Science.gov

Sample records for perovskite molybdates ba1-xkxmoo3

  1. Molybdate Coatings for Protecting Aluminum Against Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  2. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  3. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    PubMed

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.

  4. Perovskite fever

    NASA Astrophysics Data System (ADS)

    2014-09-01

    Staggering increases in the performance of organic-inorganic perovskite solar cells have renewed the interest in these materials. However, further developments and the support from academic and industrial partners will hinge on the reporting of accurate efficiency values.

  5. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  6. Aggregate stability of silicon dioxide hydrosols modified by molybdates

    SciTech Connect

    Valyukhov, A.A.; Frolov, Y.G.; Nazarov, V.V.

    1986-03-01

    Modification of the surface of silica hydrosol by molybdates changes the relationship between structural and electrostatic contributions to the disjoining pressure, which maintains the aggregate stability of the sol.

  7. Molybdate binding by ModA, the periplasmic component of the Escherichia coli mod molybdate transport system.

    PubMed

    Imperial, J; Hadi, M; Amy, N K

    1998-03-13

    ModA, the periplasmic-binding protein of the Escherichia coli mod transport system was overexpressed and purified. Binding of molybdate and tungstate to ModA was found to modify the UV absorption and fluorescence emission spectra of the protein. Titration of these changes showed that ModA binds molybdate and tungstate in a 1:1 molar ratio. ModA showed an intrinsic fluorescence emission spectrum attributable to its three tryptophanyl residues. Molybdate binding caused a conformational change in the protein characterized by: (i) a shift of tryptophanyl groups to a more hydrophobic environment; (ii) a quenching (at pH 5.0) or enhancement (at pH 7.8) of fluorescence; and (iii) a higher availability of tryptophanyl groups to the polar quencher acrylamide. The tight binding of molybdate did not allow an accurate estimation of the binding constants by these indirect methods. An isotopic binding method with 99MoO42- was used for accurate determination of KD (20 nM) and stoichiometry (1:1 molar ratio). ModA bound tungstate with approximately the same affinity, but did not bind sulfate or phosphate. These KDs are 150- to 250-fold lower than those previously reported, and compatible with the high molybdate transport affinity of the mod system. The affinity of ModA for molybdate was also determined in vivo and found to be similar to that determined in vitro.

  8. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    PubMed Central

    Ahmad, S. A.; Shukor, M. Y.; Shamaan, N. A.; Mac Cormack, W. P.; Syed, M. A.

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  9. Molybdate adsorption from steel slag eluates by subsoils.

    PubMed

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils.

  10. Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor.

    PubMed Central

    Bodine, P V; Litwack, G

    1988-01-01

    We have recently purified the modulator of the glucocorticoid-receptor complex from rat liver. Purified modulator inhibits glucocorticoid-receptor complex activation and stabilizes the steroid-binding ability of the unoccupied glucocorticoid receptor. Since these activities are shared by exogenous sodium molybdate, modulator appears to be the endogenous factor that sodium molybdate mimics. In this report, we present additional evidence for the mechanism of action of purified modulator. (i) Molybdate and modulator inhibit receptor activation as measured by DNA-cellulose binding, DEAE-cellulose chromatography, and Sepharose 4B gel filtration. (ii) The ability of molybdate and modulator to inhibit receptor activation and stabilize the unoccupied receptor appears to be additive. (iii) Scatchard analysis of heat-destabilized unoccupied receptors indicates that the number of steroid-binding sites is reduced during destabilization, whereas the steroid dissociation constant remains unchanged. Molybdate and modulator stabilize the receptor by maintaining the number of steroid-binding sites. (iv) Molybdate and modulator do not inhibit alkaline phosphatase-induced destabilization of the unoccupied receptor. However, alkaline phosphatase-induced destabilization is reversed by the addition of dithiothreitol in the presence, but not in the absence, of molybdate or modulator. These results suggest that the mechanism of action for modulator is identical to that of sodium molybdate, and we propose that modulator is the endogenous molybdate factor for the glucocorticoid receptor. PMID:3422744

  11. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    PubMed

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  12. Chalcogenide perovskites for photovoltaics.

    PubMed

    Sun, Yi-Yang; Agiorgousis, Michael L; Zhang, Peihong; Zhang, Shengbai

    2015-01-14

    Chalcogenide perovskites are proposed for photovoltaic applications. The predicted band gaps of CaTiS3, BaZrS3, CaZrSe3, and CaHfSe3 with the distorted perovskite structure are within the optimal range for making single-junction solar cells. The predicted optical absorption properties of these materials are superior compared with other high-efficiency solar-cell materials. Possible replacement of the alkaline-earth cations by molecular cations, e.g., (NH3NH3)(2+), as in the organic-inorganic halide perovskites (e.g., CH3NH3PbI3), are also proposed and found to be stable. The chalcogenide perovskites provide promising candidates for addressing the challenging issues regarding halide perovskites such as instability in the presence of moisture and containing the toxic element Pb.

  13. Dielectric and conducting behaviour of polycrystalline holmium octa-molybdate

    NASA Astrophysics Data System (ADS)

    Want, Basharat; Zahoor Ahmad, Bhat; Bhat, Bilal Hamid

    2014-09-01

    Polycrystalline holmium octa-molybdate spherulites have been obtained by using gel diffusion technique and characterized by different physio-chemical techniques. The surfaces of these spherulites are composed of nano-rod with an average diameter of about 80 nm. At room temperature the initial crystal structure is triclinic, space group P1. Thermal studies suggested a phase transition occurring in holmium octa-molybdate crystals at about 793 K. The electrical properties of the system have been studied as a function of frequency and temperature in the ranges of 20 Hz-3 MHz and 290-570 K, respectively. A giant dielectric constant and two loss peaks have been observed in the permittivity formalism. The conducting behaviour of the material is also discussed. The conductivity was found to be 1572 μ Ω-1 m-1 at room temperature and 3 MHz frequency. The conductivity of the polycrystalline material was attributed to the fact that it arises due to the migration of defects on the oxygen sub-lattice. Impedance studies were also performed in the frequency domain to infer the bulk and grain boundary contributions to the overall electric response of the material. The electrical responses have been attributed to the grain, grain-boundary, and interfacial effects.

  14. Role of Molybdate and Other Transition Metals in the Accumulation of Protochelin by Azotobacter vinelandii

    PubMed Central

    Cornish, Anthony S.; Page, William J.

    2000-01-01

    Both molybdate and iron are metals that are required by the obligately aerobic organism Azotobacter vinelandii to survive in the nutrient-limited conditions of its natural soil environment. Previous studies have shown that a high concentration of molybdate (1 mM) affects the formation of A. vinelandii siderophores such that the tricatecholate protochelin is formed to the exclusion of the other catecholate siderophores, azotochelin and aminochelin. It has been shown previously that molybdate combines readily with catecholates and interferes with siderophore function. In this study, we found that the manner in which each catecholate siderophore interacted with molybdate was consistent with the structure and binding potential of the siderophore. The affinity that each siderophore had for molybdate was high enough that stable molybdo-siderophore complexes were formed but low enough that the complexes were readily destabilized by Fe3+. Thus, competition between Fe3+ and molybdate did not appear to be the primary cause of protochelin accumulation; in addition, we determined that protochelin accumulated in the presence of vanadate, tungstate, Zn2+, and Mn2+. We found that all five of these metal ions partially inhibited uptake of 55Fe-protochelin and 55Fe-azotochelin complexes. Also, each of these metal ions partially inhibited the activity of ferric reductase, an enzyme important in the deferration of ferric siderophores. Our results suggest that protochelin accumulates in the presence of molybdate because protochelin uptake and conversion into its component parts, azotochelin and aminochelin, are inhibited by interference with ferric reductase. PMID:10742245

  15. Investigation of molybdate melts as an alternative method of reprocessing used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Hames, Amber L.; Tkac, Peter; Paulenova, Alena; Willit, James L.; Williamson, Mark A.

    2017-04-01

    An investigation of molybdate melts containing sodium molybdate (Na2MoO4) and molybdenum trioxide (MoO3) to achieve the separation of uranium from fission products by crystallization has been performed. The separation is based on the difference in solubility of the fission product metal oxides compared to the uranium oxide or molybdate in the molybdate melt. The molybdate melt dissolves uranium dioxide at high temperatures, and upon cooling, uranium precipitates as uranium dioxide or molybdate, whereas the fission product metals remain soluble in the melt. Small-scale experiments using gram quantities of uranium dioxide have been performed to investigate the feasibility of UO2 purification from the fission products. The composition of the uranium precipitate as well as data for partitioning of several fission product surrogates between the uranium precipitate and molybdate melt for various melt compositions are presented and discussed. The fission products Cs, Sr, Ru and Rh all displayed very large distribution ratios. The fission products Zr, Pd, and the lanthanides also displayed good distribution ratios (D > 10). A melt consisting of 20 wt% MoO3- 50 wt% Na2MoO4-30 wt% UO2 heated to 1313 K and cooled to 1123 K for the physical separation of the UO2 product from the melt, and washed once with Na2MoO4 displays optimum conditions for separation of the UO2 from the fission products.

  16. Ferroelectric ultrathin perovskite films

    DOEpatents

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  17. Molybdate and tungstate act like vanadate on glucose metabolism in isolated hepatocytes.

    PubMed Central

    Fillat, C; Rodríguez-Gil, J E; Guinovart, J J

    1992-01-01

    In rat hepatocytes, molybdate and tungstate inactivate glycogen synthase by a mechanism independent of Ca2+ and activate glycogen phosphorylase by a Ca(2+)-dependent mechanism. On the other hand, both molybdate and tungstate increase fructose 2,6-bisphosphate levels and counteract the decrease in this metabolite induced by glucagon. These effectors do not directly modify 6-phosphofructo-2-kinase activity, even though they partially counteract the inactivation of this enzyme induced by glucagon. These effects are related to an increase on the glycolytic flux, as indicated by the increase in L-lactate and CO2 production and the decrease in glucose 6-phosphate levels in the presence of glucose. All these effects are similar to those previously reported for vanadate, although molybdate and tungstate are less effective than vanadate. These results could indicate that molybdate, tungstate and vanadate act on glucose metabolism in isolated hepatocytes by a similar mechanism of action. PMID:1313228

  18. Polymerization and photochromism of ammonium molybdate in porous glass

    NASA Astrophysics Data System (ADS)

    Pak, V. N.; Borisov, A. N.

    2016-08-01

    Modification of porous glass (PG) plates is carried out by impregnation with aqueous solutions of ammonium molybdate (NH4)2MoO4 with subsequent removal of water at 120°C. A long-wavelength shift of absorption spectra upon accumulation of the salt in PG indicates polymerization of MoO 4 2- anions at low concentrations of the encapsulated salt. Photochromism manifests itself as the anionic forms in PG become larger. UV irradiation of the modified plates causes enhancement of continuous absorption in the visible range. The proposed mechanism of photoreduction of the polianions in PG involves the removal of oxygen atoms from the bridging-Mo-O-Mo-bonds and stabilization of the colored forms by means of conjugation of the electrons released from the 4 d-levels of pentavalent molybdenum.

  19. Perovskite photonic sources

    NASA Astrophysics Data System (ADS)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  20. Molybdate transport in a chemically complex aquifer: Field measurements compared with solute-transport model predictions

    USGS Publications Warehouse

    Stollenwerk, K.G.

    1998-01-01

    A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.

  1. Small Substrate Transport and Mechanism of a Molybdate ATP Binding Cassette Transporter in a Lipid Environment*

    PubMed Central

    Rice, Austin J.; Harrison, Alistair; Alvarez, Frances J. D.; Davidson, Amy L.; Pinkett, Heather W.

    2014-01-01

    Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. PMID:24722984

  2. Molybdate modulates mitogen and cyclosporin responses of human peripheral blood lymphocytes.

    PubMed

    Michelis, Fotios V; Delitheos, Andreas; Tiligada, Ekaterini

    2011-07-01

    The trace element molybdenum (Mo) is an essential component of key physiological systems in animals, plants and microorganisms. The molybdate oxoanion MoO(4)(2-) has been demonstrated to cause diverse yet poorly understood biochemical and pharmacological effects, such as non-specific inhibition of phosphatases and stabilization of steroid receptors. This study aimed to investigate the effects of molybdate on the activation of human peripheral blood lymphocytes (hPBLs) ex vivo and its potential interaction with the widely used immunosuppressant drug cyclosporin A (CsA). Lymphocyte activation was evaluated by performing multiple experiments determining blastogenesis in cultured peripheral blood lymphocytes obtained from 5 healthy volunteers, following stimulation induced by phytohemagglutinin (PHA), in the absence or presence of 0.05-10 mM sodium molybdate or/and 2.5-30 μg/mL CsA. Blastogenesis was assessed by a morphometric assay based on the relative proportions of unactivated lymphocytes, activated lymphoblasts and cells with aberrant morphology after PHA-induced activation. Molybdate concentrations up to 1 mM showed no effect on lymphocyte blastogenesis, while higher concentrations exerted immunosuppressive actions on cultured hPBLs. Co-administration of 0.1 mM sodium molybdate with CsA, at doses up to 20 μg/mL, induced no alteration in the response of cultured hPBLs to CsA. However, molybdate potentiated the immunosuppressive action of higher CsA concentrations, implying a likely dose-related synergistic interaction of the two agents in PHA-stimulated blood lymphocytes. These observations are indicative of the possible biological importance of molybdate oxoanions in the modulation of hPBL activation that may have pharmacological consequences during the therapeutic application of immunomodulatory drugs.

  3. Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli.

    PubMed

    Rech, S; Wolin, C; Gunsalus, R P

    1996-02-02

    The modABCD operon, located at 17 min on the Escherichia coli chromosome, encodes the protein components of a high affinity molybdate uptake system. Sequence analysis of the modA gene (GenBank L34009) predicts that it encodes a periplasmic binding protein based on the presence of a leader-like sequence at its N terminus. To examine the properties of the ModA protein, the modA structural gene was overexpressed, and its product was purified. The ModA protein was localized to the periplasmic space of the cell, and it was released following a gentle osmotic shock. The N-terminal sequence of ModA confirmed that a leader region of 24 amino acids was removed upon export from the cell. The apparent size of ModA is 31.6 kDa as determined by gel sieve chromatography, whereas it is 22.5 kDa when examined by SDS-polyacrylamide gel electrophoresis. A ligand-dependent protein mobility shift assay was devised using a native polyacrylamide gel electrophoresis protocol to examine binding of molybdate and other anions to the ModA periplasmic protein. Whereas molybdate and tungstate were bound with high affinity (approximately 5 microM), sulfate, chromate, selenate, phosphate, and chlorate did not bind even when tested at 2 mM. A UV spectral assay revealed apparent Kd values of binding for molybdate and tungstate of 3 and 7 microM, respectively. Strains defective in the modA gene were unable to transport molybdate unless high levels of the anion were supplied in the medium. Therefore the modA gene product is essential for high affinity molybdate uptake by the cell. Tungstate interference of molybdate acquisition by the cell is apparently due in part to the high affinity of the ModA protein for this anion.

  4. Electrospun Perovskite Nanofibers

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Zhu, Yanyan

    2017-02-01

    CH3NH3PbI3 perovskite nanofibers were synthesized by versatile electrospinning techniques. The synthetic CH3NH3PbI3 nanofibers were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and photoluminescence. As counter electrodes, the synthesized nanofibers increased the performance of the dye-sensitized solar cells from 1.58 to 2.09%. This improvement was attributed to the enhanced smoothness and efficiency of the electron transport path. Thus, CH3NH3PbI3 perovskites nanofibers are potential alternative to platinum counter electrodes in dye-sensitized solar cells.

  5. Structural and spectral investigation of terbium molybdate nanophosphor.

    PubMed

    Mani, Kamal P; Vimal, G; Biju, P R; Joseph, Cyriac; Unnikrishnan, N V; Ittyachen, M A

    2015-09-05

    Terbium molybdate nanophosphors were synthesized through a facile sol-gel route. The structure of the phosphors was characterized by X-ray diffraction, Raman spectra and Fourier transform infrared spectroscopy analysis. The X-ray diffraction studies revealed that the structure of the nanophosphor gradually changes from monoclinic to orthorhombic phase as heated from 700 to 900 °C. High resolution transmission electron microscopy, SAED and EDS were also employed to characterize the size, crystallinity and composition of the samples. Detailed spectroscopic investigations were carried out by Judd-Ofelt analysis based on UV-Visible-NIR absorption and emission spectra. The luminescence spectra suggest that phosphors with orthorhombic structure have better luminescence properties than the monoclinic structure. The phosphors showed intense green emission under near-UV excitation due to the energy transfer from the host lattice to Tb(3+) ions. The CIE coordinates suggest enhanced color purity for green emission and short fluorescence decay values proposes the suitability for LED applications. These phosphors can be applied as promising candidates for blue and near-UV excited WLEDs.

  6. Structural and spectral investigation of terbium molybdate nanophosphor

    NASA Astrophysics Data System (ADS)

    Mani, Kamal P.; Vimal, G.; Biju, P. R.; Joseph, Cyriac; Unnikrishnan, N. V.; Ittyachen, M. A.

    2015-09-01

    Terbium molybdate nanophosphors were synthesized through a facile sol-gel route. The structure of the phosphors was characterized by X-ray diffraction, Raman spectra and Fourier transform infrared spectroscopy analysis. The X-ray diffraction studies revealed that the structure of the nanophosphor gradually changes from monoclinic to orthorhombic phase as heated from 700 to 900 °C. High resolution transmission electron microscopy, SAED and EDS were also employed to characterize the size, crystallinity and composition of the samples. Detailed spectroscopic investigations were carried out by Judd-Ofelt analysis based on UV-Visible-NIR absorption and emission spectra. The luminescence spectra suggest that phosphors with orthorhombic structure have better luminescence properties than the monoclinic structure. The phosphors showed intense green emission under near-UV excitation due to the energy transfer from the host lattice to Tb3+ ions. The CIE coordinates suggest enhanced color purity for green emission and short fluorescence decay values proposes the suitability for LED applications. These phosphors can be applied as promising candidates for blue and near-UV excited WLEDs.

  7. Characterisation of the anodic layers formed on 2024 aluminium alloy, in tetraborate electrolyte containing molybdate ions

    NASA Astrophysics Data System (ADS)

    Moutarlier, V.; Pelletier, S.; Lallemand, F.; Gigandet, M. P.; Mekhalif, Z.

    2005-12-01

    Anodic layer growth on 2024 aluminium alloy at 70 °C, under 40 V, during 60 min, in 50 g L -1 di-sodium tetraborate solution containing di-sodium molybdate from 0.1 to 0.5 M (pH 10) is examined. Anodising behaviours strongly depend on additive concentration. Development of anodic films is favoured with weak molybdate additions (<0.3-0.4 M). The film thicknesses increase and the porosity of anodic layers decreases. Molybdenum (+VI), detected by X-ray photoelectron spectroscopy (XPS) analysis, is present in the anodic films and the Mo incorporation, studied by energy dispersive spectroscopy (EDS) analysis, increases with molybdate concentration. However, for high molybdate concentrations (>0.4 M), anodising behaviour becomes complex with the formation of a blue molybdenum oxide at the cathode. The growth of aluminium oxide is hindered. As the anodic layers are thinner, the Mo(+VI) incorporation significantly decreases. These two configurations implicate different corrosion performances in 5% sodium chloride solution at 35 °C. As the alkaline anodic layer formed with 0.3 M molybdate species is the thickest and the Mo incorporation is the more pronounced, its corrosion resistance is the highest. The effect of morphology and composition of anodic films on pitting corrosion is also discussed.

  8. Rescaling metal molybdate nanostructures with biopolymer for energy storage having high capacitance with robust cycle stability.

    PubMed

    Minakshi, Manickam; Barmi, Maryam J; Jones, Robert T

    2017-03-14

    Hybrid capacitors can replace or complement batteries, while storing energy through ion adsorption and fast surface redox reactions. There is a growing demand in developing nanostructured materials as electrodes for hybrid systems that can enhance the specific capacitance by ion desolvation in the nanopores. Here, we demonstrate that rescaling the pore diameter with the aid of biopolymer at an optimal level during the synthesis of metal molybdate leads to high capacitance 124 F g(-1) giving robust capacitance retention of 80% over 2000 cycles for a constructed device (activated carbon vs. metal molybdate). The presence of biopolymer (l-glutamic acid) in the metal molybdate acts as a complexing agent of the metal ion while enhancing the mass transport and hence it's improved electrochemical performance. However, XPS and other elemental analyses illustrated no evidence for N doping but traces of other surface functional groups (i.e. C and O) could be present on the molybdate surface. The biopolymer synthetic approach has the advantage of yielding nanostructured material with a relatively narrow pore size distribution controlled by l-glutamic acid. This study will provide a generic route to rescale other metal molybdate, phosphate or oxide counterparts and be an added value to the database.

  9. Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon.

    PubMed

    Namasivayam, C; Sangeetha, D

    2006-07-01

    Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 18.9 mg molybdate/g of the adsorbent. Adsorption followed second order kinetics. Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The pH effect and desorption studies showed that ion exchange and chemisorption mechanism were involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. Effect of foreign ions on adsorption of molybdate has been examined. The results showed that ZnCl2 activated coir pith carbon was effective for the removal and recovery of molybdate from water.

  10. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    SciTech Connect

    Yadav, P. J.; Joshi, C. P.; Moharil, S. V.

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  11. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Yadav, P. J.; Joshi, C. P.; Moharil, S. V.

    2014-10-01

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO4:Eu3+ for red SSL and Bi1.4Y0.6MoO6, Y6MoO12 for optical filtering, prepared by one step combustion synthesis.

  12. High Performance Perovskite Solar Cells.

    PubMed

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  13. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  14. Mo enrichment in black shale and reduction of molybdate by sulfate-reducing bacteria (SRB) (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, H.; Barton, L. L.

    2010-12-01

    The Lower Cambrian Black shale in Zunyi area of Guizhou Province, Southern China contains significant amount of Mo, As, and sulfide minerals. Additionally, Mo and sulfides are closely associated with organic matter of kerogen. Transmission electron microscopy (TEM) results show pyrite micro-crystals and Mo-As-S-bearing carbon (kerogen). High-resolution TEM image shows that Mo-rich areas are Mo-sulfide (molybdenite) layers that form poorly crystalline structures in organic carbon matrix. X-ray energy-dispersive spectra (EDS) indicate composition from the pyrite and the Mo-rich area. The black shale is very unique because of its high Mo concentration. One possible mechanism for enriching Mo from paleo-seawater is the involvement of SRB. Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. We followed the growth of Desulfovibrio gigas ATCC 19364, D. vulgaris Hildenborough, D. desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467 nm, 395 nm and 314 nm and this color is proposed to be a molybdate-sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater. We suggest that similar SRB mechanism could cause the Mo enrichment in a ~ 2.5 billion years old late Archean McRae Shale, which is related to the great oxidation event of early earth atmosphere.

  15. Metal halide perovskite light emitters

    PubMed Central

    Kim, Young-Hoon; Cho, Himchan; Lee, Tae-Woo

    2016-01-01

    Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field. PMID:27679844

  16. Behavior of silver molybdate at high-pressure

    SciTech Connect

    Arora, A.K.; Nithya, R.; Misra, Sunasira; Yagi, Takehiko

    2012-12-15

    Behavior of cubic spinel phase of Ag{sub 2}MoO{sub 4} is investigated at high pressure using X-ray diffraction and Raman spectroscopy. The P-V data are fitted to a third order Birch-Murnaghan equation of state using a value of B{sub 0}=113 GPa and B Prime {sub 0}=4. The compound is also found to exhibit a phase transition around 5 GPa to a tetragonal structure and the two phases are found to coexist over a range of pressures. Raman spectra exhibit dramatic changes across the phase transition. Increase of X-ray background scattering and broadening of the Raman peaks associated with MoO{sub 4} tetrahedral ions in the high pressure phase suggest evolution of positional disorder. However, no evidence of pressure-induced amorphization was found up to 47 GPa. - Graphical abstract: Evolution of the integrated intensity of all the diffraction peaks between 12 and 18 degree 2{theta} as a function of pressure. The rapid decrease of the intensity suggests evolution of positional disorder in the high-pressure tetragonal phase. Highlights: Black-Right-Pointing-Pointer First in-situ X-ray diffraction and Raman study of cubic silver molybdate at high pressure. Black-Right-Pointing-Pointer Commencement of a structural transition to a tetragonal phase is found at 2.3 GPa. Black-Right-Pointing-Pointer The high-pressure phase is found to have positional disorder. Black-Right-Pointing-Pointer A bulk modulus of 113 GPa is obtained from the equation of state.

  17. Luminescence and electrical behavior of lead molybdate nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Parchur, A. K.; Rai, S. B.; Singh, P.

    2013-02-01

    We report our investigation on photoluminescence and electrical behavior of lead molybdate (PbMoO4) nanoparticles by spanning the solvent of reaction medium. The PbMoO4 nanoparticles were prepared in different solvents like ethylene glycol (EG), dimethyl sulfonic acid (DMSO) and 50% EG + 50% DMSO at room temperature. The crystallite size and strain acting on nanoparticles were characterized by X-ray diffraction (XRD) study and microstructure was studied by transmission electron microscope (TEM). The average crystallite sizes and strain were found to be ˜22, 24 and 25 nm and ˜0.0028, 0.0039 and 0.0048 for EG, DMSO and EG+DMSO solvents, respectively. The XRD peak corresponding to (112) were found to shift to lower angle by 0.02° for DMSA solvent as compared to EG. This confirmed the lattice expansion in the unit cell. The particle sizes measured from TEM measurements were found to be slightly greater than that obtained from XRD analysis. The photoluminescence (PL) measurements were carried out by using 266 nm Nd-YAG laser excitation (Mo-O CTB). The samples depicted strong BLUE color. The order of emission intensity in the samples was obtained in EG+DMSO > DMSO > EG order. This may be related to the formation of [MoO4] and [PbO8] clusters in PbMoO4 host. The electrical conductivity study were carried out for these samples and from this study, we concluded that the conduction mechanism in this system were polaronic in nature.

  18. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-06-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  19. Molybdic acid ionisation under hydrothermal conditions to 300 °C

    NASA Astrophysics Data System (ADS)

    Minubayeva, Z.; Seward, T. M.

    2010-08-01

    This UV spectrophotometric study was aimed at providing precise, experimentally derived thermodynamic data for the ionisation of molybdic acid (H 2MoO 4) from 30 to 300 °C and at equilibrium saturated vapour pressures. The determination of the equilibrium constants and associated thermodynamic parameters were facilitated by spectrophotometric measurements using a specially designed high temperature optical Ti-Pd flow-through cell with silica glass windows. The following van't Hoff isochore equations describe the temperature dependence of the first and second ionisation constants of molybdic acid up to 300 °C:

  20. Tunable perovskite microdisk lasers.

    PubMed

    Sun, Wenzhao; Wang, Kaiyang; Gu, Zhiyuan; Xiao, Shumin; Song, Qinghai

    2016-04-28

    Perovskite microdisk lasers have been intensively studied recently. But their lasing properties are usually fixed once the devices are synthesized. Here, for the first time, we demonstrated the switchable and tunable perovskite microdisk lasers by surrounding them with 5CB liquid crystals. With the increase of the environmental temperature from 24 °C to 34 °C, the lasing wavelength slightly changed from 552.91 nm to 552.11 nm at the beginning and suddenly shifted to around 552.54 nm at T = 32 °C, where the phase transition of liquid crystals occurs. Our numerical calculation shows that the wavelength shift is caused by the changes of the refractive index of liquid crystals. More than tuning of the wavelength, a more dramatic wavelength transition from ∼554 nm to 550 nm has also been observed. This sudden transition is mainly induced by the reduction of scattering rather than the change in the refractive index when the liquid crystals are changed from the nematic phase to the isotropic phase. We believe that our research can shed light on the applications of perovskite optoelectronics.

  1. An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promoter DNA of Escherichia coli.

    PubMed

    Grunden, A M; Self, W T; Villain, M; Blalock, J E; Shanmugam, K T

    1999-08-20

    Expression of the modABCD operon in Escherichia coli, which codes for a molybdate-specific transporter, is repressed by ModE in vivo in a molybdate-dependent fashion. In vitro DNase I-footprinting experiments identified three distinct regions of protection by ModE-molybdate on the modA operator/promoter DNA, GTTATATT (-15 to -8; region 1), GCCTACAT (-4 to +4; region 2), and GTTACAT (+8 to +14; region 3). Within the three regions of the protected DNA, a pentamer sequence, TAYAT (Y = C or T), can be identified. DNA-electrophoretic mobility experiments showed that the protected regions 1 and 2 are essential for binding of ModE-molybdate to DNA, whereas the protected region 3 increases the affinity of the DNA to the repressor. The stoichiometry of this interaction was found to be two ModE-molybdate per modA operator DNA. ModE-molybdate at 5 nM completely protected the modABCD operator/promoter DNA from DNase I-catalyzed hydrolysis, whereas ModE alone failed to protect the DNA even at 100 nM. The apparent K(d) for the interaction between the modA operator DNA and ModE-molybdate was 0.3 nM, and the K(d) increased to 8 nM in the absence of molybdate. Among the various oxyanions tested, only tungstate replaced molybdate in the repression of modA by ModE, but the affinity of ModE-tungstate for modABCD operator DNA was 6 times lower than with ModE-molybdate. A mutant ModE(T125I) protein, which repressed modA-lac even in the absence of molybdate, protected the same region of modA operator DNA in the absence of molybdate. The apparent K(d) for the interaction between modA operator DNA and ModE(T125I) was 3 nM in the presence of molybdate and 4 nM without molybdate. The binding of molybdate to ModE resulted in a decrease in fluorescence emission, indicating a conformational change of the protein upon molybdate binding. The fluorescence emission spectra of mutant ModE proteins, ModE(T125I) and ModE(Q216*), were unaffected by molybdate. The molybdate-independent mutant Mod

  2. Organometal Halide Perovskite Artificial Synapses.

    PubMed

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    Organometal halide perovskite synaptic devices are fabricated; they emulate important working principles of a biological synapse, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, long-term plasticity, and spike-timing dependent plasticity. These properties originate from possible ion migration in the ion-rich perovskite matrix. This work has extensive applicability and practical significance in neuromorphic electronics.

  3. Intercalation-controlled cyclodehydration of sorbitol in water over layered-niobium-molybdate solid acid.

    PubMed

    Morita, Yuya; Furusato, Shogo; Takagaki, Atsushi; Hayashi, Shigenobu; Kikuchi, Ryuji; Oyama, S Ted

    2014-03-01

    Layered niobium molybdate (HNbMoO6 ) was used in the aqueous-phase dehydration of sorbitol and was found to exhibit remarkable selectivity toward its monomolecular-dehydrated intermediate 1,4-sorbitan. This was attributed to the selective intercalation of sorbitol within the interlayers with strong Brønsted acid sites.

  4. Novel geochemistry-inspired method for the deep removal of vanadium from molybdate solution.

    PubMed

    Zhang, Jialiang; Deng, Yuping; Zhou, Qiuyue; Qin, Peixin; Liu, Yubo; Wang, Chengyan

    2017-06-05

    Separation of vanadium from molybdates is an essential task for processing the leaching solution of hazardous spent hydrodesulphurization (HDS) catalyst. In this study, the difference in the main naturally occurring mineral forms of Mo and V inspired us to develop a method for the deep removal of V from molybdate solution using Fe3O4 as an adsorbent. First, the adsorbent was synthesized with coprecipitation method, and then it was characterized by XRD, TEM, and VSM. The synthesized material consisted of pure Fe3O4 nanoparticles that exhibited paramagnetic property, with a saturated magnetization of 68.6emug(-1). The V removal efficiency was investigated using batch adsorption experiments in varying conditions. Results indicated that V could be deeply removed from various concentrations of molybdate solution at pH of 7.0-11.0 within 5min. A slight decrease was found in the adsorption ratio after the adsorbent had been reused for 4 cycles. The resulting molybdate solution contained less than 0.02gL(-1) of V, which satisfies the requirement for preparing high-quality products. Finally, a process flowchart is presented for the separation of Mo and V from the leaching solution of spent HDS catalyst, based on the excellent V removal performance and rapid separation rate of the Fe3O4 adsorbent.

  5. The molybdate-binding protein (ModA) of the plant pathogen Xanthomonas axonopodis pv. citri.

    PubMed

    Balan, Andrea; Santacruz, Carolina P; Moutran, Alexandre; Ferreira, Rita C C; Medrano, Francisco J; Pérez, Carlos A; Ramos, Carlos H I; Ferreira, Luís C S

    2006-12-01

    The modABC operon of phytopathogen Xanthomonas axonopodis pv. citri (X. citri) encodes a putative ABC transporter involved in the uptake of the molybdate and tungstate anions. Sequence analyses showed high similarity values of ModA orthologs found in X. campestris pv. campestris (X. campestris) and Escherichia coli. The X. citri modA gene was cloned in pET28a and the recombinant protein, expressed in the E. coli BL21 (DE3) strain, purified by immobilized metal affinity chromatography. The purified protein remained soluble and specifically bound molybdate and tungstate with K(d) 0.29+/-0.12 microM and 0.58+/-0.14 microM, respectively. Additionally binding of molybdate drastically enhanced the thermal stability of the recombinant ModA as compared to the apoprotein. This is the first characterization of a ModA ortholog expressed by a phytopathogen and represents an important tool for functional, biochemical and structural analyses of molybdate transport in Xanthomonas species.

  6. Advances in Perovskite Solar Cells.

    PubMed

    Zuo, Chuantian; Bolink, Henk J; Han, Hongwei; Huang, Jinsong; Cahen, David; Ding, Liming

    2016-07-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite-based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non-PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large-scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed.

  7. Glory of piezoelectric perovskites

    PubMed Central

    Uchino, Kenji

    2015-01-01

    This article reviews the history of piezoelectric perovskites and forecasts future development trends, including Uchino’s discoveries such as the Pb(Mg1/3Nb2/3)O3–PbTiO3 electrostrictor, Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystal, (Pb, La)(Zr, Ti)O3 photostriction, and Pb(Zr, Ti)O3–Terfenol magnetoelectric composites. We discuss five key trends in the development of piezomaterials: performance to reliability, hard to soft, macro to nano, homo to hetero, and single to multi-functional. PMID:27877827

  8. Development of an exchange assay for cytosolic glucocorticoid receptors using the synergistic effects of molybdate plus dithiothreitol

    SciTech Connect

    Kalimi, M.; Hubbard, J.R.

    1983-09-01

    A glucocorticoid receptor exchange assay has been developed for the accurate quantification of both free and steroid-bound receptors in rat liver cytosol. Hepatic cytosol from adrenalectomized rats was saturated in vitro with unlabeled corticosterone. Cytosol was subsequently treated with (/sup 3/H)dexamethasone (with and without 1000-fold cold dexamethasone) for 2-28 h at 4 C in the presence of 10 mM molybdate plus 5 mM dithiothreitol (DTT). Complete exchange occurred between 16-28 h in the presence of molybdate plus DTT. In control and 10 mM molybdate (alone) treated samples only about 50% exchange was achieved. In the presence of 5 mM DTT (alone) approximately 60-70% exchange was observed. The exchange assay (utilizing molybdate plus DTT) was also applied to hepatic cytosol of adrenalectomized rats injected with corticosterone in vivo and to samples prebound with unlabeled dexamethasone.

  9. The Escherichia coli modE gene: effect of modE mutations on molybdate dependent modA expression.

    PubMed

    McNicholas, P M; Chiang, R C; Gunsalus, R P

    1996-11-15

    The Escherichia coli modABCD operon, which encodes a high-affinity molybdate uptake system, is transcriptionally regulated in response to molybdate availability by ModE. Here we describe a highly effective enrichment protocol, applicable to any gene with a repressor role, and establish its application in the isolation of transposon mutations in modE. In addition we show that disruption of the ModE C-terminus abolishes derepression in the absence of molybdate, implying this region of ModE controls the repressor activity. Finally, a mutational analysis of a proposed molybdate binding motif indicates that this motif does not function in regulating the repressor activity of ModE.

  10. Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics.

    PubMed

    Koh, Teck Ming; Thirumal, Krishnamoorthy; Soo, Han Sen; Mathews, Nripan

    2016-09-22

    Although halide perovskites are able to deliver high power conversion efficiencies, their ambient stability still remains an obstacle for commercialization. Thus, promoting the ambient stability of perovskites has become a key research focus. In this review, we highlight the sources of instability in conventional 3 D perovskites, including water intercalation, ion migration, and thermal decomposition. Recently, the multidimensional perovskites approach has become one of the most promising strategies to enhance the stability of perovskites. As compared to pure 2 D perovskites, multidimensional perovskites typically possess more ideal band gaps, better charge transport, and lower exciton binding energy, which are essential for photovoltaic applications. The larger organic cations in multidimensional perovskites could also be more chemically stable at higher temperatures than the commonly used methylammonium cation. By combining 3 D and 2 D perovskites to form multidimensional perovskites, halide perovskite photovoltaics can attain both high efficiency and increased stability.

  11. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  12. Methodologies for high efficiency perovskite solar cells.

    PubMed

    Park, Nam-Gyu

    2016-01-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  13. Multigap Semiconducting ferroelectric perovskites

    NASA Astrophysics Data System (ADS)

    Jiang, Lai; Grinberg, Ilya; Wang, Fenggong; Davies, Peter; Rappe, Andrew

    2013-03-01

    The energy conversion efficiency of a solar cell is directly related to the band gap of the material. By doping ferroelectric perovskites with Bi5+ on the B-site, we propose low band-gap materials suitable for bulk photovoltaic effect and related solar applications.Our DFT calculations indicate that the low-lying 6 s empty states of the electronegative Bi atom produce empty isolated bands in the gap of the parent materials, effectively lowering the band gap by 1 ~2eV in various perovskites. Ferroelectricity (and therefore inversion symmetry breaking) weakens but survives upon doping, which enables the ``shift current'' mechanism for photocurrent generation, while the decreased band gap helps absorb low energy photons in the visible range. Furthermore, the existence of multiple band gaps allows for solar conversion devices with efficiency beyond the traditional Shockly-Queisser limit, in which successive photon excitations result in carriers with higher energy than a single-step excitation would achieve.

  14. The Bright Side of Perovskites.

    PubMed

    Colella, Silvia; Mazzeo, Marco; Rizzo, Aurora; Gigli, Giuseppe; Listorti, Andrea

    2016-11-03

    Incubating in the rise of perovskite photovoltaic era, the advances in material design encourage further promising optoelectronic exploitations. Here, we evaluate halide perovskite envisioning light-emitting applications, with a particular focus to the role that this material can effectively play in the field, discussing advantages and limitations with respect to state of art competing players. Specific benefits derive from the use of low dimensional and nanostructured perovskites, marginally exploited in photovoltaic devices, allowing for a tuning of the excited states properties and for the obtainment of intrinsic resonating structures. Thanks to these unique properties, halide perovskite ensure a great potential for the development of high-power applications, such as lighting and lasing.

  15. Advances in Perovskite Solar Cells

    PubMed Central

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  16. Perovskite photovoltaics: Slow recombination unveiled

    NASA Astrophysics Data System (ADS)

    Moser, Jacques-E.

    2017-01-01

    One of the most salient features of hybrid lead halide perovskites is the extended lifetime of their photogenerated charge carriers. This property has now been shown experimentally to originate from a slow, thermally activated recombination process.

  17. The surface of iron molybdate catalysts used for the selective oxidation of methanol

    NASA Astrophysics Data System (ADS)

    Yeo, Benjamin R.; Pudge, Geoffrey J. F.; Bugler, Keith G.; Rushby, Alice V.; Kondrat, Simon; Bartley, Jonathan; Golunski, Stanislaw; Taylor, Stuart H.; Gibson, Emma; Wells, Peter. P.; Brookes, Catherine; Bowker, Michael; Hutchings, Graham J.

    2016-06-01

    The oxidation of methanol to formaldehyde is a major chemical process carried out catalytically and iron molybdate is one of the major catalysts for this process. In this paper we explore the nature of the active and selective surfaces of iron molybdate catalysts and show that the effective catalysts comprise molybdenum rich surfaces. We conclude that it is therefore important to maximise the surface area of these active catalysts and to this end we have studied catalysts made using a new physical grinding method with oxalic acid. For super-stoichiometric materials (Fe:Mo = 1:2.2) the reaction data show that physical mixing produces effective catalysts, possibly offering an improvement over the conventional co-precipitation method.

  18. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters.

    PubMed

    Bevers, Loes E; Hagedoorn, Peter-Leon; Krijger, Gerard C; Hagen, Wilfred R

    2006-09-01

    A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [K(D)] of 17 +/- 7 pM) and molybdate (K(D) of 11 +/- 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low K(D) values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein.

  19. Electrodeposition of single-crystalline molybdenum layers from tungstate-molybdate melts

    SciTech Connect

    Esina, N.O.; Tarasova, K.P.; Baraboshkin, A.N.

    1987-07-01

    The structure and growth rates of single-crystalline molybdenum layers produced by electrolysis of tungstate-molybdate melts on single-crystalline substrates with the orientations (110), (112), (100), and (111) were investigated. Growth pyramids having a symmetry coincident with that of the substrate plane were revealed as the characteristic feature of surface structure of these layers. The change from single- to polycrystalline molybdenum structure occurs via the development of twinning defects.

  20. Effect of solid-phase amorphization on the spectral characteristics of europium-doped gadolinium molybdate

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.

    2010-05-01

    A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.

  1. Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa

    PubMed Central

    Zhou, Jiqiong; Deng, Bo; Zhang, Yingjun; Cobb, Adam B.; Zhang, Zhao

    2017-01-01

    Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield. PMID:28099471

  2. Ninhydrin-sodium molybdate chromogenic analytical probe for the assay of amino acids and proteins.

    PubMed

    Anantharaman, Shivakumar; Padmarajaiah, Nagaraja; Al-Tayar, Naef Ghllab Saeed; Shrestha, Ashwinee Kumar

    2017-02-15

    A sensitive method has been proposed for the quantification of amino acids and proteins using ninhydrin and sodium molybdate as chromogenic substrates in citrate buffer of pH5.6. A weak molybdate-hydrindantin complex plays the role in the formation of Ruhemann's purple. The linear response for the amino acid, amino acid mixture and Bovine serum albumin is between 0.999 and 66.80μM, 1.52 and 38μM and 5 and 100μg/L, respectively. The molar absorptivity of the individual amino acid by the proposed reaction extends from 0.58×10(4) to 2.86×10(4)M(-1)cm(-1). The linearity equations for the proposed ninhydrin-molybdate for amino acid mixture is Abs=0.021×Conc (μM)-0.002. The applicability of the proposed method has been justified in food and biological samples in conjunction with Kjeldahl method.

  3. Ninhydrin-sodium molybdate chromogenic analytical probe for the assay of amino acids and proteins

    NASA Astrophysics Data System (ADS)

    Anantharaman, Shivakumar; Padmarajaiah, Nagaraja; Al-Tayar, Naef Ghllab Saeed; Shrestha, Ashwinee Kumar

    2017-02-01

    A sensitive method has been proposed for the quantification of amino acids and proteins using ninhydrin and sodium molybdate as chromogenic substrates in citrate buffer of pH 5.6. A weak molybdate-hydrindantin complex plays the role in the formation of Ruhemann's purple. The linear response for the amino acid, amino acid mixture and Bovine serum albumin is between 0.999 and 66.80 μM, 1.52 and 38 μM and 5 and 100 μg/L, respectively. The molar absorptivity of the individual amino acid by the proposed reaction extends from 0.58 × 104 to 2.86 × 104 M- 1 cm- 1. The linearity equations for the proposed ninhydrin-molybdate for amino acid mixture is Abs = 0.021 × Conc (μM) - 0.002. The applicability of the proposed method has been justified in food and biological samples in conjunction with Kjeldahl method.

  4. Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa.

    PubMed

    Zhou, Jiqiong; Deng, Bo; Zhang, Yingjun; Cobb, Adam B; Zhang, Zhao

    2017-01-01

    Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield.

  5. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  6. Control of H2S emission from swine manure using Na-nitrite and Na-molybdate.

    PubMed

    Predicala, Bernardo; Nemati, Mehdi; Stade, Sarah; Laguë, Claude

    2008-06-15

    Biogenic production of hydrogen sulphide (H2S) in oil reservoirs (souring) has been shown to be controlled effectively using nitrite and molybdate salts. In the present work the effects of addition of nitrite and molybdate on reducing the emission of H2S from swine manure slurry was investigated in the laboratory and semi-pilot scale systems. Addition of 80 mM nitrite or 2 mM molybdate (final concentration in the manure slurry) to fresh manure in the laboratory scale closed systems (125 mL and 4 L) reduced the concentration of H2S in the headspace gas from 1500 microL L(-1) to 10 microL L(-1) which maintained during the remaining period of trials (40-60 days). With aged manure, similar results were achieved with a lower level of nitrite (10 mM). Simultaneous or sequential additions of nitrite and molybdate to fresh manure had similar effects. Contrary to the systems simulating biological conditions in oil reservoirs in which simultaneous addition of nitrite and molybdate has been reported to have a synergistic effect, no synergism was observed when nitrite and molybdate were added to the manure simultaneously. Experiments with fresh manure slurry in the semi-pilot scale systems (200 L) confirmed the effectiveness of this approach in which addition of 80 mM nitrite or 2 mM molybdate or a combination of 80 mM nitrite and 2 mM molybdate decreased the concentration of the H2S in the headspace gas from an initial value of 500 microL L(-1) to a low level in the range 2-25 microL L(-1) and maintained these low levels during the remaining period of trials (16 days). The concentration of ammonia (NH3) in the headspace gas of the treated systems was similar to that observed in the control system (untreated), indicating that the treatment did not have an effect on the level of present NH3. Although the addition of nitrite or molybdate reduced emissions of H2S from swine manure and the associated health and safety concerns, it had little impact on the intensity of odour in the

  7. Electrochemical studies of molybdate-doped LiFePO4 as a cathode material in Li-ion batteries.

    PubMed

    Kim, Ketack; Kam, Daewoong; Kim, Yeonjoo; Kim, Sinwoong; Kim, Minsoo; Kim, Hyun-Soo

    2013-05-01

    The use of molybdate as a new anionic dopant that replaces phosphate in LiFePO4 was studied. When a small amount of molybdate (0.5 mol%) was used as a dopant, the olivine structure was maintained, while the lattice volume increased by 0.4%. The expanded volume facilitates ionic transfer, because of which the capacity of doped LiFePO4 at high current discharge rates is higher than that of pure LiFePO4. The discharge value increased by 25.2% at a charge rate of 5 C when the material was doped with 0.5 mol% molybdate ions. The slight expansion of the lattice volume in the olivine structure facilitates a fast redox reaction by lowering the charge transfer resistance. The current values from cyclic voltammetry indicate that the oxidation (charge) process of the cathode material is more improved than the corresponding reduction (discharge) process. Increasing the level of doping beyond 0.5 mol% had no effect on the results. At some discharge rates, the discharge capacity became worse. Because molybdate is divalent while phosphate is trivalent, a large number of molybdate ions in the lattice can exert considerable stress on the structure.

  8. Interfaces in perovskite solar cells.

    PubMed

    Shi, Jiangjian; Xu, Xin; Li, Dongmei; Meng, Qingbo

    2015-06-03

    The interfacial atomic and electronic structures, charge transfer processes, and interface engineering in perovskite solar cells are discussed in this review. An effective heterojunction is found to exist at the window/perovskite absorber interface, contributing to the relatively fast extraction of free electrons. Moreover, the high photovoltage in this cell can be attributed to slow interfacial charge recombination due to the outstanding material and interfacial electronic properties. However, some fundamental questions including the interfacial atomic and electronic structures and the interface stability need to be further clarified. Designing and engineering the interfaces are also important for the next-stage development of this cell.

  9. Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program

    NASA Astrophysics Data System (ADS)

    Shlegel, V. N.; Berge, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Danevich, F. A.; Decourt, R.; Degoda, V. Ya.; Devoyon, L.; Drillien, A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gros, M.; Herve, S.; Ivanov, I. M.; Kobychev, V. V.; Kogut, Ya. P.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Nasonov, S. G.; Navick, X. F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.; Zhdankov, V. N.

    2014-01-01

    The LUMINEU program aims at performing a pilot experiment on neutrinoless double beta decay of 100Mo using radiopure ZnMoO4 crystals operated as scintillating bolometers. Growth of high quality radiopure crystals is a complex task, since there are no commercially available molybdenum compounds with the required levels of purity and radioactive contamination. This paper discusses approaches to purify molybdenum and synthesize compound for high quality radiopure ZnMoO4 crystal growth. A combination of a double sublimation (with addition of zinc molybdate) with subsequent recrystallization in aqueous solutions (using zinc molybdate as a collector) was used. Zinc molybdate crystals up to 1.5 kg were grown by the low-thermal-gradient Czochralski technique, their optical, luminescent, diamagnetic, thermal and bolometric properties were tested.

  10. Phase equilibria diagrams, crystal growth peculiarities and Raman investigations of lead and sodium-bismuth tungstate-molybdate solid solutions

    NASA Astrophysics Data System (ADS)

    Lebedev, Andrei V.; Avanesov, Samvel A.; Yunalan, Tyliay M.; Klimenko, Valeriy A.; Ignatyev, Boris V.; Isaev, Vladislav A.

    2016-02-01

    In this paper a comprehensive study of lead and sodium-bismuth tungstate-molybdate solid solutions was carried out, including the clarification of their structural peculiarities and phase diagrams of PbMoO4-PbWO4 and NaBi(MoO4)2-NaBi(WO4)2 systems, the study of spontaneous Raman spectra of these compounds, as well as preliminary experiments on single crystals growth of lead tungstate-molybdate. The linewidths, peak and integral intensities of the totally symmetric Raman vibrations of solid solutions were estimated in comparison with known SRS-active crystals. The conditions of the Czochralski growth of optically transparent lead tungstate-molybdate mixed crystals were found and SRS effect was observed in these crystals when pumping by 12 ns 1064 nm laser pulses.

  11. The chronic toxicity of molybdate to marine organisms. I. Generating reliable effects data.

    PubMed

    Heijerick, D G; Regoli, L; Stubblefield, W

    2012-07-15

    A scientific research program was initiated by the International Molybdenum Association (IMOA) which addressed identified gaps in the environmental toxicity data for the molybdate ion (MoO(4)(2-)). These gaps were previously identified during the preparation of EU-REACH-dossiers for different molybdenum compounds (European Union regulation on Registration, Evaluation, Authorization and Restriction of Chemical substances; EC, 2006). Evaluation of the open literature identified few reliable marine ecotoxicological data that could be used for deriving a Predicted No-Effect Concentration (PNEC) for the marine environment. Rather than calculating a PNEC(marine) using the assessment factor methodology on a combined freshwater/marine dataset, IMOA decided to generate sufficient reliable marine chronic data to permit derivation of a PNEC by means of the more scientifically robust species sensitivity distribution (SSD) approach (also called the statistical extrapolation approach). Nine test species were chronically exposed to molybdate (added as sodium molybdate dihydrate, Na(2)MoO(4)·2H(2)O) according to published standard testing guidelines that are acceptable for a broad range of regulatory purposes. The selected test organisms were representative for typical marine trophic levels: micro-algae/diatom (Phaeodactylum tricornutum, Dunaliella tertiolecta), macro-alga (Ceramium tenuicorne), mysids (Americamysis bahia), copepod (Acartia tonsa), fish (Cyprinodon variegatus), echinoderms (Dendraster exentricus, Strongylocentrotus purpuratus) and molluscs (Mytilus edulis, Crassostrea gigas). Available NOEC/EC(10) levels ranged between 4.4 mg Mo/L (blue mussel M. edulis) and 1174 mg Mo/L (oyster C. gigas). Using all available reliable marine chronic effects data that are currently available, a HC(5,50%) (median hazardous concentration affecting 5% of the species) of 5.74(mg Mo)/L was derived with the statistical extrapolation approach, a value that can be used for national and

  12. Analysis of solid solutions stability in scheelite-type molybdates and tungstates

    SciTech Connect

    Zhuravlev, V.D.; Reznitskikh, O.G.; Velikodnyi, Yu.A.; Patrusheva, T.A.; Sivtsova, O.V.

    2011-10-15

    Mutual solubility of bivalent metal molybdates and tungstates with scheelite structure was theoretically estimated by calculating formation enthalpies and the maximal decomposition temperatures of solid solutions at different temperatures. The theoretical stability of continuous solid solutions in binary systems of bivalent metal molybdates and tungstates was found to be higher than reported literature data. After cooling down continuous substitution solid solution should remain in following systems: CaMoO{sub 4}-CdMoO{sub 4}, SrMoO{sub 4}-MMoO{sub 4} (M=Ba, Pb), BaMoO{sub 4}-PbMoO{sub 4}, SrWO{sub 4}-MWO{sub 4} (M=Ca, Pb), and BaWO{sub 4}-PbWO{sub 4}. There is a probability that at room temperature in systems CaMoO{sub 4}-SrMoO{sub 4,} CaWO{sub 4}-PbWO{sub 4}, and BaWO{sub 4}-SrWO{sub 4} the single homogeneity region may decompose to limited solid solutions. It was shown experimentally that a continuous series of scheelite-structure solid solutions M{sub 1-x}M{sup I}{sub x}TO{sub 4} can be formed via citrate synthesis at temperatures below 500 deg. S. - Graphical abstract: Calculated boundaries of solid solutions in BaWO{sub 4}-CaWO{sub 4} (1) and PbMoO{sub 4}-CaMoO{sub 4} (2) systems. Highlights: > Stability of solid solutions molybdates and tungstates has been investigated. > The ionic model for isovalent substitutions was used. > In 'polyhedral substitution model' enthalphies of mixing were calculated. > Most of the examined series of solid solutions is stable at room temperatures. > Solid solutions M{sub 1-x}M{sup I}{sub x}Mo(W)O{sub 4} (x=0-1) were formed via citrate synthesis below 500 S.

  13. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.

    PubMed

    Hoffmann, Marie-Christine; Ali, Koral; Sonnenschein, Marleen; Robrahn, Laura; Strauss, Daria; Narberhaus, Franz; Masepohl, Bernd

    2016-09-01

    Many enzymes require the molybdenum cofactor, Moco. Under Mo-limiting conditions, the high-affinity ABC transporter ModABC permits molybdate uptake and Moco biosynthesis in bacteria. Under Mo-replete conditions, Escherichia coli represses modABC transcription by the one-component regulator, ModE, consisting of a DNA-binding and a molybdate-sensing domain. Instead of a full-length ModE protein, many bacteria have a shorter ModE protein, ModE(S) , consisting of a DNA-binding domain only. Here, we asked how such proteins sense the intracellular molybdenum status. We show that the Agrobacterium tumefaciens ModE(S) protein Atu2564 is essential for modABC repression. ModE(S) binds two Mo-boxes in the modA promoter as shown by electrophoretic mobility shift assays. Northern analysis revealed cotranscription of modE(S) with the upstream gene, atu2565, which was dispensable for ModE(S) activity. To identify genes controlling ModE(S) function, we performed transposon mutagenesis. Tn5 insertions resulting in derepressed modA transcription mapped to the atu2565-modE(S) operon and several Moco biosynthesis genes. We conclude that A. tumefaciens ModE(S) activity responds to Moco availability rather than to molybdate concentration directly, as is the case for E. coli ModE. Similar results in Sinorhizobium meliloti suggest that Moco dependence is a common feature of ModE(S) regulators.

  14. Systems and methods for scalable perovskite device fabrication

    DOEpatents

    Huang, Jinsong; Dong, Qingfeng; Sao, Yuchuan

    2017-02-28

    Continuous processes for fabricating a perovskite device are described that include using a doctor blade for continuously forming a perovskite layer and using a conductive tape lamination process to form an anode or a cathode layer on the perovskite device.

  15. Electrical and mechanical properties of ZnO doped silver-molybdate glass-nanocomposite system

    NASA Astrophysics Data System (ADS)

    Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    Zno doped silver-molybdate glass-nanocomposites, 0.3 Ag2O - 0.7 [0.075 ZnO - 0.925 MoO3] have been prepared by melt-quenching method. Ionic conductivity of these glass-nanocomposites has been measured in wide temperature and frequency windows. Vicker's hardness methods have been employed to study micro-hardness of the as-prepared samples. Heat-treated counterparts for this glass-nanocomposites system has been analyzed in different temperature to observe the changes in conductivity as well as micro-hardness for that system.

  16. The chronic toxicity of molybdate to freshwater organisms. I. Generating reliable effects data.

    PubMed

    De Schamphelaere, K A C; Stubblefield, W; Rodriguez, P; Vleminckx, K; Janssen, C R

    2010-10-15

    The European Union regulation on Registration, Evaluation, Authorization and Restriction of Chemical substances (REACH) (EC, 2006) requires the characterization of the chronic toxicity of many chemicals in the aquatic environment, including molybdate (MoO(4)(2-)). Our literature review on the ecotoxicity of molybdate revealed that a limited amount of reliable chronic no observed effect concentrations (NOECs) for the derivation of a predicted no-effect concentration (PNEC) existed. This paper presents the results of additional ecotoxicity experiments that were conducted in order to fulfill the requirements for the derivation of a PNEC by means of the scientifically most robust species sensitivity distribution (SSD) approach (also called the statistical extrapolation approach). Ten test species were chronically exposed to molybdate (added as sodium molybdate dihydrate, Na(2)MoO(4)·2H(2)O) according to internationally accepted standard testing guidelines or equivalent. The 10% effective concentrations (EC10, expressed as measured dissolved molybdenum) for the most sensitive endpoint per species were 62.8-105.6 (mg Mo)/L for Daphnia magna (21day-reproduction), 78.2 (mg Mo)/L for Ceriodaphnia dubia (7day-reproduction), 61.2-366.2 (mg Mo)/L for the green alga Pseudokirchneriella subcapitata (72h-growth rate), 193.6 (mg Mo)/L for the rotifer Brachionus calyciflorus (48h-population growth rate), 121.4 (mg Mo)/L for the midge Chironomus riparius (14day-growth), 211.3 (mg Mo)/L for the snail Lymnaea stagnalis (28day-growth rate), 115.9 (mg Mo)/L for the frog Xenopus laevis (4day-larval development), 241.5 (mg Mo)/L for the higher plant Lemna minor (7day-growth rate), 39.3 (mg Mo)/L for the fathead minnow Pimephales promelas (34day-dry weight/biomass), and 43.2 (mg Mo)/L for the rainbow trout Oncorhynchus mykiss (78day-biomass). These effect concentrations are in line with the few reliable data currently available in the open literature. The data presented in this study can

  17. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    PubMed

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-02-02

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards.

  18. Crystallization, data collection and phasing of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri.

    PubMed

    Santacruz, C P; Balan, A; Ferreira, L C S; Barbosa, J A R G

    2006-03-01

    Xanthomonas axonopodis pv. citri ModA protein is the ABC periplasmic binding component responsible for the capture of molybdate. The protein was crystallized with sodium molybdate using the hanging-drop vapour-diffusion method in the presence of PEG or sulfate. X-ray diffraction data were collected to a maximum resolution of 1.7 A using synchrotron radiation. The crystal belongs to the orthorhombic space group C222(1), with unit-cell parameters a = 68.15, b = 172.14, c = 112.04 A. The crystal structure was solved by molecular-replacement methods and structure refinement is in progress.

  19. Ferroelectric Graphene-Perovskite Interfaces.

    PubMed

    Volonakis, George; Giustino, Feliciano

    2015-07-02

    Owing to their record-breaking energy conversion efficiencies, hybrid organometallic perovskites have emerged as the most promising light absorbers and ambipolar carrier transporters for solution-processable solar cells. Simultaneously, due to its exceptional electron mobility, graphene represents a prominent candidate for replacing transparent conducting oxides. Thus, it is possible that combining these wonder materials may propel the efficiency toward the Schokley-Queisser limit. Here, using first-principles calculations on graphene-CH3NH3PbI3 interfaces, we find that graphene suppresses the octahedral tilt in the very first perovskite monolayer, leading to a nanoscale ferroelectric distortion with a permanent polarization of 3 mC/m(2). This interfacial ferroelectricity drives electron extraction from the perovskite and hinders electron-hole recombination by keeping the electrons and holes separated. The interfacial ferroelectricity identified here simply results from the interplay between graphene's planar structure and CH3NH3PbI3's octahedral connectivity; therefore, this mechanism may be effective in a much broader class of perovskites, with potential applications in photovoltaics and photocatalysis.

  20. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  1. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  2. Inorganic perovskite photocatalysts for solar energy utilization.

    PubMed

    Zhang, Guan; Liu, Gang; Wang, Lianzhou; Irvine, John T S

    2016-10-24

    The development and utilization of solar energy in environmental remediation and water splitting is being intensively studied worldwide. During the past few decades, tremendous efforts have been devoted to developing non-toxic, low-cost, efficient and stable photocatalysts for water splitting and environmental remediation. To date, several hundreds of photocatalysts mainly based on metal oxides, sulfides and (oxy)nitrides with different structures and compositions have been reported. Among them, perovskite oxides and their derivatives (layered perovskite oxides) comprise a large family of semiconductor photocatalysts because of their structural simplicity and flexibility. This review specifically focuses on the general background of perovskite and its related materials, summarizes the recent development of perovskite photocatalysts and their applications in water splitting and environmental remediation, discusses the theoretical modelling and calculation of perovskite photocatalysts and presents the key challenges and perspectives on the research of perovskite photocatalysts.

  3. Ligand-Stabilized Reduced-Dimensionality Perovskites.

    PubMed

    Quan, Li Na; Yuan, Mingjian; Comin, Riccardo; Voznyy, Oleksandr; Beauregard, Eric M; Hoogland, Sjoerd; Buin, Andrei; Kirmani, Ahmad R; Zhao, Kui; Amassian, Aram; Kim, Dong Ha; Sargent, Edward H

    2016-03-02

    Metal halide perovskites have rapidly advanced thin-film photovoltaic performance; as a result, the materials' observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions. These drive an increased formation energy and should therefore improve material stability. Here we report reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieve the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  4. Sonochemical Process for the Preparation of Novel Calcium Zinc Molybdate Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhanvase, B. A.; Kadam, V. B.; Rode, T. D.; Jadhao, P. R.

    2015-06-01

    The present work deals with the use of sonochemical and conventional mixing process for the preparation of calcium zinc molybdate (CZM) nanoparticles using calcium chloride and sodium zinc molybdate as a precursor material without addition of any emulsifying agent. This new process is useful to control the size and shape of the CZM nanoparticles. The formed product was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The formation of CZM was confirmed through XRD, FTIR and elemental analysis. The pH and conductivity results show that sonochemical process takes less time compared to conventional process for the preparation of CZM nanoparticles. The use of sonochemical process during the preparation of CZM nanoparticles results in reduction of the size and nearly the cubic shape is obtained due to the improved solute transfer rate, rapid nucleation, and formation of a large number of nuclei in the presence of cavitation.

  5. Hydrothermal synthesis of copper coordination polymers based on molybdates: Chemistry issues

    NASA Astrophysics Data System (ADS)

    Pavani, K.; Ramanan, A.; Whittingham, M. S.

    2006-08-01

    Crystal engineering of metal organic coordination polymers or metal organic frameworks have been attracting unprecedented efforts in the past few years due to potential applications in the area of catalysis, gas separation and storage. Hydrothermal synthesis is a popular soft chemical route employed by a number of researchers to grow suitable single crystals for unambiguous structural characterization. The structural diversity of the various solid frameworks is attributed to the choice of metal, its ability to exist in multiple oxidation states exhibiting different coordination geometry and multidentate nature of organic ligands. Polyoxomolybdate is another interesting class of inorganic materials that are potential catalysts. A contemporary theme is to develop porous solids combining the acidic properties of oligomeric molybdates integrated with first-row transition metal ions that can form coordination polymers with suitable multidentate ligands. A bottleneck to this problem is to develop reliable synthetic protocols that can produce reproducible materials with designed structural characteristics. In this paper, we present our results on the formation of self-assembled metal organic hybrid solids from acidified aqueous molybdate solution containing cupric ions and one of the multidentate organic ligands (pyrazine, 2-pyrazine carboxylic acid or isonicotinic acid). We propose a molecular mechanism to rationalize the formation of solids.

  6. Effective parameter study for the facile and controlled growth of silver molybdate nano/micro rods

    NASA Astrophysics Data System (ADS)

    Montenegro, Javier Esteban Enríquez; Singh, Dinesh Pratap

    2016-11-01

    Controlled growth of nano/micro structures by controlling the effective parameters is the basic requirement for the application point of view in various areas. Here we report the facile growth of silver molybdate nano/micro rods by mixing the solution of silver nitrate and ammonium molybdate at ambient condition followed by hydrothermal treatment at various temperatures for 12 h. To achieve the goal for the synthesis of long, high yield and homogeneous nanorods various effective parameters have been studied to set the most effective conditions for the growth. Among possible effective parameters first the temperature of the furnace was set by warring the temperature and then at the set temperature the concentration of reactants (NH4)6Mo7O24 and silver nitrate are varied respect to each other. The pH and temperature values were monitored during the mixing of the reactants. Structural/microstructural characterization revealed the optimum condition of 150°C of the furnace and the concentration of (NH4)6Mo7O24 and silver nitrate as described in various tables.

  7. Inhibitive Effect of Molybdate Ions on the Electrochemical Behavior of Steel Rebar in Simulated Concrete Pore Solution

    NASA Astrophysics Data System (ADS)

    Bensabra, Hakim; Franczak, Agnieszka; Aaboubi, Omar; Azzouz, Noureddine; Chopart, Jean-Paul

    2017-01-01

    Several compounds tested as corrosion inhibitors have proven to possess good effectiveness in protection of steel rebar in concrete. However, most of them are considered as pollutant compounds, which limits their use. The aim of this work is to investigate the inhibitive effect of sodium molybdate, which is considered as a nonpollutant compound, against pitting corrosion of steel rebar in simulated concrete pore solution. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results indicate that the addition of sodium molybdate to the chlorinated solution decreases significantly the corrosion rate of steel. Due to its passivating character, the sodium molybdate inhibitor promotes the formation of a stable passive layer on the surface of steel, acting as a physical barrier against chloride ions, on one hand, and consolidating the passivation mechanism of steel, on the other. The optimal inhibition rate is given by the concentration of molybdate ions, corresponding to a [MoO4 2-]/[Cl-] that is equal to 0.5.

  8. Crystallization, data collection and phasing of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri

    SciTech Connect

    Santacruz, C. P.; Balan, A.; Ferreira, L. C. S.; Barbosa, J. A. R. G.

    2006-03-01

    The molybdate-binding protein (ModA) from X. axonopodis pv. citri was crystallized with sodium molybdate in the presence of PEG or sulfate. The crystal diffracted to a maximum resolution of 1.7 Å and belongs to the orthorhombic space group C222{sub 1,} with unit-cell parameters a = 68.15, b = 172.14, c = 112.04 Å. Xanthomonas axonopodis pv. citri ModA protein is the ABC periplasmic binding component responsible for the capture of molybdate. The protein was crystallized with sodium molybdate using the hanging-drop vapour-diffusion method in the presence of PEG or sulfate. X-ray diffraction data were collected to a maximum resolution of 1.7 Å using synchrotron radiation. The crystal belongs to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 68.15, b = 172.14, c = 112.04 Å. The crystal structure was solved by molecular-replacement methods and structure refinement is in progress.

  9. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorate is a bactericide that has potential as a pre-slaughter feed additive to improve food safety of meat products. The aims of the present study were to examine the effects of chlorate (5mM), molybdate (1 mM), and shikimate (0.34 mM) on the growth and chlorate-resistance of Salmonella enterica ...

  10. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.

    PubMed

    Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila

    2015-09-01

    A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of

  11. High-performance perovskite light-emitting diodes via morphological control of perovskite films.

    PubMed

    Yu, Jae Choul; Kim, Da Bin; Jung, Eui Dae; Lee, Bo Ram; Song, Myoung Hoon

    2016-04-07

    Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in a perovskite film with a uniform, continuous morphology because the HBr increases the solubility of the inorganic component in the perovskite precursor and reduces the crystallization rate of the perovskite film upon spin-coating. Moreover, PeLEDs fabricated using perovskite films with a uniform, continuous morphology, which were deposited using 6 vol% HBr in a dimethylformamide (DMF)/hydrobromic acid (HBr) cosolvent, exhibited full coverage of the green EL emission. Finally, the optimized PeLEDs fabricated with perovskite films deposited using the DMF/HBr cosolvent exhibited a maximum luminance of 3490 cd m(-2) (at 4.3 V) and a luminous efficiency of 0.43 cd A(-1) (at 4.3 V).

  12. Polarization twist in perovskite ferrielectrics

    PubMed Central

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  13. Multiferroic crossover in perovskite oxides

    NASA Astrophysics Data System (ADS)

    Weston, L.; Cui, X. Y.; Ringer, S. P.; Stampfl, C.

    2016-04-01

    The coexistence of ferroelectricity and magnetism in A B O3 perovskite oxides is rare, a phenomenon that has become known as the ferroelectric "d0 rule." Recently, the perovskite BiCoO3 has been shown experimentally to be isostructural with PbTiO3, while simultaneously the d6Co3 + ion has a high-spin ground state with C -type antiferromagnetic ordering. It has been suggested that the hybridization of Bi 6 s states with the O 2 p valence band stabilizes the polar phase, however, we have recently demonstrated that Co3 + ions in the perovskite structure can facilitate a ferroelectric distortion via the Co 3 d -O 2 p covalent interaction [L. Weston, et al., Phys. Rev. Lett. 114, 247601 (2015), 10.1103/PhysRevLett.114.247601]. In this paper, using accurate hybrid density functional calculations, we investigate the atomic, electronic, and magnetic structure of BiCoO3 to elucidate the origin of the multiferroic state. To begin with, we perform a more general first-principles investigation of the role of d electrons in affecting the tendency for perovskite materials to exhibit a ferroelectric distortion; this is achieved via a qualitative trend study in artificial cubic and tetragonal La B O3 perovskites. We choose La as the A cation so as to remove the effects of Bi 6 s hybridization. The lattice instability is identified by the softening of phonon modes in the cubic phase, as well as by the energy lowering associated with a ferroelectric distortion. For the La B O3 series, where B is a d0-d8 cation from the 3 d block, the trend study reveals that increasing the d orbital occupation initially removes the tendency for a polar distortion, as expected. However, for high-spin d5-d7 and d8 cations a strong ferroelectric instability is recovered. This effect is explained in terms of increased pseudo-Jahn-Teller (PJT) p -d vibronic coupling. The PJT effect is described by the competition between a stabilizing force (K0) that favors the cubic phase, and a vibronic term that

  14. Perovskite solar cells: Danger from within

    NASA Astrophysics Data System (ADS)

    Wilks, Regan G.; Bär, Marcus

    2017-01-01

    Extensive efforts are under way to increase not only the efficiency but also the stability of organic-inorganic halide perovskite based solar cells. However, research shows that iodine-containing perovskites are vulnerable to a self-degradation pathway that may inherently limit their lifetime.

  15. Photocatalysis: HI-time for perovskites

    NASA Astrophysics Data System (ADS)

    Vesborg, Peter C. K.

    2017-01-01

    Organolead halide perovskite solar absorbers demonstrate high photovoltaic efficiencies but they are notorious for their intolerance to water. Now, methylammonium lead iodide perovskites are used to harvest solar energy — in water — via photocatalytic generation of hydrogen from solutions of hydriodic acid.

  16. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  17. Flexible Hybrid Organic-Inorganic Perovskite Memory.

    PubMed

    Gu, Chungwan; Lee, Jang-Sik

    2016-05-24

    Active research has been done on hybrid organic-inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current-voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic-inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vacancy defects and formation of conducting filaments under the electric field in the perovskite layer. It is believed that organic-inorganic perovskite materials have great potential to be used in high-performance, flexible memory devices.

  18. Organohalide Lead Perovskites for Photovoltaic Applications.

    PubMed

    Yusoff, Abd Rashid Bin Mohd; Nazeeruddin, Mohammad Khaja

    2016-03-03

    Perovskite solar cells have recently exhibited a significant leap in efficiency due to their broad absorption, high optical absorption coefficient, very low exciton binding energy, long carrier diffusion lengths, efficient charge collection, and very high open-circuit potential, similar to that of III-IV semiconductors. Unlike silicon solar cells, perovskite solar cells can be developed from a variety of low-temperature solutions processed from inexpensive raw materials. When the perovskite absorber film formation is optimized using solvent engineering, a power conversion efficiency of over 21% has been demonstrated, highlighting the unique photovoltaic properties of perovskite materials. Here, we review the current progress in perovskite solar cells and charge transport materials. We highlight crucial challenges and provide a summary and prospects.

  19. Non-collinear magnetism in multiferroic perovskites.

    PubMed

    Bousquet, Eric; Cano, Andrés

    2016-03-31

    We present an overview of the current interest in non-collinear magnetism in multiferroic perovskite crystals. We first describe the different microscopic mechanisms giving rise to the non-collinearity of spins in this class of materials. We discuss, in particular, the interplay between non-collinear magnetism and ferroelectric and antiferrodistortive distortions of the perovskite structure, and how this can promote magnetoelectric responses. We then provide a literature survey on non-collinear multiferroic perovskites. We discuss numerous examples of spin cantings driving weak ferromagnetism in transition metal perovskites, and of spin-induced ferroelectricity as observed in the rare-earth based perovskites. These examples are chosen to best illustrate the fundamental role of non-collinear magnetism in the design of multiferroicity.

  20. Efficient Luminescence from Perovskite Quantum Dot Solids.

    PubMed

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F; Sargent, Edward H

    2015-11-18

    Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  1. Perovskite Superlattices as Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  2. Stability of organometal perovskites with organic overlayers

    NASA Astrophysics Data System (ADS)

    Tran, Catherine D. T.; Liu, Yi; Thibau, Emmanuel S.; Llanos, Adrian; Lu, Zheng-Hong

    2015-08-01

    The air-stability of vapour-phase-deposited methylammonium lead triiodide (CH3NH3PbI3) perovskite thin films has been studied using X-ray diffraction. It is found that the perovskite structure without organic coating decomposes completely within a short period of time (˜two days) upon exposure to ambient environment. The degradation of the perovskite structure is drastically reduced when the perovskite films are capped with thin N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) films. We discovered that the amount of lead iodide (PbI2), a product of the degradation, grows as a function of time in a sigmoidal manner. Further mathematical modeling analysis shows that the perovskite degradation follows the Avrami equation, a kinetics theory developed for quantifying phase transformations in solid-state materials.

  3. Understanding the photostability of perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Joshi, Pranav H.

    Global climate change and increasing energy demands have led to a greater focus on cheaper photovoltaic energy solutions. Perovskite solar cells and organic solar cells have emerged as promising technologies for alternative cheaper photovoltaics. Perovskite solar cells have shown unprecedentedly rapid improvement in power conversion efficiency, from 3% in 2009 to more than 21% today. High absorption coefficient, long diffusion lengths, low exciton binding energy, low defect density and easy of fabrication has made perovskites near ideal material for economical and efficient photovoltaics. However, stability of perovskite and organic solar cells, especially photostability is still not well understood. In this work, we study the photostability of organic solar cells and of perovskite solar cells. (Abstract shortened by ProQuest.).

  4. Stability of organometal perovskites with organic overlayers

    SciTech Connect

    Tran, Catherine D. T.; Liu, Yi; Thibau, Emmanuel S.; Llanos, Adrian; Lu, Zheng-Hong

    2015-08-15

    The air-stability of vapour-phase-deposited methylammonium lead triiodide (CH{sub 3}NH{sub 3}PbI{sub 3}) perovskite thin films has been studied using X-ray diffraction. It is found that the perovskite structure without organic coating decomposes completely within a short period of time (∼two days) upon exposure to ambient environment. The degradation of the perovskite structure is drastically reduced when the perovskite films are capped with thin N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) films. We discovered that the amount of lead iodide (PbI{sub 2}), a product of the degradation, grows as a function of time in a sigmoidal manner. Further mathematical modeling analysis shows that the perovskite degradation follows the Avrami equation, a kinetics theory developed for quantifying phase transformations in solid-state materials.

  5. Terahertz lattice dynamics of the potassium rare-earth binary molybdates.

    PubMed

    Poperezhai, S; Gogoi, P; Zubenko, N; Kutko, K; Kutko, V I; Kovalev, A S; Kamenskyi, D

    2017-03-08

    We report a systematic study of low-energy lattice vibrations in the layered systems KY(MoO4)2, KDy(MoO4)2, KEr(MoO4)2, and KTm(MoO4)2. A layered crystal structure and low symmetry of the local environment of the rare-earth ion cause the appearance of vibrational and electronic excitations in Terahertz frequencies. The interaction between these excitations leads to sophisticated dynamical properties, including non-linear effects in paramagnetic resonance spectra. The THz study in magnetic field allows for the clear distinction between lattice vibrations and electronic excitations. We measured the THz transmission spectra and show that the low energy lattice vibrations in binary molybdates can be well described within the quasi-one-dimensional model. The developed model describes the measured far-infrared spectra, and results of our calculations agree with previous Raman and ultrasound studies.

  6. Terahertz lattice dynamics of the potassium rare-earth binary molybdates

    NASA Astrophysics Data System (ADS)

    Poperezhai, S.; Gogoi, P.; Zubenko, N.; Kutko, K.; Kutko, V. I.; Kovalev, A. S.; Kamenskyi, D.

    2017-03-01

    We report a systematic study of low-energy lattice vibrations in the layered systems KY(MoO4)2, KDy(MoO4)2, KEr(MoO4)2, and KTm(MoO4)2. A layered crystal structure and low symmetry of the local environment of the rare-earth ion cause the appearance of vibrational and electronic excitations in Terahertz frequencies. The interaction between these excitations leads to sophisticated dynamical properties, including non-linear effects in paramagnetic resonance spectra. The THz study in magnetic field allows for the clear distinction between lattice vibrations and electronic excitations. We measured the THz transmission spectra and show that the low energy lattice vibrations in binary molybdates can be well described within the quasi-one-dimensional model. The developed model describes the measured far-infrared spectra, and results of our calculations agree with previous Raman and ultrasound studies.

  7. Characterization of Molybdate Conversion Coatings for Aluminum Alloys by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2000-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion inhibiting properties of newly developed proprietary molybdate conversion coatings on aluminum alloy 2024-T3 under immersion in aerated 5% (w/w) NaCl. Corrosion potential and EIS measurements were gathered for six formulations of the coating at several immersion times for two weeks. Nyquist as well as Bode plots of the data were obtained. The conversion-coated alloy panels showed an increase in the corrosion potential during the first 24 hours of immersion that later subsided and approached a steady value. Corrosion potential measurements indicated that formulations A, D, and F exhibit a protective effect on aluminum 2024-T3. The EIS spectra of the conversion-coated alloy were characterized by an impedance that is higher than the impedance of the bare alloy at all the immersion times. The low frequency impedance, Z(sub lf) (determined from the value at 0.05 Hz) for the conversion-coated alloy was higher at all the immersion times than that of the bare panel. This indicates improvement of corrosion resistance with addition of the molybdate conversion coating. Scanning electron microscopy (SEM) revealed the presence of cracks in the coating and the presence of cubic crystals believed to be calcium carbonate. Energy dispersive spectroscopy (EDS) of the test panels revealed the presence of high levels of aluminum, oxygen, and calcium but did not detect the presence of molybdenum on the test panels. X-ray photoelectron spectroscopy (XPS) indicated the presence of less than 0.01 atomic percent molybdenum on the surface of the coating.

  8. Modeling the effects of variable groundwater chemistry on adsorption of molybdate

    USGS Publications Warehouse

    Stollenwerk, Kenneth G.

    1995-01-01

    Laboratory experiments were used to identify and quantify processes having a significant effect on molybdate (MoO42−) adsorption in a shallow alluvial aquifer on Cape Cod, assachusetts. Aqueous chemistry in the aquifer changes as a result of treated sewage effluent mixing with groundwater. Molybdate adsorption decreased as pH, ionic strength, and the concentration of competing anions increased. A diffuse-layer surface complexation model was used to simulate adsorption of MoO42−, phosphate (PO43−), and sulfate (SO42−) on aquifer sediment. Equilibrium constants for the model were calculated by calibration to data from batch experiments. The model was then used in a one-dimensional solute transport program to successfully simulate initial breakthrough of MoO42− from column experiments. A shortcoming of the solute transport program was the inability to account for kinetics of physical and chemical processes. This resulted in a failure of the model to predict the slow rate of desorption of MoO42− from the columns. The mobility of MoO42− ncreased with ionic strength and with the formation of aqueous complexes with calcium, magnesium, and sodium. Failure to account for MoO42− speciation and ionic strength in the model resulted in overpredicting MoO42− adsorption. Qualitatively, the laboratory data predicted the observed behavior of MoO42− in the aquifer, where retardation of MoO42− was greatest in uncontaminated roundwater having low pH, low ionic strength, and low concentrations of PO43− and SO42−.

  9. Controllable synthesis and characterization of cadmium molybdate octahedral nanocrystals by coprecipitation method

    SciTech Connect

    Shahri, Zahra; Sobhani, Azam; Salavati-Niasari, Masoud

    2013-10-15

    Graphical abstract: CdMoO{sub 4} nanocrystals have been synthesized via coprecipitation method by using Cd(Sal){sub 2} and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O as starting materials in water. Effects of temperature, reaction time, solvent, surfactant, cadmium and molybdate sources were investigated to reach optimum condition. It was found that particle size, morphology and phase of the final products could be greatly influenced via these parameters. - Highlights: • A facile coprecipitation method was successfully employed to prepare CdMoO{sub 4}. • The effects of some parameters were investigated. • PEG600, PVP, SDS and CTAB were used as surfactant. • Optimum condition for preparation CdMoO{sub 4} nanocrystals was investigated. - Abstract: Cadmium molybdate (CdMoO{sub 4}) nanocrystals have been successfully synthesized via coprecipitation method by using Cd(Sal){sub 2} (Sal = salicylidene) and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O as starting materials in water as solvent. Effects of temperature, reaction time, solvent, surfactant and cadmium source were investigated to reach optimum condition. It was found that particle size, morphology and phase of the final products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, photoluminescence (PL) spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM)

  10. High-temperature phase transitions, spectroscopic properties, and dimensionality reduction in rubidium thorium molybdate family.

    PubMed

    Xiao, Bin; Gesing, Thorsten M; Kegler, Philip; Modolo, Giuseppe; Bosbach, Dirk; Schlenz, Hartmut; Suleimanov, Evgeny V; Alekseev, Evgeny V

    2014-03-17

    Four new rubidium thorium molybdates have been synthesized by high-temperature solid-state reactions. The crystal structures of Rb8Th(MoO4)6, Rb2Th(MoO4)3, Rb4Th(MoO4)4, and Rb4Th5(MoO4)12 were determined using single-crystal X-ray diffraction. All these compounds construct from MoO4 tetrahedra and ThO8 square antiprisms. The studied compounds adopt the whole range of possible structure dimensionalities from zero-dimensional (0D) to three-dimensional (3D): finite clusters, chains, sheets, and frameworks. Rb8Th(MoO4)6 crystallizes in 0D containing clusters of [Th(MoO4)6](8-). The crystal structure of Rb2Th(MoO4)3 is based upon one-dimensional chains with configuration units of [Th(MoO4)3](2-). Two-dimensional sheets occur in compound Rb4Th(MoO4)4, and a 3D framework with channels formed by thorium and molybdate polyhedra has been observed in Rb4Th5(MoO4)12. The Raman and IR spectroscopic properties of these compounds are reported. Temperature-depended phase transition effects were observed in Rb2Th(MoO4)3 and Rb4Th(MoO4)4 using thermogravimetry-differential scanning calorimetry analysis and high-temperature powder diffraction methods.

  11. Lasing properties of new Nd 3+-doped tungstate, molybdate, and fluoride materials under selective optical pumping

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínkova, Helena; Basiev, Tolstoban T.; Doroschenko, Maxim E.; Ivleva, Ludmila I.; Osiko, Vyacheslav V.; Zverev, Peter G.

    2006-02-01

    The purpose of this work was to determine the relative efficiencies of new Nd 3+-doped laser active/Raman - tungstate, molybdate, and fluoride - materials (SrWO 4, PbWO 4, BaWO 4, SrMoO 4, PbMoO 4, SrF II, and LaF 3) under selective longitudinal optical pumping by the alexandrite (~750nm), or diode (~800nm) laser. Crystals with various length, orientations and active ions concentrations were tested. To optimize the output of the tested lasers a set of input dichroic and output dielectric mirrors with different reflectivities were used. For realized lasers operating at pulsed free-running regime, threshold energy, slope efficiency, emission wavelength, and radiation polarization were determined. For each crystal, fluorescence lifetime and absorption coefficient under given pumping were established. The slope efficiency in case of Nd 3+:PbMoO 4 laser at wavelength 1054nm was measured to be 54.3% with total efficiency of 46% which is the best result obtained for all new tested crystals. For Nd 3+ doped SrWO 4, PbWO 4, and BaWO 4 crystals simultaneous laser and self-Raman emission were demonstrated in Q-switched regime. Thus newly proposed laser Raman crystals demonstrate high efficiency for Nd 3+ laser oscillations comparable with well known and widely used Nd:KGW crystal. Further improvement in the quality of tungstate and molybdate type crystals should result in further increase in lasing efficiency at 1.06μm wavelength. Self Raman frequency conversion of Nd 3+-laser oscillations in these crystals should result in high efficient pulse shortening, high peak power and new wavelengths in 1.2-1.5μm wavelength region.

  12. Large grained perovskite solar cells derived from single-crystal perovskite powders with enhanced ambient stability

    DOE PAGES

    Yen, Hung -Ju; Liang, Po -Wei; Chueh, Chu -Chen; ...

    2016-05-25

    In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. Here, the resultant large grained perovskite thin film possesses negligible physical (structural) gap between each large grain and are highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different to the thin film prepared from the typical precursor route (MAI + PbI2).

  13. Large grained perovskite solar cells derived from single-crystal perovskite powders with enhanced ambient stability

    SciTech Connect

    Yen, Hung -Ju; Liang, Po -Wei; Chueh, Chu -Chen; Yang, Zhibin; Jen, Alex K. -Y.; Wang, Hsing -Lin

    2016-05-25

    In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. Here, the resultant large grained perovskite thin film possesses negligible physical (structural) gap between each large grain and are highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different to the thin film prepared from the typical precursor route (MAI + PbI2).

  14. Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells.

    PubMed

    Zhang, Meng; Yu, Hua; Yun, Jung-Ho; Lyu, Miaoqiang; Wang, Qiong; Wang, Lianzhou

    2015-06-21

    Smooth organolead halide perovskite films for meso/planar hybrid structured perovskite solar cells were prepared by a simple compressed air blow-drying method under ambient conditions. The resultant perovskite films show high surface coverage, leading to a device power conversion efficiency of over 10% with an open circuit voltage up to 1.003 V merely using pristine poly(3-hexylthiophene) (P3HT) as a hole transporter.

  15. Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Bhat, C. K.; Joseph, Daisy; Pandita, Sanjay; Kotru, P. N.

    2016-08-01

    Analysis of didymium (Di) and praseodymium molybdate crystals were carried out using energy dispersive X-ray fluorescence (EDXRF). The assigned empirical chemical formulae of the composites were tested and verified by the EDXRF technique by estimating experimental major elemental concentration ratios. On the Basis of these ratios, the established formulae for some of the composite materials have been verified and suggestions made for their refinement. Non-destructive technique used in this analysis enables to retain the original crystal samples and makes rapid simultaneous scan of major elements such as La, Pr, Ned and Mo as well as impurities such as Ce. Absence of samarium(Sm) in the spectrum during analysis of didymium molybdate crystals indicated an incomplete growth of mixed rare earth single crystal. These crystals (e.g.,Di) are shown to be of modified stoichiometry with Ce as trace impurity.

  16. Electrochemical intercalation of lithium in ternary metal molybdates MMoO 4 (M: Cu, Zn, Ni and Fe)

    NASA Astrophysics Data System (ADS)

    Leyzerovich, N. N.; Bramnik, K. G.; Buhrmester, T.; Ehrenberg, H.; Fuess, H.

    Ternary oxides with general formula MMoO 4 (where M is a 3d-transitional metal) were characterized as cathode materials for lithium rechargeable batteries by galvanostatic charge-discharge technique and cyclic voltammetry. The significant capacity fading after the first cycle of lithium insertion/removal takes place for different copper molybdates (α-CuMoO 4 and high-pressure modification CuMoO 4-III) corresponding to the irreversible copper reduction and formation of Li 2MoO 4 during the first discharge. X-ray powder diffraction data reveal the decomposition of pristine ZnMoO 4 by electrochemical reaction, lithium zinc oxide with the NaCl-type structure and Li 2MoO 3 seem to be formed. Lithium intercalation into nickel and iron molybdates is shown to proceed without phase transitions, but at unsatisfactory low operating voltages.

  17. Perovskites: transforming photovoltaics, a mini-review

    DOE PAGES

    Chilvery, Ashwith Kumar; Batra, Ashok K.; Yang, Bin; ...

    2015-01-06

    The recent power-packed advent of perovskite solar cells is transforming photovoltaics (PV) with their superior efficiencies, ease of fabrication, and cost. This perovskite solar cell further boasts of many unexplored features that can further enhance its PV properties and lead to it being branded as a successful commercial product. This paper provides a detailed insight of the organometal halide based perovskite structure, its unique stoichiometric design, and its underlying principles for PV applications. Finally, the compatibility of various PV layers and its fabrication methods is also discussed.

  18. One-step synthesis of in situ reduced metal Bi decorated bismuth molybdate hollow microspheres with enhancing photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Jin, Meng; Lu, Shiyu; Ma, Li; Gan, Mengyu

    2017-02-01

    In this feature work, in situ metal Bi are successfully modified bismuth molybdate hollow spheres using an effective one-pot solvthermal reduction without any temple. In order to deeply understand the influence of reduction conditions on the texture, surface state, and photocatalytic performance of the resulting samples, a series of products were synthesized by tuning the temperatures. The similar morphology, surface area of photocatalysis (BMO-160 and BMO-170) were synthesized, only with the different composition. The detailed characterization and analysis distinctly suggested that increasing solvothermal reduction temperature led to Bi3+ was in situ reduced to elementary substance Bi0 by ethylene glycol gradually and dispersed very uniform in bismuth molybdate. Benefiting from the enhanced charge separation, transfer, and donor density resulting from the formation of Bi decorated bismuth molybdate where Bi as cocatalyst, the photocatalytic performance of the reductive Bi/Bi2-xMoOy hollow spheres (BMO-170) is higher than that of the untreated Bi2-xMoOy hollow spheres (BMO-160) for Rh6G degradation under visible light irradiation. Additionally, the reductive BMO-170 has a superior stability after five cycles.

  19. Surface properties of AZ91 magnesium alloy after PEO treatment using molybdate salts and low current densities

    NASA Astrophysics Data System (ADS)

    Pezzato, Luca; Brunelli, Katya; Napolitani, Enrico; Magrini, Maurizio; Dabalà, Manuele

    2015-12-01

    Plasma electrolytic oxidation (PEO) process is a recently developed electrochemical method used to produce on the surface of various metals oxide ceramic coatings that improve corrosion and wear properties of the substrate. In this work, PEO process was applied on AZ91 magnesium alloy using low current densities (0.05 A/cm2) and an alkaline solution of silicates with different concentrations of sodium molybdate (0.3-3 g/l). The effect of the low current densities of process and of molybdate salts on the corrosion resistance of the coatings was studied with potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) in chloride and sulfate environment. The morphology, the phases and the chemical composition of the coatings were examined using a scanning electron microscope equipped with EDS, X-ray diffraction, secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The corrosion properties of the PEO coated samples were remarkably improved if compared with the uncoated samples. The addition of sodium molybdate, in determinate conditions, had a positive effect on the characteristics of the coatings in terms of corrosion resistance.

  20. Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri.

    PubMed

    Balan, Andrea; Santacruz-Pérez, Carolina; Moutran, Alexandre; Ferreira, Luís Carlos Souza; Neshich, Goran; Gonçalves Barbosa, João Alexandre Ribeiro

    2008-02-01

    In Xanthomonas axonopodis pv. citri (Xac or X. citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala38 and Ser151, are shown to be part of the ligand-binding pocket.

  1. Strongly correlated perovskite fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  2. Strongly correlated perovskite fuel cells

    SciTech Connect

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines1, 2, 3, 4. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number5. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes6. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  3. Strongly correlated perovskite fuel cells.

    PubMed

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-06-09

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  4. High-performance perovskite light-emitting diodes via morphological control of perovskite films

    NASA Astrophysics Data System (ADS)

    Yu, Jae Choul; Kim, Da Bin; Jung, Eui Dae; Lee, Bo Ram; Song, Myoung Hoon

    2016-03-01

    Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in a perovskite film with a uniform, continuous morphology because the HBr increases the solubility of the inorganic component in the perovskite precursor and reduces the crystallization rate of the perovskite film upon spin-coating. Moreover, PeLEDs fabricated using perovskite films with a uniform, continuous morphology, which were deposited using 6 vol% HBr in a dimethylformamide (DMF)/hydrobromic acid (HBr) cosolvent, exhibited full coverage of the green EL emission. Finally, the optimized PeLEDs fabricated with perovskite films deposited using the DMF/HBr cosolvent exhibited a maximum luminance of 3490 cd m-2 (at 4.3 V) and a luminous efficiency of 0.43 cd A-1 (at 4.3 V).Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in

  5. Perovskite solar cells: from materials to devices.

    PubMed

    Jung, Hyun Suk; Park, Nam-Gyu

    2015-01-07

    Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells.

  6. Ambipolar solution-processed hybrid perovskite phototransistors

    PubMed Central

    Li, Feng; Ma, Chun; Wang, Hong; Hu, Weijin; Yu, Weili; Sheikh, Arif D.; Wu, Tom

    2015-01-01

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications. PMID:26345730

  7. Modeling hybrid perovskites by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  8. Perovskite Solar Cells: Beyond Methylammonium Lead Iodide.

    PubMed

    Boix, Pablo P; Agarwala, Shweta; Koh, Teck Ming; Mathews, Nripan; Mhaisalkar, Subodh G

    2015-03-05

    Organic-inorganic lead halide based perovskites solar cells are by far the highest efficiency solution-processed solar cells, threatening to challenge thin film and polycrystalline silicon ones. Despite the intense research in this area, concerns surrounding the long-term stability as well as the toxicity of lead in the archetypal perovskite, CH3NH3PbI3, have the potential to derail commercialization. Although the search for Pb-free perovskites have naturally shifted to other transition metal cations and formulations that replace the organic moiety, efficiencies with these substitutions are still substantially lower than those of the Pb-perovskite. The perovskite family offers rich multitudes of crystal structures and substituents with the potential to uncover new and exciting photophysical phenomena that hold the promise of higher solar cell efficiencies. In addressing materials beyond CH3NH3PbI3, this Perspective will discuss a broad palette of elemental substitutions, solid solutions, and multidimensional families that will provide the next fillip toward market viability of the perovskite solar cells.

  9. Modeling Anomalous Hysteresis in Perovskite Solar Cells.

    PubMed

    van Reenen, Stephan; Kemerink, Martijn; Snaith, Henry J

    2015-10-01

    Organic-inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-diffusion model to describe device operation of perovskite solar cells. To achieve hysteresis in the modeled current-voltage characteristics, we must include both ion migration and electronic charge traps, serving as recombination centers. Trapped electronic charges recombine with oppositely charged free electronic carriers, of which the density depends on the bias-dependent ion distribution in the perovskite. Our results therefore show that reduction of either the density of mobile ionic species or carrier trapping at the perovskite interface will remove the adverse hysteresis in perovskite solar cells. This gives a clear target for ongoing research effort and unifies previously conflicting experimental observations and theories.

  10. Modeling hybrid perovskites by molecular dynamics.

    PubMed

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  11. Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells.

    PubMed

    Xu, Tingting; Chen, Lixin; Guo, Zhanhu; Ma, Tingli

    2016-10-05

    Perovskite solar cells (PSCs) have gained tremendous research interest in recent several years. To date the power conversion efficiency (PCE) of PSCs has been increased from 3.8% to over 22.1%, showing that they have a promising future as a renewable energy resource to compete with conventional silicon solar cells. However, a crucial challenge of PSCs currently is that perovskite materials and PSCs have limitations of easy degradation and inferior long-term stabilities, thus hampering their future commercial applications. In this review, the degradation mechanisms for instable perovskite materials and their corresponding solar cells are discussed. The stability study of perovskite materials and PSCs from the aspect of experimental tests and theoretical calculations is reviewed. The strategies for enhancing the stability of perovskite materials and PSCs are summarized from the viewpoints of perovskite material engineering, substituted organic and inorganic materials for hole transportation, alternative electrodes comprising mainly carbon and its relevant composites, interfacial modification, novel device structure construction and encapsulation, etc. Various approaches and outlooks on the future direction of perovskite materials and PSCs are highlighted. This review is expected to provide helpful insights for further enhancing the stability of perovskite materials and PSCs in this exciting field.

  12. Hybrid Perovskite Light-Emitting Diodes Based on Perovskite Nanocrystals with Organic-Inorganic Mixed Cations.

    PubMed

    Zhang, Xiaoli; Liu, He; Wang, Weigao; Zhang, Jinbao; Xu, Bing; Karen, Ke Lin; Zheng, Yuanjin; Liu, Sheng; Chen, Shuming; Wang, Kai; Sun, Xiao Wei

    2017-03-07

    Organic-inorganic hybrid perovskite materials with mixed cations have demonstrated tremendous advances in photovoltaics recently, by showing a significant enhancement of power conversion efficiency and improved perovskite stability. Inspired by this development, this study presents the facile synthesis of mixed-cation perovskite nanocrystals based on FA(1-x) Csx PbBr3 (FA = CH(NH2 )2 ). By detailed characterization of their morphological, optical, and physicochemical properties, it is found that the emission property of the perovskite, FA(1-x) Csx PbBr3 , is significantly dependent on the substitution content of the Cs cations in the perovskite composition. These mixed-cation perovskites are employed as light emitters in light-emitting diodes (LEDs). With an optimized composition of FA0.8 Cs0.2 PbBr3 , the LEDs exhibit encouraging performance with a highest reported luminance of 55 005 cd m(-2) and a current efficiency of 10.09 cd A(-1) . This work provides important instructions on the future compositional optimization of mixed-cation perovskite for obtaining high-performance LEDs. The authors believe this work is a new milestone in the development of bright and efficient perovskite LEDs.

  13. Molecular dynamics simulations of organohalide perovskite precursors: solvent effects in the formation of perovskite solar cells.

    PubMed

    Gutierrez-Sevillano, Juan José; Ahmad, Shahzada; Calero, Sofía; Anta, Juan A

    2015-09-21

    The stability and desirable crystal formation of organohalide perovskite semiconductors is of utmost relevance to ensure the success of perovskites in photovoltaic technology. Herein we have simulated the dynamics of ionic precursors toward the formation of embryonic organohalide perovskite CH3NH3PbI3 units in the presence of solvent molecules using Molecular Dynamics. The calculations involved, a variable amount of Pb(2+), I(-), and CH3NH3(+) ionic precursors in water, pentane and a mixture of these two solvents. Suitable force fields for solvents and precursors have been tested and used to carry out the simulations. Radial distribution functions and mean square displacements confirm the formation of basic perovskite crystalline units in pure pentane - taken as a simple and archetypal organic solvent. In contrast, simulations in water confirm the stability of the solvated ionic precursors, which prevents their aggregation to form the perovskite compound. We have found that in the case of a water/pentane binary solvent, a relatively small amount of water did not hinder the perovskite formation. Thus, our findings suggest that the cause of the poor stability of perovskite films in the presence of moisture is a chemical reaction, rather than the polar nature of the solvents. Based on the results, a set of force-field parameters to study from first principles perovskite formation and stability, also in the solid phase, is proposed.

  14. From spin glass to quantum spin liquid ground states in molybdate pyrochlores.

    PubMed

    Clark, L; Nilsen, G J; Kermarrec, E; Ehlers, G; Knight, K S; Harrison, A; Attfield, J P; Gaulin, B D

    2014-09-12

    We present new magnetic heat capacity and neutron scattering results for two magnetically frustrated molybdate pyrochlores: S=1 oxide Lu_{2}Mo_{2}O_{7} and S=1/2 oxynitride Lu_{2}Mo_{2}O_{5}N_{2}. Lu_{2}Mo_{2}O_{7} undergoes a transition to an unconventional spin glass ground state at T_{f}∼16  K. However, the preparation of the corresponding oxynitride tunes the nature of the ground state from spin glass to quantum spin liquid. The comparison of the static and dynamic spin correlations within the oxide and oxynitride phases presented here reveals the crucial role played by quantum fluctuations in the selection of a ground state. Furthermore, we estimate an upper limit for a gap in the spin excitation spectrum of the quantum spin liquid state of the oxynitride of Δ∼0.05  meV or Δ/|θ|∼0.004, in units of its antiferromagnetic Weiss constant θ∼-121  K.

  15. Dielectric barrier formation and tunneling magnetoresistance effect in strontium iron molybdate

    NASA Astrophysics Data System (ADS)

    Dem'yanov, S. E.; Kalanda, N. A.; Kovalev, L. V.; Avdeev, M. V.; Zheludkevich, M. L.; Garamus, V. M.; Willumeit, R.

    2013-06-01

    A comparative X-ray diffraction study of the initial single-phase metal-oxide compound-strontium iron molybdate Sr2FeMoO6 - δ (SFMO)-and that subjected to additional isothermal annealing shows that this heat treatment leads to the appearance of a SrMoO4 (SMO) phase. Small-angle neutron scattering measurements indicate that the SMO phase forms a dielectric shell surrounding SFMO grains, which has a characteristic thickness of 2-4 nm and extends above 120 nm. The character of the temperature dependence of the electric resistance corresponds to the metal-type conduction in single-phase SFMO and changes to a semiconductor type in the material with SMO dielectric shells, which is evidence of a tunneling mechanism of charge transfer. This conclusion is confirmed by an increase in the absolute value of the negative magnetoresistance of SFMO due to the appearance of a tunneling magnetoresistance component of the same sign.

  16. New double molybdate Na9Fe(MoO4)6: Synthesis, structure, properties

    NASA Astrophysics Data System (ADS)

    Savina, Aleksandra A.; Solodovnikov, Sergey F.; Basovich, Olga M.; Solodovnikova, Zoya A.; Belov, Dmitry A.; Pokholok, Konstantin V.; Gudkova, Irina A.; Stefanovich, Sergey Yu.; Lazoryak, Bogdan I.; Khaikina, Elena G.

    2013-09-01

    A new double molybdate Na9Fe(MoO4)6 was synthesized using solid state reactions and studied with X-ray powder diffraction, second harmonic generation (SHG) technique, differential scanning calorimetry, X-ray fluorescence analysis, Mössbauer and dielectric impedance spectroscopy. Single crystals of Na9Fe(MoO4)6 were obtained and its structure was solved (the space group R3¯, a=14.8264(2), c=19.2402(3) Å, V=3662.79(9) Å3, Z=6, R=0.0132). The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)3. The basic structure units are polyhedral clusters composed of central FeО6 octahedron sharing edges with three Na(1)О6 octahedra. The clusters share common vertices with bridging МоО4 tetrahedra to form an open 3D framework where the cavities are occupied by Na(2) and Na(3) atoms. The compound melts incongruently at 904.7±0.2 K. Arrhenius type temperature dependence of electric conductivity σ has been registered in solid state (σ=6.8×10-2 S сm-1 at 800 K), thus allowing considering Na9Fe(MoO4)6 as a new sodium ion conductor.

  17. Synthesis of magnetic chelating resins functionalized with tetraethylenepentamine for adsorption of molybdate anions from aqueous solutions.

    PubMed

    Atia, Asem A; Donia, Ahmed M; Awed, Haytham A

    2008-06-30

    Magnetic resins were synthesized through polymerization of glycidyl methacrylate (GMA) in the presence of divinylbenzene (DVB) or N,N'-methylenebisacrylamide (MBA) as hydrophobic or hydrophilic crosslinker, respectively and in presence of suspended magnetite particles. The resins containing (DVB or MBA) as crosslinker were immobilized with tetraethylenepentamine (TEP) to give the amino resins, GMA/DVB/TEP (R1-en) and GMA/MBA/TEP (R2-en), respectively. The uptake behavior of the two resins was studied towards molybdate anions and uptake capacities of 4.24 and 6.18 mmol/g [as (Mo(VI)] were obtained using (R1-en) and (R2-en). Kinetic studies showed that the adsorption followed the pseudo-second-order model pointing the influence of the textural properties of the resin on the rate of adsorption. Thermodynamic data indicated an endothermic adsorption process. The uptake of Mo(VI) and regeneration of the resins were also studied using the column method. Regeneration efficiency up to 90-96% was reached using ammonia buffer.

  18. Effects of Te(IV) Oxo-Anion Incorporation into Thorium Molybdates and Tungstates.

    PubMed

    Xiao, Bin; Klinkenberg, Martina; Bosbach, Dirk; Suleimanov, Evgeny V; Alekseev, Evgeny V

    2015-06-15

    The exploration of phase formation in the Th-Mo/W-Te systems has resulted in four mixed oxo-anion compounds from high-temperature solid-state reactions: ThWTe2O9, Th(WO4)(TeO3), ThMoTe2O9, and Th2(MoO4)(TeO3)3. All four compounds contain edge-sharing thorium polyhedra linked by MoO4/WO6 and different tellurium oxo-groups to form three-dimensional frameworks. In ThWTe2O9, each helical Th based chain is connected by four tungstotellurite clusters resulting in a building fragment which has a cross-section of four-leafed clovers. The structure of Th(WO4)(TeO3) exhibits a multilayer-sandwich framework composed of thorium tellurite layers with tungsten chains in between. In the case of the molybdate family, ThMoTe2O9 and Th2(MoO4)(TeO3)3 are built from puckered Th-Te sheets which are further interconnected by MoO4 tetrahedral linkers. The DSC-TG technique was performed to gain insight into the thermal behavior of the synthesized compounds. Raman spectra of as-prepared phases were obtained and analyzed for signature peaks.

  19. Two-photon interband absorption coefficients in tungstate and molybdate crystals

    NASA Astrophysics Data System (ADS)

    Lukanin, V. I.; Karasik, A. Ya.

    2015-02-01

    Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.

  20. Modeling oxyanion adsorption on ferralic soil, part 2: chromate, selenate, molybdate, and arsenate adsorption.

    PubMed

    Pérez, Claudio; Antelo, Juan; Fiol, Sarah; Arce, Florencio

    2014-10-01

    High levels of oxyanions are found in the soil environment, often as a result of human activity. At high concentrations, oxyanions can be harmful to both humans and wildlife. Information about the interactions between oxyanions and natural samples is essential for understanding the bioavailability, toxicity, and transport of these compounds in the environment. In the present study, the authors investigated the reactivity of different oxyanions (AsO4 , MoO4 , SeO4 , and CrO4 ) at different pH values in 2 horizons of a ferralic soil. By combining available microscopic data on iron oxides with the macroscopic data obtained, the authors were able to use the charge distribution model to accurately describe the adsorption of these 4 oxyanions and thus to determine the surface speciation. The charge distribution model was previously calibrated and evaluated using phosphate adsorption/desorption data. The adsorption behavior on ferralic soil is controlled mainly by the natural iron oxides present, and it is qualitatively analogous to that exhibited by synthetic iron oxides. The highest adsorption was found for arsenate ions, whereas the lowest was found for selenate, with chromate and molybdate ions showing an intermediate behavior.

  1. Kinetics and mechanism of reaction between silver molybdate and mercuric iodide in solid state

    SciTech Connect

    Beg, M.A.; Rafiuddin

    1987-05-01

    The kinetics and the mechanism of the reaction between silver molybdate and mercuric iodide were studied in the solid state by X-ray, chemical analysis, and electrical conductivity measurements. This is a multistep reaction where Ag/sub 2/HgI/sub 4/ is formed as an intermediate. In an equimolar mixture of Ag/sub 2/MoO/sub 4/ and HgI/sub 2/, AgI an HgMoO/sub 4/ are formed, whereas in a 1:2 molar mixture Ag/sub 2/HgI/sub 4/ and HgMoO/sub 4/ are formed. The data for lateral diffusion best fit the equation X/sup n/ = kt, where X is the product thickness, t is time, and k and n are constants. This is a multistep solid state ionic reaction initiated by the diffusion of HgI/sub 2/ molecules as such and not through counterdiffusion of cations.

  2. Multiferroicity in Perovskite Manganite Superlattice

    NASA Astrophysics Data System (ADS)

    Tao, Yong-Mei; Jiang, Xue-Fan; Liu, Jun-Ming

    2016-08-01

    Multiferroic properties of short period perovskite type manganite superlattice ((R1MnO3)n/(R2MnO3)n (n=1,2,3)) are considered within the framework of classical Heisenberg model using Monte Carlo simulation. Our result revealed the interesting behaviors in Mn spins structure in superlattice. Apart from simple plane spin cycloid structure which is shown in all manganites including bulk, film, and superlattice here in low temperature, a non-coplanar spiral spin structure is exhibited in a certain temperature range when n equals 1, 2 or 3. Specific heat, spin-helicity vector, spin correlation function, spin-helicity correlation function, and spin configuration are calculated to confirm this non-coplanar spiral spin structure. These results are associated with the competition among exchange interaction, magnetic anisotropy, and Dzyaloshinskii-Moriya interaction. Supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11447136

  3. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    PubMed

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  4. Laboratory, semi-pilot and room scale study of nitrite and molybdate mediated control of H(2)S emission from swine manure.

    PubMed

    Moreno, Lyman; Predicala, Bernardo; Nemati, Mehdi

    2010-04-01

    The effects of manure age on emission of H(2)S and required level of nitrite or molybdate to control these emissions were investigated in the present work. Molybdate mediated control of H(2)S emission was also studied in semi-pilot scale open systems, and in specifically designed chambers which simulated swine production rooms. With fresh 1-, 3- and 6-month old manures average H(2)S concentration in the headspace gas of the closed systems were 4856+/-460, 3431+/-208, 1037+/-98 ppm and non-detectable, respectively. Moreover, the level of nitrite or molybdate required to control the emission of H(2)S decreased as manure age increased. In the semi-pilot scale open system and chambers, average H(2)S concentration at the surface of agitated fresh manure were 831+/-26 and 88.4+/-5.7 ppm, respectively. Furthermore, 0.1-0.25 mM molybdate was sufficient to control the emission of H(2)S. A cost study for an average size swine operation showed that the cost of treatment with molybdate was less than 1% of the overall production cost for each market hog.

  5. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  6. Patterning of perovskite-polymer films by wrinkling instabilities.

    PubMed

    Nasti, G; Sanchez, S; Gunkel, I; Balog, S; Roose, B; Wilts, B D; Teuscher, J; Gentile, G; Cerruti, P; Ambrogi, V; Carfagna, C; Steiner, U; Abate, A

    2017-02-22

    Organic-inorganic perovskites are semiconductors used for applications in optoelectronics and photovoltaics. Micron and submicron perovskite patterns have been explored in semitransparent photovoltaic and lasing applications. In this work, we show that a polymeric medium can be used to create a patterned perovskite, by using a novel and inexpensive approach.

  7. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  8. Electrochemical studies of perovskite mixed conductors

    SciTech Connect

    Brosha, E.L.; Chung, B.W.; Garzon, F.H.

    1994-12-01

    Research into the growth of high-quality single crystal thin films of high transition temperature {Tc} superconductors have stimulated interest in other perovskite metal oxides with a variety of physical properties. Thin films of perovskite materials are among the major focal research areas for optical, sensor, electronic, and superconducting applications. Two lanthanum-based oxygen/electronic conducting perovskite oxides of particular interest for high temperature fuel cell electrodes and interconnects and for other electrochemical applications such as oxygen separation devices are La{sub 1{minus}x}Sr{sub x}MnO{sub 3{minus}y} and La{sub 1{minus}x}Sr{sub x}CoO{sub 3{minus}y}. The La-based perovskites are valuable for these technologies because they reduce interfacial resistances by eliminating the need for a three phase contact area (gas, metal electrode, electrolyte). In addition, these oxides may also serve a valuable role as novel catalysts or catalytic supports; however, little is known about what catalytic properties they may possess. Fundamental study of the electrochemical, diffusional oxygen transport, and surface catalytic properties of these materials can be greatly simplified if the complications associated with the presence of grain boundaries and multiple crystallite orientations can be avoided. Therefore, single crystals of these La-based perovskites become highly desirable. In this work, the authors report the structural and electrical properties of highly oriented thin films of La{sub 0.84}Sr{sub 0.16}MnO{sub 3} and La{sub 0.8}Sr{sub 0.2}CoO{sub 3} grown on single crystal Y-ZrO{sub 2} substrates. An addition, the authors have demonstrated growing, in situ, epitaxial multilayer perovskite/fluorite/perovskite configurations for fundamental fuel cell modeling.

  9. Bis­[4,4′-(propane-1,3-di­yl)­dipiperidin­ium] β-octa­molybdate(VI)

    PubMed Central

    Driss, Mohamed; Ksiksi, Rekaya; Ben Amor, Fatma; Zid, Mohamed Faouzi

    2010-01-01

    The title compound, bis­[4,4′-(propane-1,3-di­yl)­dipiperidin­ium] β-octa­molybdate(VI), (C13H28N2)2[Mo8O26], was produced by hydro­thermal reaction of an acidified aqueous solution of Na2MoO4·2H2O and 4,4′-trimethyl­ene­dipiperidine (L). The structure of the title compound consists of β-octa­molybdate(VI) anion clusters and protonated [H2 L]2+ cations. The octa­molybdate anion is located around an inversion center. N—H⋯O hydrogen bonds between the cations and anions ensure the cohesion of the structure and result in a three-dimensional network. PMID:21579027

  10. Rational Strategies for Efficient Perovskite Solar Cells.

    PubMed

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  11. Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency.

    PubMed

    Wang, Honglei; Haroldson, Ross; Balachandran, Balasubramaniam; Zakhidov, Alex; Sohal, Sandeep; Chan, Julia Y; Zakhidov, Anvar; Hu, Walter

    2016-12-27

    Recently, organolead halide-based perovskites have emerged as promising materials for optoelectronic applications, particularly for photovoltaics, photodetectors, and lasing, with low cost and high performance. Meanwhile, nanoscale photodetectors have attracted tremendous attention toward realizing miniaturized optoelectronic systems, as they offer high sensitivity, ultrafast response, and the capability to detect beyond the diffraction limit. Here we report high-performance nanoscale-patterned perovskite photodetectors implemented by nanoimprint lithography (NIL). The spin-coated lead methylammonium triiodide perovskite shows improved crystallinity and optical properties after NIL. The nanoimprinted metal-semiconductor-metal photodetectors demonstrate significantly improved performance compared to the nonimprinted conventional thin-film devices. The effects of NIL pattern geometries on the optoelectronic characteristics were studied, and the nanograting pattern based photodetectors demonstrated the best performance, showing approximately 35 times improvement on responsivity and 7 times improvement on on/off ratio compared with the nonimprinted devices. The high performance of NIL-nanograting photodetectors likely results from high crystallinity and favored nanostructure morphology, which contribute to higher mobility, longer diffusion length, and better photon absorption. Our results have demonstrated that the NIL is a cost-effective method to fabricate high-performance perovskite nanoscale optoelectronic devices, which may be suitable for manufacturing of high-density perovskite nanophotodetector arrays and to provide integration with state-of-the-art electronic circuits.

  12. Perovskites with the Framework-Forming Xenon.

    PubMed

    Britvin, Sergey N; Kashtanov, Sergei A; Krzhizhanovskaya, Maria G; Gurinov, Andrey A; Glumov, Oleg V; Strekopytov, Stanislav; Kretser, Yury L; Zaitsev, Anatoly N; Chukanov, Nikita V; Krivovichev, Sergey V

    2015-11-23

    The Group 18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6) (M = Ca, Sr, Ba) containing framework-forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner-sharing (XeO6) and (NaO6) octahedra arranged in a three-dimensional rocksalt order. The fact that xenon can be incorporated into the perovskite structure provides new insights into the problem of Xe depletion in the atmosphere. Since octahedrally coordinated Xe(VIII) and Si(IV) exhibit close values of ionic radii (0.48 and 0.40 Å, respectively), one could assume that Xe(VIII) can be incorporated into hyperbaric frameworks such as MgSiO3 perovskite. The ability of Xe to form stable inorganic frameworks can further extend the rich and still enigmatic chemistry of this noble gas.

  13. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  14. Epitaxial Halide Perovskite Lateral Double Heterostructure.

    PubMed

    Wang, Yiping; Chen, Zhizhong; Deschler, Felix; Sun, Xin; Lu, Toh-Ming; Wertz, Esther A; Hu, Jia-Mian; Shi, Jian

    2017-03-28

    Epitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system. Pristine epitaxial mixed halide perovskites rods and films were synthesized via van der Waals epitaxy by chemical vapor deposition method. At room temperature, photon was applied as a knob to regulate the kinetics of spinodal decomposition and classic coarsening. By this approach, halide perovskite double heterostructures were created carrying epitaxial interfaces and outstanding optical properties. Reduced Fröhlich electron-phonon coupling was discovered in coherent halide double heterostructure, which is hypothetically attributed to the classic phonon confinement effect widely existing in III-V double heterostructures. As a proof-of-concept, our results suggest that halide perovskite-based epitaxial heterostructures may be promising for high-performance and low-cost optoelectronics, electro-optics, and microelectronics. Thus, ultimately, for practical device applications, it may be worthy to pursue these heterostructures via conventional vapor phase epitaxy approaches widely practised in III-V field.

  15. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate.

    PubMed

    Fraqueza, Gil; Ohlin, C André; Casey, William H; Aureliano, Manuel

    2012-02-01

    Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were

  16. A new staining and evaluating procedure for protein gel electropherograms based on the pyrogallol red-molybdate complex.

    PubMed

    Csiba, A; Szécsényi-Nagy, L

    1989-01-01

    A new method is reported for staining and evaluating gel electropherograms of proteins. With pyrogallol red-molybdate reagent the gel-embedded proteins are transformed into a derivative of blue colour. After destaining, the blue-coloured proteins are well visible against a colourless background and can be quantified by densitometry with high reliability. The quantity of the coloured protein is directly proportional to the height of peaks in the densitogram. Colour intensity is concentration dependent. The measurement range of serum albumin was 1 to 50 micrograms/tube and 10 to 100 micrograms/slab in polyacrylamide gel disc electrophoresis and agar gel electrophoresis, respectively.

  17. Design and stabilisation of a high area iron molybdate surface for the selective oxidation of methanol to formaldehyde.

    PubMed

    Chapman, Stephanie; Brookes, Catherine; Bowker, Michael; Gibson, Emma K; Wells, Peter P

    2016-07-04

    The performance of Mo-enriched, bulk ferric molybdate, employed commercially for the industrially important reaction of the selective oxidation of methanol to formaldehyde, is limited by a low surface area, typically 5-8 m(2) g(-1). Recent advances in the understanding of the iron molybdate catalyst have focused on the study of MoOx@Fe2O3 (MoOx shell, Fe2O3 core) systems, where only a few overlayers of Mo are present on the surface. This method of preparing MoOx@Fe2O3 catalysts was shown to support an iron molybdate surface of higher surface area than the industrially-favoured bulk phase. In this research, a MoOx@Fe2O3 catalyst of even higher surface area was stabilised by modifying a haematite support containing 5 wt% Al dopant. The addition of Al was an important factor for stabilising the haematite surface area and resulted in an iron molybdate surface area of ∼35 m(2) g(-1), around a 5 fold increase on the bulk catalyst. XPS confirmed Mo surface-enrichment, whilst Mo XANES resolved an amorphous MoOx surface monolayer supported on a sublayer of Fe2(MoO4)3 that became increasingly extensive with initial Mo surface loading. The high surface area MoOx@Fe2O3 catalyst proved amenable to bulk characterisation techniques; contributions from Fe2(MoO4)3 were detectable by Raman, XAFS, ATR-IR and XRD spectroscopies. The temperature-programmed pulsed flow reaction of methanol showed that this novel, high surface area catalyst (3ML-HSA) outperformed the undoped analogue (3ML-ISA), and a peak yield of 94% formaldehyde was obtained at ∼40 °C below that for the bulk Fe2(MoO4)3 phase. This work demonstrates how core-shell, multi-component oxides offer new routes for improving catalytic performance and understanding catalytic activity.

  18. Sodium molybdate prevents hypertension and vascular prostanoid imbalance in fructose-overloaded rats.

    PubMed

    Peredo, H A; Andrade, V; Donoso, A S; Lee, H J; Puyó, A M

    2013-10-01

    (1) Fructose (F) overload produces elevated blood pressure (BP), hyperglycaemia, hypertriglyceridemia and insulin resistance, resembling human metabolic syndrome. Previously, we found altered vascular prostanoid (PR) production in this model. (2) Sodium molybdate (Mo), as well as sodium tungstate, causes insulin-like effects and normalizes plasma glucose levels in streptozotocin-treated diabetic rats. We studied the effects of Mo on BP, metabolic parameters and release of PR from the mesenteric vascular bed (MVB) in F-overloaded rats. (3) Four groups of male Sprague-Dawley rats were analysed: Control, tap water to drink; F, F solution 10% W/V to drink; CMo, Mo 100 mg kg day(-1) and FMo, both treatments. After 9 weeks, the animals were killed and MVBs removed and the released PRs measured. (4) F increased BP, glycemia, triglyceridemia and insulinemia. Mo treatment prevented the increases in BP and glycemia, but did not modify triglyceridemia or insulinemia. In addition, Mo decreased BP in controls. (5) Prostaglandins (PG) F2 alpha and E2, PG 6-ketoF1 alpha and thromboxane (TX) B2 , as well as inactive metabolites of prostacyclin (PGI2 ) and TXA2 were detected. F decreased the production of vasodilator PRs PGI2 and PGE2 in MVB. Mo prevented these alterations and increased PGE2 in controls. Vasoconstrict or PRs PGF2 alpha and TXA2 release was not modified. (6) Mo treatment, beyond its known lowering effect on glycemia, prevents the reduction in the vascular release of vasodilator PR observed in this model. This could be one of the mechanisms by which Mo avoids the increase in BP caused by F overload in the rat.

  19. The formylmethanofuran dehydrogenase isoenzymes in Methanobacterium wolfei and Methanobacterium thermoautotrophicum: induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme.

    PubMed

    Hochheimer, A; Hedderich, R; Thauer, R K

    1998-10-01

    Formylmethanofuran dehydrogenase catalyzes the first step in methane formation from CO2 in methanogenic archaea. Methanobacterium wolfei and Methanobacterium thermoautotrophicum have been shown to contain two isoenzymes, a tungsten-containing isoenzyme (Fwd) and a molybdenum-containing isoenzyme (Fmd). We report here that in both thermophilic organisms the encoding genes are organized in a highly conserved fwdHFGDACB tungsten operon and in an fmdECB molybdenum operon. In both organisms, the tungsten isoenzyme was found to be constitutively transcribed, whereas the transcription of the molybdenum operon was induced by molybdate. Induction by molybdate was not significantly affected by tungstate.

  20. Paramagnetic properties of triple molybdates CsNa5M3(MoO4)6 (M = Ni, Co, Mn)

    NASA Astrophysics Data System (ADS)

    Shkerin, S. N.; Uporov, S. A.; Yudin, V. N.; Solodovnikov, S. F.; Zolotova, E. S.; Tolkacheva, A. S.

    2016-11-01

    The static magnetization of CsNa5M3(MoO4)6 single phase molybdates, where M = Co, Ni, and Mn, is measured at 4-300 K in magnetic fields of up to 20 kOe. It is shown that the materials are paramagnetic. Magnetization as a function of temperature is described using the Curie-Weiss law. The intrinsic magnetic moments of the phases are found to be 9.759 (Co), 6.958 (Ni), and 12.203 Bohr magnetons for manganese molybdates. It is concluded that the charge state of Co, Ni, and Mn cations in the compounds is +2.

  1. Organometallic perovskites for optoelectronic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Levchuk, Levgen; Hoegl, Florian; Brandl, Marco; Osvet, Andres; Hock, Rainer; Herre, Patrick; Wolfgang, Wolfgang; Schweizer, Peter; Spiecker, Erdmann; Batentschuk, Miroslaw; Brabec, Christoph

    2016-09-01

    Organometallic halide perovskites CH3NH3BX3 (B= Pb, Sn, Ge; X = I, Br, Cl) have become one of the most promising semiconductors for solar cell applications, reaching power conversion efficiencies beyond 20%. Improving our ability to harness the full potential of organometal halide perovskites requires the development of more reliable synthesis routines of well defined, reproducible and defect free reference systems allowing to study the fundamental photo-physical processes. In this study we present size and band gap engineering for organo-lead perovskites crystallites with various shapes and sizes ranging from the 5 nm regime all the way to 1 cm. Colloidal nano-crystals, micro-crystlline particles as well as single crystals are demonstrated with excellent purity and control in shape and size are demonstrated. The structural, optical and photo-physical properties of these reference materials are investigated and analyzed as function of their size and shape.

  2. Machine learning bandgaps of double perovskites

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Mannodi-Kanakkithodi, Arun; Uberuaga, Blas; Ramprasad, Rampi; Gubernatis, James; Lookman, Turab

    The ability to make rapid and accurate predictions of bandgaps for double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps for double perovskites. After evaluating a set of nearly 1.2 million features, we identify several elemental features of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science (on a dataset of more than 1300 double perovskite bandgaps) and further analyzed to rationalize their prediction performance. Los Alamos National Laboratory LDRD program and the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  3. Metal halide perovskites for energy applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  4. A Heteroepitaxial Perovskite Metal-Base Transistor

    SciTech Connect

    Yajima, T.; Hikita, Y.; Hwang, H.Y.; /Tokyo U. /JST, PRESTO /SLAC

    2011-08-11

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  5. A heteroepitaxial perovskite metal-base transistor.

    PubMed

    Yajima, Takeaki; Hikita, Yasuyuki; Hwang, Harold Y

    2011-03-01

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  6. Autothermal reforming catalyst having perovskite structure

    DOEpatents

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  7. Atomic Resolution Imaging of Halide Perovskites.

    PubMed

    Yu, Yi; Zhang, Dandan; Kisielowski, Christian; Dou, Letian; Kornienko, Nikolay; Bekenstein, Yehonadav; Wong, Andrew B; Alivisatos, A Paul; Yang, Peidong

    2016-12-14

    The radiation-sensitive nature of halide perovskites has hindered structural studies at the atomic scale. We overcome this obstacle by applying low dose-rate in-line holography, which combines aberration-corrected high-resolution transmission electron microscopy with exit-wave reconstruction. This technique successfully yields the genuine atomic structure of ultrathin two-dimensional CsPbBr3 halide perovskites, and a quantitative structure determination was achieved atom column by atom column using the phase information of the reconstructed exit-wave function without causing electron beam-induced sample alterations. An extraordinarily high image quality enables an unambiguous structural analysis of coexisting high-temperature and low-temperature phases of CsPbBr3 in single particles. On a broader level, our approach offers unprecedented opportunities to better understand halide perovskites at the atomic level as well as other radiation-sensitive materials.

  8. A review on visible light active perovskite-based photocatalysts.

    PubMed

    Kanhere, Pushkar; Chen, Zhong

    2014-12-01

    Perovskite-based photocatalysts are of significant interest in the field of photocatalysis. To date, several perovskite material systems have been developed and their applications in visible light photocatalysis studied. This article provides a review of the visible light (λ > 400 nm) active perovskite-based photocatalyst systems. The materials systems are classified by the B site cations and their crystal structure, optical properties, electronic structure, and photocatalytic performance are reviewed in detail. Titanates, tantalates, niobates, vanadates, and ferrites form important photocatalysts which show promise in visible light-driven photoreactions. Along with simple perovskite (ABO3) structures, development of double/complex perovskites that are active under visible light is also reviewed. Various strategies employed for enhancing the photocatalytic performance have been discussed, emphasizing the specific advantages and challenges offered by perovskite-based photocatalysts. This review provides a broad overview of the perovskite photocatalysts, summarizing the current state of the work and offering useful insights for their future development.

  9. Functionalization of perovskite thin films with moisture-tolerant molecules

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Wang, Yun; Liu, Porun; Cheng, Yi-Bing; Zhao, Hui Jun; Yang, Hua Gui

    2016-02-01

    Organic-inorganic hybrid perovskites are particularly suited as light-harvesting materials in photovoltaic devices. The power conversion efficiency of perovskite solar cells has reached certified values of over 20% in just a few years. However, one of the major hindrances for application of these materials in real-world devices is the performance degradation in humid conditions, leading to a rapid loss of photovoltaic response. Here, we demonstrate that hydrophobic tertiary and quaternary alkyl ammonium cations can be successfully assembled on the perovskite surface as efficient water-resisting layers via a facile surface functionalization technique. Such layers can protect the perovskite film under high relative humidity (90 ± 5%) over 30 days. More importantly, devices based on such films can retain the photovoltaic capacities of bulk perovskites, with power conversion efficiencies over 15%. Improving the humidity tolerance of perovskite materials is a necessary step towards large-scale production of high-performance perovskite-based devices under ambient humidity.

  10. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    PubMed

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency.

  11. Perovskite oxide nanowires: synthesis, property and structural characterization.

    PubMed

    Zhu, Xinhua; Liu, Zhiguo; Ming, Naiben

    2010-07-01

    Perovskite oxide materials display a wide spectrum of functional properties, including switchable polarization, piezoelectricity, pyroelectricity, and non-linear dielectric behavior. These properties are indispensable for application in electronic devices such as non-volatile memories, sensors, microactuators, infrared detectors, microwave phase filters, and so on. Recent advances in science and technology of perovskite oxide materials have resulted in the feature sizes of perovskite oxides-based electronic devices entering into nanoscale dimensions. At nanoscale perovskite oxide materials exhibit a pronounced size effect manifesting itself in a significant deviation of the properties of low-dimensional structures from the bulk and film counterparts. In the last decade low-dimensional perovskite nanosized oxides have been received much attention because of their superior physical and chemical properties. Among them, perovskite oxide nanowires are especially attractive for nanoscience studies and nanotechnology applications. Compared to other low-dimensional perovskite oxide systems, perovskite oxide nanowires are not only used as the building blocks of future nanodevices, but also they offer fundamental scientific opportunities for investigating the intrinsic size effects of physical properties. In the recent years, much progress has been made both in synthesis and physical property testing of perovskite oxide nanowires, which have a profound impact on the nanoelectronics. In this work, an overview of the state of art in perovskite oxide nanowires is presented, which covers their synthesis, property, and structural characterization. In the first part, the recent literatures for fabricating perovskite oxide nanowires with promising features, are critically reviewed. The second part deals with the recent advances on the physical property testing of perovskite oxide nanowires. The third part summarizes the recent progress on microstructural characterizations of

  12. Large area perovskite solar cell module

    NASA Astrophysics Data System (ADS)

    Cai, Longhua; Liang, Lusheng; Wu, Jifeng; Ding, Bin; Gao, Lili; Fan, Bin

    2017-01-01

    The recent dramatic rise in power conversion efficiencies (PCE) of perovskite solar cells has triggered intense research worldwide. However, their practical development is hampered by poor stability and low PCE values with large areas devices. Here, we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film, even for 5 × 5 cm2 modules, the PCE reached 10.6% and no significant degradation was found after 140 days of outdoor testing. Our approach enables the realization of high performance large-area PSCs for practical application.

  13. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vrućinić, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  14. Research Update: Luminescence in lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-09-01

    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  15. Excited State Properties of Hybrid Perovskites.

    PubMed

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  16. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    PubMed Central

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  17. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells.

    PubMed

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H Reza

    2016-09-19

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells.

  18. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-09-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells.

  19. Simulation of the inhibition of microbial sulfate reduction in a two-compartment upflow bioreactor subjected to molybdate injection.

    PubMed

    de Jesus, E B; de Andrade Lima, L R P

    2016-08-01

    Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity.

  20. Redetermination of the crystal structure of 3,5-di-methyl-pyrazolium β-octa-molybdate tetra-hydrate.

    PubMed

    Amarante, Tatiana R; Gonçalves, Isabel S; Almeida Paz, Filipe A

    2015-12-01

    The title compound, (C5H9N2)4[Mo8O26]·4H2O, was reported previously from a room-temperature data collection from which only the metal atoms could be refined anisotropically [FitzRoy et al. (1989 ▸). Inorg. Chim. Acta, 157, 187-194]. The current redetermination at 180 (2) K models all the non-H atoms with anisotropic displacement parameters and fully describes the supra-molecular N-H⋯O and O-H⋯O hydrogen-bonded network connecting the 3,5-di-methyl-pyrazolium cations, the water mol-ecules of crystallization and the β-octa-molybdate anion. All H atoms involved in the three-dimensional hydrogen-bonding network could be located from difference Fourier maps, with the exception of those of one disordered water mol-ecule, firstly seen in this structural report [refined over two distinct locations with site-occupancy factors of 0.65 (2) and 0.35 (2)]. The complete β-octa-molybdate anion is generated by a crystallographic inversion centre.

  1. Study of ammonium molybdate to minimize the phosphate interference in the selenium determination by electrothermal atomic absorption spectrometry with deuterium background correction

    NASA Astrophysics Data System (ADS)

    Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Adela

    2002-02-01

    The use of ammonium molybdate to minimize the phosphate interference when measuring selenium by electrothermal atomic absorption spectrometry (ETAAS) with deuterium background correction was evaluated. Ammonium molybdate did not produce a selenium thermal stabilization; however, the presence of ammonium molybdate decreased the phosphate interference. The study was carried out with mussel acid digests and mussel slurries. Pd-Mg(NO 3) 2 was used as a chemical modifier at optimum concentrations of 300 and 250 mg l -1, respectively, yielding optimum pyrolysis and atomization temperatures of 1200 and 2100 °C, respectively. A yellow solid (ammonium molybdophosphate) was obtained when adding ammonium molybdate to mussel acid digest solutions. This precipitate can be removed after centrifugation prior to ETAAS determination. Additionally, studies on the sampling of the solid ammonium molybdophosphate (AMP) together with the liquid phase, as a slurry, were also developed. The volatilization of the solid AMP was not reached at temperatures lower than 2500 °C. By this way, phosphate, as AMP, is not present in the vapor phase at the atomization temperature (2100 °C), yielding a reduction of the spectral interference by phosphate. The proposed method was validated analyzing three reference materials of marine origin (DORM-1, DOLT-1 and TORT-1). Good agreement with the certified selenium contents was reached for all cases.

  2. Mechanism of Selective Ammoxidation of Propene to Acrylonitrile on Bismuth Molybdates from Quantum Mechanical Calculations

    SciTech Connect

    Pudar, Sanja; Oxgaard, Jonas; Goddard, William A

    2010-08-25

    In order to understand the mechanism for selective ammoxidation of propene to acrylonitrile by bismuth molybdates, we report quantum mechanical studies (using the B3LYP flavor of density functional theory) for the various steps involved in converting the allyl-activated intermediate to acrylonitrile over molybdenum oxide (using a Mo3O9 cluster model) under conditions adjusted to describe both high and low partial pressures of NH3 in the feed. We find that the rate-determining step in converting of allyl to acrylonitrile at all feed partial pressures is the second hydrogen abstraction from the nitrogen-bound allyl intermediate (Mo-NH-CH2-CH=CH2) to form Mo-NH=CH-CH=CH2). We find that imido groups (Mo=NH) have two roles: (1) a direct effect on H abstraction barriers, H abstraction by an imido moiety is (~8 kcal/mol) more favorable than abstraction by an oxo moiety (Mo=O), and (2) an indirect effect, the presence of spectator imido groups decreases the H abstraction barriers by an additional ~15 kcal/mol. Therefore, at higher NH3 pressures (which increases the number of Mo=NH groups), the second H abstraction barrier decreases significantly, in agreement with experimental observations that propene conversion is higher at higher partial pressures of NH3. At high NH3 pressures we find that the final hydrogen abstraction has a high barrier [ΔHfourth-ab = 31.6 kcal/mol compared to ΔHsecond-ab = 16.4 kcal/mol] due to formation of low Mo oxidation states in the final state. However, we find that reoxidizing the surface prior to the last hydrogen abstraction leads to a significant reduction of this barrier to ΔHfourth-ab = 15.9 kcal/mol, so that this step is no longer rate determining. Therefore, we conclude that reoxidation during the reaction is necessary for facile conversion of allyl to

  3. Comparative Analysis of Urinary Total Proteins by Bicinchoninic Acid and Pyrogallol Red Molybdate Methods

    PubMed Central

    Bhongir, Aparna Varma; Karra, Madhulatha; Beedu, Sashidhar Rao

    2015-01-01

    Background The concentration of total proteins in urine is a good index of renal function, but its determination is found to be unreliable. The pyrogallol red molybdate (PRM) method for urine total proteins is being widely used in most of the hospitals because of its high sensitivity, better precision and its practicability. Bicinchoninic acid method (BCA) is also used for protein estimation and there have been no studies comparing this method with the PRM method in human urine samples. BCA method overestimates the urinary protein concentration in the presence of interfering substances. After removing the interfering substances present in the human urine samples the results of BCA method were compared with the PRM method. Aim The purpose of the study is to identify whether the results of urine total proteins by BCA method are comparable to PRM method and can be used as an alternative to the PRM method. Setting and Design This is a cross-sectional study done on fresh urine specimens from the hospital laboratory, covering a wide range of protein concentrations. Material and Methods Fresh urine specimens covering a wide range of protein concentrations (urine dipstick: nil, trace, 1+, 2+ and ≥ 3+) of 36 patients were analysed by both the methods. Statistical Analysis Imprecision was determined by repeated analysis study and Inaccuracy was assessed by comparing the results of the patient’s urine samples by both the methods using correlation plots, Bland and Altman, and Passing and Bablok regression analyses. Results The coefficient of variation and mean (SD) for the BCA method were 4.6% and 799.1 (882.5) mg/L and for the PRM method were 5.1% and 802.1 (911.9) mg/L. The Pearson correlation coefficient, r was 0.93 (p < 0.0001). Method agreement studies showed no significant constant and proportional bias between both the methods. Conclusion In urine which is subjected to removal of interfering substances, the BCA results are comparable to PRM method. PMID:26435938

  4. Oxyanion selectivity in sulfate and molybdate transport proteins: an ab initio/CDM study.

    PubMed

    Dudev, Todor; Lim, Carmay

    2004-08-25

    A striking feature of sulfate (SO(4)(2-)) and molybdate (MoO(4)(2-)) transport proteins, such as SBP and ModA, which specifically bind SO(4)(2-) and MoO(4)(2-), respectively, is their ability to discriminate very similar anions with the same net charge, geometry, and hydrogen-bonding properties. Here, we determine to what extent (1) oxyanion-solvent interactions, (2) oxyanion-amino acid interactions, and (3) the anion-binding pocket sizes of the cognate protein contribute to the anion selectivity process in SO(4)(2-) and MoO(4)(2-) transport proteins by computing the free energies for replacing SO(4)(2-) with MoO(4)(2)(-)/WO(4)(2-) in model SO(4)(2-)-binding sites of varying degrees of solvent exposure using a combined quantum mechanical/continuum dielectric approach. The calculations reveal that MoO(4)(2-) transport proteins, such as ModA, specifically bind MoO(4)(2-)/WO(4)(2-) but not SO(4)(2-), mainly because the desolvation penalty of MoO(4)(2-)/WO(4)(2-) is significantly less than that of SO(4)(2-) and, to a lesser extent, because the large and rigid cavity in these proteins attenuates ligand interactions with SO(4)(2-), as compared to MoO(4)(2-). On the other hand, SO(4)(2-) transport proteins prefer SO(4)(2-) to MoO(4)(2-)/WO(4)(2-) because the small anion-binding pocket characteristic of these proteins inhibits binding of the larger MoO(4)(2-) and WO(4)(2-) anions. The calculations also help to explain the absence of positively charged Lys/Arg side chains in the anion-binding sites of SBP and ModA. During evolution, these transport proteins may have excluded cationic ligands from their binding sites because, on one hand, Lys/Arg do not contribute to the selectivity of the binding pocket and, on the other, they substantially stabilize the complex between the oxyanion and protein ligands, which in turn would prohibit the rapid release of the bound oxyanion at a certain stage during the transport process.

  5. Nanoscale study of perovskite solar cells for efficient charge transport

    NASA Astrophysics Data System (ADS)

    Adhikari, Nirmal

    The effect of temperature, humidity and water on the grain boundary potential and charge transport within the grains of pervoskite films prepared by sequential deposition technique. Grain boundary potential of perovskite films exhibited variation in electrical properties with humidity level, temperature and water concentration in methyl ammonium iodide solution. X-ray diffraction (XRD) indicates the formation of PbI2 phase in perovskite film with increasing temperature, humidity and adding larger quantity of water in methyl ammonium iodide solution. It is found that optimum amount of lead iodide helps for the passivation of perovskite film. Spatial mapping of surface potential in the perovskite film exhibits higher positive potential at grain boundaries compared to the surface of the grains. Back recombination barrier between TiO2- perovskite increases to 378 meV for perovskite film annealed at 100 ºC for 15 min. Grain boundary potential barrier were found to increase from ˜35 meV to 80 meV for perovskite film exposed to 75% RH level compared to perovskite film kept inside glove box. Optimum amount of water which increases the solar cell performance by increasing the crystallinity of perovskite film was found to be 5% by volume of IPA. Results show strong correlation between temperature, humidity level, electronic grain boundary properties and device performance of perovskite solar cells.

  6. Material and Device Stability in Perovskite Solar Cells.

    PubMed

    Kim, Hui-Seon; Seo, Ja-Young; Park, Nam-Gyu

    2016-09-22

    Organic-inorganic halide perovskite solar cells have attracted great attention because of their superb efficiency reaching 22 % and low-cost, facile fabrication processing. Nevertheless, stability issues in perovskite solar cells seem to block further advancements toward commercialization. Thus, device stability is one of the important topics in perovskite solar cell research. In the beginning, the poor moisture resistivity of the perovskite layer was considered as a main problem that hindered further development of perovskite solar cells, which encouraged engineering of the perovskite or protection of the perovskite by a buffer layer. Soon after, other parameters affecting long-term stability were sequentially found and various attempts have been made to enhance intrinsic and extrinsic stability. Here we review the recent progresses addressing stability issues in perovskite solar cells. In this report, we investigated factors affecting stability from material and device points of view. To gain a better understanding of the stability of the bulk perovskite material, decomposition mechanisms were investigated in relation to moisture, photons, and heat. Stability of full device should also be carefully examined because its stability is dependent not only on bulk perovskite but also on the interfaces and selective contacts. In addition, ion migration and current-voltage hysteresis were found to be closely related to stability.

  7. Electro-optics of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Qianqian; Armin, Ardalan; Nagiri, Ravi Chandra Raju; Burn, Paul L.; Meredith, Paul

    2015-02-01

    Organohalide-perovskite solar cells have emerged as a leading next-generation photovoltaic technology. However, despite surging efficiencies, many questions remain unanswered regarding the mechanisms of operation. Here we report a detailed study of the electro-optics of efficient CH3NH3PbI3-perovskite-only planar devices. We report the dielectric constants over a large frequency range. Importantly, we found the real part of the static dielectric constant to be ∼70, from which we estimate the exciton-binding energy to be of order 2 meV, which strongly indicates a non-excitonic mechanism. Also, Jonscher's Law behaviour was consistent with the perovskite having ionic character. Accurate knowledge of the cell's optical constants allowed improved modelling and design, and using this information we fabricated an optimized device with an efficiency of 16.5%. The optimized devices have ∼100% spectrally flat internal quantum efficiencies and minimal bimolecular recombination. These findings establish systematic design rules to achieve silicon-like efficiencies in simple perovskite solar cells.

  8. Crystalline-amorphous transition in silicate perovskites

    SciTech Connect

    Hemmati, M.; Chizmeshya, A. |; Wolf, G.H.; Poole, P.H.; Shao, J.; Angell, C.A.

    1995-06-01

    CaSiO{sub 3} and MgSiO{sub 3} perovskites are known to undergo solid-state crystal to amorphous transitions near ambient pressure when decompressed from their high-pressure stability fields. In order to elucidate the mechanistic aspects of this transition we have performed detailed molecular-dynamics simulations and lattice-dynamical calculations on model silicate perovskite systems using empirical rigid-ion pair potentials. In the simulations at low temperatures, the model perovskite systems transform under tension to a low-density glass composed of corner shared chains of tetrahedral silicon. The amorphization is initiated by a thermally activated step involving a soft polar optic mode in the perovskite phase at the Brillouin zone center. Progression of the system along this reaction coordinate triggers, in succession, multiple barrierless modes of instability ultimately producing a catastrophic decohesion of the lattice. An important intermediary along the reaction path is a crystalline phase where silicon is in a five-coordinate site and the alkaline-earth metal atom is in eightfold coordination. At the onset pressure, this transitory phase is itself dynamically unstable to a number of additional vibrational modes, the most relevant being those which result in transformation to a variety of tetrahedral chain silicate motifs. These results support the conjecture that stress-induced amorphization arises from the near simultaneous accessibility of multiple modes of instability in the highly metastable parent crystalline phase.

  9. Interface architecture between TiO2/perovskite, perovskite/hole transport layer, and perovskite grain boundary(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hayase, Shuzi; Hirotani, Daisuke; Moriya, Masahiro; Ogomi, Yuhei; Shen, Qing; Yoshino, Kenji; Toyoda, Taro

    2016-09-01

    In order to examine the interface structure of TiO2/perovskite layer, quartz crystal microbalance sensor (QCM) was used. On the QCM sensor, TiO2 layer was fabricated and the PbI2 solution in Dimethylformamide (DMF) was passed on the QCM sensor to estimate the adsorption density of the PbI2 on the titania2. The amount of PbI2 adsorption on TiO2 surface increased as the adsorption time and leveled off at a certain time. PbI2 still remained even after the solvent only (DMF) was passed on the TiO2 layer on QCM (namely rinsing with DMF), suggesting that the PbI2 was tightly bonded on the TiO2 surface. The bonding structure was found to be Ti-O-Pb linkage by XPS analysis. We concluded that the Ti-OH on the surface of TiO2 reacts with I-Pb-I to form Ti-O-Pb-I and HI (Fig.1 B). The surface trap density was measured by thermally stimulated current (TSC) method. Before the PbI2 passivation, the trap density of TiO2 was 1019 cm3. The trap density decreased to 1016/cm3 after the PbI2 passivation, suggesting that the TiO2 surface trap was passivated with I-Pb-I. The passivation density was tuned by the concentration of PbI2 in DMF, by which TiO2 layer was passivated. Perovskite solar cells were fabricated on the passivated TiO2 layer with various PbI2 passivation densities by one step process (mixture of PbI2 + MAI in DMF). It was found that Jsc increased with an increase in the Ti-O-Pb density. We concluded that the interface between TiO2 and perovskite layer has passivation structure consisting of Ti-O-Pb-I which decreases the trap density of the interfaces and supresses charge recombination. The effect of Cl anion on high efficiency is still controversial when perovskite layer is prepared by one step method from the mixture of MAI and PbCl2. It was found that adsorption density of PbCl2 on TiO2 surface was much higher than that of PbI2 from the experiment using QCM sensor. After the surface was washed with DMF, Cl and Pb were detected. These results suggest that the TiO2

  10. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites.

  11. Recent progress in stability of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Qin, Xiaojun; Zhao, Zhiguo; Wang, Yidan; Wu, Junbo; Jiang, Qi; You, Jingbi

    2017-01-01

    Perovskite solar cells have attracted significant attention in just the past few years in solar cell research fields, where the power conversion efficiency was beyond 22.1%. Now, the most important challenge for perovskite solar cells in practical applications is the stability issue. In this mini-review, we will summarize the degradation mechanism of perovskite solar cells, including the perovskite material itself and also the interfaces. While we also provide our opinion on improving the stability of perovskite solar cells. Project supported by China Huaneng Group Project High Performance Perovskite Solar Cells (No. TW-15-HJK01), the National Key Research and Development Program of China (No. 2016YFB0700700), the National 1000 Young Talent Awards, and the National Natural Science Foundation of China (No. 61574133).

  12. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    PubMed

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  13. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect

    Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.

    2014-04-14

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  14. Applications of cesium in the perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ye, Fengjun; Yang, Wenqiang; Luo, Deying; Zhu, Rui; Gong, Qihuang

    2017-01-01

    Perovskite solar cells have experienced an unprecedented rapid development in the power conversion efficiency (PCE) during the past 7 years, and the record PCE has been already comparable to the traditional polycrystalline silicon solar cells. Presently, it is more urgent to address the challenge on device stability for the future commercial application. Recently, the inorganic cesium lead halide perovskite has been intensively studied as one of the alternative candidates to improve device stability through controlling the phase transition. The cesium (Cs)-doped perovskites show more superior stability comparing with organic methylammonium (MA) lead halide perovskite or formamidinium (FA) lead halide perovskite. Here, recent progress of the inorganic cesium application in organic–inorganic perovskite solar cells (PSCs) is highlighted from the viewpoints of the device efficiency and the device stability. Project supported by the 973 Program of China (No. 2015CB932203), the National Natural Science Foundation of China (Nos. 61377025, 91433203), and the Young 1000 Talents Global Recruitment Program of China.

  15. Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes.

    PubMed

    Kim, Hyung Do; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2016-02-03

    Perovskite solar cells exhibit improved photovoltaic parameters with increasing perovskite grain size. The larger photocurrent is due to the enhanced absorption efficiency for thicker perovskite layers. The larger open-circuit voltage (VOC ) is ascribed to the reduced trap-assisted recombination for the larger grains. As a result, the power conversion efficiency exceeds 19% at best. Further improvement in VOC would be possible if the trap density were reduced.

  16. Post-perovskite Transition in Anti-structure

    NASA Astrophysics Data System (ADS)

    Wang, Bosen; Ohgushi, Kenya

    2016-11-01

    The discovery of the post-perovskite transition, which is the structural transition from the perovskite to post-perovskite structure in MgSiO3 under pressure, has aroused great interests in geosciences. Despite of previous extensive studies, key factors of the post-perovsktie transition are still under hot debate primarily due to the big difficulty in performing systematic experiments under extreme conditions. Hence, search for new materials showing the post-perovskite transition under ambient pressure has been highly expected. We here report a new-type of materials Cr3AX (A = Ga, Ge; X = C, N), which exhibits the post-perovskite transition as a function of “chemical pressure” at ambient physical pressure. The detailed structural analysis indicates that the tolerance factor, which is the measure of the ionic radius mismatch, plays the key role in the post-perovskite transition. Moreover, we found a tetragonal perovskite structure with loss of inversion symmetry between the cubic perovskite and orthorhombic post-perovskite structures. This finding stimulates a search for a ferroelectric state in MgSiO3.

  17. Post-perovskite Transition in Anti-structure

    PubMed Central

    Wang, Bosen; Ohgushi, Kenya

    2016-01-01

    The discovery of the post-perovskite transition, which is the structural transition from the perovskite to post-perovskite structure in MgSiO3 under pressure, has aroused great interests in geosciences. Despite of previous extensive studies, key factors of the post-perovsktie transition are still under hot debate primarily due to the big difficulty in performing systematic experiments under extreme conditions. Hence, search for new materials showing the post-perovskite transition under ambient pressure has been highly expected. We here report a new-type of materials Cr3AX (A = Ga, Ge; X = C, N), which exhibits the post-perovskite transition as a function of “chemical pressure” at ambient physical pressure. The detailed structural analysis indicates that the tolerance factor, which is the measure of the ionic radius mismatch, plays the key role in the post-perovskite transition. Moreover, we found a tetragonal perovskite structure with loss of inversion symmetry between the cubic perovskite and orthorhombic post-perovskite structures. This finding stimulates a search for a ferroelectric state in MgSiO3. PMID:27901099

  18. Post-perovskite Transition in Anti-structure.

    PubMed

    Wang, Bosen; Ohgushi, Kenya

    2016-11-30

    The discovery of the post-perovskite transition, which is the structural transition from the perovskite to post-perovskite structure in MgSiO3 under pressure, has aroused great interests in geosciences. Despite of previous extensive studies, key factors of the post-perovsktie transition are still under hot debate primarily due to the big difficulty in performing systematic experiments under extreme conditions. Hence, search for new materials showing the post-perovskite transition under ambient pressure has been highly expected. We here report a new-type of materials Cr3AX (A = Ga, Ge; X = C, N), which exhibits the post-perovskite transition as a function of "chemical pressure" at ambient physical pressure. The detailed structural analysis indicates that the tolerance factor, which is the measure of the ionic radius mismatch, plays the key role in the post-perovskite transition. Moreover, we found a tetragonal perovskite structure with loss of inversion symmetry between the cubic perovskite and orthorhombic post-perovskite structures. This finding stimulates a search for a ferroelectric state in MgSiO3.

  19. Elastic anisotropy of experimental analogues of perovskite and post-perovskite help to interpret D'' diversity.

    PubMed

    Yoneda, Akira; Fukui, Hiroshi; Xu, Fang; Nakatsuka, Akihiko; Yoshiasa, Akira; Seto, Yusuke; Ono, Kenya; Tsutsui, Satoshi; Uchiyama, Hiroshi; Baron, Alfred Q R

    2014-03-27

    Recent studies show that the D'' layer, just above the Earth's core-mantle boundary, is composed of MgSiO3 post-perovskite and has significant lateral inhomogeneity. Here we consider the D'' diversity as related to the single-crystal elasticity of the post-perovskite phase. We measure the single-crystal elasticity of the perovskite Pbnm-CaIrO3 and post-perovskite Cmcm-CaIrO3 using inelastic X-ray scattering. These materials are structural analogues to same phases of MgSiO3. Our results show that Cmcm-CaIrO3 is much more elastically anisotropic than Pbnm-CaIrO3, which offers an explanation for the enigmatic seismic wave velocity jump at the D'' discontinuity. Considering the relation between lattice preferred orientation and seismic anisotropy in the D'' layer, we suggest that the c axis of post-perovskite MgSiO3 aligns vertically beneath the Circum-Pacific rim, and the b axis vertically beneath the Central Pacific.

  20. Organohalide Perovskites for Solar Energy Conversion.

    PubMed

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  1. Molecular orientation of molybdate ions adsorbed on goethite nanoparticles revealed by polarized in situ ATR-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Davantès, Athénaïs; Lefèvre, Grégory

    2016-11-01

    The speciation of species adsorbed on nanoparticles is a major concern for several fields, as environmental pollution and remediation, surface functionalization, or catalysis. Attenuated total reflectance infrared spectroscopy (ATR-IR) was amongst the rare methods able to give in situ information about the geometry of surface complexes on nanoparticles. A new possibility using this technique is illustrated here with the MoO42 -/goethite system. Using deuterated goethite to avoid spectral interferences, adsorption of molybdate ions on a spontaneous oriented film of nanoparticles has been followed using a polarized infrared beam. From the decomposition of spectra in the x, y and z directions, a monodentate surface complex on the {101} faces has been found as the most probable geometry. This result demonstrates that polarized ATR-IR allows to characterize in more details adsorption mode at the atomic scale, in comparison with usual ATR-IR spectroscopy.

  2. Influence of drying conditions of zirconium molybdate gel on performance of (99m)Tc gel generator.

    PubMed

    Davarpanah, M R; Attar Nosrati, S; Fazlali, M; Kazemi Boudani, M; Khoshhosn, H; Ghannadi Maragheh, M

    2009-10-01

    (99m)Tc can be produced from (99)Mo/(99m)Tc gel generators. These gels are part of the generator and the (99)Mo/(99m)Tc gel generator performance is directly related with gel structure. In this work a series of zirconium molybdate gels have been synthesized and dried under different conditions and characterized using thermal analysis (TGA, DTA), SEM, XRD and porosity measurements. It is found that the water content of the gel determines the structure porosity which allows the diffusion of the (99m)TcO(4)(-) ions inside the gel and was directly connected with performance of the (99)Mo/(99m)Tc gel generators. Drying conditions of the gel is as an important factor that influence water content and physical-chemical properties of this gel and must be carefully studied to optimize the properties of the gel generators.

  3. Luminescence properties of alkali europium double tungstates and molybdates AEuM/sub 2/O/sub 8/

    SciTech Connect

    van Vliet, J.P.M.; Blasse, G.; Brixner, L.H.

    1988-09-01

    The luminescence properties of AEuW/sub 2/O/sub 8/ and AEuMo/sub 2/O/sub 8/ (A/sup +/ = alkali metal ion) are reported. These properties depend on the crystal structure type. Vibronic coupling between the electronic transitions of the Eu/sup 3 +/ ion and the vibrational transitions of the tungstate of molybdate group is observed. The concentration quenching of the Eu/sup 3 +/ luminescence is weak. The analysis of the Eu/sup 3 +/ decay curves points to energy migration and shows the two-dimensionality of the Eu/sup 3 +/ sublattice in KEuMo/sub 2/O/sub 8/ and the one-dimensionality of the Eu/sup 3 +/ sublattice in KEuW/sub 2/O/sub 8/ and RbEuW/sub 2/O/sub 8/.

  4. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures.

    PubMed

    Oliver, Christy E; Beier, Ross C; Hume, Michael E; Horrocks, Shane M; Casey, Thomas A; Caton, Joel S; Nisbet, David J; Smith, David J; Krueger, Nathan A; Anderson, Robin C

    2010-04-01

    Experiments were conducted to determine factors that affect sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5mM). In our first experiment, cultures grown without chlorate grew more rapidly than those with chlorate. An extended lag before logarithmic growth was observed in anaerobic but not aerobic cultures containing chlorate. Chlorate inhibition of growth during aerobic culture began later than that observed in anaerobic cultures but persisted once inhibition was apparent. Conversely, anaerobic cultures appeared to adapt to chlorate after approximately 10h of incubation, exhibiting rapid compensatory growth. In anaerobic chlorate-containing cultures, 20% of total viable counts were resistant to chlorate by 6h and had propagated to 100% resistance (>10(9)CFU mL(-1)) by 24h. In the aerobic chlorate-containing cultures, 12.9% of colonies had detectable resistance to chlorate by 6h, but only 1% retained detectable resistance at 24h, likely because these cultures had opportunity to respire on oxygen and were thus not enriched via the selective pressure of chlorate. In another study, treatment with shikimic acid (0.34 mM), molybdate (1mM) or their combination had little effect on aerobic or anaerobic growth of Salmonella in the absence of added chlorate. As observed in our earlier study, chlorate resistance was not detected in any cultures without added chlorate. Chlorate resistant Salmonella were recovered at equivalent numbers regardless of treatment after 8h of aerobic or anaerobic culture with added chlorate; however, by 24h incubation chlorate sensitivity was completely restored to aerobic but not anaerobic cultures treated with shikimic acid or molybdate but not their combination. Results indicate that anaerobic adaptation of S. Typhimurium to sodium chlorate during pure culture is likely due to the selective propagation of low numbers of cells exhibiting spontaneous resistance to chlorate and this resistance is not reversible by

  5. Protective mechanism of sodium molybdate against the acute toxicity of cadmium in rats. II. Prevention of cytoplasmic acidification.

    PubMed

    Koizumi, T; Yokota, T; Fukuchi, M; Tatsumoto, H; Yamane, Y

    1991-10-01

    In order to clarify the protective mechanism of sodium molybdate against the acute toxicity of cadmium chloride in rat, the effect of in vivo sodium molybdate pretreatment on the cytotoxic action of cadmium in isolated hepatocytes was studied. The cytosolic pH of hepatocytes isolated from untreated rats immediately decreased with incubation in either neutral Hank's balanced salt solution (HBS), pH 7.4, containing 5 microM cadmium chloride minimum or acidic HBS (pH 7.1, 6.8, 6.5, and 6.2). The presence of 5 microM cadmium in HBS adjusted to pH 7.1 aggravated cytosolic acidification induced by the acidic medium alone. Cell viability of hepatocytes incubated in HBS at pH 6.2 was significantly reduced as compared to that of control cells in HBS at pH 7.4, but the presence of cadmium in the acidic HBS had no aggravating action against such a toxic action of the acidic medium although cellular uptake of the metal in the medium increased, as compared to that in HBS at pH 7.4. Molybdenum pretreatment alleviated cytoplasmic acidification induced by the treatment with HBS at pH 7.4 or 7.1 containing cadmium or by extracellular acid load without cadmium. This pretreatment also prevented the loss of cell viability induced by the treatment with HBS at pH 6.2 but could not attenuate that when cadmium was present in the medium. These facts suggest that molybdenum pretreatment alleviated the acute toxicity of cadmium in rat by preventing cytoplasmic acidification caused by the harmful metal.

  6. Synergetic effect of potassium molybdate and benzotriazole on the CMP of ruthenium and copper in KIO4-based slurry

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Wang, Tongqing; Mei, Hegeng; Zhou, Wenbin; Lu, Xinchun

    2014-11-01

    Although there are substantial studies on chemical mechanical polishing (CMP) processes of ruthenium (Ru) as a barrier layer in periodate-based slurries, little is known about the passivation mechanism of inhibitors and the galvanic corrosion mechanism of Cu. In this study, the synergetic effect of benzotriazole (BTA) and potassium molybdate (K2MoO4) on the polishing performance of Ru and Cu in KIO4-based slurry was investigated. The galvanic corrosion of Cu in a Cu-Ru coupled system was studied from a completely different perspective. X-ray photoelectron spectroscopy combined with other measurements was used to reveal the synergetic passivation mechanism of BTA and K2MoO4. The results show that the galvanic corrosion of Cu is strongly mitigated in the presence of both BTA and K2MoO4. Based on the data, it was regarded that the adsorbed MoO42- not only modified the surface structure of Ru and Cu, but also supported the adsorption of BTA passivation film. Also, it was found that insoluble salts were deposited into the gaps of the passivation film, which improved the compactness of the molybdate-BTA film. The CMP tests showed that the selectivity of the material removal rate of Cu to Ru can be evidently improved in the presence of BTA and K2MoO4. The increase of oxidizer content and the reduction of polishing down force could help to further decrease the MRR selectivity between Cu and Ru.

  7. Perovskite Materials: Solar Cell and Optoelectronic Applications

    SciTech Connect

    Yang, Bin; Geohegan, David B; Xiao, Kai

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure, and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.

  8. Organic Charge Carriers for Perovskite Solar Cells.

    PubMed

    Völker, Sebastian F; Collavini, Silvia; Delgado, Juan Luis

    2015-09-21

    The photovoltaic field is currently experiencing the "perovskite revolution". These materials have been known for decades, but only recently have they been applied in solid-state solar cells to obtain outstanding power conversion efficiencies. Given that the variety of perovskites used so far is limited, a lot of attention has been devoted to the development of suitable organic charge-transport materials to improve device performance. In this article, we will focus on the most promising materials able to transport electrons or holes from a structural point of view. Thereby, we focus on organic materials owing to their ease of preparation and manipulation, and this is nicely combined with the potential tuning of their properties through chemical synthesis.

  9. Machine learning bandgaps of double perovskites

    NASA Astrophysics Data System (ADS)

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.

    2016-01-01

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.

  10. Machine learning bandgaps of double perovskites.

    PubMed

    Pilania, G; Mannodi-Kanakkithodi, A; Uberuaga, B P; Ramprasad, R; Gubernatis, J E; Lookman, T

    2016-01-19

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.

  11. Machine learning bandgaps of double perovskites

    PubMed Central

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.

    2016-01-01

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance. PMID:26783247

  12. Machine learning bandgaps of double perovskites

    SciTech Connect

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.

    2016-01-19

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.

  13. Machine learning bandgaps of double perovskites

    DOE PAGES

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; ...

    2016-01-19

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the mostmore » crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.« less

  14. The photophysics of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Sum, Tze Chien

    2014-09-01

    Solution-processed hybrid organic-inorganic perovskite solar cells, a newcomer to the photovoltaic arena, have taken the field by storm with their extraordinary power conversion efficiencies exceeding 17%. In this paper, the photophysics and the latest findings on the carrier dynamics and charge transfer mechanisms in this new class of photovoltaic material will be examined and distilled. Some open photophysics questions will also be discussed.

  15. Surface-Driven Magnetotransport in Perovskite Nanocrystals.

    PubMed

    Thi N'Goc, Ha Le; Mouafo, Louis Donald Notemgnou; Etrillard, Céline; Torres-Pardo, Almudena; Dayen, Jean-François; Rano, Simon; Rousse, Gwenaëlle; Laberty-Robert, Christel; Calbet, Jose Gonzales; Drillon, Marc; Sanchez, Clément; Doudin, Bernard; Portehault, David

    2017-03-01

    Unique insights into magnetotransport in 20 nm ligand-free La0.67 Sr0.33 MnO3 perovskite nanocrystals of nearly perfect crystalline quality reveal a chemically altered 0.8 nm thick surface layer that triggers exceptionally large magnetoresistance at low temperature, independently of the spin polarization of the ferromagnetic core. This discovery shows how the nanoscale impacts magnetotransport in a material widely spread as electrode in hybrid spintronic devices.

  16. Lattice effects on ferromagnetism in perovskite ruthenates.

    PubMed

    Cheng, J-G; Zhou, J-S; Goodenough, John B

    2013-08-13

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr(1-x)Ca(x)RuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr(1-y)Ba(y)RuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length . A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length , which makes the geometric factor t = /(√2) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure-property relationship in a broad range of oxides with perovskite or a perovskite-related structure.

  17. A-site ordered quadruple perovskite oxides

    NASA Astrophysics Data System (ADS)

    Youwen, Long

    2016-07-01

    The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu-Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

  18. Defect Tolerance in Methylammonium Lead Triiodide Perovskite

    SciTech Connect

    Steirer, K. Xerxes; Schulz, Philip; Teeter, Glenn; Stevanovic, Vladan; Yang, Mengjin; Zhu, Kai; Berry, Joseph J.

    2016-08-12

    Photovoltaic applications of perovskite semiconductor material systems have generated considerable interest in part because of predictions that primary defect energy levels reside outside the bandgap. We present experimental evidence that this enabling material property is present in the halide-lead perovskite, CH3NH3PbI3 (MAPbI3), consistent with theoretical predictions. By performing X-ray photoemission spectroscopy, we induce and track dynamic chemical and electronic transformations in the perovskite. These data show compositional changes that begin immediately with exposure to X-ray irradiation, whereas the predominant electronic structure of the thin film on compact TiO2 appears tolerant to the formation of compensating defect pairs of VI and VMA and for a large range of I/Pb ratios. Changing film composition is correlated with a shift of the valence-band maximum only as the halide-lead ratio drops below 2.5. This delay is attributed to the invariance of MAPbI3 electronic structure to distributed defects that can significantly transform the electronic density of states only when in high concentrations.

  19. Resistance switching memory in perovskite oxides

    SciTech Connect

    Yan, Z.B. Liu, J.-M.

    2015-07-15

    The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given.

  20. Intriguing Optoelectronic Properties of Metal Halide Perovskites.

    PubMed

    Manser, Joseph S; Christians, Jeffrey A; Kamat, Prashant V

    2016-11-09

    A new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewed with an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH3NH3PbI3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2-dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.

  1. Morphological Optimization of Perovskite Thin Films via Dynamic Zone Annealing

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Wang, Kai; Gong, Xiong; Karim, Alamgir

    2015-03-01

    Organolead Halide Perovskites have been proved to be excellent candidates for application in low-cost high-efficient solar cells owing to their superior desired optical and electrical properties, as well as compatibility with low-temperature solution-processed manufacturing. However, most perovskites applications in photovoltaics require high quality perovskite films. Although tremendous works on tuning perovskite film morphology have been reported previously, it is still a challenge to realize high quality perovskite film with controllable film uniformity and surface coverage, neither the mechanisms in the formation of perovskite. To address the issues above, here we demonstrate the effect of Dynamic Zone Annealing (DZA) on perovskite morphologies, which is proved as an efficient method to control the structure and morphology in crystalline polymer and block copolymers. Via applying the DZA method, the mechanism in perovskite film formation is studied. Furthermore, by optimizing DZA parameter such as maximum temperature, temperature gradient and zone velocity to control dendritic morphology and the grain growth, enhanced device performance was realized eventually. Equal contribution.

  2. Biotemplated synthesis of perovskite nanomaterials for solar energy conversion.

    PubMed

    Nuraje, Nurxat; Dang, Xiangnan; Qi, Jifa; Allen, Mark A; Lei, Yu; Belcher, Angela M

    2012-06-05

    A synthetic method of using genetically engineered M13 virus to mineralize perovskite nanomaterials, particularly strontium titanate (STO) and bismuth ferrite (BFO), is presented. Genetically engineered viruses provide effective templates for perovskite nanomaterials. The virus-templated nanocrystals are small in size, highly crystalline, and show photocatalytic and photovoltaic properties.

  3. Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells.

    PubMed

    Lee, Yong Hui; Luo, Jingshan; Son, Min-Kyu; Gao, Peng; Cho, Kyung Taek; Seo, Jiyoun; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-05-01

    The Al2 O3 passivation layer is beneficial for mesoporous TiO2 -based perovskite solar cells when it is deposited selectively on the compact TiO2 surface. Such a passivation layer suppressing surface recombination can be formed by thermal decomposition of the perovskite layer during post-annealing.

  4. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.

  5. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-04

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed.

  6. Recent progress and challenges of organometal halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Liyan; Barrows, Alexander T.; Lidzey, David G.; Wang, Tao

    2016-02-01

    We review recent progress in the development of organometal halide perovskite solar cells. We discuss different compounds used to construct perovskite photoactive layers, as well as the optoelectronic properties of this system. The factors that affect the morphology of the perovskite active layer are explored, e.g. material composition, film deposition methods, casting solvent and various post-treatments. Different strategies are reviewed that have recently emerged to prepare high performing perovskite films, creating polycrystalline films having either large or small grain size. Devices that are constructed using meso-superstructured and planar architectures are summarized and the impact of the fabrication process on operational efficiency is discussed. Finally, important research challenges (hysteresis, thermal and moisture instability, mechanical flexibility, as well as the development of lead-free materials) in the development of perovskite solar cells are outlined and their potential solutions are discussed.

  7. Recent progress and challenges of organometal halide perovskite solar cells.

    PubMed

    Yang, Liyan; Barrows, Alexander T; Lidzey, David G; Wang, Tao

    2016-02-01

    We review recent progress in the development of organometal halide perovskite solar cells. We discuss different compounds used to construct perovskite photoactive layers, as well as the optoelectronic properties of this system. The factors that affect the morphology of the perovskite active layer are explored, e.g. material composition, film deposition methods, casting solvent and various post-treatments. Different strategies are reviewed that have recently emerged to prepare high performing perovskite films, creating polycrystalline films having either large or small grain size. Devices that are constructed using meso-superstructured and planar architectures are summarized and the impact of the fabrication process on operational efficiency is discussed. Finally, important research challenges (hysteresis, thermal and moisture instability, mechanical flexibility, as well as the development of lead-free materials) in the development of perovskite solar cells are outlined and their potential solutions are discussed.

  8. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  9. Two-Dimensional Perovskite Activation with an Organic Luminophore.

    PubMed

    Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2015-10-07

    A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers.

  10. Self-Assembled PbSe Nanowire:Perovskite Hybrids.

    PubMed

    Yang, Zhenyu; Yassitepe, Emre; Voznyy, Oleksandr; Janmohamed, Alyf; Lan, Xinzheng; Levina, Larissa; Comin, Riccardo; Sargent, Edward H

    2015-12-02

    Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  11. Nano-structured electron transporting materials for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  12. Nano-structured electron transporting materials for perovskite solar cells.

    PubMed

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-28

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  13. Planar-integrated single-crystalline perovskite photodetectors

    PubMed Central

    Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman M.

    2015-01-01

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors. PMID:26548941

  14. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  15. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    PubMed

    Xu, Jixian; Buin, Andrei; Ip, Alexander H; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G; Maksymovych, Peter; Sargent, Edward H

    2015-05-08

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  16. Theory of hydrogen migration in organic-inorganic halide perovskites.

    PubMed

    Egger, David A; Kronik, Leeor; Rappe, Andrew M

    2015-10-12

    Solar cells based on organic-inorganic halide perovskites have recently been proven to be remarkably efficient. However, they exhibit hysteresis in their current-voltage curves, and their stability in the presence of water is problematic. Both issues are possibly related to a diffusion of defects in the perovskite material. By using first-principles calculations based on density functional theory, we study the properties of an important defect in hybrid perovskites-interstitial hydrogen. We show that differently charged defects occupy different crystal sites, which may allow for ionization-enhanced defect migration following the Bourgoin-Corbett mechanism. Our analysis highlights the structural flexibility of organic-inorganic perovskites: successive iodide displacements, combined with hydrogen bonding, enable proton diffusion with low migration barriers. These findings indicate that hydrogen defects can be mobile and thus highly relevant for the performance of perovskite solar cells.

  17. Integrating perovskite solar cells into a flexible fiber.

    PubMed

    Qiu, Longbin; Deng, Jue; Lu, Xin; Yang, Zhibin; Peng, Huisheng

    2014-09-22

    Perovskite solar cells have triggered a rapid development of new photovoltaic devices because of high energy conversion efficiencies and their all-solid-state structures. To this end, they are particularly useful for various wearable and portable electronic devices. Perovskite solar cells with a flexible fiber structure were now prepared for the first time by continuously winding an aligned multiwalled carbon nanotube sheet electrode onto a fiber electrode; photoactive perovskite materials were incorporated in between them through a solution process. The fiber-shaped perovskite solar cell exhibits an energy conversion efficiency of 3.3%, which remained stable on bending. The perovskite solar cell fibers may be woven into electronic textiles for large-scale application by well-developed textile technologies.

  18. CH3 NH3 PbBr3 -CH3 NH3 PbI3 Perovskite-Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage.

    PubMed

    Heo, Jin Hyuck; Im, Sang Hyuk

    2016-07-01

    Perovskite-perovskite tandem solar cells with open-circuit voltages of over 2.2 V are reported. These cost-effective, solution-processible perovskite hybrid tandem solar cells with high open-circuit voltages are fabricated by the simple lamination of a front planar MAPbBr3 perovskite cell and a back MAPbI3 planar perovskite solar cell.

  19. Binary halide, ternary perovskite-like, and perovskite-derivative nanostructures: hot injection synthesis and optical and photocatalytic properties.

    PubMed

    Lim, Suh-Ciuan; Lin, Hsuan-Peng; Tsai, Wei-Lun; Lin, Hao-Wu; Hsu, Yao-Tsung; Tuan, Hsing-Yu

    2017-03-17

    A variety of crystalline colloid binary halide, ternary perovskite-like and ternary perovskite-derivative nanostructures with well-defined morphologies were synthesized, thus expanding materials chemistry to the new category of nanomaterials. The optical and photocatalytic properties of ternary nanostructures were investigated.

  20. Generalized trends in the formation energies of perovskite oxides.

    PubMed

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  1. Weakening of Calcium Iridate During its Transformation from Perovskite to Post-Perovskite

    SciTech Connect

    Hunt, S.; Weidner, D; Li, L; Wang, L; Walte, N; Brodholt, J; Dobson, D

    2009-01-01

    The lowermost part of the Earth's mantle - the {approx}200-km-thick D{double_prime} layer - shows anomalous seismic properties, and is rheologically distinct from the rest of the lower mantle. The difference is thought to result from a phase transition from silicate perovskite to silicate post-perovskite. However, the rheology of the latter phase remains to be documented owing to experimental difficulties in reproducing pressures equivalent to those in the lowermost mantle. Here we address this problem by conducting laboratory experiments that use calcium iridate, which has been shown to be an appropriate low-pressure analogue. We find that the post-perovskite phase of this analogue is approximately five times weaker than its perovskite phase, and that it further weakens by a factor of two during the phase transformation; these are minimum estimates. If, as is likely, a similar weakening occurs in lower-mantle magnesium - silicate compositions, this could provide an explanation for the behaviour of the lowermost mantle as inferred from geophysical data.

  2. The structures and properties of the new two-dimensional inorganic–organic hybrid materials based on the molybdate chains

    SciTech Connect

    Li, Na; Mu, Bao; Cao, Xinyu; Huang, Rudan

    2014-09-15

    A series of inorganic organic hybrid materials based on polyoxometalates(POMs), namely, [M{sup II}(HL){sub 2}(H{sub 2}O){sub 2}][Mo{sup VI}{sub 6}O{sub 20}] [M=Co (1), Ni (2), Cu (3), Zn (4)], [Mn{sup IV}L{sub 2}(H{sub 2}O){sub 2}][Mo{sup VI}{sub 6}O{sub 20}] (5), and (HL){sub 3}PMO{sub 12}O{sub 40} (6) [L=3-(4-pyridyl)pyrazole], have been synthesized. The compounds have been characterized by elemental analysis, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. The results from single-crystal X-ray diffraction indicate that 1–5 are isostructural. It is worth noting that the polyanions are bridged by Mo–O–Mo to form 1D inorganic chains, which are further connected via M ions to form 2D nets. In compound 6, the ligands are used as the positive ions to balance the charge of the compound. Moreover, the magnetic properties of compound 5 have also been investigated in detail. - Graphical abstract: In complex 1, The Co ion is six coordinated by four oxygen atoms from two Mo{sub 6}O{sub 20} and two water molecules, and two N atoms from two different ligand. It is noticeable that there is an one-dimensional chain molybdate, which is combined by O–Mo–O, then the chain parallel with each other, the Mo{sub 6} anion acts as a bidentate ligand providing O7 atoms to bridge CoII ions to form a 2D inorganic layer. Finally every nets become 3D structure by hydrogen bond. - Highlights: • Novel inorganic–organic hybrid materials have been prepared. • Compounds 1–5 contain the 1D molybdate chains composed of (MoO{sub 6}) octahedra. • The 1D chains parallel with each other to form a 2D inorganic layer.

  3. Ferroelectricity in d0 double perovskite fluoroscandates

    NASA Astrophysics Data System (ADS)

    Charles, Nenian; Rondinelli, James M.

    2015-08-01

    Ferroelectricity in strain-free and strained double perovskite fluorides, Na3ScF6 and K2NaScF6 , is investigated using first-principles density functional theory. Although the experimental room temperature crystal structures of these fluoroscandates are centrosymmetric, i.e., Na3ScF6 (P 21/n ) and K2NaScF6 (F m 3 ¯m ), lattice dynamical calculations reveal that soft polar instabilities exist in each prototypical cubic phase and that the modes harden as the tolerance factor approaches unity. Thus the double fluoroperovskites bear some similarities to A B O3 perovskite oxides; however, in contrast, these fluorides exhibit large acentric displacements of alkali metal cations (Na, K) rather than polar displacements of the transition metal cations. Biaxial strain investigations of the centrosymmetric and polar Na3ScF6 and K2NaScF6 phases reveal that the paraelectric structures are favored under compressive strain, whereas polar structures with in-plane electric polarizations (˜5 -18 μ C cm-2 ) are realized at sufficiently large tensile strains. The electric polarization and stability of the polar structures for both chemistries are found to be further enhanced and stabilized by a coexisting single octahedral tilt system. Our results suggest that polar double perovskite fluorides may be realized by suppression of octahedral rotations about more than one Cartesian axis; structures exhibiting in- or out-of-phase octahedral rotations about the c axis are more susceptible to polar symmetries.

  4. The Photophysics of Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Sum, Tze-Chien

    2015-03-01

    Solution processed organic-inorganic lead halide perovskite solar cells, with power conversion efficiencies approaching 20%, are presently the forerunner amongst the next generation photovoltaic technologies. These remarkable performances can be attributed to their large absorption coefficients, long charge carrier diffusion lengths and low non-radiative recombination rates. In addition, these materials also possess excellent light emission and optical gain properties. In this talk, I will review the developmental milestones in this field and distil the recent findings on the photophysical mechanisms of this remarkable material. I will also highlight some of our latest charge dynamics studies and other investigations on the novel properties of this amazing material system.

  5. Computational mineral physics and the physical properties of perovskite.

    PubMed

    Brodholt, John P; Oganov, A R; Price, G D

    2002-11-15

    The inherent uncertainties in modern first-principles calculations are reviewed using geophysically relevant examples. The elastic constants of perovskite at lower-mantle temperatures and pressures are calculated using ab initio molecular dynamics. These are used in conjunction with seismic tomographic models to estimate that the lateral temperature contrasts in the Earth's lower mantle are 800 K at a depth of 1000 km, and 1500 K at a depth of 2000 km. The effect of Al(3+) on the compressibility of MgSiO(3) perovskite is calculated using three different pseudopotentials. The results confirm earlier work and show that the compressibility of perovskites with Al(3+) substituted for both Si(4+) and Mg(2+) is very similar to the compressibility of Al(3+)-free perovskite. Even when 100% of the Si(4+) and Mg(2+) ions are replaced with Al(3+), the bulk modulus is only 7% less than that for Al(3+)-free perovskite. In contrast, perovskites where Al(3+) substitutes for Si(4+) only and that are charge balanced by oxygen vacancies do show higher compressibilities. When corrected to similar concentrations of Al(3+), the calculated compressibilities of the oxygen-vacancy-rich perovskites are in agreement with experimental results.

  6. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGES

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; ...

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  7. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    SciTech Connect

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.

  8. Modeling of optical losses in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Taghavi, M. Javad; Houshmand, Mohammad; Zandi, M. Hossein; Gorji, Nima E.

    2016-09-01

    The optical losses within the structure of hybrid perovskite solar cells are investigated using only the optical properties of each layer e.g. refractive index and extinction coefficient. This model allows calculating the transmission/reflection rates at the interfaces and absorption loss within any layer. Then, the short circuit current density and loss percentage are calculated versus the perovskite and TiO2 thicknesses from 50 nm to 150 nm. To make our calculations closer to reality, we extracted the optical properties of each device component from the literature reports on glass/TCO/TiO2/perovskite/metal. The simulations were fitted with the experimental results of some relevant references. Our simulations show that ITO transmits the light better than SnO2 as the TCO front electrode, and the light reflection at both sides of the perovskite layer, e.g. at TiO2/perovskite and perovskite/Spiro-OMeTAD, is lower than 25%. The light interference and multiple reflections have been accounted in our calculations and finally we showed that a thicker TiO2 and perovskite cause more optical loss in current density due to stronger absorption.

  9. Improving the photovoltaic performance of perovskite solar cells with acetate

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-12-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  10. Understanding chemical expansion in perovskite-structured oxides.

    PubMed

    Marrocchelli, Dario; Perry, Nicola H; Bishop, Sean R

    2015-04-21

    In this work, chemical expansion in perovskite oxides was characterized in detail, motivated, inter alia, by a desire to understand the lower chemical expansion coefficients observed for perovskites in comparison to fluorite-structured oxides. Changes in lattice parameter and in local atomic arrangements taking place during compositional changes of perovskites, i.e., stoichiometric expansion, were investigated by developing an empirical model and through molecular dynamics and density functional theory atomistic simulations. An accurate empirical expression for predicting lattice constants of perovskites was developed, using a similar approach to previous reports. From this equation, analytical expressions relating chemical expansion coefficients to separate contributions from the cation and anion sublattices, assuming Shannon ionic radii, were developed and used to isolate the effective radius of an oxygen vacancy, rV. Using both experimental and simulated chemical expansion coefficient data, rV for a variety of perovskite compositions was estimated, and trends in rV were studied. In most cases, rV was slightly smaller than or similar to the radius of an oxide ion, but larger than in the fluorite structured materials. This result was in good agreement with the atomistic simulations, showing contractive relaxations of the closest oxide ions towards the oxygen vacancy. The results indicate that the smaller chemical expansion coefficients of perovskites vs. fluorites are largely due to the smaller change in cation radii in perovskites, given that the contraction around the oxygen vacancy appears to be less in this structure. Limitations of applicability for the model are discussed.

  11. Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Shao, Zongping

    2017-03-01

    Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen-based renewable-energy technologies such as rechargeable metal-air batteries, regenerative fuel cells and water splitting. Perovskite oxides have recently attracted increasing interest and hold great promise as efficient ORR and OER catalysts to replace noble-metal-based catalysts, owing to their high intrinsic catalytic activity, abundant variety, low cost, and rich resources. The introduction of perovskite-carbon interfaces by forming perovskite/carbon composites may bring a synergistic effect between the two phases, thus benefiting the oxygen electrocatalysis. This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media, aiming to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of the perovskites, the multiple roles of carbon, the synthetic method and the synergistic effect. A special emphasis is placed on the origin of the synergistic effect associated with the interfacial interaction between the perovskite and the carbon phases for enhanced ORR/OER performance. Finally, the existing challenges and the future directions for the synthesis and development of more efficient oxygen catalysts based on perovskite/carbon composites are proposed.

  12. Anion order in perovskites: a group-theoretical analysis.

    PubMed

    Talanov, M V; Shirokov, V B; Talanov, V M

    2016-03-01

    Anion ordering in the structure of cubic perovskite has been investigated by the group-theoretical method. The possibility of the existence of 261 ordered low-symmetry structures, each with a unique space-group symmetry, is established. These results include five binary and 14 ternary anion superstructures. The 261 idealized anion-ordered perovskite structures are considered as aristotypes, giving rise to different derivatives. The structures of these derivatives are formed by tilting of BO6 octahedra, distortions caused by the cooperative Jahn-Teller effect and other physical effects. Some derivatives of aristotypes exist as real substances, and some as virtual ones. A classification of aristotypes of anion superstructures in perovskite is proposed: the AX class (the simultaneous ordering of A cations and anions in cubic perovskite structure), the BX class (the simultaneous ordering of B cations and anions) and the X class (the ordering of anions only in cubic perovskite structure). In most perovskites anion ordering is accompanied by cation ordering. Therefore, the main classes of anion order in perovskites are the AX and BX classes. The calculated structures of some anion superstructures are reported. Comparison of predictions and experimentally investigated anion superstructures shows coherency of theoretical and experimental results.

  13. Improving the photovoltaic performance of perovskite solar cells with acetate.

    PubMed

    Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P

    2016-12-09

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  14. Improving the photovoltaic performance of perovskite solar cells with acetate

    PubMed Central

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-01-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924

  15. Electronic spin state of iron in lower mantle perovskite

    SciTech Connect

    Li, J.; Struzhkin, V.; Mao, H.-k.; Shu, J.; Hemley, R.; Fei, Y.; Mysen, B.; Dera, P.; Parapenka, V.; Shen, G.

    2010-11-16

    The electronic spin state of iron in lower mantle perovskite is one of the fundamental parameters that governs the physics and chemistry of the most voluminous and massive shell in the Earth. We present experimental evidence for spin-pairing transition in aluminum-bearing silicate perovskite (Mg,Fe)(Si,Al)O{sub 3} under the lower mantle pressures. Our results demonstrate that as pressure increases, iron in perovskite transforms gradually from the initial high-spin state toward the final low-spin state. At 100 GPa, both aluminum-free and aluminum-bearing samples exhibit a mixed spin state. The residual magnetic moment in the aluminum-bearing perovskite is significantly higher than that in its aluminum-free counterpart. The observed spin evolution with pressure can be explained by the presence of multiple iron species and the occurrence of partial spin-paring transitions in the perovskite. Pressure-induced spin-pairing transitions in the perovskite would have important bearing on the magnetic, thermoelastic, and transport properties of the lower mantle, and on the distribution of iron in the Earth's interior. The lower mantle constitutes more than half of the Earth's interior by volume (1), and it is believed to consist predominantly (80-100%) of (Mg,Fe)(Si,Al)O{sub 3} perovskite (hereafter called perovskite), with up to 20% (Mg,Fe)O ferropericlase (2). The electronic spin state of iron has direct influence on the physical properties and chemical behavior of its host phase. Hence, knowledge on the spin state of iron is important for the interpretation of seismic observations, geochemical modeling, and geodynamic simulation of the Earth's deep interior (3, 4). Crystal field theory (4, 5) and band theory (6) predicted that a high-spin to low-spin transition would occur as a result of compression. To date, no experimental data exist on the spin sate of iron in Al-bearing perovskite. To detect possible spinpairing transition of iron in perovskite under the lower mantle

  16. Topochemical synthesis of cation ordered double perovskite oxynitrides.

    PubMed

    Ceravola, Roberta; Oró-Solé, Judith; Black, Ashley P; Ritter, Clemens; Puente Orench, Inés; Mata, Ignasi; Molins, Elies; Frontera, Carlos; Fuertes, Amparo

    2017-03-27

    Topochemical nitridation in ammonia at moderate temperatures of cation ordered Sr2FeWO6 produces new antiferromagnetic double perovskite oxynitrides Sr2FeWO6-xNx with 0 < x ≤ 1. Nitrogen introduction induces the oxidation of Fe(2+) to Fe(3+) and decreases TN from 38 K (x = 0) to 13 K for Sr2FeWO5N which represents the first example of a double perovskite oxynitride with both high cationic order and nitrogen content. This synthetic approach can be extended to other cation combinations expanding the possibility of new materials in the large group of double perovskites.

  17. NREL Studies Carrier Separation and Transport in Perovskite Solar Cells

    SciTech Connect

    2016-01-01

    NREL scientists studied charge separation and transport in perovskite solar cells by determining the junction structure across the solar device using the nanoelectrical characterization technique of Kelvin probe force microscopy. The distribution of electrical potential across both planar and porous devices demonstrates a p-n junction structure at the interface between titanium dioxide and perovskite. In addition, minority-carrier transport within the devices operates under diffusion/drift. Clarifying the fundamental junction structure provides significant guidance for future research and development. This NREL study points to the fact that improving carrier mobility is a critical factor for continued efficiency gains in perovskite solar cells.

  18. Combination of Pichia membranifaciens and ammonium molybdate for controlling blue mould caused by Penicillium expansum in peach fruit.

    PubMed

    Cao, Shifeng; Yuan, Yongjun; Hu, Zhichao; Zheng, Yonghua

    2010-07-15

    The potential enhancement of Pichia membranifaciens by ammonium molybdate (NH(4)Mo) to control blue mould caused by Penicillium expansum on peach fruit was investigated. Combining P. membranifaciens at 1x10(8) cell/ml with 1 mM NH(4)Mo provided a more effective control of blue mould rot than applying the yeast or NH(4)Mo alone. Addition of 1 mM NH(4)Mo significantly increased the growth of P. membranifaciens in peach wounds, but did not affect the population in nutrient yeast dextrose broth medium. The in vitro experiment showed that the combined treatment inhibited spore germination and germ tube elongation of P. expansum in comparison with the treatment of P. membranifaciens or NH(4)Mo alone. Moreover, P. membranifaciens, NH(4)Mo, and the combination of them did not impair the quality parameters including fruit firmness and content of total soluble solids, titratable acidity and vitamin C of peach fruit after 6 days of storage at 20 degrees C. These results suggested that the use of NH(4)Mo is a useful approach to improve the efficacy of P. membranifaciens for postharvest disease control in peach fruit.

  19. Molten-salt synthesis and composition-dependent luminescent properties of barium tungsto-molybdate-based solid solution phosphors

    NASA Astrophysics Data System (ADS)

    Xiang-Hong, He; Zhao-Lian, Ye; Ming-Yun, Guan; Ning, Lian; Jian-Hua, Sun

    2016-02-01

    Pr3+-activated barium tungsto-molybdate solid solution phosphor Ba(Mo1-zWz)O4:Pr3+ is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr3+-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO4] for [MoO4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo1-zWz)O4:Pr3+ owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity, well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white light-emitting diodes (LEDs). Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology, China, the Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, China (Grant No. KHK1409), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the National Natural Science Foundation of China (Grant No. 21373103).

  20. Network structure of molybdate glasses by neutron and X-ray diffraction and reverse Monte Carlo modelling

    NASA Astrophysics Data System (ADS)

    Fabian, M.; Svab, E.; Krezhov, K.

    2016-09-01

    Rare-earth molybdate glasses have been prepared by rapid quench technique, the network structure was investigated by neutron and high-energy X-ray diffraction. For data evaluation the reverse Monte Carlo simulation technique was applied to obtain a possible 3dimensional network configuration, which is consistent with the experimental data. From the modelling the partial atomic correlation functions giJ(r) and the coordination number distributions CNij have been revealed. Formation of MoO4 (55%) and MoO6 (25%) units was established for the binary 90MoO3-10Nd2O3 glass. The B-O first neighbour distribution show a relatively broad first neighbour distance at 1.40A, the average coordination numbers show the presents of trigonal BO3 and tetrahedral BO4 groups. For 50MoO3-25Nd2O3-25B2O3 sample mixed MoO4-BO4 and MoO4-BO3 linkages form pronounced intermediate-range order.

  1. Lasing properties of selectively pumped Raman-active Nd{sup 3+}-doped molybdate and tungstate crystals

    SciTech Connect

    Basiev, Tasoltan T; Doroshenko, Maxim E; Ivleva, Lyudmila I; Osiko, Vyacheslav V; Kosmyna, M B; Komar', V K; Sulc, J; Jelinkova, H

    2006-08-31

    The lasing efficiency of Nd{sup 3+} ions is studied in laser materials capable of self-Raman frequency conversion. The lasing properties of tungstate and molybdate crystals with the scheelite structure (SrWO{sub 4}, BaWO{sub 4}, PbWO{sub 4}, SrMoO{sub 4}, PbMoO{sub 4}) activated with neodymium ions are investigated upon longitudinal pumping by a 750-nm alexandrite laser or a 800-nm diode laser. The slope lasing efficiency obtained for a Nd{sup 3+}:PbMoO{sub 4} laser emitting at 1054 nm is 54.3% for the total lasing efficiency of 46%, which is the best result for all the crystals with the scheelite structure studied so far. The simultaneous Q-switched lasing and self-Raman frequency conversion were demonstrated in neodymium-doped SrWO{sub 4}, PbWO{sub 4}, and BaWO{sub 4} crystals. (papers devoted to the 90th anniversary of a.m.prokhorov)

  2. Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs2NaBi(MoO4)3

    NASA Astrophysics Data System (ADS)

    Savina, A. A.; Atuchin, V. V.; Solodovnikov, S. F.; Solodovnikova, Z. A.; Krylov, A. S.; Maximovskiy, E. A.; Molokeev, M. S.; Oreshonkov, A. S.; Pugachev, A. M.; Khaikina, E. G.

    2015-05-01

    New ternary molybdate Cs2NaBi(MoO4)3 is synthesized in the system Na2MoO4-Cs2MoO4-Bi2(MoO4)3. The structure of Cs2NaBi(MoO4)3 of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å3, Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs2NaBi(MoO4)3 up to the melting point at 826 K. The compound shows an SHG signal, I2w/I2w(SiO2)=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured.

  3. High-temperature behavior of dicesium molybdate Cs2MoO4: Implications for fast neutron reactors

    NASA Astrophysics Data System (ADS)

    Wallez, Gilles; Raison, Philippe E.; Smith, Anna L.; Clavier, Nicolas; Dacheux, Nicolas

    2014-07-01

    Dicesium molybdate (Cs2MoO4)'s thermal expansion and crystal structure have been investigated herein by high temperature X ray diffraction in conjunction with Raman spectroscopy. This first crystal-chemical insight at high temperature is aimed at predicting the thermostructural and thermomechanical behavior of this oxide formed by the accumulation of Cs and Mo fission products at the periphery of nuclear fuel rods in sodium-cooled fast reactors. Within the temperature range of the fuel's rim, Cs2MoO4 becomes hexagonal P63/mmc, with disordered MoO4 tetrahedra and 2D distribution of Cs-O bonds that makes thermal axial expansion both large (50≤αl≤70 10-6 °C-1, 500-800 °C) and highly anisotropic (αc-αa=67×10-6 °C-1, hexagonal form). The difference with the fuel's expansion coefficient is of potential concern with respect to the cohesion of the Cs2MoO4 surface film and the possible release of cesium radionuclides in accidental situations.

  4. Novel Properties of Atomically Arranged Perovskites

    NASA Astrophysics Data System (ADS)

    Dabrowski, B.; Kolesnik, S.; Chmaissem, O.; Suescun, L.; Mais, J.

    2007-01-01

    Perovskites AMO3-δ attain unique electronic, magnetic, ferroelectric, thermoelectric, mixed-conducting, and other functional properties through selection of the A- and M-site ions, their fractions, ionic sizes and valences, spin states, and orbital orderings, as well as the oxygen content and vacancy ordering. We illustrate here our systematic exploration of the effects of composition, temperature, pressure, and oxygen content on the thermodynamic stability and magnetic properties for La1-x-ySrxBayMnO3 manganites. Parameters controlling magnetic transitions are identified through examples of single-valent compounds of RMnO3 (the Mn-O-Mn bond angles that can be equivalently described in terms of the tolerance factor) and Sr1-xCaxMnO3 (the tolerance factor and disorder described in terms of the variance of A-site ion sizes), and the mixed-valent La0.5Sr0.5-yBayMnO3 (the tolerance factor, variance of sizes, and the local strains described in terms of the elongated Mn-O bonds). By using an example of kinetically stable, atomically-ordered layered-perovskites we show that improved useful properties, such as the increase in the Curie temperature TC and enhancement of colossal magneto-resistive effect at room temperature, can be achieved through decreases in structural distortions such as variance of sizes and local strains.

  5. Perspectives on organolead halide perovskite photovoltaics

    NASA Astrophysics Data System (ADS)

    Hariz, Alex

    2016-07-01

    A number of photovoltaic technologies have been developed for large-scale solar-power production. The single-crystal first-generation photovoltaic devices were followed by thin-film semiconductor absorber layers layered between two charge-selective contacts, and more recently, by nanostructured or mesostructured solar cells that utilize a distributed heterojunction to generate charge carriers and to transport holes and electrons in spatially separated conduits. Even though a number of materials have been trialed in nanostructured devices, the aim of achieving high-efficiency thin-film solar cells in such a manner as to rival the silicon technology has yet to be attained. Organolead halide perovskites have recently emerged as a promising material for high-efficiency nanoinfiltrated devices. An examination of the efficiency evolution curve reveals that interfaces play a paramount role in emerging organic electronic applications. To optimize and control the performance in these devices, a comprehensive understanding of the contacts is essential. However, despite the apparent advances made, a fundamental theoretical analysis of the physical processes taking place at the contacts is still lacking. However, experimental ideas, such as the use of interlayer films, are forging marked improvements in efficiencies of perovskite-based solar cells. Furthermore, issues of long-term stability and large-area manufacturing have some way to go before full commercialization is possible.

  6. Finding New Perovskite Halides via Machine learning

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  7. Superelastic Softening of Perovskites at Seismic Frequencies

    NASA Astrophysics Data System (ADS)

    Harrison, R. J.; Redfern, S. A.

    2001-12-01

    Recent experimental and theoretical studies agree that the lower mantle is significantly anelastic (i.e. there is a time-dependence of the elastic strain, causing attenuation of seismic waves). The origin of this anelasticity is still debated, however. A possible cause is the viscous motion of transformation twin walls. Here we use dynamical mechanical analysis (DMA) to study the effect of transformation twinning on the seismic-frequency elastic properties of perovskites at high temperature. We apply the technique to (Ca, Sr)TiO3, a close structural analogue of the MgSiO3 perovskite phase believed to make up more than 70% of the Earth's lower mantle. We demonstrate that superelastic behaviour associated with the motion of transformation twin walls dominates the elastic response over a temperature range spanning several hundred degrees. This is accompanied by a factor-of-two decrease in the Young's modulus below the cubic to tetragonal phase transition and a rapid increase in attenuation. Freezing of twin domain walls at lower temperatures leads to elastic stiffening and a broad peak in attenuation (tan δ > 0.1 at 200 ° C and 1 Hz). The observations confirm transformation twinning as a possible source of anelasticity and rheological weakening in the lower mantle.

  8. Neutral color semitransparent microstructured perovskite solar cells.

    PubMed

    Eperon, Giles E; Burlakov, Victor M; Goriely, Alain; Snaith, Henry J

    2014-01-28

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium.

  9. Finding new perovskite halides via machine learning

    SciTech Connect

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  10. Finding new perovskite halides via machine learning

    DOE PAGES

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; ...

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vectormore » machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.« less

  11. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  12. Perovskite Solar Cells: High Efficiency Pb-In Binary Metal Perovskite Solar Cells (Adv. Mater. 31/2016).

    PubMed

    Wang, Zhao-Kui; Li, Meng; Yang, Ying-Guo; Hu, Yun; Ma, Heng; Gao, Xing-Yu; Liao, Liang-Sheng

    2016-08-01

    On page 6695, X. Y. Gao, L.-S. Liao, and co-workers describe the fabrication of mixed Pb-In perovskite solar cells, using indium (III) chloride and lead (II) chloride with methylammonium iodide. A maximum power conversion efficiency as high as 17.55% is achieved owing to the high quality of the perovskites with multiple ordered crystal orientations. This work demonstrates the possibility of substituting the Pb (II) by using In (III), which opens a broad route to fabricating alloy perovskite solar cells with mitigated ecological impact.

  13. Synthesis of hybrid organic-inorganic perovskite platelets by vacuum impregnation

    NASA Astrophysics Data System (ADS)

    Manthina, Venkata; Agrios, Alexander G.

    2016-11-01

    In perovskite solar cells and optoelectronics, perovskite film morphology controls the performance of the device. Various methods have been developed to control the morphology and coverage of the perovskite films. In this article platelet type perovskite morphlogy was synthesized using low temperature vacuum impregnation of the perovskite solution CH3NH3PbI3 resulting in complete coverage on TiO2 film. Vacuum impregnation synthesis of perovskites has the advantage of low cost and low temperature which faciliates application in flexible electronics and solar cells.

  14. Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhang, Ying; Li, Yanping; Li, Miaoyu

    2015-07-01

    Perovskite-sensitized nanoporous TiO2 films with different thicknesses are prepared by an in situ method, which are employed as photoanodes in perovskite solar cells (PSCs). The photoelectrochemical properties of different photoanodes are quantified by the ultraviolet to visible reflectance spectra, incident monochromatic photon-to-current conversion efficiency, and electrochemical impedance spectroscopy measurements. Results demonstrate that the thin photoanode has high electron lifetime for recombination, which can enhance the separation and transmission of the electron and hole. However, the sunlight utilization will decrease with reducing the photoanode thickness due to the small quantity of CH3NH3PbI3 filled into the photoanode to absorb sunlight. After optimization, PSC with 0.80 μm of the photoanode thickness shows a superior cell efficiency of 12.22% without a hole transporting material.

  15. Tetravalent dysprosium in a perovskite-type oxide.

    PubMed

    Han, Donglin; Uda, Tetsuya; Nose, Yoshitaro; Okajima, Toshihiro; Murata, Hidenobu; Tanaka, Isao; Shinoda, Kozo

    2012-04-17

    The existence of tetravalent dysprosium in perovskite-type oxide barium zirconate is confirmed in this work. This discovery will stimulate many researchers in diverse fields such as catalysts, solid state ionics, sensors, and fluorescent materials.

  16. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    SciTech Connect

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian; Maksymovych, Petro; Sargent, Edward H.

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  17. Laser Direct Write Synthesis of Lead Halide Perovskites

    SciTech Connect

    Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.; Meyer, Kristin C.; Biedermann, Laura B.; Okur, Serdal; Burckel, D. Bruce; Carter, C. Barry; Kaehr, Bryan

    2016-09-05

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH3NH3PbBr3 on a range of substrates and fabricate and characterize a microscale photodetector using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.

  18. Laser Direct Write Synthesis of Lead Halide Perovskites

    DOE PAGES

    Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.; ...

    2016-09-05

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH3NH3PbBr3 on a range of substrates and fabricate and characterize a microscale photodetector using this approach.more » This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less

  19. Recent progress in efficient hybrid lead halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Cui, Jin; Yuan, Huailiang; Li, Junpeng; Xu, Xiaobao; Shen, Yan; Lin, Hong; Wang, Mingkui

    2015-06-01

    The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices.

  20. Recent progress in efficient hybrid lead halide perovskite solar cells.

    PubMed

    Cui, Jin; Yuan, Huailiang; Li, Junpeng; Xu, Xiaobao; Shen, Yan; Lin, Hong; Wang, Mingkui

    2015-06-01

    The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices.

  1. Double Charged Surface Layers in Lead Halide Perovskite Crystals.

    PubMed

    Sarmah, Smritakshi P; Burlakov, Victor M; Yengel, Emre; Murali, Banavoth; Alarousu, Erkki; El-Zohry, Ahmed M; Yang, Chen; Alias, Mohd S; Zhumekenov, Ayan A; Saidaminov, Makhsud I; Cho, Namchul; Wehbe, Nimer; Mitra, Somak; Ajia, Idris; Dey, Sukumar; Mansour, Ahmed E; Abdelsamie, Maged; Amassian, Aram; Roqan, Iman S; Ooi, Boon S; Goriely, Alain; Bakr, Osman M; Mohammed, Omar F

    2017-03-08

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface's optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  2. Laser Direct Write Synthesis of Lead Halide Perovskites.

    PubMed

    Chou, Stanley S; Swartzentruber, Brian S; Janish, Matthew T; Meyer, Kristin C; Biedermann, Laura B; Okur, Serdal; Burckel, D Bruce; Carter, C Barry; Kaehr, Bryan

    2016-10-06

    Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. Here we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We demonstrate arbitrary pattern formation of crystalline CH3NH3PbBr3 on a range of substrates and fabricate and characterize a microscale photodetector using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.

  3. Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters.

    PubMed

    Hu, Fengrui; Zhang, Huichao; Sun, Chun; Yin, Chunyang; Lv, Bihu; Zhang, Chunfeng; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2015-12-22

    The power conversion efficiency of photovoltaic devices based on semiconductor perovskites has reached ∼20% after just several years of research efforts. With concomitant discoveries of other promising applications in lasers, light-emitting diodes, and photodetectors, it is natural to anticipate what further excitement these exotic perovskites could bring about. Here we report on the observation of single photon emission from single CsPbBr3 perovskite nanocrystals (NCs) synthesized from a facile colloidal approach. Compared with traditional metal-chalcogenide NCs, these CsPbBr3 NCs exhibit nearly 2 orders of magnitude increase in their absorption cross sections at similar emission colors. Moreover, the radiative lifetime of CsPbBr3 NCs is greatly shortened at both room and cryogenic temperatures to favor an extremely fast output of single photons. The above superior optical properties have paved the way toward quantum-light applications of perovskite NCs in various quantum information processing schemes.

  4. Morphology control of the perovskite films for efficient solar cells.

    PubMed

    Zheng, Lingling; Zhang, Danfei; Ma, Yingzhuang; Lu, Zelin; Chen, Zhijian; Wang, Shufeng; Xiao, Lixin; Gong, Qihuang

    2015-06-21

    In the past two years, the power conversion efficiency (PCE) of organic-inorganic hybrid perovskite solar cells has significantly increased up to 20.1%. These state-of-the-art new devices surpass other third-generation solar cells to become the most promising rival to the silicon-based solar cells. Since the morphology of the perovskite film is one of the most crucial factors to affect the performance of the device, many approaches have been developed for its improvement. This review provides a systematical summary of the methods for morphology control. Introductions and discussions on the mechanisms and relevant hotspots are also given. Understanding the growth process of perovskite crystallites has great benefits for further efficiency improvement and enlightens us to exploit new technologies for large-scale, low-cost and high-performance perovskite solar cells.

  5. Radiative efficiency of lead iodide based perovskite solar cells

    PubMed Central

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate. PMID:25317958

  6. Perovskite as light harvester: a game changer in photovoltaics.

    PubMed

    Kazim, Samrana; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Ahmad, Shahzada

    2014-03-10

    It is not often that the scientific community is blessed with a material, which brings enormous hopes and receives special attention. When it does, it expands at a rapid pace and its every dimension creates curiosity. One such material is perovskite, which has triggered the development of new device architectures in energy conversion. Perovskites are of great interest in photovoltaic devices due to their panchromatic light absorption and ambipolar behavior. Power conversion efficiencies have been doubled in less than a year and over 15% is being now measured in labs. Every digit increment in efficiency is being celebrated widely in the scientific community and is being discussed in industry. Here we provide a summary on the use of perovskite for inexpensive solar cells fabrication. It will not be unrealistic to speculate that one day perovskite-based solar cells can match the capability and capacity of existing technologies.

  7. Hole-Transport Materials for Perovskite Solar Cells.

    PubMed

    Calió, Laura; Kazim, Samrana; Grätzel, Michael; Ahmad, Shahzada

    2016-11-14

    The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials.

  8. In2O3 based perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Dong, Qi; Liu, Fangzhou; Wong, Man Kwong; Djurišić, Aleksandra B.; Ren, Zhiwei; Shen, Qian; Ng, Annie; Surya, Charles; Chan, Wai Kin

    2016-02-01

    Hybrid organic-inorganic perovskite solar cells have attracted lots of attention in recent years. Growth and properties of perovskite layer and its relationship to photovoltaic performance have been extensively studied. Comparably less attention was devoted to the research of the influence of electron transporting layer (ETL). Conventionally, TiO2 is selected as ETL. However, photocatalytic property of this transparent conductive metal oxide reduces the stability of perovskite solar cells under illumination. To realize the commercialization, the stability of perovskite solar cell must be improved. In this study, we replace TiO2 by In2O3, which is not only transparent and conductive, but also has little photocatalytic effect and it has higher electron mobility than TiO2. Investigation on different solution process methods of In2O3 as ETL is demonstrated.

  9. Numerical modeling of perovskite solar cells with a planar structure

    NASA Astrophysics Data System (ADS)

    Malyukov, S. P.; Sayenko, A. V.; Ivanova, A. V.

    2016-10-01

    The paper is devoted to the research and development of high-efficiency solar cells with a planar perovskite n-i-p structure. A numerical model of this solar cell in the drift- diffusion approximation based on Poisson equation and continuity equations provided to determine their photoelectric characteristics and design optimization. The author considers the spectral photogeneration, bulk and surface recombination, transport charge carriers in perovskite and their collection by the electron and hole transport layers. As a result of the simulation, it was obtained efficiency dependence on perovskite absorber material thickness and lifetime (diffusion length) of the charge carriers. It is found that in addition to absorption coefficient optimal perovskite thickness is determined largely by the charge carrier diffusion length, and it has the upper limit in thickness of 500-600 nm.

  10. Highly Efficient Perovskite Solar Cells with Tunable Structural Color

    PubMed Central

    2015-01-01

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources. PMID:25650872

  11. Radiative efficiency of lead iodide based perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-08-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.

  12. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  13. Synthesis, properties, and optical applications of low-dimensional perovskites.

    PubMed

    Zhang, Yupeng; Liu, Jingying; Wang, Ziyu; Xue, Yunzhou; Ou, Qingdong; Polavarapu, Lakshminarayana; Zheng, Jialu; Qi, Xiang; Bao, Qiaoliang

    2016-11-17

    Metal-halide perovskites have been hailed as remarkable materials for photovoltaic devices and, recently, their star has also been on the rise in optoelectronics and photonics. In particular, the optical properties of a metal-halide perovskite can be widely manipulated once its bulk structure has been reduced to a low-dimensional structure, allowing multiple functionalities of light generation, emission, transmission, and detection to be realized in one material. In this paper, we highlight the recent advances in the synthesis of low-dimensional metal-halide perovskites and their unique properties as well as their novel optoelectronic and photonic applications. It is anticipated that this review can serve as an overview and evaluation of state-of-the-art synthesis techniques as well as nanoscale optoelectronics and photonics based on low-dimensional perovskite nanocrystals.

  14. Recent progress in efficient hybrid lead halide perovskite solar cells

    PubMed Central

    Cui, Jin; Yuan, Huailiang; Li, Junpeng; Xu, Xiaobao; Shen, Yan; Lin, Hong; Wang, Mingkui

    2015-01-01

    The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices. PMID:27877815

  15. Trapped charge-driven degradation of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ahn, Namyoung; Kwak, Kwisung; Jang, Min Seok; Yoon, Heetae; Lee, Byung Yang; Lee, Jong-Kwon; Pikhitsa, Peter V.; Byun, Junseop; Choi, Mansoo

    2016-11-01

    Perovskite solar cells have shown unprecedent performance increase up to 22% efficiency. However, their photovoltaic performance has shown fast deterioration under light illumination in the presence of humid air even with encapulation. The stability of perovskite materials has been unsolved and its mechanism has been elusive. Here we uncover a mechanism for irreversible degradation of perovskite materials in which trapped charges, regardless of the polarity, play a decisive role. An experimental setup using different polarity ions revealed that the moisture-induced irreversible dissociation of perovskite materials is triggered by charges trapped along grain boundaries. We also identified the synergetic effect of oxygen on the process of moisture-induced degradation. The deprotonation of organic cations by trapped charge-induced local electric field would be attributed to the initiation of irreversible decomposition.

  16. Recent advances of lanthanum-based perovskite oxides for catalysis

    SciTech Connect

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.

  17. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGES

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  18. Highly efficient perovskite solar cells with tunable structural color.

    PubMed

    Zhang, Wei; Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Johnston, Michael B; Míguez, Hernán; Snaith, Henry J

    2015-03-11

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.

  19. Magnetism in Re-based ferrimagnetic double perovskites

    NASA Astrophysics Data System (ADS)

    Winkler, A.; Narayanan, N.; Mikhailova, D.; Bramnik, K. G.; Ehrenberg, H.; Fuess, H.; Vaitheeswaran, G.; Kanchana, V.; Wilhelm, F.; Rogalev, A.; Kolchinskaya, A.; Alff, L.

    2009-07-01

    We have investigated spin and orbital magnetic moments of the Re 5d ion in the double perovskites A2FeReO6 (A=Ba, Sr, Ca) by x-ray magnetic circular dichroism (XMCD) at the Re L2, 3 edges. In these ferrimagnetic compounds, an unusually large negative spin and positive orbital magnetic moment at the Re atoms was detected. The presence of a finite spin magnetic moment in a 'non-magnetic' double perovskite as observed in the double perovskite Sr2ScReO6 proves that Re has also a small, but finite intrinsic magnetic moment. We further show for the examples of Ba and Ca that the usually neglected alkaline earth ions undoubtedly also contribute to the magnetism in the ferrimagnetic double perovskites.

  20. Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture.

    PubMed

    Xu, Xiaobao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Liu, Zonghao; Chang, Wei-Hsuan; Sun, Pengyu; Chen, Huajun; De Marco, Nicholas; Wang, Mingkui; Yang, Yang

    2015-10-14

    In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

  1. Trapped charge-driven degradation of perovskite solar cells

    PubMed Central

    Ahn, Namyoung; Kwak, Kwisung; Jang, Min Seok; Yoon, Heetae; Lee, Byung Yang; Lee, Jong-Kwon; Pikhitsa, Peter V.; Byun, Junseop; Choi, Mansoo

    2016-01-01

    Perovskite solar cells have shown unprecedent performance increase up to 22% efficiency. However, their photovoltaic performance has shown fast deterioration under light illumination in the presence of humid air even with encapulation. The stability of perovskite materials has been unsolved and its mechanism has been elusive. Here we uncover a mechanism for irreversible degradation of perovskite materials in which trapped charges, regardless of the polarity, play a decisive role. An experimental setup using different polarity ions revealed that the moisture-induced irreversible dissociation of perovskite materials is triggered by charges trapped along grain boundaries. We also identified the synergetic effect of oxygen on the process of moisture-induced degradation. The deprotonation of organic cations by trapped charge-induced local electric field would be attributed to the initiation of irreversible decomposition. PMID:27830709

  2. Perovskite solar cells: On top of commercial photovoltaics

    NASA Astrophysics Data System (ADS)

    Albrecht, Steve; Rech, Bernd

    2017-01-01

    The efficiency of single-junction solar cells is intrinsically limited and high efficiency multi-junctions are not cost effective yet. Now, semi-transparent perovskite solar cells suggest that low cost multi-junctions could be within reach.

  3. Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Li, Shibin; Zhang, Peng; Chen, Hao; Wang, Yafei; Liu, Detao; Wu, Jiang; Sarvari, Hojjatollah; Chen, Zhi David

    2017-02-01

    Perovskite solar cells (PSCs) have attracted great attention due to their low cost and high power conversion efficiency (PCE). However, the defects and grain boundaries in perovskite films dramatically degrade their performance. Here, we show a two-step annealing method to produce mesoporous PbI2 films for growth of continuous, pinhole-free perovskite films with large grains, followed by additional ethanol vapor annealing of perovskite films to reduce the defects and grain boundaries. The large perovskite grains dramatically suppress the carrier recombination, and consequently we obtain ZnO-nanorod-based PSCs that exhibit the best efficiency of 17.3%, with high reproducibility.

  4. Perovskite-type catalytic materials for environmental applications

    PubMed Central

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-01-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications. PMID:27877813

  5. Perovskite-type catalytic materials for environmental applications

    NASA Astrophysics Data System (ADS)

    Labhasetwar, Nitin; Saravanan, Govindachetty; Megarajan, Suresh Kumar; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-06-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.

  6. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles.

    PubMed

    Cheng, Yuanhang; Yang, Qing-Dan; Xiao, Jingyang; Xue, Qifan; Li, Ho-Wa; Guan, Zhiqiang; Yip, Hin-Lap; Tsang, Sai-Wing

    2015-09-16

    Solution processed zinc oxide (ZnO) nanoparticles (NPs) with excellent electron transport properties and a low-temperature process is a viable candidate to replace titanium dioxide (TiO2) as electron transport layer to develop high-efficiency perovskite solar cells on flexible substrates. However, the number of reported high-performance perovskite solar cells using ZnO-NPs is still limited. Here we report a detailed investigation on the chemistry and crystal growth of CH3NH3PbI3 perovskite on ZnO-NP thin films. We find that the perovskite films would severely decompose into PbI2 upon thermal annealing on the bare ZnO-NP surface. X-ray photoelectron spectroscopy (XPS) results show that the hydroxide groups on the ZnO-NP surface accelerate the decomposition of the perovskite films. To reduce the decomposition, we introduce a buffer layer in between the ZnO-NPs and perovskite layers. We find that a commonly used buffer layer with small molecule [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) can slow down but cannot completely avoid the decomposition. On the other hand, a polymeric buffer layer using poly(ethylenimine) (PEI) can effectively separate the ZnO-NPs and perovskite, which allows larger crystal formation with thermal annealing. The power conversion efficiencies of perovskite photovoltaic cells are significantly increased from 6.4% to 10.2% by replacing PC61BM with PEI as the buffer layer.

  7. Nonstoichiometric Adduct Approach for High-Efficiency Perovskite Solar Cells.

    PubMed

    Park, Nam-Gyu

    2017-01-03

    Since the groundbreaking report on a solid-state perovskite solar cell employing a methylammonium lead iodide-sensitized mesoporous TiO2 film and an organic hole conducting layer in 2012 by our group, the swift surge of perovskite photovoltaics opens a new paradigm in solar-cell research. As a result, ca. 1300 peer-reviewed research articles were published in 2015. In this Inorganic Chemistry Forum on Halide Perovskite, the researches with highlights of work on perovskite solar cells in my laboratory are reviewed. We have developed a size-controllable two-step spin-coating method and found that minimal nonradiative recombination in perovskite crystals could lead to high photovoltaic performance. A Lewis acid based adduct method and self-formed grain boundary process were developed for high-efficiency devices with reproducibility. A power conversion efficiency of 20.4% was achieved via grain boundary engineering based on a nonstoichiometric adduct approach. The incorporation of cesium in a formamidinium lead iodide perovskite was found to show better photostability and moisture-stability. A reduction in the dimensionality from a three-dimensitonal nanocrystal to a one-dimensional nanowire led to a hypsochromic shift of absorption and fluorescence. To enhance the charge-carrier transport and light-harvesting efficiency, a nanoarchitecture of oxide layers was proposed.

  8. High-performance nanotube-enhanced perovskite photodetectors.

    PubMed

    Ka, Ibrahima; Gerlein, Luis Felipe; Nechache, Riad; Cloutier, Sylvain G

    2017-03-30

    Organic-inorganic perovskites have already shown a tremendous potential for low-cost light-harvesting devices. Yet, the relatively low carrier mobilities in bulk perovskites still prevent large-area devices with performances competing with state-of-the-art technologies. Here, we tackle this fundamental challenge by incorporating single-wall carbon nanotubes within a perovskite matrix by means of a simple two-step method in ambient air. Using this nano-engineered hybrid film, we demonstrate large-area photodetectors with responsivities up-to 13.8 A.W(-1) and a broad spectral response from 300 to 800 nm, indicating that photocurrent generation arises from the charge transfer from the perovskite matrix to the embedded nanotube network. As the nanotubes facilitate the carrier extraction, these photodetectors also show a fast response time of 10 ms. This is significantly faster than most of previous reports on perovskite-based photodetectors, including devices with much smaller photosensitive areas. This approach is also well-suited for large-scale production of other perovskite-based light-harvesting devices.

  9. Tracking the formation of methylammonium lead triiodide perovskite

    NASA Astrophysics Data System (ADS)

    Liu, Lijia; McLeod, John A.; Wang, Rongbin; Shen, Pengfei; Duhm, Steffen

    2015-08-01

    The formation mechanism of perovskite methylammonium lead triiodide (CH3NH3PbI3) was studied with in situ X-ray photoelectron spectroscopy (XPS) on successive depositions of thermally evaporated methylammonium iodide (CH3NH3I) on a lead iodide (PbI2) film. This deposition method mimics the "two-step" synthesis method commonly used in device fabrication. We find that several competing processes occur during the formation of perovskite CH3NH3PbI3. Our most important finding is that during vapour deposition of CH3NH3I onto PbI2, at least two carbon species are present in the resulting material, while only one nitrogen species is present. This suggests that CH3NH3I can dissociate during the transition to a perovskite phase, and some of the resulting molecules can be incorporated into the perovskite. The effect of partial CH3NH3 substitution with CH3 was evaluated, and electronic structure calculations show that CH3 defects would impact the photovoltaic performance in perovskite solar cells. The possibility that not all A sites in the APbI3 perovskite are occupied by CH3NH3 is therefore an important consideration when evaluating the performance of organometallic trihalide solar cells synthesized using typical approaches.

  10. High-performance nanotube-enhanced perovskite photodetectors

    PubMed Central

    Ka, Ibrahima; Gerlein, Luis Felipe; Nechache, Riad; Cloutier, Sylvain G.

    2017-01-01

    Organic-inorganic perovskites have already shown a tremendous potential for low-cost light-harvesting devices. Yet, the relatively low carrier mobilities in bulk perovskites still prevent large-area devices with performances competing with state-of-the-art technologies. Here, we tackle this fundamental challenge by incorporating single-wall carbon nanotubes within a perovskite matrix by means of a simple two-step method in ambient air. Using this nano-engineered hybrid film, we demonstrate large-area photodetectors with responsivities up-to 13.8 A.W−1 and a broad spectral response from 300 to 800 nm, indicating that photocurrent generation arises from the charge transfer from the perovskite matrix to the embedded nanotube network. As the nanotubes facilitate the carrier extraction, these photodetectors also show a fast response time of 10 ms. This is significantly faster than most of previous reports on perovskite-based photodetectors, including devices with much smaller photosensitive areas. This approach is also well-suited for large-scale production of other perovskite-based light-harvesting devices. PMID:28358041

  11. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  12. 4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells.

    PubMed

    Cai, Boyuan; Peng, Yong; Cheng, Yi-Bing; Gu, Min

    2015-11-30

    Although perovskite materials have been widely investigated for thin-film photovoltaic devices due to the potential for high efficiency, their high toxicity has pressed the development of a solar cell structure of an ultra-thin absorber layer. But insufficient light absorption could be a result of ultra-thin perovskite films. In this paper, we propose a new nanoplasmonic solar cell that integrates metal nanoparticles at its rear/front surfaces of the perovskite layer. Plasmon-enhanced light scattering and near-field enhancement effects from lumpy sliver nanoparticles result in the photocurrent enhancement for a 50 nm thick absorber, which is higher than that for a 300 nm thick flat perovskite solar cell. We also predict the 4-fold photocurrent enhancement in an ultrathin perovskite solar cell with the absorber thickness of 10 nm. Our results pave a new way for ultrathin high-efficiency solar cells with either a lead-based or a lead-free perovskite absorption layer.

  13. Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells.

    PubMed

    Jeon, Taewoo; Jin, Hyeong Min; Lee, Seung Hyun; Lee, Ju Min; Park, Hyung Il; Kim, Mi Kyung; Lee, Keon Jae; Shin, Byungha; Kim, Sang Ouk

    2016-08-23

    Organic-inorganic hybrid perovskites attract enormous research interest for next generation solar energy harvest. Synergistic crystalline structures comprising organic and inorganic components enable solution processing of perovskite films. A reliable crystallization method for perovskites, compatible with fast continuous process over large-area flexible substrates, is crucial for high performance solar cell production. Here, we present laser crystallization of hybrid perovskite solar cells using near-infrared (NIR) laser (λ = 1064 nm). Crystalline morphology of CH3NH3PbI3 (MAPbI3) perovskite films are widely controllable with laser irradiation condition while maintaining film uniformity. Photothermal heating effectively assisted by interfacial photoconversion layers is critical for phase transformation without beam damage of multilayered device structures. Notably, laser crystallization attains higher device performances than conventional thermal annealing. Fast laser crystallization with manufacture level scan rate (1 m min(-1)) demonstrates inverted-type perovskite solar cells with 11.3 and 8.0% efficiencies on typical glass and flexible polymer substrates, respectively, without rigorous device optimization.

  14. Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices

    NASA Astrophysics Data System (ADS)

    Almansouri, Ibraheem; Ho-Baillie, Anita; Green, Martin A.

    2015-08-01

    Theoretical calculation based on detailed balance and incorporating different realistic optical and electrical losses predicts conversion efficiency beyond 22% for single-junction perovskite devices. In dual-junction perovskite/silicon devices, theoretical conversion efficiency around 40% is been determined. However, dramatic drop in the conversion efficiency is shown to be due to the glass reflection and FTO parasitic absorption losses. Additionally, practical conversion efficiency limits of dual-junction two-terminal perovskite/silicon tandem solar cell of 30% are achievable as reported in this work using state-of-the-art demonstrated devices. Additionally, various crystalline silicon (industry and laboratory demonstrated) technologies are used as the bottom cell for the current matched tandem cell stacks with higher relative improvements when using commercial c-Si solar cells. Moreover, the effect of eliminating the parasitic resistances and enhancing the external radiative efficiency (ERE) in the perovskite junction on tandem performance are also investigated enhancing the stack efficiencies.

  15. The interaction between hybrid organic-inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study.

    PubMed

    Idígoras, J; Todinova, A; Sánchez-Valencia, J R; Barranco, A; Borrás, A; Anta, J A

    2016-05-11

    The interaction of hybrid organic-inorganic halide perovskite and selective contacts is crucial to get efficient, stable and hysteresis-free perovskite-based solar cells. In this report, we analyze the vibrational properties of methylammonium lead halide perovskites deposited on different substrates by infrared absorption (IR) measurements (4000-500 cm(-1)). The materials employed as substrates are not only characterized by different chemical natures (TiO2, ZnO and Al2O3), but also by different morphologies. For all of them, we have investigated the influence of these substrate properties on perovskite formation and its degradation by humidity. The effect of selective-hole contact (Spiro-OmeTad and P3HT) layers on the degradation rate by moisture has also been studied. Our IR results reveal the existence of a strong interaction between perovskite and all ZnO materials considered, evidenced by a shift of the peaks related to the N-H vibrational modes. The interaction even induces a morphological change in ZnO nanoparticles after perovskite deposition, pointing to an acid-base reaction that takes place through the NH3(+) groups of the methylammonium cation. Our IR and X-ray diffraction results also indicate that this specific interaction favors perovskite decomposition and PbI2 formation for ZnO/perovskite films subjected to humid conditions. Although no interaction is observed for TiO2, Al2O3, and the hole selective contact, the morphology and chemical nature of both contacts appear to play an important role in the rate of degradation upon exposure to moisture.

  16. Modification of Sargassum angustifolium by molybdate during a facile cultivation for high-rate phosphate removal from wastewater: structural characterization and adsorptive behavior.

    PubMed

    Saberzadeh Sarvestani, Firozeh; Esmaeili, Hossein; Ramavandi, Bahman

    2016-12-01

    In this paper, a new and facile approach for molybdate loading in the brown algae of Sargassum angustifolium is introduced. The molybdate ions were entered into the algae body during a short cultivation to produce algae-Mo as a novel adsorbent for eliminating phosphate ions from synthetic and real wastewaters. Results of the surface analysis showed that molybdate loading onto the algae was successfully performed. Herein, basic variables, such as initial solution pH, adsorbent dosage, contact time, phosphate concentration, and temperature, were investigated in detail to assess the phosphate adsorption performance of algae-Mo. The pseudo-second-order kinetic model fitted our acquired experimental kinetic data most appropriately, in comparison to the use of a pseudo-first-order model. The Langmuir model appeared to fit the adsorption data more desirably than that of Freundlich and Dubnin-Radushkevich models, with a maximum phosphate adsorption capacity of 149.25 mg/g at 25 °C. The finding of the thermodynamic study revealed that the phosphate adsorption onto algae-Mo was spontaneous, feasible, and endothermic in nature. The study on Mo(2+) ions leaching strongly suggested that the risk of Mo(2+) leakage during phosphate adsorption was negligible at a wide pH range of 3-9. The adsorption efficiency attained was 53.4% at the sixth cycle of reusability. Two real wastewaters with different qualities were successfully treated by the algae-Mo, suggesting that the algae-Mo could be ordered for practical wastewater treatment.

  17. Anomalous Hysteresis in Perovskite Solar Cells.

    PubMed

    Snaith, Henry J; Abate, Antonio; Ball, James M; Eperon, Giles E; Leijtens, Tomas; Noel, Nakita K; Stranks, Samuel D; Wang, Jacob Tse-Wei; Wojciechowski, Konrad; Zhang, Wei

    2014-05-01

    Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.

  18. Superconductivity and magnetism in rapidly solidified perovskites

    SciTech Connect

    O'Handley, R.C.; Kalonji, G.

    1991-01-01

    The report is divided into six parts, reflecting major thrusts of our work since 1987. The six areas are: molecular orbital theory of high {Tc} superconductivity; rapid solidification processing of oxide superconductors; time dependent magnetic and superconducting properties of these inhomogeneous materials; excess Gd in Gd{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7-{delta}} perovskites; rapid solidification and directional annealing to achieve high Jc; and Mossbauer studies of T = Fe, Co and Ni site selection in YBa{sub 2}(CuT){sub 3}O{sub 7-{delta}} and GdBa{sub 2}(CuT){sub 3}O{sub 7-{delta}}.

  19. Excitonic magnetism in d6 perovskites

    NASA Astrophysics Data System (ADS)

    Afonso, J. Fernández; Kuneš, J.

    2017-03-01

    We use the LDA+U method to study the possibility of exciton condensation in perovskites of transition metals with the d6 electronic configuration such as LaCoO3. For realistic interaction parameters we find several distinct solutions exhibiting a spin-triplet exciton condensate, which gives rise to a local spin density distribution while the ordered moments are vanishingly small. Rhombohedral distortion from the ideal cubic structure suppresses the ordered state, contrary to the spin-orbit coupling which enhances the excitonic condensation energy. We explain the trends observed in the numerical simulations with the help of a simplified strong-coupling model. Our results indicate that LaCoO3 is close to the excitonic instability and suggest ways how to achieve the exciton condensation.

  20. Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Meng, Fanli; Zhao, Erfei; Zheng, Yan-Zhen; Zhou, Yali; Tao, Xia

    2016-04-01

    The ability to prepare high coverage and compact perovskite films via solution-based crystallization manipulation processes still represents a vital issue towards improving the ultimate photoelectric conversion efficiency of devices. In this work, we prepare the active perovskite layer by means of sequential deposition crystallization process i.e. dipping PbI2-infiltrated TiO2 film within CH3NH3I solution from 20s to 60s. The morphology and thickness of the as-prepared perovskite layer, and its overall performance superiority are investigated. X-ray diffraction (XRD) reveals that a maximum conversion of PbI2 to perovskite is completed upon applying a sequential deposition crystallization process of 40s. Field emission scanning electron microscope (FESEM) demonstrates that the coverage of the perovskite capping layer exhibits a trend from rise to decline in the whole dipping time from 20s to 60s. By fine control of the dipping time, a 620 nm-thickness compact perovskite active layer is obtained at the optimized dipping time of 40s and is verified to possess strong light absorption and high electron extraction efficiency, leading to a higher photocurrent. By further optimizing the mesoporous TiO2 film thickness, a high photocurrent of 23.98 mA cm-2 and an efficiency of 13.47% are achieved.

  1. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition.

    PubMed

    Fraqueza, Gil; Batista de Carvalho, Luís A E; Marques, M Paula M; Maia, Luisa; Ohlin, C André; Casey, William H; Aureliano, Manuel

    2012-11-07

    Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb(10) = Nb(10)O(28)](6-), is a useful tool in deducing the interaction and the non-competitive Ca(2+)-ATPase inhibition by the decavanadate ion [V(10) = V(10)O(28)](6-). Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca(2+)-ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V(10), Nb(10) and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V(10) and Nb(10) decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V(10) to inhibit the Ca(2+)-ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These

  2. Origin of “memory glass” effect in pressure-amorphized rare-earth molybdate single crystals

    SciTech Connect

    Willinger, Elena; Sinitsyn, Vitaly; Khasanov, Salavat; Redkin, Boris; Shmurak, Semeon; Ponyatovsky, Eugeny

    2015-02-15

    The memory glass effect (MGE) describes the ability of some materials to recover the initial structure and crystallographic orientation after pressure-induced amorphization (PIA). In spite of numerous studies the nature and underlying mechanisms of this phenomenon are still not clear. Here we report investigations of MGE in β′-Eu{sub 2}(MoO{sub 4}){sub 3} single crystal samples subjected to high pressure amorphization. Using the XRD and TEM techniques we carried out detailed analysis of the structural state of high pressure treated single crystal samples as well as structural transformations due to subsequent annealing at atmospheric pressure. The structure of the sample has been found to be complex, mainly amorphous, however, the amorphous medium contains evenly distributed nanosize inclusions of a paracrystalline phase. The inclusions are highly correlated in orientation and act as “memory units” in the MGE. - Graphical abstract: Schematic representation of pressure-induced amorphization and “memory glass” effect in rare-earth molybdate single crystals. The XRD and TEM measurements have revealed the presence of the residual identically oriented paracrystalline nanodomains in the pressure-amorphized state. These domains preserve the information about initial structure and orientation of the sample. They act as memory units and crystalline seeds during transformation of the amorphous phase back to the starting single crystalline one. - Highlights: • Pressure-amorphized Eu{sub 2}(MoO4){sub 3} single crystals were studied ex-situ by XRD and TEM. • Tiny residual crystalline inclusions were found in amorphous matrix of sample. • The inclusions keep in memory the parent crystal structure and orientation. • The inclusions account for “memory glass” effect in rare-earth molibdates.

  3. Non-Specific Root Transport of Nutrient Gives Access to an Early Nutritional Indicator: The Case of Sulfate and Molybdate.

    PubMed

    Maillard, Anne; Sorin, Elise; Etienne, Philippe; Diquélou, Sylvain; Koprivova, Anna; Kopriva, Stanislav; Arkoun, Mustapha; Gallardo, Karine; Turner, Marie; Cruz, Florence; Yvin, Jean-Claude; Ourry, Alain

    2016-01-01

    Under sulfur (S) deficiency, crosstalk between nutrients induced accumulation of other nutrients, particularly molybdenum (Mo). This disturbed balanced between S and Mo could provide a way to detect S deficiency and therefore avoid losses in yield and seed quality in cultivated species. Under hydroponic conditions, S deprivation was applied to Brassica napus to determine the precise kinetics of S and Mo uptake and whether sulfate transporters were involved in Mo uptake. Leaf contents of S and Mo were also quantified in a field-grown S deficient oilseed rape crop with different S and N fertilization applications to evaluate the [Mo]:[S] ratio, as an indicator of S nutrition. To test genericity of this indicator, the [Mo]:[S] ratio was also assessed with other cultivated species under different controlled conditions. During S deprivation, Mo uptake was strongly increased in B. napus. This accumulation was not a result of the induction of the molybdate transporters, Mot1 and Asy, but could be a direct consequence of Sultr1.1 and Sultr1.2 inductions. However, analysis of single mutants of these transporters in Arabidopsis thaliana suggested that other sulfate deficiency responsive transporters may be involved. Under field conditions, Mo content was also increased in leaves by a reduction in S fertilization. The [Mo]:[S] ratio significantly discriminated between the plots with different rates of S fertilization. Threshold values were estimated for the hierarchical clustering of commercial crops according to S status. The use of the [Mo]:[S] ratio was also reliable to detect S deficiency for other cultivated species under controlled conditions. The analysis of the leaf [Mo]:[S] ratio seems to be a practical indicator to detect early S deficiency under field conditions and thus improve S fertilization management.

  4. Non-Specific Root Transport of Nutrient Gives Access to an Early Nutritional Indicator: The Case of Sulfate and Molybdate

    PubMed Central

    Etienne, Philippe; Diquélou, Sylvain; Koprivova, Anna; Kopriva, Stanislav; Arkoun, Mustapha; Gallardo, Karine; Turner, Marie; Cruz, Florence; Yvin, Jean-Claude

    2016-01-01

    Under sulfur (S) deficiency, crosstalk between nutrients induced accumulation of other nutrients, particularly molybdenum (Mo). This disturbed balanced between S and Mo could provide a way to detect S deficiency and therefore avoid losses in yield and seed quality in cultivated species. Under hydroponic conditions, S deprivation was applied to Brassica napus to determine the precise kinetics of S and Mo uptake and whether sulfate transporters were involved in Mo uptake. Leaf contents of S and Mo were also quantified in a field-grown S deficient oilseed rape crop with different S and N fertilization applications to evaluate the [Mo]:[S] ratio, as an indicator of S nutrition. To test genericity of this indicator, the [Mo]:[S] ratio was also assessed with other cultivated species under different controlled conditions. During S deprivation, Mo uptake was strongly increased in B. napus. This accumulation was not a result of the induction of the molybdate transporters, Mot1 and Asy, but could be a direct consequence of Sultr1.1 and Sultr1.2 inductions. However, analysis of single mutants of these transporters in Arabidopsis thaliana suggested that other sulfate deficiency responsive transporters may be involved. Under field conditions, Mo content was also increased in leaves by a reduction in S fertilization. The [Mo]:[S] ratio significantly discriminated between the plots with different rates of S fertilization. Threshold values were estimated for the hierarchical clustering of commercial crops according to S status. The use of the [Mo]:[S] ratio was also reliable to detect S deficiency for other cultivated species under controlled conditions. The analysis of the leaf [Mo]:[S] ratio seems to be a practical indicator to detect early S deficiency under field conditions and thus improve S fertilization management. PMID:27870884

  5. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction.

    PubMed

    Fortes, A Dominic

    2015-07-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å(-1). The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter-atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter-leaved with planes of XO4 (X = Mo, W) tetra-hedra that are linked by chains of water mol-ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856-2860] but shows that the purported three-centred inter-action involving one of the water mol-ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred 'linear' hydrogen bond.

  6. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction

    PubMed Central

    Fortes, A. Dominic

    2015-01-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å−1. The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter­atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter­leaved with planes of XO4 (X = Mo, W) tetra­hedra that are linked by chains of water mol­ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856–2860] but shows that the purported three-centred inter­action involving one of the water mol­ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred ‘linear’ hydrogen bond. PMID:26279871

  7. Selective dissolution of halide perovskites as a step towards recycling solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  8. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    PubMed

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells.

  9. Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells.

    PubMed

    Huang, Fuzhi; Pascoe, Alexander R; Wu, Wu-Qiang; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Caruso, Rachel A; Cheng, Yi-Bing

    2017-02-22

    The efficiencies of the hybrid organic-inorganic perovskite solar cells have been rapidly approaching the benchmarks held by the leading thin-film photovoltaic technologies. Arguably, one of the most important factors leading to this rapid advancement is the ability to manipulate the microstructure of the perovskite layer and the adjacent functional layers within the device. Here, an analysis of the nucleation and growth models relevant to the formation of perovskite films is provided, along with the effect of the perovskite microstructure (grain sizes and voids) on device performance. In addition, the effect of a compact or mesoporous electron-transport-layer (ETL) microstructure on the perovskite film formation and the optical/photoelectric properties at the ETL/perovskite interface are overviewed. Insight into the formation of the functional layers within a perovskite solar cell is provided, and potential avenues for further development of the perovskite microstructure are identified.

  10. Selective dissolution of halide perovskites as a step towards recycling solar cells.

    PubMed

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-23

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb(2+) cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  11. Selective dissolution of halide perovskites as a step towards recycling solar cells

    PubMed Central

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-01-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells. PMID:27211006

  12. Strain effects on oxygen migration in perovskites.

    PubMed

    Mayeshiba, Tam; Morgan, Dane

    2015-01-28

    Fast oxygen transport materials are necessary for a range of technologies, including efficient and cost-effective solid oxide fuel cells, gas separation membranes, oxygen sensors, chemical looping devices, and memristors. Strain is often proposed as a method to enhance the performance of oxygen transport materials, but the magnitude of its effect and its underlying mechanisms are not well-understood, particularly in the widely-used perovskite-structured oxygen conductors. This work reports on an ab initio prediction of strain effects on migration energetics for nine perovskite systems of the form LaBO3, where B = [Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga]. Biaxial strain, as might be easily produced in epitaxial systems, is predicted to lead to approximately linear changes in migration energy. We find that tensile biaxial strain reduces the oxygen vacancy migration barrier across the systems studied by an average of 66 meV per percent strain for a single selected hop, with a low of 36 and a high of 89 meV decrease in migration barrier per percent strain across all systems. The estimated range for the change in migration barrier within each system is ±25 meV per percent strain when considering all hops. These results suggest that strain can significantly impact transport in these materials, e.g., a 2% tensile strain can increase the diffusion coefficient by about three orders of magnitude at 300 K (one order of magnitude at 500 °C or 773 K) for one of the most strain-responsive materials calculated here (LaCrO3). We show that a simple elasticity model, which assumes only dilative or compressive strain in a cubic environment and a fixed migration volume, can qualitatively but not quantitatively model the strain dependence of the migration energy, suggesting that factors not captured by continuum elasticity play a significant role in the strain response.

  13. Special quasirandom structures for perovskite solid solutions

    NASA Astrophysics Data System (ADS)

    Jiang, Zhijun; Nahas, Yousra; Xu, Bin; Prosandeev, Sergey; Wang, Dawei; Bellaiche, Laurent

    2016-11-01

    Special quasirandom structures (SQS) are presently generated for disordered (A‧1-x {{\\text{A}}\\prime \\prime} x )BX3 and A(B‧1-x {{\\text{B}}\\prime \\prime} x )X3 perovskite solid solutions, with x  =  1/2 as well as 1/3 and 2/3. These SQS configurations are obtained by imposing that the so-called Cowley parameters are as close to zero as possible for the three nearest neighboring shells. Moreover, these SQS configurations are slightly larger in size than those available in the literature for x  =  1/2, mostly because of the current capabilities of atomistic techniques. They are used here within effective Hamiltonian schemes to predict various properties, which are then compared to those associated with large random supercells, in a variety of compounds, namely (Ba1-x Sr x )TiO3, Pb(Zr1-x Ti x )O3, Pb(Sc0.5Nb0.5)O3, Ba(Zr1-x Ti x )O3, Pb(Mg1/3Nb2/3)O3 and (Bi1-x Nd x )FeO3. It is found that these SQS configurations can reproduce many properties of large random supercells of most of these disordered perovskite alloys, below some finite material-dependent temperature. Examples of these properties are electrical polarization, anti-phase and in-phase octahedral tiltings, antipolar motions, antiferromagnetism, strain, piezoelectric coefficients, dielectric response, specific heat and even the formation of polar nanoregions (PNRs) in some relaxors. Some limitations of these SQS configurations are also pointed out and explained.

  14. Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells

    DOE PAGES

    Bi, Cheng; Yuan, Yongbo; Fang, Yanjun; ...

    2014-11-25

    A mixed halide perovskite solar cell with a 1.72 eV bandgap is developed by incorporating Br into perovskite through a low-temperature solution process. A high efficiency of 13.1% is achieved by carefully tuning the thickness, morphology, and surface passivation of the perovskite layers. Furthermore, the fabrication techniques and conditions are compatible with future perovskite/Si tandem cell studies.

  15. Room-Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells.

    PubMed

    Matsui, Taisuke; Seo, Ji-Youn; Saliba, Michael; Zakeeruddin, Shaik M; Grätzel, Michael

    2017-01-20

    A room-temperature perovskite material yielding a power conversion efficiency of 18.1% (stabilized at 17.7%) is demonstrated by judicious selection of cations. Both cesium and methylammonium are necessary for room-temperature formamidinium-based perovskite to obtain the photoactive crystalline perovskite phase and high-quality crystals. This room-temperature-made perovskite material shows great potential for low-cost, large-scale manufacturing such as roll-to-roll process.

  16. Planar Heterojunction Perovskite Solar Cells Incorporating Metal-Organic Framework Nanocrystals.

    PubMed

    Chang, Ting-Hsiang; Kung, Chung-Wei; Chen, Hsin-Wei; Huang, Tzu-Yen; Kao, Sheng-Yuan; Lu, Hsin-Che; Lee, Min-Han; Boopathi, Karunakara Moorthy; Chu, Chih-Wei; Ho, Kuo-Chuan

    2015-11-25

    Zr-based porphyrin metal-organic framework (MOF-525) nanocrystals with a crystal size of about 140 nm are synthesized and incorporated into perovskite solar cells. The morphology and crystallinity of the perovskite thin film are enhanced since the micropores of MOF-525 allow the crystallization of perovskite to occur inside; this observation results in a higher cell efficiency of the obtained MOF/perovskite solar cell.

  17. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Yin, Wei; Pan, Lijia; Yang, Tingbin; Liang, Yongye

    2016-06-25

    Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ) perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed.

  18. Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Fu, Kunwu; Nelson, Christopher T.; Scott, Mary Cooper; Minor, Andrew; Mathews, Nripan; Wong, Lydia Helena

    2016-02-01

    The stunning rise of methylammonium lead iodide perovskite material as a light harvesting material in recent years has drawn much attention in the photovoltaic community. Here, we investigated in detail the uniform and void-free perovskite capping layer in the mesoscopic perovskite devices and found it to play a critical role in determining device performance and charge recombination process. Compared to the rough surface with voids of the perovskite layer, surface of the perovskite capping layer obtained from sequential deposition process is much more uniform with less void formation and distribution within the TiO2 mesoscopic scaffold is more homogeneous, leading to much improved photovoltaic parameters of the devices. The impact of void free perovskite capping layer surface on the charge recombination processes within the mesoscopic perovskite solar cells is further scrutinized via charge extraction measurement. Modulation of precursor solution concentrations in order to further improve the perovskite layer surface morphology leads to higher efficiency and lower charge recombination rates. Inhibited charge recombination in these solar cells also matches with the higher charge density and slower photovoltage decay profiles measured.The stunning rise of methylammonium lead iodide perovskite material as a light harvesting material in recent years has drawn much attention in the photovoltaic community. Here, we investigated in detail the uniform and void-free perovskite capping layer in the mesoscopic perovskite devices and found it to play a critical role in determining device performance and charge recombination process. Compared to the rough surface with voids of the perovskite layer, surface of the perovskite capping layer obtained from sequential deposition process is much more uniform with less void formation and distribution within the TiO2 mesoscopic scaffold is more homogeneous, leading to much improved photovoltaic parameters of the devices. The impact of

  19. Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells

    SciTech Connect

    Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei; Saparov, Bayrammurad; Duan, Hsin-Sheng; Zhao, Dewei; Xiao, Zewen; Schulz, Philip; Harvey, Steven P.; Liao, Weiqiang; Meng, Weiwei; Yu, Yue; Cimaroli, Alexander J.; Jiang, Chun-Sheng; Zhu, Kai; Al-Jassim, Mowafak; Fang, Guojia; Mitzi, David B.; Yan, Yanfa

    2016-05-04

    Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%.

  20. A Long-Term View on Perovskite Optoelectronics.

    PubMed

    Docampo, Pablo; Bein, Thomas

    2016-02-16

    Recently, metal halide perovskite materials have become an exciting topic of research for scientists of a wide variety of backgrounds. Perovskites have found application in many fields, starting from photovoltaics and now also making an impact in light-emitting applications. This new class of materials has proven so interesting since it can be easily solution processed while exhibiting materials properties approaching the best inorganic optoelectronic materials such as GaAs and Si. In photovoltaics, in only 3 years, efficiencies have rapidly increased from an initial value of 3.8% to over 20% in recent reports for the commonly employed methylammonium lead iodide (MAPI) perovskite. The first light emitting diodes and light-emitting electrochemical cells have been developed already exhibiting internal quantum efficiencies exceeding 15% for the former and tunable light emission spectra. Despite their processing advantages, perovskite optoelectronic materials suffer from several drawbacks that need to be overcome before the technology becomes industrially relevant and hence achieve long-term application. Chief among these are the sensitivity of the structure toward moisture and crystal phase transitions in the device operation regime, unreliable device performance dictated by the operation history of the device, that is, hysteresis, the inherent toxicity of the structure, and the high cost of the employed charge selective contacts. In this Account, we highlight recent advances toward the long-term viability of perovskite photovoltaics. We identify material decomposition routes and suggest strategies to prevent damage to the structure. In particular, we focus on the effect of moisture upon the structure and stabilization of the material to avoid phase transitions in the solar cell operating range. Furthermore, we show strategies to achieve low-cost chemistries for the development of hole transporters for perovskite solar cells, necessary to be able to compete with other

  1. Planar-integrated single-crystalline perovskite photodetectors.

    PubMed

    Saidaminov, Makhsud I; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H; Bakr, Osman M

    2015-11-09

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 10(4) electrons per photon) and high gain-bandwidth product (above 10(8) Hz) relative to other perovskite-based optical sensors.

  2. Stabilized wide bandgap perovskite solar cells by tin substitution

    DOE PAGES

    Yang, Zhibin; Rajagopal, Adharsh; Jo, Sae Byeok; ...

    2016-11-16

    Wide bandgap MAPb(I1-yBry)3 perovskites show promising potential for application in tandem solar cells. However, unstable photovoltaic performance caused by phase segregation has been observed under illumination when y is above 0.2. Herein, we successfully demonstrate stabilization of the I/Br phase by partially replacing Pb2+ with Sn2+ and verify this stabilization with X-ray diffractometry and transient absorption spectroscopy. The resulting MAPb0.75Sn0.25(I1-yBry)3 perovskite solar cells show stable photovoltaic performance under continuous illumination. Among these cells, the one based on MAPb0.75Sn0.25(I0.4Br0.6)3 perovskite shows the highest efficiency of 12.59% with a bandgap of 1.73 eV, which make it a promising wide bandgap candidate formore » application in tandem solar cells. The engineering of internal bonding environment by partial Sn substitution is believed to be the main reason for making MAPb0.75Sn0.25(I1-yBry)3 perovskite less vulnerable to phase segregation during the photostriction under illumination. Furthermore, this study establishes composition engineering of the metal site as a promising strategy to impart phase stability in hybrid perovskites under illumination.« less

  3. Calculation studies on point defects in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Han, Dan; Dai, Chenmin; Chen, Shiyou

    2017-01-01

    The close-to-optimal band gap, large absorption coefficient, low manufacturing cost and rapid increase in power conversion efficiency make the organic–inorganic hybrid halide (CH3NH3PbI3) and related perovskite solar cells very promising for commercialization. The properties of point defects in the absorber layer semiconductors have important influence on the photovoltaic performance of solar cells, so the investigation on the defect properties in the perovskite semiconductors is necessary for the optimization of their photovoltaic performance. In this work, we give a brief review to the first-principles calculation studies on the defect properties in a series of perovskite semiconductors, including the organic–inorganic hybrid perovskites and inorganic halide perovskites. Experimental identification of these point defects and characterization of their properties are called for. Project supported by the National Natural Science Foundation of China (No. 61574059), the Shanghai Rising-Star Program (No. 14QA1401500), the Shu-Guang Program (15SG20), and the CC of ECNU.

  4. Integrated perovskite/bulk-heterojunction toward efficient solar cells.

    PubMed

    Liu, Yongsheng; Hong, Ziruo; Chen, Qi; Chang, Weihsuan; Zhou, Huanping; Song, Tze-Bin; Young, Eric; Yang, Yang Michael; You, Jingbi; Li, Gang; Yang, Yang

    2015-01-14

    We successfully demonstrated an integrated perovskite/bulk-heterojunction (BHJ) photovoltaic device for efficient light harvesting and energy conversion. Our device efficiently integrated two photovoltaic layers, namely a perovskite film and organic BHJ film, into the device. The device structure is ITO/TiO2/perovskite/BHJ/MoO3/Ag. A wide bandgap small molecule DOR3T-TBDT was used as donor in the BHJ film, and a power conversion efficiency (PCE) of 14.3% was achieved in the integrated device with a high short circuit current density (JSC) of 21.2 mA cm(-2). The higher JSC as compared to that of the traditional perovskite/HTL (hole transporting layer) device (19.3 mA cm(-2)) indicates that the BHJ film absorbs light and contributes to the current density of the device. Our result further suggests that the HTL in traditional perovskite solar cell, even with good light absorption capability, cannot contribute to the overall device photocurrent, unless this HTL becomes a BHJ layer (by adding electron transporting material like PC71BM).

  5. Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells.

    PubMed

    Colella, Silvia; Mosconi, Edoardo; Pellegrino, Giovanna; Alberti, Alessandra; Guerra, Valentino L P; Masi, Sofia; Listorti, Andrea; Rizzo, Aurora; Condorelli, Guglielmo Guido; De Angelis, Filippo; Gigli, Giuseppe

    2014-10-16

    The role of chloride in the MAPbI3-xClx perovskite is still limitedly understood, albeit subjected of much debate. Here, we present a combined angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and first-principles DFT modeling to investigate the MAPbI3-xClx/TiO2 interface. AR-XPS analyses carried out on ad hoc designed bilayers of MAPbI3-xClx perovskite deposited onto a flat TiO2 substrate reveal that the chloride is preferentially located in close proximity to the perovskite/TiO2 interface. DFT calculations indicate the preferential location of chloride at the TiO2 interface compared to the bulk perovskite due to an increased chloride-TiO2 surface affinity. Furthermore, our calculations clearly demonstrate an interfacial chloride-induced band bending, creating a directional "electron funnel" that may improve the charge collection efficiency of the device and possibly affecting also recombination pathways. Our findings represent a step forward to the rationalization of the peculiar properties of mixed halide perovskite, allowing one to further address material and device design issues.

  6. Novel materials for stable perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Abate, Antonio

    2015-09-01

    Organic-inorganic perovskites are quickly overrunning research activities in new materials for cost-effective and high-efficiency photovoltaic technologies. Since the first demonstration from Kojima and co-workers in 2009, several perovskite-based solar cells have been reported and certified with rapidly improving power conversion efficiency. Recent reports demonstrate that perovskites can compete with the most efficient inorganic materials, while they still allow processing from solution as potential advantage to deliver a cost-effective solar technology. Compare to the impressive progress in power conversion efficiency, stability studies are rather poor and often controversial. An intrinsic complication comes from the fact that the stability of perovskite solar cells is strongly affected by any small difference in the device architecture, preparation procedure, materials composition and testing procedure. In the present talk we will focus on the stability of perovskite solar cells in working condition. We will discuss a measuring protocol to extract reliable and reproducible ageing data. We will present new materials and preparation procedures which improve the device lifetime without giving up on high power conversion efficiency.

  7. Electron–phonon coupling in hybrid lead halide perovskites

    PubMed Central

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  8. Electron-phonon coupling in hybrid lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-05-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ~40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.

  9. X-ray Scintillation in Lead Halide Perovskite Crystals

    PubMed Central

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-01-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications. PMID:27849019

  10. X-ray Scintillation in Lead Halide Perovskite Crystals

    NASA Astrophysics Data System (ADS)

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-11-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications.

  11. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature.

  12. Electron-phonon coupling in hybrid lead halide perovskites.

    PubMed

    Wright, Adam D; Verdi, Carla; Milot, Rebecca L; Eperon, Giles E; Pérez-Osorio, Miguel A; Snaith, Henry J; Giustino, Feliciano; Johnston, Michael B; Herz, Laura M

    2016-05-26

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.

  13. Interface and Composition Analysis on Perovskite Solar Cells.

    PubMed

    Matteocci, Fabio; Busby, Yan; Pireaux, Jean-Jacques; Divitini, Giorgio; Cacovich, Stefania; Ducati, Caterina; Di Carlo, Aldo

    2015-12-02

    Organometal halide (hybrid) perovskite solar cells have been fabricated following four different deposition procedures and investigated in order to find correlations between the solar cell characteristics/performance and their structure and composition as determined by combining depth-resolved imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and analytical scanning transmission electron microscopy (STEM). The interface quality is found to be strongly affected by the perovskite deposition procedure, and in particular from the environment where the conversion of the starting precursors into the final perovskite is performed (air, nitrogen, or vacuum). The conversion efficiency of the precursors into the hybrid perovskite layer is compared between the different solar cells by looking at the ToF-SIMS intensities of the characteristic molecular fragments from the perovskite and the precursor materials. Energy dispersive X-ray spectroscopy in the STEM confirms the macroscopic ToF-SIMS findings and allows elemental mapping with nanometer resolution. Clear evidence for iodine diffusion has been observed and related to the fabrication procedure.

  14. Size-Dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix

    PubMed Central

    2015-01-01

    In recent years, organometal halide perovskite materials have attracted significant research interest in the field of optoelectronics. Here, we introduce a simple and low-temperature route for the formation of self-assembled perovskite nanocrystals in a solid organic matrix. We demonstrate that the size and photoluminescence peak of the perovskite nanocrystals can be tuned by varying the concentration of perovskite in the matrix material. The physical origin of the blue shift of the perovskite nanocrystals’ emission compared to its bulk phase is also discussed. PMID:25949773

  15. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells.

    PubMed

    Cao, Jing; Yin, Jun; Yuan, Shangfu; Zhao, Yun; Li, Jing; Zheng, Nanfeng

    2015-06-07

    Modifying the interfaces of CH3NH3PbI3 with TiO2 and hole transport layers using two different types of thiols leads to enhanced performance and stability of perovskite solar cells. The incorporation of HOOC-Ph-SH at the TiO2/perovskite interface facilitates electron transfer from perovskite to TiO2 and also alters the morphology of perovskite crystal growth to increase the power conversion efficiency. The modification of pentafluorobenzenethiol at the perovskite/hole transport layer interface improves the stability.

  16. Review on palladium-containing perovskites: synthesis, physico-chemical properties and applications in catalysis.

    PubMed

    Essoumhi, Abdellatif; El Kazzouli, Saïd; Bousmina, Mosto

    2014-02-01

    This review reports on the recent advances in the synthesis and physico-chemical properties of palladium-containing perovskites. Initially, the perovskite structure is briefly reviewed, then palladium-containing perovskites synthesis and physico-chemical properties are detailed. The applications of palladium-containing perovskites in catalysis; namely, NO reduction, methane combustion, methanol as well as ethanol oxidation, are briefly highlighted. The involvement and the important contribution of palladium-containing perovskites in cross-coupling reactions, especially Suzuki-Miyaura, Sonogashira, Ulmann and Grignard, are discussed.

  17. Bismuth Based Hybrid Perovskites A3Bi2 I9 (A: Methylammonium or Cesium) for Solar Cell Application.

    PubMed

    Park, Byung-Wook; Philippe, Bertrand; Zhang, Xiaoliang; Rensmo, Håkan; Boschloo, Gerrit; Johansson, Erik M J

    2015-11-18

    Low-toxic bismuth-based perovskites are prepared for the possible replacement of lead perovskite in solar cells. The perovskites have a hexagonal crystalline phase and light absorption in the visible region. A power conversion efficiency of over 1% is obtained for a solar cell with Cs3 Bi2 I9 perovskite, and it is concluded that bismuth perovskites have very promising properties for further development in solar cells.

  18. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells

    SciTech Connect

    Chen, Bo; Bai, Yang; Yu, Zhengshan; Li, Tao; Zheng, Xiaopeng; Dong, Qingfeng; Shen, Liang; Boccard, Mathieu; Gruverman, Alexei; Holman, Zachary; Huang, Jinsong

    2016-07-19

    Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cells tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.

  19. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells

    DOE PAGES

    Chen, Bo; Bai, Yang; Yu, Zhengshan; ...

    2016-07-19

    Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less

  20. Ultrafast Extreme Ultraviolet Absorption Spectroscopy of Methylammonium Lead Iodide Perovskite

    NASA Astrophysics Data System (ADS)

    Verkamp, Max A.; Lin, Ming-Fu; Ryland, Elizabeth S.; Vura-Weis, Josh

    2016-06-01

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) absorption was used to investigate electron and hole dynamics in perovskite by observing transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation with a broad spectrum (40-70 eV) were generated via high-harmonic generation using a tabletop instrument. Transient absorption measurements with visible pump and XUV probe directly observed the relaxation of charge carriers in perovskite after above-band excitation in the femtosecond and picosecond time ranges.

  1. Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals

    ScienceCinema

    Mohite, Aditya; Nie, Wanyi

    2016-07-12

    State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.

  2. Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Even, Jacky; Sapori, Daniel; Pedesseau, Laurent; Rolland, Alain; Kepenekian, Mikael; Robles, Roberto; Wang, Shijian; Huang, Yong; Beck, Alexandre; Durand, Olivier; Katan, C.

    2015-09-01

    This paper reviews some of the recent theoretical investigations on the Rashba Dresselhaus spin effects and dielectric properties of CH3NH3PbI3 hybrid perovskites and CsPbI3 all-inorganic perovskites using Density functional theory. The spin vectors rotate in the non-centrosymmetric P4mm tetragonal phase, respectively clockwise and counterclockwise, in a manner that is characteristic of a pure Rashba effect. The high frequency dielectric constants ɛ∞ of MAPbI3 and CsPbI3 are similar as anticipated, since large differences are only expected at very low frequency where additional contributions from molecular reorientations show off for the hybrid compounds. A first simulation of a perovskite on silicon tandem cell, including a tunnel junction, is also investigated. Effect of halogen substitution (I/Br) is inspected, revealing limitations for short-circuit current and open-circuit voltage electrical characteristics.

  3. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  4. Spatially resolved optoelectronic characterization of perovskite lead iodide nanostructures

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Peng, Xingyu; Hou, Yasen; Yu, Dong

    The high power conversion efficiency of organo-lead halide perovskite-based solar cells has attracted world-wide attention over the past few years. The high efficiency was believed to originate from the unusual properties including long carrier lifetimes and consequent long carrier diffusion lengths in these materials. Ion drift, ferroelectricity, and charge traps have been proposed to account for the efficient charge separation and photocurrent hysteresis. However, it remains unclear which mechanism is dominating. We fabricate field effect transistors (FETs) incorporating single nanoplates/nanowires of organic perovskite and perform scanning photocurrent microscopic (SPCM) measurements to extract carrier diffusion lengths as a function of gate voltage, source-drain bias. Spatially resolved optoelectronic investigations of single crystalline perovskite nanostructures provide valuable information and key evidence on distinguishing the dominating charge transport/separation mechanism.

  5. Exciton localization in solution-processed organolead trihalide perovskites

    PubMed Central

    He, Haiping; Yu, Qianqian; Li, Hui; Li, Jing; Si, Junjie; Jin, Yizheng; Wang, Nana; Wang, Jianpu; He, Jingwen; Wang, Xinke; Zhang, Yan; Ye, Zhizhen

    2016-01-01

    Organolead trihalide perovskites have attracted great attention due to the stunning advances in both photovoltaic and light-emitting devices. However, the photophysical properties, especially the recombination dynamics of photogenerated carriers, of this class of materials are controversial. Here we report that under an excitation level close to the working regime of solar cells, the recombination of photogenerated carriers in solution-processed methylammonium–lead–halide films is dominated by excitons weakly localized in band tail states. This scenario is evidenced by experiments of spectral-dependent luminescence decay, excitation density-dependent luminescence and frequency-dependent terahertz photoconductivity. The exciton localization effect is found to be general for several solution-processed hybrid perovskite films prepared by different methods. Our results provide insights into the charge transport and recombination mechanism in perovskite films and help to unravel their potential for high-performance optoelectronic devices. PMID:26996605

  6. Exciton localization in solution-processed organolead trihalide perovskites

    NASA Astrophysics Data System (ADS)

    He, Haiping; Yu, Qianqian; Li, Hui; Li, Jing; Si, Junjie; Jin, Yizheng; Wang, Nana; Wang, Jianpu; He, Jingwen; Wang, Xinke; Zhang, Yan; Ye, Zhizhen

    2016-03-01

    Organolead trihalide perovskites have attracted great attention due to the stunning advances in both photovoltaic and light-emitting devices. However, the photophysical properties, especially the recombination dynamics of photogenerated carriers, of this class of materials are controversial. Here we report that under an excitation level close to the working regime of solar cells, the recombination of photogenerated carriers in solution-processed methylammonium-lead-halide films is dominated by excitons weakly localized in band tail states. This scenario is evidenced by experiments of spectral-dependent luminescence decay, excitation density-dependent luminescence and frequency-dependent terahertz photoconductivity. The exciton localization effect is found to be general for several solution-processed hybrid perovskite films prepared by different methods. Our results provide insights into the charge transport and recombination mechanism in perovskite films and help to unravel their potential for high-performance optoelectronic devices.

  7. Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals

    SciTech Connect

    Mohite, Aditya; Nie, Wanyi

    2015-01-29

    State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.

  8. Specific features of nonvalent interactions in orthorhombic perovskites

    NASA Astrophysics Data System (ADS)

    Serezhkin, V. N.; Pushkin, D. V.; Serezhkina, L. B.

    2014-07-01

    It is established that isostructural orthorhombic perovskites ABO3 (sp. gr. Pnma in different systems, no. 62, Z = 4), depending on the specificity of nonvalent interactions (which determine the combinatorial-topological type of the Voronoi-Dirichlet polyhedra (VDPs) of four basis atoms), are divided into ten different stereotypes. It is shown by the example of 259 perovskites belonging to the DyCrO3 stereotype that VDP characteristics can be used to quantitatively estimate the distortion of BO6 octahedra, including that caused by the Jahn-Teller effect. It is found that one of the causes of the distortion of the coordination polyhedra of atoms in the structure of orthorhombic perovskites is heteroatomic metal-metal interactions, for which the interatomic distances are much shorter than the sum of the Slater radii of A and B atoms.

  9. A polymer scaffold for self-healing perovskite solar cells

    PubMed Central

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479

  10. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells

    PubMed Central

    Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T

    2017-01-01

    The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and—more importantly—it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability. PMID:28067308

  11. Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency.

    PubMed

    Yu, Yu; Yang, Songwang; Lei, Lei; Cao, Qipeng; Shao, Jun; Zhang, Sheng; Liu, Yan

    2017-02-01

    Most antisolvents employed in previous research were miscible with perovskite precursor solution. They always led to fast formation of perovskite even if the intermediate stage existed, which was not beneficial to obtain high quality perovskite films and made the formation process less controllable. In this work, a novel ethyl ether/n-hexane mixed antisolvent (MAS) was used to achieve high nucleation density and slow down the formation process of perovskite, producing films with improved orientation of grains and ultrasmooth surfaces. These high quality films exhibited efficient charge transport at the interface of perovskite/hole transport material and perovskite solar cells based on these films showed greatly improved performance with the best power conversion efficiency of 17.08%. This work also proposed a selection principle of MAS and showed that solvent engineering by designing the mixed antisolvent system can lead to the fabrication of high-performance perovskite solar cells.

  12. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells

    NASA Astrophysics Data System (ADS)

    Brinkmann, K. O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T.

    2017-01-01

    The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and--more importantly--it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability.

  13. Charge carrier mobility in hybrid halide perovskites.

    PubMed

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-08-03

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5-10 cm(2)V(-1)s(-1) and that for holes within 1-5 cm(2)V(-1)s(-1), where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials.

  14. Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Yu, Yi; Bekenstein, Yehonadav; Wong, Andrew B; Alivisatos, A Paul; Yang, Peidong

    2016-10-12

    Highly uniform single crystal ultrathin CsPbBr3 nanowires (NWs) with diameter of 2.2 ± 0.2 nm and length up to several microns were successfully synthesized and purified using a catalyst-free colloidal synthesis method followed by a stepwise purification strategy. The NWs have bright photoluminescence (PL) with a photoluminescence quantum yield (PLQY) of about 30% after surface treatment. Large blue-shifted UV-vis absorption and PL spectra have been observed due to strong two-dimensional quantum confinement effects. A small angle X-ray scattering (SAXS) pattern shows the periodic packing of the ultrathin NWs along the radial direction, demonstrates the narrow radial distribution of the wires, and emphasizes the deep intercalation of the surfactants. Despite the extreme aspect ratios of the ultrathin NWs, their composition and the resulting optical properties can be readily tuned by an anion-exchange reaction with good morphology preservation. These bright ultrathin NWs may be used as a model system to study strong quantum confinement effects in a one-dimensional halide perovskite system.

  15. Charge carrier mobility in hybrid halide perovskites

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-01-01

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5–10 cm2V−1s−1 and that for holes within 1–5 cm2V−1s−1, where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials. PMID:26235910

  16. Topological oxide insulator in cubic perovskite structure.

    PubMed

    Jin, Hosub; Rhim, Sonny H; Im, Jino; Freeman, Arthur J

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases.

  17. Bright light-emitting diodes based on organometal halide perovskite.

    PubMed

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J; Friend, Richard H

    2014-09-01

    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

  18. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.

    PubMed

    Li, Yaowen; Zhao, Yue; Chen, Qi; Yang, Yang Michael; Liu, Yongsheng; Hong, Ziruo; Liu, Zonghao; Hsieh, Yao-Tsung; Meng, Lei; Li, Yongfang; Yang, Yang

    2015-12-16

    In perovskite based planar heterojunction solar cells, the interface between the TiO2 compact layer and the perovskite film is critical for high photovoltaic performance. The deep trap states on the TiO2 surface induce several challenging issues, such as charge recombination loss and poor stability etc. To solve the problems, we synthesized a triblock fullerene derivative (PCBB-2CN-2C8) via rational molecular design for interface engineering in the perovskite solar cells. Modifying the TiO2 surface with the compound significantly improves charge extraction from the perovskite layer. Together with its uplifted surface work function, open circuit voltage and fill factor are dramatically increased from 0.99 to 1.06 V, and from 72.2% to 79.1%, respectively, resulting in 20.7% improvement in power conversion efficiency for the best performing devices. Scrutinizing the electrical properties of this modified interfacial layer strongly suggests that PCBB-2CN-2C8 passivates the TiO2 surface and thus reduces charge recombination loss caused by the deep trap states of TiO2. The passivation effect is further proven by stability testing of the perovskite solar cells with shelf lifetime under ambient conditions improved by a factor of more than 4, from ∼40 h to ∼200 h, using PCBB-2CN-2C8 as the TiO2 modification layer. This work offers not only a promising material for cathode interface engineering, but also provides a viable approach to address the challenges of deep trap states on TiO2 surface in planar perovskite solar cells.

  19. Garden-like perovskite superstructures with enhanced photocatalytic activity.

    PubMed

    Ye, Meidan; Wang, Mengye; Zheng, Dajiang; Zhang, Nan; Lin, Changjian; Lin, Zhiqun

    2014-04-07

    By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr(2+), garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation.

  20. Tracking the formation of methylammonium lead triiodide perovskite

    SciTech Connect

    Liu, Lijia E-mail: jmcleod@suda.edu.cn; McLeod, John A. E-mail: jmcleod@suda.edu.cn; Wang, Rongbin; Shen, Pengfei; Duhm, Steffen

    2015-08-10

    The formation mechanism of perovskite methylammonium lead triiodide (CH{sub 3}NH{sub 3}PbI{sub 3}) was studied with in situ X-ray photoelectron spectroscopy (XPS) on successive depositions of thermally evaporated methylammonium iodide (CH{sub 3}NH{sub 3}I) on a lead iodide (PbI{sub 2}) film. This deposition method mimics the “two-step” synthesis method commonly used in device fabrication. We find that several competing processes occur during the formation of perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Our most important finding is that during vapour deposition of CH{sub 3}NH{sub 3}I onto PbI{sub 2}, at least two carbon species are present in the resulting material, while only one nitrogen species is present. This suggests that CH{sub 3}NH{sub 3}I can dissociate during the transition to a perovskite phase, and some of the resulting molecules can be incorporated into the perovskite. The effect of partial CH{sub 3}NH{sub 3} substitution with CH{sub 3} was evaluated, and electronic structure calculations show that CH{sub 3} defects would impact the photovoltaic performance in perovskite solar cells. The possibility that not all A sites in the APbI{sub 3} perovskite are occupied by CH{sub 3}NH{sub 3} is therefore an important consideration when evaluating the performance of organometallic trihalide solar cells synthesized using typical approaches.

  1. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Song, Zhaoning; Watthage, Suneth C.; Phillips, Adam B.; Heben, Michael J.

    2016-04-01

    Organo-metal halide perovskite-based solar cells have been the focus of intense research over the past five years, and power conversion efficiencies have rapidly been improved from 3.8 to >21%. This article reviews major advances in perovskite solar cells that have contributed to the recent efficiency enhancements, including the evolution of device architecture, the development of material deposition processes, and the advanced device engineering techniques aiming to improve control over morphology, crystallinity, composition, and the interface properties of the perovskite thin films. The challenges and future directions for perovskite solar cell research and development are also discussed.

  2. The physics of photon induced degradation of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Joshi, Pranav H.; Zhang, Liang; Hossain, Istiaque M.; Abbas, Hisham A.; Kottokkaran, Ranjith; Nehra, Satyapal P.; Dhaka, Mahendra; Noack, Max; Dalal, Vikram L.

    2016-11-01

    Lead-trihalide perovskite solar cells are an important photovoltaic technology. We investigate the effect of light induced degradation on perovskite solar cells. During exposure, the open-circuit voltage (Voc) of the device increases, whereas the short-circuit current (Isc) shows a decrease. The degradation can be completely recovered using thermal annealing in dark. We develop a model based on light induced generation of ions and migration of these ions inside the material to explain the changes in Isc, Voc, capacitance and dark current upon light exposure and post-exposure recovery. There was no change in defect density in the material upon exposure.

  3. Plasmonic-enhanced perovskite-graphene hybrid photodetectors

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhua; Aigouy, Lionel; Chen, Zhuoying

    2016-03-01

    The surface plasmonic effect of metal nanostructures is a promising method to boost the performance of optoelectronic devices such as solar cells and photodetectors. In this report, gold nanoparticles with surface plasmon resonance localized at about 530 nm were synthesized and integrated into graphene/methylammonium lead iodide perovskite (CH3NH3PbI3) hybrid photodetectors. Compared with pristine graphene-CH3NH3PbI3 devices, a device with gold nanoparticles embedded has a doubly higher photo-responsivity as well as a faster photoresponse speed. The present devices adopt a unique configuration with gold nanoparticles physically separated from the light harvesting component, i.e., the perovskite layer by graphene. Advantages are revealed through a series of characterization techniques and analyses. First, thanks to the tiny thickness of graphene, the plasmonic effect of gold nanoparticles can effectively enhance the near-field of perovskite and thus facilitate light-harvesting. Second, the enhanced light-harvesting in perovskite happens very close to this interface where photo-induced carriers have relatively short paths to diffuse toward graphene, favoring a fast photo-response. This work demonstrates a feasible and inspiring strategy to improve the performance of photodetectors through the surface plasmonic effect of metallic nanostructures.The surface plasmonic effect of metal nanostructures is a promising method to boost the performance of optoelectronic devices such as solar cells and photodetectors. In this report, gold nanoparticles with surface plasmon resonance localized at about 530 nm were synthesized and integrated into graphene/methylammonium lead iodide perovskite (CH3NH3PbI3) hybrid photodetectors. Compared with pristine graphene-CH3NH3PbI3 devices, a device with gold nanoparticles embedded has a doubly higher photo-responsivity as well as a faster photoresponse speed. The present devices adopt a unique configuration with gold nanoparticles physically

  4. Electrical conductivity of (Mg,Fe)SiO3 Perovskite and a Perovskite-dominated assemblage at lower mantle conditions

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1987-01-01

    Electrical conductivity measurements of Perovskite and a Perovskite-dominated assemblage synthesized from pyroxene and olivine demonstrate that these high-pressure phases are insulating to pressures of 82 GPa and temperatures of 4500 K. Assuming an anhydrous upper mantle composition, the result provides an upper bound of 0.01 S/m for the electrical conductivity of the lower mantle between depths of 700 and 1900 km. This is 2 to 4 orders of magnitude lower than previous estimates of lower-mantle conductivity derived from studies of geomagnetic secular variations.

  5. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Yagi, T.; Taketoshi, N.; Hirose, K.; Komabayashi, T.; Baba, T.; Ohishi, Y.; Hernlund, J. W.

    2011-12-01

    Heat in the Earth's interior is transported dominantly by convection in the mantle and core, and by conduction at thermal boundary layers. The thermal conductivity of the bottom thermal boundary layer of the mantle determines the magnitude of heat flux from the core, and is intimately related to the formation of mantle plumes, the long-term thermal evolution of both mantle and core, and the driving force for generation of the geomagnetic field (Lay et al. 2008). However, the thermal conductivity and diffusivity have been poorly constrained at the high pressures of Earth's lowermost mantle. Previous estimates of the thermal conductivity in this region ranged widely between 5 and 30 W/m/K, and it has been often assumed to be 10 W/m/K (Lay et al. 2006). The lattice thermal diffusivity of MgSiO3 perovskite, a primary mineral in the Earth's lower mantle, has only been measured at 1 bar (Osako and Ito 1991). And the thermal diffusivity of post-perovskite has not been investigated so far. We measured the lattice component of thermal diffusivities of both MgSiO3 perovskite and post-perovskite to 144 GPa using a light pulse thermoreflectance technique in a diamond anvil cell (Yagi et al. 2011). The estimated lattice thermal conductivity of perovskite-dominant lowermost mantle is about 9 W/m/K, while post-perovskite-dominant one exhibits ~50% higher diffusivity than perovskite at equivalent pressure. Since many previous calculations assumed a lowermost mantle conductivity of 10 W/m/K, compatible with values obtained in this study, the present findings do not significantly alter the magnitude of heat flow from the core estimated using the post-perovskite double-crossing model (e.g., Lay et al. 2006). Indeed, the present results continue to support the notion of high core-mantle boundary heat flow along with a large degree of secular cooling necessary to sustain a geodynamo even in the absence of an inner core.

  6. Evaluating the Optoelectronic Quality of Hybrid Perovskites by Conductive Atomic Force Microscopy with Noise Spectroscopy.

    PubMed

    Lee, Byungho; Lee, Sangheon; Cho, Duckhyung; Kim, Jinhyun; Hwang, Taehyun; Kim, Kyung Hwan; Hong, Seunghun; Moon, Taeho; Park, Byungwoo

    2016-11-16

    Organic-inorganic hybrid perovskite solar cells have emerged as promising candidates for next-generation solar cells. To attain high photovoltaic efficiency, reducing the defects in perovskites is crucial along with a uniform coating of the films. Also, evaluating the quality of synthesized perovskites via facile and adequate methods is important as well. Herein, CH3NH3PbI3 perovskites were synthesized by applying second solvent dripping to nonstoichiometric precursors containing excess CH3NH3I. The resulting perovskite films exhibited a larger average grain size with a better crystallinity compared to that from stoichiometric precursors. As a result, the performance of planar perovskite solar cells was significantly improved, achieving an efficiency of 14.3%. Furthermore, perovskite films were effectively analyzed using a conductive AFM and noise spectroscopy, which have been uncommon in the field of perovskite solar cells. Comparing the topography and photocurrent maps, the variation of photocurrents in nanoscale was systematically investigated, and a linear relationship between the grain size and photocurrent was revealed. Also, noise analyses with a conductive probe enabled examination of the defect density of perovskites at specific grain interiors by excluding the grain-boundary effect, and reduced defects were clearly observed for the perovskites using CH3NH3I-rich precursors.

  7. Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing.

    PubMed

    Era, Masanao; Komatsu, Yumeko; Sakamoto, Naotaka

    2016-04-01

    Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, Ca2, Cdl2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of Pbl-based layered perovskite mixed with Cal-based layered perovskite (20 molar%) is about 5 times large that of the pristine Pbl-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature.

  8. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO 4· nH 2O

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley

    2010-06-01

    The synthesis and crystal structure of NiMoO 4· nH 2O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) Å, b=6.8900(2) Å, c=9.2486(2) Å, α=76.681(2)°, β=83.960(2)°, γ=74.218(2)°. Its ideal chemical composition was NiMoO 4·3/4H 2O rather than NiMoO 4·1H 2O. Under hydrothermal conditions the hydrate turned directly into α-NiMoO 4 above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature.

  9. Characterization of arsenic (V) and arsenic (III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy.

    PubMed

    Sounderajan, Suvarna; Udas, A C; Venkataramani, B

    2007-10-01

    Arsenic (V) is known to form heteropolyacid with ammonium molybdate in acidic aqueous solutions, which can be quantitatively extracted into certain organic solvents. In the present work, 12-molybdoarsenic acid extracted in butan-1-ol is used for quantification of As (V). Total arsenic is estimated by converting arsenic (III) to arsenic (V) by digesting samples with concentrated nitric acid before extraction. Concentration of As (III) in the sample solutions could be calculated by the difference in total arsenic and arsenic (V). The characterization of arsenic was carried out by GFAAS using Pd as modifier. Optimization of the experimental conditions and instrumental parameters was investigated in detail. Recoveries of (90-110%) were obtained in the spiked samples. The detection limit was 0.2 microg l(-1). The proposed method was successfully applied for the determination of trace amount of arsenic (III) and arsenic (V) in process water samples.

  10. An X-ray photoelectron spectroscopy study of the electrochemical behaviour of iron molybdate thin films in lithium and sodium cells

    NASA Astrophysics Data System (ADS)

    Grissa, R.; Martinez, H.; Pelé, V.; Cotte, S.; Pecquenard, B.; Le Cras, F.

    2017-02-01

    Iron molybdate thin films are studied here as a possible electrode material for future Li and Na microbatteries working in a lower potential range than currently used systems. Monoclinic Fe2(MoO4)3 thin films are successfully deposited using radio frequency (RF) sputtering and an annealing treatment. The electrochemical behaviour of the obtained electrodes against Li and Na is then studied in a coin cell configuration with liquid electrolytes. The redox processes ruling the insertion/deinsertion of Li+ and Na+ are investigated by means of XPS (X-ray Photoelectron Spectroscopy). The results highlight a different behaviour depending on the alkali, with a better redox reversibility for sodium at the end of the first charge. For subsequent cycles however, improved capacity retention is evidenced for cycling versus lithium as compared to sodium which was attributed to the properties of the SEI layer.

  11. PAPERS DEVOTED TO THE 90TH ANNIVERSARY OF A.M.PROKHOROV: Lasing properties of selectively pumped Raman-active Nd3+-doped molybdate and tungstate crystals

    NASA Astrophysics Data System (ADS)

    Basiev, Tasoltan T.; Doroshenko, Maxim E.; Ivleva, Lyudmila I.; Osiko, Vyacheslav V.; Kosmyna, M. B.; Komar', V. K.; Sulc, J.; Jelinkova, H.

    2006-08-01

    The lasing efficiency of Nd3+ ions is studied in laser materials capable of self-Raman frequency conversion. The lasing properties of tungstate and molybdate crystals with the scheelite structure (SrWO4, BaWO4, PbWO4, SrMoO4, PbMoO4) activated with neodymium ions are investigated upon longitudinal pumping by a 750-nm alexandrite laser or a 800-nm diode laser. The slope lasing efficiency obtained for a Nd3+:PbMoO4 laser emitting at 1054 nm is 54.3% for the total lasing efficiency of 46%, which is the best result for all the crystals with the scheelite structure studied so far. The simultaneous Q-switched lasing and self-Raman frequency conversion were demonstrated in neodymium-doped SrWO4, PbWO4, and BaWO4 crystals.

  12. A Raman spectroscopic study of a hydrated molybdate mineral ferrimolybdite, Fe2(MoO4)3·7-8H2O.

    PubMed

    Sejkora, Jiří; Cejka, Jiří; Malíková, Radana; López, Andrés; Xi, Yunfei; Frost, Ray L

    2014-09-15

    Raman spectra of two well-defined ferrimolybdite samples, Fe2(3+)(Mo6+O4)3·7-8H2O, from the Krupka deposit (northern Bohemia, Czech Republic) and Hůrky near Rakovník occurrence (central Bohemia, Czech Republic) were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of molybdate anions, Fe-O units and water molecules. Number of Raman and infrared bands assigned to (MoO4)(2-) units and water molecules proved that symmetrically (structurally) nonequivalent (MoO4)(2-) and H2O are present in the crystal structure of ferrimolybdite. Approximate O-H⋯O hydrogen bond lengths (2.80-2.73 Å) were inferred from the published infrared spectra.

  13. Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells

    NASA Astrophysics Data System (ADS)

    Pedesseau, L.; Kepenekian, M.; Sapori, D.; Huang, Y.; Rolland, A.; Beck, A.; Cornet, C.; Durand, O.; Wang, S.; Katan, C.; Even, J.

    2016-03-01

    A method based on DFT is used to obtained dielectric profiles. The high frequency Ɛ∞(z) and the static Ɛs(z) dielectric profiles are compared for 3D, 2D-3D and 2D Hybrid Organic Perovskites (HOP). A dielectric confinement is observed for the 2D materials between the high dielectric constant of the inorganic part and the low dielectric constant of the organic part. The effect of the ionic contribution on the dielectric constant is also shown. The quantum and dielectric confinements of 3D HOP nanoplatelets are then reported. Finally, a numerical simulation based on the SILVACO code of a HOP based solar cell is proposed for various permittivity of MAPbI3.

  14. Degradation mechanism for planar heterojunction perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kouhei; Furumoto, Yoshikazu; Shahiduzzaman, M.; Kuwabara, Takayuki; Takahashi, Kohshin; Taima, Tetsuya

    2016-04-01

    Organic-inorganic hybrid perovskite materials have recently emerged as a promising cost- and energy-efficient light absorber material for photovoltaic applications. Unfortunately, perovskite solar cells have a problem with decreasing power conversion efficiency owing to their degradation in air. To clarify the cause of the degradation of perovskite solar cells, we exposed deposited CH3NH3PbI3 and HC(NH2)2PbI3 films to an O2 or (H2O+N2) atmosphere condition. Analysis of these films revealed that a large energy band gap was observed as a result of the influence of the H2O molecule in CH3NH3PbI3 and HC(NH2)2PbI3. Under the (H2O+N2) atmosphere condition, the existence of CH3NH3I and HC(NH2)2I molecules was found to affect the morphology and as well as the crystalline diffraction peak. The resultant perovskite crystalline structure was degraded by H2O molecules under the air exposure condition.

  15. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    DOE PAGES

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; ...

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solarmore » cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.« less

  16. Thermodynamic origin of instability in hybrid halide perovskites.

    PubMed

    Tenuta, E; Zheng, C; Rubel, O

    2016-11-24

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability.

  17. Surface phonons near structural phase transitions of fluoridic perovskites

    NASA Astrophysics Data System (ADS)

    Prade, J.; Kulkarni, A. D.; De Wette, F. W.; Reiger, R.; Schröder, U.; Kress, W.

    1989-04-01

    The fluoridic perovskite KMnF 3 exhibits an antiferrodistortive phase transition which goes along with a soft mode at the R-point of the Brillouin zone. We investigate in this paper the surface phonons of the KF(001) surface at temperatures near this phase transition. The calculations are carried out for relaxed and reconstructed (001) slabs.

  18. Comprehensive design of omnidirectional high-performance perovskite solar cells

    PubMed Central

    Zhang, Yutao; Xuan, Yimin

    2016-01-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419

  19. Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics.

    PubMed

    Miyano, Kenjiro; Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2016-06-16

    Ion migration has been suspected as the origin of various irreproducible and unstable properties, most notably the hysteresis, of lead halide perovskite photovoltaic (PV) cells since the early stage of the research. Although many evidence of ionic movement have been presented both numerically and experimentally, a coherent and quantitative picture that accounts for the observed irreproducible phenomena is still lacking. At the same time, however, it has been noticed that in certain types of PV cells, the hysteresis is absent or at least within the measurement reproducibility. We have previously shown that the electronic properties of hysteresis-free cells are well represented in terms of the conventional inorganic semiconductors. The reproducibility of these measurements was confirmed typically within tens of minutes under the biasing field of -1 V to +1.5 V. In order to probe the effect of ionic motion in the hysteresis-free cells, we extended the time scale and the biasing rage in the electronic measurements, from which we conclude the following: (1) From various evidence, it appears that ion migration is inevitable. However, it does not cause detrimental effects to the PV operation. (2) We propose, based on the quantitative characterization, that the degradation is more likely due to the chemical change at the interfaces between the carrier selective layers and perovskite rather than the compositional change of the lead iodide perovskite bulk. Together, they give much hope in the use of the lead iodide perovskite in the use of actual application.

  20. Controlling Octahedral Rotations in a Perovskite via Strain Doping

    NASA Astrophysics Data System (ADS)

    Herklotz, A.; Wong, A. T.; Meyer, T.; Biegalski, M. D.; Lee, H. N.; Ward, T. Z.

    2016-05-01

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film can be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. These results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.

  1. Attempt to prepare perovskite PZT at low temperatures using IBAD

    NASA Astrophysics Data System (ADS)

    Vapenka, David; Hlubucek, Jiri; Horodyska, Petra

    2016-11-01

    Lead zirconate titanate (Pb[ZrxTi1-x]O3 ) is well-known for his excellent ferroelectric, piezoelectric and electromechanical properties. These properties are closely related to the perovskite crystal structure of PZT. A common way to achieve thin film of perovskite PZT is to anneal the layer after deposition. The high annealing temperature (600 - 700°C) limits a set of usable substrates. To grow a thin layer of perovskite PZT at reduced temperature it is necessary to add crystallization energy to the system by another way. In this article are presented some results of using ion beam sputtering system (IBS) with ion beam assistance (IBAD) to growth perovskite PZT layer at reduced temperature. This process is very complicated and the resulting layer properties are strongly influenced by deposition parameters (ions energy, chemical composition of the atmosphere in the sputtering chamber etc.). We achieved partial success when pyrochlore crystal structure of PZT was grown at reduced substrate temperature (110°C) (at this temperatures are the PZT layers usually amorphous)

  2. Epitaxial thin films of novel multiferroic double perovskites.

    NASA Astrophysics Data System (ADS)

    Venimadhav, A.; Li, Qi

    2006-03-01

    Recently multiferroic materials have attracted great interest. However, relatively a few pure multiferroic compounds are currently known. Here we show the exploration of design of multiferroic properties in double perovskites by combining the ferrolectrisity driven by the Bi lone pairs and selectively choosing the 3d transition metals following Goodenough-Kanamori's rules to bring in ferromagnetism. We present growth issues in stabilizing the single phase, epitaxial thin films of new double perovskite multiferroic systems such as Bi2NiMnO6, Bi2FeCrO6 and La2NiMnO6 by pulsed laser deposition. Targets of these compositions were synthesized by solid state method with 15% of excess Bi in the composition to compensate the volatility of Bi during the deposition. We also present the synthesis of Bi2FeCrO6 by growing a superlattice structures from individual targets of Bi FeO3 and BiCrO3. In the cubic double perovskites, cations show rock salt kind of ordering in the (111) direction and hence growing these films on STO (111) substrates has an advantage. We present the growth, structural and multiferroic properties in these double perovskite thin films..

  3. Comprehensive design of omnidirectional high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yutao; Xuan, Yimin

    2016-07-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.

  4. Comprehensive design of omnidirectional high-performance perovskite solar cells.

    PubMed

    Zhang, Yutao; Xuan, Yimin

    2016-07-13

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.

  5. Field-emission from quantum-dot-in-perovskite solids

    NASA Astrophysics Data System (ADS)

    García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-01

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  6. Controlling octahedral rotations in a perovskite via strain doping

    SciTech Connect

    Herklotz, Andreas; Biegalski, Michael D.; Lee, Ho Nyung; Ward, Thomas Zac; Wong, A. T.; Meyer, T.

    2016-05-24

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film can be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. Lastly, these results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.

  7. Oxide perovskite crystals for HTSC film substrates microwave applications

    NASA Technical Reports Server (NTRS)

    Bhalla, A. S.; Guo, Ruyan

    1995-01-01

    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

  8. Structural Polymorphism in Al-bearing Magnesiumsilicate Post-perovskite

    NASA Astrophysics Data System (ADS)

    Tschauner, O.; Kiefer, B.; Liu, H.; Somayazulu, M.; Luo, S. N.

    2006-12-01

    We show formation of a post-perovskite phase of Al-bearing magnesiummetasilicate which does not assume the CaIrO3 structure [1]. X-ray diffraction data and first principle calculations indicate that the present material assumes a structure composed of kinked SiO2- and MgO layers similar but not identical to topologies of novel post-perovskite phases recently proposed [2]. Minor element chemistry and actual stress regime are plausible reasons of the differences between the present and the previously reported post- perovskite phase. The presence of minor elements could stabilize this "kinked" post-perovskite structure and hence effect elasticity and the interpretations of seismic observations in cold areas of D". Acknowledgements: Supported through the NNSA Cooperative Agreement DE-FC88-01NV14049. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA, NSF, DOD -TACOM, and the W.M. Keck Foundation. APS is supported by DOE-BES under Contract No. W-31-109-Eng-38. [1] O. Tschauner, B. Kiefer, H.Z. Liu, M. Somayazulu, S.N. Luo, submitted [2] A.R.Oganov, R. Martonak, A. Laio, P. Raiteri, M. Parinello Nature 438, 1142-1144 (2005)

  9. Thermodynamic origin of instability in hybrid halide perovskites

    NASA Astrophysics Data System (ADS)

    Tenuta, E.; Zheng, C.; Rubel, O.

    2016-11-01

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability.

  10. Controlling octahedral rotations in a perovskite via strain doping

    DOE PAGES

    Herklotz, Andreas; Biegalski, Michael D.; Lee, Ho Nyung; ...

    2016-05-24

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film canmore » be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. Lastly, these results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.« less

  11. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    PubMed

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.

  12. Thermodynamic origin of instability in hybrid halide perovskites

    PubMed Central

    Tenuta, E.; Zheng, C.; Rubel, O.

    2016-01-01

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability. PMID:27883032

  13. Multifunctional MgO Layer in Perovskite Solar Cells.

    PubMed

    Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo

    2015-06-08

    A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination.

  14. Reduction Properties of Perovskite-related Rare Earth Orthoferrites

    NASA Astrophysics Data System (ADS)

    Berry, F. J.; Ren, X.; Marco, J. F.

    2005-07-01

    Perovskite-related materials of composition LaFe1- x Co x O3 have been prepared by conventional calcination methods and by mechanical milling methods. The reduction properties in a flowing mixture of hydrogen and nitrogen have been monitored by temperature programmed reduction techniques and the nature of the reduced phases characterised by X-ray powder diffraction, X-ray absorption spectroscopy and57Fe Mössbauer spectroscopy. The smaller particle materials made by mechanical milling methods are more susceptible to reduction than their counterparts made by conventional solid state methods. The presence of cobalt enhances the reducibility of iron in the perovskite-related structures. In iron-rich systems more limited reduction of iron and cobalt leads to the segregation of discrete metallic phases without destruction of the perovskite-related structure at temperatures up to 1200°C whereas in cobalt-rich systems the reduction of Fe3+ and Co3+ leads to significant segregation of alloy and metallic phases and is accompanied by destruction of the perovskite-related structure.

  15. Controlling Octahedral Rotations in a Perovskite via Strain Doping

    PubMed Central

    Herklotz, A.; Wong, A. T.; Meyer, T.; Biegalski, M. D.; Lee, H. N.; Ward, T. Z.

    2016-01-01

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film can be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. These results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials. PMID:27215804

  16. Architecture of the Interface between the Perovskite and Hole-Transport Layers in Perovskite Solar Cells.

    PubMed

    Moriya, Masahiro; Hirotani, Daisuke; Ohta, Tsuyoshi; Ogomi, Yuhei; Shen, Qing; Ripolles, Teresa S; Yoshino, Kenji; Toyoda, Taro; Minemoto, Takashi; Hayase, Shuzi

    2016-09-22

    The interface between the perovskite (PVK, CH3 NH3 PbI3 ) and hole-transport layers in perovskite solar cells is discussed. The device architecture studied is as follows: F-doped tin oxide (FTO)-coated glass/compact TiO2 /mesoporous TiO2 /PVK/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD)/Au. After a thin layer of 4,4,4-trifluorobutylammonium iodide (TFBA) was inserted at the interface between PVK and Spiro-MeOTAD, the photovoltaic efficiency increased from 11.6-14.5 % to 15.1-17.6 %. TFBA (10 ppm) was added in the PVK solution before coating. Owing to the low surface tension of TFBA, TFBA rose to the surface of the PVK layer spontaneously during spin-coating to make a thin organic layer. The PVK grain boundaries also seemed to be passivated with the addition of TFBA. However, large differences in Urbach energies and valence band energy level were not observed for the PVK layer with and without the addition of TFBA. The charge recombination time constant between the PVK and the Spiro-MeOTAD became slower (from 8.4 to 280 μsec) after 10 ppm of TFBA was added in the PVK. The experimental results using TFBA conclude that insertion of a very thin layer at the interface between PVK and Spiro-MeOTAD is effective for suppressing charge recombination and increasing photovoltaic performances.

  17. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    SciTech Connect

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highly active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).

  18. EPR Spectroscopy of MolB2C2-A Reveals Mechanism of Transport for a Bacterial Type II Molybdate Importer*♦

    PubMed Central

    Rice, Austin J.; Alvarez, Frances J. D.; Schultz, Kathryn M.; Klug, Candice S.; Davidson, Amy L.; Pinkett, Heather W.

    2013-01-01

    In bacteria, ATP-binding cassette (ABC) transporters are vital for the uptake of nutrients and cofactors. Based on differences in structure and activity, ABC importers are divided into two types. Type I transporters have been well studied and employ a tightly regulated alternating access mechanism. Less is known about Type II importers, but much of what we do know has been observed in studies of the vitamin B12 importer BtuC2D2. MolB2C2 (formally known as HI1470/71) is also a Type II importer, but its substrate, molybdate, is ∼10-fold smaller than vitamin B12. To understand mechanistic differences among Type II importers, we focused our studies on MolBC, for which alternative conformations may be required to transport its relatively small substrate. To investigate the mechanism of MolBC, we employed disulfide cross-linking and EPR spectroscopy. From these studies, we found that nucleotide binding is coupled to a conformational shift at the periplasmic gate. Unlike the larger conformational changes in BtuCD-F, this shift in MolBC-A is akin to unlocking a swinging door: allowing just enough space for molybdate to slip into the cell. The lower cytoplasmic gate, identified in BtuCD-F as “gate I,” remains open throughout the MolBC-A mechanism, and cytoplasmic gate II closes in the presence of nucleotide. Combining our results, we propose a peristaltic mechanism for MolBC-A, which gives new insight in the transport of small substrates by a Type II importer. PMID:23709218

  19. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    DOE PAGES

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; ...

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highlymore » active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).« less

  20. Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3}

    SciTech Connect

    Savina, A.A.; Atuchin, V.V.; Solodovnikov, S.F.; Solodovnikova, Z.A.; Krylov, A.S.; Maximovskiy, E.A.; Molokeev, M.S.; Oreshonkov, A.S; Pugachev, A.M.; and others

    2015-05-15

    New ternary molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is synthesized in the system Na{sub 2}MoO{sub 4}–Cs{sub 2}MoO{sub 4}–Bi{sub 2}(MoO{sub 4}){sub 3}. The structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å{sup 3}, Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs{sub 2}NaBi(MoO{sub 4}){sub 3} up to the melting point at 826 K. The compound shows an SHG signal, I{sub 2w}/I{sub 2w}(SiO{sub 2})=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured. - Graphical abstract: - Highlights: • The crystal structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is defined. • The molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is stable up to melting point at 826 K. • Vibrational properties of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} are evaluated by Raman spectroscopy.

  1. Effect of Water on Grain Growth in Perovskite + Ferropericlase Assemblage

    NASA Astrophysics Data System (ADS)

    Bolfan-Casanova, N.

    2005-12-01

    The absence of seismic anisotropy in the Earth's lower mantle suggests that deformation in that region is governed by diffusion [1]. In such a case, the rate of creep, and thus viscosity, should be proportional to the grain size. Previous experiments performed on MgSiO3 perovskite + periclase assemblage have shown that the grain growth kinetics follows a power law with an extremely large exponent around 11 [2]. Such results suggest that the grain size in the lower mantle is almost constant [3]. However, there are traces of water inside the Earth which are likely to act as a flux and this effect has never been investigated. Perovskite grain sizes of up to 50 microns have been reported when synthesized from San Carlos olivine, which contains naturally some water [4]. These large grain sizes can be explained by the presence of iron or OH, however both species are likely to increase the number of point defects, and thus speed up the kinetics of diffusion and growth. This study thus focuses on the Ostwald ripening of the perovskite + ferropericlase assemblage under hydrous conditions. Experiments were carried out in a multi-anvil press using an 8/3 assembly at pressures of 25 GPa and temperatures of 1600°C as a function of time. The starting material was San Carlos olivine + traces of water. The textures were studied using a scanning electron microscope. Preliminary results show that within 30 minutes, perovskite grain size attains 4 μm which is about 5 times larger than the average size reported for perovskite in the dry and iron-free composition. These results indicate that grain growth in the presence of iron and water is enhanced. References [1] Karato S., S. Zhang, H.R. Wenk, 1995, Superplasticity in Earth's lower mantle: evidence from seismic anisotropy and rock physics, Science 270: 458-461. [2] Yamazaki D., T. Kato, E. Ohtani, M.Toriumi, 1996, Grain Growth rates of MgSiO3 Perovskite and Periclase Under Mantle Condition, Science 274: 2052-2054. [3] Solomatov V

  2. Hydrogen Incorporation in Aluminous MgSiO3-Perovskite

    NASA Astrophysics Data System (ADS)

    Smyth, J. R.; Jacobsen, S. D.; Huss, G. R.; Miyajima, N.; Pamato, M. G.

    2013-12-01

    We have synthesized hydrous, aluminum-bearing MgSiO3 perovskite samples at 25GPa and various temperatures from 1600 to 2200C in a multi-anvil press and have characterized the samples by single-crystal X-ray diffraction, Raman spectroscopy, electron microprobe (EPMA), transmission electron microscopy (TEM), and secondary ion mass spectroscopy (SIMS). Perovskite crystals range up to 100 micrometers in size and contain 1 - 2.5% by weight Al2O3. SIMS analyses with a probe spot of approximately 10 micron square indicate up to several thousand ppm by weight H2O which corresponds to one H per Al atom in the structure. Microprobe chemical analysis and crystal structure refinement from single crystal X-ray data indicates that Al substitutes in the Si site, but not in the Mg site. However, Raman spectroscopy indicates the presence of micro-inclusions of brucite, super-hydrous phase B (SHyB), magnesite, and stishovite in most samples. Some of the perovskite crystals in the samples synthesized at temperatures above 2100 C exhibit rounded inclusions that are interpreted to be melt that quenched to perovskite plus brucite, phase D, and/or stishovite. Nearly all spectra show O-H stretching bands that are associated with brucite and/or Shy-B. None of the samples show a Raman peak in the O-H stretching region (3000 to 3700 cm-1) that correlates in intensity with perovskite Raman lattice modes. Our provisional interpretation is that the MgSiO3-perovskite structure incorporates very little H2O (<100 ppmw) and that most of the H in the samples is contained in brucite, phase D, superhydrous phase B (SHyB) or aluminous stishovite. This implies that the magnesium silicate perovskite phase in the lower mantle is unlikely to be a significant host for H in the lower mantle. However, phase D may be stabilized to higher temperatures by incorporation of Al and is extremely hydrous so that two modal percent of phase D may allow the lower mantle to contain several thousand ppmw H2O. Such a small

  3. Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells.

    PubMed

    Fu, Kunwu; Nelson, Christopher T; Scott, Mary Cooper; Minor, Andrew; Mathews, Nripan; Wong, Lydia Helena

    2016-02-21

    The stunning rise of methylammonium lead iodide perovskite material as a light harvesting material in recent years has drawn much attention in the photovoltaic community. Here, we investigated in detail the uniform and void-free perovskite capping layer in the mesoscopic perovskite devices and found it to play a critical role in determining device performance and charge recombination process. Compared to the rough surface with voids of the perovskite layer, surface of the perovskite capping layer obtained from sequential deposition process is much more uniform with less void formation and distribution within the TiO2 mesoscopic scaffold is more homogeneous, leading to much improved photovoltaic parameters of the devices. The impact of void free perovskite capping layer surface on the charge recombination processes within the mesoscopic perovskite solar cells is further scrutinized via charge extraction measurement. Modulation of precursor solution concentrations in order to further improve the perovskite layer surface morphology leads to higher efficiency and lower charge recombination rates. Inhibited charge recombination in these solar cells also matches with the higher charge density and slower photovoltage decay profiles measured.

  4. Stabilized wide bandgap perovskite solar cells by tin substitution

    SciTech Connect

    Yang, Zhibin; Rajagopal, Adharsh; Jo, Sae Byeok; Chueh, Chu -Chen; Williams, Spencer; Huang, Chun -Chih; Katahara, John K.; Hillhouse, Hugh W.; Jen, Alex K. -Y.

    2016-11-16

    Wide bandgap MAPb(I1-yBry)3 perovskites show promising potential for application in tandem solar cells. However, unstable photovoltaic performance caused by phase segregation has been observed under illumination when y is above 0.2. Herein, we successfully demonstrate stabilization of the I/Br phase by partially replacing Pb2+ with Sn2+ and verify this stabilization with X-ray diffractometry and transient absorption spectroscopy. The resulting MAPb0.75Sn0.25(I1-yBry)3 perovskite solar cells show stable photovoltaic performance under continuous illumination. Among these cells, the one based on MAPb0.75Sn0.25(I0.4Br0.6)3 perovskite shows the highest efficiency of 12.59% with a bandgap of 1.73 eV, which make it a promising wide bandgap candidate for application in tandem solar cells. The engineering of internal bonding environment by partial Sn substitution is believed to be the main reason for making MAPb0.75Sn0.25(I1-yBry)3 perovskite less vulnerable to phase segregation during the photostriction under illumination. Furthermore, this study establishes composition engineering of the metal site as a promising strategy to impart phase stability in hybrid perovskites under illumination.

  5. Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells.

    PubMed

    Guerrero, Antonio; You, Jingbi; Aranda, Clara; Kang, Yong Soo; Garcia-Belmonte, Germà; Zhou, Huanping; Bisquert, Juan; Yang, Yang

    2016-01-26

    The stability of perovskite solar cells is one of the major challenges for this technology to reach commercialization, with water believed to be the major degradation source. In this work, a range of devices containing different cathode metal contacts in the configuration ITO/PEDOT:PSS/MAPbI3/PCBM/Metal are fully electrically characterized before and after degradation caused by steady illumination during 4 h that induces a dramatic reduction in power conversion efficiency from values of 12 to 1.8%. We show that a decrease in performance and generation of the S-shape is associated with chemical degradation of the metal contact. Alternatively, use of Cr2O3/Cr as the contact enhances the stability, but modification of the energetic profile during steady illumination takes place, significantly reducing the performance. Several techniques including capacitance-voltage, X-ray diffraction, and optical absorption results suggest that the properties of the bulk perovskite layer are little affected in the device degradation process. Capacitance-voltage and impedance spectroscopy results show that the electrical properties of the cathode contact are being modified by generation of a dipole at the cathode that causes a large shift of the flat-band potential that modifies the interfacial energy barrier and impedes efficient extraction of electrons. Ionic movement in the perovskite layer changes the energy profile close to the contacts, modifying the energy level stabilization at the cathode. These results provide insights into the degradation mechanisms of perovskite solar cells and highlight the importance to further study the use of protecting layers to avoid the chemical reactivity of the perovskite with the external contacts.

  6. Temperature-independent sensors based on perovskite-type oxides

    SciTech Connect

    Zaza, F.; Frangini, S.; Masci, A.; Leoncini, J.; Pasquali, M.; Luisetto, I.; Tuti, S.

    2014-06-19

    The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such as La{sub 0.7}Sr{sub 0.3}FeO{sub 3}, are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe{sup 4+} and Fe{sup 3+}, as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} perovskites have temperature-independence conductivity from 900 K.

  7. Modeling organohalide perovskites for photovoltaic applications: From materials to interfaces

    NASA Astrophysics Data System (ADS)

    de Angelis, Filippo

    2015-03-01

    The field of hybrid/organic photovoltaics has been revolutionized in 2012 by the first reports of solid-state solar cells based on organohalide perovskites, now topping at 20% efficiency. First-principles modeling has been widely applied to the dye-sensitized solar cells field, and more recently to perovskite-based solar cells. The computational design and screening of new materials has played a major role in advancing the DSCs field. Suitable modeling strategies may also offer a view of the crucial heterointerfaces ruling the device operational mechanism. I will illustrate how simulation tools can be employed in the emerging field of perovskite solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are presented using selected examples of relevant materials and interfaces. The main issue with hybrid perovskite modeling is to be able to accurately describe their structural, electronic and optical features. These materials show a degree of short range disorder, due to the presence of mobile organic cations embedded within the inorganic matrix, requiring to average their properties over a molecular dynamics trajectory. Due to the presence of heavy atoms (e.g. Sn and Pb) their electronic structure must take into account spin-orbit coupling (SOC) in an effective way, possibly including GW corrections. The proposed SOC-GW method constitutes the basis for tuning the materials electronic and optical properties, rationalizing experimental trends. Modeling charge generation in perovskite-sensitized TiO2 interfaces is then approached based on a SOC-DFT scheme, describing alignment of energy levels in a qualitatively correct fashion. The role of interfacial chemistry on the device performance is finally discussed. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under Grant Agreement No. 604032 of the MESO project.

  8. Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing

    NASA Astrophysics Data System (ADS)

    Li, Guangru; Price, Michael; Deschler, Felix

    2016-09-01

    Hybrid lead-halide perovskites have emerged as promising solution-processed semiconductor materials for thin-film optoelectronics. In this review, we discuss current challenges in perovskite LED performance, using thin-film and nano-crystalline perovskite as emitter layers, and look at device performance and stability. Fabrication of electrically pumped, optical-feedback devices with hybrid lead halide perovskites as gain medium is a future challenge, initiated by the demonstration of optically pumped lasing structures with low gain thresholds. We explain the material parameters affecting optical gain in perovskites and discuss the challenges towards electrically pumped perovskite lasers.

  9. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Haitao; Sun, Weihai; Li, Yunlong; Yan, Weibo; Yu, Pingrong; Zhou, Huanping; Bian, Zuqiang; Huang, Chunhui

    2016-04-01

    Planar heterojunction perovskite solar cell is one of the most competitive photovoltaic technologies, while charge transport materials play a crucial role. We successfully demonstrated an effective electron transport material, namely chemical bath deposited cadmium sulphide (CdS) film under low temperature, in perovskite-based solar cells. Power conversion efficiency of 16.1% has been achieved, which is comparable to that of devices based on TiO2 film prepared via low-temperature processes. Electronic impedance spectra reveal that the CdS-based device presents a higher recombination resistance than TiO2-based devices, which reduces carrier recombination and increases the open circuit voltage. The interface between CdS and perovskite was characterized with improved characteristics when compared to TiO2, e.g., efficient carrier extraction and reduced surface defect-associated degradation in the devices, which help to alleviate anomalous hysteresis and long-term instability. Furthermore, the entire device was fabricated via solution process with a processing temperature below 100°C, suggesting a promising method of further development of perovskite solar cells and commercial manufacturing.

  10. Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide Perovskite for Photovoltaic Applications

    SciTech Connect

    Gou, Gaoyang; Young, Joshua; Liu, Xian; Rondinelli, James M.

    2016-09-28

    Owing to its ideal semiconducting band gap and good carrier transport properties, the fully inorganic perovskite CsSnI3 has been proposed as a visible-light absorber for photovoltaic (PV) applications. However, compared to the organic inorganic lead halide perovskite CH3NH3PbI3, CsSnI3 solar cells display very low energy conversion efficiency. In this work, we propose a potential route to improve the PV properties of CsSnI3. Using first-principles calculations, we examine the crystal structures and electronic properties of CsSnI3, including its structural polymorphs. Next, we purposefully order Cs and Rb cations on the A site to create the double perovskite (CsRb)Sn2I6. We find that a stable ferroelectric polarization arises from the nontrivial coupling between polar displacements and octahedral rotations of the SnI6 network. These ferroelectric double perovskites are predicted to have energy band gaps and carrier effective masses similar to those of CsSnI3. More importantly, unlike nonpolar CsSnI3, the electric polarization present in ferroelectric (CsRb)Sn2I6 can effectively separate the photoexcited carriers, leading to novel ferroelectric PV materials with,potentially enhanced energy conversion efficiency.

  11. Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide Perovskite for Photovoltaic Applications.

    PubMed

    Gou, Gaoyang; Young, Joshua; Liu, Xian; Rondinelli, James M

    2017-01-03

    Owing to its ideal semiconducting band gap and good carrier-transport properties, the fully inorganic perovskite CsSnI3 has been proposed as a visible-light absorber for photovoltaic (PV) applications. However, compared to the organic-inorganic lead halide perovskite CH3NH3PbI3, CsSnI3 solar cells display very low energy conversion efficiency. In this work, we propose a potential route to improve the PV properties of CsSnI3. Using first-principles calculations, we examine the crystal structures and electronic properties of CsSnI3, including its structural polymorphs. Next, we purposefully order Cs and Rb cations on the A site to create the double perovskite (CsRb)Sn2I6. We find that a stable ferroelectric polarization arises from the nontrivial coupling between polar displacements and octahedral rotations of the SnI6 network. These ferroelectric double perovskites are predicted to have energy band gaps and carrier effective masses similar to those of CsSnI3. More importantly, unlike nonpolar CsSnI3, the electric polarization present in ferroelectric (CsRb)Sn2I6 can effectively separate the photoexcited carriers, leading to novel ferroelectric PV materials with potentially enhanced energy conversion efficiency.

  12. Observation and Mediation of the Presence of Metallic Lead in Organic-Inorganic Perovskite Films.

    PubMed

    Sadoughi, Golnaz; Starr, David E; Handick, Evelyn; Stranks, Samuel D; Gorgoi, Mihaela; Wilks, Regan G; Bär, Marcus; Snaith, Henry J

    2015-06-24

    We have employed soft and hard X-ray photoelectron spectroscopies to study the depth-dependent chemical composition of mixed-halide perovskite thin films used in high-performance solar cells. We detect substantial amounts of metallic lead in the perovskite films, which correlate with significant density of states above the valence band maximum. The metallic lead content is higher in the bulk of the perovskite films than at the surface. Using an optimized postanneal process in air, we can reduce the metallic lead content in the perovskite film. This process reduces the amount of metallic lead and a corresponding increase in the photoluminescence quantum efficiency of the perovskite films can be observed. This correlation indicates that metallic lead impurities are likely a key defect whose concentration can be controlled by simple annealing procedures in order to increase the performance for perovskite solar cells.

  13. A two-step route to planar perovskite cells exhibiting reduced hysteresis

    SciTech Connect

    Ip, Alexander H.; Adachi, Michael M.; McDowell, Jeffrey J.; Xu, Jixian; Sargent, Edward H.; Quan, Li Na; Kim, Dong Ha

    2015-04-06

    A simple two-step method was used to produce efficient planar organolead halide perovskite solar cells. Films produced using solely iodine containing precursors resulted in poor morphology and failed devices, whereas addition of chlorine to the process greatly improved morphology and resulted in dense, uniform perovskite films. This process was used to produce perovskite solar cells with a fullerene-based passivation layer. The hysteresis effect, to which planar perovskite devices are otherwise prone, was greatly suppressed through the use of this interface modifier. The combined techniques resulted in perovskite solar cells having a stable efficiency exceeding 11%. This straightforward fabrication procedure holds promise in development of various optoelectronic applications of planar perovskite films.

  14. A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Song, Dae Ho; Hyeok Jang, Min; Lee, Min Ho; Hyuck Heo, Jin; Park, Jin Kyoung; Sung, Shi-Joon; Kim, Dae-Hwan; Hong, Ki-Ha; Im, Sang Hyuk

    2016-11-01

    Although the record efficiencies of perovskite hybrid solar cells are gradually reaching the efficiency of crystalline Si solar cells, perovskite hybrid solar cells often exhibit significant current density-voltage (J-V) hysteresis with respect to the forward and reverse scan direction and scan rate. The origin of the J-V hysteresis of perovskite hybrid solar cells has not, to date, been clearly elucidated. Dielectric polarization by the ferroelectric properties of perovskite (i), the ionic motion/migration of perovskite materials (ii), and charge trapping and detrapping at trap sites by the unbalanced electron and hole flux (iii) are considered the possible origins of J-V hysteresis. Here, we reviewed the origin of the J-V hysteresis of perovskite solar cells from the above three points of view and we then suggest how one may reduce the J-V hysteresis with respect to the scan direction and scan rate.

  15. High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites.

    PubMed

    Yao, En-Ping; Yang, Zhanlue; Meng, Lei; Sun, Pengyu; Dong, Shiqi; Yang, Ye; Yang, Yang

    2017-04-10

    Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Förster or Dexter energy transfer is analyzed through time resolved photoluminescence. By tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).

  16. Nucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance.

    PubMed

    Yu, Yu; Yang, Songwang; Lei, Lei; Liu, Yan

    2017-02-16

    Perovskite films are a promising candidate for future highly efficient and low-cost solar cells. The long diffusion length of charge carriers in the perovskite film makes its architecture fabrication seem unnecessary, while the rapid crystallization process increases the difficulty in its architecture fabrication. Here we show the fabrication of perovskite architectures through a nucleation mediated interfacial precipitation method with the proper immiscible anti-solvent. Consecutively evolved architectures from tri-layer porous films to bilayer dense films are obtained. The interfacial precipitation provides the possibility of controlling the crystallization process of perovskite films, while the secondary nucleation is the origin of the porous architecture. The nucleation mediation can be a novel bottom-up approach to fabricate architectural perovskite films. The tri-layer architectural perovskite film exhibits excellent light absorption in the range of 500-800 nm and good photovoltaic performance with 8.2% enhancement in efficiency compared with the bilayer film for the corresponding solar cells.

  17. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation.

    PubMed

    Hwang, Insung; Jeong, Inyoung; Lee, Jinwoo; Ko, Min Jae; Yong, Kijung

    2015-08-12

    In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.

  18. Benign-by-Design Solventless Mechanochemical Synthesis of Three-, Two-, and One-Dimensional Hybrid Perovskites.

    PubMed

    Jodlowski, Alexander D; Yépez, Alfonso; Luque, Rafael; Camacho, Luis; de Miguel, Gustavo

    2016-11-21

    Organic-inorganic hybrid perovskites have attracted significant attention owing to their extraordinary optoelectronic properties with applications in the fields of solar energy, lighting, photodetectors, and lasers. The rational design of these hybrid materials is a key factor in the optimization of their performance in perovskite-based devices. Herein, a mechanochemical approach is proposed as a highly efficient, simple, and reproducible method for the preparation of four types of hybrid perovskites, which were obtained in large amounts as polycrystalline powders with high purity and excellent optoelectronics properties. Two archetypal three-dimensional (3D) perovskites (MAPbI3 and FAPbI3 ) were synthesized, together with a bidimensional (2D) perovskite (Gua2 PbI4 ) and a "double-chain" one-dimensional (1D) perovskite (GuaPbI3 ), whose structure was elucidated by X-ray diffraction.

  19. Investigations of Transition Metal Oxide with the Perovskite Structure as Potential Multiferroics

    DTIC Science & Technology

    2008-10-01

    Investigation of Transition Metal Oxides with the Perovskite Structure as Potential Multiferroics by Virginia Lea Miller and Steven C. Tidrow...Adelphi, MD 20783-1197 ARL-TR-4621 October 2008 Investigation of Transition Metal Oxides with the Perovskite Structure as Potential...5b. GRANT NUMBER 4. TITLE AND SUBTITLE Investigation of Transition Metal Oxides with the Perovskite Structure as Potential Multiferroics 5c

  20. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases.

    PubMed

    Munir, Rahim; Sheikh, Arif D; Abdelsamie, Maged; Hu, Hanlin; Yu, Liyang; Zhao, Kui; Kim, Taesoo; Tall, Omar El; Li, Ruipeng; Smilgies, Detlef-M; Amassian, Aram

    2017-01-01

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  1. Preface for Special Topic: Perovskite solar cells—A research update

    NASA Astrophysics Data System (ADS)

    Schmidt-Mende, Lukas; Herz, Laura M.

    2016-09-01

    Over the last few years, tremendous progress has been made in the research field of perovskite solar cells. Not only are record power conversion efficiencies now exceeding 20%, but our understanding about the different mechanisms leading to this extraordinary performance has improved phenomenally. The aim of this special issue is to review the current state-of-the-art understanding of perovskite solar cells. Most of the presented articles are research updates giving a succinct overview over different aspects concerning perovskite solar cells.

  2. Mesoporous BaSnO3 layer based perovskite solar cells.

    PubMed

    Zhu, Liangzheng; Shao, Zhipeng; Ye, Jiajiu; Zhang, Xuhui; Pan, Xu; Dai, Songyuan

    2016-01-18

    One of the limitations of TiO2 based perovskite solar cells is the poor electron mobility of TiO2. Here, perovskite oxide BaSnO3 is used as a replacement. It has a higher electron mobility and the same perovskite structure as the light harvesting materials. After optimization, devices based on BaSnO3 showed the best performance of 12.3% vs. 11.1% for TiO2.

  3. Influence of Domain Structure on Magnetoresistance in Perovskite Manganite Grain Boundary Jnctions

    DTIC Science & Technology

    2001-04-01

    Perovskite Manganite Grain Boundary Jnctions DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Mat. Res. Soc. Symp. Proc. Vol. 674 © 2001 Materials Research Society Influence of Domain Structure on Magnetoresistance in Perovskite Manganite Grain...INTRODUCTION Since the discovery of colossal magnetoresistance (CMR) [I I in perovskite manganites these materials have attracted a lot of scientific

  4. Humidity versus photo-stability of metal halide perovskite films in a polymer matrix.

    PubMed

    Manshor, Nurul Ain; Wali, Qamar; Wong, Ka Kan; Muzakir, Saifful Kamaluddin; Fakharuddin, Azhar; Schmidt-Mende, Lukas; Jose, Rajan

    2016-08-21

    Despite the high efficiency of over 21% reported for emerging thin film perovskite solar cells, one of the key issues prior to their commercial deployment is to attain their long term stability under ambient and outdoor conditions. The instability in perovskite is widely conceived to be humidity induced due to the water solubility of its initial precursors, which leads to decomposition of the perovskite crystal structure; however, we note that humidity alone is not the major degradation factor and it is rather the photon dose in combination with humidity exposure that triggers the instability. In our experiment, which is designed to decouple the effect of humidity and light on perovskite degradation, we investigate the shelf-lifetime of CH3NH3PbI3 films in the dark and under illumination under high humidity conditions (Rel. H. > 70%). We note minor degradation in perovskite films stored in a humid dark environment whereas upon exposure to light, the films undergo drastic degradation, primarily owing to the reactive TiO2/perovskite interface and also the surface defects of TiO2. To enhance its air-stability, we incorporate CH3NH3PbI3 perovskite in a polymer (poly-vinylpyrrolidone, PVP) matrix which retained its optical and structural characteristics in the dark for ∼2000 h and ∼800 h in room light soaking, significantly higher than a pristine perovskite film, which degraded completely in 600 h in the dark and in less than 100 h when exposed to light. We attribute the superior stability of PVP incorporated perovskite films to the improved structural stability of CH3NH3PbI3 and also to the improved TiO2/perovskite interface upon incorporating a polymer matrix. Charge injection from the polymer embedded perovskite films has also been confirmed by fabricating solar cells using them, thereby providing a promising future research pathway for stable and efficient perovskite solar cells.

  5. Solution-Processed Organic-Inorganic Perovskite Field-Effect Transistors with High Hole Mobilities.

    PubMed

    Matsushima, Toshinori; Hwang, Sunbin; Sandanayaka, Atula S D; Qin, Chuanjiang; Terakawa, Shinobu; Fujihara, Takashi; Yahiro, Masayuki; Adachi, Chihaya

    2016-12-01

    A very high hole mobility of 15 cm(2) V(-1) s(-1) along with negligible hysteresis are demonstrated in transistors with an organic-inorganic perovskite semiconductor. This high mobility results from the well-developed perovskite crystallites, improved conversion to perovskite, reduced hole trap density, and improved hole injection by employing a top-contact/top-gate structure with surface treatment and MoOx hole-injection layers.

  6. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells

    SciTech Connect

    Wang, Qi; Dong, Qingfeng; Li, Tao; Gruverman, Alexei; Huang, Jinsong

    2016-05-17

    Here, we demonstrated that inserting a tunneling layer between perovskite and electron transport layer could significantly increase device performance by suppressing carrier recombination at the cathode contact. The tunneling layer can also serve as an encapsulation layer to prevent perovskite film from damage caused by water or moisture. This method is simple because it does not need lattice matching between the buffer layer and perovskite. The low temperature solution process makes it compatible with many types of perovskite materials, and may be applied for anode contact as well. The freedom to choose any insulating layer for contact enables more device designs and manufacturing.

  7. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    PubMed

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications.

  8. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    PubMed

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed.

  9. Pressure-induced isostructural transition in a distorted perovskite via octahedron reconfiguration

    NASA Astrophysics Data System (ADS)

    Hong, Fang; Yue, Binbin; Hirao, Naohisa; Ren, Guohao; Chen, Bin; Mao, Ho-Kwang

    2016-12-01

    Perovskite material studies encompass many fields such as energy harvesting, superconductivity, magnetism, and beyond. Thus, it is very important to investigate their structural varieties in external environments. Here, the pressure-induced structure change of a distorted perovskite, Y0.7Lu0.3AlO3, was examined by synchrotron x-ray diffraction. Upon compression, it underwent an isostructural transition near 22 GPa. The quenchable high-pressure phase had a much higher bulk modulus than the low-pressure phase. This work shows the flexibility of perovskite distortion and will help to understand the property anomalies in prevailing perovskite ABO3 systems and design more functional materials.

  10. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Dongxue, Liu; Liu, Yongsheng

    2017-01-01

    Organic–inorganic hybrid perovskite solar cells have undergone especially intense research and transformation over the past seven years due to their enormous progress in conversion efficiencies. In this perspective, we review the latest developments of conventional perovskite solar cells with a main focus on dopant-free organic hole transporting materials (HTMs). Regarding the rapid progress of perovskite solar cells, stability of devices using dopant-free HTMs are also discussed to help readers understand the challenges and opportunities in high performance and stable perovskite solar cells. Project supported by the Scientific Research Starting Foundation for Overseas Introduced Talents of College of Chemistry, Nankai University.

  11. Pyrophanite pseudomorphs after perovskite in Perkupa serpentinites (Hungary): a microtextural study and geological implications

    NASA Astrophysics Data System (ADS)

    Zajzon, N.; Váczi, T.; Fehér, B.; Takács, Á.; Szakáll, S.; Weiszburg, T. G.

    2013-09-01

    Pyrophanite in serpentinite at Perkupa (Hungary) is described in detail for the first time as a replacement product of perovskite. It occurs as a 20- to 30-μm-wide rim, mantling a remnant core composed of perovskite or its alteration products. The pyrophanite rim consists of an inner zone, representing a pseudomorph after perovskite, and an outer overgrowth zone. Raman mapping and electron backscatter diffraction data show that the pyrophanite rims typically represent single crystals rather than being composed of multiple domains in different crystallographic orientations. Perovskite occurs exclusively in the core of pyrophanite and was identified as the orthorhombic CaTiO3 phase, based on Raman spectra. Heterogeneous, polyphase mineral cores, consisting of calcite, anatase and/or brookite, kassite, and Mn-bearing kassite, in some cases in association with relict perovskite, are typical in the larger pyrophanite-rimmed grains. The crystallographically coherent pyrophanite rims could have formed through a process where the precursor perovskite crystal acted as a structural template for the newly forming phase, that is, by interface-coupled dissolution reprecipitation during serpentinization of the precursor rock. This alteration of perovskite to pyrophanite was not complete, resulting in the presence of perovskite fragments enclosed in pyrophanite. During the metamorphic evolution of the rock, some of the remnant perovskite cores further altered to TiO2 polymorphs (anatase and brookite) and calcite, via transitional alteration products.

  12. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    PubMed

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

  13. The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng

    2016-10-01

    The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.

  14. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells

    DOE PAGES

    Wang, Qi; Dong, Qingfeng; Li, Tao; ...

    2016-05-17

    Here, we demonstrated that inserting a tunneling layer between perovskite and electron transport layer could significantly increase device performance by suppressing carrier recombination at the cathode contact. The tunneling layer can also serve as an encapsulation layer to prevent perovskite film from damage caused by water or moisture. This method is simple because it does not need lattice matching between the buffer layer and perovskite. The low temperature solution process makes it compatible with many types of perovskite materials, and may be applied for anode contact as well. The freedom to choose any insulating layer for contact enables more devicemore » designs and manufacturing.« less

  15. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    SciTech Connect

    Ong, Alison J.

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  16. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    SciTech Connect

    Ong, Alison

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  17. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  18. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells

    SciTech Connect

    Ke, Weijun; Zhao, Dewei; Xiao, Chuanxiao; Wang, Changlei; Cimaroli, Alexander J.; Grice, Corey R.; Yang, Mengjin; Li, Zhen; Jiang, Chun-Sheng; Al-Jassim, Mowafak; Zhu, Kai; Kanatzidis, Mercouri G.; Fang, Guojia; Yan, Yanfa

    2016-01-01

    Both tin oxide (SnO2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO2/perovskite interface and perovskite grain boundaries. With careful device optimization, the best-performing planar perovskite solar cell using a fullerene passivated SnO2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm-2, and a fill factor of 75.8% when measured under reverse voltage scanning. We find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.

  19. A novel dimethylformamide (DMF) free bar-cast method to deposit organolead perovskite thin films with improved stability.

    PubMed

    Jones, Eurig W; Holliman, Peter J; Connell, Arthur; Davies, Matthew L; Baker, Jennifer; Hobbs, Robert J; Ghosh, Sanjay; Furnell, Leo; Anthony, Rosie; Pleydell-Pearce, Cameron

    2016-03-21

    We report a solvent-free approach to synthesizing organolead perovskites by using solid state reactions to coat perovskite crystals onto Al2O3 or TiO2 nanoparticles followed by addition of terpineol affording perovskite inks. We have bar cast these inks to produce photoactive perovskite thin films which are significantly more stable to humidity than solution-processed films. This new method also avoids the use of toxic DMF solvent.

  20. Optical analysis of CH3NH3Sn x Pb1-x I3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells.

    PubMed

    Anaya, Miguel; Correa-Baena, Juan P; Lozano, Gabriel; Saliba, Michael; Anguita, Pablo; Roose, Bart; Abate, Antonio; Steiner, Ullrich; Grätzel, Michael; Calvo, Mauricio E; Hagfeldt, Anders; Míguez, Hernán

    2016-08-07

    Organic-inorganic perovskite structures in which lead is substituted by tin are exceptional candidates for broadband light absorption. Herein we present a thorough analysis of the optical properties of CH3NH3Sn x Pb1-x I3 films, providing the field with definitive insights about the possibilities of these materials for perovskite solar cells of superior efficiency. We report a user's guide based on the first set of optical constants obtained for a series of tin/lead perovskite films, which was only possible to measure due to the preparation of optical quality thin layers. According to the Shockley-Queisser theory, CH3NH3Sn x Pb1-x I3 compounds promise a substantial enhancement of both short circuit photocurrent and power conversion efficiency in single junction solar cells. Moreover, we propose a novel tandem architecture design in which both top and bottom cells are made of perovskite absorbers. Our calculations indicate that such perovskite-on-perovskite tandem devices could reach efficiencies over 35%. Our analysis serves to establish the first roadmap for this type of cells based on actual optical characterization data. We foresee that this study will encourage the research on novel near-infrared perovskite materials for photovoltaic applications, which may have implications in the rapidly emerging field of tandem devices.

  1. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy.

    PubMed

    Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei

    2017-02-08

    The presence of the PbI2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH3NH3PbI3 perovskite crystals and PbI2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.

  2. Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes.

    PubMed

    Yu, Jae Choul; Kim, Dae Woo; Kim, Da Bin; Jung, Eui Dae; Lee, Ki-Suk; Lee, Sukbin; Nuzzo, Daniele Di; Kim, Ji-Seon; Song, Myoung Hoon

    2017-02-02

    Organic-inorganic hybrid perovskites have emerged as a next-generation candidate for light-emitting device applications due to their excellent optical and electrical properties with narrow band emission compared to organic emitters. The morphological control of perovskite films with full surface coverage and few defect sites is essential for achieving highly efficient perovskite light-emitting diodes (PeLEDs). Here, we obtain a highly uniform perovskite film with a remarkably reduced number of defect sites in a perovskite crystal using chlorobenzene dropping. This effort leads to the enhanced performance of PeLEDs with a CH3NH3PbBr3 film using chlorobenzene dropping with a maximum luminance of 14 460 cd m(-2) (at 3.8 V) and a maximum external quantum efficiency (EQE) of 0.71% (at 2.8 V). This research confirms that the role of the solvent in the solvent dropping method is to fabricate a dense and uniform perovskite film and to passivate the defect sites of the perovskite crystal films.

  3. A deconvoluted PL approach to probe the charge carrier dynamics of the grain interior and grain boundary of a perovskite film for perovskite solar cell applications.

    PubMed

    Mamun, Abdullah Al; Ava, Tanzila Tasnim; Jeong, Hyeon Jun; Jeong, Mun Seok; Namkoong, Gon

    2017-03-29

    We explore a new characterization approach capable of probing the grain interior (GI) and grain boundary (GB) of a CH3NH3PbI3-xClx perovskite thin film. In particular, we have found that the photoluminescence (PL) spectrum observed for a CH3NH3PbI3-xClx perovskite thin film is asymmetric, and can be deconvoluted using a bi-Gaussian function, representing the ordered and disordered phases of the perovskite film. In order to understand the origin of the ordered and disordered phases of the perovskite film, two-dimensional (2D) PL mapping was performed to resolve the PL spectra at the nanoscale level. Quantitative analysis of the local PL spectra revealed that the ordered phase originated from the GIs while the disordered phase mainly came from the GBs. In particular, power-dependent PL measurements of the deconvoluted PL spectra revealed that smaller grained perovskites showed defect-mediated recombination at GBs but exciton-like transitions at GIs. In contrast, perovskite films with large grains followed an excellent power law, showing exciton-like recombination at both GIs and GBs. As expected, perovskite solar cells fabricated with large grains showed an increased efficiency with higher light absorption and higher charge extraction efficiency.

  4. The lanthanum gallate-based mixed conducting perovskite ceramics

    NASA Astrophysics Data System (ADS)

    Politova, E. D.; Stefanovich, S. Yu.; Aleksandrovskii, V. V.; Kaleva, G. M.; Mosunov, A. V.; Avetisov, A. K.; Sung, J. S.; Choo, K. Y.; Kim, T. H.

    2005-01-01

    The structure, microstructure, dielectric, and transport properties of the anion deficient perovskite solid solutions (La,Sr)(Ga,Mg,M)O3- with M=Fe, Ni have been studied. Substitution of iron and nickel for gallium up to about 20 and 40 at.% respectively, leads to the perovskite lattice contraction due to the cation substitutions by the transition elements. The transition from pure ionic to mixed ionic-electronic conductivity was observed for both the systems studied. Both the enhancement of total conductivity and increasing in the thermal expansion coefficient values has been proved to correlate with the increasing amount of weakly bounded oxygen species in the Fe or Ni-doped ceramics. The oxygen ionic conductivity has been estimated from the kinetic experiments using the dc-conductivity and dilatometry methods under the condition of the stepwise change of the atmosphere from nitrogen to oxygen.

  5. Fast Photoconductive Responses in Organometal Halide Perovskite Photodetectors.

    PubMed

    Wang, Fei; Mei, Jingjing; Wang, Yunpeng; Zhang, Ligong; Zhao, Haifeng; Zhao, Dongxu

    2016-02-03

    Inorganic semiconductor-based photodetectors have been suffering from slow response speeds, which are caused by the persistent photoconductivity of semiconductor materials. For realizing high speed optoelectronic devices, the organometal halide perovskite thin films were applied onto the interdigitated (IDT) patterned Au electrodes, and symmetrical structured photoconductive detectors were achieved. The detectors were sensitive to the incident light signals, and the photocurrents of the devices were 2-3 orders of magnitude higher than dark currents. The responsivities of the devices could reach up to 55 mA W(1-). Most importantly, the detectors have a fast response time of less than 20 μs. The light and bias induced dipole rearrangement in organometal perovskite thin films has resulted in the instability of photocurrents, and Ag nanowires could quicken the process of dipole alignment and stabilize the photocurrents of the devices.

  6. Inorganic Halide Perovskites for Efficient Light-Emitting Diodes.

    PubMed

    Yantara, Natalia; Bhaumik, Saikat; Yan, Fei; Sabba, Dharani; Dewi, Herlina A; Mathews, Nripan; Boix, Pablo P; Demir, Hilmi Volkan; Mhaisalkar, Subodh

    2015-11-05

    Lead-halide perovskites have transcended photovoltaics. Perovskite light-emitting diodes (PeLEDs) emerge as a new field to leverage on these fascinating semiconductors. Here, we report the first use of completely inorganic CsPbBr3 thin films for enhanced light emission through controlled modulation of the trap density by varying the CsBr-PbBr2 precursor concentration. Although pure CsPbBr3 films can be deposited from equimolar CsBr-PbBr2 and CsBr-rich solutions, strikingly narrow emission line (17 nm), accompanied by elongated radiative lifetimes (3.9 ns) and increased photoluminescence quantum yield (16%), was achieved with the latter. This is translated into the enhanced performance of the resulting PeLED devices, with lower turn-on voltage (3 V), narrow electroluminescence spectra (18 nm) and higher electroluminescence intensity (407 Cd/m(2)) achieved from the CsBr-rich solutions.

  7. Huge positive magnetoresistance in antiferromagnetic double perovskite metals.

    PubMed

    Singh, Viveka Nand; Majumdar, Pinaki

    2014-07-23

    Metals with large positive magnetoresistance are rare. We demonstrate that antiferromagnetic metallic states, as have been predicted for the double perovskites, are excellent candidates for huge positive magnetoresistance. An applied field suppresses long range antiferromagnetic order leading to a state with short range antiferromagnetic correlations and strong electronic scattering. The field induced resistance ratio can be more than tenfold, at moderate field, in a structurally ordered system, and continues to be almost twofold even in systems with ∼ 25% antisite disorder. Although our explicit demonstration is in the context of a two- dimensional spin-fermion model of the double perovskites, the mechanism we uncover is far more general, complementary to the colossal negative magnetoresistance process, and would operate in other local moment metals that show a field driven suppression of non-ferromagnetic order.

  8. Origin of superstructures in (double) perovskite thin films

    SciTech Connect

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  9. Double perovskite heterostructures: magnetism, Chern bands, and Chern insulators.

    PubMed

    Cook, Ashley M; Paramekanti, Arun

    2014-08-15

    Experiments demonstrating the controlled growth of oxide heterostructures have raised the prospect of realizing topologically nontrivial states of correlated electrons in low dimensions. Here, we study heterostructures consisting of {111} bilayers of double perovskites separated by inert band insulators. In bulk, these double perovskites have well-defined local moments interacting with itinerant electrons leading to high temperature ferromagnetism. Incorporating spin-orbit coupling in the two-dimensional honeycomb geometry of a {111} bilayer, we find a rich phase diagram with tunable ferromagnetic order, topological Chern bands, and a C=±2 Chern insulator regime. Our results are of broad relevance to oxide materials such as Sr_{2}FeMoO_{6}, Ba_{2}FeReO_{6}, and Sr_{2}CrWO_{6}.

  10. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    NASA Astrophysics Data System (ADS)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  11. Photoinduced surface voltage mapping study for large perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou; Liu, Shengzhong Frank

    2016-05-01

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH3NH3PbX3 (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  12. Bandgap calculations and trends of organometal halide perovskites

    SciTech Connect

    Castelli, Ivano E. Thygesen, Kristian S.; Jacobsen, Karsten W.; García-Lastra, Juan María

    2014-08-01

    Energy production from the Sun requires a stable efficient light absorber. Promising candidates in this respect are organometal perovskites (ABX{sub 3}), which have been intensely investigated during the last years. Here, we have performed electronic structure calculations of 240 perovskites composed of Cs, CH{sub 3}NH{sub 3}, and HC(NH{sub 2}){sub 2} as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities of the constituent species, while it reduces with an increase of the lattice constants of the system.

  13. Nonlocal quartic interactions and universality classes in perovskite manganites.

    PubMed

    Singh, Rohit; Dutta, Kishore; Nandy, Malay K

    2015-07-01

    A modified Ginzburg-Landau model with a screened nonlocal interaction in the quartic term is treated via Wilson's renormalization-group scheme at one-loop order to explore the critical behavior of the paramagnetic-to-ferromagnetic phase transition in perovskite manganites. We find the Fisher exponent η to be O(ε) and the correlation exponent to be ν=1/2+O(ε) through epsilon expansion in the parameter ε=d(c)-d, where d is the space dimension, d(c)=4+2σ is the upper critical dimension, and σ is a parameter coming from the nonlocal interaction in the model Hamiltonian. The ensuing critical exponents in three dimensions for different values of σ compare well with various existing experimental estimates for perovskite manganites with various doping levels. This suggests that the nonlocal model Hamiltonian contains a wide variety of such universality classes.

  14. Theoretical insights into hybrid perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Even, Jacky; Boyer-Richard, Soline; Carignano, Marcelo; Pedesseau, Laurent; Jancu, Jean-Marc; Katan, Claudine

    2016-03-01

    In this paper, we examine recent theoretical investigations on 3D hybrid perovskites (HOP) that combine concepts developed for classical bulk solid-state physics and empirical simulations of their optoelectronic properties. In fact, the complexity of HOP calls for a coherent global view that combines usually disconnected concepts. For the pseudocubic high temperature reference perovskite structure that plays a central role for 3D HOP, we introduce a new tight-binding Hamiltonian, which specifically includes spin-orbit coupling. The resultant electronic band structure is compared to that obtained using state of the art density functional theory (DFT). Next, recent experimental investigations of excitonic properties in HOP will be revisited within the scope of theoretical concepts already well implemented in the field of conventional semiconductors. Last, possible plastic crystal and orientational glass behaviors of HOP will be discussed, building on Car-Parrinello molecular dynamics simulations.

  15. Origin of J-V Hysteresis in Perovskite Solar Cells.

    PubMed

    Chen, Bo; Yang, Mengjin; Priya, Shashank; Zhu, Kai

    2016-03-03

    High-performance perovskite solar cells (PSCs) based on organometal halide perovskite have emerged in the past five years as excellent devices for harvesting solar energy. Some remaining challenges should be resolved to continue the momentum in their development. The photocurrent density-voltage (J-V) responses of the PSCs demonstrate anomalous dependence on the voltage scan direction/rate/range, voltage conditioning history, and device configuration. The hysteretic J-V behavior presents a challenge for determining the accurate power conversion efficiency of the PSCs. Here, we review the recent progress on the investigation of the origin(s) of J-V hysteresis behavior in PSCs. We discuss the impact of slow transient capacitive current, trapping and detrapping process, ion migrations, and ferroelectric polarization on the hysteresis behavior. The remaining issues and future research required toward the understanding of J-V hysteresis in PSCs will also be discussed.

  16. Method for fabricating high aspect ratio structures in perovskite material

    DOEpatents

    Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria

    2003-10-28

    A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.

  17. Correlated electron-hole plasma in organometal perovskites.

    PubMed

    Saba, Michele; Cadelano, Michele; Marongiu, Daniela; Chen, Feipeng; Sarritzu, Valerio; Sestu, Nicola; Figus, Cristiana; Aresti, Mauro; Piras, Roberto; Lehmann, Alessandra Geddo; Cannas, Carla; Musinu, Anna; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2014-09-30

    Organic-inorganic perovskites are a class of solution-processed semiconductors holding promise for the realization of low-cost efficient solar cells and on-chip lasers. Despite the recent attention they have attracted, fundamental aspects of the photophysics underlying device operation still remain elusive. Here we use photoluminescence and transmission spectroscopy to show that photoexcitations give rise to a conducting plasma of unbound but Coulomb-correlated electron-hole pairs at all excitations of interest for light-energy conversion and stimulated optical amplification. The conductive nature of the photoexcited plasma has crucial consequences for perovskite-based devices: in solar cells, it ensures efficient charge separation and ambipolar transport while, concerning lasing, it provides a low threshold for light amplification and justifies a favourable outlook for the demonstration of an electrically driven laser. We find a significant trap density, whose cross-section for carrier capture is however low, yielding a minor impact on device performance.

  18. Correlated electron-hole plasma in organometal perovskites

    NASA Astrophysics Data System (ADS)

    Saba, Michele; Cadelano, Michele; Marongiu, Daniela; Chen, Feipeng; Sarritzu, Valerio; Sestu, Nicola; Figus, Cristiana; Aresti, Mauro; Piras, Roberto; Geddo Lehmann, Alessandra; Cannas, Carla; Musinu, Anna; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2014-09-01

    Organic-inorganic perovskites are a class of solution-processed semiconductors holding promise for the realization of low-cost efficient solar cells and on-chip lasers. Despite the recent attention they have attracted, fundamental aspects of the photophysics underlying device operation still remain elusive. Here we use photoluminescence and transmission spectroscopy to show that photoexcitations give rise to a conducting plasma of unbound but Coulomb-correlated electron-hole pairs at all excitations of interest for light-energy conversion and stimulated optical amplification. The conductive nature of the photoexcited plasma has crucial consequences for perovskite-based devices: in solar cells, it ensures efficient charge separation and ambipolar transport while, concerning lasing, it provides a low threshold for light amplification and justifies a favourable outlook for the demonstration of an electrically driven laser. We find a significant trap density, whose cross-section for carrier capture is however low, yielding a minor impact on device performance.

  19. Chemically diverse and multifunctional hybrid organic-inorganic perovskites

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Zheming; Deschler, Felix; Gao, Song; Friend, Richard H.; Cheetham, Anthony K.

    2017-02-01

    Hybrid organic-inorganic perovskites (HOIPs) can have a diverse range of compositions including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. These materials have several common features, including their classical ABX3 perovskite architecture and the presence of organic amine cations that occupy the A-sites. Current research in HOIPs tends to focus on metal halide HOIPs, which show promise for use in solar cells and optoelectronic devices; however, the other subclasses also exhibit a diverse range of physical properties. In this Review, we summarize the chemical variability and structural diversity of all known HOIP subclasses. We also present a comprehensive account of their intriguing physical properties, including photovoltaic and optoelectronic properties, dielectricity, magnetism, ferroelectricity, ferroelasticity and multiferroicity. Moreover, we discuss the current challenges and future opportunities in this exciting field.

  20. Evaluation of perovskites as electrocatalysts for the oxygen evolution reaction.

    PubMed

    Rincón, Rosalba A; Ventosa, Edgar; Tietz, Frank; Masa, Justus; Seisel, Sabine; Kuznetsov, Volodymyr; Schuhmann, Wolfgang

    2014-09-15

    The oxygen evolution reaction (OER) is an enabling process for technologies in the area of energy conversion and storage, but its slow kinetics limits its efficiency. We performed an electrochemical evaluation of 14 different perovskites of variable composition and stoichiometry as OER electrocatalysts in alkaline media. We particularly focused on improved methods for a reliable comparison of catalyst activity. From initial electrochemical results we selected the most active samples for further optimization of electrode preparation and testing. An inverted cell configuration facilitated gas bubble detachment and thus minimized blockage of the active surface area. We describe parameters, such as the presence of specific cations, stoichiometry, and conductivity, that are important for obtaining electroactive perovskites for OER. Conductive additives enhanced the current and decreased the apparent overpotential of OER for one of the most active samples (La(0.58)Sr(0.4)Fe(0.8)Co(0.2)O(3)).

  1. Extraction of exchange parameters in transition-metal perovskites

    DOE PAGES

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.

    2015-09-15

    When extracting exchange parameters from measured spin-wave dispersion relations there are severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. Moreover, this is exemplified for manganese trimers in the mixed three-and two-dimensional perovskite compounds KMnxZn1-xF3 and K2MnxZn1-xF4, respectively. We show that the small exchange couplings between the second-nearest-neighbor and the third-nearest-neighbor spins can be determined unambiguously and withmore » equal precision as the dominating nearest-neighbor exchange coupling.« less

  2. Molecular Dynamics Simulation of MgSiO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Lin-xiang, Zhou; L, Zhou X.; J, Hardy R.; Xin, Xu; X, Xu

    1998-06-01

    Using molecular dynamics to simulate MgSiO3 perovskite is performed to investigate its phase transitions and superionicity. These simulations has used parameter-free Gordon-Kim potentials and a novel technique to monitor the motion of ions which clearly demonstrates the sublattice melting of ions O2- and the rotations of SiO6 octahedra. MgSiO3 has to undergo a few of phase transitions, then enter into the cubic phase. In particular, there is a transitional phase between orthorhombic phase and cubic phase. There are a superionic phase and the cubic phase in magnesium-rich silicate perovskite. This superionic phase occurs after the onset of cubic phase before the melting point. The onset temparature Tc for superionicity is about 200-700 K below the melting point Tm, Tc / Tm similar 0.92.

  3. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-08-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  4. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    SciTech Connect

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  5. Wearable double-twisted fibrous perovskite solar cell.

    PubMed

    Li, Ru; Xiang, Xi; Tong, Xiao; Zou, Jingyun; Li, Qingwen

    2015-07-01

    Wearable double-twisted fibrous perovskite solar cells are developed based on flexible carbon nanotube fiber electrodes, which exhibit a maximum power conversion efficiency of 3.03% and bending stability larger than 1000 cycles, and maintain 89% efficiency after 96 h in ambient conditions if sealed by a transparent polymer layer. The obtained superior performance can shed light on future self-powering e-textiles.

  6. Simple characterization of electronic processes in perovskite photovoltaic cells

    SciTech Connect

    Miyano, Kenjiro Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2015-03-02

    Electronic properties of perovskite lead-halide photovoltaic cells have been studied. The dc current/voltage characteristics were found to be well fitted by a standard diode equation under optical excitation and in the dark, while the impedance spectroscopy revealed a pronounced slow process under light illumination, which is absent in the dark. A simple model is proposed, which can explain all aspects of the observed behavior quantitatively and consistently.

  7. Perovskite electrodes and method of making the same

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.

    2009-09-22

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  8. Perovskite electrodes and method of making the same

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  9. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    DOE PAGES

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; ...

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  10. Super-ion inspired colorful hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Jena, Puru

    Organic-inorganic hybrid perovskites, with the general formula AMX3 (A =cation; M =metal; X =halogen), have emerged as a new generation of efficient yet inexpensive photovoltaic cells. These materials show record high conversion efficiency as solar cells and have excellent light-emission properties that can also be used in other optoelectronic devices. They can be processed easily from solution with optic band gaps, tunable from visible to infrared regions and are considered to be ``the next big thing in photovoltaics''. However, several important issues such as the relationship between their photoexcitation properties and the chemical structures, their stability under ambient conditions, as well as the possibility to invent their environment-friendly analogues remain unsolved. In this work, our aim is not only to gain a fundamental understanding of the structure-property relationship of organic-inorganic hybrid perovskites, but also to rationally design a new class of hybrid perovskites that have desired electronic band gaps for solar cell applications. This is accomplished by using super-ions that can mimic the properties of elementary alkali and halogen ions as building blocks. These super-ions include superalkalis - CH3NH3+,HC(NH2) 2 + , and Li3O+ as cations and hyperhalogens - Ge(BH4) 3 - and Sn(BH4) 3 - as anions. The results are compared with perovskites composed of GeCl3-,GeBr3-,GeI3-,SnCl3-,SnBr3-,and SnI3-superhalogen anions. We develop a strategy to assemble these super-ions to form environment-friendly solar cells with adjustable band gaps (covering the visible range and beyond) and with improved resistance to moisture.

  11. Raman studies of A2MWO6 tungstate double perovskites.

    PubMed

    Andrews, R L; Heyns, A M; Woodward, P M

    2015-06-21

    The Raman spectra of seven A(2)MWO(6) tungstate double perovskites are analysed. Ba(2)MgWO(6) is a cubic double perovskite with Fm3[combining macron]m symmetry and its Raman spectrum contain three modes that can be assigned in a straightforward manner. A fourth mode, the asymmetric stretch of the [WO(6)](6-) octahedron, is too weak to be observed. The symmetry of Ba(2)CaWO(6) is lowered to tetragonal I4/m due to octahedral tilting, but the distortion is sufficiently subtle that the extra bands predicted to appear in the Raman spectrum are not observed. The remaining five compounds have additional octahedral tilts that lower the symmetry to monoclinic P2(1)/n. The further reduction of symmetry leads to the appearance of additional lattice modes involving translations of the A-site cations and librations of the octahedra. Comparing the Raman spectra of fourteen different A(2)MWO(6) tungstate double perovskites shows that the frequency of the symmetric stretch (ν(1)) of the [WO(6)](6-) octahedron is relatively low for cubic perovskites with tolerance factors greater than one due to underbonding of the tungsten and/or M cation. The frequency of this mode increases rapidly as the tolerance factor drops below one, before decreasing gradually as the octahedral tilting gets larger. The frequency of the oxygen bending mode (ν(5)) is shown to be dependent on the mass of the A-site cation due to coupling of the internal bending mode with external A-site cation translation modes.

  12. Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching.

    PubMed

    Choi, Jaeho; Park, Sunghak; Lee, Joohee; Hong, Kootak; Kim, Do-Hong; Moon, Cheon Woo; Park, Gyeong Do; Suh, Junmin; Hwang, Jinyeon; Kim, Soo Young; Jung, Hyun Suk; Park, Nam-Gyu; Han, Seungwu; Nam, Ki Tae; Jang, Ho Won

    2016-08-01

    Organolead halide perovskites are used for low-operating-voltage multilevel resistive switching. Ag/CH3 NH3 PbI3 /Pt cells exhibit electroforming-free resistive switching at an electric field of 3.25 × 10(3) V cm(-1) for four distinguishable ON-state resistance levels. The migration of iodine interstitials and vacancies with low activation energies is responsible for the low-electric-field resistive switching via filament formation and annihilation.

  13. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals.

    PubMed

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi

    2016-04-01

    Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.

  14. Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals

    PubMed Central

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong

    2016-01-01

    Recently, organic–inorganic halide perovskites have sparked tremendous research interest because of their ground‐breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light‐emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high‐quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three‐dimensional large sized single crystals, two‐dimensional nanoplates, one‐dimensional nanowires, to zero‐dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high‐performance (opto)electronic devices. PMID:27812463

  15. Lead Iodide Thin Film Crystallization Control for High-Performance and Stable Solution-Processed Perovskite Solar Cells.

    PubMed

    Yang, Lijun; Wang, Jingchuan; Leung, Wallace Woon-Fong

    2015-07-15

    PbI2 thin film crystallization control is a prerequisite of high-quality perovskite thin film for sequentially solution-processed perovskite solar cells. An efficient and simple method has been developed by adding HCl to improve perovskite thin film quality, and an efficiency of 15.2% is obtained. This approach improves coverage, uniformity, and stability of pervoskite thin film.

  16. Iron-based perovskite cathodes for solid oxide fuel cells

    DOEpatents

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  17. Towards stable and commercially available perovskite solar cells

    SciTech Connect

    Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu; Zhu, Kai; Emery, Keith

    2016-10-17

    Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. However, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. Here, we propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures is important not only for achieving high efficiency but also for hysteresis-free and stable performance. We argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.

  18. Recycling Perovskite Solar Cells To Avoid Lead Waste.

    PubMed

    Binek, Andreas; Petrus, Michiel L; Huber, Niklas; Bristow, Helen; Hu, Yinghong; Bein, Thomas; Docampo, Pablo

    2016-05-25

    Methylammonium lead iodide (MAPbI3) perovskite based solar cells have recently emerged as a serious competitor for large scale and low-cost photovoltaic technologies. However, since these solar cells contain toxic lead, a sustainable procedure for handling the cells after their operational lifetime is required to prevent exposure of the environment to lead and to comply with international electronic waste disposal regulations. Herein, we report a procedure to remove every layer of the solar cells separately, which gives the possibility to selectively isolate the different materials. Besides isolating the toxic lead iodide in high yield, we show that the PbI2 can be reused for the preparation of new solar cells with comparable performance and in this way avoid lead waste. Furthermore, we show that the most expensive part of the solar cell, the conductive glass (FTO), can be reused several times without any reduction in the performance of the devices. With our simple recycling procedure, we address both the risk of contamination and the waste disposal of perovskite based solar cells while further reducing the cost of the system. This brings perovskite solar cells one step closer to their introduction into commercial systems.

  19. UV Degradation and Recovery of Perovskite Solar Cells

    PubMed Central

    Lee, Sang-Won; Kim, Seongtak; Bae, Soohyun; Cho, Kyungjin; Chung, Taewon; Mundt, Laura E.; Lee, Seunghun; Park, Sungeun; Park, Hyomin; Schubert, Martin C.; Glunz, Stefan W.; Ko, Yohan; Jun, Yongseok; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-01-01

    Although the power conversion efficiency of perovskite solar cells has increased from 3.81% to 22.1% in just 7 years, they still suffer from stability issues, as they degrade upon exposure to moisture, UV light, heat, and bias voltage. We herein examined the degradation of perovskite solar cells in the presence of UV light alone. The cells were exposed to 365 nm UV light for over 1,000 h under inert gas at <0.5 ppm humidity without encapsulation. 1-sun illumination after UV degradation resulted in recovery of the fill factor and power conversion efficiency. Furthermore, during exposure to consecutive UV light, the diminished short circuit current density (Jsc) and EQE continuously restored. 1-sun light soaking induced recovery is considered to be caused by resolving of stacked charges and defect state neutralization. The Jsc and EQE bounce-back phenomenon is attributed to the beneficial effects of PbI2 which is generated by the decomposition of perovskite material. PMID:27909338

  20. Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells.

    PubMed

    Rajeswari, Ramireddy; Mrinalini, Madoori; Prasanthkumar, Seelam; Giribabu, Lingamallu

    2017-01-04

    Hole transporting material (HTM) is a significant component to achieve the high performance perovskite solar cells (PSCs). Over the years, inorganic, organic and hybrid (organic-inorganic) material based HTMs have been developed and investigated successfully. Today, perovskite solar cells achieved the efficiency of 22.1 % with with 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9-spirobifluorene (spiro-OMeTAD) as HTM. Nevertheless, synthesis and cost of organic HTMs is a major challenging issue and therefore alternative materials are required. From the past few years, inorganic HTMs showed large improvement in power conversion efficiency (PCE) and stability. Recently CuOx reached the PCE of 19.0% with better stability. These developments affirms that inorganic HTMs are better alternativesto the organic HTMs for next generation PSCs. In this report, we mainly focussed on the recent advances of inorganic and hybrid HTMs for PSCs and highlighted the efficiency and stability of PSCs improved by changing metal oxides as HTMs. Consequently, we expect that energy levels of these inorganic HTMs matches very well with the valence band of perovskites and improved efficiency helps in future practical deployment of low cost PSCs.