Sample records for permutation achieved classification

  1. An AUC-based permutation variable importance measure for random forests

    PubMed Central

    2013-01-01

    Background The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. Results We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. Conclusions The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html. PMID:23560875

  2. An AUC-based permutation variable importance measure for random forests.

    PubMed

    Janitza, Silke; Strobl, Carolin; Boulesteix, Anne-Laure

    2013-04-05

    The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html.

  3. Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.

    PubMed

    Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang

    2015-01-01

    Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.

  4. Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG

    PubMed Central

    2018-01-01

    Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and “permutation entropy” were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography. PMID:29606959

  5. Assessing the statistical significance of the achieved classification error of classifiers constructed using serum peptide profiles, and a prescription for random sampling repeated studies for massive high-throughput genomic and proteomic studies.

    PubMed

    Lyons-Weiler, James; Pelikan, Richard; Zeh, Herbert J; Whitcomb, David C; Malehorn, David E; Bigbee, William L; Hauskrecht, Milos

    2005-01-01

    Peptide profiles generated using SELDI/MALDI time of flight mass spectrometry provide a promising source of patient-specific information with high potential impact on the early detection and classification of cancer and other diseases. The new profiling technology comes, however, with numerous challenges and concerns. Particularly important are concerns of reproducibility of classification results and their significance. In this work we describe a computational validation framework, called PACE (Permutation-Achieved Classification Error), that lets us assess, for a given classification model, the significance of the Achieved Classification Error (ACE) on the profile data. The framework compares the performance statistic of the classifier on true data samples and checks if these are consistent with the behavior of the classifier on the same data with randomly reassigned class labels. A statistically significant ACE increases our belief that a discriminative signal was found in the data. The advantage of PACE analysis is that it can be easily combined with any classification model and is relatively easy to interpret. PACE analysis does not protect researchers against confounding in the experimental design, or other sources of systematic or random error. We use PACE analysis to assess significance of classification results we have achieved on a number of published data sets. The results show that many of these datasets indeed possess a signal that leads to a statistically significant ACE.

  6. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  7. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  8. Four-qubit entanglement classification from string theory.

    PubMed

    Borsten, L; Dahanayake, D; Duff, M J; Marrani, A; Rubens, W

    2010-09-03

    We invoke the black-hole-qubit correspondence to derive the classification of four-qubit entanglement. The U-duality orbits resulting from timelike reduction of string theory from D=4 to D=3 yield 31 entanglement families, which reduce to nine up to permutation of the four qubits.

  9. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming

    2017-07-01

    Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.

  10. Encoding Sequential Information in Semantic Space Models: Comparing Holographic Reduced Representation and Random Permutation

    PubMed Central

    Recchia, Gabriel; Sahlgren, Magnus; Kanerva, Pentti; Jones, Michael N.

    2015-01-01

    Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics. PMID:25954306

  11. Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.

    PubMed

    Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio

    2018-02-21

    Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.

  12. Classification of single-trial auditory events using dry-wireless EEG during real and motion simulated flight.

    PubMed

    Callan, Daniel E; Durantin, Gautier; Terzibas, Cengiz

    2015-01-01

    Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound vs. silent periods. Evaluation of Independent component analysis (ICA) and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs. 78.3%), Platform On (73.1% vs. 71.6%), Biplane Engine Off (81.1% vs. 77.4%), and Biplane Engine On (79.2% vs. 66.1%). This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  13. Weight distributions for turbo codes using random and nonrandom permutations

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Divsalar, D.

    1995-01-01

    This article takes a preliminary look at the weight distributions achievable for turbo codes using random, nonrandom, and semirandom permutations. Due to the recursiveness of the encoders, it is important to distinguish between self-terminating and non-self-terminating input sequences. The non-self-terminating sequences have little effect on decoder performance, because they accumulate high encoded weight until they are artificially terminated at the end of the block. From probabilistic arguments based on selecting the permutations randomly, it is concluded that the self-terminating weight-2 data sequences are the most important consideration in the design of constituent codes; higher-weight self-terminating sequences have successively decreasing importance. Also, increasing the number of codes and, correspondingly, the number of permutations makes it more and more likely that the bad input sequences will be broken up by one or more of the permuters. It is possible to design nonrandom permutations that ensure that the minimum distance due to weight-2 input sequences grows roughly as the square root of (2N), where N is the block length. However, these nonrandom permutations amplify the bad effects of higher-weight inputs, and as a result they are inferior in performance to randomly selected permutations. But there are 'semirandom' permutations that perform nearly as well as the designed nonrandom permutations with respect to weight-2 input sequences and are not as susceptible to being foiled by higher-weight inputs.

  14. A Computationally Efficient Hypothesis Testing Method for Epistasis Analysis using Multifactor Dimensionality Reduction

    PubMed Central

    Pattin, Kristine A.; White, Bill C.; Barney, Nate; Gui, Jiang; Nelson, Heather H.; Kelsey, Karl R.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.

    2008-01-01

    Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free data mining method for detecting, characterizing, and interpreting epistasis in the absence of significant main effects in genetic and epidemiologic studies of complex traits such as disease susceptibility. The goal of MDR is to change the representation of the data using a constructive induction algorithm to make nonadditive interactions easier to detect using any classification method such as naïve Bayes or logistic regression. Traditionally, MDR constructed variables have been evaluated with a naïve Bayes classifier that is combined with 10-fold cross validation to obtain an estimate of predictive accuracy or generalizability of epistasis models. Traditionally, we have used permutation testing to statistically evaluate the significance of models obtained through MDR. The advantage of permutation testing is that it controls for false-positives due to multiple testing. The disadvantage is that permutation testing is computationally expensive. This is in an important issue that arises in the context of detecting epistasis on a genome-wide scale. The goal of the present study was to develop and evaluate several alternatives to large-scale permutation testing for assessing the statistical significance of MDR models. Using data simulated from 70 different epistasis models, we compared the power and type I error rate of MDR using a 1000-fold permutation test with hypothesis testing using an extreme value distribution (EVD). We find that this new hypothesis testing method provides a reasonable alternative to the computationally expensive 1000-fold permutation test and is 50 times faster. We then demonstrate this new method by applying it to a genetic epidemiology study of bladder cancer susceptibility that was previously analyzed using MDR and assessed using a 1000-fold permutation test. PMID:18671250

  15. Object-Based Land Use Classification of Agricultural Land by Coupling Multi-Temporal Spectral Characteristics and Phenological Events in Germany

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Loew, Fabian; Conrad, Christopher

    2015-04-01

    Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty. The results indicate that uncertainty estimates provide a valuable addition to traditional accuracy assessments and helps the user to allocate error in crop maps.

  16. Constrained Metric Learning by Permutation Inducing Isometries.

    PubMed

    Bosveld, Joel; Mahmood, Arif; Huynh, Du Q; Noakes, Lyle

    2016-01-01

    The choice of metric critically affects the performance of classification and clustering algorithms. Metric learning algorithms attempt to improve performance, by learning a more appropriate metric. Unfortunately, most of the current algorithms learn a distance function which is not invariant to rigid transformations of images. Therefore, the distances between two images and their rigidly transformed pair may differ, leading to inconsistent classification or clustering results. We propose to constrain the learned metric to be invariant to the geometry preserving transformations of images that induce permutations in the feature space. The constraint that these transformations are isometries of the metric ensures consistent results and improves accuracy. Our second contribution is a dimension reduction technique that is consistent with the isometry constraints. Our third contribution is the formulation of the isometry constrained logistic discriminant metric learning (IC-LDML) algorithm, by incorporating the isometry constraints within the objective function of the LDML algorithm. The proposed algorithm is compared with the existing techniques on the publicly available labeled faces in the wild, viewpoint-invariant pedestrian recognition, and Toy Cars data sets. The IC-LDML algorithm has outperformed existing techniques for the tasks of face recognition, person identification, and object classification by a significant margin.

  17. Efficiency and credit ratings: a permutation-information-theory analysis

    NASA Astrophysics Data System (ADS)

    Fernandez Bariviera, Aurelio; Zunino, Luciano; Belén Guercio, M.; Martinez, Lisana B.; Rosso, Osvaldo A.

    2013-08-01

    The role of credit rating agencies has been under severe scrutiny after the subprime crisis. In this paper we explore the relationship between credit ratings and informational efficiency of a sample of thirty nine corporate bonds of US oil and energy companies from April 2008 to November 2012. For this purpose we use a powerful statistical tool, relatively new in the financial literature: the complexity-entropy causality plane. This representation space allows us to graphically classify the different bonds according to their degree of informational efficiency. We find that this classification agrees with the credit ratings assigned by Moody’s. In particular, we detect the formation of two clusters, which correspond to the global categories of investment and speculative grades. Regarding the latter cluster, two subgroups reflect distinct levels of efficiency. Additionally, we also find an intriguing absence of correlation between informational efficiency and firm characteristics. This allows us to conclude that the proposed permutation-information-theory approach provides an alternative practical way to justify bond classification.

  18. Cipher image damage and decisions in real time

    NASA Astrophysics Data System (ADS)

    Silva-García, Victor Manuel; Flores-Carapia, Rolando; Rentería-Márquez, Carlos; Luna-Benoso, Benjamín; Jiménez-Vázquez, Cesar Antonio; González-Ramírez, Marlon David

    2015-01-01

    This paper proposes a method for constructing permutations on m position arrangements. Our objective is to encrypt color images using advanced encryption standard (AES), using variable permutations means a different one for each 128-bit block in the first round after the x-or operation is applied. Furthermore, this research offers the possibility of knowing the original image when the encrypted figure suffered a failure from either an attack or not. This is achieved by permuting the original image pixel positions before being encrypted with AES variable permutations, which means building a pseudorandom permutation of 250,000 position arrays or more. To this end, an algorithm that defines a bijective function between the nonnegative integer and permutation sets is built. From this algorithm, the way to build permutations on the 0,1,…,m-1 array, knowing m-1 constants, is presented. The transcendental numbers are used to select these m-1 constants in a pseudorandom way. The quality of the proposed encryption according to the following criteria is evaluated: the correlation coefficient, the entropy, and the discrete Fourier transform. A goodness-of-fit test for each basic color image is proposed to measure the bits randomness degree of the encrypted figure. On the other hand, cipher images are obtained in a loss-less encryption way, i.e., no JPEG file formats are used.

  19. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  20. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per, E-mail: jensen@uni-wuppertal.de

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thusmore » far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.« less

  1. Quantifying entanglement properties of qudit mixed states with incomplete permutation symmetry

    NASA Astrophysics Data System (ADS)

    Barasiński, Artur; Nowotarski, Mateusz

    2017-04-01

    The characterization of entanglement properties in mixed states is important from both a theoretical and a practical point of view. While the estimation of entanglement of bipartite pure states is well established, for mixed states it is a considerably much harder task. The key elements of the mixed-state entanglement theory are given by the exact solutions which sometimes are possible for special states of high symmetry problems. In this paper, we present the exact investigation on the entanglement properties for a five-parameter family of highly symmetric two-qudit mixed states with equal but arbitrary finite local Hilbert space dimension. We achieve this by extensive analysis of various conditions of separability and the entanglement classification with respect to stochastic local operations and classical communication. Furthermore, our results can be used for an arbitrary state by proper application of the proposed twirling operator.

  2. Adinkra (in)equivalence from Coxeter group representations: A case study

    NASA Astrophysics Data System (ADS)

    Chappell, Isaac; Gates, S. James; Hübsch, T.

    2014-02-01

    Using a MathematicaTM code, we present a straightforward numerical analysis of the 384-dimensional solution space of signed permutation 4×4 matrices, which in sets of four, provide representations of the 𝒢ℛ(4, 4) algebra, closely related to the 𝒩 = 1 (simple) supersymmetry algebra in four-dimensional space-time. Following after ideas discussed in previous papers about automorphisms and classification of adinkras and corresponding supermultiplets, we make a new and alternative proposal to use equivalence classes of the (unsigned) permutation group S4 to define distinct representations of higher-dimensional spin bundles within the context of adinkras. For this purpose, the definition of a dual operator akin to the well-known Hodge star is found to partition the space of these 𝒢ℛ(4, 4) representations into three suggestive classes.

  3. Creation of a Ligand-Dependent Enzyme by Fusing Circularly Permuted Antibody Variable Region Domains.

    PubMed

    Iwai, Hiroto; Kojima-Misaizu, Miki; Dong, Jinhua; Ueda, Hiroshi

    2016-04-20

    Allosteric control of enzyme activity with exogenous substances has been hard to achieve, especially using antibody domains that potentially allow control by any antigens of choice. Here, in order to attain this goal, we developed a novel antibody variable region format introduced with circular permutations, called Clampbody. The two variable-region domains of the antibone Gla protein (BGP) antibody were each circularly permutated to have novel termini at the loops near their domain interface. Through their attachment to the N- and C-termini of a circularly permutated TEM-1 β-lactamase (cpBLA), we created a molecular switch that responds to the antigen peptide. The fusion protein specifically recognized the antigen, and in the presence of some detergent or denaturant, its catalytic activity was enhanced up to 4.7-fold in an antigen-dependent manner, due to increased resistance to these reagents. Hence, Clampbody will be a powerful tool for the allosteric regulation of enzyme and other protein activities and especially useful to design robust biosensors.

  4. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  5. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.

    PubMed

    Li, Bin-Bin; Wang, Ling

    2007-06-01

    This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.

  6. HLA-DRB1 rheumatoid arthritis risk in African Americans at multiple levels: Hierarchical classification systems, amino acid positions and residues

    PubMed Central

    Reynolds, Richard J.; Ahmed, Altan F.; Danila, Maria I.; Hughes, Laura B.; Gregersen, Peter K.; Raychaudhuri, Soumya; Plenge, Robert M.; Bridges, S. Louis

    2014-01-01

    Objective To evaluate African American rheumatoid arthritis HLA-DRB1 genetic risk by three validated allele classification systems, and by amino acid position and residue. To compare the genetic risk between African American and European ancestries. Methods Four-digit HLA-DRB1 genotyping was performed on 561 autoantibody-positive African American cases and 776 African American controls. Association analysis was performed on Tezenas du Montcel (TdM); de Vries (DV); and Mattey classification system alleles and separately by amino acid position and individual residues. Results TdM S2 and S3P alleles were associated with RA (odds ratios (95% CI) 2.8 (2.0, 3.9) and 2.1 (1.7, 2.7), respectively). The DV (P-value=3.2 x 10−12) and Mattey (P-value=6.5 x 10−13) system alleles were both protective in African Americans. Amino acid position 11 (permutation P-value < 0.00001) accounted for nearly all variability explained by HLA-DRB1, although conditional analysis demonstrated that position 57 was also significant (0.01<= permutation P-val <=0.05). The valine and aspartic acid residues at position 11 conferred the highest risk for RA in African Americans. Conclusion With some exceptions, the genetic risk conferred by HLA-DRB1 in African Americans is similar to European ancestry at multiple levels: classification system (e.g., TdM), amino acid position (e.g. 11) and residue (Val 11). Unlike that reported from European ancestry, amino acid position 57 was associated with RA in African Americans, but positions 71 and 74 were not. Asp11 (OR = 1 in European ancestry) corresponds to the four digit classical allele, *09:01, also a risk allele for RA in Koreans. PMID:25524867

  7. Classification of the line-soliton solutions of KPII

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sarbarish; Kodama, Yuji

    2008-07-01

    In the previous papers (notably, Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169-90, Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514), a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation was found. The line-soliton solutions are solitary waves which decay exponentially in the (x, y)-plane except along certain rays. In this paper, it is shown that those solutions are classified by asymptotic information of the solution as |y| → ∞. The present work then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations.

  8. A faster 1.375-approximation algorithm for sorting by transpositions.

    PubMed

    Cunha, Luís Felipe I; Kowada, Luis Antonio B; Hausen, Rodrigo de A; de Figueiredo, Celina M H

    2015-11-01

    Sorting by Transpositions is an NP-hard problem for which several polynomial-time approximation algorithms have been developed. Hartman and Shamir (2006) developed a 1.5-approximation [Formula: see text] algorithm, whose running time was improved to O(nlogn) by Feng and Zhu (2007) with a data structure they defined, the permutation tree. Elias and Hartman (2006) developed a 1.375-approximation O(n(2)) algorithm, and Firoz et al. (2011) claimed an improvement to the running time, from O(n(2)) to O(nlogn), by using the permutation tree. We provide counter-examples to the correctness of Firoz et al.'s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them. In addition, we propose a 1.375-approximation algorithm, modifying Elias and Hartman's approach with the use of permutation trees and achieving O(nlogn) time.

  9. A Weak Quantum Blind Signature with Entanglement Permutation

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoping; Chen, Zhigang; Guo, Ying

    2015-09-01

    Motivated by the permutation encryption algorithm, a weak quantum blind signature (QBS) scheme is proposed. It involves three participants, including the sender Alice, the signatory Bob and the trusted entity Charlie, in four phases, i.e., initializing phase, blinding phase, signing phase and verifying phase. In a small-scale quantum computation network, Alice blinds the message based on a quantum entanglement permutation encryption algorithm that embraces the chaotic position string. Bob signs the blinded message with private parameters shared beforehand while Charlie verifies the signature's validity and recovers the original message. Analysis shows that the proposed scheme achieves the secure blindness for the signer and traceability for the message owner with the aid of the authentic arbitrator who plays a crucial role when a dispute arises. In addition, the signature can neither be forged nor disavowed by the malicious attackers. It has a wide application to E-voting and E-payment system, etc.

  10. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA

    NASA Astrophysics Data System (ADS)

    Coughlan, Michael R.

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  11. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA.

    PubMed

    Coughlan, Michael R

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  12. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  13. A new Nawaz-Enscore-Ham-based heuristic for permutation flow-shop problems with bicriteria of makespan and machine idle time

    NASA Astrophysics Data System (ADS)

    Liu, Weibo; Jin, Yan; Price, Mark

    2016-10-01

    A new heuristic based on the Nawaz-Enscore-Ham algorithm is proposed in this article for solving a permutation flow-shop scheduling problem. A new priority rule is proposed by accounting for the average, mean absolute deviation, skewness and kurtosis, in order to fully describe the distribution style of processing times. A new tie-breaking rule is also introduced for achieving effective job insertion with the objective of minimizing both makespan and machine idle time. Statistical tests illustrate better solution quality of the proposed algorithm compared to existing benchmark heuristics.

  14. The use of a gas chromatography-sensor system combined with advanced statistical methods, towards the diagnosis of urological malignancies

    PubMed Central

    Aggio, Raphael B. M.; de Lacy Costello, Ben; White, Paul; Khalid, Tanzeela; Ratcliffe, Norman M.; Persad, Raj; Probert, Chris S. J.

    2016-01-01

    Prostate cancer is one of the most common cancers. Serum prostate-specific antigen (PSA) is used to aid the selection of men undergoing biopsies. Its use remains controversial. We propose a GC-sensor algorithm system for classifying urine samples from patients with urological symptoms. This pilot study includes 155 men presenting to urology clinics, 58 were diagnosed with prostate cancer, 24 with bladder cancer and 73 with haematuria and or poor stream, without cancer. Principal component analysis (PCA) was applied to assess the discrimination achieved, while linear discriminant analysis (LDA) and support vector machine (SVM) were used as statistical models for sample classification. Leave-one-out cross-validation (LOOCV), repeated 10-fold cross-validation (10FoldCV), repeated double cross-validation (DoubleCV) and Monte Carlo permutations were applied to assess performance. Significant separation was found between prostate cancer and control samples, bladder cancer and controls and between bladder and prostate cancer samples. For prostate cancer diagnosis, the GC/SVM system classified samples with 95% sensitivity and 96% specificity after LOOCV. For bladder cancer diagnosis, the SVM reported 96% sensitivity and 100% specificity after LOOCV, while the DoubleCV reported 87% sensitivity and 99% specificity, with SVM showing 78% and 98% sensitivity between prostate and bladder cancer samples. Evaluation of the results of the Monte Carlo permutation of class labels obtained chance-like accuracy values around 50% suggesting the observed results for bladder cancer and prostate cancer detection are not due to over fitting. The results of the pilot study presented here indicate that the GC system is able to successfully identify patterns that allow classification of urine samples from patients with urological cancers. An accurate diagnosis based on urine samples would reduce the number of negative prostate biopsies performed, and the frequency of surveillance cystoscopy for bladder cancer patients. Larger cohort studies are planned to investigate the potential of this system. Future work may lead to non-invasive breath analyses for diagnosing urological conditions. PMID:26865331

  15. Capacity of the generalized PPM channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Klimesh, Matt; McEliece, Bob; Moision, Bruce

    2004-01-01

    We show the capacity of a generalized pulse-position-modulation (PPM) channel, where the input vectors may be any set that allows a transitive group of coordinate permutations, is achieved by a uniform input distribution.

  16. PBOOST: a GPU-based tool for parallel permutation tests in genome-wide association studies.

    PubMed

    Yang, Guangyuan; Jiang, Wei; Yang, Qiang; Yu, Weichuan

    2015-05-01

    The importance of testing associations allowing for interactions has been demonstrated by Marchini et al. (2005). A fast method detecting associations allowing for interactions has been proposed by Wan et al. (2010a). The method is based on likelihood ratio test with the assumption that the statistic follows the χ(2) distribution. Many single nucleotide polymorphism (SNP) pairs with significant associations allowing for interactions have been detected using their method. However, the assumption of χ(2) test requires the expected values in each cell of the contingency table to be at least five. This assumption is violated in some identified SNP pairs. In this case, likelihood ratio test may not be applicable any more. Permutation test is an ideal approach to checking the P-values calculated in likelihood ratio test because of its non-parametric nature. The P-values of SNP pairs having significant associations with disease are always extremely small. Thus, we need a huge number of permutations to achieve correspondingly high resolution for the P-values. In order to investigate whether the P-values from likelihood ratio tests are reliable, a fast permutation tool to accomplish large number of permutations is desirable. We developed a permutation tool named PBOOST. It is based on GPU with highly reliable P-value estimation. By using simulation data, we found that the P-values from likelihood ratio tests will have relative error of >100% when 50% cells in the contingency table have expected count less than five or when there is zero expected count in any of the contingency table cells. In terms of speed, PBOOST completed 10(7) permutations for a single SNP pair from the Wellcome Trust Case Control Consortium (WTCCC) genome data (Wellcome Trust Case Control Consortium, 2007) within 1 min on a single Nvidia Tesla M2090 device, while it took 60 min in a single CPU Intel Xeon E5-2650 to finish the same task. More importantly, when simultaneously testing 256 SNP pairs for 10(7) permutations, our tool took only 5 min, while the CPU program took 10 h. By permuting on a GPU cluster consisting of 40 nodes, we completed 10(12) permutations for all 280 SNP pairs reported with P-values smaller than 1.6 × 10⁻¹² in the WTCCC datasets in 1 week. The source code and sample data are available at http://bioinformatics.ust.hk/PBOOST.zip. gyang@ust.hk; eeyu@ust.hk Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Classification based upon gene expression data: bias and precision of error rates.

    PubMed

    Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L

    2007-06-01

    Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp

  18. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    PubMed Central

    Kuai, Moshen; Cheng, Gang; Li, Yong

    2018-01-01

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively. PMID:29510569

  19. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS.

    PubMed

    Kuai, Moshen; Cheng, Gang; Pang, Yusong; Li, Yong

    2018-03-05

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

  20. Value Focused Thinking Applications to Supervised Pattern Classification With Extensions to Hyperspectral Anomaly Detection Algorithms

    DTIC Science & Technology

    2015-03-26

    performing. All reasonable permutations of factors will be used to develop a multitude of unique combinations. These combinations are considered different...are seen below (Duda et al., 2001). Entropy impurity: () = −�P�ωj�log2P(ωj) j (9) Gini impurity: () =�()�� = 1 2 ∗ [1...proportion of one class to another approaches 0.5, the impurity measure reaches its maximum, which for Entropy is 1.0, while it is 0.5 for Gini and

  1. Hereditary non-polyposis colorectal cancer/Lynch syndrome in three dimensions.

    PubMed

    Kravochuck, Sara E; Church, James M

    2017-12-01

    Hereditary non-polyposis colorectal cancer (HNPCC) is defined by family history, and Lynch syndrome (LS) is defined genetically. However, universal tumour testing is now increasingly used to screen for patients with defective mismatch repair. This mixing of the results of family history, tumour testing and germline testing produces multiple permutations and combinations that can foster confusion. We wanted to clarify hereditary colorectal cancer using the three dimensions of classification: family history, tumour testing and germline testing. Family history (Amsterdam I or II criteria versus not Amsterdam criteria) was used to define patients and families with HNPCC. Tumour testing and germline testing were then performed to sub-classify patients and families. The permutations of these classifications are applied to our registry. There were 234 HNPCC families: 129 had LS of which 55 were three-dimensional Lynch (family history, tumour testing and germline testing), 66 were two-dimensional Lynch and eight were one-dimensional Lynch. A total of 10 families had tumour Lynch (tumours with microsatellite instability or loss of expression of a mismatch repair protein but an Amsterdam-negative family and negative germline testing), five were Lynch like (Amsterdam-positive family, tumours with microsatellite instability or loss of expression of a mismatch repair protein on immunohistochemistry but negative germline testing), 26 were familial colorectal cancer type X and 95 were HNPCC. Hereditary colorectal cancer can be confusing. Sorting families in three dimensions can clarify the confusion and may direct further testing and, ultimately, surveillance. © 2016 Royal Australasian College of Surgeons.

  2. Evaluating Support for the Current Classification of Eukaryotic Diversity

    PubMed Central

    Parfrey, Laura Wegener; Barbero, Erika; Lasser, Elyse; Dunthorn, Micah; Bhattacharya, Debashish; Patterson, David J; Katz, Laura A

    2006-01-01

    Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. PMID:17194223

  3. Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling

    NASA Astrophysics Data System (ADS)

    Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin

    2018-01-01

    In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.

  4. Novel permutation measures for image encryption algorithms

    NASA Astrophysics Data System (ADS)

    Abd-El-Hafiz, Salwa K.; AbdElHaleem, Sherif H.; Radwan, Ahmed G.

    2016-10-01

    This paper proposes two measures for the evaluation of permutation techniques used in image encryption. First, a general mathematical framework for describing the permutation phase used in image encryption is presented. Using this framework, six different permutation techniques, based on chaotic and non-chaotic generators, are described. The two new measures are, then, introduced to evaluate the effectiveness of permutation techniques. These measures are (1) Percentage of Adjacent Pixels Count (PAPC) and (2) Distance Between Adjacent Pixels (DBAP). The proposed measures are used to evaluate and compare the six permutation techniques in different scenarios. The permutation techniques are applied on several standard images and the resulting scrambled images are analyzed. Moreover, the new measures are used to compare the permutation algorithms on different matrix sizes irrespective of the actual parameters used in each algorithm. The analysis results show that the proposed measures are good indicators of the effectiveness of the permutation technique.

  5. Protein Kinase Classification with 2866 Hidden Markov Models and One Support Vector Machine

    NASA Technical Reports Server (NTRS)

    Weber, Ryan; New, Michael H.; Fonda, Mark (Technical Monitor)

    2002-01-01

    The main application considered in this paper is predicting true kinases from randomly permuted kinases that share the same length and amino acid distributions as the true kinases. Numerous methods already exist for this classification task, such as HMMs, motif-matchers, and sequence comparison algorithms. We build on some of these efforts by creating a vector from the output of thousands of structurally based HMMs, created offline with Pfam-A seed alignments using SAM-T99, which then must be combined into an overall classification for the protein. Then we use a Support Vector Machine for classifying this large ensemble Pfam-Vector, with a polynomial and chisquared kernel. In particular, the chi-squared kernel SVM performs better than the HMMs and better than the BLAST pairwise comparisons, when predicting true from false kinases in some respects, but no one algorithm is best for all purposes or in all instances so we consider the particular strengths and weaknesses of each.

  6. Blocks in cycles and k-commuting permutations.

    PubMed

    Moreno, Rutilo; Rivera, Luis Manuel

    2016-01-01

    We introduce and study k -commuting permutations. One of our main results is a characterization of permutations that k -commute with a given permutation. Using this characterization, we obtain formulas for the number of permutations that k -commute with a permutation [Formula: see text], for some cycle types of [Formula: see text]. Our enumerative results are related with integer sequences in "The On-line Encyclopedia of Integer Sequences", and in some cases provide new interpretations for such sequences.

  7. Fast algorithms for transforming back and forth between a signed permutation and its equivalent simple permutation.

    PubMed

    Gog, Simon; Bader, Martin

    2008-10-01

    The problem of sorting signed permutations by reversals is a well-studied problem in computational biology. The first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995. The algorithm was improved several times, and nowadays the most efficient algorithm has a subquadratic running time. Simple permutations played an important role in the development of these algorithms. Although the latest result of Tannier et al. does not require simple permutations, the preliminary version of their algorithm as well as the first polynomial time algorithm of Hannenhalli and Pevzner use the structure of simple permutations. More precisely, the latter algorithms require a precomputation that transforms a permutation into an equivalent simple permutation. To the best of our knowledge, all published algorithms for this transformation have at least a quadratic running time. For further investigations on genome rearrangement problems, the existence of a fast algorithm for the transformation could be crucial. Another important task is the back transformation, i.e. if we have a sorting on the simple permutation, transform it into a sorting on the original permutation. Again, the naive approach results in an algorithm with quadratic running time. In this paper, we present a linear time algorithm for transforming a permutation into an equivalent simple permutation, and an O(n log n) algorithm for the back transformation of the sorting sequence.

  8. Security Analysis of Some Diffusion Mechanisms Used in Chaotic Ciphers

    NASA Astrophysics Data System (ADS)

    Zhang, Leo Yu; Zhang, Yushu; Liu, Yuansheng; Yang, Anjia; Chen, Guanrong

    As a variant of the substitution-permutation network, the permutation-diffusion structure has received extensive attention in the field of chaotic cryptography over the last three decades. Because of the high implementation speed and nonlinearity over GF(2), the Galois field of two elements, mixing modulo addition/multiplication and Exclusive OR becomes very popular in various designs to achieve the desired diffusion effect. This paper reports that some diffusion mechanisms based on modulo addition/multiplication and Exclusive OR are not resistant to plaintext attacks as claimed. By cracking several recently proposed chaotic ciphers as examples, it is demonstrated that a good understanding of the strength and weakness of these crypto-primitives is crucial for designing more practical chaotic encryption algorithms in the future.

  9. A Random Variable Related to the Inversion Vector of a Partial Random Permutation

    ERIC Educational Resources Information Center

    Laghate, Kavita; Deshpande, M. N.

    2005-01-01

    In this article, we define the inversion vector of a permutation of the integers 1, 2,..., n. We set up a particular kind of permutation, called a partial random permutation. The sum of the elements of the inversion vector of such a permutation is a random variable of interest.

  10. A transposase strategy for creating libraries of circularly permuted proteins.

    PubMed

    Mehta, Manan M; Liu, Shirley; Silberg, Jonathan J

    2012-05-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions.

  11. A transposase strategy for creating libraries of circularly permuted proteins

    PubMed Central

    Mehta, Manan M.; Liu, Shirley; Silberg, Jonathan J.

    2012-01-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions. PMID:22319214

  12. Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies*

    PubMed Central

    Kesavardhana, Sannula; Das, Raksha; Citron, Michael; Datta, Rohini; Ecto, Linda; Srilatha, Nonavinakere Seetharam; DiStefano, Daniel; Swoyer, Ryan; Joyce, Joseph G.; Dutta, Somnath; LaBranche, Celia C.; Montefiori, David C.; Flynn, Jessica A.; Varadarajan, Raghavan

    2017-01-01

    A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses. PMID:27879316

  13. Transport on Riemannian manifold for functional connectivity-based classification.

    PubMed

    Ng, Bernard; Dressler, Martin; Varoquaux, Gaël; Poline, Jean Baptiste; Greicius, Michael; Thirion, Bertrand

    2014-01-01

    We present a Riemannian approach for classifying fMRI connectivity patterns before and after intervention in longitudinal studies. A fundamental difficulty with using connectivity as features is that covariance matrices live on the positive semi-definite cone, which renders their elements inter-related. The implicit independent feature assumption in most classifier learning algorithms is thus violated. In this paper, we propose a matrix whitening transport for projecting the covariance estimates onto a common tangent space to reduce the statistical dependencies between their elements. We show on real data that our approach provides significantly higher classification accuracy than directly using Pearson's correlation. We further propose a non-parametric scheme for identifying significantly discriminative connections from classifier weights. Using this scheme, a number of neuroanatomically meaningful connections are found, whereas no significant connections are detected with pure permutation testing.

  14. Finite state model and compatibility theory - New analysis tools for permutation networks

    NASA Technical Reports Server (NTRS)

    Huang, S.-T.; Tripathi, S. K.

    1986-01-01

    A simple model to describe the fundamental operation theory of shuffle-exchange-type permutation networks, the finite permutation machine (FPM), is described, and theorems which transform the control matrix result to a continuous compatible vector result are developed. It is found that only 2n-1 shuffle exchange passes are necessary, and that 3n-3 passes are sufficient, to realize all permutations, reducing the sufficient number of passes by two from previous results. The flexibility of the approach is demonstrated by the description of a stack permutation machine (SPM) which can realize all permutations, and by showing that the FPM corresponding to the Benes (1965) network belongs to the SPM. The FPM corresponding to the network with two cascaded reverse-exchange networks is found to realize all permutations, and a simple mechanism to verify several equivalence relationships of various permutation networks is discussed.

  15. Sorting permutations by prefix and suffix rearrangements.

    PubMed

    Lintzmayer, Carla Negri; Fertin, Guillaume; Dias, Zanoni

    2017-02-01

    Some interesting combinatorial problems have been motivated by genome rearrangements, which are mutations that affect large portions of a genome. When we represent genomes as permutations, the goal is to transform a given permutation into the identity permutation with the minimum number of rearrangements. When they affect segments from the beginning (respectively end) of the permutation, they are called prefix (respectively suffix) rearrangements. This paper presents results for rearrangement problems that involve prefix and suffix versions of reversals and transpositions considering unsigned and signed permutations. We give 2-approximation and ([Formula: see text])-approximation algorithms for these problems, where [Formula: see text] is a constant divided by the number of breakpoints (pairs of consecutive elements that should not be consecutive in the identity permutation) in the input permutation. We also give bounds for the diameters concerning these problems and provide ways of improving the practical results of our algorithms.

  16. Diagnostic index of 3D osteoarthritic changes in TMJ condylar morphology

    NASA Astrophysics Data System (ADS)

    Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João. Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia

    2015-03-01

    The aim of this study was to investigate imaging statistical approaches for classifying 3D osteoarthritic morphological variations among 169 Temporomandibular Joint (TMJ) condyles. Cone beam Computed Tomography (CBCT) scans were acquired from 69 patients with long-term TMJ Osteoarthritis (OA) (39.1 ± 15.7 years), 15 patients at initial diagnosis of OA (44.9 ± 14.8 years) and 7 healthy controls (43 ± 12.4 years). 3D surface models of the condyles were constructed and Shape Correspondence was used to establish correspondent points on each model. The statistical framework included a multivariate analysis of covariance (MANCOVA) and Direction-Projection- Permutation (DiProPerm) for testing statistical significance of the differences between healthy control and the OA group determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering (HAC) was then conducted. Condylar morphology in OA and healthy subjects varied widely. Compared with healthy controls, OA average condyle was statistically significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis (p < 0.05). It was observed areas of 3.88 mm bone resorption at the superior surface and 3.10 mm bone apposition at the anterior aspect of the long-term OA average model. 1000 permutation statistics of DiProPerm supported a significant difference between the healthy control group and OA group (t = 6.7, empirical p-value = 0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition.

  17. A Reversible Logical Circuit Synthesis Algorithm Based on Decomposition of Cycle Representations of Permutations

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Li, Zhiqiang; Zhang, Gaoman; Pan, Suhan; Zhang, Wei

    2018-05-01

    A reversible function is isomorphic to a permutation and an arbitrary permutation can be represented by a series of cycles. A new synthesis algorithm for 3-qubit reversible circuits was presented. It consists of two parts, the first part used the Number of reversible function's Different Bits (NDBs) to decide whether the NOT gate should be added to decrease the Hamming distance of the input and output vectors; the second part was based on the idea of exploring properties of the cycle representation of permutations, decomposed the cycles to make the permutation closer to the identity permutation and finally turn into the identity permutation, it was realized by using totally controlled Toffoli gates with positive and negative controls.

  18. Conditional Bounds on Polarization Transfer

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Sorensen, O. W.

    The implications of constraints on unitary transformations of spin operators with respect to the accessible regions of Liouville space are analyzed. Specifically, the effects of spin-permutation symmetry on the unitary propagators are investigated. The influence of S2 and S3 propagator symmetry on two-dimensional bounds for F z = Σ Ni=1 I iz ↔ G z = Σ Mj=1 S jz polarization transfer in IS and I 2S spin- {1}/{2} systems is examined in detail. One result is that the maximum achievable F z ↔ G z polarization transfer is not reduced by permutation symmetry among the spins. For I 2S spin systems, S3 symmetry in the unitary propagator is shown to significantly reduce the accessible region in the 2D F z-S z Liouville subspace compared to the case restricted by unitarity alone. That result is compared with transformations under symmetric dipolar and scalar J coupling as well as shift and RF interactions. An important practical implication is that the refined spin thermodynamic theory of Levitt, Suter, and Ernst ( J. Chem. Phys.84, 4243, 1986) for cross polarization in solid-state NMR does not predict experimental outcomes incompatible with constraints of unitarity and spin-permutation symmetry.

  19. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  20. Classification of Partial Discharge Signals by Combining Adaptive Local Iterative Filtering and Entropy Features

    PubMed Central

    Morison, Gordon; Boreham, Philip

    2018-01-01

    Electromagnetic Interference (EMI) is a technique for capturing Partial Discharge (PD) signals in High-Voltage (HV) power plant apparatus. EMI signals can be non-stationary which makes their analysis difficult, particularly for pattern recognition applications. This paper elaborates upon a previously developed software condition-monitoring model for improved EMI events classification based on time-frequency signal decomposition and entropy features. The idea of the proposed method is to map multiple discharge source signals captured by EMI and labelled by experts, including PD, from the time domain to a feature space, which aids in the interpretation of subsequent fault information. Here, instead of using only one permutation entropy measure, a more robust measure, called Dispersion Entropy (DE), is added to the feature vector. Multi-Class Support Vector Machine (MCSVM) methods are utilized for classification of the different discharge sources. Results show an improved classification accuracy compared to previously proposed methods. This yields to a successful development of an expert’s knowledge-based intelligent system. Since this method is demonstrated to be successful with real field data, it brings the benefit of possible real-world application for EMI condition monitoring. PMID:29385030

  1. Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags

    NASA Astrophysics Data System (ADS)

    ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu

    2017-05-01

    Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.

  2. Decryption of pure-position permutation algorithms.

    PubMed

    Zhao, Xiao-Yu; Chen, Gang; Zhang, Dan; Wang, Xiao-Hong; Dong, Guang-Chang

    2004-07-01

    Pure position permutation image encryption algorithms, commonly used as image encryption investigated in this work are unfortunately frail under known-text attack. In view of the weakness of pure position permutation algorithm, we put forward an effective decryption algorithm for all pure-position permutation algorithms. First, a summary of the pure position permutation image encryption algorithms is given by introducing the concept of ergodic matrices. Then, by using probability theory and algebraic principles, the decryption probability of pure-position permutation algorithms is verified theoretically; and then, by defining the operation system of fuzzy ergodic matrices, we improve a specific decryption algorithm. Finally, some simulation results are shown.

  3. PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries.

    PubMed

    Jones, Alicia M; Atkinson, Joshua T; Silberg, Jonathan J

    2017-01-01

    Rearrangements that alter the order of a protein's sequence are used in the lab to study protein folding, improve activity, and build molecular switches. One of the simplest ways to rearrange a protein sequence is through random circular permutation, where native protein termini are linked together and new termini are created elsewhere through random backbone fission. Transposase mutagenesis has emerged as a simple way to generate libraries encoding different circularly permuted variants of proteins. With this approach, a synthetic transposon (called a permuteposon) is randomly inserted throughout a circularized gene to generate vectors that express different permuted variants of a protein. In this chapter, we outline the protocol for constructing combinatorial libraries of circularly permuted proteins using transposase mutagenesis, and we describe the different permuteposons that have been developed to facilitate library construction.

  4. Symmetries of Chimera States

    NASA Astrophysics Data System (ADS)

    Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina

    2018-05-01

    Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.

  5. Classification of three-particle states according to an orthonormal SU(3) ⊃ SO(3) basis

    NASA Astrophysics Data System (ADS)

    del Aguila, F.

    1980-09-01

    In this paper we generalize Dragt's approach to classifying three-particle states. Using his formalism of creation and annihilation operators, we obtain explicitly a complete set of orthonormal functions YλμRLM on S5. This set of functions carries all the irreducible representations of the group SU(3) reduced according to SO(3). The YλμRLM, which are eigenvectors of the togetherness and angular momentum operators, have very simple properties under three-particle permutations. We obtain also explicitly the coefficients ''3ν'' which reduce the products of these functions.

  6. Permutation modulation for quantization and information reconciliation in CV-QKD systems

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina; Olia, Khashayar

    2017-08-01

    This paper is focused on the problem of Information Reconciliation (IR) for continuous variable Quantum Key Distribution (QKD). The main problem is quantization and assignment of labels to the samples of the Gaussian variables observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective Signal to Noise Ratio (SNR) exasperating the problem. Here we propose to use Permutation Modulation (PM) as a means of quantization of Gaussian vectors at Alice and Bob over a d-dimensional space with d ≫ 1. The goal is to achieve the necessary coding efficiency to extend the achievable range of continuous variable QKD by quantizing over larger and larger dimensions. Fractional bit rate per sample is easily achieved using PM at very reasonable computational cost. Ordered statistics is used extensively throughout the development from generation of the seed vector in PM to analysis of error rates associated with the signs of the Gaussian samples at Alice and Bob as a function of the magnitude of the observed samples at Bob.

  7. Characterization of Early Partial Seizure Onset: Frequency, Complexity and Entropy

    PubMed Central

    Jouny, Christophe C.; Bergey, Gregory K.

    2011-01-01

    Objective A clear classification of partial seizures onset features is not yet established. Complexity and entropy have been very widely used to describe dynamical systems, but a systematic evaluation of these measures to characterize partial seizures has never been performed. Methods Eighteen different measures including power in frequency bands up to 300Hz, Gabor atom density (GAD), Higuchi fractal dimension (HFD), Lempel-Ziv complexity, Shannon entropy, sample entropy, and permutation entropy, were selected to test sensitivity to partial seizure onset. Intracranial recordings from forty-five patients with mesial temporal, neocortical temporal and neocortical extratemporal seizure foci were included (331 partial seizures). Results GAD, Lempel-Ziv complexity, HFD, high frequency activity, and sample entropy were the most reliable measures to assess early seizure onset. Conclusions Increases in complexity and occurrence of high-frequency components appear to be commonly associated with early stages of partial seizure evolution from all regions. The type of measure (frequency-based, complexity or entropy) does not predict the efficiency of the method to detect seizure onset. Significance Differences between measures such as GAD and HFD highlight the multimodal nature of partial seizure onsets. Improved methods for early seizure detection may be achieved from a better understanding of these underlying dynamics. PMID:21872526

  8. Classification of echolocation clicks from odontocetes in the Southern California Bight.

    PubMed

    Roch, Marie A; Klinck, Holger; Baumann-Pickering, Simone; Mellinger, David K; Qui, Simon; Soldevilla, Melissa S; Hildebrand, John A

    2011-01-01

    This study presents a system for classifying echolocation clicks of six species of odontocetes in the Southern California Bight: Visually confirmed bottlenose dolphins, short- and long-beaked common dolphins, Pacific white-sided dolphins, Risso's dolphins, and presumed Cuvier's beaked whales. Echolocation clicks are represented by cepstral feature vectors that are classified by Gaussian mixture models. A randomized cross-validation experiment is designed to provide conditions similar to those found in a field-deployed system. To prevent matched conditions from inappropriately lowering the error rate, echolocation clicks associated with a single sighting are never split across the training and test data. Sightings are randomly permuted before assignment to folds in the experiment. This allows different combinations of the training and test data to be used while keeping data from each sighting entirely in the training or test set. The system achieves a mean error rate of 22% across 100 randomized three-fold cross-validation experiments. Four of the six species had mean error rates lower than the overall mean, with the presumed Cuvier's beaked whale clicks showing the best performance (<2% error rate). Long-beaked common and bottlenose dolphins proved the most difficult to classify, with mean error rates of 53% and 68%, respectively.

  9. Learning to Predict Combinatorial Structures

    NASA Astrophysics Data System (ADS)

    Vembu, Shankar

    2009-12-01

    The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.

  10. Visual recognition of permuted words

    NASA Astrophysics Data System (ADS)

    Rashid, Sheikh Faisal; Shafait, Faisal; Breuel, Thomas M.

    2010-02-01

    In current study we examine how letter permutation affects in visual recognition of words for two orthographically dissimilar languages, Urdu and German. We present the hypothesis that recognition or reading of permuted and non-permuted words are two distinct mental level processes, and that people use different strategies in handling permuted words as compared to normal words. A comparison between reading behavior of people in these languages is also presented. We present our study in context of dual route theories of reading and it is observed that the dual-route theory is consistent with explanation of our hypothesis of distinction in underlying cognitive behavior for reading permuted and non-permuted words. We conducted three experiments in lexical decision tasks to analyze how reading is degraded or affected by letter permutation. We performed analysis of variance (ANOVA), distribution free rank test, and t-test to determine the significance differences in response time latencies for two classes of data. Results showed that the recognition accuracy for permuted words is decreased 31% in case of Urdu and 11% in case of German language. We also found a considerable difference in reading behavior for cursive and alphabetic languages and it is observed that reading of Urdu is comparatively slower than reading of German due to characteristics of cursive script.

  11. Four applications of permutation methods to testing a single-mediator model.

    PubMed

    Taylor, Aaron B; MacKinnon, David P

    2012-09-01

    Four applications of permutation tests to the single-mediator model are described and evaluated in this study. Permutation tests work by rearranging data in many possible ways in order to estimate the sampling distribution for the test statistic. The four applications to mediation evaluated here are the permutation test of ab, the permutation joint significance test, and the noniterative and iterative permutation confidence intervals for ab. A Monte Carlo simulation study was used to compare these four tests with the four best available tests for mediation found in previous research: the joint significance test, the distribution of the product test, and the percentile and bias-corrected bootstrap tests. We compared the different methods on Type I error, power, and confidence interval coverage. The noniterative permutation confidence interval for ab was the best performer among the new methods. It successfully controlled Type I error, had power nearly as good as the most powerful existing methods, and had better coverage than any existing method. The iterative permutation confidence interval for ab had lower power than do some existing methods, but it performed better than any other method in terms of coverage. The permutation confidence interval methods are recommended when estimating a confidence interval is a primary concern. SPSS and SAS macros that estimate these confidence intervals are provided.

  12. Classification enhancement for post-stroke dementia using fuzzy neighborhood preserving analysis with QR-decomposition.

    PubMed

    Al-Qazzaz, Noor Kamal; Ali, Sawal; Ahmad, Siti Anom; Escudero, Javier

    2017-07-01

    The aim of the present study was to discriminate the electroencephalogram (EEG) of 5 patients with vascular dementia (VaD), 15 patients with stroke-related mild cognitive impairment (MCI), and 15 control normal subjects during a working memory (WM) task. We used independent component analysis (ICA) and wavelet transform (WT) as a hybrid preprocessing approach for EEG artifact removal. Three different features were extracted from the cleaned EEG signals: spectral entropy (SpecEn), permutation entropy (PerEn) and Tsallis entropy (TsEn). Two classification schemes were applied - support vector machine (SVM) and k-nearest neighbors (kNN) - with fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR) as a dimensionality reduction technique. The FNPAQR dimensionality reduction technique increased the SVM classification accuracy from 82.22% to 90.37% and from 82.6% to 86.67% for kNN. These results suggest that FNPAQR consistently improves the discrimination of VaD, MCI patients and control normal subjects and it could be a useful feature selection to help the identification of patients with VaD and MCI.

  13. A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.

    PubMed

    Zhou, Shenghan; Qian, Silin; Chang, Wenbing; Xiao, Yiyong; Cheng, Yang

    2018-06-14

    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available.

  14. Circular Permutation of a Chaperonin Protein: Biophysics and Application to Nanotechnology

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; Chan, Suzanne; Li, Yi-Fen; McMillan, R. Andrew; Trent, Jonathan

    2004-01-01

    We have designed five circular permutants of a chaperonin protein derived from the hyperthermophilic organism Sulfolobus shibatae. These permuted proteins were expressed in E. coli and are well-folded. Furthermore, all the permutants assemble into 18-mer double rings of the same form as the wild-type protein. We characterized the thermodynamics of folding for each permutant by both guanidine denaturation and differential scanning calorimetry. We also examined the assembly of chaperonin rings into higher order structures that may be used as nanoscale templates. The results show that circular permutation can be used to tune the thermodynamic properties of a protein template as well as facilitating the fusion of peptides, binding proteins or enzymes onto nanostructured templates.

  15. The structure of a thermophilic kinase shapes fitness upon random circular permutation

    PubMed Central

    Jones, Alicia M.; Mehta, Manan M.; Thomas, Emily E.; Atkinson, Joshua T.; Segall-Shapiro, Thomas H.; Liu, Shirley; Silberg, Jonathan J.

    2016-01-01

    Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement where native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein’s functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AK with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and they reveal a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection. PMID:26976658

  16. The Structure of a Thermophilic Kinase Shapes Fitness upon Random Circular Permutation.

    PubMed

    Jones, Alicia M; Mehta, Manan M; Thomas, Emily E; Atkinson, Joshua T; Segall-Shapiro, Thomas H; Liu, Shirley; Silberg, Jonathan J

    2016-05-20

    Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement in which native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein's functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AKs with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and it reveals a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection.

  17. Teaching Tip: When a Matrix and Its Inverse Are Stochastic

    ERIC Educational Resources Information Center

    Ding, J.; Rhee, N. H.

    2013-01-01

    A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.

  18. Permutation-based inference for the AUC: A unified approach for continuous and discontinuous data.

    PubMed

    Pauly, Markus; Asendorf, Thomas; Konietschke, Frank

    2016-11-01

    We investigate rank-based studentized permutation methods for the nonparametric Behrens-Fisher problem, that is, inference methods for the area under the ROC curve. We hereby prove that the studentized permutation distribution of the Brunner-Munzel rank statistic is asymptotically standard normal, even under the alternative. Thus, incidentally providing the hitherto missing theoretical foundation for the Neubert and Brunner studentized permutation test. In particular, we do not only show its consistency, but also that confidence intervals for the underlying treatment effects can be computed by inverting this permutation test. In addition, we derive permutation-based range-preserving confidence intervals. Extensive simulation studies show that the permutation-based confidence intervals appear to maintain the preassigned coverage probability quite accurately (even for rather small sample sizes). For a convenient application of the proposed methods, a freely available software package for the statistical software R has been developed. A real data example illustrates the application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficient Blockwise Permutation Tests Preserving Exchangeability

    PubMed Central

    Zhou, Chunxiao; Zwilling, Chris E.; Calhoun, Vince D.; Wang, Michelle Y.

    2014-01-01

    In this paper, we present a new blockwise permutation test approach based on the moments of the test statistic. The method is of importance to neuroimaging studies. In order to preserve the exchangeability condition required in permutation tests, we divide the entire set of data into certain exchangeability blocks. In addition, computationally efficient moments-based permutation tests are performed by approximating the permutation distribution of the test statistic with the Pearson distribution series. This involves the calculation of the first four moments of the permutation distribution within each block and then over the entire set of data. The accuracy and efficiency of the proposed method are demonstrated through simulated experiment on the magnetic resonance imaging (MRI) brain data, specifically the multi-site voxel-based morphometry analysis from structural MRI (sMRI). PMID:25289113

  20. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    PubMed Central

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  1. SAR processing on the MPP

    NASA Technical Reports Server (NTRS)

    Batcher, K. E.; Eddey, E. E.; Faiss, R. O.; Gilmore, P. A.

    1981-01-01

    The processing of synthetic aperture radar (SAR) signals using the massively parallel processor (MPP) is discussed. The fast Fourier transform convolution procedures employed in the algorithms are described. The MPP architecture comprises an array unit (ARU) which processes arrays of data; an array control unit which controls the operation of the ARU and performs scalar arithmetic; a program and data management unit which controls the flow of data; and a unique staging memory (SM) which buffers and permutes data. The ARU contains a 128 by 128 array of bit-serial processing elements (PE). Two-by-four surarrays of PE's are packaged in a custom VLSI HCMOS chip. The staging memory is a large multidimensional-access memory which buffers and permutes data flowing with the system. Efficient SAR processing is achieved via ARU communication paths and SM data manipulation. Real time processing capability can be realized via a multiple ARU, multiple SM configuration.

  2. Consultation sequencing of a hospital with multiple service points using genetic programming

    NASA Astrophysics Data System (ADS)

    Morikawa, Katsumi; Takahashi, Katsuhiko; Nagasawa, Keisuke

    2018-07-01

    A hospital with one consultation room operated by a physician and several examination rooms is investigated. Scheduled patients and walk-ins arrive at the hospital, each patient goes to the consultation room first, and some of them visit other service points before consulting the physician again. The objective function consists of the sum of three weighted average waiting times. The problem of sequencing patients for consultation is focused. To alleviate the stress of waiting, the consultation sequence is displayed. A dispatching rule is used to decide the sequence, and best rules are explored by genetic programming (GP). The simulation experiments indicate that the rules produced by GP can be reduced to simple permutations of queues, and the best permutation depends on the weight used in the objective function. This implies that a balanced allocation of waiting times can be achieved by ordering the priority among three queues.

  3. A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Wang, Siwei; Zhang, Yingqian; Luo, Chao

    2018-04-01

    A novel image encryption algorithm is proposed that combines the SHA-3 hash function and two chaotic systems: the hyper-chaotic Lorenz and Chen systems. First, 384 bit keystream hash values are obtained by applying SHA-3 to plaintext. The sensitivity of the SHA-3 algorithm and chaotic systems ensures the effect of a one-time pad. Second, the color image is expanded into three-dimensional space. During permutation, it undergoes plane-plane displacements in the x, y and z dimensions. During diffusion, we use the adjacent pixel dataset and corresponding chaotic value to encrypt each pixel. Finally, the structure of alternating between permutation and diffusion is applied to enhance the level of security. Furthermore, we design techniques to improve the algorithm's encryption speed. Our experimental simulations show that the proposed cryptosystem achieves excellent encryption performance and can resist brute-force, statistical, and chosen-plaintext attacks.

  4. Learning molecular energies using localized graph kernels.

    PubMed

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-21

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  5. Learning molecular energies using localized graph kernels

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  6. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  7. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  8. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  9. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  10. Image encryption using a synchronous permutation-diffusion technique

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi; Altameem, Ayman; Lee, Malrey

    2017-03-01

    In the past decade, the interest on digital images security has been increased among scientists. A synchronous permutation and diffusion technique is designed in order to protect gray-level image content while sending it through internet. To implement the proposed method, two-dimensional plain-image is converted to one dimension. Afterward, in order to reduce the sending process time, permutation and diffusion steps for any pixel are performed in the same time. The permutation step uses chaotic map and deoxyribonucleic acid (DNA) to permute a pixel, while diffusion employs DNA sequence and DNA operator to encrypt the pixel. Experimental results and extensive security analyses have been conducted to demonstrate the feasibility and validity of this proposed image encryption method.

  11. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines

    PubMed Central

    Neftci, Emre O.; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning. PMID:28680387

  12. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.

    PubMed

    Neftci, Emre O; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.

  13. A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection

    PubMed Central

    Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B

    2015-01-01

    Summary We describe a simple, computationally effcient, permutation-based procedure for selecting the penalty parameter in LASSO penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), Scaled Sparse Linear Regression, and a selection method based on recently developed testing procedures for the LASSO. PMID:26243050

  14. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  15. Overlap Cycles for Permutations: Necessary and Sufficient Conditions

    DTIC Science & Technology

    2013-09-19

    for Weak Orders, To appear in SIAM Journal of Discrete Math . [9] G. Hurlbert and G. Isaak, Equivalence class universal cycles for permutations, Discrete ... Math . 149 (1996), pp. 123–129. [10] J. R. Johnson, Universal cycles for permutations, Discrete Math . 309 (2009), pp. 5264– 5270. [11] E. A. Ragland

  16. Multi-response permutation procedure as an alternative to the analysis of variance: an SPSS implementation.

    PubMed

    Cai, Li

    2006-02-01

    A permutation test typically requires fewer assumptions than does a comparable parametric counterpart. The multi-response permutation procedure (MRPP) is a class of multivariate permutation tests of group difference useful for the analysis of experimental data. However, psychologists seldom make use of the MRPP in data analysis, in part because the MRPP is not implemented in popular statistical packages that psychologists use. A set of SPSS macros implementing the MRPP test is provided in this article. The use of the macros is illustrated by analyzing example data sets.

  17. Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs

    ERIC Educational Resources Information Center

    Eudey, T. Lynn; Kerr, Joshua D.; Trumbo, Bruce E.

    2010-01-01

    Null distributions of permutation tests for two-sample, paired, and block designs are simulated using the R statistical programming language. For each design and type of data, permutation tests are compared with standard normal-theory and nonparametric tests. These examples (often using real data) provide for classroom discussion use of metrics…

  18. Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins

    PubMed Central

    Liu, Yen-Yi; Wang, Li-Fen; Hwang, Jenn-Kang; Lyu, Ping-Chiang

    2012-01-01

    Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology. PMID:22359629

  19. Learning molecular energies using localized graph kernels

    DOE PAGES

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    2017-03-21

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  20. Graph Matching: Relax at Your Own Risk.

    PubMed

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo

    2016-01-01

    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.

  1. Learning molecular energies using localized graph kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  2. Circular permutation of a WW domain: Folding still occurs after excising the turn of the folding-nucleating hairpin

    PubMed Central

    Kier, Brandon L.; Anderson, Jordan M.; Andersen, Niels H.

    2014-01-01

    A hyperstable Pin1 WW domain has been circularly permuted via excision of the fold-nucleating turn; it still folds to form the native three-strand sheet and hydrophobic core features. Multiprobe folding dynamics studies of the normal and circularly permuted sequences, as well as their constituent hairpin fragments and comparable-length β-strand-loop-β-strand models, indicate 2-state folding for all topologies. N-terminal hairpin formation is the fold nucleating event for the wild-type sequence; the slower folding circular permutant has a more distributed folding transition state. PMID:24350581

  3. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity.

    PubMed

    Mefford, Melissa A; Zappulla, David C

    2016-01-15

    Telomerase is a specialized ribonucleoprotein complex that extends the 3' ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5' and 3' ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3' of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity

    PubMed Central

    Mefford, Melissa A.

    2015-01-01

    Telomerase is a specialized ribonucleoprotein complex that extends the 3′ ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5′ and 3′ ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3′ of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics. PMID:26503788

  5. Set-Based Discrete Particle Swarm Optimization Based on Decomposition for Permutation-Based Multiobjective Combinatorial Optimization Problems.

    PubMed

    Yu, Xue; Chen, Wei-Neng; Gu, Tianlong; Zhang, Huaxiang; Yuan, Huaqiang; Kwong, Sam; Zhang, Jun

    2018-07-01

    This paper studies a specific class of multiobjective combinatorial optimization problems (MOCOPs), namely the permutation-based MOCOPs. Many commonly seen MOCOPs, e.g., multiobjective traveling salesman problem (MOTSP), multiobjective project scheduling problem (MOPSP), belong to this problem class and they can be very different. However, as the permutation-based MOCOPs share the inherent similarity that the structure of their search space is usually in the shape of a permutation tree, this paper proposes a generic multiobjective set-based particle swarm optimization methodology based on decomposition, termed MS-PSO/D. In order to coordinate with the property of permutation-based MOCOPs, MS-PSO/D utilizes an element-based representation and a constructive approach. Through this, feasible solutions under constraints can be generated step by step following the permutation-tree-shaped structure. And problem-related heuristic information is introduced in the constructive approach for efficiency. In order to address the multiobjective optimization issues, the decomposition strategy is employed, in which the problem is converted into multiple single-objective subproblems according to a set of weight vectors. Besides, a flexible mechanism for diversity control is provided in MS-PSO/D. Extensive experiments have been conducted to study MS-PSO/D on two permutation-based MOCOPs, namely the MOTSP and the MOPSP. Experimental results validate that the proposed methodology is promising.

  6. Altering the orientation of a fused protein to the RNA-binding ribosomal protein L7Ae and its derivatives through circular permutation.

    PubMed

    Ohuchi, Shoji J; Sagawa, Fumihiko; Sakamoto, Taiichi; Inoue, Tan

    2015-10-23

    RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. The results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Altering the orientation of a fused protein to the RNA-binding ribosomal protein L7Ae and its derivatives through circular permutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohuchi, Shoji J.; Sagawa, Fumihiko; Sakamoto, Taiichi

    RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. Themore » results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique.« less

  8. Permutation inference for the general linear model

    PubMed Central

    Winkler, Anderson M.; Ridgway, Gerard R.; Webster, Matthew A.; Smith, Stephen M.; Nichols, Thomas E.

    2014-01-01

    Permutation methods can provide exact control of false positives and allow the use of non-standard statistics, making only weak assumptions about the data. With the availability of fast and inexpensive computing, their main limitation would be some lack of flexibility to work with arbitrary experimental designs. In this paper we report on results on approximate permutation methods that are more flexible with respect to the experimental design and nuisance variables, and conduct detailed simulations to identify the best method for settings that are typical for imaging research scenarios. We present a generic framework for permutation inference for complex general linear models (glms) when the errors are exchangeable and/or have a symmetric distribution, and show that, even in the presence of nuisance effects, these permutation inferences are powerful while providing excellent control of false positives in a wide range of common and relevant imaging research scenarios. We also demonstrate how the inference on glm parameters, originally intended for independent data, can be used in certain special but useful cases in which independence is violated. Detailed examples of common neuroimaging applications are provided, as well as a complete algorithm – the “randomise” algorithm – for permutation inference with the glm. PMID:24530839

  9. Modulation of a protein free-energy landscape by circular permutation.

    PubMed

    Radou, Gaël; Enciso, Marta; Krivov, Sergei; Paci, Emanuele

    2013-11-07

    Circular permutations usually retain the native structure and function of a protein while inevitably perturbing its folding dynamics. By using simulations with a structure-based model and a rigorous methodology to determine free-energy surfaces from trajectories, we evaluate the effect of a circular permutation on the free-energy landscape of the protein T4 lysozyme. We observe changes which, although subtle, largely affect the cooperativity between the two subdomains. Such a change in cooperativity has been previously experimentally observed and recently also characterized using single molecule optical tweezers and the Crooks relation. The free-energy landscapes show that both the wild type and circular permutant have an on-pathway intermediate, previously experimentally characterized, in which one of the subdomains is completely formed. The landscapes, however, differ in the position of the rate-limiting step for folding, which occurs before the intermediate in the wild type and after in the circular permutant. This shift of transition state explains the observed change in the cooperativity. The underlying free-energy landscape thus provides a microscopic description of the folding dynamics and the connection between circular permutation and the loss of cooperativity experimentally observed.

  10. Toward a general theory of conical intersections in systems of identical nuclei

    NASA Astrophysics Data System (ADS)

    Keating, Sean P.; Mead, C. Alden

    1987-02-01

    It has been shown previously that the Herzberg-Longuet-Higgins sign change produced in Born-Oppenheimer electronic wave functions when the nuclei traverse a closed path around a conical intersection has implications for the symmetry of wave functions under permutations of identical nuclei. For systems of three or four identical nuclei, there are special features present which have facilitated the detailed analysis. The present paper reports progress toward a general theory for systems of n nuclei. For n=3 or 4, the two key functions which locate conical intersections and define compensating phase factors can conveniently be defined so as to transform under permutations according to a two-dimensional irreducible representation of the permutation group. Since such representations do not exist for n>4, we have chosen to develop a formalism in terms of lab-fixed electronic basis functions, and we show how to define the two key functions in principle. The functions so defined both turn out to be totally symmetric under permutations. We show how they can be used to define compensating phase factors so that all modified electronic wave functions are either totally symmetric or totally antisymmetric under permutations. A detailed analysis is made to cyclic permutations in the neighborhood of Dnh symmetry, which can be extended by continuity arguments to more general configurations, and criteria are obtained for sign changes. There is a qualitative discussion of the treatment of more general permutations.

  11. Permutation parity machines for neural cryptography.

    PubMed

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-06-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  12. Inference for Distributions over the Permutation Group

    DTIC Science & Technology

    2008-05-01

    world problems, such as voting , ranking, and data association. Representing uncertainty over permutations is challenging, since there are n...problems, such as voting , ranking, and data association. Representing uncertainty over permutations is challenging, since there are n! possibilities...the Krone ker (or Tensor ) Produ t Representation.In general, the Krone ker produ t representation is redu ible, and so it ande omposed into a dire t

  13. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  14. Permutation parity machines for neural cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, Oscar Mauricio; Escuela de Ingenieria Electrica, Electronica y Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga; Zimmermann, Karl-Heinz

    2010-06-15

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  15. Sorting signed permutations by short operations.

    PubMed

    Galvão, Gustavo Rodrigues; Lee, Orlando; Dias, Zanoni

    2015-01-01

    During evolution, global mutations may alter the order and the orientation of the genes in a genome. Such mutations are referred to as rearrangement events, or simply operations. In unichromosomal genomes, the most common operations are reversals, which are responsible for reversing the order and orientation of a sequence of genes, and transpositions, which are responsible for switching the location of two contiguous portions of a genome. The problem of computing the minimum sequence of operations that transforms one genome into another - which is equivalent to the problem of sorting a permutation into the identity permutation - is a well-studied problem that finds application in comparative genomics. There are a number of works concerning this problem in the literature, but they generally do not take into account the length of the operations (i.e. the number of genes affected by the operations). Since it has been observed that short operations are prevalent in the evolution of some species, algorithms that efficiently solve this problem in the special case of short operations are of interest. In this paper, we investigate the problem of sorting a signed permutation by short operations. More precisely, we study four flavors of this problem: (i) the problem of sorting a signed permutation by reversals of length at most 2; (ii) the problem of sorting a signed permutation by reversals of length at most 3; (iii) the problem of sorting a signed permutation by reversals and transpositions of length at most 2; and (iv) the problem of sorting a signed permutation by reversals and transpositions of length at most 3. We present polynomial-time solutions for problems (i) and (iii), a 5-approximation for problem (ii), and a 3-approximation for problem (iv). Moreover, we show that the expected approximation ratio of the 5-approximation algorithm is not greater than 3 for random signed permutations with more than 12 elements. Finally, we present experimental results that show that the approximation ratios of the approximation algorithms cannot be smaller than 3. In particular, this means that the approximation ratio of the 3-approximation algorithm is tight.

  16. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer's disease patients.

    PubMed

    Son, Seong-Jin; Kim, Jonghoon; Park, Hyunjin

    2017-01-01

    Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer's disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint.

  17. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer’s disease patients

    PubMed Central

    Son, Seong-Jin; Kim, Jonghoon

    2017-01-01

    Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer’s disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint. PMID:28333946

  18. Determining distinct circuit in complete graphs using permutation

    NASA Astrophysics Data System (ADS)

    Karim, Sharmila; Ibrahim, Haslinda; Darus, Maizon Mohd

    2017-11-01

    A Half Butterfly Method (HBM) is a method introduced to construct the distinct circuits in complete graphs where used the concept of isomorphism. The Half Butterfly Method was applied in the field of combinatorics such as in listing permutations of n elements. However the method of determining distinct circuit using HBM for n > 4 is become tedious. Thus, in this paper, we present the method of generating distinct circuit using permutation.

  19. A Versatile Platform for Nanotechnology Based on Circular Permutation of a Chaperonin Protein

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; McMillan, Andrew; Trent, Jonathan; Chan, Suzanne; Mazzarella, Kellen; Li, Yi-Fen

    2004-01-01

    A number of protein complexes have been developed as nanoscale templates. These templates can be functionalized using the peptide sequences that bind inorganic materials. However, it is difficult to integrate peptides into a specific position within a protein template. Integrating intact proteins with desirable binding or catalytic activities is an even greater challenge. We present a general method for modifying protein templates using circular permutation so that additional peptide sequence can be added in a wide variety of specific locations. Circular permutation is a reordering of the polypeptide chain such that the original termini are joined and new termini are created elsewhere in the protein. New sequence can be joined to the protein termini without perturbing the protein structure and with minimal limitation on the size and conformation of the added sequence. We have used this approach to modify a chaperonin protein template, placing termini at five different locations distributed across the surface of the protein complex. These permutants are competent to form the double-ring structures typical of chaperonin proteins. The permuted double-rings also form the same assemblies as the unmodified protein. We fused a fluorescent protein to two representative permutants and demonstrated that it assumes its active structure and does not interfere with assembly of chaperonin double-rings.

  20. An empirical study using permutation-based resampling in meta-regression

    PubMed Central

    2012-01-01

    Background In meta-regression, as the number of trials in the analyses decreases, the risk of false positives or false negatives increases. This is partly due to the assumption of normality that may not hold in small samples. Creation of a distribution from the observed trials using permutation methods to calculate P values may allow for less spurious findings. Permutation has not been empirically tested in meta-regression. The objective of this study was to perform an empirical investigation to explore the differences in results for meta-analyses on a small number of trials using standard large sample approaches verses permutation-based methods for meta-regression. Methods We isolated a sample of randomized controlled clinical trials (RCTs) for interventions that have a small number of trials (herbal medicine trials). Trials were then grouped by herbal species and condition and assessed for methodological quality using the Jadad scale, and data were extracted for each outcome. Finally, we performed meta-analyses on the primary outcome of each group of trials and meta-regression for methodological quality subgroups within each meta-analysis. We used large sample methods and permutation methods in our meta-regression modeling. We then compared final models and final P values between methods. Results We collected 110 trials across 5 intervention/outcome pairings and 5 to 10 trials per covariate. When applying large sample methods and permutation-based methods in our backwards stepwise regression the covariates in the final models were identical in all cases. The P values for the covariates in the final model were larger in 78% (7/9) of the cases for permutation and identical for 22% (2/9) of the cases. Conclusions We present empirical evidence that permutation-based resampling may not change final models when using backwards stepwise regression, but may increase P values in meta-regression of multiple covariates for relatively small amount of trials. PMID:22587815

  1. Rank score and permutation testing alternatives for regression quantile estimates

    USGS Publications Warehouse

    Cade, B.S.; Richards, J.D.; Mielke, P.W.

    2006-01-01

    Performance of quantile rank score tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1) were evaluated by simulation for models with p = 2 and 6 predictors, moderate collinearity among predictors, homogeneous and hetero-geneous errors, small to moderate samples (n = 20–300), and central to upper quantiles (0.50–0.99). Test statistics evaluated were the conventional quantile rank score T statistic distributed as χ2 random variable with q degrees of freedom (where q parameters are constrained by H 0:) and an F statistic with its sampling distribution approximated by permutation. The permutation F-test maintained better Type I errors than the T-test for homogeneous error models with smaller n and more extreme quantiles τ. An F distributional approximation of the F statistic provided some improvements in Type I errors over the T-test for models with > 2 parameters, smaller n, and more extreme quantiles but not as much improvement as the permutation approximation. Both rank score tests required weighting to maintain correct Type I errors when heterogeneity under the alternative model increased to 5 standard deviations across the domain of X. A double permutation procedure was developed to provide valid Type I errors for the permutation F-test when null models were forced through the origin. Power was similar for conditions where both T- and F-tests maintained correct Type I errors but the F-test provided some power at smaller n and extreme quantiles when the T-test had no power because of excessively conservative Type I errors. When the double permutation scheme was required for the permutation F-test to maintain valid Type I errors, power was less than for the T-test with decreasing sample size and increasing quantiles. Confidence intervals on parameters and tolerance intervals for future predictions were constructed based on test inversion for an example application relating trout densities to stream channel width:depth.

  2. An analog scrambler for speech based on sequential permutations in time and frequency

    NASA Astrophysics Data System (ADS)

    Cox, R. V.; Jayant, N. S.; McDermott, B. J.

    Permutation of speech segments is an operation that is frequently used in the design of scramblers for analog speech privacy. In this paper, a sequential procedure for segment permutation is considered. This procedure can be extended to two dimensional permutation of time segments and frequency bands. By subjective testing it is shown that this combination gives a residual intelligibility for spoken digits of 20 percent with a delay of 256 ms. (A lower bound for this test would be 10 percent). The complexity of implementing such a system is considered and the issues of synchronization and channel equalization are addressed. The computer simulation results for the system using both real and simulated channels are examined.

  3. A 1.375-approximation algorithm for sorting by transpositions.

    PubMed

    Elias, Isaac; Hartman, Tzvika

    2006-01-01

    Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: we improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.

  4. Permutational distribution of the log-rank statistic under random censorship with applications to carcinogenicity assays.

    PubMed

    Heimann, G; Neuhaus, G

    1998-03-01

    In the random censorship model, the log-rank test is often used for comparing a control group with different dose groups. If the number of tumors is small, so-called exact methods are often applied for computing critical values from a permutational distribution. Two of these exact methods are discussed and shown to be incorrect. The correct permutational distribution is derived and studied with respect to its behavior under unequal censoring in the light of recent results proving that the permutational version and the unconditional version of the log-rank test are asymptotically equivalent even under unequal censoring. The log-rank test is studied by simulations of a realistic scenario from a bioassay with small numbers of tumors.

  5. Capacity of the Generalized Pulse-Position Modulation Channel

    NASA Technical Reports Server (NTRS)

    Hamkins, J.; Klimesh, M.; McElience, R.; Moision, B.

    2005-01-01

    We show the capacity of a generalized pulse-position modulation (PPM) channel, where the input vectors may be any set that allows a transitive group of coordinate permutations, is achieved by a uniform input distribution. We derive a simple expression in terms of the Kullback Leibler distance for the binary case, and the asymptote in the PPM order. We prove a sub-additivity result for the PPM channel and use it to show PPM capacity is monotonic in the order.

  6. Estrogen pathway polymorphisms in relation to primary open angle glaucoma: An analysis accounting for gender from the United States

    PubMed Central

    Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.

    2013-01-01

    Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166

  7. Error-free holographic frames encryption with CA pixel-permutation encoding algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Xiao, Dan; Wang, Qiong-Hua

    2018-01-01

    The security of video data is necessary in network security transmission hence cryptography is technique to make video data secure and unreadable to unauthorized users. In this paper, we propose a holographic frames encryption technique based on the cellular automata (CA) pixel-permutation encoding algorithm. The concise pixel-permutation algorithm is used to address the drawbacks of the traditional CA encoding methods. The effectiveness of the proposed video encoding method is demonstrated by simulation examples.

  8. A Flexible Computational Framework Using R and Map-Reduce for Permutation Tests of Massive Genetic Analysis of Complex Traits.

    PubMed

    Mahjani, Behrang; Toor, Salman; Nettelblad, Carl; Holmgren, Sverker

    2017-01-01

    In quantitative trait locus (QTL) mapping significance of putative QTL is often determined using permutation testing. The computational needs to calculate the significance level are immense, 10 4 up to 10 8 or even more permutations can be needed. We have previously introduced the PruneDIRECT algorithm for multiple QTL scan with epistatic interactions. This algorithm has specific strengths for permutation testing. Here, we present a flexible, parallel computing framework for identifying multiple interacting QTL using the PruneDIRECT algorithm which uses the map-reduce model as implemented in Hadoop. The framework is implemented in R, a widely used software tool among geneticists. This enables users to rearrange algorithmic steps to adapt genetic models, search algorithms, and parallelization steps to their needs in a flexible way. Our work underlines the maturity of accessing distributed parallel computing for computationally demanding bioinformatics applications through building workflows within existing scientific environments. We investigate the PruneDIRECT algorithm, comparing its performance to exhaustive search and DIRECT algorithm using our framework on a public cloud resource. We find that PruneDIRECT is vastly superior for permutation testing, and perform 2 ×10 5 permutations for a 2D QTL problem in 15 hours, using 100 cloud processes. We show that our framework scales out almost linearly for a 3D QTL search.

  9. Photographs and Committees: Activities That Help Students Discover Permutations and Combinations.

    ERIC Educational Resources Information Center

    Szydlik, Jennifer Earles

    2000-01-01

    Presents problem situations that support students when discovering the multiplication principle, permutations, combinations, Pascal's triangle, and relationships among those objects in a concrete context. (ASK)

  10. A permutation characterization of Sturm global attractors of Hamiltonian type

    NASA Astrophysics Data System (ADS)

    Fiedler, Bernold; Rocha, Carlos; Wolfrum, Matthias

    We consider Neumann boundary value problems of the form u=u+f on the interval 0⩽x⩽π for dissipative nonlinearities f=f(u). A permutation characterization for the global attractors of the semiflows generated by these equations is well known, even in the much more general case f=f(x,u,u). We present a permutation characterization for the global attractors in the restrictive class of nonlinearities f=f(u). In this class the stationary solutions of the parabolic equation satisfy the second order ODE v+f(v)=0 and we obtain the permutation characterization from a characterization of the set of 2 π-periodic orbits of this planar Hamiltonian system. Our results are based on a diligent discussion of this mere pendulum equation.

  11. Engineering calculations for solving the orbital allotment problem

    NASA Technical Reports Server (NTRS)

    Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.

    1988-01-01

    Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.

  12. Sample classification for improved performance of PLS models applied to the quality control of deep-frying oils of different botanic origins analyzed using ATR-FTIR spectroscopy.

    PubMed

    Kuligowski, Julia; Carrión, David; Quintás, Guillermo; Garrigues, Salvador; de la Guardia, Miguel

    2011-01-01

    The selection of an appropriate calibration set is a critical step in multivariate method development. In this work, the effect of using different calibration sets, based on a previous classification of unknown samples, on the partial least squares (PLS) regression model performance has been discussed. As an example, attenuated total reflection (ATR) mid-infrared spectra of deep-fried vegetable oil samples from three botanical origins (olive, sunflower, and corn oil), with increasing polymerized triacylglyceride (PTG) content induced by a deep-frying process were employed. The use of a one-class-classifier partial least squares-discriminant analysis (PLS-DA) and a rooted binary directed acyclic graph tree provided accurate oil classification. Oil samples fried without foodstuff could be classified correctly, independent of their PTG content. However, class separation of oil samples fried with foodstuff, was less evident. The combined use of double-cross model validation with permutation testing was used to validate the obtained PLS-DA classification models, confirming the results. To discuss the usefulness of the selection of an appropriate PLS calibration set, the PTG content was determined by calculating a PLS model based on the previously selected classes. In comparison to a PLS model calculated using a pooled calibration set containing samples from all classes, the root mean square error of prediction could be improved significantly using PLS models based on the selected calibration sets using PLS-DA, ranging between 1.06 and 2.91% (w/w).

  13. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu

    2013-11-28

    A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less

  14. The coupling analysis between stock market indices based on permutation measures

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian; Xia, Jianan; Yeh, Chien-Hung

    2016-04-01

    Many information-theoretic methods have been proposed for analyzing the coupling dependence between time series. And it is significant to quantify the correlation relationship between financial sequences since the financial market is a complex evolved dynamic system. Recently, we developed a new permutation-based entropy, called cross-permutation entropy (CPE), to detect the coupling structures between two synchronous time series. In this paper, we extend the CPE method to weighted cross-permutation entropy (WCPE), to address some of CPE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. It shows more stable and reliable results than CPE does when applied it to spiky data and AR(1) processes. Besides, we adapt the CPE method to infer the complexity of short-length time series by freely changing the time delay, and test it with Gaussian random series and random walks. The modified method shows the advantages in reducing deviations of entropy estimation compared with the conventional one. Finally, the weighted cross-permutation entropy of eight important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.

  15. BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs

    PubMed Central

    Eklund, Anders; Dufort, Paul; Villani, Mattias; LaConte, Stephen

    2014-01-01

    Analysis of functional magnetic resonance imaging (fMRI) data is becoming ever more computationally demanding as temporal and spatial resolutions improve, and large, publicly available data sets proliferate. Moreover, methodological improvements in the neuroimaging pipeline, such as non-linear spatial normalization, non-parametric permutation tests and Bayesian Markov Chain Monte Carlo approaches, can dramatically increase the computational burden. Despite these challenges, there do not yet exist any fMRI software packages which leverage inexpensive and powerful graphics processing units (GPUs) to perform these analyses. Here, we therefore present BROCCOLI, a free software package written in OpenCL (Open Computing Language) that can be used for parallel analysis of fMRI data on a large variety of hardware configurations. BROCCOLI has, for example, been tested with an Intel CPU, an Nvidia GPU, and an AMD GPU. These tests show that parallel processing of fMRI data can lead to significantly faster analysis pipelines. This speedup can be achieved on relatively standard hardware, but further, dramatic speed improvements require only a modest investment in GPU hardware. BROCCOLI (running on a GPU) can perform non-linear spatial normalization to a 1 mm3 brain template in 4–6 s, and run a second level permutation test with 10,000 permutations in about a minute. These non-parametric tests are generally more robust than their parametric counterparts, and can also enable more sophisticated analyses by estimating complicated null distributions. Additionally, BROCCOLI includes support for Bayesian first-level fMRI analysis using a Gibbs sampler. The new software is freely available under GNU GPL3 and can be downloaded from github (https://github.com/wanderine/BROCCOLI/). PMID:24672471

  16. Permutation entropy of fractional Brownian motion and fractional Gaussian noise

    NASA Astrophysics Data System (ADS)

    Zunino, L.; Pérez, D. G.; Martín, M. T.; Garavaglia, M.; Plastino, A.; Rosso, O. A.

    2008-06-01

    We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays.

  17. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring

    PubMed Central

    Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales. PMID:27723803

  18. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.

    PubMed

    Su, Cui; Liang, Zhenhu; Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Six MSPE algorithms-derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis-were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales.

  19. Parsing the roles of the frontal lobes and basal ganglia in task control using multivoxel pattern analysis

    PubMed Central

    Kehagia, Angie A.; Ye, Rong; Joyce, Dan W.; Doyle, Orla M.; Rowe, James B.; Robbins, Trevor W.

    2017-01-01

    Cognitive control has traditionally been associated with the prefrontal cortex, based on observations of deficits in patients with frontal lesions. However, evidence from patients with Parkinson’s disease (PD) indicates that subcortical regions also contribute to control under certain conditions. We scanned 17 healthy volunteers while they performed a task switching paradigm that previously dissociated performance deficits arising from frontal lesions in comparison with PD, as a function of the abstraction of the rules that are switched. From a multivoxel pattern analysis by Gaussian Process Classification (GPC), we then estimated the forward (generative) model to infer regional patterns of activity that predict Switch / Repeat behaviour between rule conditions. At 1000 permutations, Switch / Repeat classification accuracy for concrete rules was significant in the basal ganglia, but at chance in the frontal lobe. The inverse pattern was obtained for abstract rules, whereby the conditions were successfully discriminated in the frontal lobe but not in the basal ganglia. This double dissociation highlights the difference between cortical and subcortical contributions to cognitive control and demonstrates the utility of multivariate approaches in investigations of functions that rely on distributed and overlapping neural substrates. PMID:28387585

  20. Multiple comparisons permutation test for image based data mining in radiotherapy.

    PubMed

    Chen, Chun; Witte, Marnix; Heemsbergen, Wilma; van Herk, Marcel

    2013-12-23

    : Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.

  1. Generalized permutation entropy analysis based on the two-index entropic form S q , δ

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Shang, Pengjian

    2015-05-01

    Permutation entropy (PE) is a novel measure to quantify the complexity of nonlinear time series. In this paper, we propose a generalized permutation entropy ( P E q , δ ) based on the recently postulated entropic form, S q , δ , which was proposed as an unification of the well-known Sq of nonextensive-statistical mechanics and S δ , a possibly appropriate candidate for the black-hole entropy. We find that P E q , δ with appropriate parameters can amplify minor changes and trends of complexities in comparison to PE. Experiments with this generalized permutation entropy method are performed with both synthetic and stock data showing its power. Results show that P E q , δ is an exponential function of q and the power ( k ( δ ) ) is a constant if δ is determined. Some discussions about k ( δ ) are provided. Besides, we also find some interesting results about power law.

  2. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    NASA Astrophysics Data System (ADS)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  3. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2016-06-01

    Pihajoki proposed the extended phase-space second-order explicit symmetric leapfrog methods for inseparable Hamiltonian systems. On the basis of this work, we survey a critical problem on how to mix the variables in the extended phase space. Numerical tests show that sequent permutations of coordinates and momenta can make the leapfrog-like methods yield the most accurate results and the optimal long-term stabilized error behaviour. We also present a novel method to construct many fourth-order extended phase-space explicit symmetric integration schemes. Each scheme represents the symmetric production of six usual second-order leapfrogs without any permutations. This construction consists of four segments: the permuted coordinates, triple product of the usual second-order leapfrog without permutations, the permuted momenta and the triple product of the usual second-order leapfrog without permutations. Similarly, extended phase-space sixth, eighth and other higher order explicit symmetric algorithms are available. We used several inseparable Hamiltonian examples, such as the post-Newtonian approach of non-spinning compact binaries, to show that one of the proposed fourth-order methods is more efficient than the existing methods; examples include the fourth-order explicit symplectic integrators of Chin and the fourth-order explicit and implicit mixed symplectic integrators of Zhong et al. Given a moderate choice for the related mixing and projection maps, the extended phase-space explicit symplectic-like methods are well suited for various inseparable Hamiltonian problems. Samples of these problems involve the algorithmic regularization of gravitational systems with velocity-dependent perturbations in the Solar system and post-Newtonian Hamiltonian formulations of spinning compact objects.

  4. Non-parametric combination and related permutation tests for neuroimaging.

    PubMed

    Winkler, Anderson M; Webster, Matthew A; Brooks, Jonathan C; Tracey, Irene; Smith, Stephen M; Nichols, Thomas E

    2016-04-01

    In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-based representations of the brain, including non-imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodology, such that instead of a two-phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  5. Indonesian name matching using machine learning supervised approach

    NASA Astrophysics Data System (ADS)

    Alifikri, Mohamad; Arif Bijaksana, Moch.

    2018-03-01

    Most existing name matching methods are developed for English language and so they cover the characteristics of this language. Up to this moment, there is no specific one has been designed and implemented for Indonesian names. The purpose of this thesis is to develop Indonesian name matching dataset as a contribution to academic research and to propose suitable feature set by utilizing combination of context of name strings and its permute-winkler score. Machine learning classification algorithms is taken as the method for performing name matching. Based on the experiments, by using tuned Random Forest algorithm and proposed features, there is an improvement of matching performance by approximately 1.7% and it is able to reduce until 70% misclassification result of the state of the arts methods. This improving performance makes the matching system more effective and reduces the risk of misclassified matches.

  6. Sylow p-groups of polynomial permutations on the integers mod pn☆

    PubMed Central

    Frisch, Sophie; Krenn, Daniel

    2013-01-01

    We enumerate and describe the Sylow p-groups of the groups of polynomial permutations of the integers mod pn for n⩾1 and of the pro-finite group which is the projective limit of these groups. PMID:26869732

  7. Storage and computationally efficient permutations of factorized covariance and square-root information arrays

    NASA Technical Reports Server (NTRS)

    Muellerschoen, R. J.

    1988-01-01

    A unified method to permute vector stored Upper triangular Diagonal factorized covariance and vector stored upper triangular Square Root Information arrays is presented. The method involves cyclic permutation of the rows and columns of the arrays and retriangularization with fast (slow) Givens rotations (reflections). Minimal computation is performed, and a one dimensional scratch array is required. To make the method efficient for large arrays on a virtual memory machine, computations are arranged so as to avoid expensive paging faults. This method is potentially important for processing large volumes of radio metric data in the Deep Space Network.

  8. Note on new KLT relations

    NASA Astrophysics Data System (ADS)

    Feng, Bo; He, Song; Huang, Rijun; Jia, Yin

    2010-10-01

    In this short note, we present two results about KLT relations discussed in recent several papers. Our first result is the re-derivation of Mason-Skinner MHV amplitude by applying the S n-3 permutation symmetric KLT relations directly to MHV amplitude. Our second result is the equivalence proof of the newly discovered S n-2 permutation symmetric KLT relations and the well-known S n-3 permutation symmetric KLT relations. Although both formulas have been shown to be correct by BCFW recursion relations, our result is the first direct check using the regularized definition of the new formula.

  9. Combating HER2-overexpressing breast cancer through induction of calreticulin exposure by Tras-Permut CrossMab

    PubMed Central

    Zhang, Fan; Zhang, Jie; Liu, Moyan; Zhao, Lichao; LingHu, RuiXia; Feng, Fan; Gao, Xudong; Jiao, Shunchang; Zhao, Lei; Hu, Yi; Yang, Junlan

    2015-01-01

    Although trastuzumab has succeeded in breast cancer treatment, acquired resistance is one of the prime obstacles for breast cancer therapies. There is an urgent need to develop novel HER2 antibodies against trastuzumab resistance. Here, we first rational designed avidity-imporved trastuzumab and pertuzumab variants, and explored the correlation between the binding avidity improvement and their antitumor activities. After characterization of a pertuzumab variant L56TY with potent antitumor activities, a bispecific immunoglobulin G-like CrossMab (Tras-Permut CrossMab) was generated from trastuzumab and binding avidity-improved pertuzumab variant L56TY. Although, the antitumor efficacy of trastuzumab was not enhanced by improving its binding avidity, binding avidity improvement could significantly increase the anti-proliferative and antibody-dependent cellular cytotoxicity (ADCC) activities of pertuzumab. Further studies showed that Tras-Permut CrossMab exhibited exceptional high efficiency to inhibit the progression of trastuzumab-resistant breast cancer. Notably, we found that calreticulin (CRT) exposure induced by Tras-Permut CrossMab was essential for induction of tumor-specific T cell immunity against tumor recurrence. These data indicated that simultaneous blockade of HER2 protein by Tras-Permut CrossMab could trigger CRT exposure and subsequently induce potent tumor-specific T cell immunity, suggesting it could be a promising therapeutic strategy against trastuzumab resistance. PMID:25949918

  10. Permutation entropy analysis of heart rate variability for the assessment of cardiovascular autonomic neuropathy in type 1 diabetes mellitus.

    PubMed

    Carricarte Naranjo, Claudia; Sanchez-Rodriguez, Lazaro M; Brown Martínez, Marta; Estévez Báez, Mario; Machado García, Andrés

    2017-07-01

    Heart rate variability (HRV) analysis is a relevant tool for the diagnosis of cardiovascular autonomic neuropathy (CAN). To our knowledge, no previous investigation on CAN has assessed the complexity of HRV from an ordinal perspective. Therefore, the aim of this work is to explore the potential of permutation entropy (PE) analysis of HRV complexity for the assessment of CAN. For this purpose, we performed a short-term PE analysis of HRV in healthy subjects and type 1 diabetes mellitus patients, including patients with CAN. Standard HRV indicators were also calculated in the control group. A discriminant analysis was used to select the variables combination with best discriminative power between control and CAN patients groups, as well as for classifying cases. We found that for some specific temporal scales, PE indicators were significantly lower in CAN patients than those calculated for controls. In such cases, there were ordinal patterns with high probabilities of occurrence, while others were hardly found. We posit this behavior occurs due to a decrease of HRV complexity in the diseased system. Discriminant functions based on PE measures or probabilities of occurrence of ordinal patterns provided an average of 75% and 96% classification accuracy. Correlations of PE and HRV measures showed to depend only on temporal scale, regardless of pattern length. PE analysis at some specific temporal scales, seem to provide additional information to that obtained with traditional HRV methods. We concluded that PE analysis of HRV is a promising method for the assessment of CAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nicotine deprivation elevates neural representation of smoking-related cues in object-sensitive visual cortex: a proof of concept study.

    PubMed

    Havermans, Anne; van Schayck, Onno C P; Vuurman, Eric F P M; Riedel, Wim J; van den Hurk, Job

    2017-08-01

    In the current study, we use functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis (MVPA) to investigate whether tobacco addiction biases basic visual processing in favour of smoking-related images. We hypothesize that the neural representation of smoking-related stimuli in the lateral occipital complex (LOC) is elevated after a period of nicotine deprivation compared to a satiated state, but that this is not the case for object categories unrelated to smoking. Current smokers (≥10 cigarettes a day) underwent two fMRI scanning sessions: one after 10 h of nicotine abstinence and the other one after smoking ad libitum. Regional blood oxygenated level-dependent (BOLD) response was measured while participants were presented with 24 blocks of 8 colour-matched pictures of cigarettes, pencils or chairs. The functional data of 10 participants were analysed through a pattern classification approach. In bilateral LOC clusters, the classifier was able to discriminate between patterns of activity elicited by visually similar smoking-related (cigarettes) and neutral objects (pencils) above empirically estimated chance levels only during deprivation (mean = 61.0%, chance (permutations) = 50.0%, p = .01) but not during satiation (mean = 53.5%, chance (permutations) = 49.9%, ns.). For all other stimulus contrasts, there was no difference in discriminability between the deprived and satiated conditions. The discriminability between smoking and non-smoking visual objects was elevated in object-selective brain region LOC after a period of nicotine abstinence. This indicates that attention bias likely affects basic visual object processing.

  12. Automatic NEPHIS Coding of Descriptive Titles for Permuted Index Generation.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    1982-01-01

    Describes a system for the automatic coding of most descriptive titles which generates Nested Phrase Indexing System (NEPHIS) input strings of sufficient quality for permuted index production. A series of examples and an 11-item reference list accompany the text. (JL)

  13. Predicting clinical diagnosis in Huntington's disease: An imaging polymarker

    PubMed Central

    Daws, Richard E.; Soreq, Eyal; Johnson, Eileanoir B.; Scahill, Rachael I.; Tabrizi, Sarah J.; Barker, Roger A.; Hampshire, Adam

    2018-01-01

    Objective Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real‐life clinical diagnosis in HD. Method A multivariate machine learning approach was applied to resting‐state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross‐group comparisons between preHD and controls, and within the preHD group in relation to “estimated” and “actual” proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. Results Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. Interpretation We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532–543 PMID:29405351

  14. Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications.

    PubMed

    Mykrä, Heikki; Heino, Jani; Muotka, Timo

    2004-09-01

    Streams are naturally hierarchical systems, and their biota are affected by factors effective at regional to local scales. However, there have been only a few attempts to quantify variation in ecological attributes across multiple spatial scales. We examined the variation in several macroinvertebrate metrics and environmental variables at three hierarchical scales (ecoregions, drainage systems, streams) in boreal headwater streams. In nested analyses of variance, significant spatial variability was observed for most of the macroinvertebrate metrics and environmental variables examined. For most metrics, ecoregions explained more variation than did drainage systems. There was, however, much variation attributable to residuals, suggesting high among-stream variation in macroinvertebrate assemblage characteristics. Nonmetric multidimensional scaling (NMDS) and multiresponse permutation procedure (MRPP) showed that assemblage composition differed significantly among both drainage systems and ecoregions. The associated R-statistics were, however, very low, indicating wide variation among sites within the defined landscape classifications. Regional delineations explained most of the variation in stream water chemistry, ecoregions being clearly more influential than drainage systems. For physical habitat characteristics, by contrast, the among-stream component was the major source of variation. Distinct differences attributable to stream size were observed for several metrics, especially total number of taxa and abundance of algae-scraping invertebrates. Although ecoregions clearly account for a considerable amount of variation in macroinvertebrate assemblage characteristics, we suggest that a three-tiered classification system (stratification through ecoregion and habitat type, followed by assemblage prediction within these ecologically meaningful units) will be needed for effective bioassessment of boreal running waters.

  15. Non‐parametric combination and related permutation tests for neuroimaging

    PubMed Central

    Webster, Matthew A.; Brooks, Jonathan C.; Tracey, Irene; Smith, Stephen M.; Nichols, Thomas E.

    2016-01-01

    Abstract In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume‐based representations of the brain, including non‐imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non‐parametric combination (NPC) methodology, such that instead of a two‐phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one‐way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486‐1511, 2016. © 2016 Wiley Periodicals, Inc. PMID:26848101

  16. Di-codon Usage for Gene Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh N.; Ma, Jianmin; Fogel, Gary B.; Rajapakse, Jagath C.

    Classification of genes into biologically related groups facilitates inference of their functions. Codon usage bias has been described previously as a potential feature for gene classification. In this paper, we demonstrate that di-codon usage can further improve classification of genes. By using both codon and di-codon features, we achieve near perfect accuracies for the classification of HLA molecules into major classes and sub-classes. The method is illustrated on 1,841 HLA sequences which are classified into two major classes, HLA-I and HLA-II. Major classes are further classified into sub-groups. A binary SVM using di-codon usage patterns achieved 99.95% accuracy in the classification of HLA genes into major HLA classes; and multi-class SVM achieved accuracy rates of 99.82% and 99.03% for sub-class classification of HLA-I and HLA-II genes, respectively. Furthermore, by combining codon and di-codon usages, the prediction accuracies reached 100%, 99.82%, and 99.84% for HLA major class classification, and for sub-class classification of HLA-I and HLA-II genes, respectively.

  17. Multiple comparisons permutation test for image based data mining in radiotherapy

    PubMed Central

    2013-01-01

    Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy. PMID:24365155

  18. Quantum one-way permutation over the finite field of two elements

    NASA Astrophysics Data System (ADS)

    de Castro, Alexandre

    2017-06-01

    In quantum cryptography, a one-way permutation is a bounded unitary operator U:{H} → {H} on a Hilbert space {H} that is easy to compute on every input, but hard to invert given the image of a random input. Levin (Probl Inf Transm 39(1):92-103, 2003) has conjectured that the unitary transformation g(a,x)=(a,f(x)+ax), where f is any length-preserving function and a,x \\in {GF}_{{2}^{\\Vert x\\Vert }}, is an information-theoretically secure operator within a polynomial factor. Here, we show that Levin's one-way permutation is provably secure because its output values are four maximally entangled two-qubit states, and whose probability of factoring them approaches zero faster than the multiplicative inverse of any positive polynomial poly( x) over the Boolean ring of all subsets of x. Our results demonstrate through well-known theorems that existence of classical one-way functions implies existence of a universal quantum one-way permutation that cannot be inverted in subexponential time in the worst case.

  19. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    PubMed Central

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  20. Discrete bat algorithm for optimal problem of permutation flow shop scheduling.

    PubMed

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

  1. Levels of Conceptual Development in Melodic Permutation Concepts Based on Piaget's Theory

    ERIC Educational Resources Information Center

    Larn, Ronald L.

    1973-01-01

    Article considered different ways in which subjects at different age levels solved a musical task involving melodic permutation. The differences in responses to the musical task between age groups were judged to be compatible with Piaget's theory of cognitive development. (Author/RK)

  2. In Response to Rowland on "Realism and Debateability in Policy Advocacy."

    ERIC Educational Resources Information Center

    Herbeck, Dale A.; Katsulas, John P.

    1986-01-01

    Argues that Robert Rowland has overstated the case against the permutation process for assessing counterplan competitiveness. Claims that the permutation standard is a viable method for ascertaining counterplan competitiveness. Examines Rowland's alternative and argues that it is an unsatisfactory method for determining counterplan…

  3. EPEPT: A web service for enhanced P-value estimation in permutation tests

    PubMed Central

    2011-01-01

    Background In computational biology, permutation tests have become a widely used tool to assess the statistical significance of an event under investigation. However, the common way of computing the P-value, which expresses the statistical significance, requires a very large number of permutations when small (and thus interesting) P-values are to be accurately estimated. This is computationally expensive and often infeasible. Recently, we proposed an alternative estimator, which requires far fewer permutations compared to the standard empirical approach while still reliably estimating small P-values [1]. Results The proposed P-value estimator has been enriched with additional functionalities and is made available to the general community through a public website and web service, called EPEPT. This means that the EPEPT routines can be accessed not only via a website, but also programmatically using any programming language that can interact with the web. Examples of web service clients in multiple programming languages can be downloaded. Additionally, EPEPT accepts data of various common experiment types used in computational biology. For these experiment types EPEPT first computes the permutation values and then performs the P-value estimation. Finally, the source code of EPEPT can be downloaded. Conclusions Different types of users, such as biologists, bioinformaticians and software engineers, can use the method in an appropriate and simple way. Availability http://informatics.systemsbiology.net/EPEPT/ PMID:22024252

  4. Introduction to Permutation and Resampling-Based Hypothesis Tests

    ERIC Educational Resources Information Center

    LaFleur, Bonnie J.; Greevy, Robert A.

    2009-01-01

    A resampling-based method of inference--permutation tests--is often used when distributional assumptions are questionable or unmet. Not only are these methods useful for obvious departures from parametric assumptions (e.g., normality) and small sample sizes, but they are also more robust than their parametric counterparts in the presences of…

  5. Explorations in Statistics: Permutation Methods

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2012-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eighth installment of "Explorations in Statistics" explores permutation methods, empiric procedures we can use to assess an experimental result--to test a null hypothesis--when we are reluctant to trust statistical…

  6. Representations of S{sub {infinity}} admissible with respect to Young subgroups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessonov, Nikolai I

    2012-03-31

    Let N be the set of positive integers and S{sub {infinity}} the set of finite permutations of N. For a partition {Pi} of the set N into infinite parts A{sub 1},A{sub 2},... we denote by S{sub {Pi}} the subgroup of S{sub {infinity}} whose elements leave invariant each of the sets A{sub j}. We set S{sub {infinity}}{sup (N)}={l_brace}s element of S{sub {infinity}:} s(i)=i for any i=1,2,...,N{r_brace}. A factor representation T of the group S{sub {infinity}} is said to be {Pi}-admissible if for some N it contains a nontrivial identity subrepresentation of the subgroup S{sub {Pi}} intersection S{sub {infinity}}{sup (N)}. In themore » paper, we obtain a classification of the {Pi}-admissible factor representations of S{sub {infinity}}. Bibliography: 14 titles.« less

  7. Diagnostic index of three-dimensional osteoarthritic changes in temporomandibular joint condylar morphology

    PubMed Central

    Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia

    2015-01-01

    Abstract. This study aimed to investigate imaging statistical approaches for classifying three-dimensional (3-D) osteoarthritic morphological variations among 169 temporomandibular joint (TMJ) condyles. Cone-beam computed tomography scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA), 15 subjects at initial diagnosis of OA, and 7 healthy controls. Three-dimensional surface models of the condyles were constructed and SPHARM-PDM established correspondent points on each model. Multivariate analysis of covariance and direction-projection-permutation (DiProPerm) were used for testing statistical significance of the differences between the groups determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering was then conducted. Compared with healthy controls, OA average condyle was significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis. We observed areas of 3.88-mm bone resorption at the superior surface and 3.10-mm bone apposition at the anterior aspect of the long-term OA average model. DiProPerm supported a significant difference between the healthy control and OA group (p-value=0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3-D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition. PMID:26158119

  8. NASA Thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The NASA Thesaurus -- Volume 2, Access Vocabulary -- contains an alphabetical listing of all Thesaurus terms (postable and nonpostable) and permutations of all multiword and pseudo-multiword terms. Also included are Other Words (non-Thesaurus terms) consisting of abbreviations, chemical symbols, etc. The permutations and Other Words provide 'access' to the appropriate postable entries in the Thesaurus.

  9. A Permutation Test for Correlated Errors in Adjacent Questionnaire Items

    ERIC Educational Resources Information Center

    Hildreth, Laura A.; Genschel, Ulrike; Lorenz, Frederick O.; Lesser, Virginia M.

    2013-01-01

    Response patterns are of importance to survey researchers because of the insight they provide into the thought processes respondents use to answer survey questions. In this article we propose the use of structural equation modeling to examine response patterns and develop a permutation test to quantify the likelihood of observing a specific…

  10. The Parity Theorem Shuffle

    ERIC Educational Resources Information Center

    Smith, Michael D.

    2016-01-01

    The Parity Theorem states that any permutation can be written as a product of transpositions, but no permutation can be written as a product of both an even number and an odd number of transpositions. Most proofs of the Parity Theorem take several pages of mathematical formalism to complete. This article presents an alternative but equivalent…

  11. Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie

    2008-01-01

    Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…

  12. permGPU: Using graphics processing units in RNA microarray association studies.

    PubMed

    Shterev, Ivo D; Jung, Sin-Ho; George, Stephen L; Owzar, Kouros

    2010-06-16

    Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  13. Testing for the Presence of Correlation Changes in a Multivariate Time Series: A Permutation Based Approach.

    PubMed

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Hunyadi, Borbála; Ceulemans, Eva

    2018-01-15

    Detecting abrupt correlation changes in multivariate time series is crucial in many application fields such as signal processing, functional neuroimaging, climate studies, and financial analysis. To detect such changes, several promising correlation change tests exist, but they may suffer from severe loss of power when there is actually more than one change point underlying the data. To deal with this drawback, we propose a permutation based significance test for Kernel Change Point (KCP) detection on the running correlations. Given a requested number of change points K, KCP divides the time series into K + 1 phases by minimizing the within-phase variance. The new permutation test looks at how the average within-phase variance decreases when K increases and compares this to the results for permuted data. The results of an extensive simulation study and applications to several real data sets show that, depending on the setting, the new test performs either at par or better than the state-of-the art significance tests for detecting the presence of correlation changes, implying that its use can be generally recommended.

  14. Multi-scale symbolic transfer entropy analysis of EEG

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-10-01

    From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.

  15. A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information.

    PubMed

    Cui, Dong; Pu, Weiting; Liu, Jing; Bian, Zhijie; Li, Qiuli; Wang, Lei; Gu, Guanghua

    2016-10-01

    Synchronization is an important mechanism for understanding information processing in normal or abnormal brains. In this paper, we propose a new method called normalized weighted-permutation mutual information (NWPMI) for double variable signal synchronization analysis and combine NWPMI with S-estimator measure to generate a new method named S-estimator based normalized weighted-permutation mutual information (SNWPMI) for analyzing multi-channel electroencephalographic (EEG) synchronization strength. The performances including the effects of time delay, embedding dimension, coupling coefficients, signal to noise ratios (SNRs) and data length of the NWPMI are evaluated by using Coupled Henon mapping model. The results show that the NWPMI is superior in describing the synchronization compared with the normalized permutation mutual information (NPMI). Furthermore, the proposed SNWPMI method is applied to analyze scalp EEG data from 26 amnestic mild cognitive impairment (aMCI) subjects and 20 age-matched controls with normal cognitive function, who both suffer from type 2 diabetes mellitus (T2DM). The proposed methods NWPMI and SNWPMI are suggested to be an effective index to estimate the synchronization strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sorting signed permutations by inversions in O(nlogn) time.

    PubMed

    Swenson, Krister M; Rajan, Vaibhav; Lin, Yu; Moret, Bernard M E

    2010-03-01

    The study of genomic inversions (or reversals) has been a mainstay of computational genomics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for sorting signed permutations by inversions, improved algorithms have been designed, culminating with an optimal linear-time algorithm for computing the inversion distance and a subquadratic algorithm for providing a shortest sequence of inversions--also known as sorting by inversions. Remaining open was the question of whether sorting by inversions could be done in O(nlogn) time. In this article, we present a qualified answer to this question, by providing two new sorting algorithms, a simple and fast randomized algorithm and a deterministic refinement. The deterministic algorithm runs in time O(nlogn + kn), where k is a data-dependent parameter. We provide the results of extensive experiments showing that both the average and the standard deviation for k are small constants, independent of the size of the permutation. We conclude (but do not prove) that almost all signed permutations can be sorted by inversions in O(nlogn) time.

  17. Revisiting the European sovereign bonds with a permutation-information-theory approach

    NASA Astrophysics Data System (ADS)

    Fernández Bariviera, Aurelio; Zunino, Luciano; Guercio, María Belén; Martinez, Lisana B.; Rosso, Osvaldo A.

    2013-12-01

    In this paper we study the evolution of the informational efficiency in its weak form for seventeen European sovereign bonds time series. We aim to assess the impact of two specific economic situations in the hypothetical random behavior of these time series: the establishment of a common currency and a wide and deep financial crisis. In order to evaluate the informational efficiency we use permutation quantifiers derived from information theory. Specifically, time series are ranked according to two metrics that measure the intrinsic structure of their correlations: permutation entropy and permutation statistical complexity. These measures provide the rectangular coordinates of the complexity-entropy causality plane; the planar location of the time series in this representation space reveals the degree of informational efficiency. According to our results, the currency union contributed to homogenize the stochastic characteristics of the time series and produced synchronization in the random behavior of them. Additionally, the 2008 financial crisis uncovered differences within the apparently homogeneous European sovereign markets and revealed country-specific characteristics that were partially hidden during the monetary union heyday.

  18. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review

    PubMed Central

    Radwan, Ahmed G.; AbdElHaleem, Sherif H.; Abd-El-Hafiz, Salwa K.

    2015-01-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold’s cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561

  19. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masataka; Okumura, Hisashi

    2017-11-01

    We developed a two-dimensional replica-permutation molecular dynamics method in the isothermal-isobaric ensemble. The replica-permutation method is a better alternative to the replica-exchange method. It was originally developed in the canonical ensemble. This method employs the Suwa-Todo algorithm, instead of the Metropolis algorithm, to perform permutations of temperatures and pressures among more than two replicas so that the rejection ratio can be minimized. We showed that the isothermal-isobaric replica-permutation method performs better sampling efficiency than the isothermal-isobaric replica-exchange method and infinite swapping method. We applied this method to a β-hairpin mini protein, chignolin. In this simulation, we observed not only the folded state but also the misfolded state. We calculated the temperature and pressure dependence of the fractions on the folded, misfolded, and unfolded states. Differences in partial molar enthalpy, internal energy, entropy, partial molar volume, and heat capacity were also determined and agreed well with experimental data. We observed a new phenomenon that misfolded chignolin becomes more stable under high-pressure conditions. We also revealed this mechanism of the stability as follows: TYR2 and TRP9 side chains cover the hydrogen bonds that form a β-hairpin structure. The hydrogen bonds are protected from the water molecules that approach the protein as the pressure increases.

  20. EXPLICIT SYMPLECTIC-LIKE INTEGRATORS WITH MIDPOINT PERMUTATIONS FOR SPINNING COMPACT BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Junjie; Wu, Xin; Huang, Guoqing

    2017-01-01

    We refine the recently developed fourth-order extended phase space explicit symplectic-like methods for inseparable Hamiltonians using Yoshida’s triple product combined with a midpoint permuted map. The midpoint between the original variables and their corresponding extended variables at every integration step is readjusted as the initial values of the original variables and their corresponding extended ones at the next step integration. The triple-product construction is apparently superior to the composition of two triple products in computational efficiency. Above all, the new midpoint permutations are more effective in restraining the equality of the original variables and their corresponding extended ones at each integration step thanmore » the existing sequent permutations of momenta and coordinates. As a result, our new construction shares the benefit of implicit symplectic integrators in the conservation of the second post-Newtonian Hamiltonian of spinning compact binaries. Especially for the chaotic case, it can work well, but the existing sequent permuted algorithm cannot. When dissipative effects from the gravitational radiation reaction are included, the new symplectic-like method has a secular drift in the energy error of the dissipative system for the orbits that are regular in the absence of radiation, as an implicit symplectic integrator does. In spite of this, it is superior to the same-order implicit symplectic integrator in accuracy and efficiency. The new method is particularly useful in discussing the long-term evolution of inseparable Hamiltonian problems.« less

  1. A studentized permutation test for three-arm trials in the 'gold standard' design.

    PubMed

    Mütze, Tobias; Konietschke, Frank; Munk, Axel; Friede, Tim

    2017-03-15

    The 'gold standard' design for three-arm trials refers to trials with an active control and a placebo control in addition to the experimental treatment group. This trial design is recommended when being ethically justifiable and it allows the simultaneous comparison of experimental treatment, active control, and placebo. Parametric testing methods have been studied plentifully over the past years. However, these methods often tend to be liberal or conservative when distributional assumptions are not met particularly with small sample sizes. In this article, we introduce a studentized permutation test for testing non-inferiority and superiority of the experimental treatment compared with the active control in three-arm trials in the 'gold standard' design. The performance of the studentized permutation test for finite sample sizes is assessed in a Monte Carlo simulation study under various parameter constellations. Emphasis is put on whether the studentized permutation test meets the target significance level. For comparison purposes, commonly used Wald-type tests, which do not make any distributional assumptions, are included in the simulation study. The simulation study shows that the presented studentized permutation test for assessing non-inferiority in three-arm trials in the 'gold standard' design outperforms its competitors, for instance the test based on a quasi-Poisson model, for count data. The methods discussed in this paper are implemented in the R package ThreeArmedTrials which is available on the comprehensive R archive network (CRAN). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Snoring classified: The Munich-Passau Snore Sound Corpus.

    PubMed

    Janott, Christoph; Schmitt, Maximilian; Zhang, Yue; Qian, Kun; Pandit, Vedhas; Zhang, Zixing; Heiser, Clemens; Hohenhorst, Winfried; Herzog, Michael; Hemmert, Werner; Schuller, Björn

    2018-03-01

    Snoring can be excited in different locations within the upper airways during sleep. It was hypothesised that the excitation locations are correlated with distinct acoustic characteristics of the snoring noise. To verify this hypothesis, a database of snore sounds is developed, labelled with the location of sound excitation. Video and audio recordings taken during drug induced sleep endoscopy (DISE) examinations from three medical centres have been semi-automatically screened for snore events, which subsequently have been classified by ENT experts into four classes based on the VOTE classification. The resulting dataset containing 828 snore events from 219 subjects has been split into Train, Development, and Test sets. An SVM classifier has been trained using low level descriptors (LLDs) related to energy, spectral features, mel frequency cepstral coefficients (MFCC), formants, voicing, harmonic-to-noise ratio (HNR), spectral harmonicity, pitch, and microprosodic features. An unweighted average recall (UAR) of 55.8% could be achieved using the full set of LLDs including formants. Best performing subset is the MFCC-related set of LLDs. A strong difference in performance could be observed between the permutations of train, development, and test partition, which may be caused by the relatively low number of subjects included in the smaller classes of the strongly unbalanced data set. A database of snoring sounds is presented which are classified according to their sound excitation location based on objective criteria and verifiable video material. With the database, it could be demonstrated that machine classifiers can distinguish different excitation location of snoring sounds in the upper airway based on acoustic parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Classification, Seriation, and Counting in Grades 1, 2, and 3 as Two-Year Longitudinal Predictors for Low Achieving in Numerical Facility and Arithmetical Achievement?

    ERIC Educational Resources Information Center

    Desoete, Annemie; Stock, Pieter; Schepens, Annemie; Baeyens, Dieter; Roeyers, Herbert

    2009-01-01

    Previous research stresses the importance of seriation, classification, and counting abilities that should be assessed in kindergarten, when looking for crucial predictors of mathematical learning disabilities in Grade 1. This study examines (n = 158) two-year-long predictive relationships between children's seriation, classification, procedural…

  4. Structural and Functional Characterization of a Ruminal β-Glycosidase Defines a Novel Subfamily of Glycoside Hydrolase Family 3 with Permuted Domain Topology*

    PubMed Central

    Ramírez-Escudero, Mercedes; del Pozo, Mercedes V.; Marín-Navarro, Julia; González, Beatriz; Golyshin, Peter N.; Polaina, Julio; Ferrer, Manuel; Sanz-Aparicio, Julia

    2016-01-01

    Metagenomics has opened up a vast pool of genes for putative, yet uncharacterized, enzymes. It widens our knowledge on the enzyme diversity world and discloses new families for which a clear classification is still needed, as is exemplified by glycoside hydrolase family-3 (GH3) proteins. Herein, we describe a GH3 enzyme (GlyA1) from resident microbial communities in strained ruminal fluid. The enzyme is a β-glucosidase/β-xylosidase that also shows β-galactosidase, β-fucosidase, α-arabinofuranosidase, and α-arabinopyranosidase activities. Short cello- and xylo-oligosaccharides, sophorose and gentibiose, are among the preferred substrates, with the large polysaccharide lichenan also being hydrolyzed by GlyA1. The determination of the crystal structure of the enzyme in combination with deletion and site-directed mutagenesis allowed identification of its unusual domain composition and the active site architecture. Complexes of GlyA1 with glucose, galactose, and xylose allowed picturing the catalytic pocket and illustrated the molecular basis of the substrate specificity. A hydrophobic platform defined by residues Trp-711 and Trp-106, located in a highly mobile loop, appears able to allocate differently β-linked bioses. GlyA1 includes an additional C-terminal domain previously unobserved in GH3 members, but crystallization of the full-length enzyme was unsuccessful. Therefore, small angle x-ray experiments have been performed to investigate the molecular flexibility and overall putative shape. This study provided evidence that GlyA1 defines a new subfamily of GH3 proteins with a novel permuted domain topology. Phylogenetic analysis indicates that this topology is associated with microbes inhabiting the digestive tracts of ruminants and other animals, feeding on chemically diverse plant polymeric materials. PMID:27679487

  5. Classification of California streams using combined deductive and inductive approaches: Setting the foundation for analysis of hydrologic alteration

    USGS Publications Warehouse

    Pyne, Matthew I.; Carlisle, Daren M.; Konrad, Christopher P.; Stein, Eric D.

    2017-01-01

    Regional classification of streams is an early step in the Ecological Limits of Hydrologic Alteration framework. Many stream classifications are based on an inductive approach using hydrologic data from minimally disturbed basins, but this approach may underrepresent streams from heavily disturbed basins or sparsely gaged arid regions. An alternative is a deductive approach, using watershed climate, land use, and geomorphology to classify streams, but this approach may miss important hydrological characteristics of streams. We classified all stream reaches in California using both approaches. First, we used Bayesian and hierarchical clustering to classify reaches according to watershed characteristics. Streams were clustered into seven classes according to elevation, sedimentary rock, and winter precipitation. Permutation-based analysis of variance and random forest analyses were used to determine which hydrologic variables best separate streams into their respective classes. Stream typology (i.e., the class that a stream reach is assigned to) is shaped mainly by patterns of high and mean flow behavior within the stream's landscape context. Additionally, random forest was used to determine which hydrologic variables best separate minimally disturbed reference streams from non-reference streams in each of the seven classes. In contrast to stream typology, deviation from reference conditions is more difficult to detect and is largely defined by changes in low-flow variables, average daily flow, and duration of flow. Our combined deductive/inductive approach allows us to estimate flow under minimally disturbed conditions based on the deductive analysis and compare to measured flow based on the inductive analysis in order to estimate hydrologic change.

  6. Quantum image encryption based on restricted geometric and color transformations

    NASA Astrophysics Data System (ADS)

    Song, Xian-Hua; Wang, Shen; Abd El-Latif, Ahmed A.; Niu, Xia-Mu

    2014-08-01

    A novel encryption scheme for quantum images based on restricted geometric and color transformations is proposed. The new strategy comprises efficient permutation and diffusion properties for quantum image encryption. The core idea of the permutation stage is to scramble the codes of the pixel positions through restricted geometric transformations. Then, a new quantum diffusion operation is implemented on the permutated quantum image based on restricted color transformations. The encryption keys of the two stages are generated by two sensitive chaotic maps, which can ensure the security of the scheme. The final step, measurement, is built by the probabilistic model. Experiments conducted on statistical analysis demonstrate that significant improvements in the results are in favor of the proposed approach.

  7. Statistical validation of normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. NASA thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Access Vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries, and pseudo-multiword terms that are permutations of words that contain words within words. The Access Vocabulary contains 40,738 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing.

  9. NASA Thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Access Vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries, and pseudo-multiword terms that are permutations of words that contain words within words. The Access Vocabulary contains, 40,661 entries that give increased access to he hierarchies in Volume 1 - Hierarchical Listing.

  10. Instability of Hierarchical Cluster Analysis Due to Input Order of the Data: The PermuCLUSTER Solution

    ERIC Educational Resources Information Center

    van der Kloot, Willem A.; Spaans, Alexander M. J.; Heiser, Willem J.

    2005-01-01

    Hierarchical agglomerative cluster analysis (HACA) may yield different solutions under permutations of the input order of the data. This instability is caused by ties, either in the initial proximity matrix or arising during agglomeration. The authors recommend to repeat the analysis on a large number of random permutations of the rows and columns…

  11. Weighted multiscale Rényi permutation entropy of nonlinear time series

    NASA Astrophysics Data System (ADS)

    Chen, Shijian; Shang, Pengjian; Wu, Yue

    2018-04-01

    In this paper, based on Rényi permutation entropy (RPE), which has been recently suggested as a relative measure of complexity in nonlinear systems, we propose multiscale Rényi permutation entropy (MRPE) and weighted multiscale Rényi permutation entropy (WMRPE) to quantify the complexity of nonlinear time series over multiple time scales. First, we apply MPRE and WMPRE to the synthetic data and make a comparison of modified methods and RPE. Meanwhile, the influence of the change of parameters is discussed. Besides, we interpret the necessity of considering not only multiscale but also weight by taking the amplitude into account. Then MRPE and WMRPE methods are employed to the closing prices of financial stock markets from different areas. By observing the curves of WMRPE and analyzing the common statistics, stock markets are divided into 4 groups: (1) DJI, S&P500, and HSI, (2) NASDAQ and FTSE100, (3) DAX40 and CAC40, and (4) ShangZheng and ShenCheng. Results show that the standard deviations of weighted methods are smaller, showing WMRPE is able to ensure the results more robust. Besides, WMPRE can provide abundant dynamical properties of complex systems, and demonstrate the intrinsic mechanism.

  12. PsiQuaSP-A library for efficient computation of symmetric open quantum systems.

    PubMed

    Gegg, Michael; Richter, Marten

    2017-11-24

    In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.

  13. Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy

    NASA Astrophysics Data System (ADS)

    Traversaro, Francisco; O. Redelico, Francisco

    2018-04-01

    In nonlinear dynamics, and to a lesser extent in other fields, a widely used measure of complexity is the Permutation Entropy. But there is still no known method to determine the accuracy of this measure. There has been little research on the statistical properties of this quantity that characterize time series. The literature describes some resampling methods of quantities used in nonlinear dynamics - as the largest Lyapunov exponent - but these seems to fail. In this contribution, we propose a parametric bootstrap methodology using a symbolic representation of the time series to obtain the distribution of the Permutation Entropy estimator. We perform several time series simulations given by well-known stochastic processes: the 1/fα noise family, and show in each case that the proposed accuracy measure is as efficient as the one obtained by the frequentist approach of repeating the experiment. The complexity of brain electrical activity, measured by the Permutation Entropy, has been extensively used in epilepsy research for detection in dynamical changes in electroencephalogram (EEG) signal with no consideration of the variability of this complexity measure. An application of the parametric bootstrap methodology is used to compare normal and pre-ictal EEG signals.

  14. Training sample selection based on self-training for liver cirrhosis classification using ultrasound images

    NASA Astrophysics Data System (ADS)

    Fujita, Yusuke; Mitani, Yoshihiro; Hamamoto, Yoshihiko; Segawa, Makoto; Terai, Shuji; Sakaida, Isao

    2017-03-01

    Ultrasound imaging is a popular and non-invasive tool used in the diagnoses of liver disease. Cirrhosis is a chronic liver disease and it can advance to liver cancer. Early detection and appropriate treatment are crucial to prevent liver cancer. However, ultrasound image analysis is very challenging, because of the low signal-to-noise ratio of ultrasound images. To achieve the higher classification performance, selection of training regions of interest (ROIs) is very important that effect to classification accuracy. The purpose of our study is cirrhosis detection with high accuracy using liver ultrasound images. In our previous works, training ROI selection by MILBoost and multiple-ROI classification based on the product rule had been proposed, to achieve high classification performance. In this article, we propose self-training method to select training ROIs effectively. Evaluation experiments were performed to evaluate effect of self-training, using manually selected ROIs and also automatically selected ROIs. Experimental results show that self-training for manually selected ROIs achieved higher classification performance than other approaches, including our conventional methods. The manually ROI definition and sample selection are important to improve classification accuracy in cirrhosis detection using ultrasound images.

  15. Autonomous target recognition using remotely sensed surface vibration measurements

    NASA Astrophysics Data System (ADS)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.

    1993-09-01

    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  16. Controllability of symmetric spin networks

    NASA Astrophysics Data System (ADS)

    Albertini, Francesca; D'Alessandro, Domenico

    2018-05-01

    We consider a network of n spin 1/2 systems which are pairwise interacting via Ising interaction and are controlled by the same electro-magnetic control field. Such a system presents symmetries since the Hamiltonian is unchanged if we permute two spins. This prevents full (operator) controllability, in that not every unitary evolution can be obtained. We prove however that controllability is verified if we restrict ourselves to unitary evolutions which preserve the above permutation invariance. For low dimensional cases, n = 2 and n = 3, we provide an analysis of the Lie group of available evolutions and give explicit control laws to transfer between two arbitrary permutation invariant states. This class of states includes highly entangled states such as Greenberger-Horne-Zeilinger (GHZ) states and W states, which are of interest in quantum information.

  17. A permutation information theory tour through different interest rate maturities: the Libor case.

    PubMed

    Bariviera, Aurelio Fernández; Guercio, María Belén; Martinez, Lisana B; Rosso, Osvaldo A

    2015-12-13

    This paper analyses Libor interest rates for seven different maturities and referred to operations in British pounds, euros, Swiss francs and Japanese yen, during the period 2001-2015. The analysis is performed by means of two quantifiers derived from information theory: the permutation Shannon entropy and the permutation Fisher information measure. An anomalous behaviour in the Libor is detected in all currencies except euros during the years 2006-2012. The stochastic switch is more severe in one, two and three months maturities. Given the special mechanism of Libor setting, we conjecture that the behaviour could have been produced by the manipulation that was uncovered by financial authorities. We argue that our methodology is pertinent as a market overseeing instrument. © 2015 The Author(s).

  18. Storage and computationally efficient permutations of factorized covariance and square-root information matrices

    NASA Technical Reports Server (NTRS)

    Muellerschoen, R. J.

    1988-01-01

    A unified method to permute vector-stored upper-triangular diagonal factorized covariance (UD) and vector stored upper-triangular square-root information filter (SRIF) arrays is presented. The method involves cyclical permutation of the rows and columns of the arrays and retriangularization with appropriate square-root-free fast Givens rotations or elementary slow Givens reflections. A minimal amount of computation is performed and only one scratch vector of size N is required, where N is the column dimension of the arrays. To make the method efficient for large SRIF arrays on a virtual memory machine, three additional scratch vectors each of size N are used to avoid expensive paging faults. The method discussed is compared with the methods and routines of Bierman's Estimation Subroutine Library (ESL).

  19. NASA thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The access vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries and pseudo-multiword terms that are permutations of words that contain words within words. The access vocabulary contains almost 42,000 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing.

  20. Genomic Analysis of Complex Microbial Communities in Wounds

    DTIC Science & Technology

    2012-01-01

    thoroughly in the ecology literature. Permutation Multivariate Analysis of Variance ( PerMANOVA ). We used PerMANOVA to test the null-hypothesis of no...difference between the bacterial communities found within a single wound compared to those from different patients (α = 0.05). PerMANOVA is a...permutation-based version of the multivariate analysis of variance (MANOVA). PerMANOVA uses the distances between samples to partition variance and

  1. Circular permutation of the starch-binding domain: inversion of ligand selectivity with increased affinity.

    PubMed

    Stephen, Preyesh; Tseng, Kai-Li; Liu, Yu-Nan; Lyu, Ping-Chiang

    2012-03-07

    Proteins containing starch-binding domains (SBDs) are used in a variety of scientific and technological applications. A circularly permutated SBD (CP90) with improved affinity and selectivity toward longer-chain carbohydrates was synthesized, suggesting that a new starch-binding protein may be developed for specific scientific and industrial applications. This journal is © The Royal Society of Chemistry 2012

  2. Sampling solution traces for the problem of sorting permutations by signed reversals

    PubMed Central

    2012-01-01

    Background Traditional algorithms to solve the problem of sorting by signed reversals output just one optimal solution while the space of all optimal solutions can be huge. A so-called trace represents a group of solutions which share the same set of reversals that must be applied to sort the original permutation following a partial ordering. By using traces, we therefore can represent the set of optimal solutions in a more compact way. Algorithms for enumerating the complete set of traces of solutions were developed. However, due to their exponential complexity, their practical use is limited to small permutations. A partial enumeration of traces is a sampling of the complete set of traces and can be an alternative for the study of distinct evolutionary scenarios of big permutations. Ideally, the sampling should be done uniformly from the space of all optimal solutions. This is however conjectured to be ♯P-complete. Results We propose and evaluate three algorithms for producing a sampling of the complete set of traces that instead can be shown in practice to preserve some of the characteristics of the space of all solutions. The first algorithm (RA) performs the construction of traces through a random selection of reversals on the list of optimal 1-sequences. The second algorithm (DFALT) consists in a slight modification of an algorithm that performs the complete enumeration of traces. Finally, the third algorithm (SWA) is based on a sliding window strategy to improve the enumeration of traces. All proposed algorithms were able to enumerate traces for permutations with up to 200 elements. Conclusions We analysed the distribution of the enumerated traces with respect to their height and average reversal length. Various works indicate that the reversal length can be an important aspect in genome rearrangements. The algorithms RA and SWA show a tendency to lose traces with high average reversal length. Such traces are however rare, and qualitatively our results show that, for testable-sized permutations, the algorithms DFALT and SWA produce distributions which approximate the reversal length distributions observed with a complete enumeration of the set of traces. PMID:22704580

  3. A novel image encryption algorithm using chaos and reversible cellular automata

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Luan, Dapeng

    2013-11-01

    In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.

  4. Decoding the Traumatic Memory among Women with PTSD: Implications for Neurocircuitry Models of PTSD and Real-Time fMRI Neurofeedback

    PubMed Central

    Cisler, Josh M.; Bush, Keith; James, G. Andrew; Smitherman, Sonet; Kilts, Clinton D.

    2015-01-01

    Posttraumatic Stress Disorder (PTSD) is characterized by intrusive recall of the traumatic memory. While numerous studies have investigated the neural processing mechanisms engaged during trauma memory recall in PTSD, these analyses have only focused on group-level contrasts that reveal little about the predictive validity of the identified brain regions. By contrast, a multivariate pattern analysis (MVPA) approach towards identifying the neural mechanisms engaged during trauma memory recall would entail testing whether a multivariate set of brain regions is reliably predictive of (i.e., discriminates) whether an individual is engaging in trauma or non-trauma memory recall. Here, we use a MVPA approach to test 1) whether trauma memory vs neutral memory recall can be predicted reliably using a multivariate set of brain regions among women with PTSD related to assaultive violence exposure (N=16), 2) the methodological parameters (e.g., spatial smoothing, number of memory recall repetitions, etc.) that optimize classification accuracy and reproducibility of the feature weight spatial maps, and 3) the correspondence between brain regions that discriminate trauma memory recall and the brain regions predicted by neurocircuitry models of PTSD. Cross-validation classification accuracy was significantly above chance for all methodological permutations tested; mean accuracy across participants was 76% for the methodological parameters selected as optimal for both efficiency and accuracy. Classification accuracy was significantly better for a voxel-wise approach relative to voxels within restricted regions-of-interest (ROIs); classification accuracy did not differ when using PTSD-related ROIs compared to randomly generated ROIs. ROI-based analyses suggested the reliable involvement of the left hippocampus in discriminating memory recall across participants and that the contribution of the left amygdala to the decision function was dependent upon PTSD symptom severity. These results have methodological implications for real-time fMRI neurofeedback of the trauma memory in PTSD and conceptual implications for neurocircuitry models of PTSD that attempt to explain core neural processing mechanisms mediating PTSD. PMID:26241958

  5. Decoding the Traumatic Memory among Women with PTSD: Implications for Neurocircuitry Models of PTSD and Real-Time fMRI Neurofeedback.

    PubMed

    Cisler, Josh M; Bush, Keith; James, G Andrew; Smitherman, Sonet; Kilts, Clinton D

    2015-01-01

    Posttraumatic Stress Disorder (PTSD) is characterized by intrusive recall of the traumatic memory. While numerous studies have investigated the neural processing mechanisms engaged during trauma memory recall in PTSD, these analyses have only focused on group-level contrasts that reveal little about the predictive validity of the identified brain regions. By contrast, a multivariate pattern analysis (MVPA) approach towards identifying the neural mechanisms engaged during trauma memory recall would entail testing whether a multivariate set of brain regions is reliably predictive of (i.e., discriminates) whether an individual is engaging in trauma or non-trauma memory recall. Here, we use a MVPA approach to test 1) whether trauma memory vs neutral memory recall can be predicted reliably using a multivariate set of brain regions among women with PTSD related to assaultive violence exposure (N=16), 2) the methodological parameters (e.g., spatial smoothing, number of memory recall repetitions, etc.) that optimize classification accuracy and reproducibility of the feature weight spatial maps, and 3) the correspondence between brain regions that discriminate trauma memory recall and the brain regions predicted by neurocircuitry models of PTSD. Cross-validation classification accuracy was significantly above chance for all methodological permutations tested; mean accuracy across participants was 76% for the methodological parameters selected as optimal for both efficiency and accuracy. Classification accuracy was significantly better for a voxel-wise approach relative to voxels within restricted regions-of-interest (ROIs); classification accuracy did not differ when using PTSD-related ROIs compared to randomly generated ROIs. ROI-based analyses suggested the reliable involvement of the left hippocampus in discriminating memory recall across participants and that the contribution of the left amygdala to the decision function was dependent upon PTSD symptom severity. These results have methodological implications for real-time fMRI neurofeedback of the trauma memory in PTSD and conceptual implications for neurocircuitry models of PTSD that attempt to explain core neural processing mechanisms mediating PTSD.

  6. Permutation glass.

    PubMed

    Williams, Mobolaji

    2018-01-01

    The field of disordered systems in statistical physics provides many simple models in which the competing influences of thermal and nonthermal disorder lead to new phases and nontrivial thermal behavior of order parameters. In this paper, we add a model to the subject by considering a disordered system where the state space consists of various orderings of a list. As in spin glasses, the disorder of such "permutation glasses" arises from a parameter in the Hamiltonian being drawn from a distribution of possible values, thus allowing nominally "incorrect orderings" to have lower energies than "correct orderings" in the space of permutations. We analyze a Gaussian, uniform, and symmetric Bernoulli distribution of energy costs, and, by employing Jensen's inequality, derive a simple condition requiring the permutation glass to always transition to the correctly ordered state at a temperature lower than that of the nondisordered system, provided that this correctly ordered state is accessible. We in turn find that in order for the correctly ordered state to be accessible, the probability that an incorrectly ordered component is energetically favored must be less than the inverse of the number of components in the system. We show that all of these results are consistent with a replica symmetric ansatz of the system. We conclude by arguing that there is no distinct permutation glass phase for the simplest model considered here and by discussing how to extend the analysis to more complex Hamiltonians capable of novel phase behavior and replica symmetry breaking. Finally, we outline an apparent correspondence between the presented system and a discrete-energy-level fermion gas. In all, the investigation introduces a class of exactly soluble models into statistical mechanics and provides a fertile ground to investigate statistical models of disorder.

  7. Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies.

    PubMed

    Dudbridge, Frank; Koeleman, Bobby P C

    2004-09-01

    Large exploratory studies, including candidate-gene-association testing, genomewide linkage-disequilibrium scans, and array-expression experiments, are becoming increasingly common. A serious problem for such studies is that statistical power is compromised by the need to control the false-positive rate for a large family of tests. Because multiple true associations are anticipated, methods have been proposed that combine evidence from the most significant tests, as a more powerful alternative to individually adjusted tests. The practical application of these methods is currently limited by a reliance on permutation testing to account for the correlated nature of single-nucleotide polymorphism (SNP)-association data. On a genomewide scale, this is both very time-consuming and impractical for repeated explorations with standard marker panels. Here, we alleviate these problems by fitting analytic distributions to the empirical distribution of combined evidence. We fit extreme-value distributions for fixed lengths of combined evidence and a beta distribution for the most significant length. An initial phase of permutation sampling is required to fit these distributions, but it can be completed more quickly than a simple permutation test and need be done only once for each panel of tests, after which the fitted parameters give a reusable calibration of the panel. Our approach is also a more efficient alternative to a standard permutation test. We demonstrate the accuracy of our approach and compare its efficiency with that of permutation tests on genomewide SNP data released by the International HapMap Consortium. The estimation of analytic distributions for combined evidence will allow these powerful methods to be applied more widely in large exploratory studies.

  8. Statistical significance approximation in local trend analysis of high-throughput time-series data using the theory of Markov chains.

    PubMed

    Xia, Li C; Ai, Dongmei; Cram, Jacob A; Liang, Xiaoyi; Fuhrman, Jed A; Sun, Fengzhu

    2015-09-21

    Local trend (i.e. shape) analysis of time series data reveals co-changing patterns in dynamics of biological systems. However, slow permutation procedures to evaluate the statistical significance of local trend scores have limited its applications to high-throughput time series data analysis, e.g., data from the next generation sequencing technology based studies. By extending the theories for the tail probability of the range of sum of Markovian random variables, we propose formulae for approximating the statistical significance of local trend scores. Using simulations and real data, we show that the approximate p-value is close to that obtained using a large number of permutations (starting at time points >20 with no delay and >30 with delay of at most three time steps) in that the non-zero decimals of the p-values obtained by the approximation and the permutations are mostly the same when the approximate p-value is less than 0.05. In addition, the approximate p-value is slightly larger than that based on permutations making hypothesis testing based on the approximate p-value conservative. The approximation enables efficient calculation of p-values for pairwise local trend analysis, making large scale all-versus-all comparisons possible. We also propose a hybrid approach by integrating the approximation and permutations to obtain accurate p-values for significantly associated pairs. We further demonstrate its use with the analysis of the Polymouth Marine Laboratory (PML) microbial community time series from high-throughput sequencing data and found interesting organism co-occurrence dynamic patterns. The software tool is integrated into the eLSA software package that now provides accelerated local trend and similarity analysis pipelines for time series data. The package is freely available from the eLSA website: http://bitbucket.org/charade/elsa.

  9. Superordinate Shape Classification Using Natural Shape Statistics

    ERIC Educational Resources Information Center

    Wilder, John; Feldman, Jacob; Singh, Manish

    2011-01-01

    This paper investigates the classification of shapes into broad natural categories such as "animal" or "leaf". We asked whether such coarse classifications can be achieved by a simple statistical classification of the shape skeleton. We surveyed databases of natural shapes, extracting shape skeletons and tabulating their…

  10. Permutation entropy of finite-length white-noise time series.

    PubMed

    Little, Douglas J; Kane, Deb M

    2016-08-01

    Permutation entropy (PE) is commonly used to discriminate complex structure from white noise in a time series. While the PE of white noise is well understood in the long time-series limit, analysis in the general case is currently lacking. Here the expectation value and variance of white-noise PE are derived as functions of the number of ordinal pattern trials, N, and the embedding dimension, D. It is demonstrated that the probability distribution of the white-noise PE converges to a χ^{2} distribution with D!-1 degrees of freedom as N becomes large. It is further demonstrated that the PE variance for an arbitrary time series can be estimated as the variance of a related metric, the Kullback-Leibler entropy (KLE), allowing the qualitative N≫D! condition to be recast as a quantitative estimate of the N required to achieve a desired PE calculation precision. Application of this theory to statistical inference is demonstrated in the case of an experimentally obtained noise series, where the probability of obtaining the observed PE value was calculated assuming a white-noise time series. Standard statistical inference can be used to draw conclusions whether the white-noise null hypothesis can be accepted or rejected. This methodology can be applied to other null hypotheses, such as discriminating whether two time series are generated from different complex system states.

  11. How to think about indiscernible particles

    NASA Astrophysics Data System (ADS)

    Giglio, Daniel Joseph

    Permutation symmetries which arise in quantum mechanics pose an intriguing problem. It is not clear that particles which exhibit permutation symmetries (i.e. particles which are indiscernible, meaning that they can be swapped with each other without this yielding a new physical state) qualify as "objects" in any reasonable sense of the term. One solution to this puzzle, which I attribute to W.V. Quine, would have us eliminate such particles from our ontology altogether in order to circumvent the metaphysical vexations caused by permutation symmetries. In this essay I argue that Quine's solution is too rash, and in its place I suggest a novel solution based on altering some of the language of quantum mechanics. Before launching into the technical details of indiscernible particles, however, I begin this essay with some remarks on the methodology -- instrumentalism -- which motivates my arguments.

  12. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kaixuan; Wang, Jun

    2017-02-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model.

  13. Object-Based Random Forest Classification of Land Cover from Remotely Sensed Imagery for Industrial and Mining Reclamation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.

    2018-04-01

    The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.

  14. Fermion systems in discrete space-time

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  15. Dynamic Testing and Automatic Repair of Reconfigurable Wiring Harnesses

    DTIC Science & Technology

    2006-11-27

    Switch An M ×N grid of switches configured to provide a M -input, N -output routing network. Permutation Network A permutation network performs an...wiring reduces the effective advantage of their reduced switch count, particularly when considering that regular grids (crossbar switches being a...are connected to. The outline circuit shown in Fig. 20 shows how a suitable ‘discovery probe’ might be implemented. The circuit shows a UART

  16. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation.

    PubMed

    Pandey, Naresh; Kuypers, Brianna E; Nassif, Barbara; Thomas, Emily E; Alnahhas, Razan N; Segatori, Laura; Silberg, Jonathan J

    2016-07-12

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.

  17. Tolerance of a knotted near infrared fluorescent protein to random circular permutation

    PubMed Central

    Pandey, Naresh; Kuypers, Brianna E.; Nassif, Barbara; Thomas, Emily E.; Alnahhas, Razan N.; Segatori, Laura; Silberg, Jonathan J.

    2016-01-01

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFP to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified twenty seven circularly permuted iRFP that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants were discovered that initiated translation within the PAS and GAF domains. Circularly permuted iRFP retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a similar quantum yield as iRFP, but exhibited increased resistance to chemical denaturation, suggesting that the observed signal increase arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step towards the creation of near-infrared biosensors with expanded chemical-sensing functions for in vivo imaging. PMID:27304983

  18. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms.

    PubMed

    Chen, Lei; Liu, Tao; Zhao, Xian

    2018-06-01

    The anatomical therapeutic chemical (ATC) classification system is a widely accepted drug classification scheme. This system comprises five levels and includes several classes in each level. Drugs are classified into classes according to their therapeutic effects and characteristics. The first level includes 14 main classes. In this study, we proposed two network-based models to infer novel potential chemicals deemed to belong in the first level of ATC classification. To build these models, two large chemical networks were constructed using the chemical-chemical interaction information retrieved from the Search Tool for Interactions of Chemicals (STITCH). Two classic network algorithms, shortest path (SP) and random walk with restart (RWR) algorithms, were executed on the corresponding network to mine novel chemicals for each ATC class using the validated drugs in a class as seed nodes. Then, the obtained chemicals yielded by these two algorithms were further evaluated by a permutation test and an association test. The former can exclude chemicals produced by the structure of the network, i.e., false positive discoveries. By contrast, the latter identifies the most important chemicals that have strong associations with the ATC class. Comparisons indicated that the two models can provide quite dissimilar results, suggesting that the results yielded by one model can be essential supplements for those obtained by the other model. In addition, several representative inferred chemicals were analyzed to confirm the reliability of the results generated by the two models. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Smart Extraction and Analysis System for Clinical Research.

    PubMed

    Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung

    2017-05-01

    With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.

  20. General Rotorcraft Aeromechanical Stability Program (GRASP) - Theory Manual

    DTIC Science & Technology

    1990-10-01

    the A basis. Two symbols frequently encountered in vector operations that use index notation are the Kronecker delta eij and the Levi - Civita epsilon...Blade root cutout fijk Levi - Civita epsilon permutation symbol 0 pretwist angle 0’ pretwist per unit length (d;) Oi Tait-Bryan angles K~i moment strains...the components of the identity tensor in a Cartesian coordinate system, while the Levi Civita epsilon consists of components of the permutation

  1. Using permutations to detect dependence between time series

    NASA Astrophysics Data System (ADS)

    Cánovas, Jose S.; Guillamón, Antonio; Ruíz, María del Carmen

    2011-07-01

    In this paper, we propose an independence test between two time series which is based on permutations. The proposed test can be carried out by means of different common statistics such as Pearson’s chi-square or the likelihood ratio. We also point out why an exact test is necessary. Simulated and real data (return exchange rates between several currencies) reveal the capacity of this test to detect linear and nonlinear dependences.

  2. Testing of Error-Correcting Sparse Permutation Channel Codes

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill, V.; Orlov, Sergei S.

    2008-01-01

    A computer program performs Monte Carlo direct numerical simulations for testing sparse permutation channel codes, which offer strong error-correction capabilities at high code rates and are considered especially suitable for storage of digital data in holographic and volume memories. A word in a code of this type is characterized by, among other things, a sparseness parameter (M) and a fixed number (K) of 1 or "on" bits in a channel block length of N.

  3. Scrambled Sobol Sequences via Permutation

    DTIC Science & Technology

    2009-01-01

    LCG LCG64 LFG MLFG PMLCG Sobol Scrambler PermutationScrambler LinearScrambler <<uses>> PermuationFactory StaticFactory DynamicFactory <<uses>> Figure 3...Phy., 19:252–256, 1979. [2] Emanouil I. Atanassov. A new efficient algorithm for generating the scrambled sobol ’ sequence. In NMA ’02: Revised Papers...Deidre W.Evan, and Micheal Mascagni. On the scrambled sobol sequence. In ICCS2005, pages 775–782, 2005. [7] Richard Durstenfeld. Algorithm 235: Random

  4. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    NASA Astrophysics Data System (ADS)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  5. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis

    PubMed Central

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-01-01

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526

  6. Optimization and experimental realization of the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, I.; Gedik, Z.

    2017-12-01

    The quantum permutation algorithm provides computational speed-up over classical algorithms for determining the parity of a given cyclic permutation. For its n -qubit implementations, the number of required quantum gates scales quadratically with n due to the quantum Fourier transforms included. We show here for the n -qubit case that the algorithm can be simplified so that it requires only O (n ) quantum gates, which theoretically reduces the complexity of the implementation. To test our results experimentally, we utilize IBM's 5-qubit quantum processor to realize the algorithm by using the original and simplified recipes for the 2-qubit case. It turns out that the latter results in a significantly higher success probability which allows us to verify the algorithm more precisely than the previous experimental realizations. We also verify the algorithm for the first time for the 3-qubit case with a considerable success probability by taking the advantage of our simplified scheme.

  7. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    PubMed

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  8. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis.

    PubMed

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-04-21

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.

  9. An extended continuous estimation of distribution algorithm for solving the permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2017-11-01

    This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.

  10. Modeling the Time-Varying Nature of Student Exceptionality Classification on Achievement Growth

    ERIC Educational Resources Information Center

    Nese, Joseph F. T.; Stevens, Joseph J.; Schulte, Ann C.; Tindal, Gerald; Elliott, Stephen N.

    2017-01-01

    Our purpose was to examine different approaches to modeling the time-varying nature of exceptionality classification. Using longitudinal data from one state's mathematics achievement test for 28,829 students in Grades 3 to 8, we describe the reclassification rate within special education and between general and special education, and compare four…

  11. Compensatory neurofuzzy model for discrete data classification in biomedical

    NASA Astrophysics Data System (ADS)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  12. Genuine multipartite entanglement of symmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing structure

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2008-10-01

    We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong numerical evidence that the distributed Gaussian entanglement is strongly monogamous under and possibly beyond specific symmetry constraints, and that the residual continuous-variable tangle is a proper measure of genuine multipartite entanglement for permutation-invariant Gaussian states under any multipartition of the modes.

  13. Discriminative Hierarchical K-Means Tree for Large-Scale Image Classification.

    PubMed

    Chen, Shizhi; Yang, Xiaodong; Tian, Yingli

    2015-09-01

    A key challenge in large-scale image classification is how to achieve efficiency in terms of both computation and memory without compromising classification accuracy. The learning-based classifiers achieve the state-of-the-art accuracies, but have been criticized for the computational complexity that grows linearly with the number of classes. The nonparametric nearest neighbor (NN)-based classifiers naturally handle large numbers of categories, but incur prohibitively expensive computation and memory costs. In this brief, we present a novel classification scheme, i.e., discriminative hierarchical K-means tree (D-HKTree), which combines the advantages of both learning-based and NN-based classifiers. The complexity of the D-HKTree only grows sublinearly with the number of categories, which is much better than the recent hierarchical support vector machines-based methods. The memory requirement is the order of magnitude less than the recent Naïve Bayesian NN-based approaches. The proposed D-HKTree classification scheme is evaluated on several challenging benchmark databases and achieves the state-of-the-art accuracies, while with significantly lower computation cost and memory requirement.

  14. Inferring the Presence of Reverse Proxies Through Timing Analysis

    DTIC Science & Technology

    2015-06-01

    16 Figure 3.2 The three different instances of timing measurement configurations 17 Figure 3.3 Permutation of a web request iteration...Their data showed that they could detect at least 6 bits of entropy between unlike devices and that it was enough to determine that they are in fact...depending on the permutation being executed so that every iteration was conducted under the same distance 15 City   Lat   Long   City   Lat   Long

  15. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    PubMed

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  16. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V., E-mail: truhlar@umn.edu, E-mail: candler@aem.umn.edu

    2014-02-07

    Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with amore » review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.« less

  17. Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling

    PubMed Central

    Chen, Gang; Taylor, Paul A.; Shin, Yong-Wook; Reynolds, Richard C.; Cox, Robert W.

    2016-01-01

    It has been argued that naturalistic conditions in FMRI studies provide a useful paradigm for investigating perception and cognition through a synchronization measure, inter-subject correlation (ISC). However, one analytical stumbling block has been the fact that the ISC values associated with each single subject are not independent, and our previous paper (Chen et al., 2016) used simulations and analyses of real data to show that the methodologies adopted in the literature do not have the proper control for false positives. In the same paper, we proposed nonparametric subject-wise bootstrapping and permutation testing techniques for one and two groups, respectively, which account for the correlation structure, and these greatly outperformed the prior methods in controlling the false positive rate (FPR); that is, subject-wise bootstrapping (SWB) worked relatively well for both cases with one and two groups, and subject-wise permutation (SWP) testing was virtually ideal for group comparisons. Here we seek to explicate and adopt a parametric approach through linear mixed-effects (LME) modeling for studying the ISC values, building on the previous correlation framework, with the benefit that the LME platform offers wider adaptability, more powerful interpretations, and quality control checking capability than nonparametric methods. We describe both theoretical and practical issues involved in the modeling and the manner in which LME with crossed random effects (CRE) modeling is applied. A data-doubling step further allows us to conveniently track the subject index, and achieve easy implementations. We pit the LME approach against the best nonparametric methods, and find that the LME framework achieves proper control for false positives. The new LME methodologies are shown to be both efficient and robust, and they will be added as an additional option and settings in an existing open source program, 3dLME, in AFNI (http://afni.nimh.nih.gov). PMID:27751943

  18. Brain Computation Is Organized via Power-of-Two-Based Permutation Logic.

    PubMed

    Xie, Kun; Fox, Grace E; Liu, Jun; Lyu, Cheng; Lee, Jason C; Kuang, Hui; Jacobs, Stephanie; Li, Meng; Liu, Tianming; Song, Sen; Tsien, Joe Z

    2016-01-01

    There is considerable scientific interest in understanding how cell assemblies-the long-presumed computational motif-are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic ( N = 2 i -1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors-the synaptic switch for learning and memory-were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques-which preferentially encode specific and low-combinatorial features and project inter-cortically-is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6-which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems-is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain's basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex.

  19. Brain Computation Is Organized via Power-of-Two-Based Permutation Logic

    PubMed Central

    Xie, Kun; Fox, Grace E.; Liu, Jun; Lyu, Cheng; Lee, Jason C.; Kuang, Hui; Jacobs, Stephanie; Li, Meng; Liu, Tianming; Song, Sen; Tsien, Joe Z.

    2016-01-01

    There is considerable scientific interest in understanding how cell assemblies—the long-presumed computational motif—are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic (N = 2i–1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors—the synaptic switch for learning and memory—were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques—which preferentially encode specific and low-combinatorial features and project inter-cortically—is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6—which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems—is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain’s basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex. PMID:27895562

  20. Successful attack on permutation-parity-machine-based neural cryptography.

    PubMed

    Seoane, Luís F; Ruttor, Andreas

    2012-02-01

    An algorithm is presented which implements a probabilistic attack on the key-exchange protocol based on permutation parity machines. Instead of imitating the synchronization of the communicating partners, the strategy consists of a Monte Carlo method to sample the space of possible weights during inner rounds and an analytic approach to convey the extracted information from one outer round to the next one. The results show that the protocol under attack fails to synchronize faster than an eavesdropper using this algorithm.

  1. Security of the Five-Round KASUMI Type Permutation

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsu; Yagi, Tohru; Kurosawa, Kaoru

    KASUMI is a blockcipher that forms the heart of the 3GPP confidentiality and integrity algorithms. In this paper, we study the security of the five-round KASUMI type permutations, and derive a highly non-trivial security bound against adversaries with adaptive chosen plaintext and chosen ciphertext attacks. To derive our security bound, we heavily use the tools from graph theory. However the result does not show its super-pseudorandomness, this gives us a strong evidence that the design of KASUMI is sound.

  2. xPerm: fast index canonicalization for tensor computer algebra

    NASA Astrophysics Data System (ADS)

    Martín-García, José M.

    2008-10-01

    We present a very fast implementation of the Butler-Portugal algorithm for index canonicalization with respect to permutation symmetries. It is called xPerm, and has been written as a combination of a Mathematica package and a C subroutine. The latter performs the most demanding parts of the computations and can be linked from any other program or computer algebra system. We demonstrate with tests and timings the effectively polynomial performance of the Butler-Portugal algorithm with respect to the number of indices, though we also show a case in which it is exponential. Our implementation handles generic tensorial expressions with several dozen indices in hundredths of a second, or one hundred indices in a few seconds, clearly outperforming all other current canonicalizers. The code has been already under intensive testing for several years and has been essential in recent investigations in large-scale tensor computer algebra. Program summaryProgram title: xPerm Catalogue identifier: AEBH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 93 582 No. of bytes in distributed program, including test data, etc.: 1 537 832 Distribution format: tar.gz Programming language: C and Mathematica (version 5.0 or higher) Computer: Any computer running C and Mathematica (version 5.0 or higher) Operating system: Linux, Unix, Windows XP, MacOS RAM:: 20 Mbyte Word size: 64 or 32 bits Classification: 1.5, 5 Nature of problem: Canonicalization of indexed expressions with respect to permutation symmetries. Solution method: The Butler-Portugal algorithm. Restrictions: Multiterm symmetries are not considered. Running time: A few seconds with generic expressions of up to 100 indices. The xPermDoc.nb notebook supplied with the distribution takes approximately one and a half hours to execute in full.

  3. A multiagent evolutionary algorithm for constraint satisfaction problems.

    PubMed

    Liu, Jing; Zhong, Weicai; Jiao, Licheng

    2006-02-01

    With the intrinsic properties of constraint satisfaction problems (CSPs) in mind, we divide CSPs into two types, namely, permutation CSPs and nonpermutation CSPs. According to their characteristics, several behaviors are designed for agents by making use of the ability of agents to sense and act on the environment. These behaviors are controlled by means of evolution, so that the multiagent evolutionary algorithm for constraint satisfaction problems (MAEA-CSPs) results. To overcome the disadvantages of the general encoding methods, the minimum conflict encoding is also proposed. Theoretical analyzes show that MAEA-CSPs has a linear space complexity and converges to the global optimum. The first part of the experiments uses 250 benchmark binary CSPs and 79 graph coloring problems from the DIMACS challenge to test the performance of MAEA-CSPs for nonpermutation CSPs. MAEA-CSPs is compared with six well-defined algorithms and the effect of the parameters is analyzed systematically. The second part of the experiments uses a classical CSP, n-queen problems, and a more practical case, job-shop scheduling problems (JSPs), to test the performance of MAEA-CSPs for permutation CSPs. The scalability of MAEA-CSPs along n for n-queen problems is studied with great care. The results show that MAEA-CSPs achieves good performance when n increases from 10(4) to 10(7), and has a linear time complexity. Even for 10(7)-queen problems, MAEA-CSPs finds the solutions by only 150 seconds. For JSPs, 59 benchmark problems are used, and good performance is also obtained.

  4. Accurate and fast multiple-testing correction in eQTL studies.

    PubMed

    Sul, Jae Hoon; Raj, Towfique; de Jong, Simone; de Bakker, Paul I W; Raychaudhuri, Soumya; Ophoff, Roel A; Stranger, Barbara E; Eskin, Eleazar; Han, Buhm

    2015-06-04

    In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Feature extraction based on extended multi-attribute profiles and sparse autoencoder for remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman

    2018-02-01

    The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.

  6. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery.

    PubMed

    Belgiu, Mariana; Dr Guţ, Lucian; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules.

  7. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery

    PubMed Central

    Belgiu, Mariana; Drǎguţ, Lucian; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules. PMID:24623959

  8. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Belgiu, Mariana; ǎguţ, Lucian, , Dr; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules.

  9. Test of spectral/spatial classifier

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Kast, J. L.; Davis, B. J.

    1977-01-01

    The author has identified the following significant results. The supervised ECHO processor (which utilizes class statistics for object identification) successfully exploits the redundancy of states characteristic of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The nonsupervised ECHO processor (which identifies objects without the benefit of class statistics) successfully reduces the number of classifications required and the variability of the classification results.

  10. Concordance between gambling disorder diagnoses in the DSM-IV and DSM-5; Results from the National Epidemiological Survey of Alcohol and Related Disorders

    PubMed Central

    Petry, Nancy M.; Blanco, Carlos; Jin, Chelsea; Grant, Bridget F.

    2015-01-01

    The fifth edition of the Diagnostic and Statistic Manual for Mental Disorders (DSM-5) eliminates the committing illegal acts criterion and reduces the threshold for a diagnosis of gambling disorder to four of nine criteria. This study compared the DSM-5 “4 of 9” classification system to the “5 of 10” DSM-IV system, as well as other permutations (i.e., just lowing the threshold to four criteria or just eliminating the illegal acts criterion) in 43,093 respondents to the National Epidemiological Survey of Alcohol and Related Conditions. Subgroups were analyzed to ascertain if changes will impact differentially diagnoses based on gender, age or race/ethnicity. In the full sample and each subpopulation, prevalence rates were higher when the DSM-5 classification system was employed relative to the DSM-IV system, but the hit rate between the two systems ranged from 99.80% to 99.96%. Across all gender, age and racial/ethnic subgroups, specificity was greater than 99% when the DSM-5 system was employed relative to the DSM-IV system, and sensitivity was 100%. Results from this study suggest that eliminating the illegal acts criterion has little impact on diagnosis of gambling disorder, but lowering the threshold for diagnosis does increase the base rate in the general population and each subgroup, even though overall rates remain low and sensitivity and specificity are high. PMID:24588275

  11. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    PubMed

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (P<0.05). Correlation analysis between feature importance and the statistical significance of metrics was investigated, and the results revealed a strong positive correlation between them. Overall, the current study demonstrated that major depressive disorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  12. A note on the estimation of the Pareto efficient set for multiobjective matrix permutation problems.

    PubMed

    Brusco, Michael J; Steinley, Douglas

    2012-02-01

    There are a number of important problems in quantitative psychology that require the identification of a permutation of the n rows and columns of an n × n proximity matrix. These problems encompass applications such as unidimensional scaling, paired-comparison ranking, and anti-Robinson forms. The importance of simultaneously incorporating multiple objective criteria in matrix permutation applications is well recognized in the literature; however, to date, there has been a reliance on weighted-sum approaches that transform the multiobjective problem into a single-objective optimization problem. Although exact solutions to these single-objective problems produce supported Pareto efficient solutions to the multiobjective problem, many interesting unsupported Pareto efficient solutions may be missed. We illustrate the limitation of the weighted-sum approach with an example from the psychological literature and devise an effective heuristic algorithm for estimating both the supported and unsupported solutions of the Pareto efficient set. © 2011 The British Psychological Society.

  13. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds.

    PubMed

    Altschuler, M D; Kassaee, A

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an 'NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use 'local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good 'global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  14. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds

    NASA Astrophysics Data System (ADS)

    Altschuler, Martin D.; Kassaee, Alireza

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an `NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use `local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good `global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  15. Exploiting Lipid Permutation Symmetry to Compute Membrane Remodeling Free Energies.

    PubMed

    Bubnis, Greg; Risselada, Herre Jelger; Grubmüller, Helmut

    2016-10-28

    A complete physical description of membrane remodeling processes, such as fusion or fission, requires knowledge of the underlying free energy landscapes, particularly in barrier regions involving collective shape changes, topological transitions, and high curvature, where Canham-Helfrich (CH) continuum descriptions may fail. To calculate these free energies using atomistic simulations, one must address not only the sampling problem due to high free energy barriers, but also an orthogonal sampling problem of combinatorial complexity stemming from the permutation symmetry of identical lipids. Here, we solve the combinatorial problem with a permutation reduction scheme to map a structural ensemble into a compact, nondegenerate subregion of configuration space, thereby permitting straightforward free energy calculations via umbrella sampling. We applied this approach, using a coarse-grained lipid model, to test the CH description of bending and found sharp increases in the bending modulus for curvature radii below 10 nm. These deviations suggest that an anharmonic bending term may be required for CH models to give quantitative energetics of highly curved states.

  16. A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo

    2015-03-01

    In recent years, a variety of chaos-based image cryptosystems have been investigated to meet the increasing demand for real-time secure image transmission. Most of them are based on permutation-diffusion architecture, in which permutation and diffusion are two independent procedures with fixed control parameters. This property results in two flaws. (1) At least two chaotic state variables are required for encrypting one plain pixel, in permutation and diffusion stages respectively. Chaotic state variables produced with high computation complexity are not sufficiently used. (2) The key stream solely depends on the secret key, and hence the cryptosystem is vulnerable against known/chosen-plaintext attacks. In this paper, a fast chaos-based image encryption scheme with a dynamic state variables selection mechanism is proposed to enhance the security and promote the efficiency of chaos-based image cryptosystems. Experimental simulations and extensive cryptanalysis have been carried out and the results prove the superior security and high efficiency of the scheme.

  17. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap.

    PubMed

    Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham

    2017-10-17

    Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

  18. Permutation coding technique for image recognition systems.

    PubMed

    Kussul, Ernst M; Baidyk, Tatiana N; Wunsch, Donald C; Makeyev, Oleksandr; Martín, Anabel

    2006-11-01

    A feature extractor and neural classifier for image recognition systems are proposed. The proposed feature extractor is based on the concept of random local descriptors (RLDs). It is followed by the encoder that is based on the permutation coding technique that allows to take into account not only detected features but also the position of each feature on the image and to make the recognition process invariant to small displacements. The combination of RLDs and permutation coding permits us to obtain a sufficiently general description of the image to be recognized. The code generated by the encoder is used as an input data for the neural classifier. Different types of images were used to test the proposed image recognition system. It was tested in the handwritten digit recognition problem, the face recognition problem, and the microobject shape recognition problem. The results of testing are very promising. The error rate for the Modified National Institute of Standards and Technology (MNIST) database is 0.44% and for the Olivetti Research Laboratory (ORL) database it is 0.1%.

  19. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH{sub 4} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun, E-mail: jli15@cqu.edu.cn, E-mail: zhangdh@dicp.ac.cn; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131; Chen, Jun

    2015-05-28

    We report a permutationally invariant global potential energy surface (PES) for the H + CH{sub 4} system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J{sub tot} = 0) including themore » abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].« less

  20. Rank-based permutation approaches for non-parametric factorial designs.

    PubMed

    Umlauft, Maria; Konietschke, Frank; Pauly, Markus

    2017-11-01

    Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal-Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability. © 2017 The British Psychological Society.

  1. Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains.

    PubMed

    Jha, Ashwani; Flurchick, K M; Bikdash, Marwan; Kc, Dukka B

    2016-01-01

    Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10-15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors.

  2. Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains

    PubMed Central

    Jha, Ashwani; Flurchick, K. M.; Bikdash, Marwan

    2016-01-01

    Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10–15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors. PMID:27747230

  3. Inattention in primary school is not good for your future school achievement-A pattern classification study.

    PubMed

    Lundervold, Astri J; Bøe, Tormod; Lundervold, Arvid

    2017-01-01

    Inattention in childhood is associated with academic problems later in life. The contribution of specific aspects of inattentive behaviour is, however, less known. We investigated feature importance of primary school teachers' reports on nine aspects of inattentive behaviour, gender and age in predicting future academic achievement. Primary school teachers of n = 2491 children (7-9 years) rated nine items reflecting different aspects of inattentive behaviour in 2002. A mean academic achievement score from the previous semester in high school (2012) was available for each youth from an official school register. All scores were at a categorical level. Feature importances were assessed by using multinominal logistic regression, classification and regression trees analysis, and a random forest algorithm. Finally, a comprehensive pattern classification procedure using k-fold cross-validation was implemented. Overall, inattention was rated as more severe in boys, who also obtained lower academic achievement scores in high school than girls. Problems related to sustained attention and distractibility were together with age and gender defined as the most important features to predict future achievement scores. Using these four features as input to a collection of classifiers employing k-fold cross-validation for prediction of academic achievement level, we obtained classification accuracy, precision and recall that were clearly better than chance levels. Primary school teachers' reports of problems related to sustained attention and distractibility were identified as the two most important features of inattentive behaviour predicting academic achievement in high school. Identification and follow-up procedures of primary school children showing these characteristics should be prioritised to prevent future academic failure.

  4. Applications of remote sensing, volume 1

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. ECHO successfully exploits the redundancy of states characteristics of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The information required to produce ECHO classifications are cell size, cell homogeneity, cell-to-field annexation parameters, input data, and a class conditional marginal density statistics deck.

  5. Texture operator for snow particle classification into snowflake and graupel

    NASA Astrophysics Data System (ADS)

    Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro

    2012-11-01

    In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.

  6. Two-level optimization of composite wing structures based on panel genetic optimization

    NASA Astrophysics Data System (ADS)

    Liu, Boyang

    The design of complex composite structures used in aerospace or automotive vehicles presents a major challenge in terms of computational cost. Discrete choices for ply thicknesses and ply angles leads to a combinatorial optimization problem that is too expensive to solve with presently available computational resources. We developed the following methodology for handling this problem for wing structural design: we used a two-level optimization approach with response-surface approximations to optimize panel failure loads for the upper-level wing optimization. We tailored efficient permutation genetic algorithms to the panel stacking sequence design on the lower level. We also developed approach for improving continuity of ply stacking sequences among adjacent panels. The decomposition approach led to a lower-level optimization of stacking sequence with a given number of plies in each orientation. An efficient permutation genetic algorithm (GA) was developed for handling this problem. We demonstrated through examples that the permutation GAs are more efficient for stacking sequence optimization than a standard GA. Repair strategies for standard GA and the permutation GAs for dealing with constraints were also developed. The repair strategies can significantly reduce computation costs for both standard GA and permutation GA. A two-level optimization procedure for composite wing design subject to strength and buckling constraints is presented. At wing-level design, continuous optimization of ply thicknesses with orientations of 0°, 90°, and +/-45° is performed to minimize weight. At the panel level, the number of plies of each orientation (rounded to integers) and inplane loads are specified, and a permutation genetic algorithm is used to optimize the stacking sequence. The process begins with many panel genetic optimizations for a range of loads and numbers of plies of each orientation. Next, a cubic polynomial response surface is fitted to the optimum buckling load. The resulting response surface is used for wing-level optimization. In general, complex composite structures consist of several laminates. A common problem in the design of such structures is that some plies in the adjacent laminates terminate in the boundary between the laminates. These discontinuities may cause stress concentrations and may increase manufacturing difficulty and cost. We developed measures of continuity of two adjacent laminates. We studied tradeoffs between weight and continuity through a simple composite wing design. Finally, we compared the two-level optimization to a single-level optimization based on flexural lamination parameters. The single-level optimization is efficient and feasible for a wing consisting of unstiffened panels.

  7. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  8. Finding fixed satellite service orbital allotments with a k-permutation algorithm

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1990-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the fixed satellite service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: the problem of ordering the satellites and the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, has been developed to find solutions to SLPs. Solutions to small sample problems are presented and analyzed on the basis of calculated interferences.

  9. Permutation approach, high frequency trading and variety of micro patterns in financial time series

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Cina; Ebrahimian, Mehran; Tahmooresi, Hamed

    2014-11-01

    Permutation approach is suggested as a method to investigate financial time series in micro scales. The method is used to see how high frequency trading in recent years has affected the micro patterns which may be seen in financial time series. Tick to tick exchange rates are considered as examples. It is seen that variety of patterns evolve through time; and that the scale over which the target markets have no dominant patterns, have decreased steadily over time with the emergence of higher frequency trading.

  10. Magic informationally complete POVMs with permutations

    NASA Astrophysics Data System (ADS)

    Planat, Michel; Gedik, Zafer

    2017-09-01

    Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.

  11. Real-time, resource-constrained object classification on a micro-air vehicle

    NASA Astrophysics Data System (ADS)

    Buck, Louis; Ray, Laura

    2013-12-01

    A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.

  12. Continuous robust sound event classification using time-frequency features and deep learning

    PubMed Central

    Song, Yan; Xiao, Wei; Phan, Huy

    2017-01-01

    The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification. PMID:28892478

  13. Continuous robust sound event classification using time-frequency features and deep learning.

    PubMed

    McLoughlin, Ian; Zhang, Haomin; Xie, Zhipeng; Song, Yan; Xiao, Wei; Phan, Huy

    2017-01-01

    The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification.

  14. Effective classification of the prevalence of Schistosoma mansoni.

    PubMed

    Mitchell, Shira A; Pagano, Marcello

    2012-12-01

    To present an effective classification method based on the prevalence of Schistosoma mansoni in the community. We created decision rules (defined by cut-offs for number of positive slides), which account for imperfect sensitivity, both with a simple adjustment of fixed sensitivity and with a more complex adjustment of changing sensitivity with prevalence. To reduce screening costs while maintaining accuracy, we propose a pooled classification method. To estimate sensitivity, we use the De Vlas model for worm and egg distributions. We compare the proposed method with the standard method to investigate differences in efficiency, measured by number of slides read, and accuracy, measured by probability of correct classification. Modelling varying sensitivity lowers the lower cut-off more significantly than the upper cut-off, correctly classifying regions as moderate rather than lower, thus receiving life-saving treatment. The classification method goes directly to classification on the basis of positive pools, avoiding having to know sensitivity to estimate prevalence. For model parameter values describing worm and egg distributions among children, the pooled method with 25 slides achieves an expected 89.9% probability of correct classification, whereas the standard method with 50 slides achieves 88.7%. Among children, it is more efficient and more accurate to use the pooled method for classification of S. mansoni prevalence than the current standard method. © 2012 Blackwell Publishing Ltd.

  15. On the efficiency of sovereign bond markets

    NASA Astrophysics Data System (ADS)

    Zunino, Luciano; Fernández Bariviera, Aurelio; Guercio, M. Belén; Martinez, Lisana B.; Rosso, Osvaldo A.

    2012-09-01

    The existence of memory in financial time series has been extensively studied for several stock markets around the world by means of different approaches. However, fixed income markets, i.e. those where corporate and sovereign bonds are traded, have been much less studied. We believe that, given the relevance of these markets, not only from the investors', but also from the issuers' point of view (government and firms), it is necessary to fill this gap in the literature. In this paper, we study the sovereign market efficiency of thirty bond indices of both developed and emerging countries, using an innovative statistical tool in the financial literature: the complexity-entropy causality plane. This representation space allows us to establish an efficiency ranking of different markets and distinguish different bond market dynamics. We conclude that the classification derived from the complexity-entropy causality plane is consistent with the qualifications assigned by major rating companies to the sovereign instruments. Additionally, we find a correlation between permutation entropy, economic development and market size that could be of interest for policy makers and investors.

  16. Identifying ADHD children using hemodynamic responses during a working memory task measured by functional near-infrared spectroscopy.

    PubMed

    Gu, Yue; Miao, Shuo; Han, Junxia; Liang, Zhenhu; Ouyang, Gaoxiang; Yang, Jian; Li, Xiaoli

    2018-06-01

    Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting children and adults. Previous studies found that functional near-infrared spectroscopy (fNIRS) can reveal significant group differences in several brain regions between ADHD children and healthy controls during working memory tasks. This study aimed to use fNIRS activation patterns to identify ADHD children from healthy controls. FNIRS signals from 25 ADHD children and 25 healthy controls performing the n-back task were recorded; then, multivariate pattern analysis was used to discriminate ADHD individuals from healthy controls, and classification performance was evaluated for significance by the permutation test. The results showed that 86.0% ([Formula: see text]) of participants can be correctly classified in leave-one-out cross-validation. The most discriminative brain regions included the bilateral dorsolateral prefrontal cortex, inferior medial prefrontal cortex, right posterior prefrontal cortex, and right temporal cortex. This study demonstrated that, in a small sample, multivariate pattern analysis can effectively identify ADHD children from healthy controls based on fNIRS signals, which argues for the potential utility of fNIRS in future assessments.

  17. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  18. Inattention in primary school is not good for your future school achievement—A pattern classification study

    PubMed Central

    Bøe, Tormod; Lundervold, Arvid

    2017-01-01

    Inattention in childhood is associated with academic problems later in life. The contribution of specific aspects of inattentive behaviour is, however, less known. We investigated feature importance of primary school teachers’ reports on nine aspects of inattentive behaviour, gender and age in predicting future academic achievement. Primary school teachers of n = 2491 children (7–9 years) rated nine items reflecting different aspects of inattentive behaviour in 2002. A mean academic achievement score from the previous semester in high school (2012) was available for each youth from an official school register. All scores were at a categorical level. Feature importances were assessed by using multinominal logistic regression, classification and regression trees analysis, and a random forest algorithm. Finally, a comprehensive pattern classification procedure using k-fold cross-validation was implemented. Overall, inattention was rated as more severe in boys, who also obtained lower academic achievement scores in high school than girls. Problems related to sustained attention and distractibility were together with age and gender defined as the most important features to predict future achievement scores. Using these four features as input to a collection of classifiers employing k-fold cross-validation for prediction of academic achievement level, we obtained classification accuracy, precision and recall that were clearly better than chance levels. Primary school teachers’ reports of problems related to sustained attention and distractibility were identified as the two most important features of inattentive behaviour predicting academic achievement in high school. Identification and follow-up procedures of primary school children showing these characteristics should be prioritised to prevent future academic failure. PMID:29182663

  19. Permutation-invariant distance between atomic configurations

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-09-01

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  20. Hurdles and sorting by inversions: combinatorial, statistical, and experimental results.

    PubMed

    Swenson, Krister M; Lin, Yu; Rajan, Vaibhav; Moret, Bernard M E

    2009-10-01

    As data about genomic architecture accumulates, genomic rearrangements have attracted increasing attention. One of the main rearrangement mechanisms, inversions (also called reversals), was characterized by Hannenhalli and Pevzner and this characterization in turn extended by various authors. The characterization relies on the concepts of breakpoints, cycles, and obstructions colorfully named hurdles and fortresses. In this paper, we study the probability of generating a hurdle in the process of sorting a permutation if one does not take special precautions to avoid them (as in a randomized algorithm, for instance). To do this we revisit and extend the work of Caprara and of Bergeron by providing simple and exact characterizations of the probability of encountering a hurdle in a random permutation. Using similar methods we provide the first asymptotically tight analysis of the probability that a fortress exists in a random permutation. Finally, we study other aspects of hurdles, both analytically and through experiments: when are they created in a sequence of sorting inversions, how much later are they detected, and how much work may need to be undone to return to a sorting sequence.

  1. SCOPES: steganography with compression using permutation search

    NASA Astrophysics Data System (ADS)

    Boorboor, Sahar; Zolfaghari, Behrouz; Mozafari, Saadat Pour

    2011-10-01

    LSB (Least Significant Bit) is a widely used method for image steganography, which hides the secret message as a bit stream in LSBs of pixel bytes in the cover image. This paper proposes a variant of LSB named SCOPES that encodes and compresses the secret message while being hidden through storing addresses instead of message bytes. Reducing the length of the stored message improves the storage capacity and makes the stego image visually less suspicious to the third party. The main idea behind the SCOPES approach is dividing the message into 3-character segments, seeking each segment in the cover image and storing the address of the position containing the segment instead of the segment itself. In this approach, every permutation of the 3 bytes (if found) can be stored along with some extra bits indicating the permutation. In some rare cases the segment may not be found in the image and this can cause the message to be expanded by some overhead bits2 instead of being compressed. But experimental results show that SCOPES performs overlay better than traditional LSB even in the worst cases.

  2. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng

    2018-01-01

    Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.

  3. An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2014-09-01

    In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.

  4. Cluster mass inference via random field theory.

    PubMed

    Zhang, Hui; Nichols, Thomas E; Johnson, Timothy D

    2009-01-01

    Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal signals. In order to leverage strength from both statistics, several nonparametric permutation methods have been proposed to combine the two methods. Simulation studies have shown that of the different cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there is no parametric cluster mass inference available. In this paper, we propose a cluster mass inference method based on random field theory (RFT). We develop this method for Gaussian images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties via simulation studies and real data. Simulation results show that the method is valid under the null hypothesis and demonstrate that it can be more powerful than the cluster extent inference method. Further, analyses with a single subject and a group fMRI dataset demonstrate better power than traditional cluster size inference, and good accuracy relative to a gold-standard permutation test.

  5. Sleep in patients with disorders of consciousness characterized by means of machine learning

    PubMed Central

    Lechinger, Julia; Wislowska, Malgorzata; Blume, Christine; Ott, Peter; Wegenkittl, Stefan; del Giudice, Renata; Heib, Dominik P. J.; Mayer, Helmut A.; Laureys, Steven; Pichler, Gerald; Schabus, Manuel

    2018-01-01

    Sleep has been proposed to indicate preserved residual brain functioning in patients suffering from disorders of consciousness (DOC) after awakening from coma. However, a reliable characterization of sleep patterns in this clinical population continues to be challenging given severely altered brain oscillations, frequent and extended artifacts in clinical recordings and the absence of established staging criteria. In the present study, we try to address these issues and investigate the usefulness of a multivariate machine learning technique based on permutation entropy, a complexity measure. Specifically, we used long-term polysomnography (PSG), along with video recordings in day and night periods in a sample of 23 DOC; 12 patients were diagnosed as Unresponsive Wakefulness Syndrome (UWS) and 11 were diagnosed as Minimally Conscious State (MCS). Eight hour PSG recordings of healthy sleepers (N = 26) were additionally used for training and setting parameters of supervised and unsupervised model, respectively. In DOC, the supervised classification (wake, N1, N2, N3 or REM) was validated using simultaneous videos which identified periods with prolonged eye opening or eye closure.The supervised classification revealed that out of the 23 subjects, 11 patients (5 MCS and 6 UWS) yielded highly accurate classification with an average F1-score of 0.87 representing high overlap between the classifier predicting sleep (i.e. one of the 4 sleep stages) and closed eyes. Furthermore, the unsupervised approach revealed a more complex pattern of sleep-wake stages during the night period in the MCS group, as evidenced by the presence of several distinct clusters. In contrast, in UWS patients no such clustering was found. Altogether, we present a novel data-driven method, based on machine learning that can be used to gain new and unambiguous insights into sleep organization and residual brain functioning of patients with DOC. PMID:29293607

  6. A Swarm Optimization approach for clinical knowledge mining.

    PubMed

    Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A

    2015-10-01

    Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. SU-D-207B-02: Early Grade Classification in Meningioma Patients Combining Radiomics and Semantics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coroller, T; Bi, W; Abedalthagafi, M

    Purpose: The clinical management of meningioma is guided by its grade and biologic behavior. Currently, diagnosis of tumor grade follows surgical resection and histopathologic review. Reliable techniques for pre-operative determination of tumor behavior are needed. We investigated the association between imaging features extracted from preoperative gadolinium-enhanced T1-weighted MRI and meningioma grade. Methods: We retrospectively examined the pre-operative MRI for 139 patients with de novo WHO grade I (63%) and grade II (37%) meningiomas. We investigated the predictive power of ten semantic radiologic features as determined by a neuroradiologist, fifteen radiomic features, and tumor location. Conventional (volume and diameter) imaging featuresmore » were added for comparison. AUC was computed for continuous and χ{sup 2} for discrete variables. Classification was done using random forest. Performance was evaluated using cross validation (1000 iterations, 75% training and 25% validation). All p-values were adjusted for multiple testing. Results: Significant association was observed between meningioma grade and tumor location (p<0.001) and two semantic features including intra-tumoral heterogeneity (p<0.001) and overt hemorrhage (p=0.01). Conventional (AUC 0.61–0.67) and eleven radiomic (AUC 0.60–0.70) features were significant from random (p<0.05, Noether test). Median AUC values for classification of tumor grade were 0.57, 0.71, 0.72 and 0.77 respectively for conventional, radiomic, location, and semantic features after using random forest. By combining all imaging data (semantic, radiomic, and location), the median AUC was 0.81, which offers superior predicting power to that of conventional imaging descriptors for meningioma as well as radiomic features alone (p<0.05, permutation test). Conclusion: We demonstrate a strong association between radiologic features and meningioma grade. Pre-operative prediction of tumor behavior based on imaging features offers promise for guiding personalized medicine and improving patient management.« less

  8. Diagnostic Classification Models and Multidimensional Adaptive Testing: A Commentary on Rupp and Templin

    ERIC Educational Resources Information Center

    Frey, Andreas; Carstensen, Claus H.

    2009-01-01

    On a general level, the objective of diagnostic classifications models (DCMs) lies in a classification of individuals regarding multiple latent skills. In this article, the authors show that this objective can be achieved by multidimensional adaptive testing (MAT) as well. The authors discuss whether or not the restricted applicability of DCMs can…

  9. Camouflage target reconnaissance based on hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Hua, Wenshen; Guo, Tong; Liu, Xun

    2015-08-01

    Efficient camouflaged target reconnaissance technology makes great influence on modern warfare. Hyperspectral images can provide large spectral range and high spectral resolution, which are invaluable in discriminating between camouflaged targets and backgrounds. Hyperspectral target detection and classification technology are utilized to achieve single class and multi-class camouflaged targets reconnaissance respectively. Constrained energy minimization (CEM), a widely used algorithm in hyperspectral target detection, is employed to achieve one class camouflage target reconnaissance. Then, support vector machine (SVM), a classification method, is proposed to achieve multi-class camouflage target reconnaissance. Experiments have been conducted to demonstrate the efficiency of the proposed method.

  10. A chaotic modified-DFT encryption scheme for physical layer security and PAPR reduction in OFDM-PON

    NASA Astrophysics Data System (ADS)

    Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Li, Qiliang; Zhou, Zhao; Yang, Xuelin

    2018-05-01

    This letter proposes a modified discrete Fourier transform (DFT) encryption scheme with multi-dimensional chaos for the physical layer security and peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing passive optical network (OFDM-PON) system. This multiple-fold encryption algorithm is mainly composed by using the column vectors permutation and the random phase encryption in the standard DFT matrix, which can create ∼10551 key space. The transmission of ∼10 Gb/s encrypted OFDM signal is verified over 20-km standard single mode fiber (SMF). Moreover, experimental results show that, the proposed scheme can achieve ∼2.6-dB PAPR reduction and ∼1-dB improvement of receiver sensitivity if compared with the common OFDM-PON.

  11. A k-permutation algorithm for Fixed Satellite Service orbital allotments

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1988-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed in this paper. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the Fixed Satellite Service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: (1) the problem of ordering the satellites and (2) the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, that has been developed to find solutions to SLPs formulated in the manner suggested is described. Solutions to small example problems are presented and analyzed.

  12. Convergence to equilibrium under a random Hamiltonian.

    PubMed

    Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  13. Convergence to equilibrium under a random Hamiltonian

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  14. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  15. Multispectral LiDAR Data for Land Cover Classification of Urban Areas

    PubMed Central

    Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed

    2017-01-01

    Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy. PMID:28445432

  16. Multispectral LiDAR Data for Land Cover Classification of Urban Areas.

    PubMed

    Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed

    2017-04-26

    Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy.

  17. Object-Based Paddy Rice Mapping Using HJ-1A/B Data and Temporal Features Extracted from Time Series MODIS NDVI Data

    PubMed Central

    Singha, Mrinal; Wu, Bingfang; Zhang, Miao

    2016-01-01

    Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525

  18. Object-Based Paddy Rice Mapping Using HJ-1A/B Data and Temporal Features Extracted from Time Series MODIS NDVI Data.

    PubMed

    Singha, Mrinal; Wu, Bingfang; Zhang, Miao

    2016-12-22

    Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.

  19. Metric learning for automatic sleep stage classification.

    PubMed

    Phan, Huy; Do, Quan; Do, The-Luan; Vu, Duc-Lung

    2013-01-01

    We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.

  20. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.

    PubMed

    Shalbaf, Ahmad; Saffar, Mohsen; Sleigh, Jamie W; Shalbaf, Reza

    2018-05-01

    Accurate and noninvasive monitoring of the depth of anesthesia (DoA) is highly desirable. Since the anesthetic drugs act mainly on the central nervous system, the analysis of brain activity using electroencephalogram (EEG) is very useful. This paper proposes a novel automated method for assessing the DoA using EEG. First, 11 features including spectral, fractal, and entropy are extracted from EEG signal and then, by applying an algorithm according to exhaustive search of all subsets of features, a combination of the best features (Beta-index, sample entropy, shannon permutation entropy, and detrended fluctuation analysis) is selected. Accordingly, we feed these extracted features to a new neurofuzzy classification algorithm, adaptive neurofuzzy inference system with linguistic hedges (ANFIS-LH). This structure can successfully model systems with nonlinear relationships between input and output, and also classify overlapped classes accurately. ANFIS-LH, which is based on modified classical fuzzy rules, reduces the effects of the insignificant features in input space, which causes overlapping and modifies the output layer structure. The presented method classifies EEG data into awake, light, general, and deep states during anesthesia with sevoflurane in 17 patients. Its accuracy is 92% compared to a commercial monitoring system (response entropy index) successfully. Moreover, this method reaches the classification accuracy of 93% to categorize EEG signal to awake and general anesthesia states by another database of propofol and volatile anesthesia in 50 patients. To sum up, this method is potentially applicable to a new real-time monitoring system to help the anesthesiologist with continuous assessment of DoA quickly and accurately.

  1. Land-use Scene Classification in High-Resolution Remote Sensing Images by Multiscale Deeply Described Correlatons

    NASA Astrophysics Data System (ADS)

    Qi, K.; Qingfeng, G.

    2017-12-01

    With the popular use of High-Resolution Satellite (HRS) images, more and more research efforts have been placed on land-use scene classification. However, it makes the task difficult with HRS images for the complex background and multiple land-cover classes or objects. This article presents a multiscale deeply described correlaton model for land-use scene classification. Specifically, the convolutional neural network is introduced to learn and characterize the local features at different scales. Then, learnt multiscale deep features are explored to generate visual words. The spatial arrangement of visual words is achieved through the introduction of adaptive vector quantized correlograms at different scales. Experiments on two publicly available land-use scene datasets demonstrate that the proposed model is compact and yet discriminative for efficient representation of land-use scene images, and achieves competitive classification results with the state-of-art methods.

  2. Robust tissue classification for reproducible wound assessment in telemedicine environments

    NASA Astrophysics Data System (ADS)

    Wannous, Hazem; Treuillet, Sylvie; Lucas, Yves

    2010-04-01

    In telemedicine environments, a standardized and reproducible assessment of wounds, using a simple free-handled digital camera, is an essential requirement. However, to ensure robust tissue classification, particular attention must be paid to the complete design of the color processing chain. We introduce the key steps including color correction, merging of expert labeling, and segmentation-driven classification based on support vector machines. The tool thus developed ensures stability under lighting condition, viewpoint, and camera changes, to achieve accurate and robust classification of skin tissues. Clinical tests demonstrate that such an advanced tool, which forms part of a complete 3-D and color wound assessment system, significantly improves the monitoring of the healing process. It achieves an overlap score of 79.3 against 69.1% for a single expert, after mapping on the medical reference developed from the image labeling by a college of experts.

  3. Effects of Classification Exposure upon Numerical Achievement of Educable Mentally Retarded Children.

    ERIC Educational Resources Information Center

    Funk, Kerri L.; Tseng, M. S.

    Two groups of 32 educable mentally retarded children (ages 7 to 14 years) were compared as to their arithmetic and classification performances attributable to the presence or absence of a 4 1/2 week exposure to classification tasks. The randomized block pretest-posttest design was used. The experimental group and the control group were matched on…

  4. Fusion and Sense Making of Heterogeneous Sensor Network and Other Sources

    DTIC Science & Technology

    2017-03-16

    multimodal fusion framework that uses both training data and web resources for scene classification, the experimental results on the benchmark datasets...show that the proposed text-aided scene classification framework could significantly improve classification performance. Experimental results also show...human whose adaptability is achieved by reliability- dependent weighting of different sensory modalities. Experimental results show that the proposed

  5. Application of Sensor Fusion to Improve Uav Image Classification

    NASA Astrophysics Data System (ADS)

    Jabari, S.; Fathollahi, F.; Zhang, Y.

    2017-08-01

    Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.

  6. Ground-based cloud classification by learning stable local binary patterns

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua

    2018-07-01

    Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.

  7. Tiny videos: a large data set for nonparametric video retrieval and frame classification.

    PubMed

    Karpenko, Alexandre; Aarabi, Parham

    2011-03-01

    In this paper, we present a large database of over 50,000 user-labeled videos collected from YouTube. We develop a compact representation called "tiny videos" that achieves high video compression rates while retaining the overall visual appearance of the video as it varies over time. We show that frame sampling using affinity propagation-an exemplar-based clustering algorithm-achieves the best trade-off between compression and video recall. We use this large collection of user-labeled videos in conjunction with simple data mining techniques to perform related video retrieval, as well as classification of images and video frames. The classification results achieved by tiny videos are compared with the tiny images framework [24] for a variety of recognition tasks. The tiny images data set consists of 80 million images collected from the Internet. These are the largest labeled research data sets of videos and images available to date. We show that tiny videos are better suited for classifying scenery and sports activities, while tiny images perform better at recognizing objects. Furthermore, we demonstrate that combining the tiny images and tiny videos data sets improves classification precision in a wider range of categories.

  8. Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks.

    PubMed

    Park, Jinhee; Javier, Rios Jesus; Moon, Taesup; Kim, Youngwook

    2016-11-24

    Accurate classification of human aquatic activities using radar has a variety of potential applications such as rescue operations and border patrols. Nevertheless, the classification of activities on water using radar has not been extensively studied, unlike the case on dry ground, due to its unique challenge. Namely, not only is the radar cross section of a human on water small, but the micro-Doppler signatures are much noisier due to water drops and waves. In this paper, we first investigate whether discriminative signatures could be obtained for activities on water through a simulation study. Then, we show how we can effectively achieve high classification accuracy by applying deep convolutional neural networks (DCNN) directly to the spectrogram of real measurement data. From the five-fold cross-validation on our dataset, which consists of five aquatic activities, we report that the conventional feature-based scheme only achieves an accuracy of 45.1%. In contrast, the DCNN trained using only the collected data attains 66.7%, and the transfer learned DCNN, which takes a DCNN pre-trained on a RGB image dataset and fine-tunes the parameters using the collected data, achieves a much higher 80.3%, which is a significant performance boost.

  9. Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow.

    PubMed

    Stanley, Clayton; Byrne, Michael D

    2016-12-01

    The growth of social media and user-created content on online sites provides unique opportunities to study models of human declarative memory. By framing the task of choosing a hashtag for a tweet and tagging a post on Stack Overflow as a declarative memory retrieval problem, 2 cognitively plausible declarative memory models were applied to millions of posts and tweets and evaluated on how accurately they predict a user's chosen tags. An ACT-R based Bayesian model and a random permutation vector-based model were tested on the large data sets. The results show that past user behavior of tag use is a strong predictor of future behavior. Furthermore, past behavior was successfully incorporated into the random permutation model that previously used only context. Also, ACT-R's attentional weight term was linked to an entropy-weighting natural language processing method used to attenuate high-frequency words (e.g., articles and prepositions). Word order was not found to be a strong predictor of tag use, and the random permutation model performed comparably to the Bayesian model without including word order. This shows that the strength of the random permutation model is not in the ability to represent word order, but rather in the way in which context information is successfully compressed. The results of the large-scale exploration show how the architecture of the 2 memory models can be modified to significantly improve accuracy, and may suggest task-independent general modifications that can help improve model fit to human data in a much wider range of domains. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Quantile-based permutation thresholds for quantitative trait loci hotspots.

    PubMed

    Neto, Elias Chaibub; Keller, Mark P; Broman, Andrew F; Attie, Alan D; Jansen, Ritsert C; Broman, Karl W; Yandell, Brian S

    2012-08-01

    Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key importance. One approach, randomly allocating observed QTL across the genomic locations separately by trait, implicitly assumes all traits are uncorrelated. Recently, an empirical test for QTL hotspots was proposed on the basis of the number of traits that exceed a predetermined LOD value, such as the standard permutation LOD threshold. The permutation null distribution of the maximum number of traits across all genomic locations preserves the correlation structure among the phenotypes, avoiding the detection of spurious hotspots due to nongenetic correlation induced by uncontrolled environmental factors and unmeasured variables. However, by considering only the number of traits above a threshold, without accounting for the magnitude of the LOD scores, relevant information is lost. In particular, biologically interesting hotspots composed of a moderate to small number of traits with strong LOD scores may be neglected as nonsignificant. In this article we propose a quantile-based permutation approach that simultaneously accounts for the number and the LOD scores of traits within the hotspots. By considering a sliding scale of mapping thresholds, our method can assess the statistical significance of both small and large hotspots. Although the proposed approach can be applied to any type of heritable high-volume "omic" data set, we restrict our attention to expression (e)QTL analysis. We assess and compare the performances of these three methods in simulations and we illustrate how our approach can effectively assess the significance of moderate and small hotspots with strong LOD scores in a yeast expression data set.

  11. Comparing Economic Systems.

    ERIC Educational Resources Information Center

    Wolken, Lawrence C.

    1984-01-01

    Defines the predominate classifications of economic systems: traditional, command, market, capitalism, socialism, and communism. Considers property rights, role of government, economic freedom, incentives, market structure, economic goals and means of achieving those goals for each classification. Identifies 26 print and audio-visual sources for…

  12. Feature selection for elderly faller classification based on wearable sensors.

    PubMed

    Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2017-05-30

    Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.

  13. Automated Classification of Radiology Reports for Acute Lung Injury: Comparison of Keyword and Machine Learning Based Natural Language Processing Approaches.

    PubMed

    Solti, Imre; Cooke, Colin R; Xia, Fei; Wurfel, Mark M

    2009-11-01

    This paper compares the performance of keyword and machine learning-based chest x-ray report classification for Acute Lung Injury (ALI). ALI mortality is approximately 30 percent. High mortality is, in part, a consequence of delayed manual chest x-ray classification. An automated system could reduce the time to recognize ALI and lead to reductions in mortality. For our study, 96 and 857 chest x-ray reports in two corpora were labeled by domain experts for ALI. We developed a keyword and a Maximum Entropy-based classification system. Word unigram and character n-grams provided the features for the machine learning system. The Maximum Entropy algorithm with character 6-gram achieved the highest performance (Recall=0.91, Precision=0.90 and F-measure=0.91) on the 857-report corpus. This study has shown that for the classification of ALI chest x-ray reports, the machine learning approach is superior to the keyword based system and achieves comparable results to highest performing physician annotators.

  14. Automated Classification of Radiology Reports for Acute Lung Injury: Comparison of Keyword and Machine Learning Based Natural Language Processing Approaches

    PubMed Central

    Solti, Imre; Cooke, Colin R.; Xia, Fei; Wurfel, Mark M.

    2010-01-01

    This paper compares the performance of keyword and machine learning-based chest x-ray report classification for Acute Lung Injury (ALI). ALI mortality is approximately 30 percent. High mortality is, in part, a consequence of delayed manual chest x-ray classification. An automated system could reduce the time to recognize ALI and lead to reductions in mortality. For our study, 96 and 857 chest x-ray reports in two corpora were labeled by domain experts for ALI. We developed a keyword and a Maximum Entropy-based classification system. Word unigram and character n-grams provided the features for the machine learning system. The Maximum Entropy algorithm with character 6-gram achieved the highest performance (Recall=0.91, Precision=0.90 and F-measure=0.91) on the 857-report corpus. This study has shown that for the classification of ALI chest x-ray reports, the machine learning approach is superior to the keyword based system and achieves comparable results to highest performing physician annotators. PMID:21152268

  15. Classification Based on Pruning and Double Covered Rule Sets for the Internet of Things Applications

    PubMed Central

    Zhou, Zhongmei; Wang, Weiping

    2014-01-01

    The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy. PMID:24511304

  16. Classification based on pruning and double covered rule sets for the internet of things applications.

    PubMed

    Li, Shasha; Zhou, Zhongmei; Wang, Weiping

    2014-01-01

    The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy.

  17. Discrimination of tornadic and non-tornadic severe weather outbreaks

    NASA Astrophysics Data System (ADS)

    Mercer, Andrew Edward

    Outbreaks of severe weather affect the majority of the conterminous United States. An outbreak is characterized by multiple severe weather occurrences within a single synoptic system. Outbreaks can be categorized by whether or not they produce tornadoes. It is hypothesized that the antecedent synoptic signal contains important information about outbreak type. Accordingly, the scope of this research is to determine the extent that the synoptic signal can be utilized to classify outbreak type at various lead times. Outbreak types are classified using the NCEP/NCAR reanalysis data, which are arranged on a global 2.5° latitude-longitude grid, include 17 vertical pressure levels, and span from 1948 to the present (2008). Fifty major tornado outbreak (TO) cases and fifty major non-tornadic severe weather outbreak (NTO) cases are selected for this work. Two types of analyses are performed on these cases to assess discrimination ability. One analysis involves outbreak classification using the Weather Research and Forecasting (WRF) model initialized with the NCEP/NCAR reanalysis dataset. Meteorological covariates are computed from the WRF output and used in training and testing of statistical classification models. The covariate fields are depicted on a 21 X 21 gridpoint field with an 18 km grid spacing centered on the outbreak. Covariates with large discrimination potential are determined using permutation testing. A P-mode principal component analysis (PCA) is used on the subset of covariates determined by permutation testing to reduce data dimensionality, since numerous redundancies exist in the initial covariate set. Three statistical classification models are trained and tested with the resulting PC scores: a support vector machine (SVM), a logistic regression model (LogR), and a multiple linear regression model (LR). Promising results emerge from these methods, as a probability of detection (POD) of 0.89 and a false alarm ratio (FAR) of 0.13 are obtained from the best discriminating statistical technique (SVM) at 24-hours lead time. Results degrade only slightly by 72-hours lead time (maximum POD of 0.833 and minimum FAR of 0.276). Synoptic composites of the outbreak types are the second analysis considered. Composites are used to reveal synoptic features of outbreak types, which can be utilized to diagnose the differences between classes (in this case, TOs and NTOs). The composites are created using PCA. Five raw variables, height, temperature, relative humidity, and u and v wind components, are extracted from the NCEP/NCAR reanalysis data for North America. Converging longitude lines with increasing latitude on the reanalysis grid introduce bias into correlation calculations in higher latitudes; hence, the data are mapped onto both a latitudinal density grid and a Fibonacci grid. The resulting PCA produces two significant principal components (PCs), and a cluster analysis on these PCs for each outbreak type results in two types of TOs and NTOs. TO composites are characterized by a trough of low pressure over the central United States and major quasigeostrophic forcing features such as an upper level jet streak, cyclonic vorticity advection increasing with height, and warm air advection. These dynamics result in a strong surface cyclone in most tornado outbreaks. These features are considerably less pronounced in NTOs. The statistical analyses presented herein were successful in classifying outbreak types at various lead times, using synoptic scale data as input.

  18. Remote sensing imagery classification using multi-objective gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2016-10-01

    Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.

  19. A PSO-Based Hybrid Metaheuristic for Permutation Flowshop Scheduling Problems

    PubMed Central

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature. PMID:24672389

  20. A PSO-based hybrid metaheuristic for permutation flowshop scheduling problems.

    PubMed

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature.

  1. Palmprint verification using Lagrangian decomposition and invariant interest points

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Rattani, A.; Kisku, D. R.; Hwang, C. J.; Sing, J. K.

    2011-06-01

    This paper presents a palmprint based verification system using SIFT features and Lagrangian network graph technique. We employ SIFT for feature extraction from palmprint images whereas the region of interest (ROI) which has been extracted from wide palm texture at the preprocessing stage, is considered for invariant points extraction. Finally, identity is established by finding permutation matrix for a pair of reference and probe palm graphs drawn on extracted SIFT features. Permutation matrix is used to minimize the distance between two graphs. The propsed system has been tested on CASIA and IITK palmprint databases and experimental results reveal the effectiveness and robustness of the system.

  2. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, W.B.; Passiakos, M.

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

  3. Non-Weyl asymptotics for quantum graphs with general coupling conditions

    NASA Astrophysics Data System (ADS)

    Davies, E. Brian; Exner, Pavel; Lipovský, Jiří

    2010-11-01

    Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.

  4. [Local fractal analysis of noise-like time series by all permutations method for 1-115 min periods].

    PubMed

    Panchelyuga, V A; Panchelyuga, M S

    2015-01-01

    Results of local fractal analysis of 329-per-day time series of 239Pu alpha-decay rate fluctuations by means of all permutations method (APM) are presented. The APM-analysis reveals in the time series some steady frequency set. The coincidence of the frequency set with the Earth natural oscillations was demonstrated. A short review of works by different authors who analyzed the time series of fluctuations in processes of different nature is given. We have shown that the periods observed in those works correspond to the periods revealed in our study. It points to a common mechanism of the phenomenon observed.

  5. Estimation of absolute solvent and solvation shell entropies via permutation reduction

    NASA Astrophysics Data System (ADS)

    Reinhard, Friedemann; Grubmüller, Helmut

    2007-01-01

    Despite its prominent contribution to the free energy of solvated macromolecules such as proteins or DNA, and although principally contained within molecular dynamics simulations, the entropy of the solvation shell is inaccessible to straightforward application of established entropy estimation methods. The complication is twofold. First, the configurational space density of such systems is too complex for a sufficiently accurate fit. Second, and in contrast to the internal macromolecular dynamics, the configurational space volume explored by the diffusive motion of the solvent molecules is too large to be exhaustively sampled by current simulation techniques. Here, we develop a method to overcome the second problem and to significantly alleviate the first one. We propose to exploit the permutation symmetry of the solvent by transforming the trajectory in a way that renders established estimation methods applicable, such as the quasiharmonic approximation or principal component analysis. Our permutation-reduced approach involves a combinatorial problem, which is solved through its equivalence with the linear assignment problem, for which O(N3) methods exist. From test simulations of dense Lennard-Jones gases, enhanced convergence and improved entropy estimates are obtained. Moreover, our approach renders diffusive systems accessible to improved fit functions.

  6. Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding.

    PubMed

    Zhang, Xuncai; Han, Feng; Niu, Ying

    2017-01-01

    With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis.

  7. Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding

    PubMed Central

    2017-01-01

    With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis. PMID:28912802

  8. Analysis of crude oil markets with improved multiscale weighted permutation entropy

    NASA Astrophysics Data System (ADS)

    Niu, Hongli; Wang, Jun; Liu, Cheng

    2018-03-01

    Entropy measures are recently extensively used to study the complexity property in nonlinear systems. Weighted permutation entropy (WPE) can overcome the ignorance of the amplitude information of time series compared with PE and shows a distinctive ability to extract complexity information from data having abrupt changes in magnitude. Improved (or sometimes called composite) multi-scale (MS) method possesses the advantage of reducing errors and improving the accuracy when applied to evaluate multiscale entropy values of not enough long time series. In this paper, we combine the merits of WPE and improved MS to propose the improved multiscale weighted permutation entropy (IMWPE) method for complexity investigation of a time series. Then it is validated effective through artificial data: white noise and 1 / f noise, and real market data of Brent and Daqing crude oil. Meanwhile, the complexity properties of crude oil markets are explored respectively of return series, volatility series with multiple exponents and EEMD-produced intrinsic mode functions (IMFs) which represent different frequency components of return series. Moreover, the instantaneous amplitude and frequency of Brent and Daqing crude oil are analyzed by the Hilbert transform utilized to each IMF.

  9. Diversification of Protein Cage Structure Using Circularly Permuted Subunits.

    PubMed

    Azuma, Yusuke; Herger, Michael; Hilvert, Donald

    2018-01-17

    Self-assembling protein cages are useful as nanoscale molecular containers for diverse applications in biotechnology and medicine. To expand the utility of such systems, there is considerable interest in customizing the structures of natural cage-forming proteins and designing new ones. Here we report that a circularly permuted variant of lumazine synthase, a cage-forming enzyme from Aquifex aeolicus (AaLS) affords versatile building blocks for the construction of nanocompartments that can be easily produced, tailored, and diversified. The topologically altered protein, cpAaLS, self-assembles into spherical and tubular cage structures with morphologies that can be controlled by the length of the linker connecting the native termini. Moreover, cpAaLS proteins integrate into wild-type and other engineered AaLS assemblies by coproduction in Escherichia coli to form patchwork cages. This coassembly strategy enables encapsulation of guest proteins in the lumen, modification of the exterior through genetic fusion, and tuning of the size and electrostatics of the compartments. This addition to the family of AaLS cages broadens the scope of this system for further applications and highlights the utility of circular permutation as a potentially general strategy for tailoring the properties of cage-forming proteins.

  10. Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Zhen; Horton, John R.; Cheng, Xiadong

    2009-11-02

    Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer.more » The crystal structures of one truncated variant (cp283{Delta}7) in the apo-form determined at 1.49 {angstrom} resolution and with a bound phosphonate inhibitor at 1.69 {angstrom} resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.« less

  11. SO(4) algebraic approach to the three-body bound state problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Salom, Igor

    2014-08-01

    We use the permutation symmetric hyperspherical three-body variables to cast the non-relativistic three-body Schrödinger equation in two dimensions into a set of (possibly decoupled) differential equations that define an eigenvalue problem for the hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan coefficients and use the latter's properties to derive selection rules for potentials with different dynamical/permutation symmetries. Three-body potentials acting on three identical particles may have different dynamical symmetries, in order of increasing symmetry, as follows: (1) S3 ⊗ OL(2), the permutation times rotational symmetry, that holds in sums of pairwise potentials, (2) O(2) ⊗ OL(2), the so-called "kinematic rotations" or "democracy symmetry" times rotational symmetry, that holds in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that holds in hyper-radial three-body potentials. We show how the different residual dynamical symmetries of the non-relativistic three-body Hamiltonian lead to different degeneracies of certain states within O(4) multiplets.

  12. cit: hypothesis testing software for mediation analysis in genomic applications.

    PubMed

    Millstein, Joshua; Chen, Gary K; Breton, Carrie V

    2016-08-01

    The challenges of successfully applying causal inference methods include: (i) satisfying underlying assumptions, (ii) limitations in data/models accommodated by the software and (iii) low power of common multiple testing approaches. The causal inference test (CIT) is based on hypothesis testing rather than estimation, allowing the testable assumptions to be evaluated in the determination of statistical significance. A user-friendly software package provides P-values and optionally permutation-based FDR estimates (q-values) for potential mediators. It can handle single and multiple binary and continuous instrumental variables, binary or continuous outcome variables and adjustment covariates. Also, the permutation-based FDR option provides a non-parametric implementation. Simulation studies demonstrate the validity of the cit package and show a substantial advantage of permutation-based FDR over other common multiple testing strategies. The cit open-source R package is freely available from the CRAN website (https://cran.r-project.org/web/packages/cit/index.html) with embedded C ++ code that utilizes the GNU Scientific Library, also freely available (http://www.gnu.org/software/gsl/). joshua.millstein@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  14. A novel chaos-based image encryption algorithm using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Chen, Yiran; Broyde, Lucie

    2017-01-01

    An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.

  15. Searching for the fastest dynamo: laminar ABC flows.

    PubMed

    Alexakis, Alexandros

    2011-08-01

    The growth rate of the dynamo instability as a function of the magnetic Reynolds number R(M) is investigated by means of numerical simulations for the family of the Arnold-Beltrami-Childress (ABC) flows and for two different forcing scales. For the ABC flows that are driven at the largest available length scale, it is found that, as the magnetic Reynolds number is increased: (a) The flow that results first in a dynamo is the 2 1/2-dimensional flow for which A=B and C=0 (and all permutations). (b) The second type of flow that results in a dynamo is the one for which A=B≃2C/5 (and permutations). (c) The most symmetric flow, A=B=C, is the third type of flow that results in a dynamo. (d) As R(M) is increased, the A=B=C flow stops being a dynamo and transitions from a local maximum to a third-order saddle point. (e) At larger R(M), the A=B=C flow reestablishes itself as a dynamo but remains a saddle point. (f) At the largest examined R(M), the growth rate of the 2 1/2-dimensional flows starts to decay, the A=B=C flow comes close to a local maximum again, and the flow A=B≃2C/5 (and permutations) results in the fastest dynamo with growth rate γ≃0.12 at the largest examined R(M). For the ABC flows that are driven at the second largest available length scale, it is found that (a) the 2 1/2-dimensional flows A=B,C=0 (and permutations) are again the first flows that result in a dynamo with a decreased onset. (b) The most symmetric flow, A=B=C, is the second type of flow that results in a dynamo. It is, and it remains, a local maximum. (c) At larger R(M), the flow A=B≃2C/5 (and permutations) appears as the third type of flow that results in a dynamo. As R(M) is increased, it becomes the flow with the largest growth rate. The growth rates appear to have some correlation with the Lyapunov exponents, but constructive refolding of the field lines appears equally important in determining the fastest dynamo flow.

  16. Automated detection of neovascularization for proliferative diabetic retinopathy screening.

    PubMed

    Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K

    2016-08-01

    Neovascularization is the primary manifestation of proliferative diabetic retinopathy (PDR) that can lead to acquired blindness. This paper presents a novel method that classifies neovascularizations in the 1-optic disc (OD) diameter region (NVD) and elsewhere (NVE) separately to achieve low false positive rates of neovascularization classification. First, the OD region and blood vessels are extracted. Next, the major blood vessel segments in the 1-OD diameter region are classified for NVD, and minor blood vessel segments elsewhere are classified for NVE. For NVD and NVE classifications, optimal region-based feature sets of 10 and 6 features, respectively, are used. The proposed method achieves classification sensitivity, specificity and accuracy for NVD and NVE of 74%, 98.2%, 87.6%, and 61%, 97.5%, 92.1%, respectively. Also, the proposed method achieves 86.4% sensitivity and 76% specificity for screening images with PDR from public and local data sets. Thus, the proposed NVD and NVE detection methods can play a key role in automated screening and prioritization of patients with diabetic retinopathy.

  17. Impact of a social-emotional and character development program on school-level indicators of academic achievement, absenteeism, and disciplinary outcomes: A matched-pair, cluster randomized, controlled trial.

    PubMed

    Snyder, Frank; Flay, Brian; Vuchinich, Samuel; Acock, Alan; Washburn, Isaac; Beets, Michael; Li, Kin-Kit

    2010-01-01

    This paper reports the effects of a comprehensive elementary school-based social-emotional and character education program on school-level achievement, absenteeism, and disciplinary outcomes utilizing a matched-pair, cluster randomized, controlled design. The Positive Action Hawai'i trial included 20 racially/ethnically diverse schools (mean enrollment = 544) and was conducted from the 2002-03 through the 2005-06 academic years. Using school-level archival data, analyses comparing change from baseline (2002) to one-year post trial (2007) revealed that intervention schools scored 9.8% better on the TerraNova (2 nd ed.) test for reading and 8.8% on math; 20.7% better in Hawai'i Content and Performance Standards scores for reading and 51.4% better in math; and that intervention schools reported 15.2% lower absenteeism and fewer suspensions (72.6%) and retentions (72.7%). Overall, effect sizes were moderate to large (range 0.5-1.1) for all of the examined outcomes. Sensitivity analyses using permutation models and random-intercept growth curve models substantiated results. The results provide evidence that a comprehensive school-based program, specifically developed to target student behavior and character, can positively influence school-level achievement, attendance, and disciplinary outcomes concurrently.

  18. Teaching Methods, Intelligence, and Gender Factors in Pupil Achievement on a Classification Task

    ERIC Educational Resources Information Center

    Ryman, Don

    1977-01-01

    Reports on twelve year-old students instructed in Nuffield Project and in "traditional" classrooms. A division of the subjects into two groups based on intelligence revealed significant differences on classification ability. Interaction effects were also observed. (CP)

  19. The concept of stewardship in health policy.

    PubMed Central

    Saltman, R. B.; Ferroussier-Davis, O.

    2000-01-01

    There is widespread agreement that both the configuration and the application of state authority in the health sector should be realigned in the interest of achieving agreed policy objectives. The desired outcome is frequently characterized as a search for good governance serving the public interest. The present paper examines the proposal in The World Health Report 2000 that the concept of stewardship offers the appropriate basis for reconfiguration. We trace the development of stewardship from its initial religious formulation to more recent ecological and sociological permutations. Consideration is given to the potential of stewardship for encouraging state decision-making that is both normatively based and economically efficient. Various dilemmas that could impede or preclude such a shift in state behaviour are examined. We conclude that the concept of stewardship holds substantial promise if adequately developed and effectively implemented. PMID:10916910

  20. Use of machine learning methods to classify Universities based on the income structure

    NASA Astrophysics Data System (ADS)

    Terlyga, Alexandra; Balk, Igor

    2017-10-01

    In this paper we discuss use of machine learning methods such as self organizing maps, k-means and Ward’s clustering to perform classification of universities based on their income. This classification will allow us to quantitate classification of universities as teaching, research, entrepreneur, etc. which is important tool for government, corporations and general public alike in setting expectation and selecting universities to achieve different goals.

  1. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification

    PubMed Central

    Wen, Tingxi; Zhang, Zhongnan

    2017-01-01

    Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789

  2. a Rough Set Decision Tree Based Mlp-Cnn for Very High Resolution Remotely Sensed Image Classification

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.

    2017-09-01

    Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  3. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan

    2017-05-01

    In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.

  4. Markerless gating for lung cancer radiotherapy based on machine learning techniques

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Li, Ruijiang; Tang, Xiaoli; Dy, Jennifer G.; Jiang, Steve B.

    2009-03-01

    In lung cancer radiotherapy, radiation to a mobile target can be delivered by respiratory gating, for which we need to know whether the target is inside or outside a predefined gating window at any time point during the treatment. This can be achieved by tracking one or more fiducial markers implanted inside or near the target, either fluoroscopically or electromagnetically. However, the clinical implementation of marker tracking is limited for lung cancer radiotherapy mainly due to the risk of pneumothorax. Therefore, gating without implanted fiducial markers is a promising clinical direction. We have developed several template-matching methods for fluoroscopic marker-less gating. Recently, we have modeled the gating problem as a binary pattern classification problem, in which principal component analysis (PCA) and support vector machine (SVM) are combined to perform the classification task. Following the same framework, we investigated different combinations of dimensionality reduction techniques (PCA and four nonlinear manifold learning methods) and two machine learning classification methods (artificial neural networks—ANN and SVM). Performance was evaluated on ten fluoroscopic image sequences of nine lung cancer patients. We found that among all combinations of dimensionality reduction techniques and classification methods, PCA combined with either ANN or SVM achieved a better performance than the other nonlinear manifold learning methods. ANN when combined with PCA achieves a better performance than SVM in terms of classification accuracy and recall rate, although the target coverage is similar for the two classification methods. Furthermore, the running time for both ANN and SVM with PCA is within tolerance for real-time applications. Overall, ANN combined with PCA is a better candidate than other combinations we investigated in this work for real-time gated radiotherapy.

  5. Expected energy-based restricted Boltzmann machine for classification.

    PubMed

    Elfwing, S; Uchibe, E; Doya, K

    2015-04-01

    In classification tasks, restricted Boltzmann machines (RBMs) have predominantly been used in the first stage, either as feature extractors or to provide initialization of neural networks. In this study, we propose a discriminative learning approach to provide a self-contained RBM method for classification, inspired by free-energy based function approximation (FE-RBM), originally proposed for reinforcement learning. For classification, the FE-RBM method computes the output for an input vector and a class vector by the negative free energy of an RBM. Learning is achieved by stochastic gradient-descent using a mean-squared error training objective. In an earlier study, we demonstrated that the performance and the robustness of FE-RBM function approximation can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that the learning performance of RBM function approximation can be further improved by computing the output by the negative expected energy (EE-RBM), instead of the negative free energy. To create a deep learning architecture, we stack several RBMs on top of each other. We also connect the class nodes to all hidden layers to try to improve the performance even further. We validate the classification performance of EE-RBM using the MNIST data set and the NORB data set, achieving competitive performance compared with other classifiers such as standard neural networks, deep belief networks, classification RBMs, and support vector machines. The purpose of using the NORB data set is to demonstrate that EE-RBM with binary input nodes can achieve high performance in the continuous input domain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. a Gsa-Svm Hybrid System for Classification of Binary Problems

    NASA Astrophysics Data System (ADS)

    Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan

    2011-06-01

    This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.

  7. Quantization of high dimensional Gaussian vector using permutation modulation with application to information reconciliation in continuous variable QKD

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina; Olia, Khashayar

    This paper is focused on the problem of Information Reconciliation (IR) for continuous variable Quantum Key Distribution (QKD). The main problem is quantization and assignment of labels to the samples of the Gaussian variables observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective Signal-to-Noise Ratio (SNR) exasperating the problem. Quantization over higher dimensions is advantageous since it allows for fractional bit per sample accuracy which may be needed at very low SNR conditions whereby the achievable secret key rate is significantly less than one bit per sample. In this paper, we propose to use Permutation Modulation (PM) for quantization of Gaussian vectors potentially containing thousands of samples. PM is applied to the magnitudes of the Gaussian samples and we explore the dependence of the sign error probability on the magnitude of the samples. At very low SNR, we may transmit the entire label of the PM code from Bob to Alice in Reverse Reconciliation (RR) over public channel. The side information extracted from this label can then be used by Alice to characterize the sign error probability of her individual samples. Forward Error Correction (FEC) coding can be used by Bob on each subset of samples with similar sign error probability to aid Alice in error correction. This can be done for different subsets of samples with similar sign error probabilities leading to an Unequal Error Protection (UEP) coding paradigm.

  8. Emotional modelling and classification of a large-scale collection of scene images in a cluster environment

    PubMed Central

    Li, Yanfei; Tian, Yun

    2018-01-01

    The development of network technology and the popularization of image capturing devices have led to a rapid increase in the number of digital images available, and it is becoming increasingly difficult to identify a desired image from among the massive number of possible images. Images usually contain rich semantic information, and people usually understand images at a high semantic level. Therefore, achieving the ability to use advanced technology to identify the emotional semantics contained in images to enable emotional semantic image classification remains an urgent issue in various industries. To this end, this study proposes an improved OCC emotion model that integrates personality and mood factors for emotional modelling to describe the emotional semantic information contained in an image. The proposed classification system integrates the k-Nearest Neighbour (KNN) algorithm with the Support Vector Machine (SVM) algorithm. The MapReduce parallel programming model was used to adapt the KNN-SVM algorithm for parallel implementation in the Hadoop cluster environment, thereby achieving emotional semantic understanding for the classification of a massive collection of images. For training and testing, 70,000 scene images were randomly selected from the SUN Database. The experimental results indicate that users with different personalities show overall consistency in their emotional understanding of the same image. For a training sample size of 50,000, the classification accuracies for different emotional categories targeted at users with different personalities were approximately 95%, and the training time was only 1/5 of that required for the corresponding algorithm with a single-node architecture. Furthermore, the speedup of the system also showed a linearly increasing tendency. Thus, the experiments achieved a good classification effect and can lay a foundation for classification in terms of additional types of emotional image semantics, thereby demonstrating the practical significance of the proposed model. PMID:29320579

  9. Emotional modelling and classification of a large-scale collection of scene images in a cluster environment.

    PubMed

    Cao, Jianfang; Li, Yanfei; Tian, Yun

    2018-01-01

    The development of network technology and the popularization of image capturing devices have led to a rapid increase in the number of digital images available, and it is becoming increasingly difficult to identify a desired image from among the massive number of possible images. Images usually contain rich semantic information, and people usually understand images at a high semantic level. Therefore, achieving the ability to use advanced technology to identify the emotional semantics contained in images to enable emotional semantic image classification remains an urgent issue in various industries. To this end, this study proposes an improved OCC emotion model that integrates personality and mood factors for emotional modelling to describe the emotional semantic information contained in an image. The proposed classification system integrates the k-Nearest Neighbour (KNN) algorithm with the Support Vector Machine (SVM) algorithm. The MapReduce parallel programming model was used to adapt the KNN-SVM algorithm for parallel implementation in the Hadoop cluster environment, thereby achieving emotional semantic understanding for the classification of a massive collection of images. For training and testing, 70,000 scene images were randomly selected from the SUN Database. The experimental results indicate that users with different personalities show overall consistency in their emotional understanding of the same image. For a training sample size of 50,000, the classification accuracies for different emotional categories targeted at users with different personalities were approximately 95%, and the training time was only 1/5 of that required for the corresponding algorithm with a single-node architecture. Furthermore, the speedup of the system also showed a linearly increasing tendency. Thus, the experiments achieved a good classification effect and can lay a foundation for classification in terms of additional types of emotional image semantics, thereby demonstrating the practical significance of the proposed model.

  10. Developing Methods Using ToxCast Data for the Classification and Prioritization of Antimicrobials and Inerts

    EPA Science Inventory

    Improved chemical risk management and increased efficiency of chemical prioritization, classification and assessment are major goals within EPA. Towards achieving these goals, EPA's ToxCast™ research program has been designed to rapidly screen hundreds to thousands of chemicals' ...

  11. An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images.

    PubMed

    Sidibé, Désiré; Sankar, Shrinivasan; Lemaître, Guillaume; Rastgoo, Mojdeh; Massich, Joan; Cheung, Carol Y; Tan, Gavin S W; Milea, Dan; Lamoureux, Ecosse; Wong, Tien Y; Mériaudeau, Fabrice

    2017-02-01

    This paper proposes a method for automatic classification of spectral domain OCT data for the identification of patients with retinal diseases such as Diabetic Macular Edema (DME). We address this issue as an anomaly detection problem and propose a method that not only allows the classification of the OCT volume, but also allows the identification of the individual diseased B-scans inside the volume. Our approach is based on modeling the appearance of normal OCT images with a Gaussian Mixture Model (GMM) and detecting abnormal OCT images as outliers. The classification of an OCT volume is based on the number of detected outliers. Experimental results with two different datasets show that the proposed method achieves a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, the experiments show that the proposed method achieves better classification performance than other recently published works. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    PubMed

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification.

    PubMed

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-03

    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.

  14. Image-classification-based global dimming algorithm for LED backlights in LCDs

    NASA Astrophysics Data System (ADS)

    Qibin, Feng; Huijie, He; Dong, Han; Lei, Zhang; Guoqiang, Lv

    2015-07-01

    Backlight dimming can help LCDs reduce power consumption and improve CR. With fixed parameters, dimming algorithm cannot achieve satisfied effects for all kinds of images. The paper introduces an image-classification-based global dimming algorithm. The proposed classification method especially for backlight dimming is based on luminance and CR of input images. The parameters for backlight dimming level and pixel compensation are adaptive with image classifications. The simulation results show that the classification based dimming algorithm presents 86.13% power reduction improvement compared with dimming without classification, with almost same display quality. The prototype is developed. There are no perceived distortions when playing videos. The practical average power reduction of the prototype TV is 18.72%, compared with common TV without dimming.

  15. Identifying ADHD children using hemodynamic responses during a working memory task measured by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, Yue; Miao, Shuo; Han, Junxia; Liang, Zhenhu; Ouyang, Gaoxiang; Yang, Jian; Li, Xiaoli

    2018-06-01

    Objective. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting children and adults. Previous studies found that functional near-infrared spectroscopy (fNIRS) can reveal significant group differences in several brain regions between ADHD children and healthy controls during working memory tasks. This study aimed to use fNIRS activation patterns to identify ADHD children from healthy controls. Approach. FNIRS signals from 25 ADHD children and 25 healthy controls performing the n-back task were recorded; then, multivariate pattern analysis was used to discriminate ADHD individuals from healthy controls, and classification performance was evaluated for significance by the permutation test. Main results. The results showed that 86.0% (p<0.001 ) of participants can be correctly classified in leave-one-out cross-validation. The most discriminative brain regions included the bilateral dorsolateral prefrontal cortex, inferior medial prefrontal cortex, right posterior prefrontal cortex, and right temporal cortex. Significance. This study demonstrated that, in a small sample, multivariate pattern analysis can effectively identify ADHD children from healthy controls based on fNIRS signals, which argues for the potential utility of fNIRS in future assessments.

  16. Classification of Depressive Disorders in DSM-V: Proposal for a Two-Dimension System

    PubMed Central

    Klein, Daniel N.

    2011-01-01

    The number of categories and specifiers for mood disorders has increased with each successive edition of the Diagnostic and Statistical Manual for Mental Disorders (DSM). Many of these categories and specifiers can be viewed as an effort to map the various permutations of severity and chronicity that characterize the depressive disorders. However, this has resulted in a system that is unnecessarily complex and unwieldy, and created problems with artificial distinctions between categories and artifactual comorbidity, and at the same time obscures what may be more fundamental distinctions. A potentially useful and more parsimonious approach to capturing much of the heterogeneity of depressive disorders is to classify the depressive disorders along two dimensions, one reflecting severity and the other chronicity. Considerations in the development of these dimensions are discussed, and a set of examples is presented. Although further research and discussion are needed to determine the optimal form of these dimensions, the next edition of the DSM should consider replacing many of the existing categories and specifiers for depressive disorders with the simpler approach of classifying depressive disorders using the two dimensions of severity and chronicity. PMID:18729608

  17. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  18. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.

    PubMed

    Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R; Nguyen, Tuan N; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T

    2017-01-01

    This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.

  19. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks

    PubMed Central

    Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R.; Nguyen, Tuan N.; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T.

    2017-01-01

    This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively. PMID:28326009

  20. Ensemble Sparse Classification of Alzheimer’s Disease

    PubMed Central

    Liu, Manhua; Zhang, Daoqiang; Shen, Dinggang

    2012-01-01

    The high-dimensional pattern classification methods, e.g., support vector machines (SVM), have been widely investigated for analysis of structural and functional brain images (such as magnetic resonance imaging (MRI)) to assist the diagnosis of Alzheimer’s disease (AD) including its prodromal stage, i.e., mild cognitive impairment (MCI). Most existing classification methods extract features from neuroimaging data and then construct a single classifier to perform classification. However, due to noise and small sample size of neuroimaging data, it is challenging to train only a global classifier that can be robust enough to achieve good classification performance. In this paper, instead of building a single global classifier, we propose a local patch-based subspace ensemble method which builds multiple individual classifiers based on different subsets of local patches and then combines them for more accurate and robust classification. Specifically, to capture the local spatial consistency, each brain image is partitioned into a number of local patches and a subset of patches is randomly selected from the patch pool to build a weak classifier. Here, the sparse representation-based classification (SRC) method, which has shown effective for classification of image data (e.g., face), is used to construct each weak classifier. Then, multiple weak classifiers are combined to make the final decision. We evaluate our method on 652 subjects (including 198 AD patients, 225 MCI and 229 normal controls) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using MR images. The experimental results show that our method achieves an accuracy of 90.8% and an area under the ROC curve (AUC) of 94.86% for AD classification and an accuracy of 87.85% and an AUC of 92.90% for MCI classification, respectively, demonstrating a very promising performance of our method compared with the state-of-the-art methods for AD/MCI classification using MR images. PMID:22270352

  1. Toward On-Demand Deep Brain Stimulation Using Online Parkinson's Disease Prediction Driven by Dynamic Detection.

    PubMed

    Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas

    2017-12-01

    In Parkinson's disease (PD), on-demand deep brain stimulation is required so that stimulation is regulated to reduce side effects resulting from continuous stimulation and PD exacerbation due to untimely stimulation. Also, the progressive nature of PD necessitates the use of dynamic detection schemes that can track the nonlinearities in PD. This paper proposes the use of dynamic feature extraction and dynamic pattern classification to achieve dynamic PD detection taking into account the demand for high accuracy, low computation, and real-time detection. The dynamic feature extraction and dynamic pattern classification are selected by evaluating a subset of feature extraction, dimensionality reduction, and classification algorithms that have been used in brain-machine interfaces. A novel dimensionality reduction technique, the maximum ratio method (MRM) is proposed, which provides the most efficient performance. In terms of accuracy and complexity for hardware implementation, a combination having discrete wavelet transform for feature extraction, MRM for dimensionality reduction, and dynamic k-nearest neighbor for classification was chosen as the most efficient. It achieves a classification accuracy of 99.29%, an F1-score of 97.90%, and a choice probability of 99.86%.

  2. Classification of damage in structural systems using time series analysis and supervised and unsupervised pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; de Lautour, Oliver R.

    2010-04-01

    Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.

  3. Classification of Microcalcification of the Diagnosis of Breast Cancer using Artificial Neural Networks.

    DTIC Science & Technology

    1995-09-01

    employed to classify benign and malignant microcalcifications in the radiographs of pathological specimen. Digital images were acquired by digitizing...associated with benign and malignant processes. The classification of microcalcifications for the diagnosis of breast cancer was achieved at a high level in

  4. SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects.

    PubMed

    Liu, Zhenjiang; Yuan, Zhengwei; Zhao, Qun

    2014-01-01

    Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection.

  5. ON THE NUMBER OF SOLUTIONS OF THE EQUATION x^k = a IN THE SYMMETRIC GROUP S_n

    NASA Astrophysics Data System (ADS)

    Pavlov, A. I.

    1981-04-01

    This paper consists of three sections. In the first a formula is given for the number N_n^{(k)}(a) of solutions of the equation x^k = a in S_n depending on the cyclic structure of the permutation a. In the second an asymptotic formula is given for the quantity M_n^{(k)} = \\max_{a \\in S_n} N_n^{(k)}(a) for a fixed k \\geq 2 as n \\to \\infty. In the third an asymptotic formula is found for the cardinality of the set of permutations a such that the equation x^k = a has a unique solution. Bibliography: 5 titles.

  6. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  7. EXTENDING MULTIVARIATE DISTANCE MATRIX REGRESSION WITH AN EFFECT SIZE MEASURE AND THE ASYMPTOTIC NULL DISTRIBUTION OF THE TEST STATISTIC

    PubMed Central

    McArtor, Daniel B.; Lubke, Gitta H.; Bergeman, C. S.

    2017-01-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains. PMID:27738957

  8. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic.

    PubMed

    McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S

    2017-12-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.

  9. On the representation matrices of the spin permutation group. [for atomic and molecular electronic structures

    NASA Technical Reports Server (NTRS)

    Wilson, S.

    1977-01-01

    A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.

  10. Privacy-Preserving Evaluation of Generalization Error and Its Application to Model and Attribute Selection

    NASA Astrophysics Data System (ADS)

    Sakuma, Jun; Wright, Rebecca N.

    Privacy-preserving classification is the task of learning or training a classifier on the union of privately distributed datasets without sharing the datasets. The emphasis of existing studies in privacy-preserving classification has primarily been put on the design of privacy-preserving versions of particular data mining algorithms, However, in classification problems, preprocessing and postprocessing— such as model selection or attribute selection—play a prominent role in achieving higher classification accuracy. In this paper, we show generalization error of classifiers in privacy-preserving classification can be securely evaluated without sharing prediction results. Our main technical contribution is a new generalized Hamming distance protocol that is universally applicable to preprocessing and postprocessing of various privacy-preserving classification problems, such as model selection in support vector machine and attribute selection in naive Bayes classification.

  11. Prevalence and correlates of adult overweight in the Muslim world: analysis of 46 countries.

    PubMed

    Kahan, D

    2015-04-01

    The primary objectives of the study were to calculate overweight prevalence (body mass index ≥ 25.0) and simple correlations between 10 demographic, social welfare and behavioural variables and overweight prevalence for Muslim countries (populations >50% Muslim; N = 46). Overweight data for a country's total, male and female populations were extracted from the World Health Organization's (WHO) STEPwise country reports and relevant publications. Country-level data for potential correlates were extracted from multiple sources: Central Intelligence Agency (literacy), Gallup Poll (religiosity), United Nations (agricultural employment, food supply, gender inequality, human development), World Bank (automobile ownership, Internet, labour force) and WHO (physical inactivity). The overall, male and female overweight prevalence was 37.4, 33.0 and 42.1%, respectively. Prevalence estimates significantly differed by economic classification, gender and ethnicity. Middle- and upper income countries were 1.54-7.76 (95% confidence interval [CI]: 1.49-8.07) times more likely overweight than low-income countries, females were 1.48 (CI: 1.45-1.50) times more likely overweight than males and Arab countries were 2.92 (CI: 2.86-2.97) times more likely overweight than non-Arab countries. All 10 of the potential correlates were significantly associated with overweight for at least one permutation (total, economic classification, gender, ethnicity). The greater percentage of poorer countries among non-Arab Muslim countries, which compared with Arab countries have not as rapidly been transformed by globalization, nutrition transition and urbanization, may partially explain prevalence differences. Evaluation of correlational data generally followed associations seen in non-Muslim countries but more complex analysis of subnational data is needed. Arab women are a particularly vulnerable subgroup and governments should act within religious and cultural parameters to provide environments that are conducive to negative energy balance. © 2015 World Obesity.

  12. On the Optimum Architecture of the Biologically Inspired Hierarchical Temporal Memory Model Applied to the Hand-Written Digit Recognition

    NASA Astrophysics Data System (ADS)

    Štolc, Svorad; Bajla, Ivan

    2010-01-01

    In the paper we describe basic functions of the Hierarchical Temporal Memory (HTM) network based on a novel biologically inspired model of the large-scale structure of the mammalian neocortex. The focus of this paper is in a systematic exploration of possibilities how to optimize important controlling parameters of the HTM model applied to the classification of hand-written digits from the USPS database. The statistical properties of this database are analyzed using the permutation test which employs a randomization distribution of the training and testing data. Based on a notion of the homogeneous usage of input image pixels, a methodology of the HTM parameter optimization is proposed. In order to study effects of two substantial parameters of the architecture: the patch size and the overlap in more details, we have restricted ourselves to the single-level HTM networks. A novel method for construction of the training sequences by ordering series of the static images is developed. A novel method for estimation of the parameter maxDist based on the box counting method is proposed. The parameter sigma of the inference Gaussian is optimized on the basis of the maximization of the belief distribution entropy. Both optimization algorithms can be equally applied to the multi-level HTM networks as well. The influences of the parameters transitionMemory and requestedGroupCount on the HTM network performance have been explored. Altogether, we have investigated 2736 different HTM network configurations. The obtained classification accuracy results have been benchmarked with the published results of several conventional classifiers.

  13. Thresholding functional connectomes by means of mixture modeling.

    PubMed

    Bielczyk, Natalia Z; Walocha, Fabian; Ebel, Patrick W; Haak, Koen V; Llera, Alberto; Buitelaar, Jan K; Glennon, Jeffrey C; Beckmann, Christian F

    2018-05-01

    Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Diagnosis of streamflow prediction skills in Oregon using Hydrologic Landscape Classification

    EPA Science Inventory

    A complete understanding of why rainfall-runoff models provide good streamflow predictions at catchments in some regions, but fail to do so in other regions, has still not been achieved. Here, we argue that a hydrologic classification system is a robust conceptual tool that is w...

  15. Where and why do models fail? Perspectives from Oregon Hydrologic Landscape classification

    EPA Science Inventory

    A complete understanding of why rainfall-runoff models provide good streamflow predictions at catchments in some regions, but fail to do so in other regions, has still not been achieved. Here, we argue that a hydrologic classification system is a robust conceptual tool that is w...

  16. Obtaining Accurate Probabilities Using Classifier Calibration

    ERIC Educational Resources Information Center

    Pakdaman Naeini, Mahdi

    2016-01-01

    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…

  17. Permuting input for more effective sampling of 3D conformer space

    NASA Astrophysics Data System (ADS)

    Carta, Giorgio; Onnis, Valeria; Knox, Andrew J. S.; Fayne, Darren; Lloyd, David G.

    2006-03-01

    SMILES strings and other classic 2D structural formats offer a convenient way to represent molecules as a simplistic connection table, with the inherent advantages of ease of handling and storage. In the context of virtual screening, chemical databases to be screened are often initially represented by canonicalised SMILES strings that can be filtered and pre-processed in a number of ways, resulting in molecules that occupy similar regions of chemical space to active compounds of a therapeutic target. A wide variety of software exists to convert molecules into SMILES format, namely, Mol2smi (Daylight Inc.), MOE (Chemical Computing Group) and Babel (Openeye Scientific Software). Depending on the algorithm employed, the atoms of a SMILES string defining a molecule can be ordered differently. Upon conversion to 3D coordinates they result in the production of ostensibly the same molecule. In this work we show how different permutations of a SMILES string can affect conformer generation, affecting reliability and repeatability of the results. Furthermore, we propose a novel procedure for the generation of conformers, taking advantage of the permutation of the input strings—both SMILES and other 2D formats, leading to more effective sampling of conformation space in output, and also implementing fingerprint and principal component analyses step to post process and visualise the results.

  18. Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy

    PubMed Central

    Li, Zhaohui; Li, Xiaoli

    2013-01-01

    Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662

  19. A simplified formalism of the algebra of partially transposed permutation operators with applications

    NASA Astrophysics Data System (ADS)

    Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał

    2018-03-01

    Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.

  20. Unequal homologous recombination between tandemly arranged sequences stably incorporated into cultured rat cells.

    PubMed Central

    Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C

    1985-01-01

    Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511

  1. Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test

    USGS Publications Warehouse

    Matchett, John R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.

    2015-01-01

    Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data.

  2. A Space–Time Permutation Scan Statistic for Disease Outbreak Detection

    PubMed Central

    Kulldorff, Martin; Heffernan, Richard; Hartman, Jessica; Assunção, Renato; Mostashari, Farzad

    2005-01-01

    Background The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant. Methods and Findings We propose a prospective space–time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest. Conclusion If such results hold up over longer study times and in other locations, the space–time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems. PMID:15719066

  3. Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test

    PubMed Central

    Matchett, J. R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.

    2015-01-01

    Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data. PMID:26031755

  4. Limited Rationality and Its Quantification Through the Interval Number Judgments With Permutations.

    PubMed

    Liu, Fang; Pedrycz, Witold; Zhang, Wei-Guo

    2017-12-01

    The relative importance of alternatives expressed in terms of interval numbers in the fuzzy analytic hierarchy process aims to capture the uncertainty experienced by decision makers (DMs) when making a series of comparisons. Under the assumption of full rationality, the judgements of DMs in the typical analytic hierarchy process could be consistent. However, since the uncertainty in articulating the opinions of DMs is unavoidable, the interval number judgements are associated with the limited rationality. In this paper, we investigate the concept of limited rationality by introducing interval multiplicative reciprocal comparison matrices. By analyzing the consistency of interval multiplicative reciprocal comparison matrices, it is observed that the interval number judgements are inconsistent. By considering the permutations of alternatives, the concepts of approximation-consistency and acceptable approximation-consistency of interval multiplicative reciprocal comparison matrices are proposed. The exchange method is designed to generate all the permutations. A novel method of determining the interval weight vector is proposed under the consideration of randomness in comparing alternatives, and a vector of interval weights is determined. A new algorithm of solving decision making problems with interval multiplicative reciprocal preference relations is provided. Two numerical examples are carried out to illustrate the proposed approach and offer a comparison with the methods available in the literature.

  5. Combining p-values in replicated single-case experiments with multivariate outcome.

    PubMed

    Solmi, Francesca; Onghena, Patrick

    2014-01-01

    Interest in combining probabilities has a long history in the global statistical community. The first steps in this direction were taken by Ronald Fisher, who introduced the idea of combining p-values of independent tests to provide a global decision rule when multiple aspects of a given problem were of interest. An interesting approach to this idea of combining p-values is the one based on permutation theory. The methods belonging to this particular approach exploit the permutation distributions of the tests to be combined, and use a simple function to combine probabilities. Combining p-values finds a very interesting application in the analysis of replicated single-case experiments. In this field the focus, while comparing different treatments effects, is more articulated than when just looking at the means of the different populations. Moreover, it is often of interest to combine the results obtained on the single patients in order to get more global information about the phenomenon under study. This paper gives an overview of how the concept of combining p-values was conceived, and how it can be easily handled via permutation techniques. Finally, the method of combining p-values is applied to a simulated replicated single-case experiment, and a numerical illustration is presented.

  6. A permutation-based non-parametric analysis of CRISPR screen data.

    PubMed

    Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua

    2017-07-19

    Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .

  7. Tensor models, Kronecker coefficients and permutation centralizer algebras

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  8. Permutation auto-mutual information of electroencephalogram in anesthesia

    NASA Astrophysics Data System (ADS)

    Liang, Zhenhu; Wang, Yinghua; Ouyang, Gaoxiang; Voss, Logan J.; Sleigh, Jamie W.; Li, Xiaoli

    2013-04-01

    Objective. The dynamic change of brain activity in anesthesia is an interesting topic for clinical doctors and drug designers. To explore the dynamical features of brain activity in anesthesia, a permutation auto-mutual information (PAMI) method is proposed to measure the information coupling of electroencephalogram (EEG) time series obtained in anesthesia. Approach. The PAMI is developed and applied on EEG data collected from 19 patients under sevoflurane anesthesia. The results are compared with the traditional auto-mutual information (AMI), SynchFastSlow (SFS, derived from the BIS index), permutation entropy (PE), composite PE (CPE), response entropy (RE) and state entropy (SE). Performance of all indices is assessed by pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability. Main results. The PK/PD modeling and prediction probability analysis show that the PAMI index correlates closely with the anesthetic effect. The coefficient of determination R2 between PAMI values and the sevoflurane effect site concentrations, and the prediction probability Pk are higher in comparison with other indices. The information coupling in EEG series can be applied to indicate the effect of the anesthetic drug sevoflurane on the brain activity as well as other indices. The PAMI of the EEG signals is suggested as a new index to track drug concentration change. Significance. The PAMI is a useful index for analyzing the EEG dynamics during general anesthesia.

  9. Refined composite multiscale weighted-permutation entropy of financial time series

    NASA Astrophysics Data System (ADS)

    Zhang, Yongping; Shang, Pengjian

    2018-04-01

    For quantifying the complexity of nonlinear systems, multiscale weighted-permutation entropy (MWPE) has recently been proposed. MWPE has incorporated amplitude information and been applied to account for the multiple inherent dynamics of time series. However, MWPE may be unreliable, because its estimated values show large fluctuation for slight variation of the data locations, and a significant distinction only for the different length of time series. Therefore, we propose the refined composite multiscale weighted-permutation entropy (RCMWPE). By comparing the RCMWPE results with other methods' results on both synthetic data and financial time series, RCMWPE method shows not only the advantages inherited from MWPE but also lower sensitivity to the data locations, more stable and much less dependent on the length of time series. Moreover, we present and discuss the results of RCMWPE method on the daily price return series from Asian and European stock markets. There are significant differences between Asian markets and European markets, and the entropy values of Hang Seng Index (HSI) are close to but higher than those of European markets. The reliability of the proposed RCMWPE method has been supported by simulations on generated and real data. It could be applied to a variety of fields to quantify the complexity of the systems over multiple scales more accurately.

  10. Randomization in cancer clinical trials: permutation test and development of a computer program.

    PubMed Central

    Ohashi, Y

    1990-01-01

    When analyzing cancer clinical trial data where the treatment allocation is done using dynamic balancing methods such as the minimization method for balancing the distribution of important prognostic factors in each arm, conservativeness occurs if such a randomization scheme is ignored and a simple unstratified analysis is carried out. In this paper, the above conservativeness is demonstrated by computer simulation, and the development of a computer program that carries out permutation tests of the log-rank statistics for clinical trial data where the allocation is done by the minimization method or a stratified permuted block design is introduced. We are planning to use this program in practice to supplement a usual stratified analysis and model-based methods such as the Cox regression. The most serious problem in cancer clinical trials in Japan is how to carry out the quality control or data management in trials that are initiated and conducted by researchers without support from pharmaceutical companies. In the final section of this paper, one international collaborative work for developing international guidelines on data management in clinical trials of bladder cancer is briefly introduced, and the differences between the system adopted in US/European statistical centers and the Japanese system is described. PMID:2269216

  11. A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers.

    PubMed

    Tartar, A; Akan, A; Kilic, N

    2014-01-01

    Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this paper, a novel Computer-Aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. The proposed CAD system using ensemble learning classifiers, provides an important support to radiologists at the diagnosis process of the disease, achieves high classification performance. The proposed approach with bagging classifier results in 94.7 %, 90.0 % and 77.8 % classification sensitivities for benign, malignant and undetermined classes (89.5 % accuracy), respectively.

  12. R-parametrization and its role in classification of linear multivariable feedback systems

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.

    1988-01-01

    A classification of all the compensators that stabilize a given general plant in a linear, time-invariant multi-input, multi-output feedback system is developed. This classification, along with the associated necessary and sufficient conditions for stability of the feedback system, is achieved through the introduction of a new parameterization, referred to as R-Parameterization, which is a dual of the familiar Q-Parameterization. The classification is made to the stability conditions of the compensators and the plant by themselves; and necessary and sufficient conditions are based on the stability of Q and R themselves.

  13. Classification of skin cancer images using local binary pattern and SVM classifier

    NASA Astrophysics Data System (ADS)

    Adjed, Faouzi; Faye, Ibrahima; Ababsa, Fakhreddine; Gardezi, Syed Jamal; Dass, Sarat Chandra

    2016-11-01

    In this paper, a classification method for melanoma and non-melanoma skin cancer images has been presented using the local binary patterns (LBP). The LBP computes the local texture information from the skin cancer images, which is later used to compute some statistical features that have capability to discriminate the melanoma and non-melanoma skin tissues. Support vector machine (SVM) is applied on the feature matrix for classification into two skin image classes (malignant and benign). The method achieves good classification accuracy of 76.1% with sensitivity of 75.6% and specificity of 76.7%.

  14. Key-phrase based classification of public health web pages.

    PubMed

    Dolamic, Ljiljana; Boyer, Célia

    2013-01-01

    This paper describes and evaluates the public health web pages classification model based on key phrase extraction and matching. Easily extendible both in terms of new classes as well as the new language this method proves to be a good solution for text classification faced with the total lack of training data. To evaluate the proposed solution we have used a small collection of public health related web pages created by a double blind manual classification. Our experiments have shown that by choosing the adequate threshold value the desired value for either precision or recall can be achieved.

  15. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity

    PubMed Central

    Hussain, Shaista; Basu, Arindam

    2016-01-01

    The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best “k” out of “d” inputs to make connections on every dendritic branch (k < < d). Because learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other spike classifiers. We show that our system can achieve classification accuracy within 1 − 2% of other reported spike-based classifiers while using much less synaptic resources (only 7%) compared to that used by other methods. Further, an ensemble classifier created with adaptively learned sizes can attain accuracy of 96.4% which is at par with the best reported performance of spike-based classifiers. Moreover, the proposed method achieves this by using about 20% of the synapses used by other spike algorithms. We also present results of applying our algorithm to classify the MNIST-DVS dataset collected from a real spike-based image sensor and show results comparable to the best reported ones (88.1% accuracy). For VLSI implementations, we show that the reduced synaptic memory can save upto 4X area compared to conventional crossbar topologies. Finally, we also present a biologically realistic spike-based version for calculating the correlations required by the structural learning rule and demonstrate the correspondence between the rate-based and spike-based methods of learning. PMID:27065782

  16. Optimized Time-Gated Fluorescence Spectroscopy for the Classification and Recycling of Fluorescently Labeled Plastics.

    PubMed

    Fomin, Petr; Zhelondz, Dmitry; Kargel, Christian

    2017-05-01

    For the production of high-quality parts from recycled plastics, a very high purity of the plastic waste to be recycled is mandatory. The incorporation of fluorescent tracers ("markers") into plastics during the manufacturing process helps overcome typical problems of non-tracer based optical classification methods. Despite the unique emission spectra of fluorescent markers, the classification becomes difficult when the host plastics exhibit (strong) autofluorescence that spectrally overlaps the marker fluorescence. Increasing the marker concentration is not an option from an economic perspective and might also adversely affect the properties of the plastics. A measurement approach that suppresses the autofluorescence in the acquired signal is time-gated fluorescence spectroscopy (TGFS). Unfortunately, TGFS is associated with a lower signal-to-noise (S/N) ratio, which results in larger classification errors. In order to optimize the S/N ratio we investigate and validate the best TGFS parameters-derived from a model for the fluorescence signal-for plastics labeled with four specifically designed fluorescent markers. In this study we also demonstrate the implementation of TGFS on a measurement and classification prototype system and determine its performance. Mean values for a sensitivity of [Formula: see text] = 99.93% and precision [Formula: see text] = 99.80% were achieved, proving that a highly reliable classification of plastics can be achieved in practice.

  17. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.

    PubMed

    Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan

    2015-02-06

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.

  18. Structural and Functional Consequences of Circular Permutation on the Active Site of Old Yellow Enzyme

    DOE PAGES

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong; ...

    2014-12-09

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.« less

  19. Assessing Discriminative Performance at External Validation of Clinical Prediction Models

    PubMed Central

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.

    2016-01-01

    Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753

  20. Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data.

    PubMed

    Drakesmith, M; Caeyenberghs, K; Dutt, A; Lewis, G; David, A S; Jones, D K

    2015-09-01

    Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate threshold often relies on a priori assumptions, which will alter inferred network topologies. Four common network metrics (global efficiency, mean clustering coefficient, mean betweenness and smallworldness) were tested using a model tractography dataset. It was found that all four network metrics were significantly affected even by just one FP. Results also show that thresholding effectively dampens the impact of FPs, but at the expense of adding significant bias to network metrics. In a larger number (n=248) of tractography datasets, statistics were computed across random group permutations for a range of thresholds, revealing that statistics for network metrics varied significantly more than for non-network metrics (i.e., number of streamlines and number of edges). Varying degrees of network atrophy were introduced artificially to half the datasets, to test sensitivity to genuine group differences. For some network metrics, this atrophy was detected as significant (p<0.05, determined using permutation testing) only across a limited range of thresholds. We propose a multi-threshold permutation correction (MTPC) method, based on the cluster-enhanced permutation correction approach, to identify sustained significant effects across clusters of thresholds. This approach minimises requirements to determine a single threshold a priori. We demonstrate improved sensitivity of MTPC-corrected metrics to genuine group effects compared to an existing approach and demonstrate the use of MTPC on a previously published network analysis of tractography data derived from a clinical population. In conclusion, we show that there are large biases and instability induced by thresholding, making statistical comparisons of network metrics difficult. However, by testing for effects across multiple thresholds using MTPC, true group differences can be robustly identified. Copyright © 2015. Published by Elsevier Inc.

  1. On the rank-distance median of 3 permutations.

    PubMed

    Chindelevitch, Leonid; Pereira Zanetti, João Paulo; Meidanis, João

    2018-05-08

    Recently, Pereira Zanetti, Biller and Meidanis have proposed a new definition of a rearrangement distance between genomes. In this formulation, each genome is represented as a matrix, and the distance d is the rank distance between these matrices. Although defined in terms of matrices, the rank distance is equal to the minimum total weight of a series of weighted operations that leads from one genome to the other, including inversions, translocations, transpositions, and others. The computational complexity of the median-of-three problem according to this distance is currently unknown. The genome matrices are a special kind of permutation matrices, which we study in this paper. In their paper, the authors provide an [Formula: see text] algorithm for determining three candidate medians, prove the tight approximation ratio [Formula: see text], and provide a sufficient condition for their candidates to be true medians. They also conduct some experiments that suggest that their method is accurate on simulated and real data. In this paper, we extend their results and provide the following: Three invariants characterizing the problem of finding the median of 3 matrices A sufficient condition for uniqueness of medians that can be checked in O(n) A faster, [Formula: see text] algorithm for determining the median under this condition A new heuristic algorithm for this problem based on compressed sensing A [Formula: see text] algorithm that exactly solves the problem when the inputs are orthogonal matrices, a class that includes both permutations and genomes as special cases. Our work provides the first proof that, with respect to the rank distance, the problem of finding the median of 3 genomes, as well as the median of 3 permutations, is exactly solvable in polynomial time, a result which should be contrasted with its NP-hardness for the DCJ (double cut-and-join) distance and most other families of genome rearrangement operations. This result, backed by our experimental tests, indicates that the rank distance is a viable alternative to the DCJ distance widely used in genome comparisons.

  2. Identification of IL-7 as a candidate disease mediator in osteoarthritis in Chinese Han population: a case-control study.

    PubMed

    Zhang, Hong-Xin; Wang, Yan-Gui; Lu, Shun-Yuan; Lu, Xiong-Xiong; Liu, Jie

    2016-09-01

    Little is known about the biochemical mediators IL-7 that correlate with the initiation and progression of OA. We performed this study to assess the role of variants of IL-7 in OA susceptibility in the Chinese Han population. We performed a retrospective, case-control study in the Chinese Han population from 2013 to 2015. Four single nucleotide polymorphisms were genotyped (using a ligase detection reaction) in 602 patients and 454 controls. Differences between groups were analysed, and association was assessed by the odds ratio (OR) and 95% CI. Among these polymorphisms, rs2583764, rs2583760 and rs6993386 showed no significant association with OA in the Chinese Han population {rs2583764 [P-allele = 0.98651, P-genotype = 0.40392, OR (95% CI): 1.00162 (0.83066, 1.20775)]; rs2583760 [P-allele = 0.384500, P-genotype = 0.58752, OR (95% CI): 0.69859 (0.30996, 1.57449)]; rs6993386 [P-allele = 0.69525, P-genotype = 0.50712, OR (95% CI): 0.96432 (0.80406, 1.15653)]}. However, the results showed that the rs2583759 polymorphism was significantly associated with OA [P-allele = 0.00 P-genotype = 3.86 × 10(-30), OR (95% CI): 0.27794 (0.22407, 0.34476)], even when the 10 000 times permutation was performed (P-allele-permutation < 0.00010, P-genotype-permutation = 0.00010). Haplotype analyses showed A-G-A-C, A-G-A-T and G-G-G-C of rs2583764-rs2583760-rs6993386-rs2583759 were risk factors for OA, both before or after the 10 000 times permutation, indicating IL-7 to be associated with OA. There was a significant association between IL-7, especially rs2583759, and OA in the Chinese Han population. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    PubMed

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W

    2016-01-01

    External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  4. Intrapartum fetal heart rate classification from trajectory in Sparse SVM feature space.

    PubMed

    Spilka, J; Frecon, J; Leonarduzzi, R; Pustelnik, N; Abry, P; Doret, M

    2015-01-01

    Intrapartum fetal heart rate (FHR) constitutes a prominent source of information for the assessment of fetal reactions to stress events during delivery. Yet, early detection of fetal acidosis remains a challenging signal processing task. The originality of the present contribution are three-fold: multiscale representations and wavelet leader based multifractal analysis are used to quantify FHR variability ; Supervised classification is achieved by means of Sparse-SVM that aim jointly to achieve optimal detection performance and to select relevant features in a multivariate setting ; Trajectories in the feature space accounting for the evolution along time of features while labor progresses are involved in the construction of indices quantifying fetal health. The classification performance permitted by this combination of tools are quantified on a intrapartum FHR large database (≃ 1250 subjects) collected at a French academic public hospital.

  5. Case definition and classification of leukodystrophies and leukoencephalopathies.

    PubMed

    Vanderver, Adeline; Prust, Morgan; Tonduti, Davide; Mochel, Fanny; Hussey, Heather M; Helman, Guy; Garbern, James; Eichler, Florian; Labauge, Pierre; Aubourg, Patrick; Rodriguez, Diana; Patterson, Marc C; Van Hove, Johan L K; Schmidt, Johanna; Wolf, Nicole I; Boespflug-Tanguy, Odile; Schiffmann, Raphael; van der Knaap, Marjo S

    2015-04-01

    An approved definition of the term leukodystrophy does not currently exist. The lack of a precise case definition hampers efforts to study the epidemiology and the relevance of genetic white matter disorders to public health. Thirteen experts at multiple institutions participated in iterative consensus building surveys to achieve definition and classification of disorders as leukodystrophies using a modified Delphi approach. A case definition for the leukodystrophies was achieved, and a total of 30 disorders were classified under this definition. In addition, a separate set of disorders with heritable white matter abnormalities but not meeting criteria for leukodystrophy, due to presumed primary neuronal involvement and prominent systemic manifestations, was classified as genetic leukoencephalopathies (gLE). A case definition of leukodystrophies and classification of heritable white matter disorders will permit more detailed epidemiologic studies of these disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Exploration of Force Myography and surface Electromyography in hand gesture classification.

    PubMed

    Jiang, Xianta; Merhi, Lukas-Karim; Xiao, Zhen Gang; Menon, Carlo

    2017-03-01

    Whereas pressure sensors increasingly have received attention as a non-invasive interface for hand gesture recognition, their performance has not been comprehensively evaluated. This work examined the performance of hand gesture classification using Force Myography (FMG) and surface Electromyography (sEMG) technologies by performing 3 sets of 48 hand gestures using a prototyped FMG band and an array of commercial sEMG sensors worn both on the wrist and forearm simultaneously. The results show that the FMG band achieved classification accuracies as good as the high quality, commercially available, sEMG system on both wrist and forearm positions; specifically, by only using 8 Force Sensitive Resisters (FSRs), the FMG band achieved accuracies of 91.2% and 83.5% in classifying the 48 hand gestures in cross-validation and cross-trial evaluations, which were higher than those of sEMG (84.6% and 79.1%). By using all 16 FSRs on the band, our device achieved high accuracies of 96.7% and 89.4% in cross-validation and cross-trial evaluations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. An Analysis of Fifth Grade Gifted and Talented Student Math and Reading Achievement in South Texas Public Schools

    ERIC Educational Resources Information Center

    Smith, Stephanie; Kupczynski, Lori; Mundy, Marie-Anne; Desiderio, Mike F.

    2017-01-01

    This study investigated the achievement of south Texas public school fifth graders participating in gifted and talented programming compared to the achievement of fifth graders not participating in gifted and talented classification in the area of math to determine if any differences exist. Student achievement of males and females and students…

  8. Splice loss requirements in multi-mode fiber mode-division-multiplex transmission links.

    PubMed

    Warm, Stefan; Petermann, Klaus

    2013-01-14

    We investigate numerically the influence of fiber splices and fiber connectors to the statistics of mode dependent loss (MDL) and multiple-input multiple-output (MIMO) outage capacity in mode multiplexed multi-mode fiber links. Our results indicate required splice losses much lower than currently feasible to achieve a reasonable outage capacity in long-haul transmission systems. Splice losses as low as 0.03dB may effectively lead to an outage of MIMO channels after only a few hundred kilometers transmission length. In a first approximation, the relative capacity solely depends on the accumulated splice loss and should be less than ≈ 2dB to ensure a relative capacity of 90%. We also show that discrete mode permutation (mixing) within the transmission line may effectively increase the maximum transmission distance by a factor of 5 for conventional splice losses.

  9. Fast encryption of RGB color digital images using a tweakable cellular automaton based schema

    NASA Astrophysics Data System (ADS)

    Faraoun, Kamel Mohamed

    2014-12-01

    We propose a new tweakable construction of block-enciphers using second-order reversible cellular automata, and we apply it to encipher RGB-colored images. The proposed construction permits a parallel encryption of the image content by extending the standard definition of a block cipher to take into account a supplementary parameter used as a tweak (nonce) to control the behavior of the cipher from one region of the image to the other, and hence avoid the necessity to use slow sequential encryption's operating modes. The proposed construction defines a flexible pseudorandom permutation that can be used with efficacy to solve the electronic code book problem without the need to a specific sequential mode. Obtained results from various experiments show that the proposed schema achieves high security and execution performances, and enables an interesting mode of selective area decryption due to the parallel character of the approach.

  10. Design of multivalent complexes using the barnase*barstar module.

    PubMed

    Deyev, Sergey M; Waibel, Robert; Lebedenko, Ekaterina N; Schubiger, August P; Plückthun, Andreas

    2003-12-01

    The ribonuclease barnase (12 kDa) and its inhibitor barstar (10 kDa) form a very tight complex in which all N and C termini are accessible for fusion. Here we exploit this system to create modular targeting molecules based on antibody scFv fragment fusions to barnase, to two barnase molecules in series and to barstar. We describe the construction, production and purification of defined dimeric and trimeric complexes. Immobilized barnase fusions are used to capture barstar fusions from crude extracts to yield homogeneous, heterodimeric fusion proteins. These proteins are stable, soluble and resistant to proteolysis. Using fusions with anti-p185(HER2-ECD) 4D5 scFv, we show that the anticipated gain in avidity from monomer to dimer to trimer is obtained and that favorable tumor targeting properties are achieved. Many permutations of engineered multispecific fusion proteins become accessible with this technology of quasi-covalent heterodimers.

  11. Optimization of orbital assignment and specification of service areas in satellite communications

    NASA Technical Reports Server (NTRS)

    Wang, Cou-Way; Levis, Curt A.; Buyukdura, O. Merih

    1987-01-01

    The mathematical nature of the orbital and frequency assignment problem for communications satellites is explored, and it is shown that choosing the correct permutations of the orbit locations and frequency assignments is an important step in arriving at values which satisfy the signal-quality requirements. Two methods are proposed to achieve better spectrum/orbit utilization. The first, called the delta S concept, leads to orbital assignment solutions via either mixed-integer or restricted basis entry linear programming techniques; the method guarantees good single-entry carrier-to-interference ratio results. In the second, a basis for specifying service areas is proposed for the Fixed Satellite Service. It is suggested that service areas should be specified according to the communications-demand density in conjunction with the delta S concept in order to enable the system planner to specify more satellites and provide more communications supply.

  12. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Xin; Zhu, Zhi-Liang; Fu, Chong; Zhang, Li-Bo; Zhang, Yushu

    2014-12-01

    In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption.

  13. 3-D Image Encryption Based on Rubik's Cube and RC6 Algorithm

    NASA Astrophysics Data System (ADS)

    Helmy, Mai; El-Rabaie, El-Sayed M.; Eldokany, Ibrahim M.; El-Samie, Fathi E. Abd

    2017-12-01

    A novel encryption algorithm based on the 3-D Rubik's cube is proposed in this paper to achieve 3D encryption of a group of images. This proposed encryption algorithm begins with RC6 as a first step for encrypting multiple images, separately. After that, the obtained encrypted images are further encrypted with the 3-D Rubik's cube. The RC6 encrypted images are used as the faces of the Rubik's cube. From the concepts of image encryption, the RC6 algorithm adds a degree of diffusion, while the Rubik's cube algorithm adds a degree of permutation. The simulation results demonstrate that the proposed encryption algorithm is efficient, and it exhibits strong robustness and security. The encrypted images are further transmitted over wireless Orthogonal Frequency Division Multiplexing (OFDM) system and decrypted at the receiver side. Evaluation of the quality of the decrypted images at the receiver side reveals good results.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlenko, E. V., E-mail: eorlenko@mail.ru; Evstafev, A. V.; Orlenko, F. E.

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithiummore » atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated.« less

  15. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  16. Detection of distorted frames in retinal video-sequences via machine learning

    NASA Astrophysics Data System (ADS)

    Kolar, Radim; Liberdova, Ivana; Odstrcilik, Jan; Hracho, Michal; Tornow, Ralf P.

    2017-07-01

    This paper describes detection of distorted frames in retinal sequences based on set of global features extracted from each frame. The feature vector is consequently used in classification step, in which three types of classifiers are tested. The best classification accuracy 96% has been achieved with support vector machine approach.

  17. Application of the elusieve process to the classification of meat and bone meal particles

    USDA-ARS?s Scientific Manuscript database

    Meat and bone meal (MBM), a product of the rendering industry, comprises a mixture of two particle types. The utility and value of MBM would increase if the two particle types could be separated economically. Past efforts at classification of MBM particles have achieved limited success. In the pr...

  18. Classification of cryocoolers

    NASA Technical Reports Server (NTRS)

    Walker, G.

    1985-01-01

    A great diversity of methods and mechanisms were devised to effect cryogenic refrigeration. The basic parameters and considerations affecting the selection of a particular system are reviewed. A classification scheme for mechanical cryocoolers is presented. An important distinguishing feature is the incorporation or not of a regenerative heat exchanger, of valves, and of the method for achieving a pressure variation.

  19. Making the Ineffable Explicit: Estimating the Information Employed for Face Classifications

    ERIC Educational Resources Information Center

    Mangini, Michael C.; Biederman, Irving

    2004-01-01

    When we look at a face, we readily perceive that person's gender, expression, identity, age, and attractiveness. Perceivers as well as scientists have hitherto had little success in articulating just what information we are employing to achieve these subjectively immediate and effortless classifications. We describe here a method that estimates…

  20. Gold-standard for computer-assisted morphological sperm analysis.

    PubMed

    Chang, Violeta; Garcia, Alejandra; Hitschfeld, Nancy; Härtel, Steffen

    2017-04-01

    Published algorithms for classification of human sperm heads are based on relatively small image databases that are not open to the public, and thus no direct comparison is available for competing methods. We describe a gold-standard for morphological sperm analysis (SCIAN-MorphoSpermGS), a dataset of sperm head images with expert-classification labels in one of the following classes: normal, tapered, pyriform, small or amorphous. This gold-standard is for evaluating and comparing known techniques and future improvements to present approaches for classification of human sperm heads for semen analysis. Although this paper does not provide a computational tool for morphological sperm analysis, we present a set of experiments for comparing sperm head description and classification common techniques. This classification base-line is aimed to be used as a reference for future improvements to present approaches for human sperm head classification. The gold-standard provides a label for each sperm head, which is achieved by majority voting among experts. The classification base-line compares four supervised learning methods (1- Nearest Neighbor, naive Bayes, decision trees and Support Vector Machine (SVM)) and three shape-based descriptors (Hu moments, Zernike moments and Fourier descriptors), reporting the accuracy and the true positive rate for each experiment. We used Fleiss' Kappa Coefficient to evaluate the inter-expert agreement and Fisher's exact test for inter-expert variability and statistical significant differences between descriptors and learning techniques. Our results confirm the high degree of inter-expert variability in the morphological sperm analysis. Regarding the classification base line, we show that none of the standard descriptors or classification approaches is best suitable for tackling the problem of sperm head classification. We discovered that the correct classification rate was highly variable when trying to discriminate among non-normal sperm heads. By using the Fourier descriptor and SVM, we achieved the best mean correct classification: only 49%. We conclude that the SCIAN-MorphoSpermGS will provide a standard tool for evaluation of characterization and classification approaches for human sperm heads. Indeed, there is a clear need for a specific shape-based descriptor for human sperm heads and a specific classification approach to tackle the problem of high variability within subcategories of abnormal sperm cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Toward automated classification of consumers' cancer-related questions with a new taxonomy of expected answer types.

    PubMed

    McRoy, Susan; Jones, Sean; Kurmally, Adam

    2016-09-01

    This article examines methods for automated question classification applied to cancer-related questions that people have asked on the web. This work is part of a broader effort to provide automated question answering for health education. We created a new corpus of consumer-health questions related to cancer and a new taxonomy for those questions. We then compared the effectiveness of different statistical methods for developing classifiers, including weighted classification and resampling. Basic methods for building classifiers were limited by the high variability in the natural distribution of questions and typical refinement approaches of feature selection and merging categories achieved only small improvements to classifier accuracy. Best performance was achieved using weighted classification and resampling methods, the latter yielding an accuracy of F1 = 0.963. Thus, it would appear that statistical classifiers can be trained on natural data, but only if natural distributions of classes are smoothed. Such classifiers would be useful for automated question answering, for enriching web-based content, or assisting clinical professionals to answer questions. © The Author(s) 2015.

  2. Evaluation of space SAR as a land-cover classification

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Williams, T. H. L.

    1985-01-01

    The multidimensional approach to the mapping of land cover, crops, and forests is reported. Dimensionality is achieved by using data from sensors such as LANDSAT to augment Seasat and Shuttle Image Radar (SIR) data, using different image features such as tone and texture, and acquiring multidate data. Seasat, Shuttle Imaging Radar (SIR-A), and LANDSAT data are used both individually and in combination to map land cover in Oklahoma. The results indicates that radar is the best single sensor (72% accuracy) and produces the best sensor combination (97.5% accuracy) for discriminating among five land cover categories. Multidate Seasat data and a single data of LANDSAT coverage are then used in a crop classification study of western Kansas. The highest accuracy for a single channel is achieved using a Seasat scene, which produces a classification accuracy of 67%. Classification accuracy increases to approximately 75% when either a multidate Seasat combination or LANDSAT data in a multisensor combination is used. The tonal and textural elements of SIR-A data are then used both alone and in combination to classify forests into five categories.

  3. Space Object Classification Using Fused Features of Time Series Data

    NASA Astrophysics Data System (ADS)

    Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.

    In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.

  4. Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples

    NASA Astrophysics Data System (ADS)

    Masood, Khalid

    2008-08-01

    Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.

  5. Bag of Visual Words Model with Deep Spatial Features for Geographical Scene Classification

    PubMed Central

    Wu, Lin

    2017-01-01

    With the popular use of geotagging images, more and more research efforts have been placed on geographical scene classification. In geographical scene classification, valid spatial feature selection can significantly boost the final performance. Bag of visual words (BoVW) can do well in selecting feature in geographical scene classification; nevertheless, it works effectively only if the provided feature extractor is well-matched. In this paper, we use convolutional neural networks (CNNs) for optimizing proposed feature extractor, so that it can learn more suitable visual vocabularies from the geotagging images. Our approach achieves better performance than BoVW as a tool for geographical scene classification, respectively, in three datasets which contain a variety of scene categories. PMID:28706534

  6. Empirical Analysis and Automated Classification of Security Bug Reports

    NASA Technical Reports Server (NTRS)

    Tyo, Jacob P.

    2016-01-01

    With the ever expanding amount of sensitive data being placed into computer systems, the need for effective cybersecurity is of utmost importance. However, there is a shortage of detailed empirical studies of security vulnerabilities from which cybersecurity metrics and best practices could be determined. This thesis has two main research goals: (1) to explore the distribution and characteristics of security vulnerabilities based on the information provided in bug tracking systems and (2) to develop data analytics approaches for automatic classification of bug reports as security or non-security related. This work is based on using three NASA datasets as case studies. The empirical analysis showed that the majority of software vulnerabilities belong only to a small number of types. Addressing these types of vulnerabilities will consequently lead to cost efficient improvement of software security. Since this analysis requires labeling of each bug report in the bug tracking system, we explored using machine learning to automate the classification of each bug report as a security or non-security related (two-class classification), as well as each security related bug report as specific security type (multiclass classification). In addition to using supervised machine learning algorithms, a novel unsupervised machine learning approach is proposed. An ac- curacy of 92%, recall of 96%, precision of 92%, probability of false alarm of 4%, F-Score of 81% and G-Score of 90% were the best results achieved during two-class classification. Furthermore, an accuracy of 80%, recall of 80%, precision of 94%, and F-score of 85% were the best results achieved during multiclass classification.

  7. Training strategy for convolutional neural networks in pedestrian gender classification

    NASA Astrophysics Data System (ADS)

    Ng, Choon-Boon; Tay, Yong-Haur; Goi, Bok-Min

    2017-06-01

    In this work, we studied a strategy for training a convolutional neural network in pedestrian gender classification with limited amount of labeled training data. Unsupervised learning by k-means clustering on pedestrian images was used to learn the filters to initialize the first layer of the network. As a form of pre-training, supervised learning for the related task of pedestrian classification was performed. Finally, the network was fine-tuned for gender classification. We found that this strategy improved the network's generalization ability in gender classification, achieving better test results when compared to random weights initialization and slightly more beneficial than merely initializing the first layer filters by unsupervised learning. This shows that unsupervised learning followed by pre-training with pedestrian images is an effective strategy to learn useful features for pedestrian gender classification.

  8. Inter- and Intra-Observer Agreement in Ultrasound BI-RADS Classification and Real-Time Elastography Tsukuba Score Assessment of Breast Lesions.

    PubMed

    Schwab, Fabienne; Redling, Katharina; Siebert, Matthias; Schötzau, Andy; Schoenenberger, Cora-Ann; Zanetti-Dällenbach, Rosanna

    2016-11-01

    Our aim was to prospectively evaluate inter- and intra-observer agreement between Breast Imaging Reporting and Data System (BI-RADS) classifications and Tsukuba elasticity scores (TSs) of breast lesions. The study included 164 breast lesions (63 malignant, 101 benign). The BI-RADS classification and TS of each breast lesion was assessed by the examiner and twice by three reviewers at an interval of 2 months. Weighted κ values for inter-observer agreement ranged from moderate to substantial for BI-RADS classification (κ = 0.585-0.738) and was substantial for TS (κ = 0.608-0.779). Intra-observer agreement was almost perfect for ultrasound (US) BI-RADS (κ = 0.847-0.872) and TS (κ = 0.879-0.914). Overall, individual reviewers are highly self-consistent (almost perfect intra-observer agreement) with respect to BI-RADS classification and TS, whereas inter-observer agreement was moderate to substantial. Comprehensive training is essential for achieving high agreement and minimizing the impact of subjectivity. Our results indicate that breast US and real-time elastography can achieve high diagnostic performance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    NASA Astrophysics Data System (ADS)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy with the proposed classification scheme is 94.91 %, while that with the conventional classification scheme is 93.70 %. Moreover, for multi-temporal UAVSAR data, the averaged overall classification accuracy with the proposed classification scheme is up to 97.08 %, which is much higher than the 87.79 % from the conventional classification scheme. Furthermore, for multitemporal PolSAR data, the proposed classification scheme can achieve better robustness. The comparison studies also clearly demonstrate that mining and utilization of hidden polarimetric features and information in the rotation domain can gain the added benefits for PolSAR land cover classification and provide a new vision for PolSAR image interpretation and application.

  10. Detection of eardrum abnormalities using ensemble deep learning approaches

    NASA Astrophysics Data System (ADS)

    Senaras, Caglar; Moberly, Aaron C.; Teknos, Theodoros; Essig, Garth; Elmaraghy, Charles; Taj-Schaal, Nazhat; Yua, Lianbo; Gurcan, Metin N.

    2018-02-01

    In this study, we proposed an approach to report the condition of the eardrum as "normal" or "abnormal" by ensembling two different deep learning architectures. In the first network (Network 1), we applied transfer learning to the Inception V3 network by using 409 labeled samples. As a second network (Network 2), we designed a convolutional neural network to take advantage of auto-encoders by using additional 673 unlabeled eardrum samples. The individual classification accuracies of the Network 1 and Network 2 were calculated as 84.4%(+/- 12.1%) and 82.6% (+/- 11.3%), respectively. Only 32% of the errors of the two networks were the same, making it possible to combine two approaches to achieve better classification accuracy. The proposed ensemble method allows us to achieve robust classification because it has high accuracy (84.4%) with the lowest standard deviation (+/- 10.3%).

  11. On Utilizing Optimal and Information Theoretic Syntactic Modeling for Peptide Classification

    NASA Astrophysics Data System (ADS)

    Aygün, Eser; Oommen, B. John; Cataltepe, Zehra

    Syntactic methods in pattern recognition have been used extensively in bioinformatics, and in particular, in the analysis of gene and protein expressions, and in the recognition and classification of bio-sequences. These methods are almost universally distance-based. This paper concerns the use of an Optimal and Information Theoretic (OIT) probabilistic model [11] to achieve peptide classification using the information residing in their syntactic representations. The latter has traditionally been achieved using the edit distances required in the respective peptide comparisons. We advocate that one can model the differences between compared strings as a mutation model consisting of random Substitutions, Insertions and Deletions (SID) obeying the OIT model. Thus, in this paper, we show that the probability measure obtained from the OIT model can be perceived as a sequence similarity metric, using which a Support Vector Machine (SVM)-based peptide classifier, referred to as OIT_SVM, can be devised.

  12. Evaluation Methodology between Globalization and Localization Features Approaches for Skin Cancer Lesions Classification

    NASA Astrophysics Data System (ADS)

    Ahmed, H. M.; Al-azawi, R. J.; Abdulhameed, A. A.

    2018-05-01

    Huge efforts have been put in the developing of diagnostic methods to skin cancer disease. In this paper, two different approaches have been addressed for detection the skin cancer in dermoscopy images. The first approach uses a global method that uses global features for classifying skin lesions, whereas the second approach uses a local method that uses local features for classifying skin lesions. The aim of this paper is selecting the best approach for skin lesion classification. The dataset has been used in this paper consist of 200 dermoscopy images from Pedro Hispano Hospital (PH2). The achieved results are; sensitivity about 96%, specificity about 100%, precision about 100%, and accuracy about 97% for globalization approach while, sensitivity about 100%, specificity about 100%, precision about 100%, and accuracy about 100% for Localization Approach, these results showed that the localization approach achieved acceptable accuracy and better than globalization approach for skin cancer lesions classification.

  13. The Australian experience in dental classification.

    PubMed

    Mahoney, Greg

    2008-01-01

    The Australian Defence Health Service uses a disease-risk management strategy to achieve two goals: first, to identify Australian Defence Force (ADF) members who are at high risk of developing an adverse health event, and second, to deliver intervention strategies efficiently so that maximum benefits for health within the ADF are achieved with the least cost. The present dental classification system utilized by the ADF, while an excellent dental triage tool, has been found not to be predictive of an ADF member having an adverse dental event in the following 12-month period. Clearly, there is a need for further research to establish a predictive risk-based dental classification system. This risk assessment must be sensitive enough to accurately estimate the probability that an ADF member will experience dental pain, dysfunction, or other adverse dental events within a forthcoming period, typically 12 months. Furthermore, there needs to be better epidemiological data collected in the field to assist in the research.

  14. Use of multi-frequency, multi-polarization, multi-angle airborne radars for class discrimination in a southern temperature forest

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1984-01-01

    The utility of radar scatterometers for discrimination and characterization of natural vegetation was investigated. Backscatter measurements were acquired with airborne multi-frequency, multi-polarization, multi-angle radar scatterometers over a test site in a southern temperate forest. Separability between ground cover classes was studied using a two-class separability measure. Very good separability is achieved between most classes. Longer wavelength is useful in separating trees from non-tree classes, while shorter wavelength and cross polarization are helpful for discrimination among tree classes. Using the maximum likelihood classifier, 50% overall classification accuracy is achieved using a single, short-wavelength scatterometer channel. Addition of multiple incidence angles and another radar band improves classification accuracy by 20% and 50%, respectively, over the single channel accuracy. Incorporation of a third radar band seems redundant for vegetation classification. Vertical transmit polarization is critically important for all classes.

  15. A novel application of deep learning for single-lead ECG classification.

    PubMed

    Mathews, Sherin M; Kambhamettu, Chandra; Barner, Kenneth E

    2018-06-04

    Detecting and classifying cardiac arrhythmias is critical to the diagnosis of patients with cardiac abnormalities. In this paper, a novel approach based on deep learning methodology is proposed for the classification of single-lead electrocardiogram (ECG) signals. We demonstrate the application of the Restricted Boltzmann Machine (RBM) and deep belief networks (DBN) for ECG classification following detection of ventricular and supraventricular heartbeats using single-lead ECG. The effectiveness of this proposed algorithm is illustrated using real ECG signals from the widely-used MIT-BIH database. Simulation results demonstrate that with a suitable choice of parameters, RBM and DBN can achieve high average recognition accuracies of ventricular ectopic beats (93.63%) and of supraventricular ectopic beats (95.57%) at a low sampling rate of 114 Hz. Experimental results indicate that classifiers built into this deep learning-based framework achieved state-of-the art performance models at lower sampling rates and simple features when compared to traditional methods. Further, employing features extracted at a sampling rate of 114 Hz when combined with deep learning provided enough discriminatory power for the classification task. This performance is comparable to that of traditional methods and uses a much lower sampling rate and simpler features. Thus, our proposed deep neural network algorithm demonstrates that deep learning-based methods offer accurate ECG classification and could potentially be extended to other physiological signal classifications, such as those in arterial blood pressure (ABP), nerve conduction (EMG), and heart rate variability (HRV) studies. Copyright © 2018. Published by Elsevier Ltd.

  16. Automated classification of periodic variable stars detected by the wide-field infrared survey explorer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masci, Frank J.; Grillmair, Carl J.; Cutri, Roc M.

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodicmore » light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.« less

  17. The edge-preservation multi-classifier relearning framework for the classification of high-resolution remotely sensed imagery

    NASA Astrophysics Data System (ADS)

    Han, Xiaopeng; Huang, Xin; Li, Jiayi; Li, Yansheng; Yang, Michael Ying; Gong, Jianya

    2018-04-01

    In recent years, the availability of high-resolution imagery has enabled more detailed observation of the Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spatial details for the classification of such high-resolution data. To this aim, we propose the edge-preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary characteristics. To better characterize complex scenes of remote sensing images, relearning based on landscape metrics is proposed, which iteratively quantizes both the landscape composition and spatial configuration by the use of the initial classification results. In addition, a novel tri-training strategy is proposed to solve the over-smoothing effect of relearning by means of automatic selection of training samples with low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly combines the strengths of relearning and tri-training via the classification certainties calculated by the probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased evaluation, we assessed the classification accuracy of the proposed framework using both edge and non-edge test samples. The experimental results obtained with four multispectral high-resolution images confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy.

  18. 3D multi-view convolutional neural networks for lung nodule classification

    PubMed Central

    Kang, Guixia; Hou, Beibei; Zhang, Ningbo

    2017-01-01

    The 3D convolutional neural network (CNN) is able to make full use of the spatial 3D context information of lung nodules, and the multi-view strategy has been shown to be useful for improving the performance of 2D CNN in classifying lung nodules. In this paper, we explore the classification of lung nodules using the 3D multi-view convolutional neural networks (MV-CNN) with both chain architecture and directed acyclic graph architecture, including 3D Inception and 3D Inception-ResNet. All networks employ the multi-view-one-network strategy. We conduct a binary classification (benign and malignant) and a ternary classification (benign, primary malignant and metastatic malignant) on Computed Tomography (CT) images from Lung Image Database Consortium and Image Database Resource Initiative database (LIDC-IDRI). All results are obtained via 10-fold cross validation. As regards the MV-CNN with chain architecture, results show that the performance of 3D MV-CNN surpasses that of 2D MV-CNN by a significant margin. Finally, a 3D Inception network achieved an error rate of 4.59% for the binary classification and 7.70% for the ternary classification, both of which represent superior results for the corresponding task. We compare the multi-view-one-network strategy with the one-view-one-network strategy. The results reveal that the multi-view-one-network strategy can achieve a lower error rate than the one-view-one-network strategy. PMID:29145492

  19. Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease

    PubMed Central

    Gray, Katherine R.; Wolz, Robin; Heckemann, Rolf A.; Aljabar, Paul; Hammers, Alexander; Rueckert, Daniel

    2012-01-01

    Imaging biomarkers for Alzheimer’s disease are desirable for improved diagnosis and monitoring, as well as drug discovery. Automated image-based classification of individual patients could provide valuable diagnostic support for clinicians, when considered alongside cognitive assessment scores. We investigate the value of combining cross-sectional and longitudinal multi-region FDG-PET information for classification, using clinical and imaging data from the Alzheimer’s Disease Neuroimaging Initiative. Whole-brain segmentations into 83 anatomically defined regions were automatically generated for baseline and 12-month FDG-PET images. Regional signal intensities were extracted at each timepoint, as well as changes in signal intensity over the follow-up period. Features were provided to a support vector machine classifier. By combining 12-month signal intensities and changes over 12 months, we achieve significantly increased classification performance compared with using any of the three feature sets independently. Based on this combined feature set, we report classification accuracies of 88% between patients with Alzheimer’s disease and elderly healthy controls, and 65% between patients with stable mild cognitive impairment and those who subsequently progressed to Alzheimer’s disease. We demonstrate that information extracted from serial FDG-PET through regional analysis can be used to achieve state-of-the-art classification of diagnostic groups in a realistic multi-centre setting. This finding may be usefully applied in the diagnosis of Alzheimer’s disease, predicting disease course in individuals with mild cognitive impairment, and in the selection of participants for clinical trials. PMID:22236449

  20. Applying Active Learning to Assertion Classification of Concepts in Clinical Text

    PubMed Central

    Chen, Yukun; Mani, Subramani; Xu, Hua

    2012-01-01

    Supervised machine learning methods for clinical natural language processing (NLP) research require a large number of annotated samples, which are very expensive to build because of the involvement of physicians. Active learning, an approach that actively samples from a large pool, provides an alternative solution. Its major goal in classification is to reduce the annotation effort while maintaining the quality of the predictive model. However, few studies have investigated its uses in clinical NLP. This paper reports an application of active learning to a clinical text classification task: to determine the assertion status of clinical concepts. The annotated corpus for the assertion classification task in the 2010 i2b2/VA Clinical NLP Challenge was used in this study. We implemented several existing and newly developed active learning algorithms and assessed their uses. The outcome is reported in the global ALC score, based on the Area under the average Learning Curve of the AUC (Area Under the Curve) score. Results showed that when the same number of annotated samples was used, active learning strategies could generate better classification models (best ALC – 0.7715) than the passive learning method (random sampling) (ALC – 0.7411). Moreover, to achieve the same classification performance, active learning strategies required fewer samples than the random sampling method. For example, to achieve an AUC of 0.79, the random sampling method used 32 samples, while our best active learning algorithm required only 12 samples, a reduction of 62.5% in manual annotation effort. PMID:22127105

  1. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari; Frisoni, Giovanni B

    2013-01-01

    Psychopathy has been associated with increased putamen and striatum volumes. The nucleus accumbens - a key structure in reversal learning, less effective in psychopathy - has not yet received specific attention. Moreover, basal ganglia morphology has never been explored. We examined the morphology of the caudate, putamen and accumbens, manually segmented from magnetic resonance images of 26 offenders (age: 32.5 ± 8.4) with medium-high psychopathy (mean PCL-R=30 ± 5) and 25 healthy controls (age: 34.6 ± 10.8). Local differences were statistically modeled using a surface-based radial distance mapping method (p<0.05; multiple comparisons correction through permutation tests). In psychopathy, the caudate and putamen had normal global volume, but different morphology, significant after correction for multiple comparisons, for the right dorsal putamen (permutation test: p=0.02). The volume of the nucleus accumbens was 13% smaller in psychopathy (p corrected for multiple comparisons <0.006). The atypical morphology consisted of predominant anterior hypotrophy bilaterally (10-30%). Caudate and putamen local morphology displayed negative correlation with the lifestyle factor of the PCL-R (permutation test: p=0.05 and 0.03). From these data, psychopathy appears to be associated with an atypical striatal morphology, with highly significant global and local differences of the accumbens. This is consistent with the clinical syndrome and with theories of limbic involvement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence.

    PubMed

    Olivares, Felipe; Zunino, Luciano; Gulich, Damián; Pérez, Darío G; Rosso, Osvaldo A

    2017-10-01

    We have experimentally quantified the temporal structural diversity from the coordinate fluctuations of a laser beam propagating through isotropic optical turbulence. The main focus here is on the characterization of the long-range correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. To fulfill this goal, a laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing the symbolic technique based on ordinal patterns to estimate the well-known permutation entropy. We show that the permutation entropy estimations at multiple time scales evidence an interplay between different dynamical behaviors. More specifically, a crossover between two different scaling regimes is observed. We confirm a transition from an integrated stochastic process contaminated with electronic noise to a fractional Brownian motion with a Hurst exponent H=5/6 as the sampling time increases. Besides, we are able to quantify, from the estimated entropy, the amount of electronic noise as a function of the turbulence strength. We have also demonstrated that these experimental observations are in very good agreement with numerical simulations of noisy fractional Brownian motions with a well-defined crossover between two different scaling regimes.

  3. A secure transmission scheme of streaming media based on the encrypted control message

    NASA Astrophysics Data System (ADS)

    Li, Bing; Jin, Zhigang; Shu, Yantai; Yu, Li

    2007-09-01

    As the use of streaming media applications increased dramatically in recent years, streaming media security becomes an important presumption, protecting the privacy. This paper proposes a new encryption scheme in view of characteristics of streaming media and the disadvantage of the living method: encrypt the control message in the streaming media with the high security lever and permute and confuse the data which is non control message according to the corresponding control message. Here the so-called control message refers to the key data of the streaming media, including the streaming media header and the header of the video frame, and the seed key. We encrypt the control message using the public key encryption algorithm which can provide high security lever, such as RSA. At the same time we make use of the seed key to generate key stream, from which the permutation list P responding to GOP (group of picture) is derived. The plain text of the non-control message XORs the key stream and gets the middle cipher text. And then obtained one is permutated according to P. In contrast the decryption process is the inverse process of the above. We have set up a testbed for the above scheme and found our scheme is six to eight times faster than the conventional method. It can be applied not only between PCs but also between handheld devices.

  4. Fecal Microbiota Characteristics of Patients with Colorectal Adenoma Detected by Screening: A Population-based Study

    PubMed Central

    Goedert, James J.; Gong, Yangming; Hua, Xing; Zhong, Huanzi; He, Yimin; Peng, Peng; Yu, Guoqin; Wang, Wenjing; Ravel, Jacques; Shi, Jianxin; Zheng, Ying

    2015-01-01

    Background Screening for colorectal cancer (CRC) and precancerous colorectal adenoma (CRA) can detect curable disease. However, participation in colonoscopy and sensitivity of fecal heme for CRA are low. Methods Microbiota metrics were determined by Illumina sequencing of 16S rRNA genes amplified from DNA extracted from feces self-collected in RNAlater. Among fecal immunochemical test-positive (FIT +) participants, colonoscopically-defined normal versus CRA patients were compared by regression, permutation, and random forest plus leave-one-out methods. Findings Of 95 FIT + participants, 61 had successful fecal microbiota profiling and colonoscopy, identifying 24 completely normal patients, 20 CRA patients, 2 CRC patients, and 15 with other conditions. Phylum-level fecal community composition differed significantly between CRA and normal patients (permutation P = 0.02). Rank phylum-level abundance distinguished CRA from normal patients (area under the curve = 0.767, permutation P = 0.006). CRA prevalence was 59% in phylum-level cluster B versus 20% in cluster A (exact P = 0.01). Most of the difference reflected 3-fold higher median relative abundance of Proteobacteria taxa (Wilcoxon signed-rank P = 0.03, positive predictive value = 67%). Antibiotic exposure and other potential confounders did not affect the associations. Interpretation If confirmed in larger, more diverse populations, fecal microbiota analysis might be employed to improve screening for CRA and ultimately to reduce mortality from CRC. PMID:26288821

  5. Effectiveness of qPCR permutations, internal controls and dilution as means for minimizing the impact of inhibition while measuring Enterococcus in environmental waters.

    PubMed

    Cao, Y; Griffith, J F; Dorevitch, S; Weisberg, S B

    2012-07-01

      Draft criteria for the optional use of qPCR for recreational water quality monitoring have been published in the United States. One concern is that inhibition of the qPCR assay can lead to false-negative results and potentially inadequate public health protection. We evaluate the effectiveness of strategies for minimizing the impact of inhibition.   Five qPCR method permutations for measuring Enterococcus were challenged with 133 potentially inhibitory fresh and marine water samples. Serial dilutions were conducted to assess Enterococcus target assay inhibition, to which inhibition identified using four internal controls (IC) was compared. The frequency and magnitude of inhibition varied considerably among qPCR methods, with the permutation using an environmental master mix performing substantially better. Fivefold dilution was also effective at reducing inhibition in most samples (>78%). ICs were variable and somewhat ineffective, with 54-85% agreement between ICs and serial dilution.   The current IC methods appear to not accurately predict Enterococcus inhibition and should be used with caution; fivefold dilution and the use of reagents designed for environmental sample analysis (i.e. more robust qPCR chemistry) may be preferable.   Suitable approaches for defining, detecting and reducing inhibition will improve implementation of qPCR for water monitoring. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  6. Classification Agreement Analysis of Cross-Battery Assessment in the Identification of Specific Learning Disorders in Children and Youth

    ERIC Educational Resources Information Center

    Kranzler, John H.; Floyd, Randy G.; Benson, Nicholas; Zaboski, Brian; Thibodaux, Lia

    2016-01-01

    The Cross-Battery Assessment (XBA) approach to identifying a specific learning disorder (SLD) is based on the postulate that deficits in cognitive abilities in the presence of otherwise average general intelligence are causally related to academic achievement weaknesses. To examine this postulate, we conducted a classification agreement analysis…

  7. Rule-driven defect detection in CT images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2000-01-01

    This paper deals with automated detection and identification of internal defects in hardwood logs using computed tomography (CT) images. We have developed a system that employs artificial neural networks to perform tentative classification of logs on a pixel-by-pixel basis. This approach achieves a high level of classification accuracy for several hardwood species (...

  8. Leadership Ability and Achieving Styles among Student-Athletes at a NCAA-II University in the Northeast United States

    ERIC Educational Resources Information Center

    Nigro, Mary Theresa

    2012-01-01

    This study examined student-athletes' self-reported leadership ability and achieving styles. It analyzed leadership ability and achieving style preferences as they related to gender, class status, ethnicity, and sport classification: individual-sport vs. team-sport athletes. A paper and pencil survey consisting of a composite variable of six…

  9. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification.

    PubMed

    Younghak Shin; Balasingham, Ilangko

    2017-07-01

    Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.

  10. A fuzzy hill-climbing algorithm for the development of a compact associative classifier

    NASA Astrophysics Data System (ADS)

    Mitra, Soumyaroop; Lam, Sarah S.

    2012-02-01

    Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.

  11. Classification of proteins: available structural space for molecular modeling.

    PubMed

    Andreeva, Antonina

    2012-01-01

    The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.

  12. Vietnamese Document Representation and Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter

    Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.

  13. Classification of ASKAP Vast Radio Light Curves

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.

    2012-01-01

    The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.

  14. A Taxonomy of Introductory Physics Concepts.

    NASA Astrophysics Data System (ADS)

    Mokaya, Fridah; Savkar, Amit; Valente, Diego

    We have designed and implemented a hierarchical taxonomic classification of physics concepts for our introductory physics for engineers course sequence taught at the University of Connecticut. This classification can be used to provide a mechanism to measure student progress in learning at the level of individual concepts or clusters of concepts, and also as part of a tool to measure effectiveness of teaching pedagogy. We examine our pre- and post-test FCI results broken down by topics using Hestenes et al.'s taxonomy classification for the FCI, and compare these results with those found using our own taxonomy classification. In addition, we expand this taxonomic classification to measure performance in our other course exams, investigating possible correlations in results achieved across different assessments at the individual topic level. UCONN CLAS(College of Liberal Arts and Science).

  15. A Multi-modal, Discriminative and Spatially Invariant CNN for RGB-D Object Labeling.

    PubMed

    Asif, Umar; Bennamoun, Mohammed; Sohel, Ferdous

    2017-08-30

    While deep convolutional neural networks have shown a remarkable success in image classification, the problems of inter-class similarities, intra-class variances, the effective combination of multimodal data, and the spatial variability in images of objects remain to be major challenges. To address these problems, this paper proposes a novel framework to learn a discriminative and spatially invariant classification model for object and indoor scene recognition using multimodal RGB-D imagery. This is achieved through three postulates: 1) spatial invariance - this is achieved by combining a spatial transformer network with a deep convolutional neural network to learn features which are invariant to spatial translations, rotations, and scale changes, 2) high discriminative capability - this is achieved by introducing Fisher encoding within the CNN architecture to learn features which have small inter-class similarities and large intra-class compactness, and 3) multimodal hierarchical fusion - this is achieved through the regularization of semantic segmentation to a multi-modal CNN architecture, where class probabilities are estimated at different hierarchical levels (i.e., imageand pixel-levels), and fused into a Conditional Random Field (CRF)- based inference hypothesis, the optimization of which produces consistent class labels in RGB-D images. Extensive experimental evaluations on RGB-D object and scene datasets, and live video streams (acquired from Kinect) show that our framework produces superior object and scene classification results compared to the state-of-the-art methods.

  16. Permutation entropy analysis of financial time series based on Hill's diversity number

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Shang, Pengjian

    2017-12-01

    In this paper the permutation entropy based on Hill's diversity number (Nn,r) is introduced as a new way to assess the complexity of a complex dynamical system such as stock market. We test the performance of this method with simulated data. Results show that Nn,r with appropriate parameters is more sensitive to the change of system and describes the trends of complex systems clearly. In addition, we research the stock closing price series from different data that consist of six indices: three US stock indices and three Chinese stock indices during different periods, Nn,r can quantify the changes of complexity for stock market data. Moreover, we get richer information from Nn,r, and obtain some properties about the differences between the US and Chinese stock indices.

  17. A Spectral Algorithm for Envelope Reduction of Sparse Matrices

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.

    1993-01-01

    The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.

  18. Tag-KEM from Set Partial Domain One-Way Permutations

    NASA Astrophysics Data System (ADS)

    Abe, Masayuki; Cui, Yang; Imai, Hideki; Kurosawa, Kaoru

    Recently a framework called Tag-KEM/DEM was introduced to construct efficient hybrid encryption schemes. Although it is known that generic encode-then-encrypt construction of chosen ciphertext secure public-key encryption also applies to secure Tag-KEM construction and some known encoding method like OAEP can be used for this purpose, it is worth pursuing more efficient encoding method dedicated for Tag-KEM construction. This paper proposes an encoding method that yields efficient Tag-KEM schemes when combined with set partial one-way permutations such as RSA and Rabin's encryption scheme. To our knowledge, this leads to the most practical hybrid encryption scheme of this type. We also present an efficient Tag-KEM which is CCA-secure under general factoring assumption rather than Blum factoring assumption.

  19. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems.

    PubMed

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-22

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226 × 370 image, whereas the original selective search method extracted approximately 10 6 × n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset.

  20. Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features

    NASA Astrophysics Data System (ADS)

    Ahmed, H. O. A.; Wong, M. L. D.; Nandi, A. K.

    2018-01-01

    Condition classification of rolling element bearings in rotating machines is important to prevent the breakdown of industrial machinery. A considerable amount of literature has been published on bearing faults classification. These studies aim to determine automatically the current status of a roller element bearing. Of these studies, methods based on compressed sensing (CS) have received some attention recently due to their ability to allow one to sample below the Nyquist sampling rate. This technology has many possible uses in machine condition monitoring and has been investigated as a possible approach for fault detection and classification in the compressed domain, i.e., without reconstructing the original signal. However, previous CS based methods have been found to be too weak for highly compressed data. The present paper explores computationally, for the first time, the effects of sparse autoencoder based over-complete sparse representations on the classification performance of highly compressed measurements of bearing vibration signals. For this study, the CS method was used to produce highly compressed measurements of the original bearing dataset. Then, an effective deep neural network (DNN) with unsupervised feature learning algorithm based on sparse autoencoder is used for learning over-complete sparse representations of these compressed datasets. Finally, the fault classification is achieved using two stages, namely, pre-training classification based on stacked autoencoder and softmax regression layer form the deep net stage (the first stage), and re-training classification based on backpropagation (BP) algorithm forms the fine-tuning stage (the second stage). The experimental results show that the proposed method is able to achieve high levels of accuracy even with extremely compressed measurements compared with the existing techniques.

  1. A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs

    NASA Astrophysics Data System (ADS)

    Breitwieser, Christian; Pokorny, Christoph; Müller-Putz, Gernot R.

    2016-12-01

    Objective. This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the left and right-hand fingertips, in a three-class EEG based hybrid brain-computer interface. It was hypothesized, that fusing the input signals leads to higher classification rates than classifying tERP and SSSEP individually. Approach. Fourteen subjects participated in the studies, consisting of a screening paradigm to determine person dependent resonance-like frequencies and a subsequent online paradigm. The whole setup of the BCI system was based on open interfaces, following suggestions for a common implementation platform. During the online experiment, subjects were instructed to focus their attention on the stimulated fingertips as indicated by a visual cue. The recorded data were classified during runtime using a multi-class shrinkage LDA classifier and the outputs were fused together applying a posterior probability based fusion. Data were further analyzed offline, involving a combined classification of SSSEP and tERP features as a second fusion principle. The final results were tested for statistical significance applying a repeated measures ANOVA. Main results. A significant classification increase was achieved when fusing the results with a combined classification compared to performing an individual classification. Furthermore, the SSSEP classifier was significantly better in detecting a non-control state, whereas the tERP classifier was significantly better in detecting control states. Subjects who had a higher relative band power increase during the screening session also achieved significantly higher classification results than subjects with lower relative band power increase. Significance. It could be shown that utilizing SSSEP and tERP for hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying control- and non-control states with the same level of accuracy.

  2. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems

    PubMed Central

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-01

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226×370 image, whereas the original selective search method extracted approximately 106×n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset. PMID:28117742

  3. Semi-supervised morphosyntactic classification of Old Icelandic.

    PubMed

    Urban, Kryztof; Tangherlini, Timothy R; Vijūnas, Aurelijus; Broadwell, Peter M

    2014-01-01

    We present IceMorph, a semi-supervised morphosyntactic analyzer of Old Icelandic. In addition to machine-read corpora and dictionaries, it applies a small set of declension prototypes to map corpus words to dictionary entries. A web-based GUI allows expert users to modify and augment data through an online process. A machine learning module incorporates prototype data, edit-distance metrics, and expert feedback to continuously update part-of-speech and morphosyntactic classification. An advantage of the analyzer is its ability to achieve competitive classification accuracy with minimum training data.

  4. Analysis of Chi-square Automatic Interaction Detection (CHAID) and Classification and Regression Tree (CRT) for Classification of Corn Production

    NASA Astrophysics Data System (ADS)

    Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.

    2017-11-01

    To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.

  5. Using ecological zones to increase the detail of Landsat classifications

    NASA Technical Reports Server (NTRS)

    Fox, L., III; Mayer, K. E.

    1981-01-01

    Changes in classification detail of forest species descriptions were made for Landsat data on 2.2 million acres in northwestern California. Because basic forest canopy structures may exhibit very similar E-M energy reflectance patterns in different environmental regions, classification labels based on Landsat spectral signatures alone become very generalized when mapping large heterogeneous ecological regions. By adding a seven ecological zone stratification, a 167% improvement in classification detail was made over the results achieved without it. The seven zone stratification is a less costly alternative to the inclusion of complex collateral information, such as terrain data and soil type, into the Landsat data base when making inventories of areas greater than 500,000 acres.

  6. Classification of Dual-Wavelength Airborne Laser Scanning Point Cloud Based on the Radiometric Properties of the Objects

    NASA Astrophysics Data System (ADS)

    Pilarska, M.

    2018-05-01

    Airborne laser scanning (ALS) is a well-known and willingly used technology. One of the advantages of this technology is primarily its fast and accurate data registration. In recent years ALS is continuously developed. One of the latest achievements is multispectral ALS, which consists in obtaining simultaneously the data in more than one laser wavelength. In this article the results of the dual-wavelength ALS data classification are presented. The data were acquired with RIEGL VQ-1560i sensor, which is equipped with two laser scanners operating in different wavelengths: 532 nm and 1064 nm. Two classification approaches are presented in the article: classification, which is based on geometric relationships between points and classification, which mostly relies on the radiometric properties of registered objects. The overall accuracy of the geometric classification was 86 %, whereas for the radiometric classification it was 81 %. As a result, it can be assumed that the radiometric features which are provided by the multispectral ALS have potential to be successfully used in ALS point cloud classification.

  7. Morphological hippocampal markers for automated detection of Alzheimer's disease and mild cognitive impairment converters in magnetic resonance images.

    PubMed

    Ferrarini, Luca; Frisoni, Giovanni B; Pievani, Michela; Reiber, Johan H C; Ganzola, Rossana; Milles, Julien

    2009-01-01

    In this study, we investigated the use of hippocampal shape-based markers for automatic detection of Alzheimer's disease (AD) and mild cognitive impairment converters (MCI-c). Three-dimensional T1-weighted magnetic resonance images of 50 AD subjects, 50 age-matched controls, 15 MCI-c, and 15 MCI-non-converters (MCI-nc) were taken. Manual delineations of both hippocampi were obtained from normalized images. Fully automatic shape modeling was used to generate comparable meshes for both structures. Repeated permutation tests, run over a randomly sub-sampled training set (25 controls and 25 ADs), highlighted shape-based markers, mostly located in the CA1 sector, which consistently discriminated ADs and controls. Support vector machines (SVMs) were trained, using markers from either one or both hippocampi, to automatically classify control and AD subjects. Leave-1-out cross-validations over the remaining 25 ADs and 25 controls resulted in an optimal accuracy of 90% (sensitivity 92%), for markers in the left hippocampus. The same morphological markers were used to train SVMs for MCI-c versus MCI-nc classification: markers in the right hippocampus reached an accuracy (and sensitivity) of 80%. Due to the pattern recognition framework, our results statistically represent the expected performances of clinical set-ups, and compare favorably to analyses based on hippocampal volumes.

  8. Super central configurations of the n-body problem

    NASA Astrophysics Data System (ADS)

    Xie, Zhifu

    2010-04-01

    In this paper, we consider the inverse problem of central configurations of the n-body problem. For a given q =(q1,q2,…,qn)ε(Rd)n, let S(q ) be the admissible set of masses by S(q )={m =(m1,…,mn)∣miεR+, q is a central configurationfor m}. For a given m εS(q), let Sm(q) be the permutational admissible set about m =(m1,m2,…,mn) by Sm(q)={m'∣m'εS(q), m'≠m and m' is apermutation of m}. Here, q is called a super central configuration if there exists m such that Sm(q) is nonempty. For any q in the planar four-body problem, q is not a super central configuration as an immediate consequence of a theorem proved by MacMillan and Bartky ["Permanent configurations in the problem of four bodies," Trans. Am. Math. Soc. 34, 838 (1932)]. The main discovery in this paper is the existence of super central configurations in the collinear three-body problem. We proved that for any q in the collinear three-body problem and any m εS(q), Sm(q) has at most one element and the detailed classification of Sm(q) is provided.

  9. Classification of the treble clef zinc finger: noteworthy lessons for structure and function evolution.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2016-08-26

    Treble clef (TC) zinc fingers constitute a large fold-group of structural zinc-binding protein domains that mediate numerous cellular functions. We have analysed the sequence, structure, and function relationships among all TCs in the Protein Data Bank. This led to the identification of novel TCs, such as lsr2, YggX and TFIIIC τ 60 kDa subunit, and prediction of a nuclease-like function for the DUF1364 family. The structural malleability of TCs is evident from the many examples with variations to the core structural elements of the fold. We observe domains wherein the structural core of the TC fold is circularly permuted, and also some examples where the overall fold resembles both the TC motif and another unrelated fold. All extant TC families do not share a monophyletic origin, as several TC proteins are known to have been present in the last universal common ancestor and the last eukaryotic common ancestor. We identify several TCs where the zinc-chelating site and residues are not merely responsible for structure stabilization but also perform other functions, such as being redox active in C1B domain of protein kinase C, a nucleophilic acceptor in Ada and catalytic in organomercurial lyase, MerB.

  10. Cannabis-Induced Acute Pancreatitis: A Systematic Review.

    PubMed

    Barkin, Jodie A; Nemeth, Zsuzsanna; Saluja, Ashok K; Barkin, Jamie S

    2017-09-01

    Cannabis is the most frequently consumed illicit drug in the world, with higher prevalence under the age of 35 years. Cannabis was first reported as a possible cause of acute pancreatitis (AP) in 2004. The aim of this systematic review is to examine cannabis use as an etiology of AP. A search using PubMed/Medline, Embase, Scopus, and Cochrane was performed without language or year limitations to May 1, 2016. Search terms were "Cannabis" and "Acute Pancreatitis" with all permutations. The search yielded 239 results. Acute pancreatitis was defined by meeting 2 of 3 Revised Atlanta Classification criteria. Cannabis-induced AP was defined by preceding use of cannabis and exclusion of common causes of AP when reported. Sixteen papers met inclusion criteria dating from 2004 to 2016. There were 26 cases of cannabis-induced AP (23/26 men; 24/26 under the age of 35 y). Acute pancreatitis correlated with increased cannabis use in 18 patients. Recurrent AP related temporally to cannabis use was reported in 15 of 26. There are 13 reports of no further AP episodes after cannabis cessation. Cannabis is a possible risk factor for AP and recurrent AP, occurring primarily in young patients under the age of 35 years. Toxicology screens should be considered in all patients with idiopathic AP.

  11. Classification of the treble clef zinc finger: noteworthy lessons for structure and function evolution

    NASA Astrophysics Data System (ADS)

    Kaur, Gurmeet; Subramanian, Srikrishna

    2016-08-01

    Treble clef (TC) zinc fingers constitute a large fold-group of structural zinc-binding protein domains that mediate numerous cellular functions. We have analysed the sequence, structure, and function relationships among all TCs in the Protein Data Bank. This led to the identification of novel TCs, such as lsr2, YggX and TFIIIC τ 60 kDa subunit, and prediction of a nuclease-like function for the DUF1364 family. The structural malleability of TCs is evident from the many examples with variations to the core structural elements of the fold. We observe domains wherein the structural core of the TC fold is circularly permuted, and also some examples where the overall fold resembles both the TC motif and another unrelated fold. All extant TC families do not share a monophyletic origin, as several TC proteins are known to have been present in the last universal common ancestor and the last eukaryotic common ancestor. We identify several TCs where the zinc-chelating site and residues are not merely responsible for structure stabilization but also perform other functions, such as being redox active in C1B domain of protein kinase C, a nucleophilic acceptor in Ada and catalytic in organomercurial lyase, MerB.

  12. Hypoplasia-associated Severe Early Childhood Caries – A Proposed Definition

    PubMed Central

    Caufield, P.W.; Li, Y.; Bromage, T.G.

    2012-01-01

    We propose a new classification of severe early childhood caries (S-ECC): hypoplasia-associated severe early childhood caries (HAS-ECC). This form of caries affects mostly young children living at or below poverty, characterized by structurally damaged primary teeth that are particularly vulnerable to dental caries. These predisposing developmental dental defects are mainly permutations of enamel hypoplasia (EHP). Anthropologists and dental researchers consider EHP an indicator for infant and maternal stresses including malnutrition, a variety of illnesses, and adverse birthing conditions. Differentiation of HAS-ECC from other forms of early childhood caries is warranted because of its distinct etiology, clinical presentation, and eventual management. Defining HAS-ECC has important clinical implications: Therapies that control or prevent other types of caries are likely to be less effective with HAS-ECC because the structural integrity of the teeth is compromised prior to their emergence into the oral cavity. By the time these children present to the dentist, the treatment options often become limited to surgical management under general anesthesia. To prevent HAS-ECC, dentists must partner with other health providers to develop interventions that begin with pregnant mothers, with the aim of eliminating or ameliorating the covariates accompanying poverty, including better pre- and post-natal care and nutrition. PMID:22529242

  13. Nuclear and cpDNA sequences combined provide strong inference of higher phylogenetic relationships in the phlox family (Polemoniaceae).

    PubMed

    Johnson, Leigh A; Chan, Lauren M; Weese, Terri L; Busby, Lisa D; McMurry, Samuel

    2008-09-01

    Members of the phlox family (Polemoniaceae) serve as useful models for studying various evolutionary and biological processes. Despite its biological importance, no family-wide phylogenetic estimate based on multiple DNA regions with complete generic sampling is available. Here, we analyze one nuclear and five chloroplast DNA sequence regions (nuclear ITS, chloroplast matK, trnL intron plus trnL-trnF intergeneric spacer, and the trnS-trnG, trnD-trnT, and psbM-trnD intergenic spacers) using parsimony and Bayesian methods, as well as assessments of congruence and long branch attraction, to explore phylogenetic relationships among 84 ingroup species representing all currently recognized Polemoniaceae genera. Relationships inferred from the ITS and concatenated chloroplast regions are similar overall. A combined analysis provides strong support for the monophyly of Polemoniaceae and subfamilies Acanthogilioideae, Cobaeoideae, and Polemonioideae. Relationships among subfamilies, and thus for the precise root of Polemoniaceae, remain poorly supported. Within the largest subfamily, Polemonioideae, four clades corresponding to tribes Polemonieae, Phlocideae, Gilieae, and Loeselieae receive strong support. The monogeneric Polemonieae appears sister to Phlocideae. Relationships within Polemonieae, Phlocideae, and Gilieae are mostly consistent between analyses and data permutations. Many relationships within Loeselieae remain uncertain. Overall, inferred phylogenetic relationships support a higher-level classification for Polemoniaceae proposed in 2000.

  14. A proposal of criteria for the classification of systemic sclerosis.

    PubMed

    Nadashkevich, Oleg; Davis, Paul; Fritzler, Marvin J

    2004-11-01

    Sensitive and specific criteria for the classification of systemic sclerosis are required by clinicians and investigators to achieve higher quality clinical studies and approaches to therapy. A clinical study of systemic sclerosis patients in Europe and Canada led to a set of criteria that achieve high sensitivity and specificity. Both clinical and laboratory investigations of patients with systemic sclerosis, related conditions and diseases with clinical features that can be mistaken as part of the systemic sclerosis spectrum were undertaken. Laboratory investigations included the detection of autoantibodies to centromere proteins, Scl-70 (topoisomerase I), and fibrillarin (U3-RNP). Based on the investigation of 269 systemic sclerosis patients and 720 patients presenting with related and confounding conditions, the following set of criteria for the classification of systemic sclerosis was proposed: 1) autoantibodies to: centromere proteins, Scl-70 (topo I), fibrillarin; 2) bibasilar pulmonary fibrosis; 3) contractures of the digital joints or prayer sign; 4) dermal thickening proximal to the wrists; 5) calcinosis cutis; 6) Raynaud's phenomenon; 7) esophageal distal hypomotility or reflux-esophagitis; 8) sclerodactyly or non-pitting digital edema; 9) teleangiectasias. The classification of definite SSc requires at least three of the above criteria. Criteria for the classification of systemic sclerosis have been proposed. Preliminary testing has defined the sensitivity and specificity of these criteria as high as 99% and 100%, respectively. Testing and validation of the proposed criteria by other clinical centers is required.

  15. A new classification method for MALDI imaging mass spectrometry data acquired on formalin-fixed paraffin-embedded tissue samples.

    PubMed

    Boskamp, Tobias; Lachmund, Delf; Oetjen, Janina; Cordero Hernandez, Yovany; Trede, Dennis; Maass, Peter; Casadonte, Rita; Kriegsmann, Jörg; Warth, Arne; Dienemann, Hendrik; Weichert, Wilko; Kriegsmann, Mark

    2017-07-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) shows a high potential for applications in histopathological diagnosis, and in particular for supporting tumor typing and subtyping. The development of such applications requires the extraction of spectral fingerprints that are relevant for the given tissue and the identification of biomarkers associated with these spectral patterns. We propose a novel data analysis method based on the extraction of characteristic spectral patterns (CSPs) that allow automated generation of classification models for spectral data. Formalin-fixed paraffin embedded (FFPE) tissue samples from N=445 patients assembled on 12 tissue microarrays were analyzed. The method was applied to discriminate primary lung and pancreatic cancer, as well as adenocarcinoma and squamous cell carcinoma of the lung. A classification accuracy of 100% and 82.8%, resp., could be achieved on core level, assessed by cross-validation. The method outperformed the more conventional classification method based on the extraction of individual m/z values in the first application, while achieving a comparable accuracy in the second. LC-MS/MS peptide identification demonstrated that the spectral features present in selected CSPs correspond to peptides relevant for the respective classification. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Deep-learning-based classification of FDG-PET data for Alzheimer's disease categories

    NASA Astrophysics Data System (ADS)

    Singh, Shibani; Srivastava, Anant; Mi, Liang; Caselli, Richard J.; Chen, Kewei; Goradia, Dhruman; Reiman, Eric M.; Wang, Yalin

    2017-11-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic Alzheimer's disease (AD) patients. PET scans provide functional information that is unique and unavailable using other types of imaging. However, the computational efficacy of FDG-PET data alone, for the classification of various Alzheimers Diagnostic categories, has not been well studied. This motivates us to correctly discriminate various AD Diagnostic categories using FDG-PET data. Deep learning has improved state-of-the-art classification accuracies in the areas of speech, signal, image, video, text mining and recognition. We propose novel methods that involve probabilistic principal component analysis on max-pooled data and mean-pooled data for dimensionality reduction, and multilayer feed forward neural network which performs binary classification. Our experimental dataset consists of baseline data of subjects including 186 cognitively unimpaired (CU) subjects, 336 mild cognitive impairment (MCI) subjects with 158 Late MCI and 178 Early MCI, and 146 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. We measured F1-measure, precision, recall, negative and positive predictive values with a 10-fold cross validation scheme. Our results indicate that our designed classifiers achieve competitive results while max pooling achieves better classification performance compared to mean-pooled features. Our deep model based research may advance FDG-PET analysis by demonstrating their potential as an effective imaging biomarker of AD.

  17. Contextual convolutional neural networks for lung nodule classification using Gaussian-weighted average image patches

    NASA Astrophysics Data System (ADS)

    Lee, Haeil; Lee, Hansang; Park, Minseok; Kim, Junmo

    2017-03-01

    Lung cancer is the most common cause of cancer-related death. To diagnose lung cancers in early stages, numerous studies and approaches have been developed for cancer screening with computed tomography (CT) imaging. In recent years, convolutional neural networks (CNN) have become one of the most common and reliable techniques in computer aided detection (CADe) and diagnosis (CADx) by achieving state-of-the-art-level performances for various tasks. In this study, we propose a CNN classification system for false positive reduction of initially detected lung nodule candidates. First, image patches of lung nodule candidates are extracted from CT scans to train a CNN classifier. To reflect the volumetric contextual information of lung nodules to 2D image patch, we propose a weighted average image patch (WAIP) generation by averaging multiple slice images of lung nodule candidates. Moreover, to emphasize central slices of lung nodules, slice images are locally weighted according to Gaussian distribution and averaged to generate the 2D WAIP. With these extracted patches, 2D CNN is trained to achieve the classification of WAIPs of lung nodule candidates into positive and negative labels. We used LUNA 2016 public challenge database to validate the performance of our approach for false positive reduction in lung CT nodule classification. Experiments show our approach improves the classification accuracy of lung nodules compared to the baseline 2D CNN with patches from single slice image.

  18. Unsupervised classification of variable stars

    NASA Astrophysics Data System (ADS)

    Valenzuela, Lucas; Pichara, Karim

    2018-03-01

    During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.

  19. Low-cost real-time automatic wheel classification system

    NASA Astrophysics Data System (ADS)

    Shabestari, Behrouz N.; Miller, John W. V.; Wedding, Victoria

    1992-11-01

    This paper describes the design and implementation of a low-cost machine vision system for identifying various types of automotive wheels which are manufactured in several styles and sizes. In this application, a variety of wheels travel on a conveyor in random order through a number of processing steps. One of these processes requires the identification of the wheel type which was performed manually by an operator. A vision system was designed to provide the required identification. The system consisted of an annular illumination source, a CCD TV camera, frame grabber, and 386-compatible computer. Statistical pattern recognition techniques were used to provide robust classification as well as a simple means for adding new wheel designs to the system. Maintenance of the system can be performed by plant personnel with minimal training. The basic steps for identification include image acquisition, segmentation of the regions of interest, extraction of selected features, and classification. The vision system has been installed in a plant and has proven to be extremely effective. The system properly identifies the wheels correctly up to 30 wheels per minute regardless of rotational orientation in the camera's field of view. Correct classification can even be achieved if a portion of the wheel is blocked off from the camera. Significant cost savings have been achieved by a reduction in scrap associated with incorrect manual classification as well as a reduction of labor in a tedious task.

  20. Predictive Utility and Classification Accuracy of Oral Reading Fluency and the Measures of Academic Progress for the Wisconsin Knowledge and Concepts Exam

    ERIC Educational Resources Information Center

    Ball, Carrie R.; O'Connor, Edward

    2016-01-01

    This study examined the predictive validity and classification accuracy of two commonly used universal screening measures relative to a statewide achievement test. Results indicated that second-grade performance on oral reading fluency and the Measures of Academic Progress (MAP), together with special education status, explained 68% of the…

  1. Defect detection and classification of galvanized stamping parts based on fully convolution neural network

    NASA Astrophysics Data System (ADS)

    Xiao, Zhitao; Leng, Yanyi; Geng, Lei; Xi, Jiangtao

    2018-04-01

    In this paper, a new convolution neural network method is proposed for the inspection and classification of galvanized stamping parts. Firstly, all workpieces are divided into normal and defective by image processing, and then the defective workpieces extracted from the region of interest (ROI) area are input to the trained fully convolutional networks (FCN). The network utilizes an end-to-end and pixel-to-pixel training convolution network that is currently the most advanced technology in semantic segmentation, predicts result of each pixel. Secondly, we mark the different pixel values of the workpiece, defect and background for the training image, and use the pixel value and the number of pixels to realize the recognition of the defects of the output picture. Finally, the defect area's threshold depended on the needs of the project is set to achieve the specific classification of the workpiece. The experiment results show that the proposed method can successfully achieve defect detection and classification of galvanized stamping parts under ordinary camera and illumination conditions, and its accuracy can reach 99.6%. Moreover, it overcomes the problem of complex image preprocessing and difficult feature extraction and performs better adaptability.

  2. Feature generation and representations for protein-protein interaction classification.

    PubMed

    Lan, Man; Tan, Chew Lim; Su, Jian

    2009-10-01

    Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.

  3. Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions

    PubMed Central

    Hu, Xintao; Zhu, Dajiang; Lv, Peili; Li, Kaiming; Han, Junwei; Wang, Lihong; Shen, Dinggang; Guo, Lei; Liu, Tianming

    2014-01-01

    In the human brain, functional activity occurs at multiple spatial scales. Current studies on functional brain networks and their alterations in brain diseases via resting-state functional magnetic resonance imaging (rs-fMRI) are generally either at local scale (regionally confined analysis and inter-regional functional connectivity analysis) or at global scale (graph theoretic analysis). In contrast, inferring functional interaction at fine-granularity sub-network scale has not been adequately explored yet. Here our hypothesis is that functional interaction measured at fine-granularity subnetwork scale can provide new insight into the neural mechanisms of neurological and psychological conditions, thus offering complementary information for healthy and diseased population classification. In this paper, we derived fine-granularity functional interaction (FGFI) signatures in subjects with Mild Cognitive Impairment (MCI) and Schizophrenia by diffusion tensor imaging (DTI) and rsfMRI, and used patient-control classification experiments to evaluate the distinctiveness of the derived FGFI features. Our experimental results have shown that the FGFI features alone can achieve comparable classification performance compared with the commonly used inter-regional connectivity features. However, the classification performance can be substantially improved when FGFI features and inter-regional connectivity features are integrated, suggesting the complementary information achieved from the FGFI signatures. PMID:23319242

  4. Permutation-symmetric three-particle hyper-spherical harmonics based on the S3 ⊗ SO(3)rot ⊂ O(2)⊗SO(3)rot ⊂ U(3)⋊S2 ⊂ O(6) subgroup chain

    NASA Astrophysics Data System (ADS)

    Salom, Igor; Dmitrašinović, V.

    2017-07-01

    We construct the three-body permutation symmetric hyperspherical harmonics to be used in the non-relativistic three-body Schrödinger equation in three spatial dimensions (3D). We label the state vectors according to the S3 ⊗ SO(3)rot ⊂ O (2) ⊗ SO(3)rot ⊂ U (3) ⋊S2 ⊂ O (6) subgroup chain, where S3 is the three-body permutation group and S2 is its two element subgroup containing transposition of first two particles, O (2) is the ;democracy transformation;, or ;kinematic rotation; group for three particles; SO(3)rot is the 3D rotation group, and U (3) , O (6) are the usual Lie groups. We discuss the good quantum numbers implied by the above chain of algebras, as well as their relation to the S3 permutation properties of the harmonics, particularly in view of the SO(3)rot ⊂ SU (3) degeneracy. We provide a definite, practically implementable algorithm for the calculation of harmonics with arbitrary finite integer values of the hyper angular momentum K, and show an explicit example of this construction in a specific case with degeneracy, as well as tables of K ≤ 6 harmonics. All harmonics are expressed as homogeneous polynomials in the Jacobi vectors (λ , ρ) with coefficients given as algebraic numbers unless the ;operator method; is chosen for the lifting of the SO(3)rot ⊂ SU (3) multiplicity and the dimension of the degenerate subspace is greater than four - in which case one must resort to numerical diagonalization; the latter condition is not met by any K ≤ 15 harmonic, or by any L ≤ 7 harmonic with arbitrary K. We also calculate a certain type of matrix elements (the Gaunt integrals of products of three harmonics) in two ways: 1) by explicit evaluation of integrals and 2) by reduction to known SU (3) Clebsch-Gordan coefficients. In this way we complete the calculation of the ingredients sufficient for the solution to the quantum-mechanical three-body bound state problem.

  5. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.

    PubMed

    Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi

    2016-12-16

    Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.

  6. Classification systems for natural resource management

    USGS Publications Warehouse

    Kleckner, Richard L.

    1981-01-01

    Resource managers employ various types of resource classification systems in their management activities such as inventory, mapping, and data analysis. Classification is the ordering or arranging of objects into groups or sets on the basis of their relationships, and as such, provide the resource managers with a structure for organizing their needed information. In addition of conforming to certain logical principles, resource classifications should be flexible, widely applicable to a variety of environmental conditions, and useable with minimal training. The process of classification may be approached from the bottom up (aggregation) or the top down (subdivision) or a combination of both, depending on the purpose of the classification. Most resource classification systems in use today focus on a single resource and are used for a single, limited purpose. However, resource managers now must employ the concept of multiple use in their management activities. What they need is an integrated, ecologically based approach to resource classification which would fulfill multiple-use mandates. In an effort to achieve resource-data compatibility and data sharing among Federal agencies, and interagency agreement has been signed by five Federal agencies to coordinate and cooperate in the area of resource classification and inventory.

  7. Complex extreme learning machine applications in terahertz pulsed signals feature sets.

    PubMed

    Yin, X-X; Hadjiloucas, S; Zhang, Y

    2014-11-01

    This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI.

    PubMed

    Zeng, Ling-Li; Wang, Huaning; Hu, Panpan; Yang, Bo; Pu, Weidan; Shen, Hui; Chen, Xingui; Liu, Zhening; Yin, Hong; Tan, Qingrong; Wang, Kai; Hu, Dewen

    2018-04-01

    A lack of a sufficiently large sample at single sites causes poor generalizability in automatic diagnosis classification of heterogeneous psychiatric disorders such as schizophrenia based on brain imaging scans. Advanced deep learning methods may be capable of learning subtle hidden patterns from high dimensional imaging data, overcome potential site-related variation, and achieve reproducible cross-site classification. However, deep learning-based cross-site transfer classification, despite less imaging site-specificity and more generalizability of diagnostic models, has not been investigated in schizophrenia. A large multi-site functional MRI sample (n = 734, including 357 schizophrenic patients from seven imaging resources) was collected, and a deep discriminant autoencoder network, aimed at learning imaging site-shared functional connectivity features, was developed to discriminate schizophrenic individuals from healthy controls. Accuracies of approximately 85·0% and 81·0% were obtained in multi-site pooling classification and leave-site-out transfer classification, respectively. The learned functional connectivity features revealed dysregulation of the cortical-striatal-cerebellar circuit in schizophrenia, and the most discriminating functional connections were primarily located within and across the default, salience, and control networks. The findings imply that dysfunctional integration of the cortical-striatal-cerebellar circuit across the default, salience, and control networks may play an important role in the "disconnectivity" model underlying the pathophysiology of schizophrenia. The proposed discriminant deep learning method may be capable of learning reliable connectome patterns and help in understanding the pathophysiology and achieving accurate prediction of schizophrenia across multiple independent imaging sites. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  9. Discrimination of crop types with TerraSAR-X-derived information

    NASA Astrophysics Data System (ADS)

    Sonobe, Rei; Tani, Hiroshi; Wang, Xiufeng; Kobayashi, Nobuyuki; Shimamura, Hideki

    Although classification maps are required for management and for the estimation of agricultural disaster compensation, those techniques have yet to be established. This paper describes the comparison of three different classification algorithms for mapping crops in Hokkaido, Japan, using TerraSAR-X (including TanDEM-X) dual-polarimetric data. In the study area, beans, beets, grasslands, maize, potatoes and winter wheat were cultivated. In this study, classification using TerraSAR-X-derived information was performed. Coherence values, polarimetric parameters and gamma nought values were also obtained and evaluated regarding their usefulness in crop classification. Accurate classification may be possible with currently existing supervised learning models. A comparison between the classification and regression tree (CART), support vector machine (SVM) and random forests (RF) algorithms was performed. Even though J-M distances were lower than 1.0 on all TerraSAR-X acquisition days, good results were achieved (e.g., separability between winter wheat and grass) due to the characteristics of the machine learning algorithm. It was found that SVM performed best, achieving an overall accuracy of 95.0% based on the polarimetric parameters and gamma nought values for HH and VV polarizations. The misclassified fields were less than 100 a in area and 79.5-96.3% were less than 200 a with the exception of grassland. When some feature such as a road or windbreak forest is present in the TerraSAR-X data, the ratio of its extent to that of the field is relatively higher for the smaller fields, which leads to misclassifications.

  10. Real-Time Food Authentication Using a Miniature Mass Spectrometer.

    PubMed

    Gerbig, Stefanie; Neese, Stephan; Penner, Alexander; Spengler, Bernhard; Schulz, Sabine

    2017-10-17

    Food adulteration is a threat to public health and the economy. In order to determine food adulteration efficiently, rapid and easy-to-use on-site analytical methods are needed. In this study, a miniaturized mass spectrometer in combination with three ambient ionization methods was used for food authentication. The chemical fingerprints of three milk types, five fish species, and two coffee types were measured using electrospray ionization, desorption electrospray ionization, and low temperature plasma ionization. Minimum sample preparation was needed for the analysis of liquid and solid food samples. Mass spectrometric data was processed using the laboratory-built software MS food classifier, which allows for the definition of specific food profiles from reference data sets using multivariate statistical methods and the subsequent classification of unknown data. Applicability of the obtained mass spectrometric fingerprints for food authentication was evaluated using different data processing methods, leave-10%-out cross-validation, and real-time classification of new data. Classification accuracy of 100% was achieved for the differentiation of milk types and fish species, and a classification accuracy of 96.4% was achieved for coffee types in cross-validation experiments. Measurement of two milk mixtures yielded correct classification of >94%. For real-time classification, the accuracies were comparable. Functionality of the software program and its performance is described. Processing time for a reference data set and a newly acquired spectrum was found to be 12 s and 2 s, respectively. These proof-of-principle experiments show that the combination of a miniaturized mass spectrometer, ambient ionization, and statistical analysis is suitable for on-site real-time food authentication.

  11. Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen

    PubMed Central

    Jia, Shengyao; Li, Hongyang; Wang, Yanjie; Tong, Renyuan; Li, Qing

    2017-01-01

    Soil is an important environment for crop growth. Quick and accurately access to soil nutrient content information is a prerequisite for scientific fertilization. In this work, hyperspectral imaging (HSI) technology was applied for the classification of soil types and the measurement of soil total nitrogen (TN) content. A total of 183 soil samples collected from Shangyu City (People’s Republic of China), were scanned by a near-infrared hyperspectral imaging system with a wavelength range of 874–1734 nm. The soil samples belonged to three major soil types typical of this area, including paddy soil, red soil and seashore saline soil. The successive projections algorithm (SPA) method was utilized to select effective wavelengths from the full spectrum. Pattern texture features (energy, contrast, homogeneity and entropy) were extracted from the gray-scale images at the effective wavelengths. The support vector machines (SVM) and partial least squares regression (PLSR) methods were used to establish classification and prediction models, respectively. The results showed that by using the combined data sets of effective wavelengths and texture features for modelling an optimal correct classification rate of 91.8%. could be achieved. The soil samples were first classified, then the local models were established for soil TN according to soil types, which achieved better prediction results than the general models. The overall results indicated that hyperspectral imaging technology could be used for soil type classification and soil TN determination, and data fusion combining spectral and image texture information showed advantages for the classification of soil types. PMID:28974005

  12. Classifying four-category visual objects using multiple ERP components in single-trial ERP.

    PubMed

    Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin

    2016-08-01

    Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.

  13. Adaptive Skills and Academic Achievement in Latino Students

    ERIC Educational Resources Information Center

    Raines, Tara C.; Gordon, Melissa; Harrell-Williams, Leigh; Diliberto, Rachele A.; Parke, Elyse M.

    2017-01-01

    Interventions developed to improve adaptive skills can improve academic achievement. The authors expanded this line of research by examining the relationship between performance on a state proficiency exam and adaptive skills classifications on the Behavioral Assessment System for Children, Second Edition parent and teacher reports. Participants…

  14. Comparative life cycle cost assessment of painted and hot-dip galvanized bridges.

    PubMed

    Rossi, B; Marquart, S; Rossi, G

    2017-07-15

    The study addresses the life cycle cost assessment (LCCA) of steel bridges, focusing on the maintenance activities and the maintenance scenario. Firstly, the unit costs of maintenance activities and their durability (i.e. the time between two activities) are evaluated. Pragmatic data are provided for the environment category C4 and for three activities: Patch Up, Overcoating and Remove & Replace. A comparative LCCA for a typical hypothetic steel girder bridge is carried out, either painted or hot-dip galvanized (HDG), in the environmental class C4. The LCC versus the cumulated life is provided for both options. The initial cost of the steel unpainted option is only 50.3% of the HDG option. It is shown that after 'Overcoating' occurring at 18.5 years, the total Net Present Value (NPV) of the painted option surpasses that of the HDG option. A sensitivity analysis of the NPV to the cost and service life parameters, the escalation and discount rates is then performed. The discount and escalation rates, considerably influences the total LCC, following a non-linear trend. The total LCC decreases with the discount rate increasing and, conversely, increases with the escalation rate increasing. Secondly, the influence of the maintenance scenario on the total LCC is assessed based on a probabilistic approach. A permutation of the three independent maintenance activities assumed to occur six times over the life of the bridge is considered and a probability of occurrence is associated to each unique scenario. The most probable scenarios are then classified according to their NPV or achieved service life. This approach leads to the definition of a cost-effective maintenance scenario i.e. the scenario, within all the considered permutations, that has the minimum LCC in a range of lifespan. Besides, the probabilistic analysis also shows that, whatever the scenario, the return on investment period ranges between 18.5 years and 24.2 years. After that period, the HDG option becomes economic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors.

    PubMed

    Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng

    2017-05-27

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection.

  16. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors

    PubMed Central

    Xi, Xugang; Tang, Minyan; Miran, Seyed M.; Luo, Zhizeng

    2017-01-01

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection. PMID:28555016

  17. Multi-source remotely sensed data fusion for improving land cover classification

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Huang, Bo; Xu, Bing

    2017-02-01

    Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.

  18. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Steven

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robustmore » principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.« less

  19. Study of wavelet packet energy entropy for emotion classification in speech and glottal signals

    NASA Astrophysics Data System (ADS)

    He, Ling; Lech, Margaret; Zhang, Jing; Ren, Xiaomei; Deng, Lihua

    2013-07-01

    The automatic speech emotion recognition has important applications in human-machine communication. Majority of current research in this area is focused on finding optimal feature parameters. In recent studies, several glottal features were examined as potential cues for emotion differentiation. In this study, a new type of feature parameter is proposed, which calculates energy entropy on values within selected Wavelet Packet frequency bands. The modeling and classification tasks are conducted using the classical GMM algorithm. The experiments use two data sets: the Speech Under Simulated Emotion (SUSE) data set annotated with three different emotions (angry, neutral and soft) and Berlin Emotional Speech (BES) database annotated with seven different emotions (angry, bored, disgust, fear, happy, sad and neutral). The average classification accuracy achieved for the SUSE data (74%-76%) is significantly higher than the accuracy achieved for the BES data (51%-54%). In both cases, the accuracy was significantly higher than the respective random guessing levels (33% for SUSE and 14.3% for BES).

  20. A space efficient flexible pivot selection approach to evaluate determinant and inverse of a matrix.

    PubMed

    Jafree, Hafsa Athar; Imtiaz, Muhammad; Inayatullah, Syed; Khan, Fozia Hanif; Nizami, Tajuddin

    2014-01-01

    This paper presents new simple approaches for evaluating determinant and inverse of a matrix. The choice of pivot selection has been kept arbitrary thus they reduce the error while solving an ill conditioned system. Computation of determinant of a matrix has been made more efficient by saving unnecessary data storage and also by reducing the order of the matrix at each iteration, while dictionary notation [1] has been incorporated for computing the matrix inverse thereby saving unnecessary calculations. These algorithms are highly class room oriented, easy to use and implemented by students. By taking the advantage of flexibility in pivot selection, one may easily avoid development of the fractions by most. Unlike the matrix inversion method [2] and [3], the presented algorithms obviate the use of permutations and inverse permutations.

Top