolution and Healing

    SciTech Connect

    BODNER,SOL R.; CHAN,KWAI S.; MUNSON,DARRELL E.

    1999-12-03

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering.

  10. Fabrication of Fe-TiC-Al2O3 composites on the surface of steel using a TiO2-Al-C-Fe combustion reaction induced by gas tungsten arc cladding

    NASA Astrophysics Data System (ADS)

    Sharifitabar, Mahmood; Khaki, Jalil Vahdati; Sabzevar, Mohsen Haddad

    2016-02-01

    The aim of the present study was to fabricate Fe-TiC-Al2O3 composites on the surface of medium carbon steel. For this purpose, TiO2-3C and 3TiO2-4Al-3C- xFe (0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate. The mixtures and substrate were then melted using a gas tungsten arc cladding process. The results show that the martensite forms in the layer produced by the TiO2-3C mixture. However, ferrite-Fe3C-TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2-4Al-3C mixture. The addition of Fe to the TiO2-4Al-3C reactants with the content from 0 to 20wt% increases the volume fraction of particles, and a composite containing approximately 9vol% TiC and Al2O3 particles forms. This composite substantially improves the substrate hardness. The mechanism by which Fe particles enhance the TiC + Al2O3 volume fraction in the composite is determined.

  11. The effects of viscous forces on three-phase relative permeability

    SciTech Connect

    Maloney, D.R.; Mahmood, S.M.; Honarpour, M.M.

    1989-04-01

    The overall objective of Three-Phase Relative Permeability Project (BE9) is to develop guidelines for improving the accuracy of three-phase relative permeability determinations. This report summarizes previous studies and explains the progress made at NIPER on studying the effect of variations in viscous forces on three-phase relative permeabilities by changing the viscosity of both wetting and nonwetting phases. Significant changes were observed due to viscosity variations. An increase in oil viscosity reduced the relative permeability to gas; an increase in brine/(wetting-phase) viscosity reduced the relative permeability to brine. A slight increase in gas relative permeability was also observed. These observations suggest that the viscosities of both oil and water influence three-phase permeability data. During this study, data scatter was sometimes encountered which was comparable to that of published results. The causes of this scatter are outlined in this report and remedial attempts are discussed. 20 refs., 16 figs., 5 tabs.

  12. Permeability evolution due to dissolution of natural shale fractures reactivated by fracking

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kamil; Kwiatkowski, Tomasz; Szymczak, Piotr

    2015-04-01

    Investigation of cores drilled from gas-bearing shale formations reveals a relatively large number of calcite-cemented fractures. During fracking, some of these fractures will be reactivated [1-2] and may become important flow paths in the resulting fracture system. In this communication, we investigate numerically the effect of low-pH reactive fluid on such fractures. The low-pH fluids can either be pumped during the initial fracking stage (as suggested e.g. by Grieser et al., [3]) or injected later, as part of enhanced gas recovery (EGR) processes. In particular, it has been suggested that CO2 injection can be considered as a method of EGR [4], which is attractive as it can potentially be combined with simultaneous CO2 sequestration. However, when mixed with brine, CO2 becomes acidic and thus can be a dissolving agent for the carbonate cement in the fractures. The dissolution of the cement leads to the enhancement of permeability and interconnectivity of the fracture network and, as a result, increases the overall capacity of the reservoir. Importantly, we show that the dissolution of such fractures proceeds in a highly non-homogeneous manner - a positive feedback between fluid transport and mineral dissolution leads to the spontaneous formation of pronounced flow channels, frequently referred to as "wormholes". The wormholes carry the chemically active fluid deeper inside the system, which dramatically speeds up the overall permeability increase. If the low-pH fluids are used during fracking, then the non-uniform dissolution becomes important for retaining the fracture permeability, even in the absence of the proppant. Whereas a uniformly etched fracture will close tightly under the overburden once the fluid pressure is removed, the nonuniform etching will tend to maintain the permeability since the less dissolved regions will act as supports to keep more dissolved regions open. [1] Gale, J. F., Reed, R. M., Holder, J. (2007). Natural fractures in the Barnett

  13. Effects of surface defects on two-dimensional electron gas at NdAlO3/SrTiO3 interface

    PubMed Central

    Xiang, X.; Qiao, L.; Xiao, H. Y.; Gao, F.; Zu, X. T.; Li, S.; Zhou, W. L.

    2014-01-01

    Density functional theory calculations of NdAlO3/SrTiO3 heterostructure show that two-dimensional electron gas (2-DEG) is produced at the interface with a built-in potential of ~0.3 eV per unit cell. The effects of surface defects on the phase stability and electric field of 2-DEG have been investigated. It is found that oxygen vacancy is easily to form on the NdAlO3(001) surface, with a low threshold displacement energy and a low formation energy. This point defect results in surface reconstruction and the formation of a zigzag -Al-O-Al- chain, which quenches the built-in potential and enhances the carrier density significantly. These results will provide fundamental insights into understanding how surface defects influence the electronic behavior of 2-DEG and tuning their electronic properties through surface modification. PMID:24969627

  14. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  15. Combustion of Gas-Permeable Gun Propellants

    NASA Astrophysics Data System (ADS)

    Li, Yuxiang; Yang, Weitao; Ying, Sanjiu; Peng, Jinhua

    2015-07-01

    Foamed propellants prepared by supercritical fluid foaming show considerably high burning rates due to their porous structures. To further investigate combustion of foamed propellants, quenched combustion experiments and closed-vessel experiments were carried out, Scanning electron microscopy (SEM) was also used to observe their porous morphology. The SEM images show that foamed propellant grains exhibit a porous core and compact skin. The research results show that the porous core is first burned out and the compact skin is burned out at the later burning stage. The results also demonstrate that pore size exerts an important effect on the burning behaviors of foamed propellants.

  16. Palladium nanoparticle enhanced giant photoresponse at LaAlO3/SrTiO3 two-dimensional electron gas heterostructures.

    PubMed

    Chan, Ngai Yui; Zhao, Meng; Wang, Ning; Au, Kit; Wang, Juan; Chan, Lai Wa Helen; Dai, Jiyan

    2013-10-22

    With LaAlO3 surface modification by Pd nanoparticles, LaAlO3/SrTiO3 (LAO/STO) interfacial two-dimensional electron gas presents a giant optical switching effect with a photoconductivity on/off ratio as high as 750% under UV light irradiation. Pd nanoparticles with a size around 2 nm are deposited on top of the LAO surface, and the LAO/STO interface exhibits a giant response to UV light with a wavelength shorter than 400 nm. This giant optical switching behavior has been explained by the Pd nanoparticle's catalytic effect and surface/interface charge coupling.

  17. In situ synthesis and hardness of TiC/Ti5Si3 composites on Ti-5Al-2.5Sn substrates by gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Yan, Wen-qing; Dai, Le; Gui, Chi-bin

    2013-03-01

    TiC/Ti5Si3 composites were fabricated on Ti-5Al-2.5Sn substrates by gas tungsten arc welding (GTAW). Identification of the phases was performed using X-ray diffraction (XRD). The microstructures were analyzed using scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectrometry (EDS) and optical microscopy (OM). The Vickers hardness was measured with a micro-hardness tester. The TiC/Ti5Si3 composites were obtained in a double-layer track, and the Vickers hardness of the track increased by two to three times compared with the Ti-5Al-2.5Sn substrate.

  18. A deterministic solver for the transport of the AlGaN/GaN 2D electron gas including hot-phonon and degeneracy effects

    SciTech Connect

    Galler, M. . E-mail: galler@itp.tu-graz.ac.at; Schuerrer, F. . E-mail: schuerrer@itp.tu-graz.ac.at

    2005-12-10

    The transport of the two-dimensional electron gas formed at an AlGaN/GaN heterostructure in the presence of strain polarization fields is investigated. For this purpose, we develop a deterministic multigroup model to the Boltzmann transport equations. The envelope wave functions for the confined electrons are calculated using a self-consistent Poisson-Schroedinger solver. The electron gas degeneracy and hot phonons are included in our transport equations. Numerical results are given for the dependence of macroscopic quantities on the electric field strength and on time and for the electron and phonon distribution functions. We compare our results to those of Monte Carlo simulations and with experiments.

  19. Carrier-number fluctuations in the 2-dimensional electron gas at the LaAlO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Barone, C.; Romeo, F.; Pagano, S.; Di Gennaro, E.; Miletto Granozio, F.; Pallecchi, I.; Marrè, D.; Scotti di Uccio, U.

    2013-12-01

    The voltage-spectral density SV (f) of the 2-dimensional electron gas formed at the interface of LaAlO3/SrTiO3 has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.

  20. Carrier-number fluctuations in the 2-dimensional electron gas at the LaAlO{sub 3}/SrTiO{sub 3} interface

    SciTech Connect

    Barone, C. Romeo, F.; Pagano, S.; Di Gennaro, E.; Miletto Granozio, F.; Scotti di Uccio, U.; Pallecchi, I.; Marrè, D.

    2013-12-02

    The voltage-spectral density S{sub V} (f) of the 2-dimensional electron gas formed at the interface of LaAlO{sub 3}/SrTiO{sub 3} has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.

  1. The effect of H2O gas on volatilities of planet-forming major elements. I - Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula

    NASA Technical Reports Server (NTRS)

    Hashimoto, Akihiko

    1992-01-01

    The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.

  2. Apparatus for providing directional permeability measurements in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    Directional permeability measurements are provided in a subterranean earth formation by injecting a high-pressure gas from a wellbore into the earth formation in various azimuthal directions with the direction having the largest pressure drop being indicative of the maximum permeability direction. These measurements are provided by employing an inflatable boot containing a plurality of conduits in registry with a like plurality of apertures penetrating the housing at circumferentially spaced-apart locations. These conduits are, in turn, coupled through a valved manifold to a source of pressurized gas so that the high-pressure gas may be selectively directed through any conduit into the earth formation defining the bore with the resulting difference in the pressure drop through the various conduits providing the permeability measurements.

  3. Comparative assessment of three-phase oil relative permeability models

    NASA Astrophysics Data System (ADS)

    Ranaee, Ehsan; Riva, Monica; Porta, Giovanni M.; Guadagnini, Alberto

    2016-07-01

    We assess the ability of 11 models to reproduce three-phase oil relative permeability (kro) laboratory data obtained in a water-wet sandstone sample. We do so by considering model performance when (i) solely two-phase data are employed to render predictions of kro and (ii) two and three-phase data are jointly used for model calibration. In the latter case, a Maximum Likelihood (ML) approach is used to estimate model parameters. The tested models are selected among (i) classical models routinely employed in practical applications and implemented in commercial reservoir software and (ii) relatively recent models which are considered to allow overcoming some drawbacks of the classical formulations. Among others, the latter set of models includes the formulation recently proposed by Ranaee et al., which has been shown to embed the critical effects of hysteresis, including the reproduction of oil remobilization induced by gas injection in water-wet media. We employ formal model discrimination criteria to rank models according to their skill to reproduce the observed data and use ML Bayesian model averaging to provide model-averaged estimates (and associated uncertainty bounds) of kro by taking advantage of the diverse interpretive abilities of all models analyzed. The occurrence of elliptic regions is also analyzed for selected models in the framework of the classical fractional flow theory of displacement. Our study confirms that model outcomes based on channel flow theory and classical saturation-weighted interpolation models do not generally yield accurate reproduction of kro data, especially in the regime associated with low oil saturations, where water alternating gas injection (WAG) techniques are usually employed for enhanced oil recovery. This negative feature is not observed in the model of Ranaee et al. (2015) due to its ability to embed key effects of pore-scale phase distributions, such as hysteresis effects and cycle dependency, for modeling kro observed

  4. Studies on oxidation and deuterium permeation behavior of a low temperature α-Al2O3-forming Fesbnd Crsbnd Al ferritic steel

    NASA Astrophysics Data System (ADS)

    Xu, Yu-Ping; Zhao, Si-Xiang; Liu, Feng; Li, Xiao-Chun; Zhao, Ming-Zhong; Wang, Jing; Lu, Tao; Hong, Suk-Ho; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-08-01

    To evaluate the capability of Fesbnd Crsbnd Al ferritic steels as tritium permeation barrier in fusion systems, the oxidation behavior together with the permeation behavior of a Fesbnd Crsbnd Al steel was investigated. Gas driven permeation experiments were performed. The permeability of the oxidized Fesbnd Crsbnd Al steel was obtained and a reduced activation ferritic/martensitic steel CLF-1 was used as a comparison. In order to characterize the oxide layer, SEM, XPS, TEM, HRTEM were used. Al2O3 was detected in the oxide film by XPS, and HRTEM showed that Al2O3 in the α phase was found. The formation of α-Al2O3 layer at a relatively low temperature may result from the formation of Cr2O3 nuclei.

  5. Electron and hole gas in modulation-doped GaAs/Al{sub 1-x}Ga{sub x}As radial heterojunctions

    SciTech Connect

    Bertoni, Andrea; Royo, Miquel; Mahawish, Farah; Goldoni, Guido

    2011-11-15

    We perform self-consistent Schroedinger-Poisson calculations with exchange and correlation corrections to determine the electron and hole gas in a radial heterojunction formed in a GaAs/AlGaAs core-multi-shell nanowire, which is either n- or p-doped. We show that the electron and hole gases can be tuned to different localizations and symmetries inside the core as a function of the doping density/gate potential. Contrary to planar heterojunctions, conduction electrons do not form a uniform 2D electron gas (2DEG) localized at the GaAs/AlGaAs interface, but rather show a transition between an isotropic, cylindrical distribution deep in the GaAs core (low doping) and a set of six tunnel-coupled quasi-1D channels at the edges of the interface (high doping). Holes, on the other hand, are much more localized at the GaAs/AlGaAs interface. At low doping, they present an additional localization pattern with six separated 2DEGs strips. The field generated by a back-gate may easily deform the electron or hole gas, breaking the sixfold symmetry. Single 2DEGs at one interface or multiple quasi-1D channels are shown to form as a function of voltage intensity, polarity, and carrier type.

  6. NOx abatement in the exhaust of lean-burn natural gas engines over Ag-supported γ-Al2O3 catalysts

    NASA Astrophysics Data System (ADS)

    Azizi, Y.; Kambolis, A.; Boréave, A.; Giroir-Fendler, A.; Retailleau-Mevel, L.; Guiot, B.; Marchand, O.; Walter, M.; Desse, M.-L.; Marchin, L.; Vernoux, P.

    2016-04-01

    A series of Ag catalysts supported on γ-Al2O3, including two different γ-Al2O3 supports and various Ag loadings (2-8 wt.%), was prepared, characterized (SEM, TEM, BET, physisorption, TPR, NH3-TPD) and tested for the selective catalytic reduction of NOx by CH4 for lean-burn natural gas engines exhausts. The catalysts containing 2 wt.% Ag supported on γ-Al2O3 were found to be most efficient for the NOx reduction into N2 with a maximal conversion of 23% at 650 °C. This activity was clearly linked with the ability of the catalyst to concomitantly produce CO, via the methane steam reforming, and NO2. The presence of small AgOx nanoparticles seems to be crucial for the methane activation and NOx reduction.

  7. Effect of annealing atmosphere on photoluminescence and gas sensing of solution-combustion-synthesized Al, Pd co-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Min; Lv, Tan; Wang, Qiong; Zou, Yun-ling; Lian, Xiao-xue; Liu, Hong-peng

    2015-11-01

    Al, Pd co-doped ZnO nanoparticles (NPs) synthesized using a solution combustion method and subsequent annealing process under various atmospheres, including air, nitrogen, and hydrogen, were characterized using x-ray diffraction, energy-dispersive x-ray spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The gas-sensing properties of the sensors based on the NPs were also examined. The results indicated that the Al, Pd co-doped ZnO NPs, with an average crystallite size of 10 nm, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Al-doped ZnO. The response of the Al, Pd co-doped ZnO NPs annealed in N2 to ethanol (49.22) was nearly 5.7 times higher than that to acetone (8.61) and approximately 20 - 27 times higher than that to benzene (2.38), carbon monoxide (2.23), and methane (1.78), which demonstrates their excellent selectivity to ethanol versus other gases. This high ethanol response can be attributed to the combined effects of the small size, Schottky barrier, lattice defects, and catalysis. [Figure not available: see fulltext.

  8. Effects of proton irradiation on a gas phase in which condensation takes place. I Negative Mg-26 anomalies and Al-26. [applied to solar and meteoritic composition

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Dziczkaniec, M.; Walker, A.; Huss, G.; Morgan, J. A.

    1978-01-01

    In the present paper, isotopic effects in magnesium generated in a proton-irradiated gas phase are examined, taking only (p,n), (p,d), and (p, alpha) reactions in magnesium, aluminum, and silicon into consideration. In the presence of proton radiation, the three elements are 'removed' from the gas phase by condensation. It is required that a value of Al-26/Al-27 greater than 6 times 10 to the -5th must be reached, consistent with the value deduced by Lee Papanastassiou, and Wasserburg (1976) from their studies of the Allende meteorite. The calculations show that fast aluminum condensation reduces the required proton fluence substantially, that a significant fraction of aluminum remains uncondensed when the above value of the Al-26/Al-27 ratio is reached, that a detectable MG-24 excess is very likely to occur, that detectable negative MG-28 anomalies can be generated, and that proton fluxes and irradiation times can be varied simultaneously, and over a wide range of values, without significant changes in the required proton fluence.

  9. Effect of calcination temperature and pretreatment with reaction gas on properties of Co/γ-Al2O3 catalysts for partial oxidation of methane.

    PubMed

    Zhang, Nuo-Wei; Huang, Chuan-Jing; Zhu, Xiao-Quan; Xu, Jing-Dong; Weng, Wei-Zheng; Wan, Hui-Lin

    2012-08-01

    The effects of calcination temperature and feedstock pretreatment on the catalytic performance of Co/γ-Al(2)O(3) catalysts were studied for partial oxidation of methane (POM) to synthesis gas, with emphasis on the role of feedstock pretreatment. The physicochemical properties of the catalysts were characterized by N(2) adsorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), H(2) temperature-programmed reduction (H(2) -TPR), and Raman spectroscopy. The results showed that the pretreatment of the catalyst by reaction gas significantly improved the catalytic activity and stability for the POM reaction. On the other hand, the effect of calcination temperature was less significant. Although the initial activity was increased by an increased calcination temperature, the catalyst without the feedstock pretreatment suffered a rapid deactivation. The reaction-atmosphere pretreatment was revealed as a process that mainly modified the surface structure of the catalyst. In that process, the formation of a CoAl(2)O(4) -like compound led to high Co metal dispersion after reduction, and the transformation of the carrier into α-Al(2)O(3) occurred over the catalyst surface. Both the high dispersion of cobalt and the presence of α-Al(2)O(3) surface phase were assumed as the important factors resulting in an excellent catalytic performance in terms of high activity and high stability. PMID:22588989

  10. Study of Eu{sup 3+} → Eu{sup 2+} reduction in BaAl{sub 2}O{sub 4}:Eu prepared in different gas atmospheres

    SciTech Connect

    Rezende, Marcos V. dos S.; Valerio, Mário E.G.; Jackson, Robert A.

    2015-01-15

    Highlights: • The effect of different gas atmospheres on the Eu reduction process was studied. • The Eu reduction was monitored analyzing XANES region at the Eu L{sub III}-edge. • Hydrogen reducing agent are the most appropriate gas for Eu{sup 2+} stabilization. • Only a part of the Eu ions can be stabilized in the divalent state. • A model of Eu reduction process is proposed. - Abstract: The effect of different gas atmospheres such as H{sub 2}(g), synthetic air, carbon monoxide (CO) and nitrogen (N{sub 2}) on the Eu{sup 3+} → Eu{sup 2+} reduction process during the synthesis of Eu-doped BaAl{sub 2}O{sub 4} was studied using synchrotron radiation. The Eu{sup 3+} → Eu{sup 2+} reduction was monitored analyzing XANES region when the sample are excited at the Eu L{sub III}-edge. The results show that the hydrogen reducing agent are the most appropriate gas for Eu{sup 2+} stabilization in BaAl{sub 2}O{sub 4} and that only a part of the Eu ions can be stabilized in the divalent state. A model of Eu reduction process, based on the incorporation of charge compensation defects, is proposed.

  11. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    SciTech Connect

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J. )

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipid partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.

  12. Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain

    PubMed Central

    Bark, C. W.; Felker, D. A.; Wang, Y.; Zhang, Y.; Jang, H. W.; Folkman, C. M.; Park, J. W.; Baek, S. H.; Zhou, H.; Fong, D. D.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    2011-01-01

    Recently a metallic state was discovered at the interface between insulating oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional electron gas (2DEG) have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these unique systems, and may be achieved by epitaxial strain. However, despite the rich nature of strain effects on oxide materials properties, such as ferroelectricity, magnetism, and superconductivity, the relationship between the strain and electrical properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface remains largely unexplored. Here, we use different lattice constant single-crystal substrates to produce LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial strain. We have found that tensile-strained SrTiO3 destroys the conducting 2DEG, while compressively strained SrTiO3 retains the 2DEG, but with a carrier concentration reduced in comparison to the unstrained LaAlO3/SrTiO3 interface. We have also found that the critical LaAlO3 overlayer thickness for 2DEG formation increases with SrTiO3 compressive strain. Our first-principles calculations suggest that a strain-induced electric polarization in the SrTiO3 layer is responsible for this behavior. The polarization is directed away from the interface and hence creates a negative polarization charge opposing that of the polar LaAlO3 layer. This behavior both increases the critical thickness of the LaAlO3 layer, and reduces carrier concentration above the critical thickness, in agreement with our experimental results. Our findings suggest that epitaxial strain can be used to tailor 2DEGs properties of the LaAlO3/SrTiO3 heterointerface.

  13. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    PubMed

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores. PMID:15833638

  14. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, D.A.; Rubin, J.

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. -from Authors

  15. Low-temperature growth of single-walled carbon nanotube using Al2O3/Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum

    NASA Astrophysics Data System (ADS)

    Kiribayashi, Hoshimitsu; Ogawa, Seigo; Kozawa, Akinari; Saida, Takahiro; Naritsuka, Shigeya; Maruyama, Takahiro

    2016-06-01

    We carried out single-walled carbon nanotube (SWCNT) growth at 500 and 600 °C using Al2O3/Pd/Al2O3 multilayer catalysts on SiO2/Si substrates by the alcohol gas source method. When the ethanol pressures were 1 × 10‑4 and 1 × 10‑3 Pa, radial-breathing-mode (RBM) peaks and sharp G band peaks appeared in Raman spectra, indicating the growth of SWCNTs even at 500 °C. When the growth temperature and ethanol pressure were 500 °C and 1 × 10‑4 Pa, respectively, the growth rate decreased gradually with the growth time, but the SWCNT growth continued for more than 4 h and the diameter distribution changed as the growth proceeded. X-ray photoelectron spectroscopy measurements showed that oxidized Pd catalyst particles were reduced to metallic states after the SWCNT growth started.

  16. Effect of N{sub 2} and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes

    SciTech Connect

    Zhirkov, Igor Rosen, Johanna; Oks, Efim

    2015-06-07

    DC arc plasma from Ti, Al, and Ti{sub 1−x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N{sub 2} pressures in the range 10{sup −6} to 3 × 10{sup −2} Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. Introducing N{sub 2} above ∼5 × 10{sup −3} Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N{sub 2} atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions.

  17. Electrokinetic effects and fluid permeability

    NASA Astrophysics Data System (ADS)

    G. Berryman, James

    2003-10-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery.

  18. Porosity and permeability of mesaverde sandstone core from the U. S. DOE multiwell experiment, Garfield County, Colorado

    SciTech Connect

    Randolph, P.L.

    1983-03-01

    Eight higher permeability Mesa Verde sandstone core samples were selected for determination of the effect of fractional water saturation upon permeability. The dry core samples measured porosity, Klinkenberg permeability, and slope, and pore volume compressiblity and pressure. Measurement of the variation in permeability to gas as functions of net stress and water content revealed a dramatic difference between fluvial samples with high pore volume compressibility and paludal samples with lower pore volume compressibility.

  19. Influence of overconsolidated condition on permeability evolution in silica sand

    NASA Astrophysics Data System (ADS)

    Kimura, S.; Kaneko, H.; Ito, T.; Nishimura, O.; Minagawa, H.

    2013-12-01

    Permeability of sediments is important factors for production of natural gas from natural gas hydrate bearing layers. Methane-hydrate is regarded as one of the potential resources of natural gas. As results of coring and logging, the existence of a large amount of methane-hydrate is estimated in the Nankai Trough, offshore central Japan, where many folds and faults have been observed. In the present study, we investigate the permeability of silica sand specimen forming the artificial fault zone after large displacement shear in the ring-shear test under two different normal consolidated and overconsolidated conditions. The significant influence of overconsolidation ratio (OCR) on permeability evolution is not found. The permeability reduction is influenced a great deal by the magnitude of normal stress during large displacement shearing. The grain size distribution and structure observation in the shear zone of specimen after shearing at each normal stress level are analyzed by laser scattering type particle analyzer and scanning electron microscope, respectively. It is indicated that the grain size and porosity reduction due to the particle crushing are the factor of the permeability reduction. This study is financially supported by METI and Research Consortium for Methane Hydrate Resources in Japan (the MH21 Research Consortium).

  20. Competitive reaction pathways for the gas-phase reactivity of [Me2 AlNH2 ]3.

    PubMed

    Davydova, Elena I; Frenking, Gernot; Timoshkin, Alexey Y

    2014-09-15

    Reaction energy profiles for [Me2 AlNH2 ]3 have been computationally explored by using density functional theory. Both intra- and intermolecular methane elimination reactions, as well as Al-N bond-breaking pathways, were considered. The results show that the energy required for Al-N bond breaking in cyclic [Me2 AlNH2 ]3 is of the same order of magnitude as the activation energies for the first (limiting) step of methane elimination (for both mono- and bimolecular mechanisms). Thus, dissociative and associative reaction pathways are competitive. Low-temperature/high-pressure conditions will favor the bimolecular pathway, whereas at high temperatures, either intramolecular methane elimination or Al-N bond-breaking dissociative pathways will be operational. PMID:24976567

  1. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    NASA Astrophysics Data System (ADS)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  2. Effect of water on hydrogen permeability

    NASA Technical Reports Server (NTRS)

    Hulligan, David; Tomazic, William A.

    1987-01-01

    Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.

  3. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2003-12-16

    To improve the hot corrosion resistance of YSZ thermal barrier coatings, a 25 {micro}m and a 2 {micro}m thick Al{sub 2}O{sub 3} overlay were deposited by HVOF thermal spray and by sol-gel coating method, respectively, onto to the surface of YSZ coating. Indenter test was employed to investigate the spalling of YSZ with and without Al{sub 2}O{sub 3} overlay after hot corrosion. The results showed that Al{sub 2}O{sub 3} overlay acted as a barrier against the infiltration of the molten salt into the YSZ coating during exposure, thus significantly reduced the amount of M-phase of ZrO{sub 2} in YSZ coating. However, a thick Al{sub 2}O{sub 3} overlay was harmful for TBC by increasing compressive stress which causes crack and spalling of YSZ coating. As a result, a dense and thin Al{sub 2}O{sub 3} overlay is critical for simultaneously preventing YSZ from hot corrosion and spalling. In the next reporting period, we will measure or calculate the residue stress within Al{sub 2}O{sub 3} overlay and YSZ coating to study the mechanism of effect of Al{sub 2}O{sub 3} overlay on spalling of YSZ coating.

  4. Enhanced two dimensional electron gas transport characteristics in Al{sub 2}O{sub 3}/AlInN/GaN metal-oxide-semiconductor high-electron-mobility transistors on Si substrate

    SciTech Connect

    Freedsman, J. J. Watanabe, A.; Urayama, Y.; Egawa, T.

    2015-09-07

    The authors report on Al{sub 2}O{sub 3}/Al{sub 0.85}In{sub 0.15}N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al{sub 2}O{sub 3} as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al{sub 2}O{sub 3}/Al{sub 0.85}In{sub 0.15}N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics.

  5. Experimental Measurement of Vertical and Horizontal Permeability of Caprocks from the Krechba Field, Algeria and the Controls on their Permeability

    NASA Astrophysics Data System (ADS)

    Armitage, P. J.; Faulkner, D. R.; Worden, R. H.; Illife, J.

    2008-12-01

    Caprock properties play a crucial role in determining the seal capacity of a structure and so are important during exploration, appraisal and field development. Less attention has been paid to caprocks than reservoirs since if petroleum is present, then the seal must be working. However, injection of CO2 to underlying reservoirs will alter the reservoir conditions from those against which the caprock was previously effective. Increased knowledge of the petrological and petrophysical characteristics of caprocks is required in order to lay a foundation to predict the effect of the altered conditions caused by CO2 injection. Vertical (kv) and horizontal (kh) permeability were measured experimentally across a range of effective pressures for an unusually coarse grained, heterogeneous caprock (siltstone) to a natural gas reservoir and current CO2 storage reservoir, from the Krechba Field, Algeria. Permeabilities as low as 10-23m2 were recorded and were in the range of, or lower than typical fine grained siliciclastic caprock lithologies. The permeability was analysed in conjunction with mercury injection porosimetry data, and textural and mineralogical data from traditional light microscopy, backscatter secondary electron microscopy (BSEM) and cathode luminescence (CL) techniques as well as new QEMSCAN techniques to elucidate the controls on permeability. As predicted and measured by previous experimental work on fine grained siliciclastic lithologies, permeability is effectively controlled by porosity, pore size distribution and clay fraction. Permeability generally decreases with decreasing porosity and poresize distribution and increasing clay content. However, scatter in the trends was caused by heterogeneity of the sample leading to large kv and kh ratios. Primary depositional features led to layers of relatively low and high permeability in the samples, with kv controlled by the lowest permeability layer, and kh controlled by highest permeability layer. Thus kh

  6. Quantum nature of two-dimensional electron gas confinement at LaAlO3/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Janicka, Karolina; Velev, Julian; Tsymbal, Evgeny

    2009-03-01

    Replace this text with your abstract body. The discovery of highly conducting interface between two insulating oxides LaAlO3 and SrTiO3 has attracted significant interest due to possible applications in all-oxide electronic devices. The two-dimensional electron gas (2DEG) formed at LaAlO3/SrTiO3 interfaces exhibits extremely high mobility and high density of carriers. Stimulated by this discovery we perform density functional calculations to understand the mechanism controlling the confinement width of the two-dimensional electron gas (2DEG) at LaAlO3/SrTiO3 interfaces. We find that the 2DEG confinement can be explained by the formation of metal induced gap states (MIGS) in the band gap of SrTiO3. These states are formed as the result of quantum-mechanical tunneling of the charge created at the interface due to electronic reconstruction. The penetration depth of the MIGS into the insulator is controlled by the lowest-decay-rate evanescent states of SrTiO3, as determined by its complex band structure. Our calculations predict that the 2DEG is confined in SrTiO3 within about 1 nm at the interface.

  7. Impact of caprock permeability on vertical ground surface displacements in geological underground utilisation

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Tillner, Elena

    2015-04-01

    Geological underground utilisation inducing pore pressure changes in underground reservoirs is generally accompanied by hydro-mechanical processes. Thereby, pore pressure increase due to fluid injection may trigger ground surface uplift, while a decrease in pore pressure due to reservoir fluid production is known to induce ground subsidence. Different coupled hydro-mechanical simulation studies (e.g. Klimkowski et al., 2015, Kempka et al., 2014, Tillner et al., 2014) indicate that ground surface displacements can achieve a magnitude of several decimetres, if storage or production operations are being carried out at an industrial scale. Consequently, detailed knowledge on the parameters impacting ground surface uplift or subsidence is of major interest for the success of any geological underground utilisation in order to avoid surface infrastructure damage by spatially varying deformations. Furthermore, ground subsidence may result increased groundwater levels as experienced in different underground coal mining districts. In the present study, we carried out coupled hydro-mechanical simulations to account for the impact of caprock permeability on ground surface displacements resulting from geological underground utilisation. Thereto, different simulation scenarios were investigated using a synthetic 3D coupled numerical simulation model with varying caprock permeability and vertical location of the open well section in the target reservoir. Material property ranges were derived from available literature, while a normal faulting stress state was applied in all simulation scenarios. Our simulation results demonstrate that caprock permeability has a significant impact on the pressure development, and thus on vertical displacements at the ground surface as well as at the reservoir top. An increase in caprock permeability from 1 x 10-20 m2 by two orders of magnitude doubles vertical displacements at the ground surface, whereas vertical displacements at the reservoir top

  8. Rub tolerance evaluation of two sintered NiCrAl gas path seal materials. [wear tests of gas turbine engine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.

  9. IMPERMEABLE THIN Al2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2003-06-10

    In order to improve the hot corrosion resistance of yttria-stabilized zirconia (YSZ), an Al{sub 2}O{sub 3} overlay has been deposited on the surface of YSZ by electron-beam physical vapor deposition. Currently, hot corrosion tests were performed on the YSZ coatings with and without Al{sub 2}O{sub 3} overlay in molten salt mixture (Na{sub 2}SO{sub 4} + 0 {approx} 15wt%V{sub 2}O{sub 5}) at 950 C in order to investigate the effect of amount of vanadate on the hot corrosion behaviors. The results showed that the presence of in V{sub 2}O{sub 5} the molten salt exacerbates the degradation of both the monolithic YSZ coating and the composite YSZ/Al{sub 2}O{sub 3} system. The formation of low-melting Na{sub 2}O-V{sub 2}O{sub 5}-Al{sub 2}O{sub 3} liquid phase is responsible for degradation of the Al{sub 2}O{sub 3} overlay. The Al{sub 2}O{sub 3} overlay acts as a barrier against the infiltration of the molten salt into the YSZ coating during exposure to the molten salt mixture with <5wt% vanadate. In the next reporting period, we will use XPS and SIMS to study the interactions between alumina overlay and molten salt containing vanadate.

  10. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2002-01-31

    The project started on September 1, 2001. During last 4 months, one post-doctor has been hired for this project. We have received TBC samples (YSZ/CoNiCrAlY/ Inconel 601) from Tohoku University, Japan, while processing of the TBC samples was delayed in GE Corp. Research and Development. The TBC preparation in Japan was based on our technical requirement by plasma spray. Bond coat CoNiCrAlY and the YSZ was produced by low-pressure plasma spray and air plasma spray respectively. The morphology of the surface and the microstructure of cross-section of the sample was observed and analyzed by SEM and EDX. XRD was also used to detect the phases in the YSZ. Currently we are processing the overlay Al{sub 2}O{sub 3} on the TBC samples by EB-PVD and high velocity oxy-fuel (HVOF) spray techniques in collaboration with Penn State University and State University of New York at Stony Brook. We will finish comparing the hot corrosion behavior of the Al{sub 2}O{sub 3}/YSZ/CoNiCrAlY/superalloy system with the YSZ/CoNiCrAlY/superalloy system. The mechanism of hot corrosion will be investigated. The processing-structure-properties relationship of the overlays will be determined.

  11. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2002-08-31

    In order to improve the hot corrosion resistance of conventional YSZ TBC system, a dense and continues overlay of Al{sub 2}O{sub 3} coating of about 25 {micro}m thick was deposited on the surface of TBC by EB-PVD and high velocity oxy-fuel (HVOF) spray techniques. Hot corrosion tests were carried out on the TBC with and without Al{sub 2}O{sub 3} coating in molten salts mixtures (Na{sub 2}SO{sub 4} + 5% V{sub 2}O5) at 950 C for 10h. The microstructures of TBC and overlay before and after exposure were examined by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD) and secondary ion mass spectrometry (SIMS). It has been found that TBC will react with V{sub 2}O{sub 5} to form YVO{sub 4}. A substantial amount of M-phase of ZrO{sub 2} was formed due to the leaching of Y{sub 2}O{sub 3} from YSZ. During hot corrosion test, there were no significant interactions between overlay Al{sub 2}O{sub 3} coating and molten salts. After exposure, the alumina coating, especially produced by HVOF, was still very dense and cover the surface of YSZ, although they had been translated to {alpha}-Al{sub 2}O{sub 3} from original {gamma}-Al{sub 2}O{sub 3}. As a result, Al{sub 2}O{sub 3} overlay coating decreased the penetration of salts into the YSZ and prevented the YSZ from the attack by molten salts containing vanadium. Accordingly, only a few M-phase was formed in YSZ TBC, compared with TBC without overlay coating. The penetration of salts into alumina coating was thought to be through microcracks formed in overlay Al{sub 2}O{sub 3} coating and at the interface between alumina and zirconia due to the presence of tensile stress in the alumina coating. In the next year, we will study the mechanisms of cracking of the overlay Al{sub 2}O{sub 3} layer. The hot corrosion test of TBC with EB-PVD deposited Al{sub 2}O{sub 3} coating will be again performed. However before hot corrosion tests, the post-annealing will be carried out in

  12. Reservoir permeability from seismic attribute analysis

    SciTech Connect

    Silin, Dmitriy; Goloshubin, G.; Silin, D.; Vingalov, V.; Takkand, G.; Latfullin, M.

    2008-02-15

    In case of porous fluid-saturated medium the Biot's poroelasticity theory predicts a movement of the pore fluid relative to the skeleton on seismic wave propagation through the medium. This phenomenon opens an opportunity for investigation of the flow properties of the hydrocarbon-saturated reservoirs. It is well known that relative fluid movement becomes negligible at seismic frequencies if porous material is homogeneous and well cemented. In this case the theory predicts an underestimated seismic wave velocity dispersion and attenuation. Based on Biot's theory, Helle et al. (2003) have numerically demonstrated the substantial effects on both velocity and attenuation by heterogeneous permeability and saturation in the rocks. Besides fluid flow effect, the effects of scattering (Gurevich, et al., 1997) play very important role in case of finely layered porous rocks and heterogeneous fluid saturation. We have used both fluid flow and scattering effects to derive a frequency-dependent seismic attribute which is proportional to fluid mobility and applied it for analysis of reservoir permeability.

  13. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2002-01-31

    In order to improve the hot corrosion resistance of conventional YSZ TBC system, the overlay of Al{sub 2}O{sub 3} coating was deposited on the TBC by EB-PVD techniques. Hot corrosion tests were carried out on the TBC with and without Al{sub 2}O{sub 3} coating in molten salts mixtures (Na{sub 2}SO{sub 4} + 5%V{sub 2}O{sub 5}) at 950 C for 10h. The microstructures of TBC and overlay before and after exposure were examined by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD). It has been found that TBC will react with V{sub 2}O{sub 5} to form YVO{sub 4}. A substantial amount of M-phase was formed due to the leaching of Y{sub 2}O{sub 3} from YSZ. Al{sub 2}O{sub 3} overlay coating deposited by EB-PVD was dense, continues and adherent to the TBC. As a result, overlay Al{sub 2}O{sub 3} coating can prevent the YSZ from the attack by molten salts containing vanadium and arrest the penetration of salts into the YSZ along porous and cracks in the YSZ TBC, although there were some cracks in overlay Al{sub 2}O{sub 3} coating and at the interface between alumina and zirconia formed during hot corrosion tests due to the presence of tensile stress in the alumina coating. In the next reporting period, we will study the mechanisms of cracking of the overlay Al{sub 2}O{sub 3} layer and finish the hot corrosion tests of TBC with Al{sub 2}O{sub 3} coating deposited by high velocity oxy-fuel (HVOF) technique. The hot corrosion test of TBC with EB-PVD deposited Al{sub 2}O{sub 3} coating will be again performed. However before hot corrosion tests, a post-annealing will be carried out in vacuum (residual pressure 10{sup -3} Pa) at 1273K for 1h in order to transform the as-sputtered Al{sub 2}O{sub 3} overlay to crystalline {alpha}-Al{sub 2}O{sub 3} overlay.

  14. IMPERMEABLE THIN Al2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2002-06-30

    In order to improve the hot corrosion resistance of conventional YSZ TBC system (YSZ/CoNiCrAlY/Inconel 601), an overlay Al{sub 2}O{sub 3} was sprayed on the surface of TBC samples by high velocity oxy-fuel (HVOF) spray techniques. The TBC preparation in Japan was based on our technical requirement by plasma spray. Bond coat CoNiCrAlY and the YSZ was produced by low-pressure plasma spray and air plasma spray respectively. Hot corrosion tests were carried out on the TBC with and without Al{sub 2}O{sub 3} coating in molten salts mixtures (Na{sub 2}SO{sub 4} + 5%V{sub 2}O{sub 5}) at 950 C for 10h. The microstructures of TBC and overlay before and after exposure were examined by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD). It has been found that TBC reacted with V{sub 2}O{sub 5} to form YVO{sub 4}. A substantial amount of M-phase was formed due to the leaching of Y{sub 2}O{sub 3} from YSZ. Al{sub 2}O{sub 3} overlay coating sprayed by HVOF was dense, continues and adherent to the TBC even after exposure to the molten salts. As a result, overlay Al{sub 2}O{sub 3} coating can prevent the YSZ from the attack by molten salts containing vanadium and arrest the penetration of salts into the YSZ along porous and cracks in the YSZ TBC. Accordingly, the amount of M-phase formed in TBC with Al{sub 2}O{sub 3} overlay was significantly lower than that in conventional YSZ TBC system. In the next period, the hot corrosion tests of TBC with EB-PVD Al{sub 2}O{sub 3} coating under Na{sub 2}SO{sub 4} + 5%V{sub 2}O{sub 5} will be again performed at 950 C. However before hot corrosion tests, the post-annealing will be carried at 1273K for 1h in order to transform the as-sputtered {gamma}-Al{sub 2}O{sub 3} overlay to crystalline {alpha}-Al{sub 2}O{sub 3} overlay. In addition, the effect of coating thickness on corrosion resistance and the mechanisms of cracking of EB-PVD alumina layer during hot corrosion will be also

  15. Fracking, fracture, and permeability

    NASA Astrophysics Data System (ADS)

    Turcotte, D. L.; Norris, J.; Rundle, J. B.

    2013-12-01

    Injections of large volumes of water into tight shale reservoirs allows the extraction of oil and gas not previously accessible. This large volume 'super' fracking induces damage that allows the oil and/or gas to flow to an extraction well. The purpose of this paper is to provide a model for understanding super fracking. We assume that water is injected from a small spherical cavity into a homogeneous elastic medium. The high pressure of the injected water generates hoop stresses that reactivate natural fractures in the tight shales. These fractures migrate outward as water is added creating a spherical shell of damaged rock. The porosity associated with these fractures is equal to the water volume injected. We obtain an analytic expression for this volume. We apply our model to a typical tight shale reservoir and show that the predicted water volumes are in good agreement with the volumes used in super fracking.

  16. Effects of aspirin on gastroduodenal permeability in alcoholics and controls.

    PubMed

    Farhadi, Ashkan; Keshavarzian, Ali; Kwasny, Mary J; Shaikh, Maliha; Fogg, Louis; Lau, Cynthia; Fields, Jeremy Z; Forsyth, Christopher B

    2010-08-01

    Alcohol and nonsteroidal anti-inflammatory drugs are noxious agents that can disrupt the integrity of the gastroduodenal mucosal and damage the epithelial barrier and lead to increased gastroduodenal permeability. Moreover, it is not uncommon that patients are exposed to these two barrier stressors at the same time. It is thus important to know how simultaneous exposure affects the gastroduodenal barrier, and acquiring that knowledge was the goal of this study. We used a method that has been widely used for the assessment of injury to the gastroduodenal barrier induced by these noxious agents-measurement of gastroduodenal permeability as indicated by urinary excretion of ingested sucrose. We used gas chromatography to measure the amount of sucrose excreted in the urine over the 5-12h after ingestion of a bolus of sucrose. The 148 participants in the study included 92 alcoholics and 56 healthy controls. All study subjects had a baseline permeability test. To determine whether addition of a second noxious agent, in addition to chronic alcohol, further decreases gastroduodenal barrier integrity, a subset of 118 study subjects participated in another permeability test in which they were exposed to aspirin. For this test, participants ingested 1,300 mg aspirin twice, 12 and 1h before the final permeability test. The baseline permeability test showed that alcoholics have significantly higher gastroduodenal permeability than controls. Aspirin caused a significant within-group absolute increase in gastroduodenal permeability in both alcoholics and controls (+7.72%, P=.003 and +2.25%, P=.011, respectively), but the magnitude of these increases was not significantly different from each other. Baseline permeability did vary by gender, self-reported illegal drug use, and employment type. The extent of the permeability increase after aspirin ingestion varied with illegal drug use and recruitment site (a surrogate marker of socioeconomic status). Our data show that alcoholics

  17. Effects of Aspirin on Gastroduodenal Permeability in Alcoholics and Controls

    PubMed Central

    Farhadi, Ashkan; Keshavarzian, Ali; Kwasny, Mary J.; Shaikh, Maliha; Fogg, Louis; Lau, Cynthia; Fields, Jeremy Z.; Forsyth, Christopher B.

    2010-01-01

    Alcohol and non-steroidal anti-inflammatory drugs (NSAIDS) are noxious agents that can disrupt the integrity of the gastroduodenal mucosal and damage the epithelial barrier, and lead to increased gastroduodenal permeability. Moreover, it is not uncommon that patients are exposed to these two barrier stressors at the same time. It is thus important to know how simultaneous exposure affects the gastroduodenal barrier, and acquiring that knowledge was the goal of this study. We used a method that has been widely used for the assessment of injury to the gastroduodenal barrier induced by these noxious agents – measurement of gastroduodenal permeability as indicated by urinary excretion of ingested sucrose. We used gas chromatography to measure the amount of sucrose excreted in the urine over the 5–12 h following ingestion of a bolus of sucrose. The 148 participants in the study included 92 alcoholics and 56 healthy controls. All study subjects had a baseline permeability test. To determine whether addition of a second noxious agent, in addition to chronic alcohol, further decreases gastroduodenal barrier integrity, a subset of 118 study subjects participated in another permeability test in which they were exposed to aspirin. For this test, participants ingested 1300 mg aspirin twice, 12 hours and 1 hour before the final permeability test. The baseline permeability test showed that alcoholics have significantly higher gastroduodenal permeability than controls. Aspirin caused a significant within group absolute increase in gastroduodenal permeability in both alcoholics and controls (+7.72%, p=0.003 and +2.25%, p = 0.011, respectively) but the magnitude of these increases were not significantly different from each other. Baseline permeability did vary by gender, self-reported illegal drug use, and employment type. The extent of the permeability increase after aspirin ingestion varied with illegal drug use and recruitment site (a surrogate marker of socioeconomic status

  18. Fluid permeability measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  19. Horizontal drilling applications work in Texas Panhandle`s high permeability

    SciTech Connect

    Duey, R.

    1996-02-01

    Calculating permeability averages of vertical wells helps operators determine horizontal economics. The Texas panhandle has a large gas reservoir with high permeability and low pressures. A study was designed that could use existing data from vertical wells to establish the feasibility of horizontal wells in that location.

  20. IMPERMEABLE THIN Al2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2003-03-10

    In order to improve the hot corrosion resistance of conventional YSZ TBC system, a thin and dense {alpha}-Al{sub 2}O{sub 3} overlay has been deposited on the YSZ surface by the composite-sol-gel route (CSG). The YSZ substrates were dipped with boehmite sol containing calcined {alpha}-Al{sub 2}O{sub 3} particles, dried to form a gel film and calcined at 1200 C to form {alpha}-Al{sub 2}O{sub 3} overlay. Hot corrosion tests were carried out on the TBCs with and without Al{sub 2}O{sub 3} coating in molten salt mixtures (Na{sub 2}SO{sub 4} + 5% V{sub 2}O{sub 5}) at 950 C for 10 hours. The results showed that besides a thin and dense alumina overlay with the thickness of about 100-500 nm formed on the YSZ surface, the microcracks and porous near the surface in YSZ was also occupied by alumina because of penetration of the low viscosity precursor. As a result, the Al{sub 2}O{sub 3} overlay remarkably refrained the infiltration of the molten salt into the YSZ coating. The amount of M-phase in the TBC coating with Al{sub 2}O{sub 3} overlay was substantially reduced comparing to that without alumina overlay. In the next reporting period, we will prepare the alumina overlay by CSG route with different thickness and study the hot corrosion mechanism of YSZ TBC with thin Al{sub 2}O{sub 3} overlay coating produced by CSG.

  1. Determination of hydrogen permeability in commercial and modified superalloys

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1983-01-01

    The results of hydrogen permeability measurements on several iron- and cobalt-base alloys as well as on two long-ranged ordered alloys over the range of 705 to 870 C (1300 to 1600 F) are summarized. The test alloys included wrought alloys N-155, IN 800, A-286, 19-9DL, and 19-9DL modifications with aluminum, niobium, and misch metal. In addition, XF-818, CRM-6D, SA-F11, and HS-31 were evaluated. Two wrought long-range ordered alloys, Ni3Al and (Fe,Ni)3(V,Al) were also evaluated. All tests were conducted at 20.7 MPa pressure in either pure and/or 1% CO2-doped H2 for test periods as long as 133 h. Detailed analyses were conducted to determine the relative permeability rankings of these alloys and the effect of doping, exit surface oxidation, specimen design variations, and test duration on permeability coefficient, and permeation activation energies were determined. The two long-range ordered alloys had the lowest permeability coefficients in pure H2 when compared with the eight commercial alloys and their modifications. With CO2 doping, significant decrease in permeability was observed in commercial alloys--no doped tests were conducted with the long-range ordered alloys.

  2. The cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection.

    PubMed

    Yong, Yongliang; Jiang, Huai; Li, Xiaohong; Lv, Shijie; Cao, Jingxiao

    2016-08-01

    The advances in cluster-assembled materials where clusters serve as building blocks have opened new opportunities to develop ever more sensitive gas sensors. Here, using density functional theory calculations, the structural and electronic properties of cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters and their application as gas sensors have been investigated. Our results show that the nanowires can be produced via the coalescence of stable M12N12 fullerene-like clusters. The M12N12-based nanowires have semiconducting electrical properties with direct energy gaps, and are particularly stable at room temperature for long enough to allow for their characterization and applications. Furthermore, we found that the CO, NO, and NO2 molecules are chemisorbed on the M12N12-based nanowires with reasonable adsorption energies and apparent charge transfer. The electronic properties of the M12N12-based nanowires present dramatic changes after the adsorption of the CO, NO, and NO2 molecules, especially their electric conductivity. However, the adsorption of NO2 on the Al12N12-based nanowire is too strong, indicating an impractical recovery time as NO2 sensors. In addition to this, due to reasonable adsorption energies, apparent charge transfer, change in the electric conductivity, and the short recovery time, the Al12N12-based nanowire should be a good CO and NO sensor with quick response as well as short recovery time, while the Ga12N12-based nanowire should be a promising gas sensor for CO, NO, and NO2 detection. PMID:27424739

  3. Impedance-based interfacial analysis of the LaAlO3/SrTiO3 oxide heterostructure involving a 2-dimensional electron gas layer

    NASA Astrophysics Data System (ADS)

    Park, Chan-Rok; Ik Kim, Shin; Young Moon, Seon; You, Yil-Hwan; Hwan Seo, Jung; Baek, Seung-Hyub; Keun Kim, Seong; Kang, Chong-Yun; Kim, Jin-Sang; Hwang, Jin-Ha

    2015-07-01

    The 2-dimensional electron gas (2DEG) at the LaAlO3/SrTiO3 heterointerface was analyzed using frequency-dependent impedance spectroscopy. The electrical conduction of 2DEG significantly influences the high-frequency impedance and induces dielectric amplification at low frequency regimes. The impedance responses obtained from the LaAlO3/SrTiO3 oxide was modeled using an equivalent circuit model. The frequency-dependent characterization used here does not necessitate the formation of ohmic contacts between the 2DEG layer and the adjacent electrodes. Through thermal bias-stress tests, the 2DEG conduction mechanism is proposed to partially originate from the oxygen vacancy-controlled defect concepts, indicating the controllability of 2DEG transport.

  4. Donor-Like Surface Traps on Two-Dimensional Electron Gas and Current Collapse of AlGaN/GaN HEMTs

    PubMed Central

    Yu, Chen-hui; Luo, Qing-zhou; Luo, Xiang-dong; Liu, Pei-sheng

    2013-01-01

    The effect of donor-like surface traps on two-dimensional electron gas (2DEG) and drain current collapse of AlGaN/GaN high electron mobility transistors (HEMTs) has been investigated in detail. The depletion of 2DEG by the donor-like surface states is shown. The drain current collapse is found to be more sensitive to the addition of positive surface charges. Surface trap states with higher energy levels result in weaker current collapse and faster collapse process. By adopting an optimized backside doping scheme, the electron density of 2DEG has been improved greatly and the current collapse has been greatly eliminated. These results give reference to the improvement in device performance of AlGaN/GaN HEMTs. PMID:24348195

  5. Tunable bilayer two-dimensional electron gas in LaAlO{sub 3}/SrTiO{sub 3} superlattices

    SciTech Connect

    Ma, H. J. Harsan E-mail: phyarian@nus.edu.sg; Annadi, A.; Zeng, S. W.; Ariando E-mail: phyarian@nus.edu.sg; Huang, Z.; Lü, W. M.; Wong, L. M.; Wang, S. J.; Venkatesan, T.

    2014-07-07

    We report magnetotransport properties of double heterointerfaces in LaAlO{sub 3}/SrTiO{sub 3}/LaAlO{sub 3}/SrTiO{sub 3}(001) (LAO/STO/LAO/STO). A strong nonlinearity in the Hall resistivity is found when the temperature is below 80 K. This effect is attributed to multichannel conduction of interfacial charges generated in double heterostructures of LAO/STO where two-dimensional electron gas (2DEG) is produced. The multichannel conduction is confirmed by back gating modulation of Hall effect. Our result suggests the possibility to achieve coupled bilayer 2DEG layers in LAO/STO superlattices.

  6. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2002-08-31

    In order to improve the hot corrosion resistance of conventional YSZ TBC system, the overlay of Al{sub 2}O{sub 3} coating was deposited on the TBC by EB-PVD techniques. Hot corrosion tests were carried out on the TBC with and without Al{sub 2}O{sub 3} coating in molten salts mixtures (Na{sub 2}SO{sub 4} + 5%V{sub 2}O{sub 5}) at 950 C for different time up to 100h. The microstructures of TBC and overlay before and after exposure were examined by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD). It has been found that TBC will react with V{sub 2}O{sub 5} to form YVO{sub 4}. The amount of M-phase, which was formed due to the leaching of Y{sub 2}O{sub 3} from YSZ, was increased with corrosion time. Al{sub 2}O{sub 3} overlay coating deposited by EB-PVD was dense, continues and adherent to the TBC. As a result, overlay Al{sub 2}O{sub 3} coating can prevent the YSZ from the attack by molten salts containing vanadium and decrease the penetration of salts into the YSZ along porous and cracks in the YSZ TBC. The amount of M-phase formed in YSZ covered with an overlay Al{sub 2}O{sub 3} is substantially lower than that formed in conventional YSZ TBC, even after 100h exposure to the molten salts. In the next reporting period, the hot corrosion test of TBC with EB-PVD deposited Al{sub 2}O{sub 3} coating will be again performed. However before hot corrosion tests, the post-annealing will be carried out in vacuum (residual pressure 10 -3 Pa) at 1273K for 1h in order to transform the as-sputtered Al{sub 2}O{sub 3} overlay to crystalline {alpha}-Al{sub 2}O{sub 3} overlay. In addition, the effect of the thickness of overlay Al{sub 2}O{sub 3} on corrosion resistance will also be investigated.

  7. Geothermal Permeability Enhancement - Final Report

    SciTech Connect

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  8. Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction.

    PubMed

    Kharaji, Abolfazl Gharibi; Shariati, Ahmad; Ostadi, Mohammad

    2014-09-01

    In the present study, Mo/Al2O3 catalyst was prepared using impregnation method. Then it was promoted with Ni ions to produce Ni-Mo/Al2O3 catalyst. The structures of the catalysts were studied using X-ray diffraction (XRD), Energy dispersive X-ray (EDAX), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), CO chemisorption, temperature programmed reduction of hydrogen (H2-TPR) and scanning electron microscope (SEM) techniques. Catalytic performances of the two catalysts were investigated in a fixed-bed reactor for RWGS reaction. The results indicated that addition of nickel promoter to Mo/Al2O3 catalyst enhances its activity. It is reasonable for the electron deficient state of the Ni species and existence of NiMoO4 phase to possess high activity in RWGS reaction. Stability test of Ni-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO2 conversion for 60 h time on stream was demonstrated. This study introduces a new catalyst, Ni-Mo/Al2O3, with high activity and stability for RWGS reaction.

  9. Permeability of soils in Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.

    1994-01-01

    The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.

  10. A mechanistic model for permeability evolution in fractured sorbing media

    NASA Astrophysics Data System (ADS)

    Wang, Shugang; Elsworth, Derek; Liu, Jishan

    2012-06-01

    A mechanistic model is presented to represent the evolution of permeability in fractured sorbing media such as coal beds and organic-rich shales. This model accommodates key competing processes of poromechanical dilation and sorption-induced swelling. We show that the significant difference in stiffness between fracture and matrix transforms the composite system from globally unconstrained to locally constrained by the development of a virtual "stiff shell" that envelops the perimeter of a representative elementary volume containing a fracture. It is this transformation that results in swelling-induced permeability reduction at low (sorbing) gas pressures and self consistently allows competitive dilation of the fracture as gas pressures are increased. Importantly, net dilation is shown to require a mismatch in the Biot coefficients of fracture and matrix with the coefficient for the fracture exceeding that for the matrix—a condition that is logically met. Permeability evolution is cast in terms of series and parallel models with the series model better replicating observational data. The model may be cast in terms of nondimensional parameters representing sorptive and poromechanical effects and modulated by the sensitivity of the fracture network to dilation or compaction of the individual fractures. This latter parameter encapsulates the effects of fracture spacing and initial permeability and scale changes in permeability driven by either sorption or poromechanical effects. This model is applied to well-controlled observational data for different ranks of coals and different gases (He, CO2) and satisfactory agreement is obtained.

  11. Adsorption, Permeability, and Effective Stress in the Barnett Shale, Texas, USA

    NASA Astrophysics Data System (ADS)

    Vermylen, J. P.; Zoback, M. D.

    2010-12-01

    We have been carrying out adsorption and permeability experiments on Barnett shale core samples. For our adsorption work, we seek to understand how rock properties control gas adsorption and also to investigate the potential for carbon dioxide sequestration and enhanced recovery in gas shale rocks. Adsorption experiments have been conducted on crushed, dried Barnett samples using conventional Boyle’s law methods. Langmuir-like adsorption curves have been measured for nitrogen, methane, and carbon dioxide. At 5 MPa (725 psi), N2 adsorption ranges between 0.3-0.5 cc/g (10-17 scf/ton), CH4 adsorption ranges between 0.7-1.1 cc/g (25-40 scf/ton), and CO2 adsorption ranges between 2.5-3.5 cc/g (90-125 scf/ton). These results are consistent with previous analyses of Barnett shale samples and Appalachian shale samples of similar composition. We observe about 3x adsorption of CO2 over CH4 in the Barnett Shale, however, further research is required to investigate the potential for enhanced production of methane with CO2 in these rocks. Our permeability experiments are focused on building effective stress laws for gas shales and investigating the effects of different gases, both adsorbing and non-adsorbing, on permeability. Permeability experiments have been conducted on intact rock plugs using pulse-permeability and static darcy flow methods. We have measured permeabilities ranging from 1500 to 5 nanodarcies on intact samples, both 10x higher and 10x lower than the widely reported 100 nanodarcy average Barnett Shale intact matrix permeability. On a higher permeability shale sample with a carbonate streak, the effective stress coefficient for permeability was found to be 0.82, indicating a moderate impact of pore pressure on permeability. Work to characterize effective stress laws for the lowest permeability samples is ongoing, as is the effect of adsorbing gases on permeability in the Barnett shale.

  12. Probing permeability and microstructure: Unravelling the role of a low-permeability dome on the explosivity of Merapi (Indonesia)

    NASA Astrophysics Data System (ADS)

    Kushnir, Alexandra R. L.; Martel, Caroline; Bourdier, Jean-Louis; Heap, Michael J.; Reuschlé, Thierry; Erdmann, Saskia; Komorowski, Jean-Christophe; Cholik, Noer

    2016-04-01

    these samples, mainly because it is associated with an extensive microporous, diktytaxitic texture. Indeed, the low permeability of these rocks is more likely associated with their lower fracture density. We propose that diktytaxitic textures may arise from late-stage gas filter pressing of a silica-rich melt phase, which leaves behind a microlite-supported groundmass and cristobalite in neighbouring vesicles. Due to the ubiquity of the Type 3 rocks in all Merapi eruptions, we do not invoke the emplacement of a low-permeability cap as having favoured a particularly high pressurization and subsequent high explosivity of the 2010 eruption. The debate as to the reasons for the highly explosive 2010 eruption rages on.

  13. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors.

    PubMed

    Morkötter, S; Jeon, N; Rudolph, D; Loitsch, B; Spirkoska, D; Hoffmann, E; Döblinger, M; Matich, S; Finley, J J; Lauhon, L J; Abstreiter, G; Koblmüller, G

    2015-05-13

    Strong surface and impurity scattering in III-V semiconductor-based nanowires (NW) degrade the performance of electronic devices, requiring refined concepts for controlling charge carrier conductivity. Here, we demonstrate remote Si delta (δ)-doping of radial GaAs-AlGaAs core-shell NWs that unambiguously exhibit a strongly confined electron gas with enhanced low-temperature field-effect mobilities up to 5 × 10(3) cm(2) V(-1) s(-1). The spatial separation between the high-mobility free electron gas at the NW core-shell interface and the Si dopants in the shell is directly verified by atom probe tomographic (APT) analysis, band-profile calculations, and transport characterization in advanced field-effect transistor (FET) geometries, demonstrating powerful control over the free electron gas density and conductivity. Multigated NW-FETs allow us to spatially resolve channel width- and crystal phase-dependent variations in electron gas density and mobility along single NW-FETs. Notably, dc output and transfer characteristics of these n-type depletion mode NW-FETs reveal excellent drain current saturation and record low subthreshold slopes of 70 mV/dec at on/off ratios >10(4)-10(5) at room temperature.

  14. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors.

    PubMed

    Morkötter, S; Jeon, N; Rudolph, D; Loitsch, B; Spirkoska, D; Hoffmann, E; Döblinger, M; Matich, S; Finley, J J; Lauhon, L J; Abstreiter, G; Koblmüller, G

    2015-05-13

    Strong surface and impurity scattering in III-V semiconductor-based nanowires (NW) degrade the performance of electronic devices, requiring refined concepts for controlling charge carrier conductivity. Here, we demonstrate remote Si delta (δ)-doping of radial GaAs-AlGaAs core-shell NWs that unambiguously exhibit a strongly confined electron gas with enhanced low-temperature field-effect mobilities up to 5 × 10(3) cm(2) V(-1) s(-1). The spatial separation between the high-mobility free electron gas at the NW core-shell interface and the Si dopants in the shell is directly verified by atom probe tomographic (APT) analysis, band-profile calculations, and transport characterization in advanced field-effect transistor (FET) geometries, demonstrating powerful control over the free electron gas density and conductivity. Multigated NW-FETs allow us to spatially resolve channel width- and crystal phase-dependent variations in electron gas density and mobility along single NW-FETs. Notably, dc output and transfer characteristics of these n-type depletion mode NW-FETs reveal excellent drain current saturation and record low subthreshold slopes of 70 mV/dec at on/off ratios >10(4)-10(5) at room temperature. PMID:25923841

  15. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2004-08-31

    To improve the hot corrosion resistance of YSZ thermal barrier coatings, a 25 {micro}m and a 2 {micro}m thick Al{sub 2}O{sub 3} overlay were deposited by HVOF thermal spray onto to the surface of YSZ coating. Oxidation at high temperature and hot corrosion tests showed that Al{sub 2}O{sub 3} overlay deposited on the YSZ TBCs surface can not only reduce the hot corrosion rate, but also significantly prevents the bond coat from oxidation.

  16. The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado

    SciTech Connect

    Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S.

    1997-01-01

    Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

  17. Tailoring a two-dimensional electron gas at the LaAlO{sub 3}/SrTiO{sub 3} (001) interface by epitaxial strain.

    SciTech Connect

    Bark, C. W.; Felker, D. A.; Wang, Y.; Zhang, Y.; Jang, H. W.; Folkman, C. M.; Park, J. W.; Baek, S. H.; Zhou, H.; Fong, D. D.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    2011-03-22

    Recently a metallic state was discovered at the interface between insulating oxides, most notably LaAlO{sub 3} and SrTiO{sub 3}. Properties of this two-dimensional electron gas (2DEG) have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these unique systems, and may be achieved by epitaxial strain. However, despite the rich nature of strain effects on oxide materials properties, such as ferroelectricity, magnetism, and superconductivity, the relationship between the strain and electrical properties of the 2DEG at the LaAlO{sub 3}/SrTiO{sub 3} heterointerface remains largely unexplored. Here, we use different lattice constant single-crystal substrates to produce LaAlO{sub 3}/SrTiO{sub 3} interfaces with controlled levels of biaxial epitaxial strain. We have found that tensile-strained SrTiO{sub 3} destroys the conducting 2DEG, while compressively strained SrTiO{sub 3} retains the 2DEG, but with a carrier concentration reduced in comparison to the unstrained LaAlO{sub 3}/SrTiO{sub 3} interface. We have also found that the critical LaAlO{sub 3} overlayer thickness for 2DEG formation increases with SrTiO{sub 3} compressive strain. Our first-principles calculations suggest that a strain-induced electric polarization in the SrTiO{sub 3} layer is responsible for this behavior. The polarization is directed away from the interface and hence creates a negative polarization charge opposing that of the polar LaAlO{sub 3} layer. This behavior both increases the critical thickness of the LaAlO{sub 3} layer, and reduces carrier concentration above the critical thickness, in agreement with our experimental results. Our findings suggest that epitaxial strain can be used to tailor 2DEGs properties of the LaAlO{sub 3}/SrTiO{sub 3} heterointerface.

  18. Experimental investigation the effect of nanoparticles on the oil-water relative permeability

    NASA Astrophysics Data System (ADS)

    Amedi, Hamidreza; Ahmadi, Mohammad-Ali

    2016-05-01

    This paper presents the effects of the nanosilica particles on the water and oil relative permeability curves at reservoir conditions. Real reservoir crude oil sample was employed as an oil phase in relative permeability measurements. In addition, real carbonate reservoir rock samples were employed as a porous media in core displacement experiments. To determine relative permeability curves, the unsteady-state approach was employed in which Toth et al. method was applied to the recovery data points. By increasing the nanosilica content of the aqueous phase the oil relative permeability increased while the residual oil saturation decreased; however, by increasing the nanosilica concentration in the aqueous solution the water relative permeability decreased. The outcomes of this paper can provide a better understanding regarding chemically enhanced oil recovery (EOR) by nanoparticles. Moreover, relative permeability curves help us in the history matching section of reservoir simulation for any further EOR scenarios.

  19. Structure/permeability relationships of silicon-containing polyimides

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Vaidyanathan, R.; Pratt, J. R.

    1989-01-01

    The permeability to H2, O2, N2, CO2 and CH4 of three silicone-polyimide random copolymers and two polyimides containing silicon atoms in their backbone chains, was determined at 35.0 C and at pressures up to about 120 psig (approximately 8.2 atm). The copolymers contained different amounts of BPADA-m-PDA and amine-terminated poly (dimethyl siloxane) and also had different numbers of siloxane linkages in their silicone component. The polyimides containing silicon atoms (silicon-modified polyimides) were SiDA-4,4'-ODA and SiDA-p-PDA. The gas permeability and selectivity of the copolymers are more similar to those of their silicone component than of the polyimide component. By contrast, the permeability and selectivity of the silicon-modified polyimides are more similar to those of their parent polyimides, PMDA-4,4'-ODA and SiDA-p-PDA. The substitution of SiDA for the PMDA moiety in a polyimide appears to result in a significant increase in gas permeability, without a correspondingly large decrease in selectivity. The potential usefulness of the above polymers and copolymers as gas separation membranes is discussed.

  20. Parallel Planar-Processed and Ion-Induced Electrically Isolated Future Generation AlGaN/GaN HEMT for Gas Sensing and Opto-Telecommunication Applications

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Bokhari, S. H.; Khan, L. A.; Amin, F.; Hussain, Z.

    2013-12-01

    Ion-implanted AlGaN/GaN High Electron Mobility Transistors (HEMT) devices were studied thoroughly to look into the possibilities of enhancing efficiency for high-power and high-frequency electronic and gas sensing applications. A dedicated experimental design was created in order to study the influence of the physical parameters in response to high energy (by virtue of in-situ beam heating due to highly energetic implantation) ion implantation to the active device regions in nitride HEMT structures. Disorder or damage created in the HEMT structure was then studied carefully with electrical characterization techniques such as Hall, I-V and G-V measurements. The evolution of the electrical characteristics affecting the high-power, high-frequency and ultra-high efficiency gas sensing operations were also analyzed by subjecting the HEMT active device regions to progressive time-temperature annealing cycles. Our suggested model can also provide a functional process engineering window to control the extent of 2D Electron mobility in AlGaN/GaN HEMT devices undergoing a full cycle of thermal impact (i.e. from a desirable conductive region to a highly compensated one).

  1. Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report

    SciTech Connect

    Hanson, J.M.

    1984-12-01

    The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs. (ACR)

  2. Permeability extraction: A sonic log inversion

    SciTech Connect

    Akbar, N.; Kim, J.J.

    1994-12-31

    In this paper the authors provide the missing important link between permeability and acoustic velocities by generating a permeability-dependent synthetic sonic log in a carbonate reservoir. The computations are based on Akbar`s theory that relates wave velocity to frequency, rock properties (e.g., lithology, permeability, and porosity), and fluid saturation and properties (viscosity, density, and compressibility). An inverted analytical expression of the theory is used to extract permeability from sonic velocity. The synthetic sonic and the computed permeability are compared with the observed sonic log and with plug permeability, respectively. The results demonstrate, as predicted by theory, that permeability can be related directly to acoustic velocities.

  3. Permeability of stylolite-bearing chalk

    SciTech Connect

    Lind, I.; Nykjaer, O.; Priisholm, S. ); Springer, N.

    1994-11-01

    Permeabilities were measured on core plugs from stylolite-bearing chalk of the Gorm field in the Danish North Sea. Air and liquid permeabilities were measured in directions parallel to and perpendicular to the stylolite surface. Permeability was measured with sleeve pressure equal to in-situ reservoir stress. Permeabilities of plugs with stylolites but without stylolite-associated fractures were equal in the two directions. The permeability is equal to the matrix permeability of non-stylolite-bearing chalk. In contrast, when fractures were associated with the stylolites, permeability was enhanced. The enhancement was most significant in the horizontal direction parallel to the stylolites.

  4. Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation

    SciTech Connect

    Garbesi, K.; Sextro, R.G.; Robinson, Arthur L.; Wooley, J.D.; Owens, J.A.; Nazaroff, W.W.

    1995-11-01

    This work investigates the dependence soil air-permeability on sampling scale in near-surface unsaturated soils. A new dual-probe dynamic pressure technique was developed to measure permeability in situ over different length scales and different spatial orientations in the soil. Soils at three sites were studied using the new technique. Each soil was found to have higher horizontal than vertical permeability. Significant scale dependence of permeability was also observed at each site. Permeability increased by a factor of 20 as sampling scale increased from 0.1 to 2 m in a sand soil vegetated with dry grass, and by a factor of 15 as sampling scale increased from 0.1 to 3.5 m in a sandy loam with mature Coast Live Oak trees (Quercus agrifolia). The results indicate that standard methods of permeability assessment can grossly underestimate advective transport of gas-phase contaminants through soils.

  5. IMPERMEABLE THIN Al2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2002-11-30

    In order to improve the hot corrosion resistance of conventional YSZ TBC system, the Al{sub 2}O{sub 3} overlay coating has been successfully produced on the surface of YSZ by the Sol-gel route. The YSZ substrates were coated with boehmite sol by dip coating process, dried to form a gel film and calcined at 1200 C to form {alpha}-Al{sub 2}O{sub 3} overlay. The microstructures of TBC and Al{sub 2}O{sub 3} overlay were examined by scanning electron microscopy (SEM). The results showed that micro-pores ranged from 3 {micro}m to 20 {micro}m and micro-cracks could be clearly seen on the surface of APS YSZ coating. The thickness of alumina overlay increased with increasing the number of dip coating circles. The small microcracks (0.5-1.0 {micro}m width) on the YSZ surface could be filled and blocked by calcined alumina particles, whereas large pores remained empty and the alumina overlay was un-continuous after one time dip coating circle. Alumina overlay thicker than 5 m m obtained by five times dip coating circles largely cracked after calcinations. As a result, multiple dip coatings up to three times were ideal for getting high quality, crack- free and continuous overlay. The optimal thickness of alumina overlay was in the range of 2.5-3.5 {micro}m. In the next reporting period, we will study the hot corrosion behaviors of YSZ TBC with Al{sub 2}O{sub 3} overlay coating produced by sol gel route by exposure the samples to molten salts mixtures (Na{sub 2}SO{sub 4} + 5%V{sub 2}O{sub 5}) at 950 C.

  6. Paranodal permeability in `myelin mutants'

    PubMed Central

    Shroff, S.; Mierzwa, A.; Scherer, S.S.; Peles, E.; Arevalo, J.C.; Chao, M.V.; Rosenbluth, J.

    2011-01-01

    Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three `myelin mutant' mice, Caspr-null, cst-null and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3kDa, 10kDa), which penetrate most fibers, and to larger tracers (40kDa, 70kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of transverse bands in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of transverse bands. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of transverse bands but does depend on the length of the paranode and, in turn, on the length of `pathway 3', the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath. PMID:21618613

  7. Paranodal permeability in "myelin mutants".

    PubMed

    Shroff, Seema; Mierzwa, Amanda; Scherer, Steven S; Peles, Elior; Arevalo, Juan C; Chao, Moses V; Rosenbluth, Jack

    2011-10-01

    Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three "myelin mutant" mice, Caspr-null, cst-null, and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3 kDa and 10 kDa), which penetrate most fibers, and to larger tracers (40 kDa and 70 kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands (TBs) in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of TBs in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of TBs. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of TBs but does depend on the length of the paranode and, in turn, on the length of "pathway 3," the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath. PMID:21618613

  8. An unambiguous identification of 2D electron gas features in the photoluminescence spectrum of AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2016-07-01

    A fast and non-destructive method for probing the true signatures of 2D electron gas (2DEG) states in AlGaN/GaN heterostructures is presented. Two broad features superimposed with interference oscillations are observed in the low temperature photoluminescence (PL) spectrum. The two features are identified as the ground and excited 2DEG states which are confirmed by comparing the PL spectra of as-grown and top barrier layer etched samples. Broad PL features disappear at a certain temperature along with the associated interference oscillations. Furthermore, the two broad PL features depicts specific temperature and excitation intensity dependencies which make them easily distinguishable from the bandedge excitonic or defect related PL features. The presence of strong interference oscillations associated with the 2DEG PL features is explained by considering the localized generation of PL signal at the AlGaN/GaN heterointerface. Finally, a large value of the polarization induced electric field of ~1.01 MV cm-1 is reported from PL measurements for AlGaN/GaN HEMT structures. It became possible only when the true identification of 2DEG features was made possible by the proposed method.

  9. Influence of CO2-Ar Mixtures as Shielding Gas on Laser Welding of Al-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Boukha, Zouhair; Sánchez-Amaya, José María; González-Rovira, Leandro; Rio, Eloy Del; Blanco, Ginesa; Botana, Javier

    2013-12-01

    In this study, AA5083 samples were butt welded under a conduction regime with high-power diode laser (HPDL). Various mixtures composed of Ar and CO2 were used as a shielding gas. The influence of the shielding gas composition on the microstructure and on the properties of laser welds was analyzed. The weld beads were deeply characterized by metallographic/microstructural studies, X-ray diffraction (XRD), X-ray energy dispersive spectrometry (X-EDS) chemical analyses, X-ray photoelectron spectra (XPS), microhardness, and tensile strength. The corrosion resistance of laser-remelted surfaces with different CO2/Ar ratios was also estimated by means of electrochemical tests. The addition of CO2 to the shielding gas results in a better weld penetration and oxidizes the weld pool surface. This addition also promotes the migration of Mg toward the surface of weld beads and induces the formation of magnesium aluminates spinel on the welds. The best corrosion resistance result is achieved with 20 pct CO2. The overall results indicate that the addition of small percentage of CO2 to Ar leads to improvements of the mechanical and corrosion properties of the aluminum welds.

  10. Autogenous gas tungsten arc weldability of cast alloy Ti-48Al-2Cr-2Nb (Atomic percent) versus extruded alloy Ti-46Al-2Cr-2Nb-0.9Mo (Atomic percent)

    NASA Astrophysics Data System (ADS)

    Bharani, D. J.; Acoff, V. L.

    1998-03-01

    This study examines procedures for consistently producing sound (crack and void free) welds using the autogenous (without filler metal) gas tungsten arc (GTA) welding process. Cast alloy Ti-48Al-2Cr-2Nb (at. pct) and extruded alloy Ti-46Al-2Cr-2Nb-0.9Mo (at. pct) have been examined to determine if sound welds can be produced using autogenous GTA welding without any preheat. Experimentation consisted of GTA spot welding samples of gamma titanium aluminide at weld current levels of 45, 55, 65, and 75 A for a duration of 3 seconds. For the cast alloy, current levels of 45, 55, and 65 A for 3 seconds produced similar fusion zone microstructures, which consisted of a dendritic solidification structure. The fusion zone microstructure of the 75A for 3 seconds current level differed significantly from the lower current levels. It also consisted of a dendritic solidification structure; however, the morphology was quite different. For the extruded alloy, current levels of 45 and 55 A for 3 seconds produced fusion zone microstructures similar to the lower current level samples of the cast γ-TiAl, which consisted of a dendritic solidification structure. The fusion zone microstructures of the 65 and 75 A samples were similar to each other, but they had a dendritic solidification structure of a different morphology than that of the 45 and 55 A samples. For both alloys at all current levels, microhardness profiles showed an increase in hardness from the base metal to the fusion zone. There were no significant differences in the average fusion zone hardness as a function of increasing current level. However, nanoindentation testing did show that certain phases and microconstituents in the fusion zone did have significant variations in hardness in relation to the enrichment and depletion of chromium.

  11. Permeability Evolution of Shale and Coal Under Differential Sorption of He, CH4 And CO2

    NASA Astrophysics Data System (ADS)

    Kumar, H.; Elsworth, D.; Marone, C. J.; Mathews, J.

    2010-12-01

    Carbon dioxide injection in coal seams or in shales may be an option for geological sequestration of CO2 each with concurrent methane production. Permeability of the fractured porous medium is a crucial parameter influencing injectivity of CO2. The evolution of permeability is further complicated by dynamic changes in the coal/shale shrinkage/swelling with the reduction/increase in gas content. Complex geomechanical processes (transport of gas, adsorption, desorption, adjusting horizontal stresses and vertical strains) and chemical interaction between CO2, water and mineral matter content are some factors responsible for the various responses in permeability evolution. Adsorption of CO2 in micropores may result in matrix swelling therefore closing the existing natural fractures and lowering the ability of fluid flow. On the other hand presence of water may react with CO2 forming carbonic acid and removing carbonaceous mineral matter - either increasing or decreasing permeability. To address these issues we report experimental measurements of permeability evolution in shales infiltrated by helium, methane and carbon dioxide under varying pore pressure and deviatoric stresses. The role of gas (CO2 and CH4) adsorption and desorption under variable moisture contents and pore pressures have also been examined for sub-bituminous coals. Adsorption of CO2 in Coal and shale reduces the reservoir permeability even when the fractured media are mechanically unconstrained. However we found that permeability loss is temporary. In the specific case of Marcellus shale, adsorption of CO2 in the sample reduces the permeability to half the original value. Permeability values returns to its original value if sample is allowed to interact for sufficient time. Variation of permeability with deviotoric stress suggests the compaction band formation above a threshold value of stress. These deformations are permanent and shale loses its permeability. Several observations on permeability

  12. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    NASA Astrophysics Data System (ADS)

    Daigle, H.; Rice, M. A.

    2015-12-01

    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.

  13. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    SciTech Connect

    Daigle, Hugh; Rice, Mary Anna; Daigle, Hugh

    2015-12-14

    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.

  14. The Effects of Rock Mineralogy on Matrix Permeability in the Utica Shale

    NASA Astrophysics Data System (ADS)

    Al Ismail, M.; Zoback, M. D.

    2015-12-01

    We conducted pulse-decay permeability measurements on four horizontally oriented Utica Shale samples to examine the effects of rock mineralogy on transport mechanisms using both a non-adsorbing gas (Argon) and an adsorbing gas (CO2). The mineralogy of the shale samples varied from clay-rich to calcite-rich. We conducted the experiments at a temperature of 38.5°C, confining pressures ranging from 4.83 to 22.75 MPa, and pore fluid pressures ranging from 1.38 to 8.96 MPa. We measured the permeability at a range of confining pressures and pore pressures in order to independently test the effects of effective stress, confining pressure and pore pressure on permeability. Our results show that shale mineralogy did not have an impact on permeability. The permeability of clay-rich samples varied between 0.26 and 1.10 microdarcy. The permeability of calcite-rich samples varied between 0.18 and 2.05 microdarcy. Additionally, we found that the shale mineralogy affected the stress-dependent permeability. The magnitude of permeability reduction as a function of effective stress was dependent on the overall rock mineralogy. When the effective stress increased from 3.45 MPa to 13.79 MPa, the permeability of the clay-rich and calcite-rich samples decreased by 85% and 48%, respectively. Based on Klinkenberg analysis, we found that the mean effective pore radius for the clay-rich sample decreased from 27 nm at 3.45 MPa effective stress to 15 nm at 13.79 MPa effective stress (44% reduction). The mean effective pore radius for the calcite-rich sample decreased from 49 nm to 38 nm (22% reduction). These findings suggest that variations in rock mineralogy lead to different responses in mechanical deformation as the effective stress increases with depletion. Finally, our CO2 permeability measurements show that the CO2 permeability for the clay-rich sample decreased by 40% compared to Argon permeability. The CO2 permeability for the calcite-rich sample did not shift and was equivalent to

  15. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  16. Sensitivity analysis of permeability parameters for flows on Barcelona networks

    NASA Astrophysics Data System (ADS)

    Rarità, Luigi; D'Apice, Ciro; Piccoli, Benedetto; Helbing, Dirk

    We consider the problem of optimizing vehicular traffic flows on an urban network of Barcelona type, i.e. square network with streets of not equal length. In particular, we describe the effects of variation of permeability parameters, that indicate the amount of flow allowed to enter a junction from incoming roads. On each road, a model suggested by Helbing et al. (2007) [11] is considered: free and congested regimes are distinguished, characterized by an arrival flow and a departure flow, the latter depending on a permeability parameter. Moreover we provide a rigorous derivation of the model from fluid dynamic ones, using recent results of Bretti et al. (2006) [3]. For solving the dynamics at nodes of the network, a Riemann solver maximizing the through flux is used, see Coclite et al. (2005) [4] and Helbing et al. (2007) [11]. The network dynamics gives rise to complicate equations, where the evolution of fluxes at a single node may involve time-delayed terms from all other nodes. Thus we propose an alternative hybrid approach, introducing additional logic variables. Finally we compute the effects of variations on permeability parameters over the hybrid dynamics and test the obtained results via simulations.

  17. Experimentally derived model to predict permeability behavior of mudstones

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Flemings, P. B.; Day-Stirrat, R.; Germaine, J. T.

    2010-12-01

    We use uniaxial consolidation experiments to analyze the permeability evolution during consolidation for mudstones with varying composition to develop a predictive permeability model for mudstones. We admixed silt-sized silica to dry, natural Boston Blue Clay (BBC) powder in five different mass ratios. The result is mixtures of silty clay and clayey silt with percentages of clay-sized particles varying between 36 % and 57 %. To recreate natural conditions yet remove variability and soil disturbance, we resedimented all mixtures to a total stress of 100 kPa. We then loaded them to a vertical effective stress of 2.4 MPa in an uniaxial, constant-rate-of-strain consolidation device. We show that vertical permeability increases exponentially with void ratio and decreasing clay content. There is an order of magnitude difference in permeability at a given void ratio for clay contents varying from 36 % to 57 % (by mass). We developed a model that predicts the permeability of silt-clay mixtures based on knowledge of the composition and void ratio alone. The model assumes that flow occurs through the clay-matrix. Thus, the effective permeability is controlled by the void ratio of the clay fraction. At a given stress level, the clay void ratio increases with silt content: large pores are preserved in silty samples due to stress-bridging which does not allow the clay particles to consolidate. Mudstones are important to practical and fundamental programs. They are a key cap rock for subsurface hydrocarbons and geologic storage of CO2. Over the last decade, large amounts of natural gas have been produced from mudstone (shale) gas fields.

  18. Integration of porosity, connectivity and permeability measurements to determine syn-eruptive degassing processes during a sub-plinian basaltic eruption

    NASA Astrophysics Data System (ADS)

    Jordan, Simone; Gurioli, Lucia; Colombier, Matthieu; Le Pennec, Jean-Luc; Roche, Olivier

    2015-04-01

    Degassing of the volatile phases is considered to have a major control on the eruption dynamics, particularly in controlling shifts between explosive and extrusive eruption styles. The sub-plinian eruption of the basaltic monogenetic La Vache and Lassolas cone complex in the Chaîne des Puys, France, about 8600 years ago, was an unusual large event that raises the question of the processes that controlled the explosivity of non-differentiated magma and the evolution of this sub-plinian event. This study combines the results of density, porosity, connectivity and permeability measurements of juvenile clasts to determine the state of vesiculation and the presence of open degassing pathways within the melt prior to fragmentation. The volume of connected vesicles is measured using a Helium-Pycnometer, while permeability measurements are conducted using a permeameter recently built at the Laboratoire Magma et Volcans, following Takeuchi et al. (2008). The permeameter has broad measurement ranges of pressure difference (101-105 Pa) and gas-flow rate (10-9-10-5 m3/s). These ranges enable us to measure viscous (Darcian) permeability in the range of 10-17-10-9 m2 for 1 centimetre-scale samples (such as scoria clasts) using the Forchheimer equation (Rust and Cashman, 2004) that accounts for inertial effects caused by non-laminar flow at high gas flow rates. This technique is a relatively new approach to determine the permeability of quenched samples. The integration of porosity and connectivity measurements provides information about the percentage of connected and isolated vesicles, with the connected vesicles forming potential degassing pathways. Our results show that the permeability and the vesicularity of the La Vache and Lassolas pyroclasts correlate very well, defining a trend that is also shown by the permeability data derived from the literature for the Cascades (Saar and Manga, 1999) and the Ambrym volcano (Polacci et al., 2012). The connectivity data of the

  19. The evaluation of rock permeability with streaming current measurements

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Hu, Hengshan; Guan, Wei

    2016-09-01

    Rock permeability is an important parameter for the formation evaluation. In this paper, a new method with streaming current is proposed to determine the sample permeability based on the electrokinetic effects, and is proved by the experimental measurements. Corresponding to this method, we have designed an experimental setup and a test system, then performed the streaming current (potential) and electro-osmosis pressure experiments with 23 sandstone samples at 0.05 mol l-1 NaCl solution. The streaming current (potential) coefficient and electro-osmosis pressure coefficient are obtained, respectively, with the experimental data at low frequencies with AC lock-in technique. The electrokinetic permeabilities are further calculated with these coefficients. The results are consistent well with the gas permeability measured with Darcy's law, which verifies the current method for estimating rock permeability. Our measurements are also analysed and compared with previous measurements. The results indicate that our method can reflect the essence of electrokinetic effects better and simplify the electrokinetic measurements as well. In addition, we discuss the influences of experimental artefacts (core holder and confining pressure installation) on the electrokinetic data. The results show that the trough phenomenon, appeared in frequency curves of streaming current (potential) coefficients, is induced by the resonance of the core-holder/vibrator system. This is important for the design of electrokinetic setup and the analysis of low-frequency response of the electrokinetic coupling coefficients.

  20. High Temperature Permeability of Carbon Cloth Phenolic Composite

    NASA Technical Reports Server (NTRS)

    Park, O. Y.; Lawrence, T. W.

    2003-01-01

    The carbon fiber phenolic resin composite material used for the RSRM nozzle insulator occasionally experiences problems during operation from pocketing or spalling-like erosion and lifting of plies into the char layer. This phenomenon can be better understood if the permeability of the material at elevated temperatures is well defined. This paper describes an experimental approach to determining high temperature permeability of the carbon phenolic material used as the RSRM nozzle liner material. Two different approaches were conducted independently using disk and bar type specimens with the designed permeability apparatus. The principle of the apparatus was to subject a test specimen to a high pressure differential and a heat supply and to monitor both the pressure and temperature variations resulting from gas penetration through the permeable wall between the two chambers. The bar types, especially designed to eliminate sealing difficulties at a high temperature environment, were directly exposed to real time temperature elevation from 22 C to 260 C during the test period. The disk types were pre-heat treated up to 300 C for 8 hours and cooled to room temperature before testing. Nonlinear variation of downstream pressure at a certain temperature range implied moisture release and matrix pyrolysis. Permeability was calculated using a semi-numerical model of quasi-steady state. The test results and the numerical model are discussed in the paper.

  1. The evaluation of rock permeability with streaming current measurements

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Hu, Hengshan; Guan, Wei

    2016-06-01

    Rock permeability is an important parameter for the formation evaluation. In this paper, a new method with streaming current is proposed to determine the sample permeability based on the electrokinetic effects, and is proved by the experimental measurements. Corresponding to this method, we have designed an experimental setup and a test system, then performed the streaming current (potential) and electroosmosis pressure experiments with 23 sandstone samples at 0.05 mol/l NaCl solution. The streaming current (potential) coefficient and electroosmosis pressure coefficient are obtained respectively with the experimental data at low frequencies with AC lock-in technique. The electrokinetic permeabilities are further calculated with these coefficients. The results are consistent well with the gas permeability measured with Darcy's law, which verifies the current method for estimating rock permeability. Our measurements are also analyzed and compared with previous measurements. The results indicate that our method can reflect the essence of electrokinetic effects better and simplify the electrokinetic measurements as well. In addition, we discuss the influences of experimental artefacts (core-holder and confining pressure installation) on the electrokinetic data. The results show that the trough phenomenon, appeared in frequency curves of streaming current (potential) coefficients, is induced by the resonance of the core-holder/vibrator system. This is important for the design of electrokinetic setup and the analysis of low frequency response of the electrokinetic coupling coefficients.

  2. Permeability damage to natural fractures caused by fracturing fluid polymers

    SciTech Connect

    Gall, B.L.; Sattler, A.R.; Maloney, D.R.; Raible, C.J.

    1988-04-01

    Formation damage studies using artificially fractured, low-permeability sandstone cores indicate that viscosified fracturing fluids can severely restrict gas flow through these types of narrow fractures. These studies were performed in support of the Department of Energy's Multiwell Experiment (MWX). Extensive geological and production evaluations at the MWX site indicate that the presence of a natural fracture system is largely responsible for unstimulated gas production. The laboratory formation damage studies were designed to examine changes in cracked core permeability to gas caused by fracturing fluid residues introduced into such narrow fractures during fluid leakoff. Polysaccharide polymers caused significant reduction (up to 95%) to gas flow through cracked cores. Polymer fracturing fluid gels used in this study included hydroxypropyl guar, hydroxyethyl cellulose, and xanthan gum. In contrast, polyacrylamide gels caused little or no reduction in gas flow through cracked cores after liquid cleanup. Other components of fracturing fluids (surfactants, breakers, etc.) caused less damage to gas flows. Other factors affecting gas flow through cracked cores were investigated, including the effects of net confining stress and non-Darcy flow parameters. Results are related to some of the problems observed during the stimulation program conducted for the MWX. 24 refs., 4 figs., 7 tabs.

  3. Flow visualization and relative permeability measurements in rough-walled fractures

    SciTech Connect

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media.

  4. Correlation of soil radon and permeability with indoor radon potential in Ottawa.

    PubMed

    Chen, Jing; Falcomer, Renato; Bergman, Lauren; Wierdsma, Jessica; Ly, Jim

    2009-08-01

    Soil gas radon and soil gas permeability measurements were conducted at 32 sites across the five most populated communities in the city of Ottawa where indoor radon measurements were available for 167 houses. A soil radon index (SRI) determined from the soil radon concentration and the soil gas permeability was used to characterise radon availability from soil to air. This study demonstrated that the average SRI in a community area correlates with the indoor radon potential (the percentage of homes above 200 Bq m(-3)) in that community. Soil gas radon concentrations together with soil gas permeability measurements can be a useful tool for the prediction of the indoor radon potential in the development of a Canadian radon risk map.

  5. Room temperature hydrogen gas sensing characteristics of porous quaternary AlInGaN film prepared via UV-assisted photo-electrochemical etching

    NASA Astrophysics Data System (ADS)

    Quah, Hock Jin; Ahmed, Naser Mahmoud; Zainal, Norzaini; Yam, Fong Kwong; Hassan, Zainuriah; Lim, Way Foong

    2016-07-01

    This paper reports room temperature hydrogen gas sensing characteristics of porous quaternary AlInGaN prepared via ultraviolet-assisted photo-electrochemical etching in 1-4% diluted potassium hydroxide (KOH) solution. The highest sensitivity (S), the lowest response time and recovery time were obtained by the 4% KOH etched sample, owing to good adsorption and desorption of adsorbed H atoms over the largest surface area provided by the highest pore density. An increase in forward bias to 2.0 V has enhanced S (98.0%) of the sample while a relatively low bias of 0.5 V was sufficient to yield S of 81.9% in the sample.

  6. Highly improved reliability of amber light emitting diode with Ca -α-SiAlON phosphor in glass formed by gas pressure sintering for automotive applications.

    PubMed

    Yoon, Chang-Bun; Kim, Sanghyun; Choi, Sung-Woo; Yoon, Chulsoo; Ahn, Sang Hyeon; Chung, Woon Jin

    2016-04-01

    Phosphor in glass (PiG) with 40 wt% of Ca-α-SiAlON phosphor and 60 wt% of Pb-free silicate glass was synthesized and mounted on a high-power blue LED to make an amber LED for automotive applications. Gas pressure sintering was applied after the conventional sintering process was used to achieve fully dense PiG plates. Changes in photoluminescence spectra and color coordination were inspected by varying the thickness of the plates that were mounted after optical polishing and machining. A trade-off between luminous flux and color purity was observed. The commercial feasibility of amber PiG packaged LED, which can satisfy international regulations for automotive components, was successfully demonstrated by examining the practical reliability under 85% humidity at an 85°C condition. PMID:27192294

  7. Quantum Nature of Two-Dimensional Electron Gas Confinement at LaAlO3/SrTiO3 Interfaces

    NASA Astrophysics Data System (ADS)

    Janicka, Karolina; Velev, Julian P.; Tsymbal, Evgeny Y.

    2009-03-01

    We perform density functional calculations to understand the mechanism controlling the confinement width of the two-dimensional electron gas (2DEG) at LaAlO3/SrTiO3 interfaces. We find that the 2DEG confinement can be explained by the formation of metal induced gap states (MIGS) in the band gap of SrTiO3. These states are formed as the result of quantum-mechanical tunneling of the charge created at the interface due to electronic reconstruction. The attenuation length of the MIGS into the insulator is controlled by the lowest-decay-rate evanescent states of SrTiO3, as determined by its complex band structure. Our calculations predict that the 2DEG is confined in SrTiO3 within about 1 nm at the interface.

  8. Quantum nature of two-dimensional electron gas confinement at LaAlO3/SrTiO3 interfaces.

    PubMed

    Janicka, Karolina; Velev, Julian P; Tsymbal, Evgeny Y

    2009-03-13

    We perform density functional calculations to understand the mechanism controlling the confinement width of the two-dimensional electron gas (2DEG) at LaAlO_{3}/SrTiO_{3} interfaces. We find that the 2DEG confinement can be explained by the formation of metal induced gap states (MIGS) in the band gap of SrTiO3. These states are formed as the result of quantum-mechanical tunneling of the charge created at the interface due to electronic reconstruction. The attenuation length of the MIGS into the insulator is controlled by the lowest-decay-rate evanescent states of SrTiO3, as determined by its complex band structure. Our calculations predict that the 2DEG is confined in SrTiO3 within about 1 nm at the interface.

  9. Quantum nature of two-dimensional electron gas confinement at LaAlO3/SrTiO3 interfaces.

    PubMed

    Janicka, Karolina; Velev, Julian P; Tsymbal, Evgeny Y

    2009-03-13

    We perform density functional calculations to understand the mechanism controlling the confinement width of the two-dimensional electron gas (2DEG) at LaAlO_{3}/SrTiO_{3} interfaces. We find that the 2DEG confinement can be explained by the formation of metal induced gap states (MIGS) in the band gap of SrTiO3. These states are formed as the result of quantum-mechanical tunneling of the charge created at the interface due to electronic reconstruction. The attenuation length of the MIGS into the insulator is controlled by the lowest-decay-rate evanescent states of SrTiO3, as determined by its complex band structure. Our calculations predict that the 2DEG is confined in SrTiO3 within about 1 nm at the interface. PMID:19392142

  10. Actuation and transduction of resonant vibrations in GaAs/AlGaAs-based nanoelectromechanical systems containing two-dimensional electron gas

    SciTech Connect

    Shevyrin, A. A. Pogosov, A. G.; Bakarov, A. K.; Rodyakina, E. E.; Shklyaev, A. A.; Budantsev, M. V.; Toropov, A. I.

    2015-05-04

    Driven vibrations of a nanoelectromechanical system based on GaAs/AlGaAs heterostructure containing two-dimensional electron gas are experimentally investigated. The system represents a conductive cantilever with the free end surrounded by a side gate. We show that out-of-plane flexural vibrations of the cantilever are driven when alternating signal biased by a dc voltage is applied to the in-plane side gate. We demonstrate that these vibrations can be on-chip linearly transduced into a low-frequency electrical signal using the heterodyne down-mixing method. The obtained data indicate that the dominant physical mechanism of the vibrations actuation is capacitive interaction between the cantilever and the gate.

  11. Permeability of iron sulfide (FeS)-based materials for groundwater remediation.

    PubMed

    Henderson, Andrew D; Demond, Avery H

    2013-03-01

    Iron sulfide (FeS) has been extensively assessed as a reactive medium to remove both metals and halogenated organics from groundwater. However, to address its suitability as a material for permeable reactive barriers (PRBs), its propensity for solids and gas production, which result in reduced permeability, must be evaluated. The reduction in permeability for sands coated with FeS (as mackinawite), under the anoxic conditions often encountered at contaminated groundwater sites, was examined through column experiments and geochemical modeling under conditions of high calcium and nitrate, which have been previously shown to cause significant permeability reduction in zero-valent iron (ZVI) systems. The column experiments showed negligible production of both solids and gases. The geochemical modeling predicted a maximum reduction in permeability of 1% due to solids and about 30% due to gas formation under conditions for which a complete loss of permeability was predicted for ZVI systems. This difference in permeability reduction is driven by the differences in thermodynamic stability of ZVI and FeS in aqueous solutions. The results suggest that geochemical conditions that result in high permeability losses for ZVI systems will likely not be problematic for FeS-based reactive materials.

  12. High membrane permeability for melatonin.

    PubMed

    Yu, Haijie; Dickson, Eamonn J; Jung, Seung-Ryoung; Koh, Duk-Su; Hille, Bertil

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be "secreted" from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  13. High membrane permeability for melatonin

    PubMed Central

    Yu, Haijie; Dickson, Eamonn J.; Jung, Seung-Ryoung; Koh, Duk-Su

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be “secreted” from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  14. Modeling stress/strain-dependent permeability changes for deep geoenergy applications

    NASA Astrophysics Data System (ADS)

    Rinaldi, Antonio Pio; Rutqvist, Jonny

    2016-04-01

    Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.

  15. Origin of fine oscillations in the photoluminescence spectrum of 2-dimensional electron gas formed in AlGaN/GaN high electron mobility transistor structures

    SciTech Connect

    Jana, Dipankar Porwal, S.; Oak, S. M.; Sharma, T. K.; Jain, Anubha

    2015-10-28

    An unambiguous identification of the fine oscillations observed in the low temperature photoluminescence (PL) spectra of AlGaN/GaN based high electron mobility transistor (HEMT) structures is carried out. In literature, such oscillations have been erroneously identified as the sub-levels of 2-dimensional electron gas (2DEG) formed at AlGaN/GaN heterointerface. Here, the origin of these oscillations is probed by performing the angle dependent PL and reflectivity measurements under identical conditions. Contrary to the reports available in literature, we find that the fine oscillations are not related to 2DEG sub-levels. The optical characteristics of these oscillations are mainly governed by an interference phenomenon. In particular, peculiar temperature dependent redshift and excitation intensity dependent blueshift, which have been interpreted as the characteristics of 2DEG sub-levels in HEMT structures by other researchers, are understood by invoking the wavelength and temperature dependence of the refractive index of GaN within the framework of interference phenomenon. The results of other researchers are also consistently explained by considering the fine oscillatory features as the interference oscillations.

  16. Highly conformal SiO2/Al2O3 nanolaminate gas-diffusion barriers for large-area flexible electronics applications

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Hwan; Kim, Young-Min; Park, Young-Wook; Park, Tae-Hyun; Jeong, Jin-Wook; Choi, Hyun-Ju; Song, Eun-Ho; Lee, Jin-Woo; Kim, Cheol-Ho; Ju, Byeong-Kwon

    2010-11-01

    The present study demonstrates a flexible gas-diffusion barrier film, containing an SiO2/Al2O3 nanolaminate on a plastic substrate. Highly uniform and conformal coatings can be made by alternating the exposure of a flexible polyethersulfone surface to vapors of SiO2 and Al2O3, at nanoscale thickness cycles via RF-magnetron sputtering deposition. The calcium degradation test indicates that 24 cycles of a 10/10 nm inorganic bilayer, top-coated by UV-cured resin, greatly enhance the barrier performance, with a permeation rate of 3.79 × 10 - 5 g m - 2 day - 1 based on the change in the ohmic behavior of the calcium sensor at 20 °C and 50% relative humidity. Also, the permeation rate for 30 cycles of an 8/8 nm inorganic bilayer coated with UV resin was beyond the limited measurable range of the Ca test at 60 °C and 95% relative humidity. It has been found that such laminate films can effectively suppress the void defects of a single inorganic layer, and are significantly less sensitive against moisture permeation. This nanostructure, fabricated by an RF-sputtering process at room temperature, is verified as being useful for highly water-sensitive organic electronics fabricated on plastic substrates.

  17. A Large Block Experiment for Measurement of the Effective Permeability of Indiana Limestone

    NASA Astrophysics Data System (ADS)

    Selvadurai, P. A.; Selvadurai, A. P.

    2009-12-01

    The measurement of permeability of large specimens of a rock specimen is bound to provide a clearer picture of the distribution of permeability of predominantly sedimentary rocks. Such distributions can be the basis for evaluating the effective permeability of the rock specimen in the presence of permeability inhomogeneity. This paper discusses the development of a patch permeability test that can be used to measure the near surface permeability characteristics of a large cuboidal block of Indiana Limestone measuring 508 mm. The test is used to generate the near surface permeability of six faces of the cuboid and these estimates are used to generate, via a kriging procedure, the interior permeability distributions of permeability. These permeability distributions are used to examine the validity of theoretical estimates that have been developed in the literature to determine the effective permeability of the material. The classical Wiener (1912) bounds, the estimates provided by Matheron (1967) and Journel et al. (1993) are developed using the experimentally derived data. The procedure is also validated by conducting computational experiments involving one-dimensional flow along three orthogonal directions. References: Wiener, O. (1912) Die Theorie des Mischkörpers für das Feld des stationaären Strömung. Erste Abhandlung die Mittelswertesätsze für Kraft, Polarisation und Energie. Abh. Math.-Physischen Klasse Königl. Säcsh Gesell. Wissen, 32: 509-604. Matheron, G. (1967) Eléments pour une Théorie des Milieux Poroeux, Masson, Paris. Journel, A.G, Deutsch, C.V. and Desbrats, A.J. (1986) Power averaging for block effective permeability, SPE 15128, Society of Petroleum Engineers.

  18. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  19. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  20. Study on Surface Depression of Ti-6Al-4V with Ultrahigh-Frequency Pulsed Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Mingxuan, Yang; Zhou, Yang; Bojin, Qi

    2015-08-01

    Molten pool surface depression was observed with the arc welding process that was caused by arc pressure. It was supposed to have a significant effect on fluid in the molten pool that was important for the microstructure and joint properties. The impact of arc force was recognized as the reason for the surface depression during arc welding. The mathematical distribution of arc force was produced with the exponent and parabola models. Different models showed different concentrations and attenuations. The comparison between them was discussed with the simulation results. The volume of fluid method was picked up with the arc force distribution model. The surface depression was caused by the arc force. The geometry of the surface depression was discussed with liquid metal properties. The welding process was carried out with different pulsed frequencies. The results indicated the forced depression exists in molten pool and the geometry of depression was hugely due to the arc force distribution. The previous work calculated the depression in the center with force balance at one point. The other area of gas shielding was resistant by the reverse gravity from the feedback of liquid metal that was squeezed out. The article discusses the pressure effect with free deformation that allowed resistance of liquid and was easy to compare with different distributions. The curve profiles were studied with the arc force distributions, and exponent model was supposed to be more accurate to the as-weld condition.

  1. Alloy 2100 GT: A new Ta-fortified Ni-Cr-Al-alloy for land based gas turbines

    SciTech Connect

    Brill, U.; Agarwal, D.C.

    1999-11-01

    Alloy 2100 GT has been developed for use in the combustors of gas turbines. The improved high-temperature properties of the alloy should allow the metal temperature of the combustion chamber to be increased, which would provide the opportunity of increasing the efficiency, lowering emissions, and decreasing fuel consumption. This alloy is a cobalt, tungsten, and molybdenum-free Ni-base superalloy. It contains as major alloying elements 25 wt.% chromium, 8 wt.% tantalum, 3 wt.% aluminium, 0.3 wt.% carbon and 0.1 wt.% yttrium. High-temperature strength is achieved by solid solution strengthening by tantalum, carbide hardening due to the formation of primary precipitated tantalum carbides and {gamma}{prime}-precipitation hardening by aluminium and tantalum. In spite of the small grain size creep rupture strength and stress to produce 0.1 % creep is significantly increased in comparison to superalloys being in use today. Superior oxidation resistance up to 1200 C and corrosion behavior under deposits of sulfates up to 850 C is given by the formation of a very thin and tightly adherent alumina scale due to an aluminium content of approximately 3.0 wt.%, which is remarkably high for a wrought alloy, and additions of yttrium to improve spallation resistance under cycling conditions. Welding can easily be accomplished. The matching filler metal is recommended because it provides mechanical strength and oxidation resistance similar to the parent metal.

  2. Prediction of permeability change at high ambient stresses via the isotropic Skempton coefficient B

    NASA Astrophysics Data System (ADS)

    Zimmermann, G.; Bloecher, M. G.; Milsch, H.

    2006-12-01

    For gas, oil and water exploration reservoir permeability as a function of effective stress is one of the most important hydraulic parameters. Estimation of permeability, especially in deep reservoirs, is very difficult and time-consuming. Therefore, permeability is often estimated in laboratory experiments under simulated in-situ conditions. Under these experimental conditions with a flow across the sample, many effects lead to changes in permeability. Besides the flow paths reduction as a function of effective pressure, plugging of the sample and filters by fines migration or rust and a swelling of the clay content can occur, which results in a decrease in permeability. All these non-mechanical effects are time dependent and affect the permeability measurements, hence a separation of all these influences is hard to achieve. To avoid these problems we estimated the permeability pressure dependence with the isotropic Skempton coefficient. The Skempton coefficient is defined as undrained pore pressure change due to ambient stress changes B=dpu/dσm. We could show that a heterogeneous deformation of pore space geometry led to a decrease of the Skempton coefficient with increasing confining pressure. The mechanisms which influence the Skempton coefficient are similar to the behavior of the sandstone sample during the permeability measurements. In both cases we consider a change in pore pressure and an adjacent equalization across the flow channels at the micro-scale. These flow channels change their geometry depending on the applied stresses. Therefore, the reduction of the Skempton coefficient should be comparable to the reduction of permeability. To validate this assumption we present experiments on Lower Permian sandstone (Rotliegend) samples from the NE German Basin and compared Skempton coefficient and permeability measurements to find a coherence of both rock properties. Applying this relation of Skempton coefficient and permeability, we can predict rock

  3. A methodology for determining the evolution law of gob permeability and its distributions in longwall coal mines

    NASA Astrophysics Data System (ADS)

    Zhang, Cun; Tu, Shihao; Zhang, Lei; Bai, Qingsheng; Yuan, Yong; Wang, Fangtian

    2016-04-01

    In order to understand the permeability evolution law of the gob by mining disturbances and obtain the permeability distribution of the fully compacted gob, comprehensive methods including theoretical analyses of monitoring data and numerical simulation are used to determine the permeability of gobs in the mining process. Based on current research, three zones of the vertical stress and permeability in the gob are introduced in this article, which are the caving rock mass accumulation zone, the gradually compacted zone and the fully compacted zone. A simple algorithm is written by using FISH language to be imported into the reservoir model. FISH language is an internal programming language in FLAC3D. It is possible to calculate the permeability at each zone with this algorithm in the mining process. Besides, we analyze the gas flow rates from seven gob gas ventholes (GGV) located on a longwall face operated in a mine of a Huainan coalfield in Huainan City, China. Combined with Darcy’s law, a calculation model of permeability around GGV in the gob is proposed. Using this model, the evolution law of permeability in the gob is deduced; the phases of permeability evolution are the decline stage and the stable stage. The result of the vertical stress monitoring data and good fitting effect of the permeability to the experimental data show that the permeability decline caused by the compaction of the gob is the principal reason for the decline stage. The stable stage indicates that the gob has been fully compacted, and the average period of full gob compaction is 47.75 d. The permeability in the middle of the compacted gob is much smaller than the permeability on the edge of the gob which presents an O shape trend. Besides, the little difference among the results of the numerical simulation, the permeability calculation model and other commonly used calculation models validate the correctness of the permeability calculation model and numerical simulation results.

  4. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    NASA Astrophysics Data System (ADS)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  5. Development of a New Apparatus for Investigating Acoustic Effects on Hydraulic Properties of Low-Permeability Geo-Materials

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Sawada, A.; Sugita, H.; Takeda, M.; Komai, T.; Zhang, M.

    2006-12-01

    Remediation of polluted soils and groundwater contaminated by heavy metals and non-aqueous phase liquids has been one of the challenging issues in the field of geo-environments. In-situ removal of the contaminants from low permeable soils, such as clay strata, is particularly difficult because of the low mobility, strong adsorption, and/or other various interactions within soils. Thus current remediation techniques, such as pump- and-treat method and even eletrokinetic method, generally suffer from low recovery rates and/or economically unacceptable long remediation periods. A perspective improvement in remediation technology is to couple the electrokinetic method with an application of acoustic waves. This so-called Electro-Acoustic Soil Decontamination (EASD) method has been proposed by Battelle Columbus Labs.(Muralidhara et al. 1990). Simultaneous application of an electric field and an acoustic field may produce a synergistic effect and result in further enhancement of water transport by electro-osmosis in principle, but there is still no fundamental data for the design of EASD method in practical applications. A number of investigations have shown that an application of acoustic waves can increase hydraulic conductivity and mobility of non-aqueous phase liquids in porous media. Most of the prior and ongoing researches in this area have been focused on increasing production from declining oil and gas reservoirs. During several field tests by the oil and gas industries, increases in oil production rates by 20% or more have been reported. However, underlying physical mechanisms for acoustically enhanced fluid transport are not adequately understood. In addition, majority of the past investigations has dealt with applications of large amplitude of acoustic waves to relatively permeable soils or fractured rocks, and there is little information if acoustic wave effectively enhances flow and contaminant transport for less permeable clayey soils. To evaluate the

  6. Permeability of Candidate Stirling Heater Head Materials Measured

    NASA Technical Reports Server (NTRS)

    Freedman, Marc R.; Singh, Mrityunjay

    2005-01-01

    Researchers at the NASA Glenn Research Center are evaluating high-temperature materials for Stirling heater heads for second- and third-generation Stirling radioisotope power systems that would help to increase the system efficiency to 30 to 35 percent and the system specific power to 8 to 10+ W/kg. Ceramic materials could make it possible for the convertor hot-end temperature to be increased to 1050 to 1200 C, in comparison to the current 650 C with an Inconel 718 heater head. A hermetically sealed Stirling heater head must retain a constant internal pressure of nearly 400-psi helium (He) throughout its useful life (120,000 hr) at the design operating temperature. Therefore, He permeability was measured for eight potential materials and compared with the permeability of the current heater head material, Inconel 718. The eight materials included silicon nitride (Si3N4), silicon dioxide (SiO2), both sintered and chemical vapor deposited (CVD) silicon carbide (SiC), alumina (Al2O3), two types of melt-infiltrated (MI) SiC/SiC composites, and a carbon/SiC composite (C/SiC). Glenn submitted samples of each material to Porous Materials, Inc., Ithaca, New York, for permeability analysis. At room temperature and 30-psi He, four materials--Si3N4, Al2O3, SiO2, and sintered SiC--demonstrated lower permeability than Inconel 718. The CVD SiC and all the composite materials were significantly more permeable to He than the baseline material.

  7. Comments on "innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography-mass spectrometry and stable labeled isotope as internal standard" by Varlet et al.

    PubMed

    Saffaj, T; Ihssane, B

    2014-01-31

    Varlet et al. recently proposed a headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable for the routine determination of CO2 in gaseous biologic matrices. This developed bioanalytical method was fully validated according to the SFSTP 1997 guidelines using the accuracy profile as a graphical decision-making tool.In this letter, we discuss the validity of HS-GC-MS method based on the newest SFSTP guideline. In particular, we demonstrate by the estimation of the β-expectation tolerance interval that the error total exceeds the acceptance limits (30%) for the second concentration level (0.5μmol mL(-1) vial HS). Furthermore, we show through the risk profile that the probability to have future results inside the ±30% acceptance limits is smaller than 95%.

  8. In-situ permeability measurements with the Cone Permeameter{trademark} measurement system

    SciTech Connect

    1998-07-30

    The permeability of soil to fluid flow defines the magnitude of soil gas and groundwater flow under imposed pressure gradients. Pressure gradients exist due to natural effects such as hydraulic gradients (in the case of groundwater) and barometrically imposed gradients (in the case of soil gas). Unnatural gradients are imposed by soil vapor extraction air sparging, active venting, pump-and-treat, and other remediation processes requiring the active movement of fluids through the soil. The design of these processes requires knowledge of the flow characteristics of the soil. The most variable of the soil's flow characteristics is its permeability, which can vary by several orders of magnitude in a given geologic and hydrologic setting. Knowledge of soil gas permeability is needed to design soil vapor extraction systems and predict the general movement of gas in soil. Saturated hydraulic conductivity, or the soil's permeability to liquid flow, is required to predict movement of groundwater in saturated soils. The variability of permeability is illustrated by the range of values for different media in a table. It is not uncommon for permeabilities to vary by several orders of magnitude at a given site.

  9. Novel additives to retard permeable flow

    SciTech Connect

    Golombok, Michael; Crane, Carel; Ineke, Erik; Welling, Marco; Harris, Jon

    2008-09-15

    Low concentrations of surfactant and cosolute in water, can selectively retard permeable flow in high permeability rocks compared to low permeability ones. This represents a way forward for more efficient areal sweep efficiency when water flooding a reservoir during improved oil recovery. (author)

  10. On the Reverse Asymmetric Gas Transport Effect in the Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Kurchatov, I. M.; Laguntsov, N. I.; Skuridin, I. E.

    In this paper, change of gas permeability value, depending on orientation of polymer gas membrane, in a wide pressure range was investigated. Consistent patterns of asymmetric gas transfer through the PVTMS-membrane were established experimentally. Reverse asymmetric transport effect was observed, wherein the permeability from the direction of porous support prevails at the permeability from the direction of selective non-porous layer.

  11. Committee neural network model for rock permeability prediction

    NASA Astrophysics Data System (ADS)

    Bagheripour, Parisa

    2014-05-01

    Quantitative formulation between conventional well log data and rock permeability, undoubtedly the most critical parameter of hydrocarbon reservoir, could be a potent tool for solving problems associated with almost all tasks involved in petroleum engineering. The present study proposes a novel approach in charge of the quest for high-accuracy method of permeability prediction. At the first stage, overlapping of conventional well log data (inputs) was eliminated by means of principal component analysis (PCA). Subsequently, rock permeability was predicted from extracted PCs using multi-layer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN). Eventually, a committee neural network (CNN) was constructed by virtue of genetic algorithm (GA) to enhance the precision of ultimate permeability prediction. The values of rock permeability, derived from the MPL, RBF, and GRNN models, were used as inputs of CNN. The proposed CNN combines results of different ANNs to reap beneficial advantages of all models and consequently producing more accurate estimations. The GA, embedded in the structure of the CNN assigns a weight factor to each ANN which shows relative involvement of each ANN in overall prediction of rock permeability from PCs of conventional well logs. The proposed methodology was applied in Kangan and Dalan Formations, which are the major carbonate reservoir rocks of South Pars Gas Field-Iran. A group of 350 data points was used to establish the CNN model, and a group of 245 data points was employed to assess the reliability of constructed CNN model. Results showed that the CNN method performed better than individual intelligent systems performing alone.

  12. The bridge permeameter; An alternative method for single-phase, steady-state permeability measurements

    SciTech Connect

    Graf, D.C.; Warpinski, N.R.

    1994-03-01

    Laboratory measurements of single-phase, steady-state permeability of porous rock are important for a number of different applications. The oil and gas industry uses permeability data as a key indicator of the producability of a hydrocarbon reservoir; effective containment of large volumes of oil in underground salt caverns is directly dependent upon the permeability of the adjacent cavern walls; and safe, long term underground isolation of radioactive and hazardous waste is contingent upon the flow and transport characteristics of the surrounding geologic formations. An alternative method for measuring single-phase, steady-state permeability of porous rock is presented. The use of troublesome and expensive mass flow meters is eliminated and replaced with a bridge configuration of flow resistors. Permeability values can be determined directly from differential pressures across the bridge network, resulting in potentially significant cost savings and simplification for conducting these types of measurements. Results from the bridge permeameter are compared with results obtained using conventional methods.

  13. Theoretical studies of permeability inversion from seismoelectric logs

    NASA Astrophysics Data System (ADS)

    Hu, H.; Guan, W.; Zhao, W.

    2012-04-01

    Permeability is one of the most important parameters for evaluating the level of difficulty in oil and gas exploitation. A quick, continuous and accurate in-situ estimate of reservoir permeability is highly significant. Stoneley wave logs have been used to determine formation permeability (Tang and Cheng, 1996). However, the inversion errors of this method are too big in low-permeability formations, especially in high-porosity and low-permeability formations resulting from the high clay content in pores. In this study, we propose to invert permeability by using the full waveforms of seismoelectric logs with low frequencies. This method is based on the relationship of permeability with the ratio of the electric excitation intensity to the pressure field's (REP) with respect to the Stoneley wave in seismoelectric logs. By solving the governing equations for electrokinetic coupled wavefields in homogeneous fluid-saturated porous media (Pride, 1994), we calculate the full waveforms of the borehole seismoelectric wavefields excited by a point pressure source and investigate frequency-dependent excitation intensities of the mode waves and excitation intensities of the real branch points in seismoelectric logs. It is found that the REP's phase, which reflects the phase discrepancy between the Stoneley-wave-induced electric field and the acoustic pressure, is sensitive to formation permeability. To check the relation between permeability and REP's phase qualitatively, an approximate expression of the tangent of the REP's argument is derived theoretically as tan(θEP) ≈-ωc/ω = -φη/ (2πfα ∞ρfκ0), where θEPdenotes the arguments of the REP and their principal value is the REP's phase,ω is the angular frequency,ωc is a critical angular frequency that separates the low-frequency viscous flow from the high-frequency inertial flow, φ is the porosity, α∞ is the tortuosity, κ0 is the Darcy permeability, ρf and η are the density and the viscosity of the pore

  14. Permeability relation for periodic structures.

    PubMed

    Dunn, K J; LaTorraca, G A; Bergman, D J

    1998-01-01

    The permeability relation for periodic porous media is studied with respect to other petrophysical parameters such as formation factor, porosity, surface-to-volume ratio, and nuclear magnetic resonance (NMR) relaxation time. All these quantities were computed for periodic structures of simple, body-centered, and face-centered cubic arrays of touching and overlapping spheres. The formation factors were calculated by using a method which is based on a Fourier-space representation of an integral equation for the electric potential in a two-component composite. The nuclear magnetic resonance relaxation time for the case where surface-enchanced relaxation plays a dominant role is known to be V P/rho S (VP is the pore volume, S is the pore surface, is the surface relaxation strength) when rho is not too large. Previously calculated permeabilities for these structures from the literature were used for correlation studies with other petrophysical parameters. Various correlation schemes among these quantities, such as k = aTbFc, and k = aTb phi c, were investigated, where k is permeability, T is the NMR relaxation time, phi is the porosity, and F is the formation factor. PMID:9803908

  15. Three-phase permeabilities and other characteristics of 260-mD fired Berea

    SciTech Connect

    Maloney, D.; Brinkmeyer, A.

    1992-04-01

    A laboratory investigation was conducted to determine relative permeabilities and other characteristics of a 260-mD fired Berea sandstone. The mineralogical and physical characteristics of the sample were characterized by XRD tests, thin section analyses, mercury injection tests, and centrifuge capillary pressure and wettability tests. Two-phase oil/water relative permeabilities were measured under several stress conditions. Resistivity characteristics of the sample were also evaluated during several of the oil/water tests. Oil/gas and gas/water relative permeabilities were measured during steady-state tests. Three-phase steady-state oil/gas/water tests were performed for six DDI saturation trajectories (decreasing brine and oil saturations, increasing gas saturation) in which the sample was not cleaned between saturation trajectories.

  16. LABORATORY ASSESSMENT OF THE PERMEABILITY AND DIFFUSION CHARACTERISTICS OF FLORIDA CONCRETES - PHASE I - METHODS DEVELOPMENT AND TESTING

    EPA Science Inventory

    The report gives results of Phase I of a laboratory assessment of the permeability and diffusion characteristics of Florida concretes. (NOTE: The ability of concrete to permit air flow under pressure (permeability) and the passage of radon gas without any pressure difference (dif...

  17. Permeability-Porosity Relationships in Deep Sea Hydrothermal Vent Deposits

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gittings, H.; Tivey, M. K.

    2003-12-01

    To map out the thermal and chemical regimes within vent deposits where micro-and macro-organisms reside requires accurate modeling of mixing and reaction between hydrothermal fluid and seawater within the vent structures. However, a critical piece of information, quantitative knowledge of the permeability of vent deposits, and how it relates to porosity and pore geometry, is still missing. To address this, systematic laboratory measurements of permeability and porosity were conducted on 3 large vent structures from the Mothra Hydrothermal vent field on the Endeavor Segment of the Juan de Fuca Ridge. Twenty-five cylindrical cores with diameters of 2.54 cm and various lengths were taken from Phang (a tall sulfide-dominated spire that was not actively venting when sampled), Roane (a lower temperature spire with dense macrofaunal communities growing on its sides that was venting diffuse fluid of < 300° C) and Finn (an active black smoker with a well-defined inner conduit that was venting 302° C fluids prior to recovery (Delaney et al., 2000; Kelley et al, 2000)). Measurements were made to obtain porosity and permeability of these drill cores using a helium porosimeter (UltraPoreTM300) and a nitrogen permeameter (UltrapermTM400) from Core Laboratories Instruments. The porosimeter uses Boyle's law to determine pore volume from the expansion of a know mass of helium into a calibrated sample holder, whereas the permeameter uses Darcy's law to determine permeability by measuring the steady-state flow rate through the sample under a given pressure gradient. A moderate confining pressure of 1.38 MPa was applied during the measurements to prevent leakage between the sample surface and the sample holder. The permeability and porosity relationship is best described by two different power law relationships with exponents of ˜9 (group I) and ˜3 (group II), respectively. Microstructural observations suggest that the difference in the two permeability-porosity relationships

  18. Direct measurement of relative permeability in rocks from unsteady-state saturation profiles

    NASA Astrophysics Data System (ADS)

    Kianinejad, Amir; Chen, Xiongyu; DiCarlo, David A.

    2016-08-01

    We develop a method to measure liquid relative permeability in rocks directly from transient in situ saturation profiles during gravity drainage experiments. Previously, similar methods have been used for sandpacks; here, this method is extended to rocks by applying a slight overpressure of gas at the inlet. Relative permeabilities are obtained in a 60 cm long vertical Berea sandstone core during gravity drainage, directly from the measured unsteady-state in situ saturations along the core at different times. It is shown that for obtaining relative permeability using this method, if certain criteria are met, the capillary pressure of the rock can be neglected. However, it is essential to use a correct gas pressure gradient along the core. This involves incorporating the pressure drop at the outlet of the core due to capillary discontinuity effects. The method developed in this work obtains relative permeabilities in unsteady-state fashion over a wide range of saturations quickly and accurately.

  19. Estimated bounds on rock permeability changes from THM Processes

    SciTech Connect

    Berge, P A; Blair, S C; Wang, H F

    1998-08-01

    We performed THM modeling to estimate bounds on permeability changes in the NFE. For our modeling, we used the TM three-dimensional (3-D) finite-difference code FLAC{sup 3D} version 2.0 (Itasca Consulting Group Inc. 1997) to compute changes in stress and displacement in an elastic model subjected to temperature changes over time. Output from TH modeling (Hardin et al., 1998, Chapter 3) using the code NUFT (Nitao 1993) provided the temperature changes for input to FLAC{sup 3D}. We then estimated how the stress changes could affect permeability. For this report, we chose to base our 3-D THM modeling on a coarser version of the 2-D model we ran for the work described in Chapter 4 of the Near-Field/Altered Zone Models Report (Hardin et al., 1998, Chapter 4). The grid and temperature field were based on those used by the TH code for 50 yr of heating for the reference Case 1 TH model calculated using Total System Performance Assessment-Viability Assessment (TSPA-VA) base-case properties, nominal infiltration, and a point-load repository design (Hardin et al., 1998, Chapter 3). The stress field rotated in the region between and below the drifts after 50 yr of heating. High vertical shear stresses were computed for these regions. The maximum computed displacement was about 7 cm, mainly vertical. Estimates of permeability changes were obtained by analyzing stresses, following a method we developed previously for 2-D models. In our 3-D modeling for this report, we only considered vertical and horizontal fractures. We extended our 2-D method to a simplified 3-D case. We conclude that widespread permeability enhancement is likely for fractures parallel to NS fracture set No.2, the vertical fractures that strike north-south, for regions above the drifts. In some regions just above the drifts, permeability may increase by a minimum of a factor of two and possibly more than a factor of four if slip also occurs along the vertical fractures in EW set No.1, the east-west fractures

  20. Permeability equipment for porous friction surfaces

    NASA Astrophysics Data System (ADS)

    Standiford, D. L.; Graul, R. A.; Lenke, L. R.

    1985-04-01

    Hydroplaning is the loss of traction between tires and pavement due to the presence of a layer of water. This loss of traction can result in loss of vehicle control. A porous friction surface (PFS) applied over an existing pavement permits the water to drain laterally and vertically away from the tire path, effectively lowering hydroplaning potential. Equipment used to measure pavement drainage (permeability) is discussed with respect to usage on porous friction surface. Background information on hydroplaning, flow theory, and PFS field performance as they are affected by permeability are also presented. Two dynamic test devices and four static devices are considered for measuring PFS permeability. Permeability tests are recommended to measure PFS permeability for maintenance purposes and construction control. Dynamic devices cited could possibly estimate hydroplaning potential; further research must be done to determine this. Permeability devices cannot be used to accurately estimate friction of a pavement surface, however, decreased permeability of a pavement infers a decrease in friction.

  1. Effects of Al2O3 and MgO on Softening, Melting, and Permeation Properties of CaO-FeO-SiO2 on a Coke Bed

    NASA Astrophysics Data System (ADS)

    Ueda, Shigeru; Kon, Tatsuya; Miki, Takahiro; Kim, Sun-Joong; Nogami, Hiroshi

    2016-08-01

    In ironmaking, maintaining gas permeability in blast furnace with low coke rate operation is essential to reduce carbon emissions. The high pressure loss in the cohesive zone decreases the gas permeability and affects the productivity of blast furnace. In order to increase the gas permeability in the cohesive zone, the thickness of the cohesive layer should be decreased. For this purpose, increasing softening temperature and decreasing dripping temperature of the iron ore are desired. In this study, softening, melting, and permeation of SiO2-FeO-CaO-Al2O3-MgO on a coke bed were investigated. The oxide sample in a tablet form was heated under CO/CO2 atmosphere, and the shape of the tablet was observed. The softening and melting temperatures of the SiO2-FeO-CaO system changed with the addition of Al2O3 and MgO. Oxide tablets with and without Al2O3 softened below and above the solidus temperature, respectively. The melting temperatures varied with the ratio of CO/CO2 in the gas. The permeation temperature was independent of the melting temperature, but dependent on the wettability.

  2. Perm-Fit: a new program to estimate permeability at high P-T conditions

    NASA Astrophysics Data System (ADS)

    Moulas, Evangelos; Madonna, Claudio

    2016-04-01

    Several geological processes are controlled by porous fluid flow. The circulation of porous fluids influences many physical phenomena and in turn it depends on the rock permeability. The permeability of rocks is a physical property that needs to be measured since it depends on many factors such as secondary porosity (fractures etc). We present a numerical approach to estimate permeability using the transient step method (Brace et al., 1968). When a non-reacting, compressible fluid is considered in a relative incompressible solid matrix, the only unknown parameter in the equations of porous flow is permeability. Porosity is assumed to be known and the physical properties of the fluid (compressibility, density, viscosity) are taken from the NIST database. Forward numerical calculations for different values of permeability are used and the results are compared to experimental measurements. The extracted permeability value is the one that minimizes the misfit between experimental and numerical results. The uncertainty on the value of permeability is estimated using a Monte Carlo method. REFERENCES Brace, W.F., Walsh J.B., & Frangos, W.T. 1968: Permeability of Granite under High Pressure, Journal of Geophysical Research, 73, 6, 2225-2236

  3. Trench infiltration for managed aquifer recharge to permeable bedrock

    USGS Publications Warehouse

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  4. Investigation of the feasibility of developing low permeability polymeric films

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.

    1971-01-01

    The feasibility of reducing the gas permeability rate of Mylar and Kapton films without drastically effecting their flexibility characteristics at cryogenic temperatures was considered. This feasibility was established using a concept of diffusion bonding two layers of metallized films together forming a film-metal-film sandwich laminate. The permeability of kapton film to gaseous helium was reduced from a nominal ten = to the minus 9 power cc-mm/sq cm sec. cm Hg to ten to the minus 13 power cc-mm/ sq cm - sec. cm Hg with some values as low as ten to the minus 15 power cc - mm/sq cm m-sec - cm Hg being obtained. Similar reductions occurred in the liquid hydrogen permeability at -252 C. In the course of the program the permeability, flexibility and bond strength of plain, metalized and diffusion bond film were determined at +25 C, -195 C and -252 C. The cryogenic flexibility of Kapton film was reduced slightly due to the metallization process but no additional loss in flexibility resulted from the diffusion bonding process.

  5. Influence of carbon dioxide on coal permeability determined by pressure transient methods

    SciTech Connect

    Siriwardane, Hema; McLendon, Robert; Haljasmaa, Igor; Irdi, Gino; Soong, Yee; Bromhal, Grant

    2009-01-01

    The permeability of coal samples from Pittsburgh Seam was determined using carbon dioxide as the flowing fluid. The confining pressure was varied to cover a wide range of depths. The permeability was determined as a function of exposure time of carbon dioxide while the confining stress was kept constant. The porosities of the coal samples were found to be very low and most of the samples had porosities less than 1%. The permeability of these coal samples was very low-less than 1μD. Since the objective of this study was to investigate the influence of CO2 exposure on coal permeability, it was necessary to increase the initial permeability of the coal samples by introducing a fracture. A longitudinal fracture was induced mechanically, and CT scans were taken to ensure that the fracture was present throughout the sample and that the sample was not damaged otherwise during the process. In this study, the permeability of coal was determined by using pressure transient methods. Two types of pressure pulses were used: A-spike and Sine-6 pressure transients. It was first established that the permeability of fractured coal samples did not change with exposure time when an inert gas (Argon) was used as the fluid medium in the experiments. However, the permeability of coal samples decreased significantly when carbon dioxide was used as the fluid medium. This reduction can be attributed to the coal swelling phenomenon. The results show that the permeability reduction in fractured coal samples can be over 90% of the original value, and the exposure time for such reductions can range from 1.5 days up to a week, typically about 2 days under laboratory conditions. The permeability decreased significantly with the increase in confining pressure. The higher confining pressure appears to close internal fractures causing a reduction in permeability.

  6. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  7. Tritium permeation characterization of Al2O3/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

    NASA Astrophysics Data System (ADS)

    Yang, Feilong; Xiang, Xin; Lu, Guangda; Zhang, Guikai; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-09-01

    Accurate tritium transport properties of prospective tritium permeation barriers (TPBs) are essential to tritium systems in fusion reactors. By passing a temperature and rate-controlled sweeping gas over specimen surfaces to carry the permeated tritium to an ion chamber, the gas-driven permeation of tritium has been performed on 321 type stainless steel containers with Al2O3/FeAl barriers, to determine the T-permeation resistant performance and mechanism of the barrier. The tritium permeability of the Al2O3/FeAl coated container was reduced by 3 orders of magnitude at 500-700 °C by contrast with that of the bare one, which meets the requirement of the tritium permeation reduction factor (PRF) of TPBs for tritium operating components in the CN-HCCB TBM. The Al2O3/FeAl barrier resists the tritium permeation by the diffusion in the bulk substrate at a limited number of defect sites with an effective area and thickness, suggesting that the TPB quality is a very important factor for efficient T-permeation resistance.

  8. Gas Gun Driven Dynamic Fracture and Fragmentation of Ti-6Al-4V Cylinders at Initial Temperatures Between 150 K and 750 K

    NASA Astrophysics Data System (ADS)

    Jones, David R.; Chapman, David J.; Eakins, Daniel E.

    2015-06-01

    We present a study of dynamic fracture and fragmentation in Ti-6Al-4V cylinders at initial temperatures ranging from 150 K to 750 K. Samples with inner diameter of 50 mm and wall thickness of 4 mm were driven into uniform axially-symmetric expansion at radial strain rates of 104 s-1 using the ogive-insert gas gun method. Experiments were highly diagnosed, employing a combination of high speed imaging, PDV and fragment recovery. Imaging and PDV provided a record of expansion velocity and failure strain. Recovered fragments were examined with optical, SEM and EBSD techniques to determine the fracture mechanisms occurring for each initial temperature. The failure strain was observed to increase with temperature over the range tested, from 7.4 +/-5.2 percent at 158 K to 24.1 +/-2.4 percent at 750 K. In experiments from 158 K up to 609 K the fracture mechanism was found to be ductile tearing under mode II loading, along the planes of maximum shear at 45° to the radius. At an initial cylinder temperature of 724 K the fracture mechanism transferred to void nucleation and coalescence along adiabatic shear bands, again oriented at 45°. The fragmentation toughness was largely independent of temperature with an average value of 101 +/-13 MPa m- 1 / 2.

  9. In-plane anisotropy in two-dimensional electron gas at LaAlO3/SrTiO3(110) interface

    NASA Astrophysics Data System (ADS)

    Sheng-Chun, Shen; Yan-Peng, Hong; Cheng-Jian, Li; Hong-Xia, Xue; Xin-Xin, Wang; Jia-Cai, Nie

    2016-07-01

    A systematic study of the two-dimensional electron gas at LaAlO3/SrTiO3(110) interface reveals an anisotropy along two specific directions, [001] and . The anisotropy becomes distinct for the interface prepared under high oxygen pressure with low carrier density. Angular dependence of magnetoresistance shows that the electron confinement is stronger along the direction. Gate-tunable magnetoresistance reveals a clear in-plane anisotropy of the spin-orbit coupling, and the spin relaxation mechanism along both directions belongs to D’yakonov-Perel’ (DP) scenario. Moreover, in-plane anisotropic superconductivity is observed for the sample with high carrier density, the superconducting transition temperature is lower but the upper critical field is higher along the direction. This in-plane anisotropy could be ascribed to the anisotropic band structure along the two crystallographic directions. Project supported by the Ministry of Science and Technology of China (Grant Nos. 2013CB921701, 2013CBA01603, and 2014CB920903), the National Natural Science Foundation of China (Grant Nos. 10974019, 51172029, 91121012, 11422430, 11374035, 11474022, and 11474024), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (Grant No. NCET-13-0054), and the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0238).

  10. Are extrusive rhyolites produced from permeable foam eruptions?

    NASA Astrophysics Data System (ADS)

    Friedman, I.

    1989-01-01

    The permeable foam hypothesis is suggested by Eichelberger et al. (1986) to explain a major loss of water from rhyolitic magmas in the volcanic conduit. Evidence for the high-water content of the major portion of the magma is herein examined and rejected. Eichelberger's hypothesis does not take into account the large (˜2 orders of magnitude) viscosity change that would occur in the conduit as a result of water loss. It also requires that the permeable foam collapse and weld to form an obsidian that in thin section displays no evidence of the foam. An alternate hypothesis to explain the existence of small amounts of high water content rhyolite glasses in acid volcanoes is that rhyolite magmas are relatively dry (0.1 0.3% H2O) and that water enters the magma from the environment to produce a water-rich selvage which then is kneaded into the body of the magma.

  11. Are extrusive rhyolites produced from permeable foam eruptions?

    USGS Publications Warehouse

    Friedman, I.

    1989-01-01

    The permeable foam hypothesis is suggested by Eichelberger el al. (1986) to explain a major loss of water from rhyolithic magmas in the volcanic conduit. Evidence for the high-water content of the major portion of the magmas is herein examined and rejected. Eichelberger's hypothesis does not take into account the large (~2 orders of magnitude) viscosity change that would occur in the conduit as a result of water loss. It also requires that the permeable foam collapse and weld to form an obsidian that in thin section displays no evidence of the foam. An alternate hypothesis to explain the existence of small amounts of high water content rhyolite glasses in acid volcanoes is that rhyolite magmas are relatively dry (0.1-0.3% H2O) and that water enters the magma from the environment to produce a water-rich selvage which then is kneaded into the body of the magma. -Author

  12. Steam-water relative permeability

    SciTech Connect

    Ambusso, W.; Satik, C.; Home, R.N.

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  13. Thermal treatment of low permeability soils using electrical resistance heating

    SciTech Connect

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  14. Hydrogen Permeability of Polymer Matrix Composites at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Gates, Thomas S

    2005-01-01

    This paper presents experimental methods and results of an ongoing study of the correlation between damage state and hydrogen gas permeability of laminated composite materials under mechanical strains and thermal loads. A specimen made from IM-7/977-2 composite material has been mechanically cycled at room temperature to induce microcrack damage. Crack density and tensile modulus were observed as functions of number of cycles. Damage development was found to occur most quickly in the off-axis plies near the outside of the laminate. Permeability measurements were made after 170,000 cycles and 430,000 cycles. Leak rate was found to depend on applied mechanical strain, crack density, and test temperature.

  15. High temperature permeability in volcanic systems: An experimental approach

    NASA Astrophysics Data System (ADS)

    Chadderton, Amy; Sammonds, Peter; Meredith, Philip; Smith, Rosanna; Tuffen, Hugh

    2015-04-01

    The permeability of magma exerts a major influence on volcanic activity and we have long held the ability to experimentally determine the permeability of volcanic material via various techniques. These observations have provided the basis for numerous theories of magmatic degassing. Recent enhancements to the High Temperature Triaxial Deformation Cell (HTTDC) at UCL have enabled us to make permeability measurements on 25mm x 75mm core samples at elevated temperature and elevated hydrostatic pressure (Gaunt et al, 2013). Specifically, we present here the results of several suites of permeability data on samples of dome dacite from Mount St Helens volcano, measured under an effective pressure of 5 MPa (confining pressure of 10 MPa and pore fluid pressure of 5 MPa) and temperatures up to 900oC. Most recently, the capabilities of the HTTDC apparatus have been further extended to enable permeability measurements to be made during triaxial deformation of test samples under similar temperature and pressure conditions. Initial results from this entirely new methodology will also be presented. These new experimental results are being applied to enhance our understanding of the complex issue of silicic magma degassing. Two recent eruptions in Chile, at Chaitén Volcano in 2008-10 and at Cordón Caulle in 2011-12, allowed the first detailed observations of rhyolitic activity and provided previously hidden insights into the evolution of highly silicic eruptions. Both events exhibited simultaneous explosive and effusive activity, with both lava and ash plumes emitted from the same vent (Castro et al, 2014). The permeability of fracture networks that act as fluid flow pathways is key to such eruptive behaviour, and will be investigated systematically at magmatic temperatures and pressures in the presence of pore fluids, using our newly-developed experimental capability. Castro, J.M., Bindeman, I.N., Tuffen, H. and Schipper, I. (2014) EPSL 405, 52-61. Gaunt, H.E., Sammonds, P

  16. Estimating large-scale fracture permeability of unsaturatedrockusing barometric pressure data

    SciTech Connect

    Wu, Yu-Shu; Zhang, Keni; Liu, Hui-Hai

    2005-05-17

    We present a three-dimensional modeling study of gas flow inthe unsaturated fractured rock of Yucca Mountain. Our objective is toestimate large-scale fracture permeability, using the changes insubsurface pneumatic pressure in response to barometric pressure changesat the land surface. We incorporate the field-measured pneumatic datainto a multiphase flow model for describing the coupled processes ofliquid and gas flow under ambient geothermal conditions. Comparison offield-measured pneumatic data with model-predicted gas pressures is foundto be a powerful technique for estimating the fracture permeability ofthe unsaturated fractured rock, which is otherwise extremely difficult todetermine on the large scales of interest. In addition, this studydemonstrates that the multi-dimensional-flow effect on estimatedpermeability values is significant and should be included whendetermining fracture permeability in heterogeneous fracturedmedia.

  17. Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal

    SciTech Connect

    Eric P. Robertson

    2005-10-01

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.

  18. Improved Porosity and Permeability Models with Coal Matrix Block Deformation Effect

    NASA Astrophysics Data System (ADS)

    Zhou, Yinbo; Li, Zenghua; Yang, Yongliang; Zhang, Lanjun; Qi, Qiangqiang; Si, Leilei; Li, Jinhu

    2016-09-01

    Coal permeability is an important parameter in coalbed methane (CBM) exploration and greenhouse gas storage. A reasonable theoretical permeability model is helpful for analysing the influential factors of gas flowing in a coalbed. As an unconventional reservoir, the unique feature of a coal structure deformation determines the state of gas seepage. The matrix block and fracture change at the same time due to changes in the effective stress and adsorption; the porosity and permeability also change. Thus, the matrix block deformation must be ignored in the theoretical model. Based on the cubic model, we analysed the characteristics of matrix block deformation and fracture deformation. The new models were developed with the change in matrix block width a. We compared the new models with other models, such as the Palmer-Manson (P-M) model and the Shi-Durucan (S-D) model, and used a constant confining stress. By matching the experimental data, our model matches quite well and accurately predicts the evolution of permeability. The sorption-induced strain coefficient f differs between the strongly adsorbing gases and weakly adsorbing gases because the matrix block deformation is more sensitive for the weakly adsorbing gases and the coefficient f is larger. The cubic relationship between porosity and permeability overlooks the importance of the matrix block deformation. In our model, the matrix block deformation suppresses the permeability ratio growth. With a constant confining stress, the weight of the matrix block deformation for the strongly adsorbing gases is larger than that for weakly adsorbing gases. The weight values increase as the pore pressure increases. It can be concluded that the matrix block deformation is an important phenomenon for researching coal permeability and can be crucial for the prediction of CBM production due to the change in permeability.

  19. Permeability Evolution and the Mechanisms of Porosity Change (Invited)

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gribbin, J. L.; Tivey, M. K.

    2013-12-01

    Understanding subsurface fluid flow is of critical importance to such geological and engineering applications as faulting mechanics, hydrothermal venting and resource recovery. Mechanical, chemical and thermal loads can significantly alter microscopic pore geometry and thus affect macroscopic permeability. Recently, we measured the permeability and porosity of massive anhydrite deposits recovered from various seafloor hydrothermal vent fields. Together, these deposits comprise anhydrite samples that have undergone different stages of formation. For anhydrite samples with porosities greater than 5%, the dependence of permeability to porosity change is best characterized by a power-law relationship with an exponent n~9. At porosities less than 5%, a much gentler trend of n~1 is observed. These permeability-porosity relationships (PPRs) in anhydrite deposits are in stark contrast to those of Fontainebleau sandstone, a quartz arenite with various degrees of quartz cementation. Fontainebleau sandstone shows a power-law dependence of PPR with an exponent of n~3 for samples with porosities greater than 7%, and a much steeper trend of n~8 at low porosities [Bourbie and Zinszner, 1985]. Microstructural analysis and numerical models suggest that the significant loss in pore connectivity below 7% is responsible for the steeper PPR trend in Fontainebleau sandstone [Zhu et al., 1995]. In anhydrite deposits, petrographic analyses show evidence for both dissolution and precipitation, consistent with the observed PPRs resulting from pore-size controlled solubility. Precipitation of anhydrite takes place preferentially in large pores within the anhydrite deposits, with precipitation limited in small pores, which is proposed to be due to the change in interfacial energy of the growing crystal (e.g., as described by Emmanuel and Ague [2009]). With abundant large voids in high porosity anhydrite samples, the growth of sulfates would result in a drastic loss of pore connectivity and

  20. Low voltage organic permeable base N-type transistor

    NASA Astrophysics Data System (ADS)

    Agrawal, Kalpana; Rana, Omwati; Singh, Nidhi; Srivastava, Ritu; Rajput, S. S.

    2016-10-01

    A vertical n-type organic permeable metal base transistor was fabricated using N,N-ditridecylperylene-3,4,9,10-tetracarboxylic diimide as an active material for making emitter and collector regions. A composite of Al//C60/Al/AlOx forms the base region of the proposed structure. The detailed study of the Early effect was carried out for determining the intrinsic gain, transconductance, and output impedance which were found to be 92, 145 μΩ-1, and 0.634 MΩ, respectively, at an applied bias of 1 V between collector-emitter contacts. The device is capable of operating at a low voltage of 1 V, which makes it suitable for low voltage and high frequency applications.

  1. Composites with tuned effective magnetic permeability

    NASA Astrophysics Data System (ADS)

    Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2007-07-01

    Pendry et al. [J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)] and Smith et al. [D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)] have shown that the effective magnetic permeability, μ, of free space can be rendered negative over a certain frequency range by a periodic arrangement of very thin conductors with suitable magnetic resonance properties, the so-called split-ring resonators. Because of its rather bulky architecture, this structure does not lend itself to a proper integration into a reasonably thin real composite structural panel. To remedy this fundamental barrier, we invented a new magnetic resonator consisting of very thin folded plates that are suitably nested within one another to form folded-doubled resonators (FDRs) that can be integrated into an actual composite panel. Measurements, using a focused beam electromagnetic characterization system combined with time-domain numerical simulations of the reflection and transmission coefficients of such a composite slab have revealed that indeed the composite has a negative μ over a frequency range of about 9.1-9.35 GHz [S. Nemat-Nasser, S. C. Nemat-Nasser, T. A. Plaisted, A. Starr, and A. Vakil Amirkhizi, in Biomimetics: Biologically Inspired Technologies, edited by Y. Bar Cohen (CRC Press, Boca Raton, FL, 2006)]. Thus, it has become possible to construct a structural composite panel with negative index of refraction by simultaneously creating negative effective ɛ and μ [V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968); R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001); A. F. Starr, P. M. Rye, D. R. Smith, and S. Nemat-Nasser, Phys. Rev. B 70, 113102 (2004)].

  2. The effect of saturation path on three-phase relative permeability

    NASA Astrophysics Data System (ADS)

    Kianinejad, Amir; Chen, Xiongyu; DiCarlo, David A.

    2015-11-01

    Simulation and fluid flow prediction of many petroleum-enhanced oil recovery methods as well as environmental processes such as carbon dioxide (CO2) geological storage or underground water resources remediation requires accurate modeling and determination of relative permeability under different saturation histories. Based on this critical need, several three-phase relative permeability models were developed to predict relative permeability; however, for practical purposes most of them require a variety of parameters introducing undesired complexity to the models. In this work, we attempt to find out if there is a simpler way to express this functionality. To do so, we experimentally measure three-phase, water/oil/gas, relative permeability in a 1 m long water-wet sand pack, under several saturation flow paths to cover the entire three-phase saturation space. We obtain the in situ saturations along the sand pack using a CT scanner and then determine the relative permeabilities of liquid phases directly from the measured in situ saturations using an unsteady state method. The measured data show that at a specific saturation, the oil relative permeability varies significantly (up to two orders of magnitude), depending on the path through saturation space. The three-phase relative permeability data are modeled using standard relative permeability models, Corey-type, and Saturation Weighted Interpolation (SWI). Our measured data suggest that three-phase oil relative permeability in water-wet media is only a function of its own saturation if the residual oil saturation is treated as a function of two saturations. We determine that residual saturation is the key parameter in modeling three-phase relative permeability (effect of saturation history).

  3. Reservoir condition special core analyses and relative permeability measurements on Almond formation and Fontainebleu sandstone rocks

    SciTech Connect

    Maloney, D.

    1993-11-01

    This report describes the results from special core analyses and relative permeability measurements conducted on Almond formation and Fontainebleu sandstone plugs. Almond formation plug tests were performed to evaluate multiphase, steady-state,reservoir-condition relative permeability measurement techniques and to examine the effect of temperature on relative permeability characteristics. Some conclusions from this project are as follows: An increase in temperature appeared to cause an increase in brine relative permeability results for an Almond formation plug compared to room temperature results. The plug was tested using steady-state oil/brine methods. The oil was a low-viscosity, isoparaffinic refined oil. Fontainebleu sandstone rock and fluid flow characteristics were measured and are reported. Most of the relative permeability versus saturation results could be represented by one of two trends -- either a k{sub rx} versus S{sub x} or k{sub rx} versus Sy trend where x and y are fluid phases (gas, oil, or brine). An oil/surfactant-brine steady-state relative permeability test was performed to examine changes in oil/brine relative permeability characteristics from changes in fluid IFTS. It appeared that, while low interfacial tension increased the aqueous phase relative permeability, it had no effect on the oil relative permeability. The BOAST simulator was modified for coreflood simulation. The simulator was useful for examining effects of variations in relative permeability and capillary pressure functions. Coreflood production monitoring and separator interface level measurement techniques were developed using X-ray absorption, weight methods, and RF admittance technologies. The three types of separators should be useful for routine and specialized core analysis applications.

  4. [Al2O4](-), a Benchmark Gas-Phase Class II Mixed-Valence Radical Anion for the Evaluation of Quantum-Chemical Methods.

    PubMed

    Kaupp, Martin; Karton, Amir; Bischoff, Florian A

    2016-08-01

    The radical anion [Al2O4](-) has been identified as a rare example of a small gas-phase mixed-valence system with partially localized, weakly coupled class II character in the Robin/Day classification. It exhibits a low-lying C2v minimum with one terminal oxyl radical ligand and a high-lying D2h minimum at about 70 kJ/mol relative energy with predominantly bridge-localized-hole character. Two identical C2v minima and the D2h minimum are connected by two C2v-symmetrical transition states, which are only ca. 6-10 kJ/mol above the D2h local minimum. The small size of the system and the absence of environmental effects has for the first time enabled the computation of accurate ab initio benchmark energies, at the CCSDT(Q)/CBS level using W3-F12 theory, for a class-II mixed-valence system. These energies have been used to evaluate wave function-based methods [CCSD(T), CCSD, SCS-MP2, MP2, UHF] and density functionals ranging from semilocal (e.g., BLYP, PBE, M06L, M11L, N12) via global hybrids (B3LYP, PBE0, BLYP35, BMK, M06, M062X, M06HF, PW6B95) and range-separated hybrids (CAM-B3LYP, ωB97, ωB97X-D, LC-BLYP, LC-ωPBE, M11, N12SX), the B2PLYP double hybrid, and some local hybrid functionals. Global hybrids with about 35-43% exact-exchange (EXX) admixture (e.g., BLYP35, BMK), several range hybrids (CAM-B3LYP, ωB97X-D, ω-B97), and a local hybrid provide good to excellent agreement with benchmark energetics. In contrast, too low EXX admixture leads to an incorrect delocalized class III picture, while too large EXX overlocalizes and gives too large energy differences. These results provide support for previous method choices for mixed-valence systems in solution and for the treatment of oxyl defect sites in alumosilicates and SiO2. Vibrational gas-phase spectra at various computational levels have been compared directly to experiment and to CCSD(T)/aug-cc-pV(T+d)Z data. PMID:27434425

  5. Room-temperature mobility above 2200 cm{sup 2}/V·s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure

    SciTech Connect

    Chen, Jr-Tai Persson, Ingemar; Nilsson, Daniel; Hsu, Chih-Wei; Palisaitis, Justinas; Forsberg, Urban; Persson, Per O. Å.; Janzén, Erik

    2015-06-22

    A high mobility of 2250 cm{sup 2}/V·s of a two-dimensional electron gas (2DEG) in a metalorganic chemical vapor deposition-grown AlGaN/GaN heterostructure was demonstrated. The mobility enhancement was a result of better electron confinement due to a sharp AlGaN/GaN interface, as confirmed by scanning transmission electron microscopy analysis, not owing to the formation of a traditional thin AlN exclusion layer. Moreover, we found that the electron mobility in the sharp-interface heterostructures can sustain above 2000 cm{sup 2}/V·s for a wide range of 2DEG densities. Finally, it is promising that the sharp-interface AlGaN/GaN heterostructure would enable low contact resistance fabrication, less impurity-related scattering, and trapping than the AlGaN/AlN/GaN heterostructure, as the high-impurity-contained AlN is removed.

  6. Visualizing oil displacement with foam in a microfluidic device with permeability contrast.

    PubMed

    Conn, Charles A; Ma, Kun; Hirasaki, George J; Biswal, Sibani Lisa

    2014-10-21

    Foam mobility control and novel oil displacement mechanisms were observed in a microfluidic device representing a porous media system with layered permeability. Foam was pre-generated using a flow-focusing microfluidic device and injected into an oil-wet, oil-saturated 2-D PDMS microfluidic device. The device is designed with a central fracture flanked by high-permeability and low-permeability zones stratified in the direction of injection. A 1 : 1, 1% blend of alpha olefin sulfonate 14-16 (AOS) and lauryl betaine (LB) surfactants produced stable foam in the presence of paraffin oil. The oil saturation and pressure drop across the microfluidic device were measured as a function of time and the injected pore volume, indicating an increase in apparent viscosity for foam with an accompanying decrease in oil saturation. In contrast to the control experiments, foam was shown to more effectively mobilize trapped oil by increasing the flow resistance in the fracture and high-permeability zones and by diverting the surfactant solution into adjacent low-permeability zones. The foam was observed to separate into gas-rich and aqueous-rich phases depending on matrix permeability, suggesting that it is not appropriate to treat foam as a homogeneous dispersion of gas and liquid.

  7. Effects of rock mineralogy and pore structure on stress-dependent permeability of shale samples.

    PubMed

    Al Ismail, Maytham I; Zoback, Mark D

    2016-10-13

    We conducted pulse-decay permeability experiments on Utica and Permian shale samples to investigate the effect of rock mineralogy and pore structure on the transport mechanisms using a non-adsorbing gas (argon). The mineralogy of the shale samples varied from clay rich to calcite rich (i.e. clay poor). Our permeability measurements and scanning electron microscopy images revealed that the permeability of the shale samples whose pores resided in the kerogen positively correlated with organic content. Our results showed that the absolute value of permeability was not affected by the mineral composition of the shale samples. Additionally, our results indicated that clay content played a significant role in the stress-dependent permeability. For clay-rich samples, we observed higher pore throat compressibility, which led to higher permeability reduction at increasing effective stress than with calcite-rich samples. Our findings highlight the importance of considering permeability to be stress dependent to achieve more accurate reservoir simulations especially for clay-rich shale reservoirs.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597792

  8. Effects of rock mineralogy and pore structure on stress-dependent permeability of shale samples.

    PubMed

    Al Ismail, Maytham I; Zoback, Mark D

    2016-10-13

    We conducted pulse-decay permeability experiments on Utica and Permian shale samples to investigate the effect of rock mineralogy and pore structure on the transport mechanisms using a non-adsorbing gas (argon). The mineralogy of the shale samples varied from clay rich to calcite rich (i.e. clay poor). Our permeability measurements and scanning electron microscopy images revealed that the permeability of the shale samples whose pores resided in the kerogen positively correlated with organic content. Our results showed that the absolute value of permeability was not affected by the mineral composition of the shale samples. Additionally, our results indicated that clay content played a significant role in the stress-dependent permeability. For clay-rich samples, we observed higher pore throat compressibility, which led to higher permeability reduction at increasing effective stress than with calcite-rich samples. Our findings highlight the importance of considering permeability to be stress dependent to achieve more accurate reservoir simulations especially for clay-rich shale reservoirs.This article is part of the themed issue 'Energy and the subsurface'.

  9. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability.

    PubMed

    Yang, Jingzhou; Hu, Xiaozhi; Huang, Juntong; Chen, Kai; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Sun, Xudong

    2016-02-14

    Permeable porous nanomaterials have extensive applications in engineering fields. Here, we report a novel system of porous calcium aluminate/phosphate (CaAl-CaP) nanocomposites fabricated by pore generator free processing. The CaAl rich samples have close micropores and are not permeable. Interestingly, the CaP rich composites have a unique three-dimensional nanosieve structure with interconnected nanopores and exhibit excellent liquid permeability and adsorbability. The pore size has a narrow distribution of 200-500 nm. The CaAl nanoplatelets in the CaP rich composite have a thickness of 202 nm, a diameter of 1600 nm and an aspect ratio of 8. The porosity is from 19% to 40%. The bending strength and compressive strength are 40.3 MPa and 195 MPa, respectively. The CaP rich nanocomposite is highly permeable so that a water droplet can completely penetrate in 10 seconds (1 mm thick disk). The blue dye can be desorbed in 45 min by ultrasonic vibration. Given the nanosieve porous structure, good permeability/adsorbability and high mechanical properties, the CaP rich nanocomposite has big potential in applications for chemical engineering, biomedical engineering and energy/environmental engineering. PMID:26805036

  10. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability

    NASA Astrophysics Data System (ADS)

    Yang, Jingzhou; Hu, Xiaozhi; Huang, Juntong; Chen, Kai; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Sun, Xudong

    2016-02-01

    Permeable porous nanomaterials have extensive applications in engineering fields. Here, we report a novel system of porous calcium aluminate/phosphate (CaAl-CaP) nanocomposites fabricated by pore generator free processing. The CaAl rich samples have close micropores and are not permeable. Interestingly, the CaP rich composites have a unique three-dimensional nanosieve structure with interconnected nanopores and exhibit excellent liquid permeability and adsorbability. The pore size has a narrow distribution of 200-500 nm. The CaAl nanoplatelets in the CaP rich composite have a thickness of 202 nm, a diameter of 1600 nm and an aspect ratio of 8. The porosity is from 19% to 40%. The bending strength and compressive strength are 40.3 MPa and 195 MPa, respectively. The CaP rich nanocomposite is highly permeable so that a water droplet can completely penetrate in 10 seconds (1 mm thick disk). The blue dye can be desorbed in 45 min by ultrasonic vibration. Given the nanosieve porous structure, good permeability/adsorbability and high mechanical properties, the CaP rich nanocomposite has big potential in applications for chemical engineering, biomedical engineering and energy/environmental engineering.

  11. Synthesis of Al-Al2O3 and Al-Aln Nanoparticle Composites Via Electric Explosion of Wires

    NASA Astrophysics Data System (ADS)

    Lerner, M. I.; Lozhkomoev, A. S.; Pervikov, A. V.; Bakina, O. V.

    2016-07-01

    Composite Al-Al2O3 and Al-AlN nanoparticles were synthesized via electric explosion of aluminum wires in an argon-oxygen gas mixture and in nitrogen. The parameters of electric explosion and gas medium affect the size and relative content of nitride and aluminum oxide in the nanoparticles. Processes of forming chemical compounds during aluminum oxidation at the contact surface between explosive products and gas and of nitrogen diffusions into the nanoparticles of the condensed phase are considered.

  12. Permeability-thickness determination from transient production response at the southeast geysers

    SciTech Connect

    Faulder, D.D.

    1996-08-01

    The Fetkovich production decline curve analysis method was extended for application to vapor-dominated geothermal reservoirs for the purpose of estimating the permeability-thickness product (kh) from the transient production response. The analytic dimensionless terms for pressure, production rate, decline rate, and decline time were derived for saturated steam using the real gas potential and customary geothermal production units of pounds-mass per hour. The derived terms were numerically validating using ``Geysers-line`` reservoir properties at initial water saturation of 0 and at permeabilities of 1, 10, and 100 mD. The production data for 48 wells in the Southeast Geysers were analyzed and the permeability-thickness products determined from the transient production response using the Fetkovich production decline type curve. The kh results were in very good agreement with the published range at the Southeast Geysers and show regions of high permeability-thickness.

  13. Accurate determination of characteristic relative permeability curves

    NASA Astrophysics Data System (ADS)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  14. Influence of fiber packing structure on permeability

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Berdichevsky, Alexander L.

    1993-01-01

    The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.

  15. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  16. Creating Two-Dimensional Electron Gas in Polar/Polar Perovskite Oxide Heterostructures: First-Principles Characterization of LaAlO3/A(+)B(5+)O3.

    PubMed

    Wang, Yaqin; Tang, Wu; Cheng, Jianli; Behtash, Maziar; Yang, Kesong

    2016-06-01

    By using first-principles electronic structure calculations, we explored the possibility of producing two-dimensional electron gas (2DEG) at the polar/polar (LaO)(+)/(BO2)(+) interface in the LaAlO3/A(+)B(5+)O3 (A = Na and K, B = Nb and Ta) heterostructures (HS). Unlike the prototype polar/nonpolar LaAlO3/SrTiO3 HS system where there exists a least film thickness of four LaAlO3 unit cells to have an insulator-to-metal transition, we found that the polar/polar LaAlO3/A(+)B(5+)O3 HS systems are intrinsically conducting at their interfaces without an insulator-to-metal transition. The interfacial charge carrier densities of these polar/polar HS systems are on the order of 10(14) cm(-2), much larger than that of the LaAlO3/SrTiO3 system. This is mainly attributed to two donor layers, i.e., (LaO)(+) and (BO2)(+) (B = Nb and Ta), in the polar/polar LaAlO3/A(+)B(5+)O3 systems, while only one (LaO)(+) donor layer in the polar/nonpolar LaAlO3/SrTiO3 system. In addition, it is expected that, due to less localized Nb 4d and Ta 5d orbitals with respect to Ti 3d orbitals, these LaAlO3/A(+)B(5+)O3 HS systems can exhibit potentially higher electron mobility because of their smaller electron effective mass than that in the LaAlO3/SrTiO3 system. Our results demonstrate that the electronic reconstruction at the polar/polar interface could be an alternative way to produce superior 2DEG in the perovskite-oxide-based HS systems. PMID:27160513

  17. Creating Two-Dimensional Electron Gas in Polar/Polar Perovskite Oxide Heterostructures: First-Principles Characterization of LaAlO3/A(+)B(5+)O3.

    PubMed

    Wang, Yaqin; Tang, Wu; Cheng, Jianli; Behtash, Maziar; Yang, Kesong

    2016-06-01

    By using first-principles electronic structure calculations, we explored the possibility of producing two-dimensional electron gas (2DEG) at the polar/polar (LaO)(+)/(BO2)(+) interface in the LaAlO3/A(+)B(5+)O3 (A = Na and K, B = Nb and Ta) heterostructures (HS). Unlike the prototype polar/nonpolar LaAlO3/SrTiO3 HS system where there exists a least film thickness of four LaAlO3 unit cells to have an insulator-to-metal transition, we found that the polar/polar LaAlO3/A(+)B(5+)O3 HS systems are intrinsically conducting at their interfaces without an insulator-to-metal transition. The interfacial charge carrier densities of these polar/polar HS systems are on the order of 10(14) cm(-2), much larger than that of the LaAlO3/SrTiO3 system. This is mainly attributed to two donor layers, i.e., (LaO)(+) and (BO2)(+) (B = Nb and Ta), in the polar/polar LaAlO3/A(+)B(5+)O3 systems, while only one (LaO)(+) donor layer in the polar/nonpolar LaAlO3/SrTiO3 system. In addition, it is expected that, due to less localized Nb 4d and Ta 5d orbitals with respect to Ti 3d orbitals, these LaAlO3/A(+)B(5+)O3 HS systems can exhibit potentially higher electron mobility because of their smaller electron effective mass than that in the LaAlO3/SrTiO3 system. Our results demonstrate that the electronic reconstruction at the polar/polar interface could be an alternative way to produce superior 2DEG in the perovskite-oxide-based HS systems.

  18. In situ measurements of rock salt permeability changes due to nearby excavation

    SciTech Connect

    Stormont, J.C. ); Howard, C.L. ); Daemen, J.J.K. . Mackay School of Mines)

    1991-07-01

    The Small-Scale Mine-By was an in situ experiment to measure changes in brine and gas permeability of rock salt as a result of nearby excavation. A series of small-volume pressurized brine- and gas-filled test intervals were established 8 m beneath the floor of Room L1 in the WIPP underground. The test intervals were isolated in the bottom of the 4.8-cm diameter monitoring boreholes with inflatable rubber packers, and are initially pressurized to about 2 MPa. Both brine- and gas-filled test intervals were located 1.25, 1.5, 2, 3, and 4 r from the center of a planned large-diameter hole, where r is the radius of the large-diameter hole. Prior to the drilling of the large-diameter borehole, the responses of both the brine- and gas-filled test intervals were consistent with the formation modeled as a very low permeability, low porosity porous medium with a significant pore (brine) pressure and no measurable gas permeability. The drilling of the mine-by borehole created a zone of dilated, partially saturated rock out to about 1.5 r. The formation pressure increases from near zero at 1.5 r to the pre-excavation value at 4 r. Injection tests reveal a gradient of brine permeabilities from 5 {times} 10{sup {minus}18} m{sup 2} at 1.25 r to about the pre-excavation value (10{sup {minus}21} m{sup 2}) by 3 r. Gas-injection tests reveal measurable gas permeability is limited to within 1.5 r. 17 refs., 24 figs., 6 tabs.

  19. Fault Zone Architecture and Permeability-Structure Evolution in Basalts: the Generation of Fluid-Flow Pathways in low Permeability Rocks

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Holdsworth, R. E.; Armitage, P. J.; Faulkner, D. R.

    2011-12-01

    Understanding fluid flow and sealing potential in basaltic sequences is becoming increasingly important with the rising economic significance of intra- and sub-volcanic hydrocarbon plays. Fluid flow in upper-crustal brittle fault zones is dependent on the permeability of the fault rock assemblage and its architecture. Models for clastic sedimentary sequences typically involve a low-permeability fault core surrounded by a high-permeability damage zone, relative to the intermediate permeability of the undeformed host rock. Here we present a combined field, microstructural and experimental characterization of basalt-hosted fault zones from the Faroe Islands. Samples that are representative of the various fault zone components, and of early to late stage fault development, were used for experimental determination of the permeability structure of faults in basalts. Fault rock characterization reveals that the intensity of fault-associated brittle deformation increases towards the principal slip surface, from crackle and mosaic breccias, to chaotic breccias and cataclasite along the principal slip zone. Identified breccia styles involve collapse/infill, wear/abrasion, and implosion processes, which respectively indicate increasingly short-lived syn-kinematic permeability. Collapse/infill breccias indicate sustained fluid-migration pathways, as they require open, subterranean cavities that are formed faster than mineral precipitation can seal them. Wear/abrasion and implosion breccias record crack-seal behaviour during successive slip events. Experimental permeability measurements were performed with argon gas, at a range of confining pressures (20-200 MPa) and constant fluid pressure (10 MPa) using the Transient Pulse Decay technique. Results indicate that, within the depth range of ~0.3 to ~3.0 km, basalt-hosted faults evolve from relatively low-permeability mm-cm-scale displacement structures (e.g. ~9.47x10-18 to 3.40x10-19 m2), to relatively high-permeability metre

  20. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  1. Stress Analysis and Permeability Testing of Cryogenic Composite Feed Line

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1999-01-01

    For the next generation Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV), the use of advanced composite materials is highly desirable and critical to the success of the mission. NASA Marshall Space Flight Center (MSFC) has been working with the aerospace industry for many years to develop and demonstrate the cryogenic composite propellant tanks and feed lines technologies. A 50.8-mm diameter composite feed line for the Clipper Graham (DCY.A) was developed and tested. The purpose of the program is to demonstrate the LH2 permeability, composite to composite and metal joints, as well as composite flange interface of the composite feed line. Stress analysis and permeability testing have been performed on this article. Recently, a larger composite feed line design is being investigated and developed at MSFC for potential use in future RLV. The diameter of the feed line is 203 mm and the overall length is approximately 2.2 meters. This one piece unlined feed line consists of three straight tubular sections joined by two 90 degree elbows. The material chosen is IM7/977-3 prepreg fabric. The lay-up pattern is [0/90, plus or minus 45]s and is built up to 18 plies to the flanges at both ends. A preliminary stress analysis has been conducted to identify potential critical stresses and to develop the finite element analysis (FEA) capability of composite feed lines. As expected, the critical stresses occurred at the rims of some flange holes and the onset of the tapered tubular sections. Further analysis is required to determine the loads, flange deflection, vibration, and combined maximum loads. Two permeability-testing apparatuses were also designed for both flat panel specimens and curved feed line sections after impact damage. A larger permeant gas exposed area is required to accurately determine the effect of impact damage on the permeability of the feed line materials. The flat panel tester was fabricated and assembled. Three test coupons were made of graphite

  2. IMPERMEABLE THIN Al{sub 2}O{sub 3} OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2004-06-30

    In order to further improve the hot corrosion resistance of yttria-stabilized zirconia (YSZ), an Al{sub 2}O{sub 3} overlay of 58 {micro}m thick was deposited on the surface of YSZ by electron-beam physical vapor deposition. Hot corrosion tests were performed on the YSZ coatings with {gamma}-Al{sub 2}O{sub 3} overlay and {alpha}-Al{sub 2}O{sub 3} overlay in molten salt mixture (Na2SO4 + 5wt%V2O5) at 950 C. The {alpha}-Al{sub 2}O{sub 3} overlay was obtained by the post-annealing of g-Al{sub 2}O{sub 3} overlay at 1200 C for 1h. The results showed that compared with the hot corrosion resistance of YSZ coating with 25 {micro}m thick {gamma}-Al{sub 2}O{sub 3} overlay, either thickening {gamma}-Al{sub 2}O{sub 3} overlay or employing {alpha}-Al{sub 2}O{sub 3} overlay could impair the hot corrosion resistance of YSZ coating, because the tensile stresses developed in the alumina overlay in both cases due to the mismatch in thermal expansion coefficient (TEC) between alumina and zirconia resulted in cracking of Al{sub 2}O{sub 3} overlay. The formation of cracks increased contact area between molten salt and Al{sub 2}O{sub 3} overlay, and also the penetration rate of molten salt into Al{sub 2}O{sub 3} overlay and YSZ coating, leading a faster and greater degradation of YSZ coating upon exposure. In the next reporting period, we will study the effect of Al{sub 2}O{sub 3} overlay thickness on hot corrosion and spalling of YSZ coatings.

  3. Using Zn/Al layered double hydroxide as a novel solid-phase extraction adsorbent to extract polycyclic aromatic hydrocarbons at trace levels in water samples prior to the determination of gas chromatography-mass spectrometry.

    PubMed

    Liu, Yan-Long; Zhou, Jia-Bin; Zhao, Ru-Song; Chen, Xiang-Feng

    2012-09-01

    This paper demonstrates, for the first time, the great potential of using Zn/Al layered double hydroxide intercalated sodium dodecyl benzene sulfonate (Zn/Al-SDBS-LDH) as a solid-phase extraction (SPE) material in the extraction of persistent organic pollutants prior to the determination of gas chromatography-mass spectrometry in environmental water samples. Zn/Al-SDBS-LDH, a relatively inexpensive and simply prepared material, was synthesized and used as a SPE adsorbent to quantitatively determine the concentration of five polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Factors affecting extraction efficiency, such as, eluent type, eluent volume, flow rate of sample, sample volume, and amount of adsorbent, were investigated and optimized in detail. Experimental results indicate that there is an excellent linear relationship between peak area and the concentration of PAHs over the range of 5-500 ng L(-1), and the precisions (relative standard deviation (RSD)) were 2.5-6.3% under the optimum conditions. Based on the ratio of chromatographic signal-to-base line noise (S/N = 3), the limits of detection could reach 1.2-3.2 ng L(-1). This novel method was successfully applied to the analysis of PAHs in environmental water samples. As such, we show here that the use of Zn/Al-SDBS-LDH as SPE adsorbent materials, coupled with gas chromatography-mass spectrometry, is an excellent improvement in the routine analysis of PAHs at trace levels in the environment.

  4. ALS Association

    MedlinePlus

    ... toward a world without ALS! Walk to Defeat ALS® Walk to Defeat ALS® draws people of all ... We need your help. I Will Advocate National ALS Registry The National ALS Registry is a congressionally ...

  5. Water and nonelectrolyte permeability of isolated rat hepatocytes

    SciTech Connect

    Alpini, G.; Garrick, R.A.; Jones, M.J.; Nunes, R.; Tavoloni, N.

    1986-12-01

    We have measured the diffusive permeability coefficients of isolated rat hepatocytes to /sup 3/H/sub 2/O, (/sup 14/C)urea, (/sup 14/C)erythritol, (/sup 14/C)mannitol, (/sup 3/H)sucrose, and (/sup 3/H)inulin, employing a technique previously developed for erythrocytes (Redwood et al., J. Gen. Physiol 64:706-729, 1974). Diffusion coefficients for the tracer molecules were measured in packed hepatocytes, supernatant fluid, and intracellular medium (lysed hepatocytes) and were calculated assuming one-dimensional semi-infinite diffusion through a homogeneous medium. By applying the series-parallel pathway model, the following permeability coefficients (10(-5) cm/sec) for the hepatocyte plasma membrane were obtained. /sup 3/H/sub 2/O, 98.6 +/- 18.4; (/sup 14/C)urea, 18.2 +/- 5.3; (/sup 14/C)erythritol, 4.8 +/- 1.6; (/sup 14/C)mannitol, 3.1 +/- 1.4; (/sup 3/H)sucrose, 0; (/sup 3/H)inulin, 0. These results indicate that isolated rat hepatocytes are highly permeable to water and polar nonelectrolytes, when compared with other transporting epithelia. This relatively high cellular permeability is consistent with a model in which nonelectrolyte permeation is via an aqueous pathway of equivalent pore diameter of 8-12 A. The finding that (/sup 14/C)erythritol and (/sup 14/C)mannitol cross the hepatocyte plasma membrane indicates that these molecules enter the bile canaliculus through the transcellular route. Conversely, the failure of (/sup 3/H)sucrose and (/sup 3/H)inulin to permeate the hepatocyte in the isolated condition supports the concept that biliary entry of these large carbohydrates, at least that fraction which cannot be accounted for by a vesicular mechanism, must occur via the transjunctional shunt pathway.

  6. Silicic Magma Degassing: A High Temperature Experimental Insight into Permeability Evolution

    NASA Astrophysics Data System (ADS)

    Chadderton, A. L.; Sammonds, P. R.; Meredith, P. G.; Smith, R.; Tuffen, H.; Gaunt, H. E.

    2015-12-01

    Experimentally determined permeability results have provided the basis for numerous theories of magmatic degassing. Two recent eruptions in Chile, at Chaitén Volcano in 2008-10 and Cordón Caulle in 2011-12, allowed the first detailed observations of rhyolitic activity and provided insights into the evolution of highly silicic eruptions. Both events exhibited simultaneous explosive and effusive activity, with both lava and ash plumes emitted from the same vent [1]. The permeability of fracture networks that act as fluid flow pathways is key to understanding such eruptive behaviour. Here, we report results from a systematic experimental investigation of permeability in volcanic rocks, at magmatic temperatures and pressures, in the presence of pore fluids using our newly-developed high-temperature permeability facility. Enhancements to the High Temperature Triaxial Deformation Cell at UCL [2] have enabled us to make permeability measurements on 25mm x 50mm cores at both elevated temperature and elevated hydrostatic pressure [3]. We present results from several suites of permeability measurements on samples of dome dacite from the 2004-08 eruption of Mount St Helens, and rhyolite collected from the lava dome formed during the 2008-10 eruption of Chaitén, Chile. Tests were conducted at temperatures up to 900oC and under an effective pressure of 5 MPa, using the steady-state flow technique. Samples were cooled to room temperature between each high temperature test, and the permeability of each sample was re-measured before heating to the next temperature increment in the series. The results show a complex permeability evolution that includes a reduction in permeability by approximately 4 orders of magnitude up to 600oC. Together with TGA, FTIR and hot-stage data, these new experimental permeability results are applied to enhance our understanding of the complex issue of silicic magma degassing. [1] Castro JM et al, 2014 EPSL 405, 52-61 [2] Rocchi V et al, 2004 JVGR

  7. Permeability, drying, and sintering of pressure filtered ceramic nanopowders

    NASA Astrophysics Data System (ADS)

    Sweeney, Sean M.

    2002-01-01

    Three aspects of nanocrystalline ceramic body formation are examined in this work: permeability, drying stress, and sintering behavior. The permeabilities of nanocrystalline 3 mol% yttria-stabilized zirconia (3Y-TZP), silica, and boehmite powder compacts are measured during their formation by constant rate pressure filtration. The classic Carman-Kozeny equation with no account for the effect of adsorbed water often overestimates by a factor of 2 or more the measured permeabilities, with increasing deviation with decreasing permeability. A permeability equation from the literature and one derived here, both taking into account the effect of adsorbed water, show significant improvement over the classic Carman-Kozeny equation for predicting measured permeabilities. The equation derived here allows straightforward predictions to be made of how permeability will change as the critical point of drying (when shrinkage stops) is approached. An approximate expression for the maximum tensile stress occurring in an elastic finite cylinder during drying from all sides is derived. Numerical calculations of the exact state of stress during drying show that for cylinder length-to-diameter ratios up to 2/3, the present expression is more accurate than equations from the literature for an infinite plate and an infinite cylinder. For cylinders with length-to-diameter ratios greater than 2/3, numerical calculations show an equation from the literature for the drying stress in an infinite cylinder to be more accurate. To test the validity of the present expression, the drying rates above which fracture occurs are determined for disk-shaped samples of pressure filtered nanocrystalline 3Y-TZP, boehmite, and silica powders. These maximum safe drying rates are used with the present expression to calculate the maximum drying stresses that can be sustained without fracture, and these stresses are compared to diametral compression-measured strengths of similar samples dried to the critical

  8. Quasi-two-dimensional electron gas at the interface of γ-Al{sub 2}O{sub 3}/SrTiO{sub 3} heterostructures grown by atomic layer deposition

    SciTech Connect

    Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G.; Goble, Nicholas J.; Gao, Xuan P. A.; Posadas, Agham; Kormondy, Kristy J.; Demkov, Alexander A.; Lu, Sirong; Jordan-Sweet, Jean; Smith, David J.

    2015-09-21

    We report the formation of a quasi-two-dimensional electron gas (2-DEG) at the interface of γ-Al{sub 2}O{sub 3}/TiO{sub 2}-terminated SrTiO{sub 3} (STO) grown by atomic layer deposition (ALD). The ALD growth of Al{sub 2}O{sub 3} on STO(001) single crystal substrates was performed at temperatures in the range of 200–345 °C. Trimethylaluminum and water were used as co-reactants. In situ reflection high energy electron diffraction, ex situ x-ray diffraction, and ex situ cross-sectional transmission electron microscopy were used to determine the crystallinity of the Al{sub 2}O{sub 3} films. As-deposited Al{sub 2}O{sub 3} films grown above 300 °C were crystalline with the γ-Al{sub 2}O{sub 3} phase. In situ x-ray photoelectron spectroscopy was used to characterize the Al{sub 2}O{sub 3}/STO interface, indicating that a Ti{sup 3+} feature in the Ti 2p spectrum of STO was formed after 2–3 ALD cycles of Al{sub 2}O{sub 3} at 345 °C and even after the exposure to trimethylaluminum alone at 300 and 345 °C. The interface quasi-2-DEG is metallic and exhibits mobility values of ∼4 and 3000 cm{sup 2} V{sup −1} s{sup −1} at room temperature and 15 K, respectively. The interfacial conductivity depended on the thickness of the Al{sub 2}O{sub 3} layer. The Ti{sup 3+} signal originated from the near-interfacial region and vanished after annealing in an oxygen environment.

  9. Fluid Overpressure Distribution and Permeability Structure in the Cascadia Subduction Zone Under Southern Vancouver Island

    NASA Astrophysics Data System (ADS)

    Spinelli, G. A.; Wada, I.

    2012-12-01

    We develop hydrogeologic models to examine the fluid overpressure distribution in the northern Cascadia subduction zone resulting from dewatering of the subducting Juan de Fuca slab. Anomalous seismic velocities indicative of relatively high Poisson's ratios observed in the subducting crust at subduction zones, such as Cascadia and Nankai, have been interpreted to indicate fluid overpressure (Shelly et al., 2006; Audet et al., 2009; Peacock et al., 2011). In northern Cascadia, the inferred fluid overpressure beneath Vancouver Island disappears farther landward. One of the proposed mechanisms for the distribution of fluid overpressure is the down-dip change in the permeability of the plate boundary fault. In this scenario, permeability is low under Vancouver Island, limiting fluid escape from the slab; permeability increases farther landward, allowing more efficient fluid migration out of the subducting slab (Audet et al., 2009). We test this conceptual hydrogeologic model with numerical models of fluid transport. Our models include fluid sources from porosity loss and mineral dehydration reactions. The volume of dehydration-derived fluid release from the subducting crust is calculated using a thermal model for Cascadia and the thermodynamic calculation code Perple_X. Modeled fluid source magnitudes are highest in a ~50 km wide region of upper oceanic crust under Vancouver Island. The cessation of these fluid sources in the subducting slab further landward combined with fluid flow from the slab contribute to the landward dissipation of fluid overpressure, even in the absence of enhanced fault zone permeability landward of Vancouver Island.

  10. Changes in Permeability Produced By Distant Earthquakes

    NASA Astrophysics Data System (ADS)

    Manga, M.; Wang, C. Y.; Shi, Z.

    2014-12-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10-6 can increase discharge in streams and springs, change the water level of wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to pre-stimulated values over a period of months to years. This presentation will review some of the observations that indicate that dynamic stresses produced by seismic waves change permeability. We use the response of a set of wells distributed throughout China to multiple large earthquakes to probe the relationship between earthquake-generated stresses and water-level changes in wells. We find that dynamic stresses dominate the responses at distances more than 1 fault length from the earthquake and that permeability changes may explain the water level changes. Regions with high deformation rates are most sensitive to seismic waves. We also consider the response of a large alluvial fan in Taiwan to the 1999 M7.5 Chi-Chi earthquake where there were sustained changes in groundwater temperature after the earthquake. Using groundwater flow models, we infer that permeability increased by an order of magnitude over horizontal scales of tens of km, and vertical scales of several km. Permeability returned to the pre-earthquake value over many months. As much as half the total transport in the fan occurs during the short time periods with enhanced permeability.

  11. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  12. Using magnetic permeability bits to store information

    NASA Astrophysics Data System (ADS)

    Timmerwilke, John; Petrie, J. R.; Wieland, K. A.; Mencia, Raymond; Liou, Sy-Hwang; Cress, C. D.; Newburgh, G. A.; Edelstein, A. S.

    2015-10-01

    Steps are described in the development of a new magnetic memory technology, based on states with different magnetic permeability, with the capability to reliably store large amounts of information in a high-density form for decades. The advantages of using the permeability to store information include an insensitivity to accidental exposure to magnetic fields or temperature changes, both of which are known to corrupt memory approaches that rely on remanent magnetization. The high permeability media investigated consists of either films of Metglas 2826 MB (Fe40Ni38Mo4B18) or bilayers of permalloy (Ni78Fe22)/Cu. Regions of films of the high permeability media were converted thermally to low permeability regions by laser or ohmic heating. The permeability of the bits was read by detecting changes of an external 32 Oe probe field using a magnetic tunnel junction 10 μm away from the media. Metglas bits were written with 100 μs laser pulses and arrays of 300 nm diameter bits were read. The high and low permeability bits written using bilayers of permalloy/Cu are not affected by 10 Mrad(Si) of gamma radiation from a 60Co source. An economical route for writing and reading bits as small at 20 nm using a variation of heat assisted magnetic recording is discussed.

  13. Porosities and permeability of Paleozoic sandstones derived from Nuclear Magnetic Resonance measurements

    NASA Astrophysics Data System (ADS)

    Jorand, Rachel; Koch, Andreas; Mohnke, Oliver; Klitzsch, Norbert; Clauser, Christoph

    2010-05-01

    A major obstacle for an increased use of geothermal energy often lies in the high success risk for the development of geothermal reservoirs due to the unknown rock properties. In general, the ranges of porosity and permeability in existing compilations of rock properties are too large to be useful to constrain properties for specific sites. Usually, conservative assumptions are made about these properties, resulting in greater drilling depth and increased exploration cost. In this study, data from direct measurements on thirty-three sandstones from different borehole locations and depths enable to derive statistical values of the desired hydraulic properties for selected sandstones in the German subsurface. We used Nuclear Magnetic Resonance (NMR) measurements to estimate the porosity and the permeability of sandstones from North Rhine-Westphalia (Germany). Besides NMR standard poro-perm-measurements were performed on the samples to obtain independent data sets for comparison. Porosity was measured by Archimedes principle and pore-size distribution by mercury injection. Also permeability was determined by gas flow measurements taking into account the Klinkenberg effect. The porosities of the studied samples vary between 0 % and 16 %. NMR yields suitable porosity results whereas the porosities obtain by T1 relaxation measurements fit better to the Archimedes porosities than the porosities obtained by T2 relaxation measurements. For porosities up to 10 %, T2 relaxation measurements overestimate the porosity. Furthermore, we calculate the effective porosity using a cutoff time of 3 ms. This effective porosity agrees much better with Archimedes porosities, particularly for the low porosity samples. The gas permeability of studied sandstones varies between 10-21 m2 and 2.10-17 m2. A large number of empirical relationships between relaxation times and gas permeability have been published. We have applied several of these relationships to select the appropriate law for

  14. IMPERMEABLE THIN Al{sub 2}O{sub 3} OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2004-03-31

    To improve the hot corrosion resistance of YSZ thermal barrier coatings, a 25 {micro}m thick Al{sub 2}O{sub 3} overlay were deposited by HVOF thermal spray, respectively, onto to the surface of YSZ coating. In the next reporting period, we will measure or calculate the residue stress within Al{sub 2}O{sub 3} overlay and YSZ coating to study the mechanism of effect of Al{sub 2}O{sub 3} overlay on spalling of YSZ coating. However, due to the thermal expansion mismatch between YSZ coating and Al{sub 2}O{sub 3} overlay, such surface modification using Al{sub 2}O{sub 3} overlay might deteriorate strain tolerance of the TBC. In the present work, in order to investigate the effect of Al{sub 2}O{sub 3} overlay on residual stress developed in the samples during cooling after hot corrosion at high temperature, Finite Element method (FEM) was employed to determine the detailed stress states in the test specimens after cooling. The results showed that there is no high stress concentration at the interface between the YSZ and the bond coat for TBCs system without Al{sub 2}O{sub 3} overlay. On the other hand, the maximum compressive stress with a value of approximately, -330 MPa occurred within the Al{sub 2}O{sub 3} overlay. The maximum tensile stress in YSZ coat near the Al{sub 2}O{sub 3} overlay is in the range of 10-133 MPa. The maximum compressive stress of approximately -160 MPa occurred near the YSZ-bond coat interface. X axis stress play a dominant role in influencing the coating failure and spalling. In the next reporting period, we will study the thickness of Al{sub 2}O{sub 3} overlay on hot corrosion resistance and spalling of YSZ coating.

  15. An Experimental Study of CO2-Brine Relative Permeability in Sandstone

    NASA Astrophysics Data System (ADS)

    Chen, X.; DiCarlo, D. A.

    2013-12-01

    Accurate determinations of CO2-brine relative permeability are important for modeling potential CO2 storage scenarios. The most common assumption is that CO2-brine relative permeability is likely to be similar to oil-brine relative permeability for water-wet rocks. But recent measurements of CO2-brine relative permeability have differed greatly from oil-brine relative permeability; particularly, the measurements show a very low CO2 end point relative permeability (kr,CO2=0.1~0.2) and a relatively high residual water saturation (Swr>0.4) ( Lee et al. 2010, Zuo et al. 2012, Akbarabadi et al. 2013 and etc.). It has been hypothesized that the differences are related to CO2-brine having a different contact angle from oil-brine. In this study, we hypothesize that the differences are caused by large capillary end effects resulted from the very low CO2 viscosity. We conduct steady-state CO2-brine flow experiments in 2-foot-long and 2.8-inch-diamter Berea sandstone cores at 20 °C and 1500 psi. Four pressure taps drilled on a core allow both the total pressure drop and that across five individual sections to be measured. Three experiments, two drainage and one imbibition, have been conducted so far. Our results show: (1) The relative permeability to both brine and CO2 of the last section (downstream, 15 cm long) is significantly smaller than that of any of the middle three sections. This testifies that the capillary end effect makes the relative permeability under-measured at the end of a core. (2) The values of the middle three sections are very close to each other, which indicate the middle part of our core is free of capillary end effect. (3) The CO2 end point relative permeability is 0.3~0.5, which is much higher than the recent measurements. (4) The brine end point relative permeability during imbibition is about 0.08, which is close to literature data. Reference: Lee, Y.S, Kim, K. H. and Lee, T.H. et al. Analysis of CO2 Endpoint Relative Permeability and Injectivity

  16. Quantifying the measurement errors in a LI-6400 gas exchange system and their effects on the parameterization of Farquhar et al. model for C3 leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The LI-6400 gas exchange system (Li-Cor, Inc, Lincoln, NE, USA) has been widely used for the measurement of net gas exchanges and calibration/parameterization of leaf models. Measurement errors due to diffusive leakages of water vapor and carbon dioxide between inside and outside of the leaf chamber...

  17. System and method for measuring permeability of materials

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2013-07-09

    Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  18. IMPERMEABLE THIN Al{sub 2}O{sub 3} OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2003-12-16

    To improve the hot corrosion resistance of YSZ thermal barrier coatings, a 25 {micro}m and a 2 {micro}m thick Al{sub 2}O{sub 3} overlay were deposited by HVOF thermal spray and by sol-gel coating method, respectively, onto to the surface of YSZ coating. Indenter test was employed to investigate the spalling of YSZ with and without Al{sub 2}O{sub 3} overlay after hot corrosion. The results showed that Al{sub 2}O{sub 3} overlay acted as a barrier against the infiltration of the molten salt into the YSZ coating during exposure, thus significantly reduced the amount of M-phase of ZrO{sub 2} in YSZ coating. However, a thick Al{sub 2}O{sub 3} overlay was harmful for TBC by increasing compressive stress which causes crack and spalling of YSZ coating. As a result, a dense and thin Al{sub 2}O{sub 3} overlay is critical for simultaneously preventing YSZ from hot corrosion and spalling. In the next reporting period, we will measure or calculate the residue stress within Al{sub 2}O{sub 3} overlay and YSZ coating to study the mechanism of effect of Al{sub 2}O{sub 3} overlay on spalling of YSZ coating.

  19. Measuring Permeability of Composite Cryotank Laminants

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.; Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    This paper describes a test method developed to identify whether certain materials and material systems are suitable candidates for large pressurized reusable cryogenic tanks intended for use in current and future manned launch systems. It provides a quick way to screen numerous candidate materials for permeability under anticipated loading environments consistent with flight conditions, as well as addressing reusability issues. cryogenic tank, where the major design issue was hydrogen permeability. It was successfully used to evaluate samples subjected to biaxial loading while maintaining test temperatures near liquid hydrogen. After each sample was thermally preconditioned, a cyclic pressure load was applied to simulate the in-plane strain. First permeability was measured while a sample was under load. Then the sample was unloaded and allowed to return to ambient temperature. The test was repeated to simulate reusability, in order to evaluate its effects on material permeability.

  20. ULTRASTRUCTURE AND PERMEABILITY OF NUCLEAR MEMBRANES

    PubMed Central

    Wiener, Joseph; Spiro, David; Loewenstein, Werner R.

    1965-01-01

    The fine structures of nuclear envelopes known to have different permeability properties were compared. Membranes of salivary gland cell nuclei of Drosophila (third instar) and Chironomus (prepupae), which are strong barriers to ion diffusion, and membranes of oocyte nuclei (germinal vesicle) of Xenopus and Triturus, which are much more ion-permeable, show no essential difference in size, frequency, and distribution of their membrane gaps ("pores") which could account for the marked disparities in membrane permeability. The gaps are occupied by diffuse electron-opaque material with occasional central regions of strong opacity. This material may possibly account for the high diffusion resistance of Drosophila and Chironomus nuclear envelopes, where the resistance is far too great to allow free diffusion through the gaps. But material of this kind is also present in the more permeable nuclear envelopes of Xenopus and Triturus oocytes, and there are no convincing structural differences discernible with the techniques employed. PMID:5892850

  1. Variability of permeability with diameter of conduit

    NASA Astrophysics Data System (ADS)

    Adegoke, J. A.; Olowofela, J. A.

    2008-05-01

    An entry length is always observed before laminar flow is achieved in fluid flowing in a conduit. This depends on the Reynolds number of the flow and the degree of smoothness of the conduit. This work examined this region and the point where laminar flow commences in the context of flow through conduit packed with porous material like beads, of known porosity. Using some theoretical assumptions, it is demonstrated that permeability varies from zero at wall-fluid boundary to maximum at mid-stream, creating a permeability profile similar to the velocity profile. An equation was obtained to establish this. We also found that peak values of permeability increase with increasing porosity, and therefore entry length increases with increasing porosity with all other parameters kept constant. A plot of peak permeability versus porosity revealed that they are linearly related.

  2. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  3. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A.T.; Munafo, Paul (Technical Monitor)

    2002-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  4. The Edison Environmental Center Permeable Pavement Site

    EPA Science Inventory

    This a presentation for a Community Outreach Event called "Chemistry Works and Celebration of International Year of Chemistry." It will review the permeable pavement research project at the Edison Environmental center.

  5. Flexible Sandwich Diaphragms Are Less Permeable

    NASA Technical Reports Server (NTRS)

    Michalovic, John G.; Vassallo, Franklin A.

    1993-01-01

    Diaphragms for use in refrigerator compressors made as laminates of commercially available elastomers and metals. Diaphragms flexible, but less permeable by chlorofluorocarbon refrigerant fluids than diaphragms made of homogeneous mixtures of materials.

  6. Regulation of endothelial permeability by second messengers.

    PubMed

    Siflinger-Birnboim, A; Malik, A B

    1996-02-01

    The mechanisms by which mediators such as oxidants released by neutrophil (PMN) activation increase endothelial permeability are poorly understood. The focus of this article is to identify some of these mechanisms. Studies using endothelial cell monolayers in culture have shown that PMN activation increases endothelial permeability both in the presence and absence of PMN-endothelial monolayer contact. Hydrogen peroxide (H2O2), an oxidant released by PMN activation, plays an important role in PMN-induced increases in endothelial permeability. The results of these studies suggest that, as with other mediators of inflammation (e.g., histamine, thrombin) the mechanism of H2O2-induced increase in endothelial permeability involves activation of endothelial protein kinase C (PKC) and increase in endothelial cytosolic Ca2+.

  7. NASA In-step: Permeable Membrane Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Viewgraphs on the Permeable Membrane Experiment are presented. An experiment overview is given. The Membrane Phase Separation Experiment, Membrane Diffusion Interference Experiment, and Membrane Wetting Experiment are described. Finally, summary and conclusions are discussed.

  8. Lunar electrical conductivity and magnetic permeability

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1975-01-01

    Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.

  9. Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels.

    PubMed

    Li, Ruru; Yang, Y Sam; Pan, Jinxiao; Pereira, Gerald G; Taylor, John A; Clennell, Ben; Zou, Caineng

    2014-09-01

    A partial-bounce-back lattice Boltzmann model has been used to simulate flow on a lattice consisting of cubic voxels with a locally varying effective percolating fraction. The effective percolating fraction of a voxel is the total response to the partial-bounce-back techniques for porous media flow due to subvoxel fine structures. The model has been verified against known analytic solutions on two- and three-dimensional regular geometries, and has been applied to simulate flow and permeabilities of two real-world rock samples. This enables quantitative determination of permeability for problems where voxels cannot be adequately segmented as discrete compositions. The voxel compositions are represented as volume fractions of various material phases and void. The numerical results have shown that, for the tight-sandstone sample, the bulk permeability is sensitive to the effective percolating fraction of calcite. That is, the subvoxel flow paths in the calcite phase are important for bulk permeability. On the other hand, flow in the calcite phase in the sandstone sample makes an insignificant contribution to the bulk permeability. The calculated permeability value for the sandstone sample is up to two orders of magnitude greater than the tight sandstone. This model is generic and could be applied to other oil and gas reservoir media or to material samples.

  10. Special core analyses and relative permeability measurement on Almond formation reservoir rocks

    SciTech Connect

    Maloney, D.; Doggett, K.; Brinkmeyer, A.

    1993-02-01

    This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74[degrees]F laboratory temperature. Additional tests are planned at 150[degrees]F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.

  11. Special core analyses and relative permeability measurement on Almond formation reservoir rocks

    SciTech Connect

    Maloney, D.; Doggett, K.; Brinkmeyer, A.

    1993-02-01

    This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74{degrees}F laboratory temperature. Additional tests are planned at 150{degrees}F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.

  12. Beach protection by a system of permeable groins

    NASA Astrophysics Data System (ADS)

    Boczar-Karakiewicz, B.; Romanczyk, W.; Roy, N.

    2002-12-01

    A new type of permeable groin (called System of Groins Maltec-Savard - SGMS) has been installed at three eroded sites located in the coastal area on the north shore of the St. Lawrence, Quebec, Canada. In this area, the narrow sandy beaches with sandy or sand-silty cliff of variable height (10-15~m) are exposed to obliquely incident waves arriving from both west (summer) and east (autumn), and to tidal currents (maximum tidal rate is 4.3~m). The periods of summer waves equal 3-5~s, with wave heights of about 0.4-0.7~m. In the autumn, major storm waves reach periods of up to 7-10~s, with wave heights of 1.0-1.2~m. The new groins are sediment traps formed by a central double and permeable groin with several smaller lateral, groins installed on one or both sides of the central groin (Boczar-Karakiewicz et al., 2001). The permeable central and lateral groins are structured by inserting double ranges of wooden piles (diameter of about 10 cm). The space between the ranges of piles (some 0.8~m wide) is filled with tree branches (e.g., the top parts of pine trees, a waste product of the local forest industry). A permeable grid covering the top of the groins forms a cage that holds the branches in place. The lateral groins, are identical but much shorter than the central groin. The whole system dissipates the incident energy of wave- and tidally-generated currents and causes accretion of sand transported by these currents. The GSMS also allows the by-pass of some sediment to adjacent zones without groins. Observations and results of measurements from three experiments field show that: (1) a sandy beach in front of a coastal cliff secures its stability and attenuates the erosion caused by waves and tidal currents; (2) permeability and flexibility of the SGMS causes the accretion of sediment in the protected area without erosion in the neighboring zones; (3) the SGMS does not generate wave reflection and any secondary current; (4) the materials of the groins are easily

  13. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico

    SciTech Connect

    Daigle, Hugh; Cook, Ann; Malinverno, Alberto

    2015-10-14

    Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeability measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.

  14. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability.

  15. Enzymatically active high-flux selectively gas-permeable membranes

    DOEpatents

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  16. A tool for computing time-dependent permeability reduction of fractured volcanic conduit margins.

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie; Wadsworth, Fabian; Heap, Michael; Baud, Patrick

    2016-04-01

    Laterally-oriented fractures within volcanic conduit margins are thought to play an important role in tempering eruption explosivity by allowing magmatic volatiles to outgas. The permeability of a fractured conduit margin - the equivalent permeability - can be modelled as the sum of permeability contributions of the edifice host rock and the fracture(s) within it. We present here a flexible MATLAB® tool which computes the time-dependent equivalent permeability of a volcanic conduit margin containing ash-filled fractures. The tool is designed so that the end-user can define a wide range of input parameters to yield equivalent permeability estimates for their application. The time-dependence of the equivalent permeability is incorporated by considering permeability decrease as a function of porosity loss in the ash-filled fractures due to viscous sintering (after Russell and Quane, 2005), which is in turn dependent on the depth and temperature of each fracture and the crystal-content of the magma (all user-defined variables). The initial viscosity of the granular material filling the fracture is dependent on the water content (Hess and Dingwell, 1996), which is computed assuming equilibrium depth-dependent water content (Liu et al., 2005). Crystallinity is subsequently accounted for by employing the particle-suspension rheological model of Mueller et al. (2010). The user then defines the number of fractures, their widths, and their depths, and the lengthscale of interest (e.g. the length of the conduit). Using these data, the combined influence of transient fractures on the equivalent permeability of the conduit margin is then calculated by adapting a parallel-plate flow model (developed by Baud et al., 2012 for porous sandstones), for host rock permeabilities from 10-11 to 10-22 m2. The calculated values of porosity and equivalent permeability with time for each host rock permeability is then output in text and worksheet file formats. We introduce two dimensionless

  17. The role of python eggshell permeability dynamics in a respiration-hydration trade-off.

    PubMed

    Stahlschmidt, Zachary R; Heulin, Benoit; DeNardo, Dale F

    2010-01-01

    Parental care is taxonomically widespread because it improves developmental conditions and thus fitness of offspring. Although relatively simplistic compared with parental behaviors of other taxa, python egg-brooding behavior exemplifies parental care because it mediates a trade-off between embryonic respiration and hydration. However, because egg brooding increases gas-exchange resistance between embryonic and nest environments and because female pythons do not adjust their brooding behavior in response to the increasing metabolic requirements of developing offspring, python egg brooding imposes hypoxic costs on embryos during the late stages of incubation. We conducted a series of experiments to determine whether eggshells coadapted with brooding behavior to minimize the negative effects of developmental hypoxia. We tested the hypotheses that python eggshells (1) increase permeability over time to accommodate increasing embryonic respiration and (2) exhibit permeability plasticity in response to chronic hypoxia. Over incubation, we serially measured the atomic and structural components of Children's python (Antaresia childreni) eggshells as well as in vivo and in vitro gas exchange across eggshells. In support of our first hypothesis, A. childreni eggshells exhibited a reduced fibrous layer, became more permeable, and facilitated greater gas exchange as incubation progressed. Our second hypothesis was not supported, as incubation O(2) concentration did not affect the shells' permeabilities to O(2) and H(2)O vapor. Our results suggest that python eggshell permeability changes during incubation but that the alterations over time are fixed and independent of environmental conditions. These findings are of broad evolutionary interest because they demonstrate that, even in relatively simple parental-care models, successful parent-offspring relationships depend on adjustments made by both the parent (i.e., egg-brooding behavioral shifts) and the offspring (i

  18. Experimental Studies on Permeability of Intact and Singly Jointed Meta-Sedimentary Rocks Under Confining Pressure

    NASA Astrophysics Data System (ADS)

    Wong, Louis Ngai Yuen; Li, Diyuan; Liu, Gang

    2013-01-01

    Three different types of permeability tests were conducted on 23 intact and singly jointed rock specimens, which were cored from rock blocks collected from a rock cavern under construction in Singapore. The studied rock types belong to inter-bedded meta-sandstone and meta-siltstone with very low porosity and high uniaxial compressive strength. The transient pulse water flow method was employed to measure the permeability of intact meta-sandstone under a confining pressure up to 30 MPa. It showed that the magnitude order of meta-sandstone's intrinsic permeability is about 10-18 m2. The steady-state gas flow method was used to measure the permeability of both intact meta-siltstone and meta-sandstone in a triaxial cell under different confining pressures spanning from 2.5 to 10 MPa. The measured permeability of both rock types ranged from 10-21 to 10-20 m2. The influence of a single natural joint on the permeability of both rock types was studied by using the steady-state water flow method under different confining pressures spanning from 1.25 to 5.0 MPa, including loading and unloading phases. The measured permeability of both jointed rocks ranged from 10-13 to 10-11 m2, where the permeability of jointed meta-siltstone was usually slightly lower than that of jointed meta-sandstone. The permeability of jointed rocks decreases with increasing confining pressure, which can be well fitted by an empirical power law relationship between the permeability and confining pressure or effective pressure. The permeability of partly open cracked specimens is lower than that of open cracked specimens, but it is higher than that of the specimen with a dominant vein for the meta-sandstone under the same confining pressure. The permeability of open cracked rock specimens will partially recover during the unloading confining pressure process. The equivalent crack (joint) aperture is as narrow as a magnitude order of 10-6 m (1 μm) in the rock specimens under confining pressures

  19. Maturation of rat proximal tubule chloride permeability.

    PubMed

    Baum, Michel; Quigley, Raymond

    2005-12-01

    We have previously shown that neonate rabbit tubules have a lower chloride permeability but comparable mannitol permeability compared with adult proximal tubules. The surprising finding of lower chloride permeability in neonate proximals compared with adults impacts net chloride transport in this segment, which reabsorbs 60% of the filtered chloride in adults. However, this maturational difference in chloride permeability may not be applicable to other species. The present in vitro microperfusion study directly examined the chloride and mannitol permeability using in vitro perfused rat proximal tubules during postnatal maturation. Whereas there was no maturational change in mannitol permeability, chloride permeability was 6.3 +/- 1.3 x 10(-5) cm/s in neonate rat proximal convoluted tubule and 16.1 +/- 2.3 x 10(-5) cm/s in adult rat proximal convoluted tubule (P < 0.01). There was also a maturational increase in chloride permeability in the rat proximal straight tubule (5.1 +/- 0.6 x 10(-5) cm/s vs. 9.3 +/- 0.6 x 10(-5) cm/s, P < 0.01). There was no maturational change in bicarbonate-to-chloride permeabilities (P(HCO3)/P(Cl)) in the rat proximal straight tubules (PST) and proximal convoluted tubules (PCT) or in the sodium-to-chloride permeability (P(Na)/P(Cl)) in the proximal straight tubule; however, there was a significant maturational decrease in proximal convoluted tubule P(Na)/P(Cl) with postnatal development (1.31 +/- 0.12 in neonates vs. 0.75 +/- 0.06 in adults, P < 0.001). There was no difference in the transepithelial resistance measured by current injection and cable analysis in the PCT, but there was a maturational decrease in the PST (7.2 +/- 0.8 vs. 4.6 +/- 0.1 ohms x cm2, P < 0.05). These studies demonstrate there are maturational changes in the rat paracellular pathway that impact net NaCl transport during development. PMID:16051720

  20. Gas intrusion into SPR caverns

    SciTech Connect

    Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T.; Giles, H.N.

    1995-12-01

    The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.