Sample records for perovskite related oxides

  1. Synthesis and applications of nanoporous perovskite metal oxides

    PubMed Central

    Huang, Xiubing; Zhao, Guixia

    2018-01-01

    Perovskite-type metal oxides have been widely investigated and applied in various fields in the past several decades due to their extraordinary variability of compositions and structures with targeted physical and chemical properties (e.g., redox behaviour, oxygen mobility, electronic and ionic conductivity). Recently, nanoporous perovskite metal oxides have attracted extensive attention because of their special morphology and properties, as well as superior performance. This minireview aims at summarizing and reviewing the different synthesis methods of nanoporous perovskite metal oxides and their various applications comprehensively. The correlations between the nanoporous structures and the specific performance of perovskite oxides are summarized and highlighted. The future research directions of nanoporous perovskite metal oxides are also prospected. PMID:29862001

  2. Structure-property relationships: Synthesis and characterization of Perovskite-related transition metal oxides

    NASA Astrophysics Data System (ADS)

    Whaley, Louis

    The fundamental structural component of perovskite-related phases is the octahedrally coordinated transition metal ion, symbolized as BO6 . Corner-sharing networks of BO6 octahedra are present in perovskites and related Ruddlesden-Popper Phases, ABO3 and AO(ABO 3)n, respectively. Face-sharing octahedra arranged into columns are characteristic of hexagonal, perovskite-related phases, and the relationship will be described in detail in Chapter 1. Edge sharing octahedra are characteristic of Keggin- and Lindquist-type polyoxometallates, which at first glance, seem unconnected from perovskites. However, Chapter 1 will show the deep connections among all of the phases mentioned above, by starting with perovskite phases. Temperature- and field-dependent, magnetic and electronic transitions are linked to the structure by overlap of metal d-orbitals with oxygen 2p orbitals, and (in special cases) direct d-d overlap. A mixed-transition metal oxide with two or more type of B ions provides an environment in which dissimilar B-ion orbitals can interact via exchange of charge carriers (hole or electron transport). The general goal in choosing two B ions is to provide an opportunity for the large combined magnetic moment and a low barrier to hopping of charge carriers, achieved by pairing a 3d-ion having 3 to 5 unpaired d-electrons, with a 4d or 5d transition metal ion, having 1 or 2 unpaired electrons, such as Fe(III) and Mo(V), which have compatible reduction potentials (i.e., they can co-exist in the same oxide, and exchange takes place with a low barrier). This research includes the following systems: an n = 2 Ruddlesden-Popper (RP) phase, Sr3Fe5/4Mo3/4O6.9, containing 3-7% Sr2FeMoO6, as intergrowths (not separate crystal grains, by high-resolution transmission electron microscopy), and G-type antiferromagnetism below 150°K and a "partial spin-reorientation transition" by powder neutron diffraction (PND), not previously reported for n = 2 RP phases in the Sr-Fe-Mo-O system

  3. Electronically conductive perovskite-based oxide nanoparticles and films for optical sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohodnicki, Jr., Paul R; Schultz, Andrew M

    2015-04-28

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a electronically conducting perovskite-based metal oxide material with a monitored stream, illuminating the electronically conducting perovskite-based metal oxide with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The electronically conducting perovskite-based metal oxide has a perovskite-based crystal structure and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The electronically conducting perovskite-based metal oxide hasmore » an empirical formula A.sub.xB.sub.yO.sub.3-.delta., where A is at least a first element at the A-site, B is at least a second element at the B-site, and where 0.8« less

  4. Generalized trends in the formation energies of perovskite oxides.

    PubMed

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  5. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGES

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  6. Oxygen Vacancy Linear Clustering in a Perovskite Oxide

    DOE PAGES

    Eom, Kitae; Choi, Euiyoung; Choi, Minsu; ...

    2017-07-14

    Oxygen vacancies have been implicitly assumed isolated ones, and understanding oxide materials possibly containing oxygen vacancies remains elusive within the scheme of the isolated vacancies, although the oxygen vacancies have been playing a decisive role in oxide materials. We report the presence of oxygen vacancy linear clusters and their orientation along a specific crystallographic direction in SrTiO 3, a representative of a perovskite oxide. The presence of the linear clusters and associated electron localization was revealed by an electronic structure represented in the increase in the Ti 2+ valence state or corresponding Ti 3d 2 electronic configuration along with divacancymore » cluster model analysis and transport measurement. The orientation of the linear clusters along the [001] direction in perovskite SrTiO 3 was verified by further X-ray diffuse scattering analysis. And because SrTiO 3 is an archetypical perovskite oxide, the vacancy linear clustering with the specific aligned direction and electron localization can be extended to a wide variety of the perovskite oxides.« less

  7. Oxygen Vacancy Linear Clustering in a Perovskite Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Kitae; Choi, Euiyoung; Choi, Minsu

    Oxygen vacancies have been implicitly assumed isolated ones, and understanding oxide materials possibly containing oxygen vacancies remains elusive within the scheme of the isolated vacancies, although the oxygen vacancies have been playing a decisive role in oxide materials. We report the presence of oxygen vacancy linear clusters and their orientation along a specific crystallographic direction in SrTiO 3, a representative of a perovskite oxide. The presence of the linear clusters and associated electron localization was revealed by an electronic structure represented in the increase in the Ti 2+ valence state or corresponding Ti 3d 2 electronic configuration along with divacancymore » cluster model analysis and transport measurement. The orientation of the linear clusters along the [001] direction in perovskite SrTiO 3 was verified by further X-ray diffuse scattering analysis. And because SrTiO 3 is an archetypical perovskite oxide, the vacancy linear clustering with the specific aligned direction and electron localization can be extended to a wide variety of the perovskite oxides.« less

  8. Investigations of Transition Metal Oxide with the Perovskite Structure as Potential Multiferroics

    DTIC Science & Technology

    2008-10-01

    the perovskite structure (ABO3) which are either ferromagnetic or ferroelectric, but relatively few that display both types of properties . This...novel material that displays the properties of both end members. 15. SUBJECT TERMS Multiferroics, perovskite , transition metal oxides 16. SECURITY...multiferroic properties (22). The compound has a simple cubic perovskite structure and is defined as a quantum paraelectric. It consists of Eu2+ ions

  9. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinson, Alex B.; Kim, In Soo

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film.more » The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.« less

  10. Spin State Control of the Perovskite Rh/Co Oxides

    PubMed Central

    Terasaki, Ichiro; Shibasaki, Soichiro; Yoshida, Shin; Kobayashi, Wataru

    2010-01-01

    We show why and how the spin state of transition-metal ions affects the thermoelectric properties of transition-metal oxides by investigating two perovskite-related oxides. In the A-site ordered cobalt oxide Sr3YCo4O10.5, partial substitution of Ca for Sr acts as chemical pressure, which compresses the unit cell volume to drive the spin state crossover, and concomitantly changes the magnetization and thermopower. In the perovskite rhodium oxide LaRhO3, partial substitution of Sr for La acts as hole-doping, and the resistivity and thermopower decrease systematically with the Sr concentration. The thermopower remains large values at high temperatures (>150 μV/K at 800 K), which makes a remarkable contrast to La1−xSrxCoO3. We associate this with the stability of the low spin state of the Rh3+ ions.

  11. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Zeng, Sheng; Kar, Piyush; Thakur, Ujwal Kumar; Shankar, Karthik

    2018-02-01

    As the search for efficient catalysts for CO2 photoreduction continues, nanostructured perovskite oxides have emerged as a class of high-performance photocatalytic materials. The perovskite oxide candidates for CO2 photoreduction are primarily nanostructured forms of titanates, niobates, tantalates and cobaltates. These materials form the focus of this review article because they are much sought-after due to their nontoxic nature, adequate chemical stability, and tunable crystal structures, bandgaps and surface energies. As compared to conventional semiconductors and nanomaterial catalysts, nanostructured perovskite oxides also exhibit an extended optical-absorption edge, longer charge carrier lifetimes, and favorable band-alignment with respect to reduction potential of activated CO2 and reduction products of the same. While CO2 reduction product yields of several hundred μmol-1 h-1 are observed with many types of perovskite oxide nanomaterials in stand-alone forms, yield of such quantities are not common with semiconductor nanomaterials of other types. In this review, we present current state-of-the-art synthesis methods to form perovskite oxide nanomaterials, and procedures to engineer their bandgaps. This review also presents a comprehensive summary and discussion on crystal structures, defect distribution, morphologies and electronic properties of the perovskite oxides, and correlation of these properties to CO2 photoreduction performance. This review offers researchers key insights for developing advanced perovskite oxides in order to further improve the yields of CO2 reduction products.

  12. Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jie; Morrow, Darien J.; Fu, Yongping

    High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr 3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO 3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcomingmore » the limitation of island-forming Volmer–Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr 3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (10 4 cm s –1), and low defect density of 10 12 cm –3, which are comparable to those of CsPbBr 3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. Furthermore, the high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.« less

  13. Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO 3)

    DOE PAGES

    Chen, Jie; Morrow, Darien J.; Fu, Yongping; ...

    2017-09-05

    High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr 3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO 3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcomingmore » the limitation of island-forming Volmer–Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr 3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (10 4 cm s –1), and low defect density of 10 12 cm –3, which are comparable to those of CsPbBr 3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. Furthermore, the high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.« less

  14. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    PubMed

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  15. p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells

    PubMed Central

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-01-01

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics. PMID:24755642

  16. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  17. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  18. Unusual Ferroelectricity in Two-Dimensional Perovskite Oxide Thin Films.

    PubMed

    Lu, Jinlian; Luo, Wei; Feng, Junsheng; Xiang, Hongjun

    2018-01-10

    Two-dimensional (2D) ferroelectricity have attracted much attention due to their applications in novel miniaturized devices such as nonvolatile memories, field effect transistors, and sensors. Since most of the commercial ferroelectric (FE) devices are based on ABO 3 perovskite oxides, it is important to investigate the properties of 2D ferroelectricity in perovskite oxide thin films. Here, based on density functional theory (DFT) calculations, we find that there exist three kinds of in-plane FE states that originate from different microscopic mechanisms: (i) a proper FE state with the polarization along [110] due to the second-order Jahn-Teller effect related to the B ion with empty d-orbitals; (ii) a robust FE state with the polarization along [100] induced by the surface effect; (iii) a hybrid improper FE state with the polarization along [110] that is induced by the trilinear coupling between two rotational modes and the A-site displacement. Interestingly, the ferroelectricity in the latter two cases becomes stronger along with decreasing the thin film thickness, in contrast to the usual behavior. Moreover, the latter two FE states are compatible with magnetism since their stability does not depend on the occupation of the d-orbitals of the B-ion. These two novel 2D FE mechanisms provide new avenues to design 2D multiferroics, as we demonstrated in SrVO and CaFeO thin film cases. Our work not only reveals new physical mechanisms of 2D ferroelectricity in perovskite oxide thin films but also provides a new route to design the high-performance 2D FE and multiferroics.

  19. Structural properties of perovskite films on zinc oxide nanoparticles-reduced graphene oxide (ZnO-NPs/rGO) prepared by electrophoretic deposition technique

    NASA Astrophysics Data System (ADS)

    Bahtiar, Ayi; Nurazizah, Euis Siti; Latiffah, Efa; Risdiana, Furukawa, Yukio

    2018-02-01

    Perovskite solar cells highly believed as next generation solar cells to replace currently available inorganic silicon solar cells due to their high power conversion efficiency and easy processing to thin films using solution processing techniques. Performance and stability, however still need to be improved for mass production and widely used for public electricity generation. Perovskite solar cells are commonly deposited on Titanium Dioxide (TiO2) film as an effective electron transport layer (ETL). We used Zinc Oxide nanoparticles (ZnO-NPs) as ETL in perovskite solar cells due to the low temperature required for crystallization and can be formed into different shapes of nanostructures. However, perovskite film can easily degrade into insulating lead iodide due to deprotonation of the methylammoniumcation at the surface of ZnO-NPs, in particular when it stored in ambient air with high relative humidity. The degradation of perovskite layer is therefore needed to be overcome. Here, we capped ZnO-NPs with reduced graphene oxide (rGO) to overcome the degradation of perovskite film where ZnO-NPs is synthesized by sol-gel method. The average nanoparticle size of ZnO is 15 nm. ZnO-NPs and ZnO-NPs-rGO films are prepared using electrophoretic deposition technique, which can produce large area with good homogeneity and high reproducibility. The stability of perovskite layer can significantly be improved by capping ZnO with rGO, which is indicated by absence of color change of perovskite after storage for 5 (five) days in ambient air with relative humidity above 95%. Moreover, the X-Ray Diffaction peaks of perovskite film are more preserved when deposited on ZnO/rGO film than using only ZnO film. We strongly believe, by capping ZnO film with rGO, both the performance and stability of perovskite solar cells can be improved significantly.

  20. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling

    PubMed Central

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku

    2017-01-01

    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30–40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures. PMID:28387324

  1. Strong excitonic interactions in the oxygen K-edge of perovskite oxides.

    PubMed

    Tomita, Kota; Miyata, Tomohiro; Olovsson, Weine; Mizoguchi, Teruyasu

    2017-07-01

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO 3 , SrTiO 3 , and BaTiO 3 , together with reference oxides, MgO, CaO, SrO, BaO, and TiO 2 , were investigated using a first-principles Bethe-Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti-O-Ti bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hest, Marinus F; Moore, David; Klein, Talysa

    Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer.more » Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.« less

  3. Development of Perovskite-Type Materials for Thermoelectric Application.

    PubMed

    Wu, Tingjun; Gao, Peng

    2018-06-12

    Oxide perovskite materials have a long history of being investigated for thermoelectric applications. Compared to the state-of-the-art tin and lead chalcogenides, these perovskite compounds have advantages of low toxicity, eco-friendliness, and high elemental abundance. However, because of low electrical conductivity and high thermal conductivity, the total thermoelectric performance of oxide perovskites is relatively poor. Variety of methods were used to enhance the TE properties of oxide perovskite materials, such as doping, inducing oxygen vacancy, embedding crystal imperfection, and so on. Recently, hybrid perovskite materials started to draw attention for thermoelectric application. Due to the low thermal conductivity and high Seebeck coefficient feature of hybrid perovskites materials, they can be promising thermoelectric materials and hold the potential for the application of wearable energy generators and cooling devices. This mini-review will build a bridge between oxide perovskites and burgeoning hybrid halide perovskites in the research of thermoelectric properties with an aim to further enhance the relevant performance of perovskite-type materials.

  4. Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides.

    PubMed

    Liu, Lu; Taylor, Daniel D; Rodriguez, Efrain E; Zachariah, Michael R

    2016-08-16

    The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC). In this study, a series of ABO3 perovskites, where A = La, Ba, Sr, Ca and B = Cr, Mn, Fe, Co, Ni, Cu, are synthesized and tested in a fixed bed reactor for reactivity and stability as OCs with CH4 as the fuel. We find that the electronegativity of the transition metal on the B-site (λB), is a convenient descriptor for oxygen storage capacity (OSC) of our perovskite samples. By plotting OSC for total methane oxidation against λB, we observe an inverted volcano plot relationship. These results could provide useful guidelines for perovskite OC design and their other energy related applications.

  5. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  6. Dimensional control of defect dynamics in perovskite oxide superlattices

    NASA Astrophysics Data System (ADS)

    Bredeson, Isaac; Zhang, Lipeng; Kent, P. R. C.; Cooper, Valentino R.; Xu, Haixuan

    2018-03-01

    Point defects play a critical role in the structural, physical, and interfacial properties of perovskite oxide superlattices. However, understanding of the fundamental properties of point defects in superlattices, especially their transport properties, is rather limited. Here, we report predictions of the stability and dynamics of oxygen vacancies in SrTi O3/PbTi O3 oxide superlattices using first-principles calculations in combination with the kinetic Monte Carlo method. By varying the stacking period, i.e., changing of n in n STO /n PTO , we discover a crossover from three-dimensional diffusion to primarily two-dimensional planar diffusion. Such planar diffusion may lead to novel designs of ionic conductors. We show that the dominant vacancy position may vary in the superlattices, depending on the superlattice structure and stacking period, contradicting the common assumption that point defects reside at interfaces. Moreover, we predict a significant increase in room-temperature ionic conductivity for 3STO/3PTO relative to the bulk phases. Considering the variety of cations that can be accommodated in perovskite superlattices and the potential mismatch of spin, charge, and orbitals at the interfaces, this paper identifies a pathway to control defect dynamics for technological applications.

  7. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor.

    PubMed

    Wu, Zhongwei; Bai, Sai; Xiang, Jian; Yuan, Zhongcheng; Yang, Yingguo; Cui, Wei; Gao, Xingyu; Liu, Zhuang; Jin, Yizheng; Sun, Baoquan

    2014-09-21

    Graphene oxide (GO) is employed as a hole conductor in inverted planar heterojunction perovskite solar cells, and the devices with CH₃NH₃PbI₃-xClx as absorber achieve an efficiency of over 12%. The perovskite film grown on GO exhibits enhanced crystallization, high surface coverage ratio as well as preferred in-plane orientation of the (110) plane. Efficient hole extraction from the perovskite to GO is demonstrated.

  8. Inorganic perovskite photocatalysts for solar energy utilization.

    PubMed

    Zhang, Guan; Liu, Gang; Wang, Lianzhou; Irvine, John T S

    2016-10-24

    The development and utilization of solar energy in environmental remediation and water splitting is being intensively studied worldwide. During the past few decades, tremendous efforts have been devoted to developing non-toxic, low-cost, efficient and stable photocatalysts for water splitting and environmental remediation. To date, several hundreds of photocatalysts mainly based on metal oxides, sulfides and (oxy)nitrides with different structures and compositions have been reported. Among them, perovskite oxides and their derivatives (layered perovskite oxides) comprise a large family of semiconductor photocatalysts because of their structural simplicity and flexibility. This review specifically focuses on the general background of perovskite and its related materials, summarizes the recent development of perovskite photocatalysts and their applications in water splitting and environmental remediation, discusses the theoretical modelling and calculation of perovskite photocatalysts and presents the key challenges and perspectives on the research of perovskite photocatalysts.

  9. Topotactical growth of thick perovskite oxynitride layers by nitridation of single crystalline oxides

    NASA Astrophysics Data System (ADS)

    Ebbinghaus, Stefan G.; Aguiar, Rosiana; Weidenkaff, Anke; Gsell, Stefan; Reller, Armin

    2008-06-01

    Thick films of the perovskite-related oxynitrides LaTiO 2N, NdTiO 2N, SrNbO 2N and SrTaO 2N were synthesised by nitridation of single crystals of the corresponding oxides with general composition ABO 3.5. The oxide crystals were obtained by optical floating zone growth. They correspond to n = 4 member of the A nB nO 3 n+2 family of layered perovskites and were reacted at temperatures between 900 °C and 1050 °C to form the oxynitrides. Electron probe microanalysis proved the presence of nitrogen in a surface layer of a few micrometer thickness. Cross-section SEM revealed additional thin stripes of oxynitride within the bulk of the crystals, indicating that nitrogen is incorporated preferably parallel to the perovskite-type layers, which in turn are connected in a zipper-type mechanism. The formation of the desired perovskite-type oxynitrides was confirmed by X-ray diffraction. Pole figure measurements proved an epitaxial orientation ABO 2N (110)[001] ‖ ABO 3.5 (001)[100]. The mosaicity of the oxynitrides both in polar and azimuthal direction was very small (<2°) indicating a nearly single crystalline quality of the surface layer. The nitridation of the crystals results in a dramatic change in colour. Optical spectroscopy revealed shifts of the absorption edge by more than 200 nm to longer wavelengths with respect to the parent oxides, corresponding to a reduction of the band gap energies by 1.4-1.8 eV.

  10. A-site ordered quadruple perovskite oxides

    NASA Astrophysics Data System (ADS)

    Youwen, Long

    2016-07-01

    The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu-Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

  11. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells

    DOE PAGES

    Ke, Weijun; Zhao, Dewei; Xiao, Chuanxiao; ...

    2016-08-17

    Both tin oxide (SnO 2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO 2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO 2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO 2/perovskite interface and perovskite grain boundaries. With careful device optimization, themore » best-performing planar perovskite solar cell using a fullerene passivated SnO 2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm -2, and a fill factor of 75.8% when measured under reverse voltage scanning. In conclusion, we find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.« less

  12. Oxide perovskite crystals for HTSC film substrates microwave applications

    NASA Technical Reports Server (NTRS)

    Bhalla, A. S.; Guo, Ruyan

    1995-01-01

    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

  13. New rare earth hafnium oxynitride perovskites with photocatalytic activity in water oxidation and reduction.

    PubMed

    Black, Ashley P; Suzuki, Hajime; Higashi, Masanobu; Frontera, Carlos; Ritter, Clemens; De, Chandan; Sundaresan, A; Abe, Ryu; Fuertes, Amparo

    2018-02-06

    RHfO 2 N perovskites with R = La, Nd and Sm show a GdFeO 3 -type structure and are semiconductors with band gaps of 3.35, 3.40 and 2.85 eV and relative dielectric constants of 30, 16 and 28 respectively. These compounds have adequate reduction and oxidation potentials to conduct the overall water splitting reaction, and the analogous perovskite LaZrO 2 N with a band gap of 2.8 eV shows photocatalytic activity under visible light irradiation for O 2 evolution.

  14. Structural and semiconductor-to-metal transitions of double-perovskite cobalt oxide Sr2-xLaxCoTiO6-δ with enhanced thermoelectric capability

    NASA Astrophysics Data System (ADS)

    Sugahara, Tohru; Ohtaki, Michitaka

    2011-08-01

    The thermoelectric properties of double-perovskite oxide Sr2-xLaxCoTiO6-δ were revealed to vary anomalously with the La concentration, plausibly due to a structural transition found in this study. Although the temperature dependence of the resistivity and thermopower of the present oxide showed a semiconductor-to-metal transition similar to those observed for other perovskite-related Co oxides such as Sr1-xYxCoO3-δ, the transition temperature was more than 350 K higher, implying considerable stabilization of the low-spin state of Co ions in the double-perovskite oxide. Consequently, the operating temperature range of the oxide for potential thermoelectric applications was significantly expanded toward higher temperatures.

  15. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces

    DOE PAGES

    Acik, Muge; Park, In Kee; Koritala, Rachel E.; ...

    2017-12-21

    Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less

  16. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acik, Muge; Park, In Kee; Koritala, Rachel E.

    Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less

  17. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site

    PubMed Central

    Evans, Christopher D.; Smith, Paul J.; Manning, Troy D.; Miedziak, Peter J.; Brett, Gemma L.; Armstrong, Robert D.; Bartley, Jonathan K.; Taylor, Stuart H.; Rosseinsky, Matthew J.; Hutchings, Graham J.

    2016-01-01

    Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology. PMID:27074316

  18. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site.

    PubMed

    Evans, Christopher D; Kondrat, Simon A; Smith, Paul J; Manning, Troy D; Miedziak, Peter J; Brett, Gemma L; Armstrong, Robert D; Bartley, Jonathan K; Taylor, Stuart H; Rosseinsky, Matthew J; Hutchings, Graham J

    2016-07-04

    Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology.

  19. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface

    DOE PAGES

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; ...

    2016-06-13

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (Vmore » $$••\\atop{o}$$) enriched at the surface. Here we show that reducing the surface V $$••\\atop{o}$$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $$••\\atop{o}$$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.« less

  20. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (Vmore » $$••\\atop{o}$$) enriched at the surface. Here we show that reducing the surface V $$••\\atop{o}$$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $$••\\atop{o}$$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.« less

  1. Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions.

    PubMed

    Chen, Dengjie; Chen, Chi; Zhang, Zhenbao; Baiyee, Zarah Medina; Ciucci, Francesco; Shao, Zongping

    2015-04-29

    Mixed conducting perovskite oxides are promising catalysts for high-temperature oxygen reduction reaction. Pristine SrCoO(3-δ) is a widely used parent oxide for the development of highly active mixed conductors. Doping a small amount of redox-inactive cation into the B site (Co site) of SrCoO(3-δ) has been applied as an effective way to improve physicochemical properties and electrochemical performance. Most findings however are obtained only from experimental observations, and no universal guidelines have been proposed. In this article, combined experimental and theoretical studies are conducted to obtain fundamental understanding of the effect of B-site doping concentration with redox-inactive cation (Sc) on the properties and performance of the perovskite oxides. The phase structure, electronic conductivity, defect chemistry, oxygen reduction kinetics, oxygen ion transport, and electrochemical reactivity are experimentally characterized. In-depth analysis of doping level effect is also undertaken by first-principles calculations. Among the compositions, SrCo0.95Sc0.05O(3-δ) shows the best oxygen kinetics and corresponds to the minimum fraction of Sc for stabilization of the oxygen-vacancy-disordered structure. The results strongly support that B-site doping of SrCoO(3-δ) with a small amount of redox-inactive cation is an effective strategy toward the development of highly active mixed conducting perovskites for efficient solid oxide fuel cells and oxygen transport membranes.

  2. Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-02-01

    We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.

  3. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.

    PubMed

    Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu

    2017-05-24

    Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.

  4. Bandgap Engineering of Stable Lead-Free Oxide Double Perovskites for Photovoltaics.

    PubMed

    Sun, Qingde; Wang, Jing; Yin, Wan-Jian; Yan, Yanfa

    2018-04-01

    Despite the rapid progress in solar power conversion efficiency of archetype organic-inorganic hybrid perovskite CH 3 NH 3 PbI 3 -based solar cells, the long-term stability and toxicity of Pb remain the main challenges for the industrial deployment, leading to more uncertainties for global commercialization. The poor stabilities of CH 3 NH 3 PbI 3 -based solar cells may not only be attributed to the organic molecules but also the halides themself, most of which exhibit intrinsic instability under moisture and light. As an alternative, the possibility of oxide perovskites for photovoltaic applications is explored here. The class of lead-free stable oxide double perovskites A 2 M(III)M(V)O 6 (A = Ca, Sr, Ba; M(III) = Sb 3+ or Bi 3+ ; M(V) = V 5+ , Nb 5+ , or Ta 5+ ) is comprehensively explored with regard to their stability and their electronic and optical properties. Apart from the strong stability, this class of double perovskites exhibits direct bandgaps ranging from 0.3 to 3.8 eV. With proper B site alloying, the bandgap can be tuned within the range of 1.0-1.6 eV with optical absorptions as strong as CH 3 NH 3 PbI 3 , making them suitable for efficient single-junction thin-film solar cell application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    NASA Astrophysics Data System (ADS)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  6. High-Throughput Design of Two-Dimensional Electron Gas Systems Based on Polar/Nonpolar Perovskite Oxide Heterostructures

    PubMed Central

    Yang, Kesong; Nazir, Safdar; Behtash, Maziar; Cheng, Jianli

    2016-01-01

    The two-dimensional electron gas (2DEG) formed at the interface between two insulating oxides such as LaAlO3 and SrTiO3 (STO) is of fundamental and practical interest because of its novel interfacial conductivity and its promising applications in next-generation nanoelectronic devices. Here we show that a group of combinatorial descriptors that characterize the polar character, lattice mismatch, band gap, and the band alignment between the perovskite-oxide-based band insulators and the STO substrate, can be introduced to realize a high-throughput (HT) design of SrTiO3-based 2DEG systems from perovskite oxide quantum database. Equipped with these combinatorial descriptors, we have carried out a HT screening of all the polar perovskite compounds, uncovering 42 compounds of potential interests. Of these, Al-, Ga-, Sc-, and Ta-based compounds can form a 2DEG with STO, while In-based compounds exhibit a strain-induced strong polarization when deposited on STO substrate. In particular, the Ta-based compounds can form 2DEG with potentially high electron mobility at (TaO2)+/(SrO)0 interface. Our approach, by defining materials descriptors solely based on the bulk materials properties, and by relying on the perovskite-oriented quantum materials repository, opens new avenues for the discovery of perovskite-oxide-based functional interface materials in a HT fashion. PMID:27708415

  7. Electronic doping of transition metal oxide perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammarata, Antonio, E-mail: cammaant@fel.cvut.cz; Rondinelli, James M.

    2016-05-23

    CaFeO{sub 3} is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO{sub 3}. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  8. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    PubMed

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  9. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  10. Synthesis and Characterization of Ferromagnetic/Antiferromagnetic Perovskite Oxide Superlattices

    NASA Astrophysics Data System (ADS)

    Jia, Yue

    Perovskite oxides span a diverse range of functional properties such as ferromagnetism, superconductivity, and ferroelectricity, which makes them promising candidate materials for applications such as sensors, energy conversion and data storage devices. With recent advances in thin film deposition techniques, the precise manipulation of atomic layers on the unit cell level make it possible to synthesize epitaxial thin film heterostructures consisting of layers with different properties. The structural compatibility of perovskite oxides allows them to be epitaxially grown in complex heterostructures such as superlattices with a large density of interfaces where the interplay between spin, charge, orbital, and lattice degrees of freedom gives rise to new behaviors. The ferromagnetic (FM)/antiferromagnetic (AF) interface is particularly interesting due to exchange coupling which is not only of interest for fundamental research but also is of great significance for industrial applications. Unlike metallic systems that have been studied for decades with wide ranges of applications in devices such as hard disk drives, thin films of complex metal oxides is a relatively new field. Perovskite oxides show much more diverse functional properties than metals and open new pathways for tailoring propertiestowards specific device applications. Epitaxial La0.7Sr0.3MnO3 (LSMO)/La 0.7Sr0.3FeO3 (LSFO) superlattices serve as model systems to explore the magnetic structure and exchange coupling at perovskite oxide interfaces. Earlier work suggested that (001)-oriented LSMO/LSFO superlattices with compensated AF spins at the interface display spin-flop coupling characterized by perpendicular alignment between the AF spin axes and the FM moments at a sublayer thickness of 6 unit cells (u.c.). Changing the crystallographic orientation of the interface from (001) to (111) introduces changes to factors such as the charge density of each stacking layer, the magnetic iiistructure of the AF

  11. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  12. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion.

    PubMed

    Thomas, S; Kuiper, B; Hu, J; Smit, J; Liao, Z; Zhong, Z; Rijnders, G; Vailionis, A; Wu, R; Koster, G; Xia, J

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.

  13. Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides

    PubMed Central

    2015-01-01

    Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities. PMID:26045733

  14. Topological Oxide Insulator in Cubic Perovskite Structure

    PubMed Central

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  15. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strongmore » intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.« less

  16. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    PubMed

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  17. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion

    DOE PAGES

    Thomas, S.; Kuiper, B.; Hu, J.; ...

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO 3 films by the deposition of a SrTiO 3 capping layer, which can be lithographically patterned to achieve local control. Here, using a scanning Sagnac magnetic microscope, we show an increasemore » in the Curie temperature of SrRuO 3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. Lastly, this capping-layer-based technique may open new possibilities for developing functional oxide materials.« less

  18. Ag modified LaCoO3 perovskite oxide for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Jayapandi, S.; Prakasini, V. Anitha; Anitha, K.

    2018-04-01

    The present investigation has been carried out to develop a novel photocatalytic material based on lanthanum cobaltite (LaCoO3) and silver (Ag) doped LaCoO3 perovskite oxide. Pure LaCoO3 and 5 Mol% Ag doped LaCoO3 (Ag-LaCoO3) have been synthesized by simple co-precipitation method and characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and photoluminescence (PL) techniques and its photocatalytic activity was evaluated by photodegradation of methylene blue under sunlight irradiation. The observed XRD, UV and PL results indicate that Ag influences on the crystallite size and absorption coefficient of LaCoO3 perovskite oxide. The percentage of dye degradations was calculated as 60% and 99 % for LaCoO3 and 5 Mol% Ag-LaCoO3 pervoskite oxides respectively for 10 minutes (10 min) exposure to sunlight, which indicates that 5 mol% of Ag-LaCoO3, has better photodegradation activity. Hence, the present investigation confirms that Ag influences the photocatalytic activity of a material and the observations will be helpful for further developing new photocatalytic materials.

  19. La and Al co-doped CaMnO 3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    DOE PAGES

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; ...

    2017-09-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca 0.9La 0.1Al 0.1Mn 0.9O 3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 degrees C shows the importance of balance between surface area, purity of the perovskite phase, and surfacemore » composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm -2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm -2, demonstrating an ~50% increase when compared to the highest performing composite with undoped carbon at the same loading.« less

  20. La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O'Hayre, Ryan; Pylypenko, Svitlana

    2018-01-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 °C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ∼50% increase when compared to the highest performing composite with undoped carbon at the same loading.

  1. Thermoelectric module made of perovskite cobalt oxides with large thermopower

    NASA Astrophysics Data System (ADS)

    Inagoya, Akiko; Sawaki, Daisuke; Horiuchi, Yuto; Urata, Saori; Funahashi, Ryoji; Terasaki, Ichiro

    2011-12-01

    We have fabricated a trial product of an oxide thermoelectric module using the perovskite cobalt oxides. The thermoelectric properties of the p- and n-leg materials are carefully controlled, and the room temperature thermopower is set to be larger than 200 μV/K. This module generates an open circuit voltage of 1.0 V with a small temperature difference of 170 K. At a large temperature difference of 399 K, it generates a substantial power of 40 mW, and the generated energy density is comparable with that of commercial solar cells.

  2. Ternary Oxides in the TiO2-ZnO System as Efficient Electron-Transport Layers for Perovskite Solar Cells with Efficiency over 15.

    PubMed

    Yin, Xiong; Xu, Zhongzhong; Guo, Yanjun; Xu, Peng; He, Meng

    2016-11-02

    Perovskite solar cells, which utilize organometal-halide perovskites as light-harvesting materials, have attracted great attention due to their high power conversion efficiency (PCE) and potentially low cost in fabrication. A compact layer of TiO 2 or ZnO is generally applied as electron-transport layer (ETL) in a typical perovskite solar cell. In this study, we explored ternary oxides in the TiO 2 -ZnO system to find new materials for the ETL. Compact layers of titanium zinc oxides were readily prepared on the conducting substrate via spray pyrolysis method. The optical band gap, valence band maximum and conduction band minimum of the ternary oxides varied significantly with the ratio of Ti to Zn, surprisingly, in a nonmonotonic way. When a zinc-rich ternary oxide was applied as ETL for the device, a PCE of 15.10% was achieved, comparable to that of the device using conventional TiO 2 ETL. Interestingly, the perovskite layer deposited on the zinc-rich ternary oxide is stable, in sharp contrast with that fabricated on a ZnO layer, which will turn into PbI 2 readily when heated. These results indicate that potentially new materials with better performance can be found for ETL of perovskite solar cells in ternary oxides, which deserve more exploration.

  3. Perovskite-type oxides - Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, E.

    1988-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  4. Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer

    PubMed Central

    Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2016-01-01

    Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL. PMID:27277388

  5. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.

    PubMed

    Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija

    2016-04-06

    Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.

  6. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO

    NASA Astrophysics Data System (ADS)

    Zhao, Shaojun; Wang, Li; Wang, Ying; Li, Xing

    2018-05-01

    In this paper, pomelo peel was used as biological template to obtain hierarchically porous LaFeO3 perovskite for the catalytic oxidation of NO to NO2. In addition, X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption analyses, X-ray photoelectron spectra (XPS), NO temperature-programmed desorption (NO-TPD), oxygen temperature-programmed desorption (O2-TPD) and hydrogen temperature-programmed reduction (H2-TPR) were used to investigate the micro-structure and the redox properties of the hierarchically porous LaFeO3 perovskite prepared from pomelo peel biological template and the LaFeO3 perovskite without the biological template. The results indicated that the hierarchically porous LaFeO3 perovskite successfully replicated the porous structure of pomelo peel with high specific surface area. Compared to the LaFeO3 perovskite prepared without the pomelo peel template, the hierarchically porous LaFeO3 perovskite showed better catalytic oxidization of NO to NO2 under the same conditions. The maximum NO conversions for LaFeO3 prepared with and without template were 90% at 305 °C and 76% at 313 °C, respectively. This is mainly attributed to the higher ratio of Fe4+/Fe3+, the hierarchically porous structure with more adsorbed oxygen species and higher surface area for the hierarchically porous LaFeO3 perovskite compared with the sample prepared without the pomelo peel template.

  7. Perovskite classification: An Excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup

    NASA Astrophysics Data System (ADS)

    Locock, Andrew J.; Mitchell, Roger H.

    2018-04-01

    Perovskite mineral oxides commonly exhibit extensive solid-solution, and are therefore classified on the basis of the proportions of their ideal end-members. A uniform sequence of calculation of the end-members is required if comparisons are to be made between different sets of analytical data. A Microsoft Excel spreadsheet has been programmed to assist with the classification and depiction of the minerals of the perovskite- and vapnikite-subgroups following the 2017 nomenclature of the perovskite supergroup recommended by the International Mineralogical Association (IMA). Compositional data for up to 36 elements are input into the spreadsheet as oxides in weight percent. For each analysis, the output includes the formula, the normalized proportions of 15 end-members, and the percentage of cations which cannot be assigned to those end-members. The data are automatically plotted onto the ternary and quaternary diagrams recommended by the IMA for depiction of perovskite compositions. Up to 200 analyses can be entered into the spreadsheet, which is accompanied by data calculated for 140 perovskite compositions compiled from the literature.

  8. Enhanced magnetism of perovskite oxides, Sr(Sn,Fe)O3- δ , by substitution of nonmagnetic Ca and Ti ions

    NASA Astrophysics Data System (ADS)

    Nomura, Kiyoshi; Suzuki, Shigeyo; Mizunuma, Tomoya; Koike, Yuya; Okazawa, Atsushi

    2017-11-01

    Magnetic properties of perovskite oxides, SrSn1- x Fe x O3- δ ( x ≤ 0.15), substituted with nonmagnetic Ca and Ti ions were studied. XRD patterns showed the orthorhombic structure (close to tetragonal) of (Sr1- y Ca y )(Sn1- x Fe x )O3- δ and Sr(Sn1- x- y Fe x Ti y )O3- δ . The cell volumes decreased with the increase of Ca and Ti doping rates. Although Ti-substituted Sr(Sn, Fe)O3- δ showed small saturation magnetizations as compared with non-Ti substituted one, the magnetization increased a little with Ti doping rates up to 15%. On the other hand, all Ca-substituted Sr(Sn, Fe)O3- δ showed larger saturation magnetization than non-Ca substituted one. Two doublets of Fe3+ and a doublet of Fe4+ were observed in Mössbauer spectra of Ca-substituted Sr(Sn, Fe)O3- δ with weak ferromagnetism, and two sextets of high spin Fe3+ were additionally observed in Mössbauer spectra of Ca-doped Sr(Sn, Fe)O3- δ with relatively strong ferromagnetism. When Sr(Sn, Fe)O3- δ were further codoped with Ca and Ti ions, they showed the stable and enhanced ferromagnetic properties. It is considered that magnetic polarons among high spin Fe3+ species are overlapped by shrinking or deforming the crystal structure of perovskite oxides. That is the magnetism induced by a chemical pressure of perovskite oxides.

  9. Perovskite-type catalytic materials for environmental applications.

    PubMed

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-06-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N 2 O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.

  10. Perovskite-type catalytic materials for environmental applications

    PubMed Central

    Labhasetwar, Nitin; Saravanan, Govindachetty; Kumar Megarajan, Suresh; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-01-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications. PMID:27877813

  11. Perovskites in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Hwang, Jonathan; Rao, Reshma R.; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-01

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts.

  12. Perovskite-Perovskite Homojunctions via Compositional Doping.

    PubMed

    Dänekamp, Benedikt; Müller, Christian; Sendner, Michael; Boix, Pablo P; Sessolo, Michele; Lovrincic, Robert; Bolink, Henk J

    2018-05-11

    One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite-perovskite homojunctions have not been reported. Here we present a perovskite-perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI 2 , obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is confirmed by infrared spectroscopy, which allows us to determine the MA content in the films. We analyzed the resulting thin-film junction by cross-sectional scanning Kelvin probe microscopy (SKPM) and found a contact potential difference (CPD) of 250 mV between the two differently doped perovskite layers. Planar diodes built with the perovskite-perovskite homojunction show the feasibility of our approach for implementation in devices.

  13. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer.

    PubMed

    Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong

    2018-03-28

    Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.

  14. Ion Implantation-Modified Fluorine-Doped Tin Oxide by Zirconium with Continuously Tunable Work Function and Its Application in Perovskite Solar Cells.

    PubMed

    Han, Dong; Wu, Cuncun; Zhao, Yunbiao; Chen, Yi; Xiao, Lixin; Zhao, Ziqiang

    2017-12-06

    In recent years, perovskite solar cells have drawn a widespread attention. As an electrode material, fluorine-doped tin oxide (FTO) is widely used in various kinds of solar cells. However, the relatively low work function (WF) (∼4.6 eV) limits its application. The potential barrier between the transparent conductive oxide electrode and the hole transport layer (HTL) in inverted perovskite solar cells results in a decrease in device performance. In this paper, we propose a method to adjust WF of FTO by implanting zirconium ions into the FTO surface. The WF of FTO can be precisely and continuously tuned between 4.59 and 5.55 eV through different dopant concentration of zirconium. In the meantime, the modified FTO, which had a WF of 5.1 eV to match well the highest occupied molecular orbital energy level of poly(3,4-ethylenedioxylenethiophene):polystyrene sulfonate, was used as the HTL in inverted planar perovskite solar cells. Compared with the pristine FTO electrode-based device, the open circuit voltage increased from 0.82 to 0.91 V, and the power conversion efficiency increased from 11.6 to 14.0%.

  15. Perovskites in catalysis and electrocatalysis.

    PubMed

    Hwang, Jonathan; Rao, Reshma R; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-10

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts. Copyright © 2017, American Association for the Advancement of Science.

  16. Acid–base catalysis over perovskites: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo-Garzon, Felipe; Wu, Zili

    We present that perovskite catalysts have been extensively studied for reduction–oxidation (redox) reactions; however, their acid–base catalytic properties are still under-explored. This review collects work aiming to study the acid–base catalytic properties of perovskites. Reports regarding combined acid–base/redox catalysis over perovskites lie beyond the scope of the present review. For the characterization of acid–base properties, researchers have studied the interaction of probe molecules with perovskite surfaces by means of multiple techniques that provide information about the density, strength and type of adsorption sites. The top-surface composition of perovskites, which relates to the abundance of the acid–base sites, has been studiedmore » by means of low energy ion scattering (LEIS), and, the less surface sensitive, conventional X-ray photoelectron spectroscopy (XPS). Probe reactions, with the conversion of 2-propanol as the common choice, have also been employed for characterizing the acid–base catalytic properties of perovskites. The complex nature of perovskite surfaces, which explains the still absent fundamental relations between the structure of the catalyst and reaction rates/selectivity, encounters a great challenge due to the surface reconstruction of these materials. In this review, we devote a special section to highlight recent publications that report the impact of surface reconstruction and particle shape on acid–base catalysis over perovskites. In addition, we review promising catalytic performances of perovskite catalysts for other reactions of interest. Challenges in acid–base catalysis over perovskites focus on the development of time-resolved monolayer-sensitive characterization of surfaces under operando conditions and the discernment of combined acid–base/redox reaction mechanisms. Finally, opportunities lay on tuning the acid–base characteristics of perovskites with computation-based catalytic descriptors to

  17. Acid–base catalysis over perovskites: a review

    DOE PAGES

    Polo-Garzon, Felipe; Wu, Zili

    2018-01-15

    We present that perovskite catalysts have been extensively studied for reduction–oxidation (redox) reactions; however, their acid–base catalytic properties are still under-explored. This review collects work aiming to study the acid–base catalytic properties of perovskites. Reports regarding combined acid–base/redox catalysis over perovskites lie beyond the scope of the present review. For the characterization of acid–base properties, researchers have studied the interaction of probe molecules with perovskite surfaces by means of multiple techniques that provide information about the density, strength and type of adsorption sites. The top-surface composition of perovskites, which relates to the abundance of the acid–base sites, has been studiedmore » by means of low energy ion scattering (LEIS), and, the less surface sensitive, conventional X-ray photoelectron spectroscopy (XPS). Probe reactions, with the conversion of 2-propanol as the common choice, have also been employed for characterizing the acid–base catalytic properties of perovskites. The complex nature of perovskite surfaces, which explains the still absent fundamental relations between the structure of the catalyst and reaction rates/selectivity, encounters a great challenge due to the surface reconstruction of these materials. In this review, we devote a special section to highlight recent publications that report the impact of surface reconstruction and particle shape on acid–base catalysis over perovskites. In addition, we review promising catalytic performances of perovskite catalysts for other reactions of interest. Challenges in acid–base catalysis over perovskites focus on the development of time-resolved monolayer-sensitive characterization of surfaces under operando conditions and the discernment of combined acid–base/redox reaction mechanisms. Finally, opportunities lay on tuning the acid–base characteristics of perovskites with computation-based catalytic descriptors to

  18. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    PubMed

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H 2 O<0.1 ppm, O 2 <10 ppm). The PCE of the solar cell based on a perovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H 2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey Y.

    Ultrafast transient absorption and reflectance spectroscopy are foundational techniques for studying photoexcited carrier recombination mechanisms, lifetimes, and charge transfer rates. Because quantifying photoexcited carrier dynamics is central to the intelligent design and improvement of many solid state devices, these transient optical techniques have been applied to a wide range of semiconductors. However, despite their promise, interpretation of transient absorption and reflectance data is not always straightforward and often relies on assumptions of physical processes, especially with respect to the influence of heating. Studying the material space of perovskite oxides, the careful collection, interpretation, and analysis of ultrafast data is presented here as a guide for future research into novel semiconductors. Perovskite oxides are a class of transition metal oxides with the chemical structure ABO3. Although traditionally studied for their diverse physical, electronic, and magnetic properties, perovskite oxides have gained recent research attention as novel candidates for light harvesting applications. Indeed, strong tunable absorption, unique interfacial properties, and vast chemical flexibility make perovskite oxides a promising photoactive material system. However, there is limited research characterizing dynamic optoelectronic properties, such as recombination lifetimes, which are critical to know in the design of any light-harvesting device. In this thesis, ultrafast transient absorption and reflectance spectroscopy was used to understand these dynamic optoelectronic properties in highquality, thin (<50 nm) perovskite oxide films grown by molecular beam epitaxy. Starting with epitaxial LaFeO3 (LFO) grown on (LaAlO 3)0.3(Sr2AlTaO6)0.7 (LSAT), transient absorption spectroscopy reveals two photoinduced absorption features at the band gap of LFO at 2.4 eV and at the higher energy absorption edge at 3.5 eV. Using a combination of temperature

  20. Autothermal reforming catalyst having perovskite structure

    DOEpatents

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  1. Toward the Design of a Hierarchical Perovskite Support: Ultra-Sintering-Resistant Gold Nanocatalysts for CO Oxidation

    DOE PAGES

    Tian, Chengcheng; Zhu, Xiang; Abney, Carter W.; ...

    2017-04-12

    An ultrastable Au nanocatalyst based on a heterostructured perovskite support with high surface area and uniform LaFeO3 nanocoatings was successfully synthesized and tested for CO oxidation. Strikingly, small Au nanoparticles (4-6 nm) are obtained after calcination in air at 700 °C and under reaction conditions. The designed Au catalyst not only possessed extreme sintering resistance but also showed high catalytic activity and stability because of the strong interfacial interaction between Au and the heterostructured perovskite support.

  2. Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Wanyi; Tsai, Hsinhan; Blancon, Jean -Christophe

    Hybrid perovskites are on a trajectory toward realizing the most efficient single-junction, solution-processed photovoltaic devices. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance and photostability. Here, the controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals. Photophysical and interface sensitive measurements reveal a reduced trap density at the perovskite/NiO interface in comparison with perovskites grownmore » on poly(3,4-ethylene dioxy thiophene) polystyrene sulfonate. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band alignment. Moreover, photostability of photovoltaic devices up to 10-Suns is observed, which is a direct result of the superior crystallinity of perovskite thin films on NiO. Here, these results elucidate the critical role of the quality of the perovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices.« less

  3. Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide.

    PubMed

    Nie, Wanyi; Tsai, Hsinhan; Blancon, Jean-Christophe; Liu, Fangze; Stoumpos, Costas C; Traore, Boubacar; Kepenekian, Mikael; Durand, Olivier; Katan, Claudine; Tretiak, Sergei; Crochet, Jared; Ajayan, Pulickel M; Kanatzidis, MercouriG; Even, Jacky; Mohite, Aditya D

    2018-02-01

    Hybrid perovskites are on a trajectory toward realizing the most efficient single-junction, solution-processed photovoltaic devices. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance and photostability. Here, the controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals. Photophysical and interface sensitive measurements reveal a reduced trap density at the perovskite/NiO interface in comparison with perovskites grown on poly(3,4-ethylene dioxy thiophene) polystyrene sulfonate. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band alignment. Moreover, photostability of photovoltaic devices up to 10-Suns is observed, which is a direct result of the superior crystallinity of perovskite thin films on NiO. These results elucidate the critical role of the quality of the perovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide

    DOE PAGES

    Nie, Wanyi; Tsai, Hsinhan; Blancon, Jean -Christophe; ...

    2017-12-11

    Hybrid perovskites are on a trajectory toward realizing the most efficient single-junction, solution-processed photovoltaic devices. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance and photostability. Here, the controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals. Photophysical and interface sensitive measurements reveal a reduced trap density at the perovskite/NiO interface in comparison with perovskites grownmore » on poly(3,4-ethylene dioxy thiophene) polystyrene sulfonate. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band alignment. Moreover, photostability of photovoltaic devices up to 10-Suns is observed, which is a direct result of the superior crystallinity of perovskite thin films on NiO. Here, these results elucidate the critical role of the quality of the perovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices.« less

  5. Low-cost electrodes for stable perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  6. Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement.

    PubMed

    Tang, Xiling; Remmel, Kurtis; Lan, Xinwei; Deng, Jiangdong; Xiao, Hai; Dong, Junhang

    2009-09-15

    Small size fiber optic devices integrated with chemically sensitive photonic materials are emerging as a new class of high-performance optical chemical sensor that have the potential to meet many analytical challenges in future clean energy systems and environmental management. Here, we report the integration of a proton conducting perovskite oxide thin film with a long-period fiber grating (LPFG) device for high-temperature in situ measurement of bulk hydrogen in fossil- and biomass-derived syngas. The perovskite-type Sr(Ce(0.8)Zr(0.1))Y(0.1)O(2.95) (SCZY) nanocrystalline thin film is coated on the 125 microm diameter LPFG by a facile polymeric precursor route. This fiber optic sensor (FOS) operates by monitoring the LPFG resonant wavelength (lambda(R)), which is a function of the refractive index of the perovskite oxide overcoat. At high temperature, the types and population of the ionic and electronic defects in the SCZY structure depend on the surrounding hydrogen partial pressure. Thus, varying the H(2) concentration changes the SCZY film refractive index and light absorbing characteristics that in turn shifts the lambda(R) of the LPFG. The SCZY-coated LPFG sensor has been demonstrated for bulk hydrogen measurement at 500 degrees C for its sensitivity, stability/reversibility, and H(2)-selectivity over other relevant small gases including CO, CH(4), CO(2), H(2)O, and H(2)S, etc.

  7. Tilts, dopants, vacancies and non-stoichiometry: Understanding and designing the properties of complex solid oxide perovskites from first principles

    NASA Astrophysics Data System (ADS)

    Bennett, Joseph W.

    Perovskite oxides of formula ABO3 have a wide range of structural, electrical and mechanical properties, making them vital materials for many applications, such as catalysis, ultrasound machines and communication devices. Perovskite solid solutions with high piezoelectric response, such as ferroelectrics, are of particular interest as they can be employed as sensors in SONAR devices. Ferroelectric materials are unique in that their chemical and electrical properties can be non-invasively and reversibly changed, by switching the bulk polarization. This makes ferroelectrics useful for applications in non-volatile random access memory (NVRAM) devices. Perovskite solid solutions with a lower piezoelectric response than ferroelectrics are important for communication technology, as they function well as electroceramic capacitors. Also of interest is how these materials act as a component in a solid oxide fuel cell, as they can function as an efficient source of energy. Altering the chemical composition of these solid oxide materials offers an opportunity to change the desired properties of the final ceramic, adding a degree of flexibility that is advantageous for a variety of applications. These solid oxides are complex, sometimes disordered systems that are a challenge to study experimentally. However, as it is their complexity which produces favorable properties, highly accurate modeling which captures the essential features of the disordered structure is necessary to explain the behavior of current materials and predict favorable compositions for new materials. Methodological improvements and faster computer speeds have made first-principles and atomistic calculations a viable tool for understanding these complex systems. Offering a combination of accuracy and computational speed, the density functional theory (DFT) approach can reveal details about the microscopic structure and interactions of complex systems. Using DFT and a combination of principles from both

  8. Recent advances of flexible hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk

    2017-11-01

    Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.

  9. p-i-n heterojunctions with BiFeO3 perovskite nanoparticles and p- and n-type oxides: photovoltaic properties.

    PubMed

    Chatterjee, Soumyo; Bera, Abhijit; Pal, Amlan J

    2014-11-26

    We formed p-i-n heterojunctions based on a thin film of BiFeO3 nanoparticles. The perovskite acting as an intrinsic semiconductor was sandwiched between a p-type and an n-type oxide semiconductor as hole- and electron-collecting layer, respectively, making the heterojunction act as an all-inorganic oxide p-i-n device. We have characterized the perovskite and carrier collecting materials, such as NiO and MoO3 nanoparticles as p-type materials and ZnO nanoparticles as the n-type material, with scanning tunneling spectroscopy; from the spectrum of the density of states, we could locate the band edges to infer the nature of the active semiconductor materials. The energy level diagram of p-i-n heterojunctions showed that type-II band alignment formed at the p-i and i-n interfaces, favoring carrier separation at both of them. We have compared the photovoltaic properties of the perovskite in p-i-n heterojunctions and also in p-i and i-n junctions. From current-voltage characteristics and impedance spectroscopy, we have observed that two depletion regions were formed at the p-i and i-n interfaces of a p-i-n heterojunction. The two depletion regions operative at p-i-n heterojunctions have yielded better photovoltaic properties as compared to devices having one depletion region in the p-i or the i-n junction. The results evidenced photovoltaic devices based on all-inorganic oxide, nontoxic, and perovskite materials.

  10. Electrocatalytic performances of LaNi1-xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries

    NASA Astrophysics Data System (ADS)

    Du, Zhenzhen; Yang, Peng; Wang, Long; Lu, Yuhao; Goodenough, J. B.; Zhang, Jian; Zhang, Dawei

    2014-11-01

    Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) electrocatalysts are synthesized by a sol-gel method using citric acid as complex agent and ethylene glycol as thickening agent. The intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity of as-prepared perovskite oxides in aqueous electrolyte are examined on a rotating disk electrode (RDE) set up. Li-air primary batteries on the basis of Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) and nonaqueous electrolyte are also fabricated and tested. In terms of the ORR current densities and OER current densities, the performance is enhanced in the order of LaNiO3, LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3. Most notably, partially substituting nickel with magnesium suppresses formation of Ni2+ and ensures high concentration of both OER and ORR reaction energy favorable Ni3+ (eg = 1) on the surface of perovskite catalysts. Nonaqueous Li-air primary battery using LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3 as the cathode catalysts exhibit improved performances compared with LaNiO3 catalyst, which are consistent with the ORR current densities.

  11. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells.

    PubMed

    Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin

    2014-12-10

    Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.

  12. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism.

    PubMed

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-01-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 - x SrxFe y Mn1 - y O3 - δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ and the Fe-K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ perovskite oxide.

  13. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-10-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1-xSrxFeyMn1-yO3-d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d and the Fe-K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3-d was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d perovskite oxide.

  14. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    PubMed Central

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-01-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 − xSrxFeyMn1 − yO3 − δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst with that of an industrial potassium promoted iron (Fe–K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ and the Fe–K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ perovskite oxide. PMID:24790949

  15. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE PAGES

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; ...

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  16. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  17. Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films.

    PubMed

    Ge, Chen; Jin, Kui-Juan; Zhang, Qing-Hua; Du, Jian-Yu; Gu, Lin; Guo, Hai-Zhong; Yang, Jing-Ting; Gu, Jun-Xing; He, Meng; Xing, Jie; Wang, Can; Lu, Hui-Bin; Yang, Guo-Zhen

    2016-12-21

    The defect chemistry of perovskite oxides involves the cause to most of their abundant functional properties, including interface magnetism, charge transport, ionic exchange, and catalytic activity. The possibility to achieve dynamic control over oxygen anion vacancies offers a unique opportunity for the development of appealing switchable devices, which at present are commonly based on ferroelectric materials. Herein, we report the discovery of a switchable photovoltaic effect, that the sign of the open voltage and the short circuit current can be reversed by inverting the polarity of the applied field, upon electrically tailoring the distribution of oxygen vacancies in perovskite oxide films. This phenomenon is demonstrated in lateral photovoltaic devices based on both ferroelectric BiFeO 3 and paraelectric SrTiO 3 films, under a reversed applied field whose magnitude is much smaller than the coercivity value of BiFeO 3 . The migration of oxygen vacancies was directly observed by employing an advanced annular bright-field scanning transmission electron microscopy technique with in situ biasing equipment. We conclude that the band bending induced by the motion of oxygen vacancies is the driving force for the reversible switching between two photovoltaic states. The present work can provide an active path for the design of novel switchable photovoltaic devices with a wide range of transition metal oxides in terms of the ionic degrees of freedom.

  18. Impact of Interfacial Layers in Perovskite Solar Cells.

    PubMed

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crystal growth of incommensurate members of 2H-hexagonal perovskite related oxides: Ba{sub 4}M{sub z}Pt{sub 3−z}O{sub 9} (M=Co, Ni, Cu, Zn, Mg, Pt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Timothy; Morrison, Gregory; Yeon, Jeongho

    2016-04-15

    Millimeter sized crystals of six oxides of approximate composition Ba{sub 4}M{sub z}Pt{sub 3-z}O{sub 9} (M=Co, Ni, Cu, Zn, Mg, Pt) were grown from molten K{sub 2}CO{sub 3} fluxes and found to crystallize in a 2H hexagonal perovskite-related structure type. The compositions of these incommensurate structures, which belong to the A{sub 3n+3m}A′{sub n}B{sub 3m+n}O{sub 9m+6n} family of 2H hexagonal perovskite related oxides, were characterized by X-ray diffraction, energy dispersive spectroscopy, and magnetic susceptibility measurements. The specific synthetic considerations, crystal growth conditions, and magnetic susceptibility measurements are discussed. - Graphical abstract: SEM image and average commensurate unit cell of Ba{sub 4}Pt{sub 3}O{submore » 9.} - Highlights: • Single crystals of the series Ba{sub 4}A′{sub z}Pt{sub 3-z}O{sub 9} were grown via a molten carbonate flux. • Ba{sub 4}Pt{sub 3}O{sub 9} and all substitutional variants are incommensurate, composite structures. • All compounds have an approximate stoichiometry of Ba{sub 4}A′Pt{sub 2}O{sub 9.}.« less

  20. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air

    NASA Astrophysics Data System (ADS)

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g-1. To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition--from solution at low temperature--of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles--from airplanes to quadcopters and weather balloons--for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  1. Impact of hole doping on spin transition in perovskite-type cobalt oxides.

    PubMed

    Che, Xiangli; Li, Liping; Hu, Wanbiao; Li, Guangshe

    2016-06-28

    Series of perovskite PrCo1-xNixO3-δ (x = 0-0.4) were prepared and carefully investigated to understand the spin state transition driven by hole doping and further to reveal the effect of spin state transition on electronic conduction. It is shown that with increasing doping level, the transition temperature Ts for Co(3+) ions from low-spin (LS) to intermediate-spin (IS) reduces from 211.9 K for x = 0 to 190.5 K for x = 0.4. XPS and FT-IR spectra demonstrate that hole doping promoted this transition due to a larger Jahn-Teller distortion. Moreover, a thermal activation of spin disorder caused by thermal population of the spin states for Co ions has a great impact on the electrical transport of these perovskite samples. This work may shed light on the comprehension of spin transition in cobalt oxides through hole doping, which is promising for finding new strategies of enhancing electronic conduction, especially for energy and catalysis applications.

  2. ZnO/perovskite core–shell nanorod array based monolithic catalysts with enhanced propane oxidation and material utilization efficiency at low temperature

    DOE PAGES

    Wang, Sibo; Ren, Zheng; Song, Wenqiao; ...

    2015-04-24

    Here, a hydrothermal strategy combined with colloidal deposition synthesis was successfully used to grow ZnO/perovskite (LaBO 3, B=Mn, Co, Ni) core-shell nanorod arrays within three dimensional (3-D) honeycomb cordierite substrates. A facile sonication assisted colloidal wash coating process is able to coat a uniformly dispersed perovskite nanoparticles onto the large scale ZnO nanorod arrays rooted on the channel surfaces of the 3D cordierite substrate achieved by hydrothermal synthesis. Compared to traditional wash-coated perovskite catalysts, an enhanced catalytic performance was observed for propane oxidation with 25°C lower light-off temperature than wash-coated perovskite catalyst of similar LaMnO 3 loading (4.3mg). Temperature programmedmore » reduction and desorption under H 2 and O 2 atmosphere, respectively, were used to study the reducibility and oxygen activity of these core-shell nanorod arrays based monolithic catalysts, revealing a catalytic activity sequence of LaCoO 3>LaMnO 3>La 2NiO 4 at the initial stage of catalytic reaction. The good dispersion and size control in La-based perovskite nanoparticles and their interfaces to ZnO nanorod arrays support may contribute to the enhancement of catalytic performance. Lastly, this work may provide a new type of Pt-group metals (PGM) free catalysts with improved catalytic performance for hydrocarbon oxidations at low temperatures.« less

  3. Perovskite Solar Cells for High-Efficiency Tandems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGehee, Michael; Buonassisi, Tonio

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n ++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm 2. Werner et al. 15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher currentmore » density of 15.9 mA/cm 2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both organic cation evolution and

  4. Liquid water- and heat-resistant hybrid perovskite photovoltaics via an inverted ALD oxide electron extraction layer design

    DOE PAGES

    Kim, In Soo; Cao, Duyen H.; Buchholz, D. Bruce; ...

    2016-11-09

    Despite rapid advances in conversion efficiency (>22%), the environmental stability of perovskite solar cells remains a substantial barrier to commercialization. Here, we show a significant improvement in the stability of inverted perovskite solar cells against liquid water and high operating temperature (100 °C) by integrating an ultrathin amorphous oxide electron extraction layer via atomic layer deposition (ALD). Here, these unencapsulated inverted devices exhibit a stable operation over at least 10 h when subjected to high thermal stress (100 °C) in ambient environments, as well as upon direct contact with a droplet of water without further encapsulation.

  5. An experimental study of perovskite-structured mixed ionic- electronic conducting oxides and membranes

    NASA Astrophysics Data System (ADS)

    Zeng, Pingying

    In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and

  6. Integration of perovskite oxide dielectrics into complementary metal-oxide-semiconductor capacitor structures using amorphous TaSiN as oxygen diffusion barrier

    NASA Astrophysics Data System (ADS)

    Mešić, Biljana; Schroeder, Herbert

    2011-09-01

    The high permittivity perovskite oxides have been intensively investigated for their possible application as dielectric materials for stacked capacitors in dynamic random access memory circuits. For the integration of such oxide materials into the CMOS world, a conductive diffusion barrier is indispensable. An optimized stack p++-Si/Pt/Ta21Si57N21/Ir was developed and used as the bottom electrode for the oxide dielectric. The amorphous TaSiN film as oxygen diffusion barrier showed excellent conductive properties and a good thermal stability up to 700 °C in oxygen ambient. The additional protective iridium layer improved the surface roughness after annealing. A 100-nm-thick (Ba,Sr)TiO3 film was deposited using pulsed laser deposition at 550 °C, showing very promising properties for application; the maximum relative dielectric constant at zero field is κ ≈ 470, and the leakage current density is below 10-6 A/cm2 for fields lower then ± 200 kV/cm, corresponding to an applied voltage of ± 2 V.

  7. Room-temperature processed films of colloidal carved rod-shaped nanocrystals of reduced tungsten oxide as interlayers for perovskite solar cells.

    PubMed

    Masi, Sofia; Mastria, Rosanna; Scarfiello, Riccardo; Carallo, Sonia; Nobile, Concetta; Gambino, Salvatore; Sibillano, Teresa; Giannini, Cinzia; Colella, Silvia; Listorti, Andrea; Cozzoli, P Davide; Rizzo, Aurora

    2018-04-25

    Thanks to their high stability, good optoelectronic and extraordinary electrochromic properties, tungsten oxides are among the most valuable yet underexploited materials for energy conversion applications. Herein, colloidal one-dimensional carved nanocrystals of reduced tungsten trioxide (WO3-x) are successfully integrated, for the first time, as a hole-transporting layer (HTL) into CH3NH3PbI3 perovskite solar cells with a planar inverted device architecture. Importantly, the use of such preformed nanocrystals guarantees the facile solution-cast-only deposition of a homogeneous WO3-x thin film at room temperature, allowing achievement of the highest power conversion efficiency ever reported for perovskite solar cells incorporating raw and un-doped tungsten oxide based HTL.

  8. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    PubMed

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  9. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability

    NASA Astrophysics Data System (ADS)

    Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.; Boccard, Mathieu; Cheacharoen, Rongrong; Mailoa, Jonathan P.; McMeekin, David P.; Hoye, Robert L. Z.; Bailie, Colin D.; Leijtens, Tomas; Peters, Ian Marius; Minichetti, Maxmillian C.; Rolston, Nicholas; Prasanna, Rohit; Sofia, Sarah; Harwood, Duncan; Ma, Wen; Moghadam, Farhad; Snaith, Henry J.; Buonassisi, Tonio; Holman, Zachary C.; Bent, Stacey F.; McGehee, Michael D.

    2017-02-01

    As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 ∘C and 85% relative humidity.

  10. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells

    PubMed Central

    Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T

    2017-01-01

    The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and—more importantly—it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability. PMID:28067308

  11. Nb5+-Doped SrCoO3-δ Perovskites as Potential Cathodes for Solid-Oxide Fuel Cells.

    PubMed

    Cascos, Vanessa; Alonso, José Antonio; Fernández-Díaz, María Teresa

    2016-07-15

    SrCoO 3- δ outperforms as cathode material in solid-oxide fuel cells (SOFC) when the three-dimensional (3C-type) perovskite structure is stabilized by the inclusion of highly-charged transition-metal ions at the octahedral positions. In a previous work we studied the Nb incorporation at the Co positions in the SrCo 1- x Nb x O 3- δ system, in which the stabilization of a tetragonal P4 / mmm perovskite superstructure was described for the x = 0.05 composition. In the present study we extend this investigation to the x = 0.10-0.15 range, also observing the formation of the tetragonal P4 / mmm structure instead of the unwanted hexagonal phase corresponding to the 2H polytype. We also investigated the effect of Nb 5+ doping on the thermal, electrical, and electrochemical properties of SrCo 1- x Nb x O 3- δ ( x = 0.1 and 0.15) perovskite oxides performing as cathodes in SOFC. In comparison with the undoped hexagonal SrCoO 3- δ phase, the resulting compounds present high thermal stability and an increase of the electrical conductivity. The single-cell tests for these compositions ( x = 0.10 and 0.15) with La 0.8 Sr 0.2 Ga 0.83 Mg 0.17 O 3- δ (LSGM) as electrolyte and SrMo 0.8 Fe 0.2 CoO 3- δ as anode gave maximum power densities of 693 and 550 mW∙cm -2 at 850 °C respectively, using pure H₂ as fuel and air as oxidant.

  12. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air.

    PubMed

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1). To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition-from solution at low temperature-of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles-from airplanes to quadcopters and weather balloons-for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  13. Perovskite electrodes and method of making the same

    DOEpatents

    Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH

    2009-09-22

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  14. Perovskite electrodes and method of making the same

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  15. Sono-photo-Fenton oxidation of bisphenol-A over a LaFeO3 perovskite catalyst.

    PubMed

    Dükkancı, Meral

    2018-01-01

    In this study, oxidation of bisphenol-A (IUPAC name - 2,2-(4,4-dihydroxyphenyl, BPA), which is an endocrine disrupting phenolic compound used in the polycarbonate plastic and epoxy resin industry, was investigated using sono-photo-Fenton process under visible light irradiation in the presence of an iron containing perovskite catalyst, LaFeO 3 . The catalyst prepared by sol-gel method, calcined at 500°C showed a catalytic activity in BPA oxidation using sono-photo-Fenton process with a degradation degree and a chemical oxygen demand (COD) reduction of 21.8% and 11.2%, respectively. Degradation of BPA was studied by using individual and combined advanced oxidation techniques including sonication, heterogeneous Fenton reaction and photo oxidation over this catalyst to understand the effect of each process on degradation of BPA. It was seen, the role of sonication was very important in hybrid sono-photo-Fenton process due to the pyrolysis and sonoluminescence effects caused by ultrasonic irradiation. The prepared LaFeO 3 perovskite catalyst was a good sonocatalyst rather than a photocatalyst. Sonication was not only the effective process to degrade BPA but also it was the cost effective process in terms of energy consumption. The studies show that the energy consumption is lower in the sono-Fenton process than those in the photo-Fenton and sono-photo- Fenton processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  17. Density functional study on redox energetics of LaMO{sub 3−δ} (M=Sc–Cu) perovskite-type oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pishahang, Mehdi, E-mail: Mehdi.Pishahang@sintef.no; Erik Mohn, Chris; Stølen, Svein

    2016-01-15

    This study evaluates the redox energetics of LaMO{sub 3−δ} (M=Sc–Cu) perovskite-type oxides via generalized gradient approximation (GGA) to DFT. Two different approaches to redox energetics of oxygen deficient perovskites of strongly non-stoichiometric (δ=0.5) and dilute defect limits (δ→0) are studied. In the first approach the enthalpies of oxidation are calculated using the stoichiometric end-compounds of LaMO{sub 3} and LaMO{sub 2.5}. The most common structures for the reduced lanthanides and strontides similar to the ones experimentally reported for SrMnO{sub 2.5}, SrFeO{sub 2.5}, and LaNiO{sub 2.5} are considered. The second approach to the oxidation enthalpies termed (δ→0) follow the trend observed experimentally.more » This approach represents the experimental conditions of the measured oxygen enthalpies, and is hampered less by the artificial features due to spurious self-interaction errors in GGA.« less

  18. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO 3 Perovskites

    DOE PAGES

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; ...

    2016-02-11

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO 3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting ofmore » the e g orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less

  19. Nature of the octahedral tilting phase transitions in perovskites: A case study of CaMnO3

    NASA Astrophysics Data System (ADS)

    Klarbring, Johan; Simak, Sergei I.

    2018-01-01

    The temperature-induced antiferrodistortive (AFD) structural phase transitions in CaMnO3, a typical perovskite oxide, are studied using first-principles density functional theory calculations. These transitions are caused by tilting of the MnO6 octahedra that are related to unstable phonon modes in the high-symmetry cubic perovskite phase. Transitions due to octahedral tilting in perovskites normally are believed to fit into the standard soft-mode picture of displacive phase transitions. We calculate phonon-dispersion relations and potential-energy landscapes as functions of the unstable phonon modes and argue based on the results that the phase transitions are better described as being of order-disorder type. This means that the cubic phase emerges as a dynamical average when the system hops between local minima on the potential-energy surface. We then perform ab initio molecular dynamics simulations and find explicit evidence of the order-disorder dynamics in the system. Our conclusions are expected to be valid for other perovskite oxides, and we finally suggest how to predict the nature (displacive or order-disorder) of the AFD phase transitions in any perovskite system.

  20. Cobalt-Doped Perovskite-Type Oxide LaMnO3 as Bifunctional Oxygen Catalysts for Hybrid Lithium-Oxygen Batteries.

    PubMed

    Liu, Xiao; Gong, Hao; Wang, Tao; Guo, Hu; Song, Li; Xia, Wei; Gao, Bin; Jiang, Zhongyi; Feng, Linfei; He, Jianping

    2018-03-02

    Perovskite-type oxides based on rare-earth metals containing lanthanum manganate are promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. Perovskite-type LaMnO 3 shows excellent ORR performance, but poor OER activity. To improve the OER performance of LaMnO 3 , the element cobalt is doped into perovskite-type LaMnO 3 through a sol-gel method followed by a calcination process. To assess electrocatalytic activities for the ORR and OER, a series of LaMn 1-x Co x O 3 (x=0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) perovskite oxides were synthesized. The results indicate that the amount of doped cobalt has a significant effect on the catalytic performance of LaMn 1-x Co x O 3 . If x=0.3, LaMn 0.7 Co 0.3 O 3 not only shows a tolerable electrocatalytic activity for the ORR, but also exhibits a great improvement (>200 mV) on the catalytic activity for the OER; this indicates that the doping of cobalt is an effective approach to improve the OER performance of LaMnO 3 . Furthermore, the results demonstrate that LaMn 0.7 Co 0.3 O 3 is a promising cost-effective bifunctional catalyst with high performance in the ORR and OER for application in hybrid Li-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New Rhenium-Doped SrCo1−xRexO3−δ Perovskites Performing as Cathodes in Solid Oxide Fuel Cells

    PubMed Central

    Troncoso, Loreto; Gardey, María Celeste; Fernández-Díaz, María Teresa; Alonso, José Antonio

    2016-01-01

    In the aim to stabilize novel three-dimensional perovskite oxides based upon SrCoO3−δ, we have designed and prepared SrCo1−xRexO3−δ phases (x = 0.05 and 0.10), successfully avoiding the competitive hexagonal 2H polytypes. Their performance as cathode materials in intermediate-temperature solid oxide fuel cells (IT-SOFC) has been investigated. The characterization of these oxides included X-ray (XRD) and in situ temperature-dependent neutron powder diffraction (NPD) experiments for x = 0.10. At room temperature, SrCo1−xRexO3−δ perovskites are defined in the P4/mmm space group, which corresponds to a subtle tetragonal perovskite superstructure with unit-cell parameters a = b ≈ ao, c = 2ao (ao = 3.861 and 3.868 Å, for x = 0.05 and 0.10, respectively). The crystal structure evolves above 380 °C to a simple cubic perovskite unit cell, as observed from in-situ NPD data. The electrical conductivity gave maximum values of 43.5 S·cm−1 and 51.6 S·cm−1 for x = 0.05 and x = 0.10, respectively, at 850 °C. The area specific resistance (ASR) polarization resistance determined in symmetrical cells is as low as 0.087 Ω·cm2 and 0.065 Ω·cm2 for x = 0.05 and x = 0.10, respectively, at 850 °C. In single test cells these materials generated a maximum power of around 0.6 W/cm2 at 850 °C with pure H2 as a fuel, in an electrolyte-supported configuration with La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) as the electrolyte. Therefore, we propose the SrCo1−xRexO3−δ (x = 0.10 and 0.05) perovskite oxides as promising candidates for cathodes in IT-SOFC. PMID:28773844

  2. The controlled growth of perovskite thin films: Opportunities, challenges, and synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlom, D.G.; Theis, C.D.; Hawley, M.E.

    1997-10-01

    The broad spectrum of electronic and optical properties exhibited by perovskites offers tremendous opportunities for microelectronic devices, especially when a combination of properties in a single device is desired. Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the monolayer-level; its use for the integration of perovskites with similar nanoscale customization appears promising. Composition control and oxidation are often significant challenges to the growth of perovskites by MBE, but we show that these can be met through the use of purified ozone as an oxidant and real-time atomic absorption composition control. The opportunities, challenges, andmore » synthesis of oxide heterostructures by reactive MBE are described, with examples taken from the growth of oxide superconductors and oxide ferroelectrics.« less

  3. Novel catalytic properties of quadruple perovskites

    PubMed Central

    Yamada, Ikuya

    2017-01-01

    ABSTRACT Quadruple perovskite oxides AA′3 B 4O12 demonstrate a rich variety of structural and electronic properties. A large number of constituent elements for A/A′/B-site cations can be introduced using the ultra-high-pressure synthesis method. Development of novel functional materials consisting of earth-abundant elements plays a crucial role in current materials science. In this paper, functional properties, especially oxygen reaction catalysis, for quadruple perovskite oxides CaCu3Fe4O12 and AMn7O12 (A = Ca, La) composed of earth-abundant elements are reviewed. PMID:28970864

  4. Chalcogenide Perovskites for Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Perera, Samanthe

    Methylammonium Lead halide perovskites have recently emerged as a promising candidate for realizing high efficient low cost photovoltaic modules. Charge transport properties of the solution processed halide perovskites are comparable to some of the existing absorbers used in the current PV industry which require sophisticated processing techniques. Due to this simple processing required to achieve high efficiencies, halide perovskites have become an active field of research. As a result, perovskite solar cells are rapidly reaching towards theoretical efficiency limit of close to 30%. It's believed that ionicity inherent to perovskite materials is one of the contributing factors for the excellent charge transport properties of perovskites. Despite the growing interest for solar energy harvesting purposes, these halide perovskites have serious limitations such as toxicity and instability that need to be addressed in order to commercialize the solar cells incorporating them. This dissertation focuses on a new class of ionic semiconductors, chalcogenide perovskites for solar energy harvesting purposes. Coming from the family perovskites they are expected to have same excellent charge transport properties inherent to perovskites due to the ionicity. Inspired by few theoretical studies on chalcogenide perovskites, BaZrS3 and its Ti alloys were synthesized by sulfurizing the oxide counterpart. Structural characterizations have confirmed the predicted distorted perovskite phase. Optical characterizations have verified the direct band gap suitable for thin film single junction solar cells. Anion alloying was demonstrated by synthesizing oxysulfides with widely tunable band gap suitable for applications such as solid state lighting and sensing.

  5. Studies of magnetism in rhenium and manganese based perovskite oxides

    NASA Astrophysics Data System (ADS)

    Wiebe, Christopher Ryan

    The bulk of this thesis consists of studies of geometric frustration in S = ½ FCC perovskites based upon the chemical formula A2BReO 6. The magnetism of these materials is expected to exhibit geometric frustration, a situation in which the ideal spin arrangements cannot be achieved for antiferromagnetic interactions between adjacent spins. It is proposed that subtle quantum effects are driving these systems to unique ground states in the absence of chemical disorder. Both compounds Sr2CaReO 6 and Sr2MgReO6 exhibit spin glass behaviour at low temperatures (TG ˜ 14 K and TG ˜ 50 K respectively), in which the magnetic moments freeze out in random orientations instead of an ordered array. This work shows that these materials possess several unconventional properties, which suggest that interesting spin dynamics may be present. Other perovskite and perovskite-related materials studied in this thesis include the magnetoresistive CaMnO3-delta and the "pillared" material La5Re3MnO16. Neutron diffraction studies have shown that both CaMnO2.94 and CaMnO2.89 order at TN ˜ 125 K, but possess unique yet related magnetic structures. CaMnO2.94 orders into a simple G-type magnetic structure, as observed in the compound CaMnO3. The slightly more doped sample CaMnO2.89, on the other hand, orders into a magnetic structure related to the G-type, and involves a Mn3+/Mn 4+ charge ordering over every four lattice spacings. The new material La5Re3MnO16 consists of layers of corner shared ReO6 and MnO6 octahedra that are separated by layers of Re2O10 dimer units. Metal-metal bonding involving Re atoms have been postulated for these dimers which separate the Re/Mn layers by approximately 10 A. The magnetic behaviour exhibited by this new class of materials is rich and complex. Despite the large distances separating the perovskite layers, the Re and Mn magnetic moments order into a ferrimagnetic Q = (0, 0, ½) structure below a relatively high T N of 161 K. There may be an additional

  6. Cooperative Couplings between Octahedral Rotations and Ferroelectricity in Perovskites and Related Materials

    NASA Astrophysics Data System (ADS)

    Gu, Teng; Scarbrough, Timothy; Yang, Yurong; Íñiguez, Jorge; Bellaiche, L.; Xiang, H. J.

    2018-05-01

    The structure of AB O 3 perovskites is dominated by two types of unstable modes, namely, the oxygen octahedral rotation (AFD) and ferroelectric (FE) mode. It is generally believed that such AFD and FE modes tend to compete and suppress each other. Here we use first-principles methods to show that a dual nature of the FE-AFD coupling, which turns from competitive to cooperative as the AFD mode strengthens, occurs in numerous perovskite oxides. We provide a unified model of such a dual interaction by introducing novel high-order coupling terms and explain the atomistic origin of the resulting new form of ferroelectricity in terms of universal steric mechanisms. We also predict that such a novel form of ferroelectricity leads to atypical behaviors, such as an enhancement of all the three Cartesian components of the electric polarization under hydrostatic pressure and compressive epitaxial strain.

  7. Conducting tin halides with a layered organic-based perovskite structure

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.

    1994-06-01

    THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.

  8. Independence of surface morphology and reconstruction during the thermal preparation of perovskite oxide surfaces

    NASA Astrophysics Data System (ADS)

    Jäger, Maren; Teker, Ali; Mannhart, Jochen; Braun, Wolfgang

    2018-03-01

    Using a CO2 laser to directly heat the crystals from the back side, SrTiO3 substrates may be thermally prepared in situ for epitaxy without the need for ex-situ etching and annealing. We find that the formation of large terraces with straight steps at 900-1100 °C is independent of the formation of the ideal surface reconstruction for epitaxy, which requires temperatures in excess of 1200 °C to complete. The process may be universal, at least for perovskite oxide surfaces, as it also works, at different temperatures, for LaAlO3 and NdGaO3, two other widely used oxide substrate materials.

  9. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    PubMed

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  10. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.

    PubMed

    Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua

    2017-11-08

    As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of <150 °C by solution processing. The power conversion efficiency (PCE) of the device fabricated by the novel annealing method increased from 15.5 to 17.5%. To enhance the thermal stability of CH 3 NH 3 PbI 3 (MAPbI 3 ) on the ZnO surface, a thin layer of small molecule [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) was inserted between the ZnO layer and perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.

  11. Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains.

    PubMed

    Hou, Xian; Huang, Sumei; Ou-Yang, Wei; Pan, Likun; Sun, Zhuo; Chen, Xiaohong

    2017-10-11

    A high-quality perovskite film with interconnected perovskite grains was obtained by incorporating terephthalic acid (TPA) additive into the perovskite precursor solution. The presence of TPA changed the crystallization kinetics of the perovskite film and promoted lateral growth of grains in the vicinity of crystal boundaries. As a result, sheet-shaped perovskite was formed and covered onto the bottom grains, which made some adjacent grains partly merge together to form grains-interconnected perovskite film. Perovskite solar cells (PSCs) with TPA additive exhibited a power conversion efficiency (PCE) of 18.51% with less hysteresis, which is obviously higher than that of pristine cells (15.53%). PSCs without and with TPA additive retain 18 and 51% of the initial PCE value, respectively, aging for 35 days exposed to relative humidity 30% in air without encapsulation. Furthermore, MAPbI 3 film with TPA additive shows superior thermal stability to the pristine one under 100 °C baking. The results indicate that the presence of TPA in perovskite film can greatly improve the performance of PSCs as well as their moisture resistance and thermal stability.

  12. High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Benjia; Miller, Elisa M.; Christians, Jeffrey A.

    For halide perovskite solar cells (PSCs) to fulfill their vast potential for combining low-cost, high efficiency, and high throughput production they must be scaled using a truly transformative method, such as roll-to-roll processing. Bringing this reality closer to fruition, the present work demonstrates flexible perovskite solar cells with 18.1% power conversion efficiency on flexible Willow Glass substrates. Here, we highlight the importance of the transparent conductive oxide (TCO) layers on device performance by studying various TCOs. And while tin-doped indium oxide (ITO) and indium zinc oxide (IZO) based PSC devices demonstrate high photovoltaic performances, aluminum-doped zinc oxide (AZO) based devicesmore » underperformed in all device parameters. Analysis of X-ray photoemission spectroscopy data shows that the stoichiometry of the perovskite film surface changes dramatically when it is fabricated on AZO, demonstrating the importance of the substrate in perovskite film formation.« less

  13. High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO

    DOE PAGES

    Dou, Benjia; Miller, Elisa M.; Christians, Jeffrey A.; ...

    2017-09-27

    For halide perovskite solar cells (PSCs) to fulfill their vast potential for combining low-cost, high efficiency, and high throughput production they must be scaled using a truly transformative method, such as roll-to-roll processing. Bringing this reality closer to fruition, the present work demonstrates flexible perovskite solar cells with 18.1% power conversion efficiency on flexible Willow Glass substrates. Here, we highlight the importance of the transparent conductive oxide (TCO) layers on device performance by studying various TCOs. And while tin-doped indium oxide (ITO) and indium zinc oxide (IZO) based PSC devices demonstrate high photovoltaic performances, aluminum-doped zinc oxide (AZO) based devicesmore » underperformed in all device parameters. Analysis of X-ray photoemission spectroscopy data shows that the stoichiometry of the perovskite film surface changes dramatically when it is fabricated on AZO, demonstrating the importance of the substrate in perovskite film formation.« less

  14. Recent patents on perovskite ferroelectric nanostructures.

    PubMed

    Zhu, Xinhua

    2009-01-01

    Ferroelectric oxide materials with a perovskite structure have promising applications in electronic devices such as random access memories, sensors, actuators, infrared detectors, and so on. Recent advances in science and technology of ferroelectrics have resulted in the feature sizes of ferroelectric-based electronic devices entering into nanoscale dimensions. At nanoscale perovskite ferroelectric materials exhibit a pronounced size effect manifesting itself in a significant deviation of the properties of low-dimensional structures from the bulk and film counterparts. One-dimensional perovskite ferroelectric nanotube/nanowire systems, offer fundamental scientific opportunities for investigating the intrinsic size effects in ferroelectrics. In the past several years, much progress has been made both in fabrication and physical property testing of perovskite ferroelectric nanostructures. In the first part of this paper, the recent patents and literatures for fabricating ferroelectric nanowires, nanorods, nanotubes, and nanorings with promising features, are reviewed. The second part deals with the recent advances on the physical property testing of perovskite ferroelectric nanostructures. The third part summarizes the recently patents and literatures about the microstructural characterizations of perovskite ferroelectric nanostructures, to improve their crystalline quality, morphology and uniformity. Finally, we conclude this review with personal perspectives towards the potential future developments of perovskite ferroelectric nanostructures.

  15. Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Lin, Xuanhuai; Hou, Xian; Pan, Likun; Huang, Sumei; Chen, Xiaohong

    2017-10-01

    As a hole transport layer, PEDOT:PSS usually limits the stability and efficiency of perovskite solar cells (PSCs) due to its hygroscopic nature and inability to block electrons. Here, a graphene-oxide (GO)-modified PEDOT:PSS hole transport layer was fabricated by spin-coating a GO solution onto the PEDOT:PSS surface. PSCs fabricated on a GO-modified PEDOT:PSS layer exhibited a power conversion efficiency (PCE) of 15.34%, which is higher than 11.90% of PSCs with the PEDOT:PSS layer. Furthermore, the stability of the PSCs was significantly improved, with the PCE remaining at 83.5% of the initial PCE values after aging for 39 days in air. The hygroscopic PSS material at the PEDOT:PSS surface was partly removed during spin-coating with the GO solution, which improves the moisture resistance and decreases the contact barrier between the hole transport layer and perovskite layer. The scattered distribution of the GO at the PEDOT:PSS surface exhibits superior wettability, which helps to form a high-quality perovskite layer with better crystallinity and fewer pin holes. Furthermore, the hole extraction selectivity of the GO further inhibits the carrier recombination at the interface between the perovskite and PEDOT:PSS layers. Therefore, the cooperative interactions of these factors greatly improve the light absorption of the perovskite layer, the carrier transport and collection abilities of the PSCs, and especially the stability of the cells.

  16. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites.

    PubMed

    Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae

    2017-06-28

    In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn 2 O 5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution.

  17. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites

    PubMed Central

    Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae

    2017-01-01

    In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn2O5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution. PMID:28656965

  18. Study of the B-site ion behaviour in the multiferroic perovskite bismuth iron chromium oxide

    NASA Astrophysics Data System (ADS)

    McBride, Bethany R.; Lieschke, Jonathon; Berlie, Adam; Cortie, David L.; Playford, Helen Y.; Lu, Teng; Narayanan, Narendirakumar; Withers, Ray L.; Yu, Dehong; Liu, Yun

    2018-04-01

    A simple, near-ambient pressure solid-state method was developed to nominally synthesize BiFe0.5Cr0.5O3. The procedure allowed the gram-scale production of multiferroic samples with appreciable purity and large amounts of Cr incorporation that were suitable for systematic structural investigation by neutron, X-ray, and electron diffraction in tandem with physical characterization of magnetic and ferroelectric properties. The rhombohedrally distorted perovskite phase was assigned to the space group R3c by way of X-ray and neutron powder diffraction analysis. Through a combination of magnetometry and muon spin relaxation, it is evident that there is magnetic ordering in the BFCO phase consistent with G-type antiferromagnetism and a TN ˜ 400 K. There is no clear evidence for chemical ordering of Fe and Cr in the B-site of the perovskite structure and this result is rationalized by density functional theory and bond valence simulations that show a lowered energy associated with a B-site disordered structure. We believe that our contribution of a new, low-complexity method for the synthesis of BFO type samples, and dialogue about realising certain types of ordering in oxide perovskite systems, will assist in the further development of multiferroics for next-generation devices.

  19. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    PubMed Central

    Perry, Nicola H.; Ishihara, Tatsumi

    2016-01-01

    Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978

  20. Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures

    PubMed Central

    2014-01-01

    Perovskite oxide manganites with a general formula of R1-x AxMnO3 (where R is a trivalent rare-earth element such as La, Pr, Sm, and A is a divalent alkaline-earth element such as Ca, Sr, and Ba) have received much attention due to their unusual electron-transport and magnetic properties, which are indispensable for applications in microelectronic, magnetic, and spintronic devices. Recent advances in the science and technology have resulted in the feature sizes of microelectronic devices based on perovskite manganite oxides down-scaling into nanoscale dimensions. At the nanoscale, low-dimensional perovskite manganite oxide nanostructures display novel physical properties that are different from their bulk and film counterparts. Recently, there is strong experimental evidence to indicate that the low-dimensional perovskite manganite oxide nanostructures are electronically inhomogeneous, consisting of different spatial regions with different electronic orders, a phenomenon that is named as electronic phase separation (EPS). As the geometry sizes of the low-dimensional manganite nanostructures are reduced to the characteristic EPS length scale (typically several tens of nanometers in manganites), the EPS is expected to be strongly modulated, leading to quite dramatic changes in functionality and more emergent phenomena. Therefore, reduced dimensionality opens a door to the new functionalities in perovskite manganite oxides and offers a way to gain new insight into the nature of EPS. During the past few years, much progress has been made in understanding the physical nature of the EPS in low-dimensional perovskite manganite nanostructures both from experimentalists and theorists, which have a profound impact on the oxide nanoelectronics. This nanoreview covers the research progresses of the EPS in low-dimensional perovskite manganite nanostructures such as nanoparticles, nanowires/nanotubes, and nanostructured films and/or patterns. The possible physical origins of the

  1. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures.

    PubMed

    Zhang, Jing; Zhong, Zhicheng; Guan, Xiangxiang; Shen, Xi; Zhang, Jine; Han, Furong; Zhang, Hui; Zhang, Hongrui; Yan, Xi; Zhang, Qinghua; Gu, Lin; Hu, Fengxia; Yu, Richeng; Shen, Baogen; Sun, Jirong

    2018-05-15

    Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La 2/3 Sr 1/3 MnO 3 and brownmillerite LaCoO 2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO 6 octahedra and CoO 4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand.

  2. Mössbauer study of iron-based perovskite-type materials as potential catalysts for ethyl acetate oxidation

    NASA Astrophysics Data System (ADS)

    Paneva, D.; Dimitrov, M.; Velinov, N.; Kolev, H.; Kozhukharov, V.; Tsoncheva, T.; Mitov, I.

    2010-03-01

    La-Sr-Fe perovskite-type oxides were prepared by the nitrate-citrate method. The basic object of this study is layered Ruddlesden-Popper phase LaSr3Fe3O10. The phase composition and structural properties of the obtained materials are investigated by Mössbauer spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and temperature programmed reduction (TPR). The preliminary catalytic tests show a high potential of these materials for volatile organic compounds (VOCs) elimination as they possess high conversion ability and selectivity to total oxidation of ethyl acetate. Catalytic performance of LaSr3Fe3O10 is depended on the stability of structure and Fe4+-oxidation state.

  3. Voltage-induced Metal-Insulator Transitions in Perovskite Oxide Thin Films Doped with Strongly Correlelated Electrons

    NASA Astrophysics Data System (ADS)

    Wang, Yudi; Gil Kim, Soo; Chen, I.-Wei

    2007-03-01

    We have observed a reversible metal-insulator transition in perovskite oxide thin films that can be controlled by charge trapping pumped by a bipolar voltage bias. In the as-fabricated state, the thin film is metallic with a very low resistance comparable to that of the metallic bottom electrode, showing decreasing resistance with decreasing temperature. This metallic state switches to a high-resistance state after applying a voltage bias: such state is non-ohmic showing a negative temperature dependence of resistance. Switching at essentially the same voltage bias was observed down to 2K. The metal-insulator transition is attributed to charge trapping that disorders the energy of correlated electron states in the conduction band. By increasing the amount of charge trapped, which increases the disorder relative to the band width, increasingly more insulating states with a stronger temperature dependence of resistivity are accessed. This metal-insulator transition provides a platform to engineer new nonvolatile memory that does not require heat (as in phase transition) or dielectric breakdown (as in most other oxide resistance devices).

  4. Novel Combination of Efficient Perovskite Solar Cells with Low Temperature Processed Compact TiO2 Layer via Anodic Oxidation.

    PubMed

    Du, Yangyang; Cai, Hongkun; Wen, Hongbin; Wu, Yuxiang; Huang, Like; Ni, Jian; Li, Juan; Zhang, Jianjun

    2016-05-25

    In this work, a facile and low temperature processed anodic oxidation approach is proposed for fabricating compact and homogeneous titanium dioxide film (AO-TiO2). In order to realize morphology and thickness control of AO-TiO2, the theory concerning anodic oxidation (AO) is unveiled and the influence of relevant parameters during the process of AO such as electrolyte ingredient and oxidation voltage on AO-TiO2 formation is observed as well. Meanwhile, we demonstrate that the planar perovskite solar cells (p-PSCs) fabricated in ambient air and utilizing optimized AO-TiO2 as electron transport layer (ETL) can deliver repeatable power conversion efficiency (PCE) over 13%, which possess superior open-circuit voltage (Voc) and higher fill factor (FF) compared to its counterpart utilizing conventional high temperature processed compact TiO2 (c-TiO2) as ETL. Through a further comparative study, it is indicated that the improvement of device performance should be attributed to more effective electron collection from perovskite layer to AO-TiO2 and the decrease of device series resistance. Furthermore, hysteresis effect about current density-voltage (J-V) curves in TiO2-based p-PSCs is also unveiled.

  5. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a

  6. Iron-based perovskite cathodes for solid oxide fuel cells

    DOEpatents

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  7. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    PubMed

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Strain coupling of oxygen non-stoichiometry in perovskite thin films

    NASA Astrophysics Data System (ADS)

    Herklotz, Andreas; Lee, Dongkyu; Guo, Er-Jia; Meyer, Tricia L.; Petrie, Jonathan R.; Lee, Ho Nyung

    2017-12-01

    The effects of strain and oxygen vacancies on perovskite thin films have been studied in great detail over the past decades and have been treated separately from each other. While epitaxial strain has been realized as a tuning knob to tailor the functional properties of correlated oxides, oxygen vacancies are usually regarded as undesirable and detrimental. In transition metal oxides, oxygen defects strongly modify the properties and functionalities via changes in oxidation states of the transition metals. However, such coupling is not well understood in epitaxial films, but rather deemed as cumbersome or experimental artifact. Only recently it has been recognized that lattice strain and oxygen non-stoichiometry are strongly correlated in a vast number of perovskite systems and that this coupling can be beneficial for information and energy technologies. Recent experimental and theoretical studies have focused on understanding the correlated phenomena between strain and oxygen vacancies for a wide range of perovskite systems. These correlations not only include the direct relationship between elastic strain and the formation energy of oxygen vacancies, but also comprise highly complex interactions such as strain-induced phase transitions due to oxygen vacancy ordering. Therefore, we aim in this review to give a comprehensive overview on the coupling between strain and oxygen vacancies in perovskite oxides and point out the potential applications of the emergent functionalities strongly coupled to oxygen vacancies.

  9. Highly efficient light management for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  10. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  11. High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films.

    PubMed

    Longo, Giulia; La-Placa, Maria-Grazia; Sessolo, Michele; Bolink, Henk J

    2017-10-09

    One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium lead bromide (MAPbBr 3 ) and 9,9spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1), it is possible to achieve photoluminescent quantum yields (PLQYs) as high as 85 %. This is attributed to the dual functions of SPPO1 that limit the grain growth while passivating the perovskite surface. The electroluminescence of these materials was investigated by fabricating multilayer LEDs, where charge injection and transport was found to be severely hindered for the perovskite/SPPO1 material. This was alleviated by partially substituting SPPO1 with a hole-transporting material, 1,3-bis(N-carbazolyl)benzene (mCP), leading to bright electroluminescence. The potential of combining perovskite and organic semiconductors to prepare materials with improved properties opens new avenues for the preparation of simple lightemitting devices using perovskites as the emitter. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermoelectric Properties of the Perovskite-Type Oxide SrTi1-xNbxO3 Synthesized by Solid-State Reaction Method

    NASA Astrophysics Data System (ADS)

    Khan, Tamal Tahsin; Ur, Soon-Chul

    2018-05-01

    The perovskite-type oxide materials SrTi1-xNbxO3 (X = .02, 0.03, 0.04, 0.05 and 0.06) were synthesized by the conventional solid-state reaction method and the thermoelectric properties in terms of Nb doping at the B-site in the oxides were investigated in this study. The formation of single phase cubic perovskite structure was confirmed by the powder X-ray diffraction analysis. Negative conduction is shown in this materials system. The absolute value of Seebeck coefficient increased with increasing temperature over the measured temperature. The electrical conductivity decreased monotonically with increasing temperature, showing degenerating conduction behavior. The thermal conductivity, k, generally decreased with increasing temperature. The power factor increased with increasing Nb-doping level up to 5.0 mol% and hence the dimensionless figure of merit ZT, increased up to 5.0 mol%. The maximum ZT value was observed for SrTi0.95Nb0.05O3 at 873 K.

  13. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells.

    PubMed

    Lan, Rong; Cowin, Peter I; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-22

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3-δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3-δ (SFCN) exhibits a conductivity of 63 Scm(-1)and 60 Scm(-1) at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3-δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3-δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3-δ as the cathode achieved a power density of 423 mWcm(-2) at 700 °C indicating that SFCN is a promising anode for SOFCs.

  14. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3-δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3-δ (SFCN) exhibits a conductivity of 63 Scm-1and 60 Scm-1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3-δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3-δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3-δ as the cathode achieved a power density of 423 mWcm-2 at 700 °C indicating that SFCN is a promising anode for SOFCs.

  15. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    PubMed Central

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-01-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3−δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3−δ (SFCN) exhibits a conductivity of 63 Scm−1and 60 Scm−1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3−δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3−δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3−δ as the cathode achieved a power density of 423 mWcm−2 at 700 °C indicating that SFCN is a promising anode for SOFCs. PMID:27545200

  16. Electronic conduction in La-based perovskite-type oxides

    PubMed Central

    Ohbayashi, Kazushige; Koumoto, Kunihito

    2015-01-01

    A systematic study of La-based perovskite-type oxides from the viewpoint of their electronic conduction properties was performed. LaCo0.5Ni0.5O3±δ was found to be a promising candidate as a replacement for standard metals used in oxide electrodes and wiring that are operated at temperatures up to 1173 K in air because of its high electrical conductivity and stability at high temperatures. LaCo0.5Ni0.5O3±δ exhibits a high conductivity of 1.9 × 103 S cm−1 at room temperature (R.T.) because of a high carrier concentration n of 2.2 × 1022 cm−3 and a small effective mass m∗ of 0.10 me. Notably, LaCo0.5Ni0.5O3±δ exhibits this high electrical conductivity from R.T. to 1173 K, and little change in the oxygen content occurs under these conditions. LaCo0.5Ni0.5O3±δ is the most suitable for the fabrication of oxide electrodes and wiring, though La1−xSrxCoO3±δ and La1−xSrxMnO3±δ also exhibit high electronic conductivity at R.T., with maximum electrical conductivities of 4.4 × 103 S cm−1 for La0.5Sr0.5CoO3±δ and 1.5 × 103 S cm−1 for La0.6Sr0.4MnO3±δ because oxygen release occurs in La1−xSrxCoO3±δ as elevating temperature and the electrical conductivity of La0.6Sr0.4MnO3±δ slightly decreases at temperatures above 400 K. PMID:27877778

  17. Confining metal-halide perovskites in nanoporous thin films

    PubMed Central

    Demchyshyn, Stepan; Roemer, Janina Melanie; Groiß, Heiko; Heilbrunner, Herwig; Ulbricht, Christoph; Apaydin, Dogukan; Böhm, Anton; Rütt, Uta; Bertram, Florian; Hesser, Günter; Scharber, Markus Clark; Sariciftci, Niyazi Serdar; Nickel, Bert; Bauer, Siegfried; Głowacki, Eric Daniel; Kaltenbrunner, Martin

    2017-01-01

    Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices. PMID:28798959

  18. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  19. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    PubMed

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  20. Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces

    DOE PAGES

    Yajima, Takeaki; Hikita, Yasuyuki; Minohara, Makoto; ...

    2015-04-07

    The concept ‘the interface is the device' is embodied in a wide variety of interfacial electronic phenomena and associated applications in oxide materials, ranging from catalysts and clean energy systems to emerging multifunctional devices. Many device properties are defined by the band alignment, which is often influenced by interface dipoles. On the other hand, the ability to purposefully create and control interface dipoles is a relatively unexplored degree of freedom for perovskite oxides, which should be particularly effective for such ionic materials. Here we demonstrate tuning the band alignment in perovskite metal-semiconductor heterojunctions over a broad range of 1.7 eV.more » This is achieved by the insertion of positive or negative charges at the interface, and the resultant dipole formed by the induced screening charge. This approach can be broadly used in applications where decoupling the band alignment from the constituent work functions and electron affinities can enhance device functionality.« less

  1. Pressure Induced Iron Spin Crossover in MgGeO3 Perovskite and Post-perovskite

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, R. M.; Shukla, G.; Topsakal, M.

    2014-12-01

    MgGeO3-perovskite is known to be a low-pressure analog of MgSiO3-perovskite in many respects, but especially in regard to the post-perovskite transition. As such, investigation of spin state changes in Fe-bearing MgGeO3 might help to clarify some aspects of this type of state change in Fe-bearing MgSiO3. Using DFT+U calculations, we have investigated pressure induced state changes in Fe-bearing MgGeO3 perovskite and post-perovskite. Owing to the relatively larger atomic size of germanium compared to silicon, germanate phases have larger unit cell volume and interatomic distances than equivalent silicate phases at same pressures. As a result, all pressure induced state changes in iron occur at higher pressures in germanate phases than in the silicate ones, be it a spin state change or position change of (ferrous) iron in the perovskite cage. The effect of iron in the post-perovskite transition is also investigated.

  2. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  3. Phase transitions of BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} perovskite-type oxides under reducing environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, G.C.Mondragón, E-mail: guillermo.mondragon-rodriguez@dlr.de; Gönüllü, Y.; Ferri, Davide

    2015-01-15

    Highlights: • Solid solution formation BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} with a new wet chemical synthesis method. • Rhodium in the BaTiO{sub 3} perovskite stabilizes the hexagonal structure. • New Rh segregation mechanism for hexagonal BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} upon reduction. - Abstract: Perovskite-type oxides of composition BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} were prepared following a new chemical route that avoids the formation of hydroxyl species and precipitation, and allows the homogeneous distribution of Rh in the final mixed metal oxide. The high dispersion of Rh and the formation of the solid solution between Rh and the BaTiO{sub 3} perovskite is confirmedmore » by means of X-ray diffraction (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). The presence of Rh stabilized the hexagonal BaTi{sub 0.9}Rh{sub 0.1}O{sub 3±δ} phase, which decomposes into barium orthotitanate (BaTi{sub 2}O{sub 4}) and metallic Rh° in reducing environment. This phase transition starts already at 700 °C and is only partially completed at 900 °C suggesting that part of the Rh present in the perovskite lattice might not be easily reduced by hydrogen. These aspects and further open questions are discussed.« less

  4. Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Shao, Zongping

    2017-03-01

    Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen-based renewable-energy technologies such as rechargeable metal-air batteries, regenerative fuel cells and water splitting. Perovskite oxides have recently attracted increasing interest and hold great promise as efficient ORR and OER catalysts to replace noble-metal-based catalysts, owing to their high intrinsic catalytic activity, abundant variety, low cost, and rich resources. The introduction of perovskite-carbon interfaces by forming perovskite/carbon composites may bring a synergistic effect between the two phases, thus benefiting the oxygen electrocatalysis. This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media, aiming to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of the perovskites, the multiple roles of carbon, the synthetic method and the synergistic effect. A special emphasis is placed on the origin of the synergistic effect associated with the interfacial interaction between the perovskite and the carbon phases for enhanced ORR/OER performance. Finally, the existing challenges and the future directions for the synthesis and development of more efficient oxygen catalysts based on perovskite/carbon composites are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    PubMed Central

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-01-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm−1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm−2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm−2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode. PMID:26648509

  6. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm-1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm-2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm-2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  7. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells.

    PubMed

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-09

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm(-1) in 5% H2 and peak power densities of 1.72 and 0.54 W cm(-2) using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm(-2). To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  8. Achieving High Efficiency and Eliminating Degradation in Solid Oxide Electrochemical Cells Using High Oxygen-Capacity Perovskite.

    PubMed

    Jun, Areum; Kim, Junyoung; Shin, Jeeyoung; Kim, Guntae

    2016-09-26

    Recently, there have been efforts to use clean and renewable energy because of finite fossil fuels and environmental problems. Owing to the site-specific and weather-dependent characteristics of the renewable energy supply, solid oxide electrolysis cells (SOECs) have received considerable attention to store energy as hydrogen. Conventional SOECs use Ni-YSZ (yttria-stabilized zirconia) and LSM (strontium-doped lanthanum manganites)-YSZ as electrodes. These electrodes, however, suffer from redox-instability and coarsening of the Ni electrode along with delamination of the LSM electrode during steam electrolysis. In this study, we successfully design and fabricate highly efficient SOECs using layered perovskites, PrBaMn2 O5+δ (PBM) and PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+δ (PBSCF50), as both electrodes for the first time. The SOEC with layered perovskites as both-side electrodes shows outstanding performance, reversible cycling, and remarkable stability over 600 hours. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Controlling octahedral rotations in a perovskite via strain doping

    DOE PAGES

    Herklotz, Andreas; Biegalski, Michael D.; Lee, Ho Nyung; ...

    2016-05-24

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film canmore » be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO 3 films coherently grown on SrTiO 3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. Lastly, these results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.« less

  10. Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells.

    PubMed

    Lee, Da-Young; Na, Seok-In; Kim, Seok-Soon

    2016-01-21

    We investigated a graphene oxide (GO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PSS) composite as a promising candidate for the practical application of a 2-D carbonaceous hole transport layer (HTL) to planar heterojunction perovskite solar cells (PeSCs) consisting of a transparent electrode/HTL/perovskite/fullerene/metal electrode. Both the insulating properties of GO and the non-uniform coating of the transparent electrode with GO cause the poor morphology of perovskite induced low power conversion efficiency (PCE) of 6.4%. On the other hand, PeSCs with a GO/PEDOT:PSS composite HTL, exhibited a higher PCE of 9.7% than that of a device fabricated with conventional PSS showing a PCE of 8.2%. The higher performance is attributed to the decreased series resistance (RS) and increased shunt resistance (RSh). The well-matched work-function between GO (4.9 eV) and PSS (5.1 eV) probably results in more efficient charge transport and an overall decrease in RS. The existence of GO with a large bandgap of ∼3.6 eV might induce the effective blocking of electrons, leading to an increase of RSh. Moreover, improvement in the long-term stability under atmospheric conditions was observed.

  11. Comparative Study of Exchange-Correlation Functional and Potential for Evaluating Thermoelectric Transport Properties in d0 Perovskite Oxides

    NASA Astrophysics Data System (ADS)

    Ohkubo, Isao; Mori, Takao

    2017-07-01

    The influence of two different types of exchange-correlation functional/potential, namely, the generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) functional and the modified Becke-Johnson (mBJ) potential, on the thermoelectric transport properties of d0 perovskite oxides (SrTiO3 and KTaO3) was investigated. The reduction of band dispersion induced by the mBJ scheme allows the improved prediction of band gap values by thelocal density approximation (LDA) and GGA, which increases the resolution of the increases in the density of states (DOS), carrier concentration, and effective mass near the conduction band edge. A comparison of the experimental effective mass values of d0 perovskite oxides shows that the effective mass values provided by the mBJ potential are similar to those provided by the GGA-PBE functional. Comparative analysis of the data obtained from Boltzmann theory calculations using the electronic structures determined with the GGA-PBE functional and the mBJ potential shows a difference in the transport coefficients owing to the increases in the DOS, carrier concentration, and effective mass induced by the mBJ scheme.

  12. Topochemical synthesis of cation ordered double perovskite oxynitrides.

    PubMed

    Ceravola, Roberta; Oró-Solé, Judith; Black, Ashley P; Ritter, Clemens; Puente Orench, Inés; Mata, Ignasi; Molins, Elies; Frontera, Carlos; Fuertes, Amparo

    2017-04-19

    Topochemical nitridation in ammonia at moderate temperatures of cation ordered Sr 2 FeWO 6 produces new antiferromagnetic double perovskite oxynitrides Sr 2 FeWO 6-x N x with 0 < x ≤ 1. Nitrogen introduction induces the oxidation of Fe 2+ to Fe 3+ and decreases T N from 38 K (x = 0) to 13 K for Sr 2 FeWO 5 N which represents the first example of a double perovskite oxynitride with both high cationic order and nitrogen content. This synthetic approach can be extended to other cation combinations expanding the possibility of new materials in the large group of double perovskites.

  13. A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity

    NASA Astrophysics Data System (ADS)

    Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey

    2016-09-01

    There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.

  14. A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity.

    PubMed

    Fernández-Posada, Carmen M; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey

    2016-09-28

    There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO 3 -BiCoO 3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO 3 -BiMnO 3 -PbTiO 3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.

  15. Cation Ordering within the Perovskite Block of a Six-layer Ruddlesden-Popper Oxide from Layer-by-layer Growth

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Niu, H. J.; Rosseinsky, M. J.

    2011-03-01

    The (AO)(A BO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3 , butlowtemperaturelayer - by - layerthinfilmmethodsallowthepreparationofmaterialswiththickerperovskiteblocks , exploitinghighsurfacemobilityandlatticematchingwiththesubstrate . Thispresentationdescribesthegrowthofann = 6 memberCaO / (ABO 3)n (ABO 3 : CaMnO 3 , La 0.67 Ca 0.33 MnO 3 orCa 0.85 Sm 0.15 MnO 3) epitaxialsinglecrystalfilmsonthe (001) SrTiO 3 substrates by pulsed laser deposition with the assistance of a reflection high energy electron diffraction (RHEED).

  16. 4d Electronic structure analysis of ruthenium in the perovskite oxides by Ru K- and L-edge XAS.

    PubMed

    Kim, J Y; Hwang, S H; Kim, S J; Demazeau, G; Choy, J H; Shimada, H

    2001-03-01

    The 4d electronic structure of ruthenium in the perovskite oxides, La2MRuIVO6 (M = Zn, Mg, and Li) and Ba2YRuVO6, has been investigated by the Ru K-and L-edge XANES and EXAFS analyses. Such X-ray absorption spectroscopic results clarify that the RuIV (d4) and RuV (d3) ions are stabilized in nearly regular Oh site. Comparing the Ru L-edge XANES spectra of perovskites containing isovalent ruthenium, it has been found that the t2g state is mainly influenced by A site cation, whereas the eg is mainly affected by neighboring B site cation. The experimental EXAFS spectra in the range of R < or = approximately 4.5 A are well reproduced by ab-initio calculation based on crystallographic data, which supports the long-range structure presented by Rietveld refinement.

  17. Raman study of transition-metal oxides with perovskite-like structure

    NASA Astrophysics Data System (ADS)

    Kolev, Nikolay Iliev

    Perovskite-like oxides exhibit a rich variety of properties of fundamental scientific interest and potential application value. The motivation for this work is to contribute to our knowledge of perovskite-like systems and strongly correlated systems in general. The polarized Raman spectra of single crystal and thin film CaCu3Ti4O12, single crystal and thin film CaRuO3, microcrystals of La0.5Ca 0.5MnO3, and ceramic and thin film CaMnO3 have been investigated. In close comparison to results from lattice dynamics calculations most of the Raman lines in the CaCu3Ti4O12, CaRuO3, La0.5Ca0.5MnO3 and CaMnO 3 spectra, have been assigned to definite phonon modes. The validity of the model for twin orientation in the Pnma structure for CaRuO3 and La0.5Ca0.5MnO3 is confirmed. The analysis of the CaMnO3 spectra contributed to the development of a model, based on four basic distortions of the (distorted) perovskite structure. The temperature behavior of the CaCu3Ti4O 12 spectra shows that there is no evidence for structural phase transition in the temperature range 20--600 K, so such a transition cannot be responsible for the sharp drop in the dielectric constant below 100 K. The Raman spectra indirectly support the mechanism of formation of barrier layer capacitances in CaCu3Ti4O12.The observation of additional Raman mode of nominal Ag symmetry is discussed in terms of coexistence of domains of different atomic arrangement, or alternatively of non-stoichiometry (Cu deficiency). In the case of the thin film, the tetragonal distortions could be responsible for the greater separation of the additional Ag line. No anomalies in the temperature behavior of the Raman lines of CaRuO3 is observed, which is an indirect evidence for its lack of long-range magnetic ordering at low temperatures (depending on whether this ordering would be observable by Raman spectroscopy through spin-phonon coupling). In La0.5Ca0.5MnO 3 the appearance of several Raman lines below TN is analyzed in terms of

  18. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Yin, Wei; Pan, Lijia; Yang, Tingbin; Liang, Yongye

    2016-06-25

    Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ) perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed.

  19. Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Ma, Zhibin; Yang, Guang; Wang, Haoning; Long, Hao; Zhao, Hongyang; Qin, Pingli; Fang, Guojia

    2018-03-01

    Tin oxide (SnO2) film with high mobility and good transmittance has been reported as a promising semiconductor material for high performance perovskite solar cells (PSCs). In this study, ultrathin SnO2 film synthesized by radio frequency magnetron sputtering (RFMS) method at room temperature was employed as hole blocking layer for planar PSCs. The room-temperature sputtered SnO2 film not only shows favourable energy band structure but also improves the surface topography of fluorine doped SnO2 (FTO) substrate and perovskite (CH3NH3PbI3) layer. Thus, this SnO2 hole blocking layer can efficiently promote electron transport and suppress carrier recombination. Furthermore, the best efficiency of 13.68% was obtained for planar PSC with SnO2 hole blocking layer prepared at room temperature. This research highlights the room-temperature preparation process of hole blocking layer in PSC and has a certain reference significance for the usage of flexible and low-cost substrates.

  20. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, In Soo; Martinson, Alex B. F.

    2015-09-14

    We utilized a novel non-hydrolytic (nh) surface chemistry to allow the direct synthesis of pinhole-fee oxide overlayers directly on conventional hybrid perovskite halide absorbers without damage. By utilizing water- free ALD Al 2O 3 passivation, a minimum of ten-fold increase in stability against relative humidity (RH) 85% was achieved along with a dramatically improved thermal resistance (up to 250 °C). We extend this approach to synthesize nh-TiO 2 directly on hybrid perovskites to establish its potential in inverted photovoltaic devices as a dual stabilizing and electron accepting layer, as evidenced by photoluminescence (PL) quenching.

  1. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  2. Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture.

    PubMed

    Xu, Xiaobao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Liu, Zonghao; Chang, Wei-Hsuan; Sun, Pengyu; Chen, Huajun; De Marco, Nicholas; Wang, Mingkui; Yang, Yang

    2015-10-14

    In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

  3. The effect of rare earth ions on structural, morphological and thermoelectric properties of nanostructured tin oxide based perovskite materials

    NASA Astrophysics Data System (ADS)

    Rajasekaran, P.; Alagar Nedunchezhian, A. S.; Yalini Devi, N.; Sidharth, D.; Arivanandhan, M.; Jayavel, R.

    2017-11-01

    Metal oxide based materials are promising for thermoelectric applications especially at elevated temperature due to their high thermal stability. Recently, perovskite based oxide materials have been focused as a novel thermoelectric material due to their tunable electrical conductivity. Thermoelectric properties of BaSnO3 has been extensively investigated. However, the effect of various rare earth doping on the thermoelectric properties of BaSnO3 is not studied in detail. In the present work, Ba1-x RE x SnO3 (RE  =  La and Sr) materials with x  =  0.05 were prepared by polymerization complex (PC) method in order to study the effect of RE incorporation on the structural, morphological and thermoelectric characteristics of BaSnO3. The structural and morphological properties of the synthesized materials were studied by XRD and TEM analysis. XRD analysis confirmed the mixed phases of the synthesized samples. The TEM images of Ba1-x Sr x SnO3 shows hexagonal and cubic morphology while, Ba1-x La x SnO3 exhibit rod like morphology. Various functional groups of the perovskite material were identified using FTIR analysis. Formation of the perovskite material was further confirmed by XPS analysis. The Seebeck coefficient of Ba0.95La0.05SnO3 was relatively higher than that of Ba0.95Sr0.05SnO3, especially at high temperature. The rod like morphology of Ba0.95La0.05SnO3 may facilitate fast electron transport which results high thermal power compared to Ba0.95Sr0.05SnO3 despite of its poor crystalline nature. The substitution of La3+ on the Ba2+ site could vary the carrier density which results high Seebeck coefficient of Ba0.95La0.05SnO3 compared to Ba0.95Sr0.05SnO3. From the experimental results, it is obvious that Ba0.95La0.05SnO3 could be a promising thermoelectric material for high temperature application.

  4. Tailoring Electronic Properties in Semiconducting Perovskite Materials through Octahedral Control

    NASA Astrophysics Data System (ADS)

    Choquette, Amber K.

    Perovskite oxides, which take the chemical formula ABO 3, are a very versatile and interesting materials family, exhibiting properties that include ferroelectricity, ferromagnetism, mixed ionic/electronic conductivity, metal-insulator behavior and multiferroicity. Key to these functionalities is the network of BO6 corner-connected octahedra, which are known to distort and rotate, directly altering electronic and ferroic properties. By controlling the BO6 octahedral distortions and rotations through cationic substitutions, the use of strain engineering, or through the formation of superlattice structures, the functional properties of perovskites can be tuned. Motivating the use of structure-driven design in oxide heterostructures is the prediction of hybrid improper ferroelectricity in A'BO3/ABO3 superlattices. Two key design rules to realizing hybrid improper ferroelectricity are the growth of high quality superlattice structures with odd periodicities of the A / A' layers, and the control of the octahedral rotation pattern. My work explores the rotational response in perovskite oxides to strain and interface effects in thin films of RFeO3 ( R = La, Eu). I demonstrate a synchrotron x-ray diffraction technique to identify the rotation pattern that is present in the films. I then establish substrate imprinting as a key tool for controlling the rotation patterns in heterostructures, providing a means to realize the necessary structural variants of the predicted hybrid improper ferroelectricity in superlattices. In addition, by pairing measured diffraction data with a structure factor calculation, I demonstrate how one can extract both A-site and oxygen atomic positions in single crystal perovskite oxide films. Finally, I show results from (LaFeO 3)n/(EuFeO3)n superlattices (n = 1-5), synthesized to test the motivating predictions of hybrid improper ferroelectricity in oxide superlattices.

  5. DFT +U Modeling of Hole Polarons in Organic Lead Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Welch, Eric; Erhart, Paul; Scolfaro, Luisa; Zakhidov, Alex

    Due to the ever present drive towards improved efficiencies in solar cell technology, new and improved materials are emerging rapidly. Organic halide perovskites are a promising prospect, yet a fundamental understanding of the organic perovskite structure and electronic properties is missing. Particularly, explanations of certain physical phenomena, specifically a low recombination rate and high mobility of charge carriers still remain controversial. We theoretically investigate possible formation of hole polarons adopting methodology used for oxide perovskites. The perovskite studied here is the ABX3structure, with A being an organic cation, B lead and C a halogen; the combinations studied allow for A1,xA2 , 1 - xBX1,xX2 , 3 - xwhere the alloy convention is used to show mixtures of the organic cations and/or the halogens. Two organic cations, methylammonium and formamidinium, and three halogens, iodine, chlorine and bromine are studied. Electronic structures and polaron behavior is studied through first principle density functional theory (DFT) calculations using the Vienna Ab Initio Simulation Package (VASP). Local density approximation (LDA) pseudopotentials are used and a +U Hubbard correction of 8 eV is added; this method was shown to work with oxide perovskites. It is shown that a localized state is realized with the Hubbard correction in systems with an electron removed, residing in the band gap of each different structure. Thus, hole polarons are expected to be seen in these perovskites.

  6. Sn2+-Stabilization in MASnI3 perovskites by superhalide incorporation.

    PubMed

    Xiang, Junxiang; Wang, Kan; Xiang, Bin; Cui, Xudong

    2018-03-28

    Sn-based hybrid halide perovskites are a potential solution to replace Pb and thereby reduce Pb toxicity in MAPbI 3 perovskite-based solar cells. However, the instability of Sn 2+ in air atmosphere causes a poor reproducibility of MASnI 3 , hindering steps towards this goal. In this paper, we propose a new type of organic metal-superhalide perovskite of MASnI 2 BH 4 and MASnI 2 AlH 4 . Through first-principles calculations, our results reveal that the incorporation of BH 4 and AlH 4 superhalides can realize an impressive enhancement of oxidation resistance of Sn 2+ in MASnI 3 perovskites because of the large electron transfer between Sn 2+ and [BH 4 ] - /[AlH 4 ] - . Meanwhile, the high carrier mobility is preserved in these superhalide perovskites and only a slight decrease is observed in the optical absorption strength. Our studies provide a new path to attain highly stable performance and reproducibility of Sn-based perovskite solar cells.

  7. Low temperature perovskite solar cells with an evaporated TiO 2 compact layer for perovskite silicon tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina

    Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less

  8. Low temperature perovskite solar cells with an evaporated TiO 2 compact layer for perovskite silicon tandem solar cells

    DOE PAGES

    Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina; ...

    2017-09-21

    Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less

  9. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.

    PubMed

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza

    2016-02-08

    Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Micromagnetic simulation study of a disordered model for one-dimensional granular perovskite manganite oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Longone, P.; Romá, F.

    2018-06-01

    Chemical techniques are an efficient method to synthesize one-dimensional perovskite manganite oxide nanostructures with a granular morphology, that is, formed by arrays of monodomain magnetic nanoparticles. Integrating the stochastic Landau-Lifshitz-Gilbert equation, we simulate the dynamics of a simple disordered model for such materials that only takes into account the morphological characteristics of their nanograins. We show that it is possible to describe reasonably well experimental hysteresis loops reported in the literature for single La0.67Ca0.33MnO3 nanotubes and powders of these nanostructures, simulating small systems consisting of only 100 nanoparticles.

  11. Multifunctional MgO Layer in Perovskite Solar Cells.

    PubMed

    Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo

    2015-06-08

    A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bilayered Hybrid Perovskite Ferroelectric with Giant Two-Photon Absorption.

    PubMed

    Li, Lina; Shang, Xiaoying; Wang, Sasa; Dong, Ningning; Ji, Chengmin; Chen, Xueyuan; Zhao, Sangen; Wang, Jun; Sun, Zhihua; Hong, Maochun; Luo, Junhua

    2018-06-06

    Perovskite ferroelectrics with prominent nonlinear optical absorption have attracted great attention in the field of photonics. However, they are traditionally dominated by inorganic oxides and exhibit relatively small nonlinear optical absorption coefficients, which hinder their further applications. Herein, we report a new organic-inorganic hybrid bilayered perovskite ferroelectric, (C 4 H 9 NH 3 ) 2 (NH 2 CHNH 2 )Pb 2 Br 7 (1), showing an above-room-temperature Curie temperature (∼322 K) and notable spontaneous polarization (∼3.8 μC cm -2 ). Significantly, the unique quantum-well structure of 1 results in intriguing two-photon absorption properties with a giant nonlinear optical absorption coefficient as high as 5.76 × 10 3 cm GW -1 , which is almost two-orders of magnitude larger than those of mostly traditional all-inorganic perovskite ferroelectrics. To our best knowledge, 1 is the first example of hybrid ferroelectrics with giant two-photon absorption coefficient. The mechanisms for ferroelectric and two-photon absorption are revealed. This work will shed light on the design of new ferroelectrics with two-photon absorption and promote their potentials in the photonic application.

  13. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na-more » and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.« less

  14. Material and Device Stability in Perovskite Solar Cells.

    PubMed

    Kim, Hui-Seon; Seo, Ja-Young; Park, Nam-Gyu

    2016-09-22

    Organic-inorganic halide perovskite solar cells have attracted great attention because of their superb efficiency reaching 22 % and low-cost, facile fabrication processing. Nevertheless, stability issues in perovskite solar cells seem to block further advancements toward commercialization. Thus, device stability is one of the important topics in perovskite solar cell research. In the beginning, the poor moisture resistivity of the perovskite layer was considered as a main problem that hindered further development of perovskite solar cells, which encouraged engineering of the perovskite or protection of the perovskite by a buffer layer. Soon after, other parameters affecting long-term stability were sequentially found and various attempts have been made to enhance intrinsic and extrinsic stability. Here we review the recent progresses addressing stability issues in perovskite solar cells. In this report, we investigated factors affecting stability from material and device points of view. To gain a better understanding of the stability of the bulk perovskite material, decomposition mechanisms were investigated in relation to moisture, photons, and heat. Stability of full device should also be carefully examined because its stability is dependent not only on bulk perovskite but also on the interfaces and selective contacts. In addition, ion migration and current-voltage hysteresis were found to be closely related to stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Perovskite solar cell with an efficient TiO₂ compact film.

    PubMed

    Ke, Weijun; Fang, Guojia; Wang, Jing; Qin, Pingli; Tao, Hong; Lei, Hongwei; Liu, Qin; Dai, Xin; Zhao, Xingzhong

    2014-09-24

    A perovskite solar cell with a thin TiO2 compact film prepared by thermal oxidation of sputtered Ti film achieved a high efficiency of 15.07%. The thin TiO2 film prepared by thermal oxidation is very dense and inhibits the recombination process at the interface. The optimum thickness of the TiO2 compact film prepared by thermal oxidation is thinner than that prepared by spin-coating method. Also, the TiO2 compact film and the TiO2 porous film can be sintered at the same time. This one-step sintering process leads to a lower dark current density, a lower series resistance, and a higher recombination resistance than those of two-step sintering. Therefore, the perovskite solar cell with the TiO2 compact film prepared by thermal oxidation has a higher short-circuit current density and a higher fill factor.

  16. Deciphering the physics and chemistry of perovskites with transmission electron microscopy.

    PubMed

    Polking, Mark J

    2016-03-28

    Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.

  17. A Study on Organic-Metal Halide Perovskite Film Morphology, Interfacial Layers, Tandem Applications, and Encapsulation

    NASA Astrophysics Data System (ADS)

    Fisher, Dallas A.

    Organic-metal halide perovskites have brought about a new wave of research in the photovoltaic community due to their ideally suited optical and electronic parameters. In less than a decade, perovskite solar cell performance has skyrocketed to unprecedented efficiencies with numerous reported methodologies. Perovskites face many challenges with high-quality film morphology, interfacial layers, and long-term stability. In this work, these active areas are explored through a combination of studies. First, the importance of perovskite film precursor ratios is explored with an in-depth study of carrier lifetime and solvent-grain effects. It was found that excess lead iodide precursor greatly improves the film morphology by reducing pinholes in the solar absorber. Dimethyl sulfoxide (DMSO) solvent was found to mend grains, as well as improve carrier lifetime and device performance, possibly by passivation of grain boundary traps. Second, applications of perovskite with tandem cells is investigated, with an emphasis for silicon devices. Perovskites can easily be integrated with silicon, which already has strong market presence. Additionally, both materials' bandgaps are ideally suited for maximum tandem efficiency. The silicon/perovskite tandem device structure necessitated the optimization of inverted (p-i-n) structure devices. PEDOT:PSS, copper oxide, and nickel oxide p-type layers were explored through a combination of photoluminescent, chemical reactivity, and solar simulation results. Results were hindered due to resistive ITO and rough silicon substrates, but tandem devices displayed Voc indicative of proper monolithic performance. Third, replacement of titanium dioxide n-type layer with iron oxide (Fe 2O3, common rust) was studied. Iron oxide experiences less ultraviolet instability than that of titanium dioxide under solar illumination. It was found that current density slightly decreased due to parasitic absorption from the rust, but that open circuit voltage

  18. Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics.

    PubMed

    Tavakoli, Mohammad Mahdi; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2018-04-11

    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO 2 nanoparticles covered by a thin film of SnO 2 , either in amorphous (a-SnO 2 ), crystalline (c-SnO 2 ), or nanocrystalline (quantum dot) form (SnO 2 -NC). We find that the band gap of a-SnO 2 is larger than that of the crystalline (tetragonal) polymorph leading to a corresponding lift in its conduction band edge energy which aligns it perfectly with the conduction band edge of both the triple cation perovskite and the TiO 2 scaffold. This enables very fast electron extraction from the light perovskite, suppressing the notorious hysteresis in the current-voltage ( J-V) curves and retarding nonradiative charge carrier recombination. As a result, we gain a remarkable 170 mV in open circuit photovoltage ( V oc ) by replacing the crystalline SnO 2 by an amorphous phase. Because of the quantum size effect, the band gap of our SnO 2 -NC particles is larger than that of bulk SnO 2 causing their conduction band edge to shift also to a higher energy thereby increasing the V oc . However, for SnO 2 -NC there remains a barrier for electron injection into the TiO 2 scaffold decreasing the fill factor of the device and lowering the PCE. Introducing the a-SnO 2 coated mp-TiO 2 scaffold as electron extraction layer not only increases the V oc and PEC of the solar cells but also render them resistant to UV light which forebodes well for outdoor deployment of these new PSC architectures.

  19. Sn2+—Stabilization in MASnI3 perovskites by superhalide incorporation

    NASA Astrophysics Data System (ADS)

    Xiang, Junxiang; Wang, Kan; Xiang, Bin; Cui, Xudong

    2018-03-01

    Sn-based hybrid halide perovskites are a potential solution to replace Pb and thereby reduce Pb toxicity in MAPbI3 perovskite-based solar cells. However, the instability of Sn2+ in air atmosphere causes a poor reproducibility of MASnI3, hindering steps towards this goal. In this paper, we propose a new type of organic metal-superhalide perovskite of MASnI2BH4 and MASnI2AlH4. Through first-principles calculations, our results reveal that the incorporation of BH4 and AlH4 superhalides can realize an impressive enhancement of oxidation resistance of Sn2+ in MASnI3 perovskites because of the large electron transfer between Sn2+ and [BH4]-/[AlH4]-. Meanwhile, the high carrier mobility is preserved in these superhalide perovskites and only a slight decrease is observed in the optical absorption strength. Our studies provide a new path to attain highly stable performance and reproducibility of Sn-based perovskite solar cells.

  20. Realizing Full Coverage of Stable Perovskite Film by Modified Anti-Solvent Process

    NASA Astrophysics Data System (ADS)

    Ji, Long; Zhang, Ting; Wang, Yafei; Zhang, Peng; Liu, Detao; Chen, Zhi; Li, Shibin

    2017-05-01

    Lead-free solution-processed solid-state photovoltaic devices based on formamidinium tin triiodide (FASnI3) and cesium tin triiodide (CsSnI3) perovskite semiconductor as the light harvester are reported. In this letter, we used solvent engineering and anti-solvent dripping method to fabricate perovskite films. SnCl2 was used as an inhibitor of Sn4+ in FASnI3 precursor solution. We obtained the best films under the function of toluene or chlorobenzene in anti-solvent dripping method and monitored the oxidation of FASnI3 films in air. We chose SnF2 as an additive of CsSnI3 precursor solution to prevent the oxidation of the Sn2+, improving the stability of CsSnI3. The experimental results we obtained can pave the way for lead-free tin-based perovskite solar cells (PSCs).

  1. Deposition and dielectric characterization of strontium and tantalum-based oxide and oxynitride perovskite thin films

    NASA Astrophysics Data System (ADS)

    Jacq, S.; Le Paven, C.; Le Gendre, L.; Benzerga, R.; Cheviré, F.; Tessier, F.; Sharaiha, A.

    2016-04-01

    We have synthesized the composition x = 0.01 of the (Sr1-xLax)2(Ta1-xTix)2O7 solid solution, mixing the ferroelectric perovskite phases Sr2Ta2O7 and La2Ti2O7. Related oxide and oxynitride materials have been produced as thin films by magnetron radio frequency sputtering. Reactive sputter deposition was conducted at 750 °C under a 75 vol.% (Ar) + 25 vol.% (N2,O2) mixture. An oxygen-free plasma leads to the deposition of an oxynitride film (Sr0.99La0.01) (Ta0.99Ti0.01)O2N, characterized by a band gap Eg = 2.30 eV and a preferential (001) epitaxial growth on (001) SrTiO3 substrate. Its dielectric constant and loss tangent are respectively Epsilon' = 60 (at 1 kHz) and tanDelta = 62.5 × 10-3. In oxygen-rich conditions (vol.%N2 ≤ 15%), (110) epitaxial (Sr0.99La0.01)2(Ta0.99Ti0.01)2O7 oxides films are deposited, associated to a larger band gap value (Eg = 4.55 eV). The oxide films permittivity varies from 45 to 25 (at 1 kHz) in correlation with the decrease in crystalline orientation; measured losses are lower than 5.10-3. For 20 ≤ vol.% N2 ≤ 24.55, the films are poorly crystallized, leading to very low permittivities (minimum Epsilon' = 3). A correlation between the dielectric losses and the presence of an oxynitride phase in the samples is highlighted.

  2. Factors Influencing the Mechanical Properties of Formamidinium Lead Halides and Related Hybrid Perovskites.

    PubMed

    Sun, Shijing; Isikgor, Furkan H; Deng, Zeyu; Wei, Fengxia; Kieslich, Gregor; Bristowe, Paul D; Ouyang, Jianyong; Cheetham, Anthony K

    2017-10-09

    The mechanical properties of formamidinium lead halide perovskites (FAPbX 3 , X=Br or I) grown by inverse-temperature crystallization have been studied by nanoindentation. The measured Young's moduli (9.7-12.3 GPa) and hardnesses (0.36-0.45 GPa) indicate good mechanical flexibility and ductility. The effects of hydrogen bonding were evaluated by performing ab initio molecular dynamics on both formamidinium and methylammonium perovskites and calculating radial distribution functions. The structural and chemical factors influencing these properties are discussed by comparison with corresponding values in the literature for other hybrid perovskites, including double perovskites. Our results reveal that bonding in the inorganic framework and hydrogen bonding play important roles in determining elastic stiffness. The influence of the organic cation becomes more important for structures at the limit of their perovskite stability, indicated by high tolerance factors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Vapor Grown Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Abdussamad Abbas, Hisham

    Perovskite solar cells has been the fastest growing solar cell material till date with verified efficiencies of over 22%. Most groups in the world focuses their research on solution based devices that has residual solvent in the material bulk. This work focuses extensively on the fabrication and properties of vapor based perovskite devices that is devoid of solvents. The initial part of my work focuses on the detailed fabrication of high efficiency consistent sequential vapor NIP devices made using P3HT as P-type Type II heterojunction. The sequential vapor devices experiences device anomalies like voltage evolution and IV hysteresis owing to charge trapping in TiO2. Hence, sequential PIN devices were fabricated using doped Type-II heterojunctions that had no device anomalies. The sequential PIN devices has processing restriction, as organic Type-II heterojunction materials cannot withstand high processing temperature, hence limiting device efficiency. Thereby bringing the need of co-evaporation for fabricating high efficiency consistent PIN devices, the approach has no-restriction on substrates and offers stoichiometric control. A comprehensive description of the fabrication, Co-evaporator setup and how to build it is described. The results of Co-evaporated devices clearly show that grain size, stoichiometry and doped transport layers are all critical for eliminating device anomalies and in fabricating high efficiency devices. Finally, Formamidinium based perovskite were fabricated using sequential approach. A thermal degradation study was conducted on Methyl Ammonium Vs. Formamidinium based perovskite films, Formamidinium based perovskites were found to be more stable. Lastly, inorganic films such as CdS and Nickel oxide were developed in this work.

  4. A Direct Bandgap Copper-Antimony Halide Perovskite.

    PubMed

    Vargas, Brenda; Ramos, Estrella; Pérez-Gutiérrez, Enrique; Alonso, Juan Carlos; Solis-Ibarra, Diego

    2017-07-12

    Since the establishment of perovskite solar cells (PSCs), there has been an intense search for alternative materials to replace lead and improve their stability toward moisture and light. As single-metal perovskite structures have yielded unsatisfactory performances, an alternative is the use of double perovskites that incorporate a combination of metals. To this day, only a handful of these compounds have been synthesized, but most of them have indirect bandgaps and/or do not have bandgaps energies well-suited for photovoltaic applications. Here we report the synthesis and characterization of a unique mixed metal ⟨111⟩-oriented layered perovskite, Cs 4 CuSb 2 Cl 12 (1), that incorporates Cu 2+ and Sb 3+ into layers that are three octahedra thick (n = 3). In addition to being made of abundant and nontoxic elements, we show that this material behaves as a semiconductor with a direct bandgap of 1.0 eV and its conductivity is 1 order of magnitude greater than that of MAPbI 3 (MA = methylammonium). Furthermore, 1 has high photo- and thermal-stability and is tolerant to humidity. We conclude that 1 is a promising material for photovoltaic applications and represents a new type of layered perovskite structure that incorporates metals in 2+ and 3+ oxidation states, thus significantly widening the possible combinations of metals to replace lead in PSCs.

  5. Decreasing the Hydroxylation Affinity of La 1–x Sr x MnO 3 Perovskites To Promote Oxygen Reduction Electrocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Hong, Wesley T.; Wang, Xiao Renshaw

    Understanding the interaction between oxides and water is critical to design many of their functionalities, including the electrocatalysis of molecular oxygen reduction. In this study, we probed the hydroxylation of model (001)-oriented La(1-x)SrxMnO3 (LSMO) perovskite surfaces, where the electronic structure and manganese valence was controlled by five substitution levels of lanthanum with strontium, using ambient pressure X-ray photoelectron spectroscopy in a humid environment. The degree of hydroxyl formation on the oxide surface correlated with the proximity of the valence band center relative to the Fermi level. LSMO perovskites with a valence band center closer to the Fermi level were moremore » reactive toward water, forming more hydroxyl species at a given relative humidity. More hydroxyl species correlate with greater electron-donating character to the surface free energy in wetting, and reduce the activity to catalyze oxygen reduction reaction (ORR) kinetics in basic solution. New strategies to design more active catalysts should include design of electronically conducting oxides with lower valence band centers relative to the Fermi level at ORR-relevant potentials.« less

  6. A study on the thermal conversion of scheelite-type ABO4 into perovskite-type AB(O,N)3.

    PubMed

    Li, Wenjie; Li, Duan; Gao, Xin; Gurlo, Aleksander; Zander, Stefan; Jones, Philip; Navrotsky, Alexandra; Shen, Zhijian; Riedel, Ralf; Ionescu, Emanuel

    2015-05-07

    Phase-pure scheelite AMoO4 and AWO4 (A = Ba, Sr, Ca) were thermally treated under an ammonia atmosphere at 400 to 900 °C. SrMoO4 and SrWO4 were shown to convert into cubic perovskite SrMoO2N and SrWO1.5N1.5, at 700 °C and 900 °C respectively, and to form metastable intermediate phases (scheelite SrMoO4-xNx and SrWO4-xNx), as revealed by X-ray diffraction (XRD), elemental analysis and FTIR spectroscopy. High-temperature oxide melt solution calorimetry reveals that the enthalpy of formation for SrM(O,N)3 (M = Mo, W) perovskites is less negative than that of the corresponding scheelite oxides, though the conversion of the scheelite oxides into perovskite oxynitrides is thermodynamically favorable at moderate temperatures. The reaction of BaMO4 with ammonia leads to the formation of rhombohedral Ba3M2(O,N)8 and the corresponding binary metal nitrides Mo3N2 and W4.6N4; similar behavior was observed for CaMO4, which converted upon ammonolysis into individual oxides and nitrides. Thus, BaMO4 and CaMO4 were shown to not provide access to perovskite oxynitrides. The influence of the starting scheelite oxide precursor, the structure distortion and the degree of covalency of the B-site-N bond are discussed within the context of the formability of perovskite oxynitrides.

  7. Single Crystal Elasticity of Iron Bearing Perovskite and Post Perovskite Analog

    NASA Astrophysics Data System (ADS)

    Yoneda, A.; Fukui, H.; Baron, A. Q. R.

    2014-12-01

    We measured single crystal elasticity of (1) pure and iron bearing MgSiO3 perovskite, and (2) Pbnm-CaIrO3 and Cmcm-CaIrO3, a representative analog of MgSiO3 perovskite and post perovskite, respectively, by means of inelastic X ray scattering at BL35XU, SPring-8. The present results for MgSiO3 perovskite demonstrate that elastic anisotropy of magnesium perovskite is highly enhanced by iron incorporation. Furthermore anti-correlation between bulk sound velocity and shear wave velocity was confirmed with iron content, which is against the theoretical prediction. The anti-correlation found in this study is important, because it enables us to interpret the recent seismological observation of the anti-correlation in the deep lower mantle by means of iron content difference in perovskite. On the other hand, we can learn difference of elasticity between perovskite and post perovskite thorough measurement on CaIrO3, as analog of MgSiO3 perovskite and post perovskite. From a characteristics of the single crystal elasticity of CaIrO3 compounds, we interpreted the texture pattern in the D" layer consistent with recent seismic observation.

  8. Converged G W quasiparticle energies for transition metal oxide perovskites

    NASA Astrophysics Data System (ADS)

    Ergönenc, Zeynep; Kim, Bongjae; Liu, Peitao; Kresse, Georg; Franchini, Cesare

    2018-02-01

    The ab initio calculation of quasiparticle (QP) energies is a technically and computationally challenging problem. In condensed matter physics, the most widely used approach to determine QP energies is the G W approximation. Although the G W method has been widely applied to many typical semiconductors and insulators, its application to more complex compounds such as transition metal oxide perovskites has been comparatively rare, and its proper use is not well established from a technical point of view. In this work, we have applied the single-shot G0W0 method to a representative set of transition metal oxide perovskites including 3 d (SrTiO3, LaScO3, SrMnO3, LaTiO3, LaVO3, LaCrO3, LaMnO3, and LaFeO3), 4 d (SrZrO3, SrTcO3, and Ca2RuO4 ), and 5 d (SrHfO3, KTaO3, and NaOsO3) compounds with different electronic configurations, magnetic orderings, structural characteristics, and band gaps ranging from 0.1 to 6.1 eV. We discuss the proper procedure to obtain well-converged QP energies and accurate band gaps within single-shot G0W0 by comparing the conventional approach based on an incremental variation of a specific set of parameters (number of bands, energy cutoff for the plane-wave expansion and number of k points) and the basis-set extrapolation scheme [J. Klimeš et al., Phys. Rev. B 90, 075125 (2014), 10.1103/PhysRevB.90.075125]. Although the conventional scheme is not supported by a formal proof of convergence, for most cases it delivers QP energies in reasonably good agreement with those obtained by the basis-set correction procedure and it is by construction more useful for calculating band structures. In addition, we have inspected the difference between the adoption of norm-conserving and ultrasoft potentials in G W calculations and found that the norm violation for the d shell can lead to less accurate results in particular for charge-transfer systems and late transition metals. A minimal statistical analysis indicates that the correlation of the G W data

  9. Crossover from Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices

    DTIC Science & Technology

    2013-12-08

    function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two...a function of interface density. Wedo so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the

  10. Alkali Metal Doping for Improved CH3NH3PbI3 Perovskite Solar Cells.

    PubMed

    Zhao, Wangen; Yao, Zhun; Yu, Fengyang; Yang, Dong; Liu, Shengzhong Frank

    2018-02-01

    Organic-inorganic hybrid halide perovskites are proven to be a promising semiconductor material as the absorber layer of solar cells. However, the perovskite films always suffer from nonuniform coverage or high trap state density due to the polycrystalline characteristics, which degrade the photoelectric properties of thin films. Herein, the alkali metal ions which are stable against oxidation and reduction are used in the perovskite precursor solution to induce the process of crystallization and nucleation, then affect the properties of the perovskite film. It is found that the addition of the alkali metal ions clearly improves the quality of perovskite film: enlarges the grain sizes, reduces the defect state density, passivates the grain boundaries, increases the built-in potential ( V bi ), resulting to the enhancement in the power conversion efficiency of perovskite thin film solar cell.

  11. Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells.

    PubMed

    Jeng, Jun-Yuan; Chen, Kuo-Cheng; Chiang, Tsung-Yu; Lin, Pei-Ying; Tsai, Tzung-Da; Chang, Yun-Chorng; Guo, Tzung-Fang; Chen, Peter; Wen, Ten-Chin; Hsu, Yao-Jane

    2014-06-25

    This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Stability of perovskite solar cells on flexible substrates

    NASA Astrophysics Data System (ADS)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  13. Anomalous perovskite PbRuO3 stabilized under high pressure

    PubMed Central

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.

    2013-01-01

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  14. Development of High Efficiency Four-Terminal Perovskite-Silicon Tandems

    NASA Astrophysics Data System (ADS)

    Duong, The Duc

    This thesis is concerned with the development of high efficiency four-terminal perovskite-silicon tandem solar cells with the potential to reduce the cost of solar energy. The work focuses on perovskite top cells and can be divided into three main parts: developing low parasitic absorption and efficient semi-transparent perovskite cells, doping perovskite materials with rubidium, and optimizing perovskite material's bandgap with quadruple-cation and mixed-halide. A further section investigates the light stability of optimized bandgap perovskite cells. In a four-terminal mechanically stacked tandem, the perovskite top cell requires two transparent contacts at both the front and rear sides. Through detailed optical and electrical power loss analysis of the tandem efficiency due to non-ideal properties of the two transparent contacts, optimal contact parameters in term of sheet resistance and transparency are identified. Indium doped tin oxide by sputtering is used for both two transparent contacts and their deposition parameters are optimized separately. The semi-transparent perovskite cell using MAPbI3 has an efficiency of more than 12% with less than 12% parasitic absorption and up to 80% transparency in the long wavelength region. Using a textured foil as anti-reflection coating, an outstanding average transparency of 84% in the long wavelength is obtained. The low parasitic absorption allows an opaque version of the semi-transparent perovskite cell to operate efficiently in a filterless spectrum splitting perovskite-silicon tandem configuration. To further enhance the performance of perovskite cells, it is essential to improve the quality of perovskite films. This can be achieved with mixed-perovskite FAPbI3/MAPbBr3. However, mixed-perovskite films normally contain small a small amount of a non-perovskite phase, which is detrimental for the cell performance. Rb-doping is found to eliminate the formation of the non-perovskite phase and enhance the crystallinity of

  15. Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer.

    PubMed

    Lee, Yonghui; Lee, Seunghwan; Seo, Gabseok; Paek, Sanghyun; Cho, Kyung Taek; Huckaba, Aron J; Calizzi, Marco; Choi, Dong-Won; Park, Jin-Seong; Lee, Dongwook; Lee, Hyo Joong; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2018-06-01

    Planar perovskite solar cells using low-temperature atomic layer deposition (ALD) of the SnO 2 electron transporting layer (ETL), with excellent electron extraction and hole-blocking ability, offer significant advantages compared with high-temperature deposition methods. The optical, chemical, and electrical properties of the ALD SnO 2 layer and its influence on the device performance are investigated. It is found that surface passivation of SnO 2 is essential to reduce charge recombination at the perovskite and ETL interface and show that the fabricated planar perovskite solar cells exhibit high reproducibility, stability, and power conversion efficiency of 20%.

  16. Lattice effects on ferromagnetism in perovskite ruthenates

    PubMed Central

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  17. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter.

    PubMed

    Nouri, Esmaiel; Mohammadi, Mohammad Reza; Xu, Zong-Xiang; Dracopoulos, Vassilios; Lianos, Panagiotis

    2018-01-24

    Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO 2 /reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters. An enhanced electron lifetime and recombination resistance led to an increase in the short circuit current density, open circuit voltage and fill factor. The device based on a T/RGO mesoporous layer with an optimal RGO content of 0.2 wt% showed 22% higher photoconversion efficiency and higher stability compared with pristine TiO 2 -based devices.

  18. Stretchable Light-Emitting Diodes with Organometal-Halide-Perovskite-Polymer Composite Emitters.

    PubMed

    Bade, Sri Ganesh R; Shan, Xin; Hoang, Phong Tran; Li, Junqiang; Geske, Thomas; Cai, Le; Pei, Qibing; Wang, Chuan; Yu, Zhibin

    2017-06-01

    Intrinsically stretchable light-emitting diodes (LEDs) are demonstrated using organometal-halide-perovskite/polymer composite emitters. The polymer matrix serves as a microscale elastic connector for the rigid and brittle perovskite and induces stretchability to the composite emissive layers. The stretchable LEDs consist of poly(ethylene oxide)-modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as a transparent and stretchable anode, a perovskite/polymer composite emissive layer, and eutectic indium-gallium as the cathode. The devices exhibit a turn-on voltage of 2.4 V, and a maximum luminance intensity of 15 960 cd m -2 at 8.5 V. Such performance far exceeds all reported intrinsically stretchable LEDs based on electroluminescent polymers. The stretchable perovskite LEDs are mechanically robust and can be reversibly stretched up to 40% strain for 100 cycles without failure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Clear microstructure-performance relationships in Mn-containing perovskite and hexaaluminate compounds prepared by activated reactive synthesis.

    PubMed

    Laassiri, Said; Bion, Nicolas; Duprez, Daniel; Royer, Sébastien; Alamdari, Houshang

    2014-03-07

    Microstructural properties of mixed oxides play essential roles in their oxygen mobility and consequently in their catalytic performances. Two families of mixed oxides (perovskite and hexaaluminate) with different microstructural features, such as crystal size and specific surface area, were prepared using the activated reactive synthesis (ARS) method. It was shown that ARS is a flexible route to synthesize both mixed oxides with nano-scale crystal size and high specific surface area. Redox properties and oxygen mobility were found to be strongly affected by the material microstructure. Catalytic activities of hexaaluminate and perovskite materials for methane oxidation were discussed in the light of structural, redox and oxygen mobility properties.

  20. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  1. Transport Properties of Complex Oxides: New Ideas and Insights from Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Benedek, Nicole

    Complex oxides are one of the largest and most technologically important materials families. The ABO3 perovskite oxides in particular display an unparalleled variety of physical properties. The microscopic origin of these properties (how they arise from the structure of the material) is often complicated, but in many systems previous research has identified simple guidelines or `rules of thumb' that link structure and chemistry to the physics of interest. For example, the tolerance factor is a simple empirical measure that relates the composition of a perovskite to its tendency to adopt a distorted structure. First-principles calculations have shown that the tendency towards ferroelectricity increases systematically as the tolerance factor of the perovskite decreases. Can we uncover a similar set of simple guidelines to yield new insights into the ionic and thermal transport properties of perovskites? I will discuss recent research from my group on the link between crystal structure and chemistry, soft phonons and ionic transport in a family of layered perovskite oxides, the Ln2NiO4+δ Ruddlesden-Popper phases. In particular, we show how the lattice dynamical properties of these materials (their tendency to undergo certain structural distortions) can be correlated with oxide ion transport properties. Ultimately, we seek new ways to understand the microscopic origins of complex transport processes and to develop first-principles-based design rules for new materials based on our understanding.

  2. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  3. Planar-integrated single-crystalline perovskite photodetectors

    PubMed Central

    Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman M.

    2015-01-01

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors. PMID:26548941

  4. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3.

    PubMed

    Li, Ming; Pietrowski, Martha J; De Souza, Roger A; Zhang, Huairuo; Reaney, Ian M; Cook, Stuart N; Kilner, John A; Sinclair, Derek C

    2014-01-01

    Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm(-1) at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides.

  5. Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes.

    PubMed

    Bade, Sri Ganesh R; Li, Junqiang; Shan, Xin; Ling, Yichuan; Tian, Yu; Dilbeck, Tristan; Besara, Tiglet; Geske, Thomas; Gao, Hanwei; Ma, Biwu; Hanson, Kenneth; Siegrist, Theo; Xu, Chengying; Yu, Zhibin

    2016-02-23

    Printed organometal halide perovskite light-emitting diodes (LEDs) are reported that have indium tin oxide (ITO) or carbon nanotubes (CNTs) as the transparent anode, a printed composite film consisting of methylammonium lead tribromide (Br-Pero) and poly(ethylene oxide) (PEO) as the emissive layer, and printed silver nanowires as the cathode. The fabrication can be carried out in ambient air without humidity control. The devices on ITO/glass have a low turn-on voltage of 2.6 V, a maximum luminance intensity of 21014 cd m(-2), and a maximum external quantum efficiency (EQE) of 1.1%, surpassing previous reported perovskite LEDs. The devices on CNTs/polymer were able to be strained to 5 mm radius of curvature without affecting device properties.

  6. Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application

    NASA Astrophysics Data System (ADS)

    Chen, Zhiliang; Yang, Guang; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Ma, Junjie; Wang, Hao; Fang, Guojia

    2017-05-01

    Perovskite solar cells have developed rapidly in recent years as the third generation solar cells. In spite of the great improvement achieved, there still exist some issues such as undesired hysteresis and indispensable high temperature process. In this work, bulk heterojunction perovskite-phenyl-C61-butyric acid methyl ester solar cells have been prepared to diminish hysteresis using a facile two step spin-coating method. Furthermore, high quality tin oxide films are fabricated using pulse laser deposition technique at room temperature without any annealing procedure. The as fabricated tin oxide film is successfully applied in bulk heterojunction perovskite solar cells as a hole blocking layer. Bulk heterojunction devices based on room temperature tin oxide exhibit almost hysteresis-free characteristics with power conversion efficiency of 17.29% and 14.0% on rigid and flexible substrates, respectively.

  7. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-03-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  8. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    PubMed

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  9. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases

    NASA Astrophysics Data System (ADS)

    Chakrabartty, Joyprokash; Harnagea, Catalin; Celikin, Mert; Rosei, Federico; Nechache, Riad

    2018-05-01

    Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of 4.20% under 1 sun illumination from Bi-Mn-O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.

  10. Atomic Layer Engineering of High-κ Ferroelectricity in 2D Perovskites.

    PubMed

    Li, Bao-Wen; Osada, Minoru; Kim, Yoon-Hyun; Ebina, Yasuo; Akatsuka, Kosho; Sasaki, Takayoshi

    2017-08-09

    Complex perovskite oxides offer tremendous potential for controlling their rich variety of electronic properties, including high-T C superconductivity, high-κ ferroelectricity, and quantum magnetism. Atomic-scale control of these intriguing properties in ultrathin perovskites is an important challenge for exploring new physics and device functionality at atomic dimensions. Here, we demonstrate atomic-scale engineering of dielectric responses using two-dimensional (2D) homologous perovskite nanosheets (Ca 2 Na m-3 Nb m O 3m+1 ; m = 3-6). In this homologous 2D material, the thickness of the perovskite layers can be incrementally controlled by changing m, and such atomic layer engineering enhances the high-κ dielectric response and local ferroelectric instability. The end member (m = 6) attains a high dielectric constant of ∼470, which is the highest among all known dielectrics in the ultrathin region (<10 nm). These results provide a new strategy for achieving high-κ ferroelectrics for use in ultrascaled high-density capacitors and post-graphene technology.

  11. Crosslinked Remote-Doped Hole-Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells.

    PubMed

    Xu, Jixian; Voznyy, Oleksandr; Comin, Riccardo; Gong, Xiwen; Walters, Grant; Liu, Min; Kanjanaboos, Pongsakorn; Lan, Xinzheng; Sargent, Edward H

    2016-04-13

    A crosslinked hole-extracting electrical contact is reported, which simultaneously improves the stability and lowers the hysteresis of perovskite solar cells. Polymerizable monomers and crosslinking processes are developed to obviate in situ degradation of the under lying perovskite. The crosslinked material is band-aligned with perovskite. The required free carrier density is induced by a high-work-function metal oxide layer atop the device, following a remote-doping strategy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δ epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Gu, Junxing; He, Qian; Zhang, Kelvin H. L.; Wang, Chunchang; Jin, Kuijuan; Wang, Yongqiang; Acosta, Matias; Wang, Haiyan; Borisevich, Albina Y.; MacManus-Driscoll, Judith L.; Yang, Hao

    2018-04-01

    Dielectric relaxation in ABO3 perovskite oxides can result from many different charge carrier-related phenomena. Despite a strong understanding of dielectric relaxations, a detailed investigation of the relationship between the content of oxygen vacancies (VO) and dielectric relaxation has not been performed in perovskite oxide films. In this work, we report a systematic investigation of the influence of the VO concentration on the dielectric relaxation of Eu0.5Ba0.5TiO3-δ epitaxial thin films. Nuclear resonance backscattering spectrometry was used to directly measure the oxygen concentration in Eu0.5Ba0.5TiO3-δ films. We found that dipolar defects created by VO interact with the off-centered Ti ions, which results in the dielectric relaxation in Eu0.5Ba0.5TiO3-δ films. Activation energy gradually increases with the increasing content of VO. The present work significantly extends our understanding of relaxation properties in oxide films.

  13. Magnetic Modes in Rare Earth Perovskites: A Magnetic-Field-Dependent Inelastic Light Scattering study.

    PubMed

    Saha, Surajit; Cao, Bing-Chen; Motapothula, M; Cong, Chun-Xiao; Sarkar, Tarapada; Srivastava, Amar; Sarkar, Soumya; Patra, Abhijeet; Ghosh, Siddhartha; Ariando; Coey, J M D; Yu, Ting; Venkatesan, T

    2016-11-15

    Here, we report the presence of defect-related states with magnetic degrees of freedom in crystals of LaAlO 3 and several other rare-earth based perovskite oxides using inelastic light scattering (Raman spectroscopy) at low temperatures in applied magnetic fields of up to 9 T. Some of these states are at about 140 meV above the valence band maximum while others are mid-gap states at about 2.3 eV. No magnetic impurity could be detected in LaAlO 3 by Proton-Induced X-ray Emission Spectroscopy. We, therefore, attribute the angular momentum-like states in LaAlO 3 to cationic/anionic vacancies or anti-site defects. Comparison with the other rare earth perovskites leads to the empirical rule that the magnetic-field-sensitive transitions require planes of heavy elements (e.g. lanthanum) and oxygen without any other light cations in the same plane. These magnetic degrees of freedom in rare earth perovskites with useful dielectric properties may be tunable by appropriate defect engineering for magneto-optic applications.

  14. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offersmore » a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.« less

  15. Octahedral tilting instabilities in inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-02-01

    Dynamic instabilities, stabilized by anharmonic interactions in cubic and tetragonal halide perovskites at high temperature, play a role in the electronic structure and optoelectronic properties of halide perovskites. In particular, inorganic and hybrid perovskite materials undergo structural phase transitions associated with octahedral tilts of the metal-halide octahedra. We investigate the structural instabilities present in inorganic Cs M X3 perovskites with Pb or Sn on the metal site and Br or I on the X site. Defining primary order parameters in terms of symmetry-adapted collective displacement modes and secondary order parameters in terms of symmetrized Hencky strain components, we unravel the coupling between octahedral tilt modes and macroscopic strains as well as the role of A -site displacements in perovskite phase stability. Symmetry-allowed secondary strain order parameters are enumerated for the 14 unique perovskite tilt systems. Using first-principles calculations to explore the Born-Oppenheimer energy surface in terms of symmetrized order parameters, we find coupling between octahedral tilting and A -site displacements is necessary to stabilize P n m a ground states. Additionally, we show that the relative stability of an inorganic halide perovskite tilt system correlates with the volume decrease from the high-symmetry cubic phase to the low-symmetry distorted phase.

  16. The Origin of Uni-axial Negative Thermal Expansion in a Layered Perovskite

    NASA Astrophysics Data System (ADS)

    Ablitt, Chris; Craddock, Sarah; Senn, Mark; Mostofi, Arash; Bristowe, Nicholas

    Using first-principles calculations within the quasi-harmonic approximation (QHA), we explain the origin of experimentally observed uni-axial negative thermal expansion (NTE) in a layered perovskite: the Ruddlesden-Popper (RP) oxide Ca2MnO4, which has anti-ferromagnetic ordering at low temperatures and is closely related to Ca3Mn2O7, which exhibits hybrid improper ferroelectricity and uni-axial NTE in competing phases. Dynamic tilts of MnO6 octahedra, common in many complex oxides, drive the expansion of the a axis and contraction of the c axis of the tetragonal NTE phase. We find that ferroelastic RP phases with a frozen octahedral rotation are unusually compliant to particular combinations of strains along different axes. The atomic mechanism responsible is characteristic of the perovskite/rock-salt interfaces present in the RP structure. We show that the contribution from this anisotropic elasticity must be taken into account in order to accurately predict NTE over the temperature range observed in experiment. A similar compliance to cooperative strains is found in other systems with uni-axial NTE. The development of this mechanistic understanding of NTE in complex oxides may pave the way for designing tunable multifunctional materials. The authors would like to acknowledge support from the EPSRC and the Centre for Doctoral Training in Theory and Simulation of Materials.

  17. Garden-like perovskite superstructures with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ye, Meidan; Wang, Mengye; Zheng, Dajiang; Zhang, Nan; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation.By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3

  18. Ultrastable Photoelectrodes for Solar Water Splitting Based on Organic Metal Halide Perovskite Fabricated by Lift-Off Process.

    PubMed

    Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan

    2018-05-02

    Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.

  19. Hybrid Organic-Inorganic Perovskite Photodetectors.

    PubMed

    Tian, Wei; Zhou, Huanping; Li, Liang

    2017-11-01

    Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multiscale modeling and experimental interpretation of perovskite oxide materials in thermochemical energy storage and conversion for application in concentrating solar power

    NASA Astrophysics Data System (ADS)

    Albrecht, Kevin J.

    Decarbonization of the electric grid is fundamentally limited by the intermittency of renewable resources such as wind and solar. Therefore, energy storage will play a significant role in the future of grid-scale energy generation to overcome the intermittency issues. For this reason, concentrating solar power (CSP) plants have been a renewable energy generation technology of interest due to their ability to participate in cost effective and efficient thermal energy storage. However, the ability to dynamically dispatch a CSP plant to meet energy demands is currently limited by the large quantities of sensible thermal energy storage material needed in a molten salt plant. Perovskite oxides have been suggested as a thermochemical energy storage material to enhance the energy storage capabilities of particle-based CSP plants, which combine sensible and chemical modes of energy storage. In this dissertation, computational models are used to establish the thermochemical energy storage potential of select perovskite compositions, identify system configurations that promote high values of energy storage and solar-to-electric efficiency, assess the kinetic and transport limitation of the chemical mode of energy storage, and create receiver and reoxidation reactor models capable of aiding in component design. A methodology for determining perovskite thermochemical energy storage potential is developed based on point defect models to represent perovskite non-stoichiometry as a function of temperature and gas phase oxygen partial pressure. The thermodynamic parameters necessary for the model are extracted from non-stoichiometry measurements by fitting the model using an optimization routine. The procedure is demonstrated for Ca0.9Sr0.1MnO 3-d which displayed combined energy storage values of 705.7 kJ/kg -1 by cycling between 773 K and 0.21 bar oxygen to 1173 K and 10 -4 bar oxygen. Thermodynamic system-level models capable of exploiting perovskite redox chemistry for energy

  1. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    PubMed Central

    Cascos, Vanessa; Alonso, José Antonio; Fernández-Díaz, María Teresa

    2016-01-01

    SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2) oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC) with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2) oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD) experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features. PMID:28773708

  2. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance.

    PubMed

    Chen, Alexander Z; Shiu, Michelle; Ma, Jennifer H; Alpert, Matthew R; Zhang, Depei; Foley, Benjamin J; Smilgies, Detlef-M; Lee, Seung-Hun; Choi, Joshua J

    2018-04-06

    Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid-air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.

  3. Rational Strategies for Efficient Perovskite Solar Cells.

    PubMed

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  4. Temperature-dependent phase transition and comparative investigation on enhanced magnetic and optical properties between sillenite and perovskite bismuth ferrite-rGO nanocomposites

    NASA Astrophysics Data System (ADS)

    Jalil, M. A.; Chowdhury, Sayeed Shafayet; Alam Sakib, Mashnoon; Enamul Hoque Yousuf, S. M.; Khan Ashik, Emran; Firoz, Shakhawat H.; Basith, M. A.

    2017-08-01

    The manuscript reports the synthesis as well as a comparative investigation of the structural, magnetic, and optical properties between sillenite and perovskite type bismuth ferrite-reduced graphene oxide nanocomposites. Graphite oxide is prepared using the modified Hummers' method, followed by hydrothermal synthesis of bismuth ferrite-reduced graphene oxide nanocomposites at different reaction temperatures. The X-ray diffraction measurements confirm the formation of perovskite type BiFeO3-rGO nanocomposites at a reaction temperature of 200 °C. This is the lowest temperature to obtain perovskite type BiFeO3-rGO nanocomposites under the reaction procedure adopted, however, a structural transition to sillenite type Bi25FeO40-rGO is observed at 180 °C. The FESEM images demonstrate that the particle size of the perovskite nanocomposite is 25-60 nm, and for the sillenite phase nanocomposite it is 10-30 nm. The as-synthesized nanocomposites exhibit significantly enhanced saturation magnetization over pure BiFeO3 nanoparticles, with the sillenite Bi25FeO40-rGO nanocomposite having higher saturation magnetization than perovskite BiFeO3-rGO. The optical characteristics of the as-synthesized nanocomposites demonstrate considerably higher absorbance in the visible range with significantly lower band gap in comparison to undoped BiFeO3. Again, the sillenite Bi25FeO40-rGO nanocomposite is shown to have a lower band gap compared to the perovskite counterpart. Our investigation provides a means of selective phase formation as desired between sillenite Bi25FeO40-rGO and perovskite BiFeO3-rGO by controlling the hydrothermal reaction temperature. The outcome of our investigation suggests that the formation of nanocomposite of sillenite bismuth ferrite with reduced graphene oxide is promising to improve the magnetic and optical properties for potential technological applications.

  5. Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells.

    PubMed

    Li, Ming-Hsien; Yang, Yu-Syuan; Wang, Kuo-Chin; Chiang, Yu-Hsien; Shen, Po-Shen; Lai, Wei-Chih; Guo, Tzung-Fang; Chen, Peter

    2017-12-06

    A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiO x counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO 2 and mp-Al 2 O 3 ), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO 2 /mp-Al 2 O 3 /np-Au:NiO x as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.

  6. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less

  7. Strongly correlated perovskite fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  8. Strongly correlated perovskite fuel cells.

    PubMed

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-06-09

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  9. Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Ran, Ran; Chen, Yubo; Shao, Zongping; Liu, Meilin

    2016-01-13

    Solid oxide fuel cells (SOFCs) have potential to be the cleanest and most efficient electrochemical energy conversion devices with excellent fuel flexibility. To make SOFC systems more durable and economically competitive, however, the operation temperature must be significantly reduced, which depends sensitively on the development of highly active electrocatalysts for oxygen reduction reaction (ORR) at low temperatures. Here we report a novel silver nanoparticle-decorated perovskite oxide, prepared via a facile exsolution process from a Sr0.95Ag0.05Nb0.1Co0.9O3-δ (SANC) perovskite precursor, as a highly active and robust ORR electrocatalyst for low-temperature SOFCs. The exsolved Sr0.95Ag0.05Nb0.1Co0.9O3-δ (denoted as e-SANC) electrode is very active for ORR, achieving a very low area specific resistance (∼0.214 Ω cm(2) at 500 °C). An anode-supported cell with the new heterostructured cathode demonstrates very high peak power density (1116 mW cm(-2) at 500 °C) and stable operation for 140 h at a current density of 625 mA cm(-2). The superior ORR activity and stability are attributed to the fast oxygen surface exchange kinetics and the firm adhesion of the Ag nanoparticles to the Sr0.95Nb0.1Co0.9O3-δ (SNC0.95) support. Moreover, the e-SANC cathode displays improved tolerance to CO2. These unique features make the new heterostructured material a highly promising cathode for low-temperature SOFCs.

  10. Perovskite solar cells in N-I-P structure with four slot-die-coated layers

    PubMed Central

    Burkitt, Daniel; Searle, Justin

    2018-01-01

    The fabrication of perovskite solar cells in an N-I-P structure with compact titanium dioxide blocking, mesoporous titanium dioxide scaffold, single-step perovskite and hole-transport layers deposited using the slot-die coating technique is reported. Devices on fluorine-doped tin oxide-coated glass substrates with evaporated gold top contacts and four slot-die-coated layers are demonstrated, and best cells reach stabilized power conversion efficiencies of 7%. This work demonstrates the suitability of slot-die coating for the production of layers within this perovskite solar cell stack and the potential to transfer to large area and roll-to-roll manufacturing processes. PMID:29892402

  11. Intriguing optoelectronic properties of metal halide perovskites

    DOE PAGES

    Manser, Joseph S.; Christians, Jeffrey A.; Kamat, Prashant V.

    2016-06-21

    Here, a new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX 3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewedmore » with an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH 3NH 3PbI 3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2- dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.« less

  12. Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites

    DOE PAGES

    Uberuaga, Blas Pedro; Pilania, Ghanshyam

    2015-07-08

    Perovskite structured oxides (ABO 3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA’BB’O 6) provide even more flexibility for tailoring properties. Using accelerated molecular dynamics, we examine the role of cation ordering on oxygen vacancy mobility in one model double perovskite SrLaTiAlO 6. We find that the mobility of the vacancy is very sensitive to the cation ordering, with a migration energy that varies from 0.6 to 2.7 eV. In the extreme cases, the mobility is both higher and lower than either of the two endmore » member single perovskites. Further, the nature of oxygen vacancy diffusion, whether one-dimensional, two-dimensional, or three-dimensional, also varies with cation ordering. We correlate the dependence of oxygen mobility on cation structure to the distribution of Ti 4+ cations, which provide unfavorable environments for the positively charged oxygen vacancy. The results demonstrate the potential of using tailored double perovskite structures to precisely control the behavior of oxygen vacancies in these materials.« less

  13. Scalable fabrication of perovskite solar cells

    DOE PAGES

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; ...

    2018-03-27

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discussmore » common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.« less

  14. An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ren, Ziqiu; Zhu, Menghua; Li, Xin; Dong, Cunku

    2017-09-01

    As a promising photovoltaic device, perovskite solar cells have attracted numerous attention in recent years, where forming a compact and pinhole-free perovskite film in air is of great importance. Herein, we evaluate highly efficient and air stable planar perovskite solar cells in air (relative humidity over 50%) with the modified two-step sequential deposition method by adjusting the CH3NH3I (MAI) concentrations and regulating the crystallization process of the perovskite film. The optimum MAI concentration is 60 mg mL-1 in isopropanol. With a planar structure of FTO/TiO2/MAPbI3/spiro-OMeTAD/Au, the efficient devices composed of compact and pinhole-free perovskite films are constructed in air, achieving a high efficiency of up to 15.10% and maintaining over 80% after 20 days storing without any encapsulation in air. With a facile fabrication process and high photovoltaic performance, this work represents a promising method for fabricating low-cost, highly efficient and stable photovoltaic device.

  15. Structural and Magnetic Phase Coexistence in Oxygen Deficient Perovskites (Sr,Ca)FeO 2 . 5 + δ

    NASA Astrophysics Data System (ADS)

    Carlo, J. P.; Evans, M. E.; Anczarski, J. A.; Ock, J.; Boyd, K.; Pollichemi, J. R.; Leahy, I. A.; Vogel, W.; Viescas, A. J.; Papaefthymiou, G. C.

    A variety of compounds crystallize into perovskite and similar structures, making them versatile laboratories for many phenomena and applications, including multiferroicity, superconductivity, and photovoltaics. Oxygen-deficient perovskites ABOx have attracted interest for use in fuel cells and related applications due to high oxygen mobility and the possibility of charge disproportionation. Vast chemical flexibility is obtained through reductions in lattice symmetry and rotation/distortion of the BO6 octahedra, as well as ordering of oxygen vacancies. We have synthesized and studied the structural and magnetic properties of oxygen-deficient perovskites (Sr,Ca)FeO2 . 5 + δ using x-ray diffraction and Mossbauer spectroscopy. While the ideal perovskite has δ = 0.5, this requires Fe4+, and hence strongly oxidizing environments. When grown in air, Fe3+ is favored, yielding δ ~ 0. SrFeO2 . 5 + δ exhibits cubic symmetry and paramagnetism at 300K, but CaFeO2 . 5 + δ crystallizes into the orthorhombic brownmillerite structure, and is magnetically ordered at 300K. In the doped intermediaries we find coexistence of cubic/paramagnetic and orthorhombic/magnetic phases over a wide range of Ca content. Financial support from the Villanova Undergraduate Research Fellowship program and the Research Corporation for Science Advancement.

  16. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Hou, Yi; Du, Xiaoyan; Scheiner, Simon; McMeekin, David P.; Wang, Zhiping; Li, Ning; Killian, Manuela S.; Chen, Haiwei; Richter, Moses; Levchuk, Ievgen; Schrenker, Nadine; Spiecker, Erdmann; Stubhan, Tobias; Luechinger, Norman A.; Hirsch, Andreas; Schmuki, Patrik; Steinrück, Hans-Peter; Fink, Rainer H.; Halik, Marcus; Snaith, Henry J.; Brabec, Christoph J.

    2017-12-01

    A major bottleneck delaying the further commercialization of thin-film solar cells based on hybrid organohalide lead perovskites is interface loss in state-of-the-art devices. We present a generic interface architecture that combines solution-processed, reliable, and cost-efficient hole-transporting materials without compromising efficiency, stability, or scalability of perovskite solar cells. Tantalum-doped tungsten oxide (Ta-WOx)/conjugated polymer multilayers offer a surprisingly small interface barrier and form quasi-ohmic contacts universally with various scalable conjugated polymers. In a simple device with regular planar architecture and a self-assembled monolayer, Ta-WOx-doped interface-based perovskite solar cells achieve maximum efficiencies of 21.2% and offer more than 1000 hours of light stability. By eliminating additional ionic dopants, these findings open up the entire class of organics as scalable hole-transporting materials for perovskite solar cells.

  17. Theory and Application of Photoelectron Diffraction for Complex Oxide Systems

    NASA Astrophysics Data System (ADS)

    Chassé, Angelika; Chassé, Thomas

    2018-06-01

    X-ray photoelectron diffraction (XPD) has been used to investigate film structures and local sites of surface and dopant atoms in complex oxide materials. We have performed angular-resolved measurements of intensity distribution curves (ADCs) and patterns (ADPs) of elemental core level intensities from binary to quaternary mixed oxide samples and compared them to multiple-scattering cluster (MSC) calculations in order to derive information on structural models and related parameters. MSC calculations permitted to describe both bulk diffraction features of binary oxide MnO(001) and the thickness-dependence of the tetragonal distortion of epitaxial MnO films on Ag(001). XPD was further used to investigate the surface termination of perovskite SrTiO3 and BaTiO3 substrates in order to evaluate influence of different ex situ and in situ preparation procedures on the surface layers, which are crucial for quality of following film growth. Despite the similarity of local environments of Sr (Ba) and Ti atoms in the perovskite film structure an angular region in the ADCs was identified as a fingerprint with the help of MSC simulations which provided clear conclusions on the perovskite oxide surfaces. Dopant sites in quaternary perovskite manganites La1-xCaxMnO3, La1-xSrxMnO3, and La1-xCexMnO3 were studied with polar angle scans of the photoemission intensities of host and dopant atoms. Both direct comparison of experimental ADCs and to the simulations within MSC models confirm the occupation of A sites by the dopants and the structural quality of the complex oxide films.

  18. Resonant halide perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  19. Oxidized Ni/Au Transparent Electrode in Efficient CH3 NH3 PbI3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells.

    PubMed

    Lai, Wei-Chih; Lin, Kun-Wei; Wang, Yuan-Ting; Chiang, Tsung-Yu; Chen, Peter; Guo, Tzung-Fang

    2016-05-01

    The successful application of a Ni/Au transparent electrode for fabricating efficient perovskite-based solar cells is demonstrated. Through interdiffusion of the Ni/Au bilayer, Au forms an interconnected metallic network structure as the transparent electrode. Ni diffuses to the bilayer surface and oxidizes into NiOx becoming an appropriate electrode interlayer. These ITO- and PSS-free devices have potential applications in the design of future cost-effective, low-weight, and stable solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanometer-Scale Epitaxial Strain Release in Perovskite Heterostructures Using 'SrAlOx' Sliding Buffer Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Christopher

    2011-08-11

    We demonstrate the strain release of LaAlO{sub 3} epitaxial film on SrTiO{sub 3} (001) by inserting ultra-thin 'SrAlO{sub x}' buffer layers. Although SrAlO{sub x} is not a perovskite, nor stable as a single phase in bulk, epitaxy stabilizes the perovskite structure up to a thickness of 2 unit cells (uc). At a critical thickness of 3 uc of SrAlO{sub x}, the interlayer acts as a sliding buffer layer, and abruptly relieves the lattice mismatch between the LaAlO{sub 3} filmand the SrTiO{sub 3} substrate, while maintaining crystallinity. This technique may provide a general approach for strain relaxation of perovskite film farmore » below the thermodynamic critical thickness. A central issue in heteroepitaxial filmgrowth is the inevitable difference in lattice constants between the filmand substrate. Due to this lattice mismatch, thin film are subjected to microstructural strain, which can have a significan effect on the filmproperties. This challenge is especially prominent in the rapidly developing fiel of oxide electronics, where much interest is focused on incorporating the emergent physical properties of oxides in devices. Although strain can be used to great effect to engineer unusual ground states, it is often deleterious for bulk first-orde phase transitions, which are suppressed by the strain and symmetry constraints of the substrate. While there are some reports discussing the control of the lattice mismatch in oxides using thick buffer layers, the materials choice, lattice-tunable range, and control of misfit dislocations are still limited. In this Letter, we report the fabrication of strain-relaxed LaAlO{sub 3} (LAO) thin film on SrTiO{sub 3} (STO) (001) using very thin 'SrAlO{sub x}' (SAO) buffer layers. Whereas for 1 or 2 pseudo-perovskite unit cells (uc) of SAO, the subsequent LAO filmis strained to the substrate, at a critical thickness of 3 uc the SAO interlayer abruptly relieves the lattice mismatch between the LAO and the STO, although maintaining

  1. Investigating Recombination and Charge Carrier Dynamics in a One-Dimensional Nanopillared Perovskite Absorber.

    PubMed

    Kwon, Hyeok-Chan; Yang, Wooseok; Lee, Daehee; Ahn, Jihoon; Lee, Eunsong; Ma, Sunihl; Kim, Kyungmi; Yun, Seong-Cheol; Moon, Jooho

    2018-05-22

    Organometal halide perovskite materials have become an exciting research topic as manifested by intense development of thin film solar cells. Although high-performance solar-cell-based planar and mesoscopic configurations have been reported, one-dimensional (1-D) nanostructured perovskite solar cells are rarely investigated despite their expected promising optoelectrical properties, such as enhanced charge transport/extraction. Herein, we have analyzed the 1-D nanostructure effects of organometal halide perovskite (CH 3 NH 3 PbI 3- x Cl x ) on recombination and charge carrier dynamics by utilizing a nanoporous anodized alumina oxide scaffold to fabricate a vertically aligned 1-D nanopillared array with controllable diameters. It was observed that the 1-D perovskite exhibits faster charge transport/extraction characteristics, lower defect density, and lower bulk resistance than the planar counterpart. As the aspect ratio increases in the 1-D structures, in addition, the charge transport/extraction rate is enhanced and the resistance further decreases. However, when the aspect ratio reaches 6.67 (diameter ∼30 nm), the recombination rate is aggravated due to high interface-to-volume ratio-induced defect generation. To obtain the full benefits of 1-D perovskite nanostructuring, our study provides a design rule to choose the appropriate aspect ratio of 1-D perovskite structures for improved photovoltaic and other optoelectrical applications.

  2. Understanding the Origins of Large Negative Thermal Expansion in Ferroelectric Perovskites from First Principles

    NASA Astrophysics Data System (ADS)

    Ritz, Ethan; Benedek, Nicole

    Many of the functional properties of ABO3 perovskite oxides (for example, ferroelectricity) are strongly linked to particular phonon modes in the material. In addition, in many cases it is possible to formulate simple guidelines or `rules of thumb' that link crystal structure and chemistry to specific lattice dynamical characteristics. The thermal transport properties of perovskites are thus potentially highly tunable and dynamically controllable with external fields. We use first-principles density functional theory to reveal new details related to the origin of the large negative thermal expansion (NTE) observed for ferroelectric PbTiO3. Although the origin of NTE in this material is often ascribed to ferroelectricity (which arises from the freezing in of a soft, zone-center optical phonon), our results suggest that zone-boundary modes play a major role in driving NTE. In addition, hybridization between different electronic states has a significant effect on the lattice dynamics of PbTiO3 in general, and its NTE behavior in particular. Our work has implications for the understanding of, discovery and design of NTE in perovskites and other families of inorganic materials. This work was supported in part by a NASA Space Technology Research Fellowship.

  3. Nature of potential barrier in (Ca 1/4,Cu 3/4)TiO 3 polycrystalline perovskite

    NASA Astrophysics Data System (ADS)

    Marques, V. P. B.; Bueno, P. R.; Simões, A. Z.; Cilense, M.; Varela, J. A.; Longo, E.; Leite, E. R.

    2006-04-01

    The nonohmic electrical features of (Ca 1/4,Cu 3/4)TiO 3 perovskite ceramics, which have very strong gigantic dielectric is believed originate from potential barriers at the grain boundaries. In the present study, we used the admittance and impedance spectroscopy technique to investigate (Ca 1/4,Cu 3/4)TiO 3 perovskite ceramics with low nonohmic electrical properties. The study was conducted under two different conditions: on as-sintered ceramics and on ceramics thermally treated in an oxygen-rich atmosphere. The results confirm that thermal treatment in oxygen-rich atmospheres influence the nonohmic properties. Annealing at oxygen-rich atmospheres improve the nonohmic behavior and annealing at oxygen-poor atmospheres decrease the nonohmic properties, a behavior already reported for common metal oxide nonohmic devices and here firstly evidenced for the (Ca 1/4,Cu 3/4)TiO 3 perovskite related materials. The results show that oxygen also influences the capacitance values at low frequencies, a behavior that is indicative of the Schottky-type nature of the potential barrier.

  4. Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ali, F.; Khoshsirat, N.; Duffin, J. L.; Wang, H.; Ostrikov, K.; Bell, J. M.; Tesfamichael, T.

    2017-09-01

    Perovskite solar cells have emerged as one of the most efficient and low cost technologies for delivering of solar electricity due to their exceptional optical and electrical properties. Commercialization of the perovskite solar cells is, however, limited because of the higher cost and environmentally sensitive organic hole transport materials such as spiro-OMETAD and PEDOT:PSS. In this study, an empirical simulation was performed using the Solar Cell Capacitance Simulator software to explore the MoOx thin film as an alternative hole transport material for perovskite solar cells. In the simulation, properties of MoOx thin films deposited by the electron beam evaporation technique from high purity (99.99%) MoO3 pellets at different substrate temperatures (room temperature, 100 °C and 200 °C) were used as input parameters. The films were highly transparent (>80%) and have low surface roughness (≤2 nm) with bandgap energy ranging between 3.75 eV and 3.45 eV. Device simulation has shown that the MoOx deposited at room temperature can work in both the regular and inverted structures of the perovskite solar cell with a promising efficiency of 18.25%. Manufacturing of the full device is planned in order to utilize the MoOx as an alternative hole transport material for improved performance, good stability, and low cost of the perovskite solar cell.

  5. Pressure-induced metallization of the halide perovskite (CH 3NH 3)PbI 3

    DOE PAGES

    Jaffe, Adam; Lin, Yu; Mao, Wendy L.; ...

    2017-03-14

    We report the metallization of the hybrid perovskite semiconductor (MA)PbI 3 (MA = CH 3NH 3 +) with no apparent structural transition. We tracked its bandgap evolution during compression in diamond-anvil cells using absorption spectroscopy and observed strong absorption over both visible and IR wavelengths at pressures above ca. 56 GPa, suggesting the imminent closure of its optical bandgap. The metallic character of (MA)PbI 3 above 60 GPa was confirmed using both IR reflectivity and variable-temperature dc conductivity measurements. The impressive semiconductor properties of halide perovskites have recently been exploited in a multitude of optoelectronic applications. Meanwhile, the study ofmore » metallic properties in oxide perovskites has revealed diverse electronic phenomena. Importantly, the mild synthetic routes to halide perovskites and the templating effects of the organic cations allow for fine structural control of the inorganic lattice. Lastly, pressure-induced closure of the 1.6 eV bandgap in (MA)PbI3 demonstrates the promise of the continued study of halide perovskites under a range of thermodynamic conditions, toward realizing wholly new electronic properties.« less

  6. Pressure-induced metallization of the halide perovskite (CH 3NH 3)PbI 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffe, Adam; Lin, Yu; Mao, Wendy L.

    We report the metallization of the hybrid perovskite semiconductor (MA)PbI 3 (MA = CH 3NH 3 +) with no apparent structural transition. We tracked its bandgap evolution during compression in diamond-anvil cells using absorption spectroscopy and observed strong absorption over both visible and IR wavelengths at pressures above ca. 56 GPa, suggesting the imminent closure of its optical bandgap. The metallic character of (MA)PbI 3 above 60 GPa was confirmed using both IR reflectivity and variable-temperature dc conductivity measurements. The impressive semiconductor properties of halide perovskites have recently been exploited in a multitude of optoelectronic applications. Meanwhile, the study ofmore » metallic properties in oxide perovskites has revealed diverse electronic phenomena. Importantly, the mild synthetic routes to halide perovskites and the templating effects of the organic cations allow for fine structural control of the inorganic lattice. Lastly, pressure-induced closure of the 1.6 eV bandgap in (MA)PbI3 demonstrates the promise of the continued study of halide perovskites under a range of thermodynamic conditions, toward realizing wholly new electronic properties.« less

  7. A Novel Conductive Mesoporous Layer with a Dynamic Two-Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20.

    PubMed

    Sun, Haoxuan; Deng, Kaimo; Zhu, Yayun; Liao, Min; Xiong, Jie; Li, Yanrong; Li, Liang

    2018-05-22

    Lead halide perovskite solar cells (PSCs) with the high power conversion efficiency (PCE) typically use mesoporous metal oxide nanoparticles as the scaffold and electron-transport layers. However, the traditional mesoporous layer suffers from low electron conductivity and severe carrier recombination. Here, antimony-doped tin oxide nanorod arrays are proposed as novel transparent conductive mesoporous layers in PSCs. Such a mesoporous layer improves the electron transport as well as light utilization. To resolve the common problem of uneven growth of perovskite on rough surface, the dynamic two-step spin coating strategy is proposed to prepare highly smooth, dense, and crystallized perovskite films with micrometer-scale grains, largely reducing the carrier recombination ratio. The conductive mesoporous layer and high-quality perovskite film eventually render the PSC with a remarkable PCE of 20.1% with excellent reproducibility. These findings provide a new avenue to further design high-efficiency PSCs from the aspect of carrier transport and recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    PubMed Central

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  9. Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3- δ.

    PubMed

    Jeen, H; Choi, W S; Freeland, J W; Ohta, H; Jung, C U; Lee, H N

    2013-07-19

    Pulsed laser epitaxy of brownmillerite SrCoO2.5 thin films and their phase transformation to the perovskite SrCoO3-δ are investigated. While the direct growth of the fully oxidized perovskite films is found to be an arduous task, filling some of oxygen vacancies into SrCoO2.5 by topotactic oxidation accompanies systematic evolution of electronic, magnetic, and thermoelectric properties, useful for many information and energy technologies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Family of A-Site Cation-Deficient Double-Perovskite-Related Iridates: Ln9Sr2Ir4O24 (Ln = La, Pr, Nd, Sm).

    PubMed

    Ferreira, Timothy; Smith, Mark D; Zur Loye, Hans-Conrad

    2018-06-21

    The compositions of the general formula Ln 11- x Sr x Ir 4 O 24 (Ln = La, Pr, Nd, Sm; 1.37 ≥ x ≥ 2) belonging to a family of A-site cation-deficient double-perovskite-related oxide iridates were grown as highly faceted single crystals from a molten strontium chloride flux. Their structures were determined by single-crystal X-ray diffraction. On the basis of the single-crystal results, additional compositions, Ln 9 Sr 2 Ir 4 O 24 (Ln = La, Pr, Nd, Sm), were prepared as polycrystalline powders via solid-state reactions and structurally characterized by Rietveld refinement. The compositions Ln 9 Sr 2 Ir 4 O 24 (Ln = La, Pr, Nd, Sm) contain Ir(V) and Ir(IV) in a 1:3 ratio with an average iridium oxidation state of 4.25. The single-crystal compositions La 9.15 Sr 1.85 Ir 4 O 24 and Pr 9.63 Sr 1.37 Ir 4 O 24 contain relatively less Ir(V), with the average iridium oxidation states being 4.21 and 4.09, respectively. The magnetic properties of Ln 9 Sr 2 Ir 4 O 24 (Ln = La, Pr, Nd, Sm) were measured, and complex magnetic behavior was observed in all cases at temperatures below 30 K.

  11. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Manser, Joseph S.

    travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially

  12. Towards 3D mapping of BO₆ octahedron rotations at perovskite heterointerfaces, unit cell by unit cell

    DOE PAGES

    He, Qian; Ishikawa, Ryo; Lupini, Andrew R.; ...

    2015-07-15

    The rich functionalities in the ABO₃ perovskite oxides originate at least partly from the ability of the corner-connected BO₆ octahedral network to host a large variety of cations through distortions and rotations. Characterizing these rotations, which significantly affect both fundamental aspects of materials behavior and possible applications, remains a major challenge. In this work, we have developed a unique method of investigating BO₆ rotation patterns in complex oxides ABO₃ with unit cell resolution at heterointerfaces, where novel properties often emerge. Our method involves column shape analysis in annular bright field - scanning transmission electron microscope images of the ABO₃ heterointerfacesmore » taken in specific orientations. The rotating phase of BO₆ octahedra can be identified for all three spatial dimensions without the need of case-by-case simulation. In several common rotation systems, it is now possible to quantitatively measure all three rotation angles. With this method, we examined interfaces between perovskites with distinct tilt systems as well as interfaces between tilted and untilted perovskites, identifying an unusual coupling behavior at the CaTiO₃/LSAT interface. We believe this unique method will significantly improve our knowledge of the complex oxide heterointerfaces.« less

  13. Strongly correlated perovskite fuel cells

    DOE PAGES

    Zhou, You; Guan, Xiaofei; Zhou, Hua; ...

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes.more » Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.« less

  14. Structural and magnetic properties of RTiNO{sub 2} (R=Ce, Pr, Nd) perovskite nitride oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Spencer H.; Huang, Zhenguo, E-mail: zhenguo@uow.edu.au; Cheng, Zhenxiang

    2015-03-15

    Neutron powder diffraction indicates that CeTiNO{sub 2} and PrTiNO{sub 2} crystallize with orthorhombic Pnma symmetry (Ce: a=5.5580(5), b=7.8369(7), and c=5.5830(4) Å; Pr: a=5.5468(5), b=7.8142(5), and c=5.5514(5) Å) as a result of a{sup –}b{sup +}a{sup –} tilting of the titanium-centered octahedra. Careful examination of the NPD data, confirms the absence of long range anion order in both compounds, while apparent superstructure reflections seen in electron diffraction patterns provide evidence for short range anion order. Inverse magnetic susceptibility plots reveal that the RTiNO{sub 2} (R=Ce, Pr, Nd) compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. Effective magneticmore » moments for RTiNO{sub 2} (R=Ce, Pr, Nd) are 2.43 μ{sub B}, 3.63 μ{sub B}, and 3.47 μ{sub B}, respectively, in line with values expected for free rare-earth ions. Deviations from Curie–Weiss behavior that occur below 150 K for CeTiNO{sub 2} and below 30 K for NdTiNO{sub 2} are driven by magnetic anisotropy, spin–orbit coupling, and crystal field effects. - Graphical abstract: The structure and magnetism of the oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr, Nd) have been explored. The average symmetry is shown to be Pnma with a random distribution of oxide and nitride ions and a{sup −}b{sup +}a{sup −} tilting of the titanium-centered octahedra, but electron diffraction shows evidence for short range anion order. All three compounds are paramagnetic but deviations from the Curie Weiss law are seen below 150 K for R=Ce and below 30 K for R=Nd. - Highlights: • The oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr) have been prepared and their structures determined. • Diffraction measurements indicate short range cis-order of O and N, but no long range order. • Compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. • CeTiO{sub 2}N and NdTiO{sub 2}N deviate from Curie–Weiss behavior below 150 and 30 K

  15. Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuhei; Ueda, Kazushige

    2016-10-01

    Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.

  16. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage.

    PubMed

    Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y

    2017-09-01

    Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    PubMed

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Radiative efficiency of lead iodide based perovskite solar cells

    PubMed Central

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate. PMID:25317958

  19. Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites.

    PubMed

    Turkevych, Ivan; Kazaoui, Said; Ito, Eisuke; Urano, Toshiyuki; Yamada, Koji; Tomiyasu, Hiroshi; Yamagishi, Hideo; Kondo, Michio; Aramaki, Shinji

    2017-10-09

    Hybrid CPbX 3 (C: Cs, CH 3 NH 3 ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C 2 ABX 6 double perovskites based on alternating corner-shared AX 6 and BX 6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX 6 and BX 6 octahedra with the general formula A a B b X x (x=a+3 b) such as Ag 3 BiI 6 , Ag 2 BiI 5 , AgBiI 4 , AgBi 2 I 7 . As perovskites were named after their prototype oxide CaTiO 3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO 2 . We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO 2 /Ag 3 BiI 6 /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Intrinsic Instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study.

    PubMed

    Xiao, Zewen; Du, Ke-Zhao; Meng, Weiwei; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2017-05-03

    Recently, there has been substantial interest in developing double-B-cation halide perovskites, which hold the potential to overcome the toxicity and instability issues inherent within emerging lead halide-based solar absorber materials. Among all double perovskites investigated, In(I)-based Cs 2 InBiCl 6 and Cs 2 InSbCl 6 have been proposed as promising thin-film photovoltaic absorber candidates, with computational examination predicting suitable materials properties, including direct bandgap and small effective masses for both electrons and holes. In this study, we report the intrinsic instability of Cs 2 In(I)M(III)X 6 (M = Bi, Sb; X = halogen) double perovskites by a combination of density functional theory and experimental study. Our results suggest that the In(I)-based double perovskites are unstable against oxidation into In(III)-based compounds. Further, the results show the need to consider reduction-oxidation (redox) chemistry when predicting stability of new prospective electronic materials, especially when less common oxidation states are involved.

  1. A new route of synthesizing perovskite nanotubes by templating approach

    NASA Astrophysics Data System (ADS)

    Habiballah, Anisah Shafiqah; Osman, Nafisah; Jani, Abdul Mutalib Md

    2017-09-01

    A perovskite oxide for example Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) has attracted growing attention due to its high catalytic activity and mixed ionic/electronic conductivity. Recent research of BSCF is more comprehensively based on a remarkable trajectory of innovation, in particular with regards to the synthesis of perovskite structures in one-dimensional (1-D) nanometric scales as they promote not only to increase an active electrode area for the oxygen reduction reaction, but also allow the tailoring of electrode's architecture. Nevertheless, achieving the desired 1-D structure by a conventional method such as hydrothermal, solvothermal, or sonochemical are far from satisfactory. Herein, the aim of this work is to synthesize the BSCF perovskite nanotubes via soft templating approach, particularly using anodic aluminium oxide (AAO) as a template, focusing on the morphology, composition and structural properties were demonstrated. After the AAO template was anodized at 80 V, the fabricated template was clamped between apair of spectroscopic cells containing BSCF sol and deionized water (with a hole of both sides) for 24 hours. After that, the sample was removed from the cells followed by heat treatment process. The FESEM images showed that BSCF nanotubes were successfully achieved, with the diameter of the nanotubes' approximately 80 nm. The EDX result also confirmed the nominal stoichiometry of Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Meanwhile, the XRD pattern confirmed a single crystalline phase of BSCF nanotubes was successfully obtained and congruent to a cubic perovskite structure of BSCF. Possible formation mechanism,as well as the schematic illustration of BSCF nanotubes inside the template was also discussed in this paper.

  2. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Erik; Chen, Aiping; Harrell, Zach

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  3. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE PAGES

    Enriquez, Erik; Chen, Aiping; Harrell, Zach; ...

    2017-04-18

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  4. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    PubMed

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-05

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  5. Structural analysis and characterization of layer perovskite oxynitrides made from Dion Jacobson oxide precursors

    NASA Astrophysics Data System (ADS)

    Schottenfeld, Joshua A.; Benesi, Alan J.; Stephens, Peter W.; Chen, Gugang; Eklund, Peter C.; Mallouk, Thomas E.

    2005-07-01

    A three-layer oxynitride Ruddlesden-Popper phase Rb 1+xCa 2Nb 3O 10-xN x· yH 2O ( x=0.7-0.8, y=0.4-0.6) was synthesized by ammonialysis at 800 °C from the Dion-Jacobson phase RbCa 2Nb 3O 10 in the presence of Rb 2CO 3. Incorporation of nitrogen into the layer perovskite structure was confirmed by XPS, combustion analysis, and MAS NMR. The water content was determined by thermal gravimetric analysis and the rubidium content by ICP-MS. A similar layered perovskite interconversion occurred in the two-layer Dion-Jacobson oxide RbLaNb 2O 7 to yield Rb 1+xLaNb 2O 7-xN x· yH 2O ( x=0.7-0.8, y=0.5-1.0). Both compounds were air- and moisture-sensitive, with rapid loss of nitrogen by oxidation and hydrolysis reactions. The structure of the three-layer oxynitride Rb 1.7Ca 2Nb 3O 9.3N 0.7·0.5H 2O was solved in space group P4 /mmm with a=3.887(3) and c=18.65(1) Å, by Rietveld refinement of X-ray powder diffraction data. The two-layer oxynitride structure Rb 1.8LaNb 2O 6.3N 0.7·1.0H 2O was also determined in space group P4 /mmm with a=3.934(2) and c=14.697(2) Å. GSAS refinement of synchrotron X-ray powder diffraction data showed that the water molecules were intercalated between a double layer of Rb+ ions in both the two- and three-layer Ruddlesden-Popper structures. Optical band gaps were measured by diffuse reflectance UV-vis for both materials. An indirect band gap of 2.51 eV and a direct band gap of 2.99 eV were found for the three-layer compound, while an indirect band gap of 2.29 eV and a direct band gap of 2.84 eV were measured for the two-layer compound. Photocatalytic activity tests of the three-layer compound under 380 nm pass filtered light with AgNO 3 as a sacrificial electron acceptor gave a quantum yield of 0.025% for oxygen evolution.

  6. Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Light-Emitting Diodes.

    PubMed

    Wang, Haoran; Li, Xiaomin; Yuan, Mingjian; Yang, Xuyong

    2018-04-01

    Despite the recent advances in the performance of perovskite light-emitting diodes (PeLEDs), the effects of water on the perovskite emissive layer and its electroluminescence are still unclear, even though it has been previously demonstrated that moisture has a significant impact on the quality of perovskite films in the fabrication process of perovskite solar cells and is a prerequisite for obtaining high-performance PeLEDs. Here, the effects of postmoisture on the luminescent CH 3 NH 3 PbBr 3 (MAPbBr 3 ) perovskite films are systematically investigated. It is found that postmoisture treatment can efficiently control the morphology and growth of perovskite films and only a fast moisture exposure at a 60% high relative humidity results in significantly improved crystallinity, carrier lifetime, and photoluminescence quantum yield of perovskite films. With the optimized moisture-treated perovskite films, a high-performance PeLED is fabricated, exhibiting a maximum current efficiency of 20.4 cd A -1 , which is an almost 20-fold enhancement when compared with perovskite films without moisture treatment. The results provide valuable insights into the moisture-assisted growth of luminescent perovskite films and will aid in the development of high-performance perovskite light-emitting devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air.

    PubMed

    Ito, Nozomi; Kamarudin, Muhammad Akmal; Hirotani, Daisuke; Zhang, Yaohong; Shen, Qing; Ogomi, Yuhei; Iikubo, Satoshi; Minemoto, Takashi; Yoshino, Kenji; Hayase, Shuzi

    2018-04-05

    Lead-based perovskite solar cells have gained ground in recent years, showing efficiency as high as 20%, which is on par with that of silicon solar cells. However, the toxicity of lead makes it a nonideal candidate for use in solar cells. Alternatively, tin-based perovskites have been proposed because of their nontoxic nature and abundance. Unfortunately, these solar cells suffer from low efficiency and stability. Here, we propose a new type of perovskite material based on mixed tin and germanium. The material showed a band gap around 1.4-1.5 eV as measured from photoacoustic spectroscopy, which is ideal from the perspective of solar cells. In a solar cell device with inverted planar structure, pure tin perovskite solar cell showed a moderate efficiency of 3.31%. With 5% doping of germanium into the perovskite, the efficiency improved up to 4.48% (6.90% after 72 h) when measured in air without encapsulation.

  8. Effects of Fe-Enrichment on the Equation of State and Stability of (Mg,Fe)SiO3 Perovskite and Post-Perovskite

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Holl, C. M.; Meng, Y.; Prakapenka, V.; Duffy, T. S.

    2010-12-01

    Fe-enrichment in the deep lower mantle has been proposed as an explanation for seismic anomalies such as large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs). In order to resolve the effect of Fe on the stability and equation of state of the lower mantle’s dominant constituent, (Mg,Fe)SiO3 perovskite, we have studied Fe-rich natural orthopyroxenes, (Mg0.61Fe0.37Ca0.02)SiO3 and (Mg0.25Fe0.70Ca0.05)SiO3 (compositions determined by microprobe analysis), at lower mantle P-T conditions. Pyroxene starting materials were mixed with Au (pressure calibrant and laser absorber) and loaded with NaCl or Ne (pressure medium and thermal insulator) in a symmetric diamond anvil cell. X-ray diffraction experiments at pressures up to 122 GPa with in-situ laser heating were performed at the GSECARS (13-ID-D) and HPCAT (16-ID-B) sectors of the Advanced Photon Source. Heating samples to 2000 K produced single-phase orthorhombic GdFeO3-type perovskite at 63 GPa for the Mg# 61 composition and at 72 GPa for the Mg# 25 composition. At lower pressures (56 GPa for Mg# 61, 67 GPa for Mg# 25), heating both compositions resulted in a mixture of perovskite, SiO2 and (Mg,Fe)O. These measurements provide new constraints on the dependence of (Mg,Fe)SiO3 perovskite stability on pressure and composition. Upon further compression to 93 GPa and higher pressures with laser heating, Mg# 25 perovskite transformed to a two-phase mixture of perovskite and post-perovskite. This is consistent with previous findings that Fe substitution destabilizes (Mg,Fe)SiO3 perovskite relative to (Mg,Fe)SiO3 post-perovskite (Mao et al. 2004, Caracas and Cohen 2005). The bulk modulus at 80 GPa (K80) is ~550 GPa for both Fe-rich perovskites, comparable to values measured for MgSiO3 perovskite (Lundin et al. 2008). However, the volume of Fe-rich perovskites increases linearly with Fe-content. The (Mg0.25Fe0.70Ca0.05)SiO3 perovskite is 3% greater at 80 GPa than V80 for the Mg end

  9. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    NASA Astrophysics Data System (ADS)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  10. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step.

    PubMed

    Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2018-02-08

    Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.

  11. Tackling pseudosymmetry problems in electron backscatter diffraction (EBSD) analyses of perovskite structures

    NASA Astrophysics Data System (ADS)

    Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John

    2016-04-01

    Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a

  12. Perovskite-related LaTiO3.41.

    PubMed

    Daniels, Peter; Lichtenberg, Frank; van Smaalen, Sander

    2003-02-01

    Crystals of pentalanthanum pentatitanium heptadecaoxide (La(5)Ti(5)O(17) with 0.3% oxygen excess, or LaTiO(3.41)) have been synthesized by floating-zone melting, and the structure has been solved using single-crystal X-ray diffraction intensities. The monoclinic (P2(1)/c) structure consists of perovskite-like slabs of vertex-sharing TiO(6) octahedra, which are separated by additional oxygen layers. The slabs are five octahedra wide. Due to the adjustment of the TiO(6) octahedra to meet the coordination requirements of the La(3+) cations, a superstructure develops along the a axis.

  13. Guanidinium-Formamidinium Lead Iodide: A Layered Perovskite-Related Compound with Red Luminescence at Room Temperature.

    PubMed

    Nazarenko, Olga; Kotyrba, Martin R; Yakunin, Sergii; Aebli, Marcel; Rainò, Gabriele; Benin, Bogdan M; Wörle, Michael; Kovalenko, Maksym V

    2018-03-21

    Two-dimensional hybrid organic-inorganic lead halides perovskite-type compounds have attracted immense scientific interest due to their remarkable optoelectronic properties and tailorable crystal structures. In this work, we present a new layered hybrid lead halide, namely [CH(NH 2 ) 2 ][C(NH 2 ) 3 ]PbI 4 , wherein puckered lead-iodide layers are separated by two small and stable organic cations: formamidinium, CH(NH 2 ) 2 + , and guanidinium, C(NH 2 ) 3 + . This perovskite is thermally stable up to 255 °C, exhibits room-temperature photoluminescence in the red region with a quantum yield of 3.5%, and is photoconductive. This study highlights a vast structural diversity that exists in the compositional space typically used in perovskite photovoltaics.

  14. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO₃-δ metal oxide.

    PubMed

    Leiw, Ming Yian; Guai, Guan Hong; Wang, Xiaoping; Tse, Man Siu; Ng, Chee Mang; Tan, Ooi Kiang

    2013-09-15

    Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. High-efficiency robust perovskite solar cells on ultrathin flexible substrates

    PubMed Central

    Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang

    2016-01-01

    Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664

  16. Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules.

    PubMed

    Bu, Tongle; Shi, Shengwei; Li, Jing; Liu, Yifan; Shi, Jielin; Chen, Li; Liu, Xueping; Qiu, Junhao; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Cheng, Yi-Bing; Huang, Fuzhi

    2018-05-02

    Organic-inorganic metal halide perovskite solar cells (PSCs) have been emerging as one of the most promising next generation photovoltaic technologies with a breakthrough power conversion efficiency (PCE) over 22%. However, aiming for commercialization, it still encounters challenges for the large-scale module fabrication, especially for flexible devices which have attracted intensive attention recently. Low-temperature processed high-performance electron-transporting layers (ETLs) are still difficult. Herein, we present a facile low-temperature synthesis of crystalline SnO 2 nanocrystals (NCs) as efficient ETLs for flexible PSCs including modules. Through thermal and UV-ozone treatments of the SnO 2 ETLs, the electron transporting resistance of the ETLs and the charge recombination at the interface of ETL/perovskite were decreased. Thus, the hysteresis-free highly efficient rigid and flexible PSCs were obtained with PCEs of 19.20 and 16.47%, respectively. Finally, a 5 × 5 cm 2 flexible PSC module with a PCE of 12.31% (12.22% for forward scan and 12.40% for reverse scan) was fabricated with the optimized perovskite/ETL interface. Thus, employing presynthesized SnO 2 NCs to fabricate ETLs has showed promising for future manufacturing.

  17. Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells.

    PubMed

    Rakstys, Kasparas; Abate, Antonio; Dar, M Ibrahim; Gao, Peng; Jankauskas, Vygintas; Jacopin, Gwénolé; Kamarauskas, Egidijus; Kazim, Samrana; Ahmad, Shahzada; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2015-12-30

    Four center symmetrical star-shaped hole transporting materials (HTMs) comprising planar triazatruxene core and electron-rich methoxy-engineered side arms have been synthesized and successfully employed in (FAPbI3)0.85(MAPbBr3)0.15 perovskite solar cells. These HTMs are obtained from relatively cheap starting materials by adopting facile preparation procedure, without using expensive and complicated purification techniques. Developed compounds have suitable highest occupied molecular orbitals (HOMO) with respect to the valence band level of the perovskite, and time-resolved photoluminescence indicates that hole injection from the valence band of perovskite into the HOMO of triazatruxene-based HTMs is relatively more efficient as compared to that of well-studied spiro-OMeTAD. Remarkable power conversion efficiency over 18% was achieved using 5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (KR131) with compositive perovskite absorber. This result demonstrates triazatruxene-based compounds as a new class of HTM for the fabrication of highly efficient perovskite solar cells.

  18. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  19. Organohalide Perovskites for Solar Energy Conversion.

    PubMed

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  20. Atomistic Modeling of Cation Diffusion in Transition Metal Perovskites La1-xSrxMnO3+/-δfor Solid Oxide Fuel Cell Cathodes Applications

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry

    Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.

  1. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  2. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route

    NASA Astrophysics Data System (ADS)

    Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won

    2017-04-01

    Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.

  3. Boosting the Peroxidase-Like Activity of Nanostructured Nickel by Inducing Its 3+ Oxidation State in LaNiO3 Perovskite and Its Application for Biomedical Assays.

    PubMed

    Wang, Xiaoyu; Cao, Wen; Qin, Li; Lin, Tingsheng; Chen, Wei; Lin, Shichao; Yao, Jia; Zhao, Xiaozhi; Zhou, Min; Hang, Cheng; Wei, Hui

    2017-01-01

    Catalytic nanomaterials with intrinsic enzyme-like activities, called nanozymes, have recently attracted significant research interest due to their unique advantages relative to natural enzymes and conventional artificial enzymes. Among the nanozymes developed, particular interests have been devoted to nanozymes with peroxidase mimicking activities because of their promising applications in biosensing, bioimaging, biomedicine, etc. Till now, lots of functional nanomaterials have been used to mimic peroxidase. However, few studies have focused on the Ni-based nanomaterials for peroxidase mimics. In this work, we obtained the porous LaNiO 3 nanocubes with high peroxidase-like activity by inducing its 3+ oxidation state in LaNiO 3 perovskite and optimizing the morphology of LaNiO 3 perovskite. The peroxidase mimicking activity of the porous LaNiO 3 nanocubes with Ni 3+ was about 58~fold and 22~fold higher than that of NiO with Ni 2+ and Ni nanoparticles with Ni 0 . More, the porous LaNiO 3 nanocubes exhibited about 2-fold higher activity when compared with LaNiO 3 nanoparticles. Based on the superior peroxidase-like activity of porous LaNiO 3 nanocubes, facile colorimetric assays for H 2 O 2 , glucose, and sarcosine detection were developed. Our present work not only demonstrates a useful strategy for modulating nanozymes' activities but also provides promising bioassays for clinical diagnostics.

  4. Boosting the Peroxidase-Like Activity of Nanostructured Nickel by Inducing Its 3+ Oxidation State in LaNiO3 Perovskite and Its Application for Biomedical Assays

    PubMed Central

    Wang, Xiaoyu; Cao, Wen; Qin, Li; Lin, Tingsheng; Chen, Wei; Lin, Shichao; Yao, Jia; Zhao, Xiaozhi; Zhou, Min; Hang, Cheng; Wei, Hui

    2017-01-01

    Catalytic nanomaterials with intrinsic enzyme-like activities, called nanozymes, have recently attracted significant research interest due to their unique advantages relative to natural enzymes and conventional artificial enzymes. Among the nanozymes developed, particular interests have been devoted to nanozymes with peroxidase mimicking activities because of their promising applications in biosensing, bioimaging, biomedicine, etc. Till now, lots of functional nanomaterials have been used to mimic peroxidase. However, few studies have focused on the Ni-based nanomaterials for peroxidase mimics. In this work, we obtained the porous LaNiO3 nanocubes with high peroxidase-like activity by inducing its 3+ oxidation state in LaNiO3 perovskite and optimizing the morphology of LaNiO3 perovskite. The peroxidase mimicking activity of the porous LaNiO3 nanocubes with Ni3+ was about 58~fold and 22~fold higher than that of NiO with Ni2+ and Ni nanoparticles with Ni0. More, the porous LaNiO3 nanocubes exhibited about 2-fold higher activity when compared with LaNiO3 nanoparticles. Based on the superior peroxidase-like activity of porous LaNiO3 nanocubes, facile colorimetric assays for H2O2, glucose, and sarcosine detection were developed. Our present work not only demonstrates a useful strategy for modulating nanozymes' activities but also provides promising bioassays for clinical diagnostics. PMID:28740550

  5. A -Site Ordered Double Perovskite CaMnTi 2 O 6 as a Multifunctional Piezoelectric and Ferroelectric–Photovoltaic Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Gaoyang; Charles, Nenian; Shi, Jing

    2017-09-11

    The double perovskite CaMnTi2O6, is a rare A site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTi2O6. We further explore the material properties of CaMnTi2O6, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient. It is found that CaMnTi2O6 exhibits room-temperature-stable ferroelectricity and moderate piezoelectric responses. Moreover, CaMnTi2O6 is predicted to have a semiconducting energy band gap similar to that of BiFeO3, and its band gap can further be tuned-viamore » distortions of the planar Mn-O bond lengths. CaMnTi2O6 exemplifies a new class of single-phase semiconducting ferroelectric perovskites for potential applications in ferroelectric photovoltaic solar cells.« less

  6. Formation of unusual Cr5+ charge state in CaCr0.5Fe0.5O3 perovskite

    NASA Astrophysics Data System (ADS)

    Dai, Jian-Hong; Zhao, Qing; Sun, Qian; Zhang, Shuo; Wang, Xiao; Shen, Xu-Dong; Liu, Zhe-Hong; Shen, Xi; Yu, Ri-Cheng; Chan, Ting-Shan; Li, Lun-Xiong; Zhou, Guang-Hui; Yang, Yi-feng; Jin, Chang-Qing; Long, You-Wen

    2018-03-01

    A new oxide CaCr0.5Fe0.5O3 was prepared under high pressure and temperature conditions. It crystallizes in a B-site disordered Pbnm perovskite structure. The charge combination is determined to be Cr5+/Fe3+ with the presence of unusual Cr5+ state in octahedral coordination, although Cr4+ and Fe4+ occur in the related perovskites CaCrO3 and CaFeO3. The randomly distributed Cr5+ and Fe3+ spins lead to short-range ferromagnetic coupling, whereas an antiferromagnetic phase transition takes place near 50 K due to the Fe3+–O–Fe3+ interaction. In spite of the B-site Cr5+/Fe3+ disorder, the compound exhibits electrical insulating behavior. First-principles calculations further demonstrate the formation of {CaCr}}0.55+{Fe}}0.53+{{{O}}}3 charge combination, and the electron correlation effect of Fe3+ plays an important role for the insulting ground state. CaCr0.5Fe0.5O3 provides the first Cr5+ perovskite system with octahedral coordination, opening a new avenue to explore novel transition-metal oxides with exotic charge states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574378, 51772324, and 61404052),the National Basic Research Program of China (Grant No. 2014CB921500), and the Chinese Academy of Sciences (Grant Nos. YZ201555, QYZDB-SSW-SLH013, GJHZ1773, and XDB07030300).

  7. CaTiO.sub.3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.

  8. Phase transformation of Ca-perovskite in MORB at D" region

    NASA Astrophysics Data System (ADS)

    Nishitani, N.; Ohtani, E.; Sakai, T.; Kamada, S.; Miyahara, M.; Hirao, N.

    2012-12-01

    Seismological studies indicate the presence of seismic anomalies in the Earth's deep interior. To investigate the anomaly, the physical property of the major minerals in lower mantle such as MgSiO3-perovskite, MgSiO3 post-perovskite and MgO periclase were studied well. Other candidate, CaSiO3 perovskite (Ca-perovskite) exists in peridotitic mantle and basaltic oceanic crust (mid-ocean ridge basalt; MORB). Previous studies indicate the abundance of Ca-perovskite is up to ~9 vol.% in the pyrolite mantle and ~24 vol.% in the MORB oceanic crust. However, the pressure range of previous works are still not enough to understand the D" region. In this study, natural MORB was compressed in double sided laser heated DAC. Au was used as a pressure maker and a laser absorber. NaCl was used as the thermal insulator and pressure medium. The phase relation of Ca-perovskite in MORB was investigated from 36 to 156 GPa and 300 to 2600 K by the in situ X-ray diffraction measurements at SPring-8 (BL10XU). The transition of Ca-perovskite from a tetragonal structure to a cubic structure occurred at about 1800 K up to about 100 GPa and below 1500 K at pressures above 100 GPa. This suggests that the tetragonal-cubic transition of Ca-perovskite could occur in MORB, associating with Al2O3 contents. The present results suggest that the seismic anomaly at D" layer could be caused by the transition in Ca-perovskite.

  9. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  10. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  11. Design Principles of Perovskites for Thermochemical Oxygen Separation

    PubMed Central

    Ezbiri, Miriam; Allen, Kyle M.; Gàlvez, Maria E.; Steinfeld, Aldo

    2015-01-01

    Abstract Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar‐driven synthesis of liquid hydrocarbon fuels from CO2, H2O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through “thermochemical pumping” of O2 against a pO2 gradient with low‐grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high‐temperature X‐ray diffraction for SrCoO3−δ, BaCoO3−δ and BaMnO3−δ perovskites and Ag2O and Cu2O references confirm the predicted performance of SrCoO3−δ, which surpasses the performance of state‐of‐the‐art Cu2O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3−δ −1 exchanged at 12.1 μmol O 2 min−1 g−1 at 600–900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. PMID:25925955

  12. Design Principles of Perovskites for Thermochemical Oxygen Separation.

    PubMed

    Ezbiri, Miriam; Allen, Kyle M; Gàlvez, Maria E; Michalsky, Ronald; Steinfeld, Aldo

    2015-06-08

    Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar-driven synthesis of liquid hydrocarbon fuels from CO2 , H2 O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through "thermochemical pumping" of O2 against a pO2 gradient with low-grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high-temperature X-ray diffraction for SrCoO3-δ , BaCoO3-δ and BaMnO3-δ perovskites and Ag2 O and Cu2 O references confirm the predicted performance of SrCoO3-δ , which surpasses the performance of state-of-the-art Cu2 O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3-δ(-1) exchanged at 12.1 μmol O 2 min(-1)  g(-1) at 600-900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Solar cells with perovskite-based light sensitization layers

    DOEpatents

    Kanatzidis, Mercouri G.; Chang, Robert P.H.; Stoumpos, Konstantinos; Lee, Byunghong

    2018-05-08

    Solar cells are provided which comprise an electron transporting layer and a light sensitizing layer of perovskite disposed over the surface of the electron transporting layer. The perovskite may have a formula selected from the group consisting of A2MX6, Z2MX6 or YMX6, wherein A is an alkali metal, M is a metal or a metalloid, X is a halide, Z is selected from the group consisting of a primary ammonium, an iminium, a secondary ammonium, a tertiary ammonium, and a quaternary ammonium, and Y has formula Mb(L)3, wherein Mb is a transition metal in the 2+ oxidation state L is an N--N neutral chelating ligand. Methods of making the solar cells are also provided, including methods based on electrospray deposition.

  14. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    NASA Astrophysics Data System (ADS)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  15. Perovskite in Earth’s deep interior

    NASA Astrophysics Data System (ADS)

    Hirose, Kei; Sinmyo, Ryosuke; Hernlund, John

    2017-11-01

    Silicate perovskite-type phases are the most abundant constituent inside our planet and are the predominant minerals in Earth’s lower mantle more than 660 kilometers below the surface. Magnesium-rich perovskite is a major lower mantle phase and undergoes a phase transition to post-perovskite near the bottom of the mantle. Calcium-rich perovskite is proportionally minor but may host numerous trace elements that record chemical differentiation events. The properties of mantle perovskites are the key to understanding the dynamic evolution of Earth, as they strongly influence the transport properties of lower mantle rocks. Perovskites are expected to be an important constituent of rocky planets larger than Mars and thus play a major role in modulating the evolution of terrestrial planets throughout the universe.

  16. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition

    PubMed Central

    Zhou, Shiming; Miao, Xianbing; Zhao, Xu; Ma, Chao; Qiu, Yuhao; Hu, Zhenpeng; Zhao, Jiyin; Shi, Lei; Zeng, Jie

    2016-01-01

    The activity of electrocatalysts exhibits a strongly dependence on their electronic structures. Specifically, for perovskite oxides, Shao-Horn and co-workers have reported a correlation between the oxygen evolution reaction activity and the eg orbital occupation of transition-metal ions, which provides guidelines for the design of highly active catalysts. Here we demonstrate a facile method to engineer the eg filling of perovskite cobaltite LaCoO3 for improving the oxygen evolution reaction activity. By reducing the particle size to ∼80 nm, the eg filling of cobalt ions is successfully increased from unity to near the optimal configuration of 1.2 expected by Shao-Horn's principle. Consequently, the activity is significantly enhanced, comparable to those of recently reported cobalt oxides with eg∼1.2 configurations. This enhancement is ascribed to the emergence of spin-state transition from low-spin to high-spin states for cobalt ions at the surface of the nanoparticles, leading to more active sites with increased reactivity. PMID:27187067

  17. Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices.

    PubMed

    Chen, Shan; Shi, Gaoquan

    2017-06-01

    Halide perovskites have high light absorption coefficients, long charge carrier diffusion lengths, intense photoluminescence, and slow rates of non-radiative charge recombination. Thus, they are attractive photoactive materials for developing high-performance optoelectronic devices. These devices are also cheap and easy to be fabricated. To realize the optimal performances of halide perovskite-based optoelectronic devices (HPODs), perovskite photoactive layers should work effectively with other functional materials such as electrodes, interfacial layers and encapsulating films. Conventional two-dimensional (2D) materials are promising candidates for this purpose because of their unique structures and/or interesting optoelectronic properties. Here, we comprehensively summarize the recent advancements in the applications of conventional 2D materials for halide perovskite-based photodetectors, solar cells and light-emitting diodes. The examples of these 2D materials are graphene and its derivatives, mono- and few-layer transition metal dichalcogenides (TMDs), graphdiyne and metal nanosheets, etc. The research related to 2D nanostructured perovskites and 2D Ruddlesden-Popper perovskites as efficient and stable photoactive layers is also outlined. The syntheses, functions and working mechanisms of relevant 2D materials are introduced, and the challenges to achieving practical applications of HPODs using 2D materials are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pressure-Induced Metallization of the Halide Perovskite (CH 3 NH 3 )PbI 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffe, Adam; Lin, Yu; Mao, Wendy L.

    We report the metallization of the hybrid perovskite semiconductor (MA)PbI3 (MA = CH3NH3+) with no apparent structural transition. We tracked its bandgap evolution during compression in diamond-anvil cells using absorption spectroscopy and observed strong absorption over both visible and IR wavelengths at pressures above ca. 56 GPa, suggesting the imminent closure of its optical bandgap. The metallic character of (MA)PbI3 above 60 GPa was confirmed using both IR reflectivity and variable-temperature dc conductivity measurements. The impressive semiconductor properties of halide perovskites have recently been exploited in a multitude of optoelectronic applications. Meanwhile, the study of metallic properties in oxide perovskitesmore » has revealed diverse electronic phenomena. Importantly, the mild synthetic routes to halide perovskites and the templating effects of the organic cations allow for fine structural control of the inorganic lattice. Pressure-induced closure of the 1.6 eV bandgap in (MA)PbI3 demonstrates the promise of the continued study of halide perovskites under a range of thermodynamic conditions, toward realizing wholly new electronic properties.« less

  19. Room temperature, air crystallized perovskite film for high performance solar cells

    DOE PAGES

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH 3NH 3PbI 3 nanorods/PC 60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films keptmore » for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less

  20. Efficient Sky-Blue Perovskite Light-Emitting Devices Based on Ethylammonium Bromide Induced Layered Perovskites.

    PubMed

    Wang, Qi; Ren, Jie; Peng, Xue-Feng; Ji, Xia-Xia; Yang, Xiao-Hui

    2017-09-06

    Low-dimensional organometallic halide perovskites are actively studied for the light-emitting applications due to their properties such as solution processability, high luminescence quantum yield, large exciton binding energy, and tunable band gap. Introduction of large-group ammonium halides not only serves as a convenient and versatile method to obtain layered perovskites but also allows the exploitation of the energy-funneling process to achieve a high-efficiency light emission. Herein, we investigate the influence of the addition of ethylammonium bromide on the morphology, crystallite structure, and optical properties of the resultant perovskite materials and report that the phase transition from bulk to layered perovskite occurs in the presence of excess ethylammonium bromide. On the basis of this strategy, we report green perovskite light-emitting devices with the maximum external quantum efficiency of ca. 3% and power efficiency of 9.3 lm/W. Notably, blue layered perovskite light-emitting devices with the Commission Internationale de I'Eclairage coordinates of (0.16, 0.23) exhibit the maximum external quantum efficiency of 2.6% and power efficiency of 1 lm/W at 100 cd/m 2 , representing a large improvement over the previously reported analogous devices.

  1. Cross-plane Thermoelectric Transport in p-type La0.67Sr0.33MnO3/LaMnO3 Oxide Metal/Semiconductor Superlattices

    DTIC Science & Technology

    2013-12-07

    discussed in light of prior measurements of high-resistivity superlattices. The potential for tuning perovskite oxide superlattices for applications as...1.4804937] I. INTRODUCTION Perovskite oxides display a rich variety of electronic properties as metals, ferroelectrics, ferromagnetics, multifer- roics, and...thermoelectrics. Due to their diverse range of prop- erties, temperature stability, and robust chemistry, perovskite oxides have garnered interest from

  2. Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells.

    PubMed

    Bae, Soohyun; Kim, Seongtak; Lee, Sang-Won; Cho, Kyung Jin; Park, Sungeun; Lee, Seunghun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-08-18

    Perovskite solar cells have great potential for high efficiency generation but are subject to the impact of external environmental conditions such as humidity, UV and sun light, temperature, and electric fields. The long-term stability of perovskite solar cells is an important issue for their commercialization. Various studies on the stability of perovskite solar cells are currently being performed; however, the stability related to electric fields is rarely discussed. Here the electrical stability of perovskite solar cells is studied. Ion migration is confirmed using the temperature-dependent dark current decay. Changes in the power conversion efficiency according to the amount of the external bias are measured in the dark, and a significant drop is observed only at an applied voltage greater than 0.8 V. We demonstrate that perovskite solar cells are stable under an electric field up to the operating voltage.

  3. High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Philip; Tiepelt, Jan O.; Christians, Jeffrey A.

    2016-11-08

    Here, we investigate the effect of high work function contacts in halide perovskite absorber-based photovoltaic devices. Photoemission spectroscopy measurements reveal that band bending is induced in the absorber by the deposition of the high work function molybdenum trioxide (MoO 3). We find that direct contact between MoO 3 and the perovskite leads to a chemical reaction, which diminishes device functionality. Introducing an ultrathin spiro-MeOTAD buffer layer prevents the reaction, yet the altered evolution of the energy levels in the methylammonium lead iodide (MAPbI 3) layer at the interface still negatively impacts device performance.

  4. Design principles of perovskites for solar-driven thermochemical splitting of CO2† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta02081c

    PubMed Central

    Ezbiri, Miriam; Takacs, Michael; Stolz, Boris; Lungthok, Jeffrey; Steinfeld, Aldo

    2017-01-01

    Perovskites are attractive redox materials for thermo/electrochemical fuel synthesis. To design perovskites with balanced redox energetics for thermochemically splitting CO2, the activity of lattice oxygen vacancies and stability against crystal phase changes and detrimental carbonate formation are predicted for a representative range of perovskites by electronic structure computations. Systematic trends in these materials properties when doping with selected metal cations are described in the free energy range defined for isothermal and temperature-swing redox cycles. To confirm that the predicted materials properties root in the bulk chemical composition, selected perovskites are synthesized and characterized by X-ray diffraction, transmission electron microscopy, and thermogravimetric analysis. On one hand, due to the oxidation equilibrium, none of the investigated compositions outperforms non-stoichiometric ceria – the benchmark redox material for CO2 splitting with temperature-swings in the range of 800–1500 °C. On the other hand, certain promising perovskites remain redox-active at relatively low oxide reduction temperatures at which ceria is redox-inactive. This trade-off in the redox energetics is established for YFeO3, YCo0.5Fe0.5O3 and LaFe0.5Ni0.5O3, identified as stable against phase changes and capable to convert CO2 to CO at 600 °C and 10 mbar CO in CO2, and to being decomposed at 1400 °C and 0.1 mbar O2 with an enthalpy change of 440–630 kJ mol–1 O2. PMID:29456856

  5. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    PubMed

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  6. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    PubMed Central

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K.; Noel, Nakita K.; Haghighirad, Amir A.; Burlakov, Victor M.; deQuilettes, Dane W.; Sadhanala, Aditya; Li, Wenzhe; Wang, Liduo; Ginger, David S.; Friend, Richard H.; Snaith, Henry J.

    2015-01-01

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I−, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead. PMID:26615763

  7. Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy.

    PubMed

    Serpetzoglou, Efthymis; Konidakis, Ioannis; Kakavelakis, George; Maksudov, Temur; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-12-20

    CH 3 NH 3 PbI 3 perovskite thin films have been deposited on glass/indium tin oxide/hole transport layer (HTL) substrates, utilizing two different materials as the HTLs. In the first configuration, the super hydrophilic polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), known as PEDOT:PSS, was employed as the HTL material, whereas in the second case, the nonwetting poly(triarylamine) semiconductor polymer, known as PTAA, was used. It was found that when PTAA is used as the HTL material, the averaged power conversion efficiency (PCE) of the perovskite solar cells (PSCs) remarkably increases from 12.60 to 15.67%. To explore the mechanism behind this enhancement, the aforementioned perovskite/HTL arrangements were investigated by time-resolved transient absorption spectroscopy (TAS) performed under inert conditions. By means of TAS, the charge transfer, carrier trapping, and hole injection dynamics from the photoexcited perovskite layers to the HTL can be directly monitored via the characteristic bleaching profile of the perovskite at ∼750 nm. TAS studies revealed faster relaxation times and decay dynamics when the PTAA polymer is employed, which potentially account for the enhanced PCE observed. The TAS results are correlated with the structure and crystalline quality of the corresponding perovskite films, investigated by scanning electron microscopy, X-ray diffraction, atomic force microscopy, micro-photoluminescence, and transmittance spectroscopy. It is concluded that TAS is a benchmark technique for the understanding of the carrier transport mechanisms in PSCs and constitutes a figure-of-merit tool toward their efficiency improvement.

  8. Infrared photocurrent management in monolithic perovskite/silicon heterojunction tandem solar cells by using a nanocrystalline silicon oxide interlayer.

    PubMed

    Mazzarella, Luana; Werth, Matteo; Jäger, Klaus; Jošt, Marko; Korte, Lars; Albrecht, Steve; Schlatmann, Rutger; Stannowski, Bernd

    2018-05-14

    We performed optical simulations using hydrogenated nanocrystalline silicon oxide (nc-SiO x :H) as n-doped interlayer in monolithic perovskite/c-Si heterojunction tandem solar cells. Depending on the adjustable value of its refractive index (2.0 - 2.7) and thickness, nc-SiO x :H allows to optically manage the infrared light absorption in the c-Si bottom cell minimizing reflection losses. We give guidelines for nc-SiO x :H optimization in tandem devices in combination with a systematic investigation of the effect of the surface morphology (flat or textured) on the photocurrent density. For full-flat and rear textured devices, we found matched photocurrents higher than 19 and 20 mA/cm 2 , respectively, using a 90 nm nc-SiO x :H interlayer with a refractive index of 2.7.

  9. CSP ELEMENTS: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Gregory S; Braun, Robert J; Ma, Zhiwen

    This project was motivated by the potential of reducible perovskite oxides for high-temperature, thermochemical energy storage (TCES) to provide dispatchable renewable heat for concentrating solar power (CSP) plants. This project sought to identify and characterize perovskites from earth-abundant cations with high reducibility below 1000 °C for coupling TCES of solar energy to super-critical CO2 (s-CO2) plants that operate above temperature limits (< 600 °C) of current molten-salt storage. Specific TCES > 750 kJ/kg for storage cycles between 500 and 900 °C was targeted with a system cost goal of $15/kWhth. To realize feasibility of TCES systems based on reducible perovskites,more » our team focused on designing and testing a lab-scale concentrating solar receiver, wherein perovskite particles capture solar energy by fast O2 release and sensible heating at a thermal efficiency of 90% and wall temperatures below 1100 °C. System-level models of the receiver and reoxidation reactor coupled to validated thermochemical materials models can assess approaches to scale-up a full TCES system based on reduction/oxidation cycles of perovskite oxides at large scales. After characterizing many Ca-based perovskites for TCES, our team identified strontium-doped calcium manganite Ca1-xSrxMnO3-δ (with x ≤ 0.1) as a composition with adequate stability and specific TCES capacity (> 750 kJ/kg for Ca0.95Sr0.05MnO3-δ) for cycling between air at 500 °C and low-PO2 (10-4 bar) N2 at 900 °C. Substantial kinetic tests demonstrated that resident times of several minutes in low-PO2 gas were needed for these materials to reach the specific TCES goals with particles of reasonable size for large-scale transport (diameter dp > 200 μm). On the other hand, fast reoxidation kinetics in air enables subsequent rapid heat release in a fluidized reoxidation reactor/ heat recovery unit for driving s-CO2 power plants. Validated material thermochemistry coupled to radiation and convective

  10. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu

    2017-11-01

    Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.

  11. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  12. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer.

    PubMed

    Kim, Jong H; Liang, Po-Wei; Williams, Spencer T; Cho, Namchul; Chueh, Chu-Chen; Glaz, Micah S; Ginger, David S; Jen, Alex K-Y

    2015-01-27

    An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells

    PubMed Central

    Zhao, Jingjing; Deng, Yehao; Wei, Haotong; Zheng, Xiaopeng; Yu, Zhenhua; Shao, Yuchuan; Shield, Jeffrey E.; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskite (OIHP) solar cells have achieved comparable efficiencies to those of commercial solar cells, although their instability hinders their commercialization. Although encapsulation techniques have been developed to protect OIHP solar cells from external stimuli such as moisture, oxygen, and ultraviolet light, understanding of the origin of the intrinsic instability of perovskite films is needed to improve their stability. We show that the OIHP films fabricated by existing methods are strained and that strain is caused by mismatched thermal expansion of perovskite films and substrates during the thermal annealing process. The polycrystalline films have compressive strain in the out-of-plane direction and in-plane tensile strain. The strain accelerates degradation of perovskite films under illumination, which can be explained by increased ion migration in strained OIHP films. This study points out an avenue to enhance the intrinsic stability of perovskite films and solar cells by reducing residual strain in perovskite films. PMID:29159287

  14. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.

  15. Magnetic Susceptibility and Spin Exchange Interactions of the Hexagonal Perovskite-Type Oxides Sr 4/3(Mn 2/3Ni 1/3)O 3

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Gaudin, E.; Darriet, J.; Whangbo, M.-H.

    2002-02-01

    Magnetic susceptibility measurements were carried out for two hexagonal perovskite-type oxides Sr1+x(Mn1-xNix)O3 with slightly different compositions (i.e., x={1}/{3} and 0.324). A significant difference in the susceptibilities of the two phases demonstrates the need to control phase compositions accurately. Sr4/3(Mn2/3Ni1/3)O3 consists of two spin sublattices, i.e., the Mn4+ and the Ni2+ ion sublattices. Spin dimer analysis was carried out to examine the relative strengths in the spin exchange interactions of the Mn4+ ion sublattice. The temperature dependence of the magnetic susceptibility of Sr4/3(Mn2/3Ni1/3)O3 was found consistent with a picture in which the Mn4+ ion sublattice has weakly interacting antiferromagnetically coupled (Mn4+)2 dimers, the Ni2+ ion sublattice acts as a paramagnetic system, and the two sublattices are nearly independent.

  16. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions.

    PubMed

    Samu, Gergely F; Scheidt, Rebecca A; Kamat, Prashant V; Janáky, Csaba

    2018-02-13

    The unique optoelectronic properties of lead halide perovskites have triggered a new wave of excitement in materials chemistry during the past five years. Electrochemistry, spectroelectrochemistry, and photoelectrochemistry could be viable tools both for analyzing the optoelectronic features of these materials and for assembling them into hybrid architectures (e.g., solar cells). At the same time, the instability of these materials limits the pool of solvents and electrolytes that can be employed in such experiments. The focus of our study is to establish a stability window for electrochemical tests for all-inorganic CsPbBr 3 and hybrid organic-inorganic MAPbI 3 perovskites. In addition, we aimed to understand the reduction and oxidation events that occur and to assess the damage done during these processes at extreme electrochemical conditions. In this vein, we demonstrated the chemical, structural, and morphological changes of the films in both reductive and oxidative environments. Taking all these results together as a whole, we propose a set of boundary conditions and protocols for how electrochemical experiments with lead halide perovskites should be carried out and interpreted. The presented results will contribute to the understanding of the electrochemical response of these materials and lead to a standardization of results in the literature so that comparisons can more easily be made.

  17. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C

    PubMed Central

    Li, Mengran; Zhao, Mingwen; Li, Feng; Zhou, Wei; Peterson, Vanessa K.; Xu, Xiaoyong; Shao, Zongping; Gentle, Ian; Zhu, Zhonghua

    2017-01-01

    The slow activity of cathode materials is one of the most significant barriers to realizing the operation of solid oxide fuel cells below 500 °C. Here we report a niobium and tantalum co-substituted perovskite SrCo0.8Nb0.1Ta0.1O3−δ as a cathode, which exhibits high electroactivity. This cathode has an area-specific polarization resistance as low as ∼0.16 and ∼0.68 Ω cm2 in a symmetrical cell and peak power densities of 1.2 and 0.7 W cm−2 in a Gd0.1Ce0.9O1.95-based anode-supported fuel cell at 500 and 450 °C, respectively. The high performance is attributed to an optimal balance of oxygen vacancies, ionic mobility and surface electron transfer as promoted by the synergistic effects of the niobium and tantalum. This work also points to an effective strategy in the design of cathodes for low-temperature solid oxide fuel cells. PMID:28045088

  18. Interface architecture between TiO2/perovskite, perovskite/hole transport layer, and perovskite grain boundary(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hayase, Shuzi; Hirotani, Daisuke; Moriya, Masahiro; Ogomi, Yuhei; Shen, Qing; Yoshino, Kenji; Toyoda, Taro

    2016-09-01

    In order to examine the interface structure of TiO2/perovskite layer, quartz crystal microbalance sensor (QCM) was used. On the QCM sensor, TiO2 layer was fabricated and the PbI2 solution in Dimethylformamide (DMF) was passed on the QCM sensor to estimate the adsorption density of the PbI2 on the titania2. The amount of PbI2 adsorption on TiO2 surface increased as the adsorption time and leveled off at a certain time. PbI2 still remained even after the solvent only (DMF) was passed on the TiO2 layer on QCM (namely rinsing with DMF), suggesting that the PbI2 was tightly bonded on the TiO2 surface. The bonding structure was found to be Ti-O-Pb linkage by XPS analysis. We concluded that the Ti-OH on the surface of TiO2 reacts with I-Pb-I to form Ti-O-Pb-I and HI (Fig.1 B). The surface trap density was measured by thermally stimulated current (TSC) method. Before the PbI2 passivation, the trap density of TiO2 was 1019 cm3. The trap density decreased to 1016/cm3 after the PbI2 passivation, suggesting that the TiO2 surface trap was passivated with I-Pb-I. The passivation density was tuned by the concentration of PbI2 in DMF, by which TiO2 layer was passivated. Perovskite solar cells were fabricated on the passivated TiO2 layer with various PbI2 passivation densities by one step process (mixture of PbI2 + MAI in DMF). It was found that Jsc increased with an increase in the Ti-O-Pb density. We concluded that the interface between TiO2 and perovskite layer has passivation structure consisting of Ti-O-Pb-I which decreases the trap density of the interfaces and supresses charge recombination. The effect of Cl anion on high efficiency is still controversial when perovskite layer is prepared by one step method from the mixture of MAI and PbCl2. It was found that adsorption density of PbCl2 on TiO2 surface was much higher than that of PbI2 from the experiment using QCM sensor. After the surface was washed with DMF, Cl and Pb were detected. These results suggest that the TiO2

  19. Interface Engineering and Morphology Study of Thin Film Organic-Inorganic Halide Perovskite Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Meng, Lei

    Solar energy harvesting through photovoltaic conversion has gained great attention as a sustainable and environmentally friendly solution to meet the rapidly increasing global energy demand. Currently, the high cost of solar-cell technology limits its widespread use. This situation has generated considerable interest in developing alternative solar-cell technologies that reduce cost through the use of less expensive materials and processes. Perovskite solar cells provide a promising low-cost technology for harnessing this energy source. In Chapter two, a moisture-assist method is introduced and studied to facilitate grain growth of solution processed perovskite films. As an approach to achieve high-quality perovskite films, I anneal the precursor film in a humid environment (ambient air) to dramatically increase grain size, carrier mobility, and charge carrier lifetime, thus improving electrical and optical properties and enhancing photovoltaic performance. It is revealed that mild moisture has a positive effect on perovskite film formation, demonstrating perovskite solar cells with 17.1% power conversion efficiency. Later on, in Chapter four, an ultrathin flexible device delivering a PCE of 14.0% is introduced. The device is based on silver-mesh substrates exhibiting superior durability against mechanical bending. Due to their low energy of formation, organic lead iodide perovskites are also susceptible to degradation in moisture and air. The charge transport layer therefore plays a key role in protecting the perovskite photoactive layer from exposure to such environments, thus achieving highly stable perovskite-based photovoltaic cells. Although incorporating organic charge transport layers can provide high efficiencies and reduced hysteresis, concerns remain regarding device stability and the cost of fabrication. In this work, perovskite solar cells that have all solution-processed metal oxide charge transport layers were demonstrated. Stability has been

  20. Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells.

    PubMed

    Zhou, Wenke; Zhao, Yicheng; Zhou, Xu; Fu, Rui; Li, Qi; Zhao, Yao; Liu, Kaihui; Yu, Dapeng; Zhao, Qing

    2017-09-07

    Due to light-induced effects in CH 3 NH 3 -based perovskites, such as ion migration, defects formation, and halide segregation, the degradation of CH 3 NH 3 -based perovskite solar cells under maximum power point is generally implicated. Here we demonstrated that the effect of light-enhanced ion migration in CH 3 NH 3 PbI 3 can be eliminated by inorganic Cs substitution, leading to an ultrastable perovskite solar cell. Quantitatively, the ion migration barrier for CH 3 NH 3 PbI 3 is 0.62 eV under dark conditions, larger than that of CsPbI 2 Br (0.45 eV); however, it reduces to 0.07 eV for CH 3 NH 3 PbI 3 under illumination, smaller than that for CsPbI 2 Br (0.43 eV). Meanwhile, photoinduced halide segregation is also suppressed in Cs-based perovskites. Cs-based perovskite solar cells retained >99% of the initial efficiency (10.3%) after 1500 h of maximum power point tracking under AM1.5G illumination, while CH 3 NH 3 PbI 3 solar cells degraded severely after 50 h of operation. Our work reveals an uncovered mechanism for stability improvement by inorganic cation substitution in perovskite-based optoelectronic devices.

  1. Ferroelectricity in d0 double perovskite fluoroscandates

    NASA Astrophysics Data System (ADS)

    Charles, Nenian; Rondinelli, James M.

    2015-08-01

    Ferroelectricity in strain-free and strained double perovskite fluorides, Na3ScF6 and K2NaScF6 , is investigated using first-principles density functional theory. Although the experimental room temperature crystal structures of these fluoroscandates are centrosymmetric, i.e., Na3ScF6 (P 21/n ) and K2NaScF6 (F m 3 ¯m ), lattice dynamical calculations reveal that soft polar instabilities exist in each prototypical cubic phase and that the modes harden as the tolerance factor approaches unity. Thus the double fluoroperovskites bear some similarities to A B O3 perovskite oxides; however, in contrast, these fluorides exhibit large acentric displacements of alkali metal cations (Na, K) rather than polar displacements of the transition metal cations. Biaxial strain investigations of the centrosymmetric and polar Na3ScF6 and K2NaScF6 phases reveal that the paraelectric structures are favored under compressive strain, whereas polar structures with in-plane electric polarizations (˜5 -18 μ C cm-2 ) are realized at sufficiently large tensile strains. The electric polarization and stability of the polar structures for both chemistries are found to be further enhanced and stabilized by a coexisting single octahedral tilt system. Our results suggest that polar double perovskite fluorides may be realized by suppression of octahedral rotations about more than one Cartesian axis; structures exhibiting in- or out-of-phase octahedral rotations about the c axis are more susceptible to polar symmetries.

  2. It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis.

    PubMed

    Kegelmann, Lukas; Wolff, Christian M; Awino, Celline; Lang, Felix; Unger, Eva L; Korte, Lars; Dittrich, Thomas; Neher, Dieter; Rech, Bernd; Albrecht, Steve

    2017-05-24

    Solar cells made from inorganic-organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 °C is presented. The inorganic metal oxides TiO 2 and SnO 2 , the organic fullerene derivatives C 60 , PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO 2 , which shows a more prominent influence of defect states. Transient photoluminescence studies together with current-voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0%. The results indicate reduced recombination losses for a double-layer TiO 2 /PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements

  3. High-mobility BaSnO 3 grown by oxide molecular beam epitaxy

    DOE PAGES

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; ...

    2016-01-28

    High-mobility perovskite BaSnO 3 films are of significant interest as newwide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO 3 films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO x. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO 3. We demonstrate room temperature electron mobilities of 150 cm 2 V -1 s -1 in films grownmore » on PrScO 3. Lastly, the results open up a wide range of opportunities for future electronic devices.« less

  4. Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by In-Situ TEM

    DOE PAGES

    Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN; ...

    2016-11-04

    The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less

  5. Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by In-Situ TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN

    The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less

  6. Tailoring perovskite compounds for broadband light absorption

    NASA Astrophysics Data System (ADS)

    Lu, Hengchang; Guo, Xiaowei; Yang, Cheng; Li, Shaorong

    2018-01-01

    Perovskite solar cells have experienced an outstanding advance in power conversion efficiency (PCE) by optimizing the perovskite layer morphology, composition, interfaces, and charge collection efficiency. To enhance PCE, the mixed perovskites were proposed in recent years. In this study, optoelectronic performance of pure perovskites and mixed ones were investigated. It was demonstrated that the mixed perovskites exhibit superior to the pure ones. The mixed material can absorb broadband light absorption and result in increased short circuit current density and power conversion efficiency.

  7. Spin-Orbital Superstructure in Strained Ferrimagnetic Perovskite Cobalt Oxide

    NASA Astrophysics Data System (ADS)

    Fujioka, J.; Yamasaki, Y.; Nakao, H.; Kumai, R.; Murakami, Y.; Nakamura, M.; Kawasaki, M.; Tokura, Y.

    2013-07-01

    We have investigated the Co-3d spin-orbital state in a thin film of perovskite LaCoO3 to clarify the origin of strain induced spontaneous magnetization (TC=94K) by means of x-ray diffraction, optical spectroscopy, and magnetization measurements. A lattice distortion with the propagation vector (1/4 -​​1/4 1/4) and an anomalous activation of optical phonons coupled to Co-3d orbital are observed below 126 K. Combined with the azimuthal angle analysis of superlattice reflection, we propose that the ordering of Co-3d orbital promoted by an epitaxial strain produces a unique ferrimagnetic structure.

  8. A novel layered perovskite cathode for proton conducting solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Xue, Xingjian; Liu, Xingqin; Meng, Guangyao

    BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY7) exhibits adequate proton conductivity as well as sufficient chemical and thermal stability over a wide range of SOFC operating conditions, while layered SmBa 0.5Sr 0.5Co 2O 5+ δ (SBSC) perovskite demonstrates advanced electrochemical properties based on doped ceria electrolyte. This research fully takes advantage of these advanced properties and develops novel protonic ceramic membrane fuel cells (PCMFCs) of Ni-BZCY7|BZCY7|SBSC. The results show that the open-circuit potential of 1.015 V and maximum power density of 533 mW cm -2 are achieved at 700 °C. With temperature increase, the total cell resistance decreases, among which electrolyte resistance becomes increasingly dominant over polarization resistance. The results also indicate that SBSC perovskite cathode is a good candidate for intermediate temperature PCMFC development, while the developed Ni-BZCY7|BZCY7|SBSC cell is a promising functional material system for next generation SOFCs.

  9. Inhomogeneous degradation in metal halide perovskites

    NASA Astrophysics Data System (ADS)

    Yang, Rong; Zhang, Li; Cao, Yu; Miao, Yanfeng; Ke, You; Wei, Yingqiang; Guo, Qiang; Wang, Ying; Rong, Zhaohua; Wang, Nana; Li, Renzhi; Wang, Jianpu; Huang, Wei; Gao, Feng

    2017-08-01

    Although the rapid development of organic-inorganic metal halide perovskite solar cells has led to certified power conversion efficiencies of above 20%, their poor stability remains a major challenge, preventing their practical commercialization. In this paper, we investigate the intrinsic origin of the poor stability in perovskite solar cells by using a confocal fluorescence microscope. We find that the degradation of perovskite films starts from grain boundaries and gradually extend to the center of the grains. Firmly based on our findings, we further demonstrate that the device stability can be significantly enhanced by increasing the grain size of perovskite crystals. Our results have important implications to further enhance the stability of optoelectronic devices based on metal halide perovskites.

  10. Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, Haiyuan; Guo, Daipeng; He, Bowen; Yu, Jiaguo; Fan, Ke

    2018-02-01

    Full-printable and hole transport material (HTM)-free perovskite solar cells (PSCs) with carbon counter electrodes feature high stability and low cost. However, the perovskite film prepared by conventional one-step solution-coating method always shows a relatively poor coverage on the substrate, leading to the limit of the photocurrent density. In this study, we incorporated carbon quantum dots (CQDs) in the perovskite films, and investigated their effects on the performance of TiO2 nanosheet-based and HTM-free PSCs. It was found that the addition of CQDs to the perovskite film can enhance the photocurrent density of PSCs, and the optimal PSC with 0.1% CQDs evolved 60% higher photocurrent density than the pristine one. The improved photocurrent density was attributed to the heterogeneous nuclei derived from CQDs during perovskite crystallization, which would increase amount of perovskite nuclei and form a fine perovskite grain, leading to a better coverage on the substrate. Moreover, due to the excellent conductivity, CQDs in perovskite films could efficiently transport the photo-excited electrons, accelerating the separation and mobilization of charge carriers. This study presents the incorporation of CQDs in perovskite as an efficient approach to promote the performance of HTM-free PSCs.

  11. Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Xing, Zhou; Li, Shu-Hui; Wu, Bao-Shan; Wang, Xin; Wang, Lu-Yao; Wang, Tan; Liu, Hao-Ran; Zhang, Mei-Lin; Yun, Da-Qin; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2018-06-01

    Interface engineering that involves in the metal cathodes and the electron transport layers (ETLs) facilitates the simultaneous improvement of device performances and stability in perovskite solar cells (PSCs). Herein, low-temperature solution-processed cerium oxide (CeOx) films are prepared by a facile sol-gel method and employed as the interface layers between [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and an Ag back contact to form PC61BM/CeOx double ETLs. The introduction of CeOx enables electron extraction to the Ag electrode and protects the underlying perovskite layer and thus improves the device performance and stability of the p-i-n PSCs. The p-i-n PSCs with double PC61BM/CeOx ETLs demonstrate a maximum power conversion efficiency (PCE) of 17.35%, which is superior to those of the devices with either PC61BM or CeOx single ETLs. Moreover, PC61BM/CeOx devices exhibit excellent stability in light soaking, which is mainly due to the chemically stable CeOx interlayer. The results indicate that CeOx is a promising interface modification layer for stable high-efficiency PSCs.

  12. Graded bandgap perovskite solar cells.

    PubMed

    Ergen, Onur; Gilbert, S Matt; Pham, Thang; Turner, Sally J; Tan, Mark Tian Zhi; Worsley, Marcus A; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ∼75% and high short-circuit current densities up to 42.1 mA cm -2 . The cells are based on an architecture of two perovskite layers (CH 3 NH 3 SnI 3 and CH 3 NH 3 PbI 3-x Br x ), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  13. Synthesis and Thermodynamic Stability of Ba2B‧B″O6 and Ba3B*B″2O9 Perovskites Using the Molten Salt Method

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Virkar, Anil V.

    1999-12-01

    A number of mixed perovskites of the types Ba2B‧B″O6 (BaB‧1/2B″1/2O3) and Ba3B*B″2O9 (BaB*1/3B″2/3O3) where B‧=Gd, La, Nd, Sm, or Y; B″=Nb and B*=Ca were synthesized by a conventional calcination process, as well as by the molten salt method. The former consists of calcining appropriate mixtures of oxide or carbonate precursors in air at elevated temperatures (∼1250°C). The latter method consists of adding appropriate mixtures of oxide or carbonate precursors to a molten salt bath at relatively low temperatures (on the order of 300 to 500°C) so that the requisite compound is formed by dissolution-reprecipitation. X-ray diffraction confirmed the formation of a single-phase perovskite in each case with calcination at 1250°C. In a molten salt bath, however, all except Ba2LaNbO6 and Ba2NdNbO6 formed the perovskite structure. On the contrary, powders of Ba2LaNbO6 and Ba2NdNbO6 formed by a high-temperature calcination process readily decomposed when introduced into the molten salt bath. The formation of the requisite perovskite at a temperature as low as 350°C in a molten salt suggests that: (a) The perovskite is stable at 350°C. (b) The molten salt exhibits sufficient precursor solubility for the dissolution-reprecipitation process to occur in a reasonable time. Similarly, the decomposition of Ba2LaNbO6 and Ba2NdNbO6 in a molten salt bath shows that these materials are thermodynamically unstable at the temperature of the molten salt bath.

  14. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    DOE PAGES

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; ...

    2015-11-30

    Solution-processed metal halide perovskite semiconductors, such as CH 3NH 3PbI 3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce themore » oxidized I2 back into I-, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead.« less

  15. Atomically thin two-dimensional organic-inorganic hybrid perovskites.

    PubMed

    Dou, Letian; Wong, Andrew B; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W; Fu, Anthony; Bischak, Connor G; Ma, Jie; Ding, Tina; Ginsberg, Naomi S; Wang, Lin-Wang; Alivisatos, A Paul; Yang, Peidong

    2015-09-25

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials. Copyright © 2015, American Association for the Advancement of Science.

  16. Green and scalable production of colloidal perovskite nanocrystals and transparent sols by a controlled self-collection process

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyi; Huang, Limin; Li, Wanlu; Liu, Xiaohua; Jing, Shui; Li, Jackie; O'Brien, Stephen

    2015-07-01

    Colloidal perovskite oxide nanocrystals have attracted a great deal of interest owing to the ability to tune physical properties by virtue of the nanoscale, and generate thin film structures under mild chemical conditions, relying on self-assembly or heterogeneous mixing. This is particularly true for ferroelectric/dielectric perovskite oxide materials, for which device applications cover piezoelectrics, MEMs, memory, gate dielectrics and energy storage. The synthesis of complex oxide nanocrystals, however, continues to present issues pertaining to quality, yield, % crystallinity, purity and may also suffer from tedious separation and purification processes, which are disadvantageous to scaling production. We report a simple, green and scalable ``self-collection'' growth method that produces uniform and aggregate-free colloidal perovskite oxide nanocrystals including BaTiO3 (BT), BaxSr1-xTiO3 (BST) and quaternary oxide BaSrTiHfO3 (BSTH) in high crystallinity and high purity. The synthesis approach is solution processed, based on the sol-gel transformation of metal alkoxides in alcohol solvents with controlled or stoichiometric amounts of water and in the stark absence of surfactants and stabilizers, providing pure colloidal nanocrystals in a remarkably low temperature range (15 °C-55 °C). Under a static condition, the nanoscale hydrolysis of the metal alkoxides accomplishes a complete transformation to fully crystallized single domain perovskite nanocrystals with a passivated surface layer of hydroxyl/alkyl groups, such that the as-synthesized nanocrystals can exist in the form of super-stable and transparent sol, or self-accumulate to form a highly crystalline solid gel monolith of nearly 100% yield for easy separation/purification. The process produces high purity ligand-free nanocrystals excellent dispersibility in polar solvents, with no impurity remaining in the mother solution other than trace alcohol byproducts (such as isopropanol). The afforded stable

  17. Hybrid Lead Halide Layered Perovskites with Silsesquioxane Interlayers.

    PubMed

    Kataoka, Sho; Kaburagi, Wako; Mochizuki, Hiroyuki; Kamimura, Yoshihiro; Sato, Kazuhiko; Endo, Akira

    2018-01-01

    Hybrid organic-lead halide perovskites exhibit remarkable properties as semiconductors and light absorbers. Here, we report the formation of silsesquioxane-lead halide hybrid layered perovskites. We prepared silsesquioxane with a cubic cage-like structure and fabricated hybrid silsesquioxane-lead halide layered perovskites in a self-assembled manner. It is demonstrated that the silsesquioxane maintain their cage-like structure between lead halide perovskite layers. The silsesquioxane-lead halide perovskites also show excitonic absorption and emission in the visible light region similar to typical lead halide layered perovskites.

  18. Integrating Copper Nanowire Electrodes for Low Temperature Perovskite Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Mankowski, Trent

    Recent advances in third generation photovoltaics, particularly the rapid increase in perovskite power conversion efficiencies, may provide a cheap alternative to silicon solar cells in the near future. A key component to these devices is the transparent front electrode, and in the case of Dye Sensitized Solar Cells, it is the most expensive part. A lightweight, cost-effective, robust, and easy-to-fabricate new generation TCE is required to enable competition with silicon. Indium Tin Oxide, commonly used in touchscreen devices, Organic Light Emitting Diodes (OLEDs), and thin film photovoltaics, is widely used and commonly referred to as the industry standard. As the global supply of indium decreases and the demand for this TCE increases, a similar alternative TCE is required to accompany the next generation solar cells that promise energy with lighter and significantly cheaper modules. This alternative TCE needs to provide similar sheet resistance and optical transmittance to ITO, while also being mechanically and chemically robust. The work in this thesis begins with an exploration of several synthesized ITO replacement materials, such as copper nanowires, conductive polymer PEDOT:PSS, zinc oxide thin films, reduced graphene oxide and combinations of the above. A guiding philosophy to this work was prioritizing cheap, easy deposition methods and overall scalability. Shortcomings of these TCEs were investigated and different materials were hybridized to take advantage of each layers strengths for development of an ideal ITO replacement. For CuNW-based composite electrodes, 85% optical transmittance and 25 O/sq were observed and characterized to understand the underlying mechanisms for optimization. The second half of this work is an examination of many different perovskite synthesis methods first to achieve highest performance, and then to integrate compatible methods with our CuNW TCEs. Several literature methods investigated were irreproducible, and those that

  19. Perovskite Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    & Devices pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic -Defect Hybrid Organic/Inorganic Perovskite Films as PV Absorbers. (FY 2015FY 2016). In collaboration with organic metal halide perovskite (see article). Ultrahigh-Efficiency and Low-Cost Polycrystalline Halide

  20. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells.

    PubMed

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-28

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.

  1. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    PubMed

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  2. Lattice distortions in complex oxides and their relation to the thermal properties

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Gaur, N. K.

    2018-05-01

    We have investigated the various lattice distortions in complex oxides Ca1-xLaxMnO3 and its effect on elastic and thermal properties of these perovskite manganites, especially Debye temperature of these complex oxides. The revealed data on Bulk modulus and Debye temperature studied as a function of lattice distortions using a novel atomistic approach of Atom in Molecules(AIM) theory and Modified Rigid Ion Model (MRIM) are in closer agreement with the available experimental data for some concentrations (x) of Ca1-xLaxMnO3. We demonstrate that the distortions introduced due to electron concentration, size mismatch and JT effects are the dominant factor, whereas charge mismatch and buckling of Mn-O-Mn angle influence the thermal properties to a lesser degree in the ferromagnetic state.

  3. An Exceptionally Narrow Band-Gap (∼4 eV) Silicate Predicted in the Cubic Perovskite Structure: BaSiO3.

    PubMed

    Hiramatsu, Hidenori; Yusa, Hitoshi; Igarashi, Ryo; Ohishi, Yasuo; Kamiya, Toshio; Hosono, Hideo

    2017-09-05

    The electronic structures of 35 A 2+ B 4+ O 3 ternary cubic perovskite oxides, including their hypothetical chemical compositions, were calculated by a hybrid functional method with the expectation that peculiar electronic structures and unique carrier transport properties suitable for semiconductor applications would be hidden in high-symmetry cubic perovskite oxides. We found unique electronic structures of Si-based oxides (A = Mg, Ca, Sr, and Ba, and B = Si). In particular, the unreported cubic BaSiO 3 has a very narrow band gap (4.1 eV) compared with conventional nontransition-metal silicates (e.g., ∼9 eV for SiO 2 and the calculated value of 7.3 eV for orthorhombic BaSiO 3 ) and a small electron effective mass (0.3m 0 , where m 0 is the free electron rest mass). The narrow band gap is ascribed to the nonbonding state of Si 3s and the weakened Madelung potential. The existence of the predicted cubic perovskite structure of BaSiO 3 was experimentally verified by applying a high pressure of 141 GPa. The present finding indicates that it could be possible to develop a new transparent oxide semiconductor of earth abundant silicates if the symmetry of its crystal structure is appropriately chosen. Cubic BaSiO 3 is a candidate for high-performance oxide semiconductors if this phase can be stabilized at room temperature and ambient pressure.

  4. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    PubMed

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  5. Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamura, Y.; Biegalski, M.B.; Christen, H.M.

    2009-10-22

    Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.

  6. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  7. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dewei; Yu, Yue; Wang, Changlei

    Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less

  8. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

    DOE PAGES

    Zhao, Dewei; Yu, Yue; Wang, Changlei; ...

    2017-03-01

    Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less

  9. Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes.

    PubMed

    Ling, Yichuan; Tian, Yu; Wang, Xi; Wang, Jamie C; Knox, Javon M; Perez-Orive, Fernando; Du, Yijun; Tan, Lei; Hanson, Kenneth; Ma, Biwu; Gao, Hanwei

    2016-10-01

    Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr 3 ) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr 3 films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m -2 and 4%: a new benchmark of device performance for all-inorganic PeLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 2D Ruddlesden-Popper Perovskites for Optoelectronics.

    PubMed

    Chen, Yani; Sun, Yong; Peng, Jiajun; Tang, Junhui; Zheng, Kaibo; Liang, Ziqi

    2018-01-01

    Conventional 3D organic-inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden-Popper-type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi-2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron-phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto)electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high-performance electronic devices are rationalized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Perovskite photonic sources

    NASA Astrophysics Data System (ADS)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  12. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells.

    PubMed

    He, Ming; Pang, Xinchang; Liu, Xueqin; Jiang, Beibei; He, Yanjie; Snaith, Henry; Lin, Zhiqun

    2016-03-18

    Extending the spectral absorption of organolead halide perovskite solar cells from visible into near-infrared (NIR) range renders the minimization of non-absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4 :Yb/Er upconversion nanoparticles (UCNPs) as the mesoporous electrode for CH3 NH3 PbI3 perovskite solar cells and more importantly confer perovskite solar cells to be operative under NIR light. Uniform NaYF4 :Yb/Er UCNPs are first crafted by employing rationally designed double hydrophilic star-like poly(acrylic acid)-block-poly(ethylene oxide) (PAA-b-PEO) diblock copolymer as nanoreactor, imparting the solubility of UCNPs and the tunability of film porosity during the manufacturing process. The subsequent incorporation of NaYF4 :Yb/Er UCNPs as the mesoporous electrode led to a high efficiency of 17.8 %, which was further increased to 18.1 % upon NIR irradiation. The in situ integration of upconversion materials as functional components of perovskite solar cells offers the expanded flexibility for engineering the device architecture and broadening the solar spectral use. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Large grained perovskite solar cells derived from single-crystal perovskite powders with enhanced ambient stability

    DOE PAGES

    Yen, Hung -Ju; Liang, Po -Wei; Chueh, Chu -Chen; ...

    2016-05-25

    In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. Here, the resultant large grained perovskite thin film possesses negligible physical (structural) gap between each large grain and are highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different to the thin film prepared from the typical precursor route (MAI + PbI 2).

  14. Structural origins of broadband emission from layered Pb-Br hybrid perovskites.

    PubMed

    Smith, Matthew D; Jaffe, Adam; Dohner, Emma R; Lindenberg, Aaron M; Karunadasa, Hemamala I

    2017-06-01

    Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb-(μ-Br)-Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron-lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.

  15. Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mengjin; Kim, Dong Hoe; Yu, Yue

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se 2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA 0.83Cs 0.17Pb(I 0.6Br 0.4) 3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I.more » Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.« less

  16. Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells

    DOE PAGES

    Yang, Mengjin; Kim, Dong Hoe; Yu, Yue; ...

    2017-10-02

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se 2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA 0.83Cs 0.17Pb(I 0.6Br 0.4) 3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I.more » Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.« less

  17. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport

    NASA Astrophysics Data System (ADS)

    Xiao, Ke; Cui, Can; Wang, Peng; Lin, Ping; Qiang, Yaping; Xu, Lingbo; Xie, Jiangsheng; Yang, Zhengrui; Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2018-02-01

    In the fabrication of high efficiency organic-inorganic metal halide perovskite solar cells (PSCs), an additional interface modifier is usually applied for enhancing the interface passivation and carrier transport. In this paper, we develop an innovative method with in-situ growth of one-dimensional perovskite nanowire (1D PNW) network triggered by Lewis amine over the perovskite films. To our knowledge, this is the first time to fabricate PSCs with shape-controlled perovskite surface morphology, which improved power conversion efficiency (PCE) from 14.32% to 16.66% with negligible hysteresis. The amine molecule can passivate the trap states on the polycrystalline perovskite surface to reduce trap-state density. Meanwhile, as a fast channel, the 1D PNWs would promote carrier transport from the bulk perovskite film to the electron transport layer. The PSCs with 1D PNW modification not only exhibit excellent photovoltaic performances, but also show good stability with only 4% PCE loss within 30 days in the ambient air without encapsulation. Our results strongly suggest that in-situ grown 1D PNW network provides a feasible and effective strategy for nanostructured optoelectronic devices such as PSCs to achieve superior performances.

  18. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design.

    PubMed

    Saparov, Bayrammurad; Mitzi, David B

    2016-04-13

    Although known since the late 19th century, organic-inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic-inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

  19. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    PubMed

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility

  20. Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth.

    PubMed

    Sun, Haoxuan; Lei, Tianyu; Tian, Wei; Cao, Fengren; Xiong, Jie; Li, Liang

    2017-07-01

    Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells.

    PubMed

    Bashir, Amna; Shukla, Sudhanshu; Lew, Jia Haur; Shukla, Shashwat; Bruno, Annalisa; Gupta, Disha; Baikie, Tom; Patidar, Rahul; Akhter, Zareen; Priyadarshi, Anish; Mathews, Nripan; Mhaisalkar, Subodh G

    2018-02-01

    Carbon based perovskite solar cells (PSCs) are fabricated through easily scalable screen printing techniques, using abundant and cheap carbon to replace the hole transport material (HTM) and the gold electrode further reduces costs, and carbon acts as a moisture repellent that helps in maintaining the stability of the underlying perovskite active layer. An inorganic interlayer of spinel cobaltite oxides (Co 3 O 4 ) can greatly enhance the carbon based PSC performance by suppressing charge recombination and extracting holes efficiently. The main focus of this research work is to investigate the effectiveness of Co 3 O 4 spinel oxide as the hole transporting interlayer for carbon based perovskite solar cells (PSCs). In these types of PSCs, the power conversion efficiency (PCE) is restricted by the charge carrier transport and recombination processes at the carbon-perovskite interface. The spinel Co 3 O 4 nanoparticles are synthesized using the chemical precipitation method, and characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and UV-Vis spectroscopy. A screen printed thin layer of p-type inorganic spinel Co 3 O 4 in carbon PSCs provides a better-energy level matching, superior efficiency, and stability. Compared to standard carbon PSCs (PCE of 11.25%) an improved PCE of 13.27% with long-term stability, up to 2500 hours under ambient conditions, is achieved. Finally, the fabrication of a monolithic perovskite module is demonstrated, having an active area of 70 cm 2 and showing a power conversion efficiency of >11% with virtually no hysteresis. This indicates that Co 3 O 4 is a promising interlayer for efficient and stable large area carbon PSCs.

  2. Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH 2CH=NH 2SnI 3and Related Systems

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.; Liang, K.

    1997-12-01

    Combining concentrated hydriodic acid solutions of tin(II) iodide and formamidine acetate in an inert atmosphere results in the precipitation of a new conducting organic-inorganic compound, NH 2CH=NH 2SnI 3, which at room temperature adopts a cubic perovskite structure. The lattice constant for NH 2CH=NH 2SnI 3is found to be a=6.316(1) Å, which is approximately 1.2% larger than that for the isostructural compound CH 3NH 3SnI 3. The electrical resistivity of a pressed pellet of the new compound exhibits semimetallic temperature dependence from 10 to 300 K, with evidence of a structural transition at approximately 75 K. NH 2CH=NH 2SnI 3begins to slowly decompose in an inert atmosphere at temperatures as low as 200°C, with bulk decomposition/melting occurring above 300°C. The properties of the formamidinium-based perovskite are compared with those of the related cubic (at room temperature) perovskite CH 3NH 3SnI 3and the mixed-cation system (CH 3NH 3) 1- x(NH 2CH=NH 2) xSnI 3.

  3. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells

    DOE PAGES

    Chen, Bo; Bai, Yang; Yu, Zhengshan; ...

    2016-07-19

    Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less

  4. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Bai, Yang; Yu, Zhengshan

    Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less

  5. Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells.

    PubMed

    Rajeswari, Ramireddy; Mrinalini, Madoori; Prasanthkumar, Seelam; Giribabu, Lingamallu

    2017-07-01

    Hole transporting material (HTM) is a significant component to achieve the high performance perovskite solar cells (PSCs). Over the years, inorganic, organic and hybrid (organic-inorganic) material based HTMs have been developed and investigated successfully. Today, perovskite solar cells achieved the efficiency of 22.1 % with with 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9-spirobifluorene (spiro-OMeTAD) as HTM. Nevertheless, synthesis and cost of organic HTMs is a major challenging issue and therefore alternative materials are required. From the past few years, inorganic HTMs showed large improvement in power conversion efficiency (PCE) and stability. Recently CuO x reached the PCE of 19.0% with better stability. These developments affirms that inorganic HTMs are better alternativesto the organic HTMs for next generation PSCs. In this report, we mainly focussed on the recent advances of inorganic and hybrid HTMs for PSCs and highlighted the efficiency and stability of PSCs improved by changing metal oxides as HTMs. Consequently, we expect that energy levels of these inorganic HTMs matches very well with the valence band of perovskites and improved efficiency helps in future practical deployment of low cost PSCs. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Paintable Carbon-Based Perovskite Solar Cells with Engineered Perovskite/Carbon Interface Using Carbon Nanotubes Dripping Method.

    PubMed

    Ryu, Jaehoon; Lee, Kisu; Yun, Juyoung; Yu, Haejun; Lee, Jungsup; Jang, Jyongsik

    2017-10-01

    Paintable carbon electrode-based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon-based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (V oc ) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis-free performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.

    PubMed

    Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J

    2017-10-09

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO 2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al 2 O 3 underlayer for perovskite solar cells. The thickness of the Al 2 O 3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al 2 O 3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al 2 O 3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al 2 O 3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al 2 O 3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al 2 O 3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enhanced thermoelectric figure-of-merit in environmentally benign BaxSr2-xTiCoO6 double perovskites

    NASA Astrophysics Data System (ADS)

    Saxena, Mandvi; Roy, Pinku; Acharya, Megha; Bose, Imon; Tanwar, Khagesh; Maiti, Tanmoy

    2016-12-01

    Environmental friendly, non-toxic double perovskite BaxSr2-xTiCoO6 compositions with 0 ≤ x ≤ 0.2 were synthesized using solid-state reaction route for high temperature thermoelectric (TE) applications. XRD and SEM studies confirmed the presence of single-phase solid solution with highly dense microstructure for all the oxide compositions. Temperature dependent electrical conductivity measurement showed semiconductor to metal (M-S) transition in these double perovskites. Incorporation of barium in Sr2TiCoO6 pushed M-S transition to higher temperature making it a potential candidate for high temperature TE applications. Conductivity behaviors of these oxides were explained by small polaron model. Furthermore, these oxides exhibit a glass like behavior resulting in low thermal conductivity. Low temperature dielectric measurement revealed relaxor ferroelectric behavior in these oxides below room temperature. Transition of these relaxors into a glassy state beyond Burns temperature (TD) was found responsible for having low thermal conductivity in these oxides. Maximum dimensionless TE figure-of-merit ZT = 0.29 at 1223 K was achieved for BaxSr2-xTiCoO6 composition with x = 0.2.

  9. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    NASA Astrophysics Data System (ADS)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-03-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.

  10. Rational material, interface, and device engineering for high-performance polymer and perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jen, Alex K.

    2015-10-01

    The performance of polymer and hybrid solar cells is also strongly dependent on their efficiency in harvesting light, exciton dissociation, charge transport, and charge collection at the metal/organic/metal oxide or the metal/perovskite/metal oxide interfaces. Our laboratory employs a molecular engineering approach to develop processible low band-gap polymers with high charge carrier mobility that can enhance power conversion efficiency of the single junction solar cells to values as high as ~11%. We have also developed several innovative strategies to modify the interface of bulk-heterojunction devices and create new device architectures to fully explore their potential for solar applications. In this talk, the integrated approach of combining material design, interface, and device engineering to significantly improve the performance of polymer and hybrid perovskite photovoltaic cells will be discussed. Specific emphasis will be placed on the development of low band-gap polymers with reduced reorganizational energy and proper energy levels, formation of optimized morphology of active layer, and minimized interfacial energy barriers using functional conductive surfactants. At the end, several new device architectures and optical engineering strategies to make tandem cells and semitransparent solar cells will be discussed to explore the full promise of polymer and perovskite hybrid solar cells.

  11. Effect of aluminium on the compressibility of silicate perovskite

    NASA Astrophysics Data System (ADS)

    Daniel, Isabelle; Bass, Jay D.; Fiquet, Guillaume; Cardon, Hervé; Zhang, Jianzhong; Hanfland, Michael

    2004-08-01

    Volume measurements for aluminous MgSiO3 perovskite containing 5 mol% Al2O3 were carried out up to pressures of 40 GPa at ambient temperature, using monochromatic synchrotron X-ray diffraction. A least-squares refinement of the data to the Birch-Murnaghan equation of state yields the following parameters V0 = 163.234(8) Å3, KT0 = 251.5(13) GPa, K'0 = 4. Within uncertainties, the presence of 5 mol% Al2O3 in MgSiO3 perovskite induces a decrease of the bulk modulus in the range of 0% to 1.8%. Thus, KT of perovskite is affected little if at all by the presence of Al3+. This result is in excellent agreement with the values deduced from sound velocity measurements on the same sample [Jackson et al., 2004]. We discuss the possible origin of discrepancies among the different bulk moduli reported to date for aluminous perovskite. In light of recent calculations, our results are consistent with aluminium being dissolved in MgSiO3 perovskite through a coupled substitution mechanism involving the replacement of both Mg2+ and Si4+ in the dodecahedral and octahedral sites by 2 Al3+. Moreover, any slight reduction in the bulk modulus of MgSiO3 perovskite induced by the dissolution of 5 mol% Al2O3, indicates that the relative proportions of the minerals characteristic of the lower mantle, as inferred from seismological models, should not be significantly altered by the introduction of Al in the system.

  12. Theory of metal-insulator transition in the family of perovskite iridium oxides

    NASA Astrophysics Data System (ADS)

    Carter, Jean-Michel; Shankar V., Vijay; Kee, Hae-Young

    2013-07-01

    Perovskite iridium oxides Srn+1IrnO3n+1 exhibit fascinating phenomena due to the combined effects of spin-orbit coupling (SOC) and electronic interactions. It was suggested that electronic correlation amplified via the strong SOC leads to a spin-orbit Mott insulator for n=1 and 2, while three-dimensional (3D) SrIrO3 remains metallic because of the large bandwidth from the 3D structure. However, this bandwidth-controlled metal-insulator transition (MIT) is only valid when SOC is large enough to split Jeff=1/2 and 3/2 bands, while the mixing of 1/2 and 3/2 bands is conspicuous among the occupied bands. Here, we investigate the MIT as a function of n using weak-coupling theory. In this approach, the magnetic instability is determined by the states near the Fermi level rather than the entire band structure. Starting from t2g tight-binding models for n=1, 2, and ∞, the states near the Fermi level are found to be predominantly Jeff=1/2 allowing an effective single-band model. Supplementing this effective Jeff=1/2 model with Hubbard-type interactions, transitions from a metal to magnetically ordered states are obtained. Strong-coupling spin models are derived to compare the magnetic ordering patterns obtained in the weak- and strong-coupling limits. We find that they are identical, indicating that these iridates are likely in an intermediate-coupling regime.

  13. Phase formation and UV luminescence of Gd{sup 3+} doped perovskite-type YScO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp

    Synthesis of pure and Gd{sup 3+}doped perovskite-type YScO{sub 3} was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd{sup 3+} doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phasemore » at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO{sub 3} formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO{sub 3}. Because Gd{sup 3+} ions were also dissolved into the single C-type phase in Gd{sup 3+} doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase. - Graphical abstract: A pure perovskite-type YScO{sub 3} phase was successfully synthesized by a polymerized complex (PC) method. The perovskite-type YScO{sub 3} was generated through a solid solution of C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} with drastic change of morphology. The PC method enabled a preparation of the single phase of the perovskite-type YScO{sub 3} at lower temperature and in shorter heating time. Gd{sup 3+} doped perovskite-type YScO{sub 3} was found to show a strong sharp UV emission at 314 nm. - Highlights: • Pure YScO{sub 3} phase was successfully synthesized by polymerized complex (PC) method. • Pure perovskite-type YScO{sub 3} phase was generated from pure C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} one. • YScO{sub 3} was obtained at lower

  14. Perovskite Superlattices as Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  15. Ferroelastic switching in a layered-perovskite thin film

    PubMed Central

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; Liang, Renrong; Luo, Zhenlin; Tian, Yu; Yi, Di; Zhang, Qintong; Wang, Jing; Han, Xiu-Feng; Van Tendeloo, Gustaaf; Chen, Long-Qing; Nan, Ce-Wen; Ramesh, Ramamoorthy; Zhang, Jinxing

    2016-01-01

    A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications. PMID:26838483

  16. Ferroelastic switching in a layered-perovskite thin film

    DOE PAGES

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; ...

    2016-02-03

    Here, a controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi 2WO 6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barriermore » of ferroelastic switching in orthorhombic Bi 2WO 6 film is ten times lower than the one in PbTiO 3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.« less

  17. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2016-02-07

    Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities.

  18. Superior Self-Powered Room-Temperature Chemical Sensing with Light-Activated Inorganic Halides Perovskites.

    PubMed

    Chen, Hongjun; Zhang, Meng; Bo, Renheng; Barugkin, Chog; Zheng, Jianghui; Ma, Qingshan; Huang, Shujuan; Ho-Baillie, Anita W Y; Catchpole, Kylie R; Tricoli, Antonio

    2018-02-01

    Hybrid halide perovskite is one of the promising light absorber and is intensively investigated for many optoelectronic applications. Here, the first prototype of a self-powered inorganic halides perovskite for chemical gas sensing at room temperature under visible-light irradiation is presented. These devices consist of porous network of CsPbBr 3 (CPB) and can generate an open-circuit voltage of 0.87 V under visible-light irradiation, which can be used to detect various concentrations of O 2 and parts per million concentrations of medically relevant volatile organic compounds such as acetone and ethanol with very quick response and recovery time. It is observed that O 2 gas can passivate the surface trap sites in CPB and the ambipolar charge transport in the perovskite layer results in a distinct sensing mechanism compared with established semiconductors with symmetric electrical response to both oxidizing and reducing gases. The platform of CPB-based gas sensor provides new insights for the emerging area of wearable sensors for personalized and preventive medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. White perovskite based lighting devices.

    PubMed

    Bidikoudi, M; Fresta, E; Costa, R D

    2018-06-28

    Hybrid organic-inorganic and all-inorganic metal halide perovskites have been one of the most intensively studied materials during the last few years. In particular, research focusing on understanding how to tune the photoluminescence features and to apply perovskites to optoelectronic applications has led to a myriad of new materials featuring high photoluminescence quantum yields covering the whole visible range, as well as devices with remarkable performances. Having already established their successful incorporation in highly efficient solar cells, the next step is to tackle the challenges in solid-state lighting (SSL) devices. Here, the most prominent is the preparation of white-emitting devices. Herein, we have provided a comprehensive view of the route towards perovskite white lighting devices, including thin film light-emitting diodes (PeLEDs) and hybrid LEDs (HLEDs), using perovskite based color down-converting coatings. While synthesis and photoluminescence features are briefly discussed, we focus on highlighting the major achievements and limitations in white devices. Overall, we expect that this review will provide the reader a general overview of the current state of perovskite white SSL, paving the way towards new breakthroughs in the near future.

  20. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shufang; Liu, Qingwei; Zheng, Ya; Li, Renjie; Peng, Tianyou

    2017-08-01

    Solution processable planar heterojunction perovskite solar cell has drawn much attention as a promising low-cost photovoltaic device, and much effort has been made to improve its power conversion efficiency by choosing appropriate additives for the perovskite precursor solution. Different to those additives reported, a soluble and thermal stable tert-butyl substituted copper phthalocyanine (CuPc(tBu)4) as additive is first introduced into the perovskite precursor solution of a planar perovskite solar cell that is fabricated via the one-step solution process. It is found that the pristine device without CuPc(tBu)4 additive exhibits a power conversion efficiency of 15.3%, while an extremely low concentration (4.4 × 10-3 mM) of CuPc(tBu)4 in the precursor solution leads to the corresponding device achieving an enhanced power conversion efficiency of 17.3%. CuPc(tBu)4 as an additive can improve the quality of perovskite layer with higher crystallinity and surface coverage, then resulting in enhanced light absorption and reduced charge recombination, and thus the better power conversion efficiency. The finding presented here provides a new choice for improving the quality of perovskite layer and the photovoltaic performance of the planar heterojunction perovskite solar cells.

  1. Advances in Perovskite Solar Cells

    PubMed Central

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  2. Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer.

    PubMed

    Xie, Yulin; Lu, Kai; Duan, Jiashun; Jiang, Youyu; Hu, Lin; Liu, Tiefeng; Zhou, Yinhua; Hu, Bin

    2018-04-25

    Electron and hole transport layers have critical impacts on the overall performance of perovskite solar cells (PSCs). Herein, for the first time, a solution-processed cobalt (Co)-doped NiO X film was fabricated as the hole transport layer in inverted planar PSCs, and the solar cells exhibit 18.6% power conversion efficiency. It has been found that an appropriate Co-doping can significantly adjust the work function and enhance electrical conductivity of the NiO X film. Capacitance-voltage ( C- V) spectra and time-resolved photoluminescence spectra indicate clearly that the charge accumulation becomes more pronounced in the Co-doped NiO X -based photovoltaic devices; it, as a consequence, prevents the nonradiative recombination at the interface between the Co-doped NiO X and the photoactive perovskite layers. Moreover, field-dependent photoluminescence measurements indicate that Co-doped NiO X -based devices can also effectively inhibit the radiative recombination process in the perovskite layer and finally facilitate the generation of photocurrent. Our work indicates that Co-doped NiO X film is an excellent candidate for high-performance inverted planar PSCs.

  3. Lead-Free Organic-Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives.

    PubMed

    Shi, Zejiao; Guo, Jia; Chen, Yonghua; Li, Qi; Pan, Yufeng; Zhang, Haijuan; Xia, Yingdong; Huang, Wei

    2017-04-01

    Organic-inorganic hybrid halide perovskites (e.g., MAPbI 3 ) have recently emerged as novel active materials for photovoltaic applications with power conversion efficiency over 22%. Conventional perovskite solar cells (PSCs); however, suffer the issue that lead is toxic to the environment and organisms for a long time and is hard to excrete from the body. Therefore, it is imperative to find environmentally-friendly metal ions to replace lead for the further development of PSCs. Previous work has demonstrated that Sn, Ge, Cu, Bi, and Sb ions could be used as alternative ions in perovskite configurations to form a new environmentally-friendly lead-free perovskite structure. Here, we review recent progress on lead-free PSCs in terms of the theoretical insight and experimental explorations of the crystal structure of lead-free perovskite, thin film deposition, and device performance. We also discuss the importance of obtaining further understanding of the fundamental properties of lead-free hybrid perovskites, especially those related to photophysics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High Performance Tandem Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas

    Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.

  5. Mesoscopic Perovskite Light-Emitting Diodes.

    PubMed

    Palma, Alessandro Lorenzo; Cinà, Lucio; Busby, Yan; Marsella, Andrea; Agresti, Antonio; Pescetelli, Sara; Pireaux, Jean-Jacques; Di Carlo, Aldo

    2016-10-03

    Solution-processed hybrid bromide perovskite light-emitting-diodes (PLEDs) represent an attractive alternative technology that would allow overcoming the well-known severe efficiency drop in the green spectrum related to conventional LEDs technologies. In this work, we report on the development and characterization of PLEDs fabricated using, for the first time, a mesostructured layout. Stability of PLEDs is a critical issue; remarkably, mesostructured PLEDs devices tested in ambient conditions and without encapsulation showed a lifetime well-above what previously reported with a planar heterojunction layout. Moreover, mesostructured PLEDs measured under full operative conditions showed a remarkably narrow emission spectrum, even lower than what is typically obtained by nitride- or phosphide-based green LEDs. A dynamic analysis has shown fast rise and fall times, demonstrating the suitability of PLEDs for display applications. Combined electrical and advanced structural analyses (Raman, XPS depth profiling, and ToF-SIMS 3D analysis) have been performed to elucidate the degradation mechanism, the results of which are mainly related to the degradation of the hole-transporting material (HTM) and to the perovskite-HTM interface.

  6. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  7. Making and Breaking of Lead Halide Perovskites

    DOE PAGES

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; ...

    2016-01-20

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapidmore » degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution

  8. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+δ Double Perovskite

    PubMed Central

    Bernuy-Lopez, Carlos; Høydalsvik, Kristin; Einarsrud, Mari-Ann; Grande, Tor

    2016-01-01

    The effect of the A-site cation ordering on the chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite was studied as a function of temperature and partial pressure of oxygen. Tetragonal A-site cation ordered layered LaBaCo2O5+δ double perovskite was obtained by annealing cubic A-site cation disordered La0.5Ba0.5CoO3-δ perovskite at 1100 °C in N2. High temperature X-ray diffraction between room temperature (RT) and 800 °C revealed that LaBaCo2O5+δ remains tetragonal during heating in oxidizing atmosphere, but goes through two phase transitions in N2 and between 450 °C and 675 °C from tetragonal P4/mmm to orthorhombic Pmmm and back to P4/mmm due to oxygen vacancy ordering followed by disordering of the oxygen vacancies. An anisotropic chemical and thermal expansion of LaBaCo2O5+δ was demonstrated. La0.5Ba0.5CoO3-δ remained cubic at the studied temperature irrespective of partial pressure of oxygen. LaBaCo2O5+δ is metastable with respect to La0.5Ba0.5CoO3-δ at oxidizing conditions inferred from the thermal evolution of the oxygen deficiency and oxidation state of Co in the two materials. The oxidation state of Co is higher in La0.5Ba0.5CoO3-δ resulting in a higher electrical conductivity relative to LaBaCo2O5+δ. The conductivity in both materials was reduced with decreasing partial pressure of oxygen pointing to a p-type semiconducting behavior. PMID:28773279

  9. Full-color tuning in binary polymer:perovskite nanocrystals organic-inorganic hybrid blends

    NASA Astrophysics Data System (ADS)

    Perulli, A.; Balena, A.; Fernandez, M.; Nedelcu, G.; Cretí, A.; Kovalenko, M. V.; Lomascolo, M.; Anni, M.

    2018-04-01

    The excellent optical and electronic properties of metal halide perovskites recently proposed these materials as interesting active materials for optoelectronic applications. In particular, the high color purity of perovskite colloidal nanocrystals (NCs) had recently motivated their exploration as active materials for light emitting diodes with tunable emission across the visible range. In this work, we investigated the emission properties of binary blends of conjugated polymers and perovskite NCs. We demonstrate that the emission color of the blends is determined by the superposition of the component photoluminescence spectra, allowing color tuning by acting on the blend relative composition. The use of two different polymers, two different perovskite NCs, and different blend compositions is exploited to tune the blend color in the blue-green, yellow-red, and blue-red ranges, including white light generation.

  10. Recent progress in stabilizing hybrid perovskites for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chen, Jianqing; Cai, Xin; Yang, Donghui; Song, Dan; Wang, Jiajia; Jiang, Jinghua; Ma, Aibin; Lv, Shiquan; Hu, Michael Z.; Ni, Chaoying

    2017-07-01

    Hybrid inorganic-organic perovskites have quickly evolved as a promising group of materials for solar cells and optoelectronic applications mainly owing to the inexpensive materials, relatively simple and versatile fabrication and high power conversion efficiency (PCE). The certified energy conversion efficiency for perovskite solar cell (PSC) has reached above 20%, which is compatible to the current best for commercial applications. However, long-term stabilities of the materials and devices remain to be the biggest challenging issue for realistic implementation of the PSCs. This article discusses the key issues related to the stability of perovskite absorbing layer including crystal structural stability, chemical stability under moisture, oxygen, illumination and interface reaction, effects of electron-transporting materials (ETM), hole-transporting materials (HTM), contact electrodes, ion migration and preparation conditions. Towards the end, prospective strategies for improving the stability of PSCs are also briefly discussed and summarized. We focus on recent understanding of the stability of materials and devices and our perspectives about the strategies for the stability improvement.

  11. Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites.

    PubMed

    Meng, Weiwei; Wang, Xiaoming; Xiao, Zewen; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2017-07-06

    Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB 2+ X 3 ) and double perovskites (A 2 B + B 3+ X 6 ) (A = Cs or monovalent organic ion, B 2+ = non-Pb divalent metal, B + = monovalent metal, B 3+ = trivalent metal, X = halogen). We show that if B 2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B + = In, Tl and B 3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.

  12. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells

    PubMed Central

    Rong, Yaoguang; Hou, Xiaomeng; Hu, Yue; Mei, Anyi; Liu, Linfeng; Wang, Ping; Han, Hongwei

    2017-01-01

    Organometal lead halide perovskites have been widely used as the light harvester for high-performance solar cells. However, typical perovskites of methylammonium lead halides (CH3NH3PbX3, X=Cl, Br, I) are usually sensitive to moisture in ambient air, and thus require an inert atmosphere to process. Here we demonstrate a moisture-induced transformation of perovskite crystals in a triple-layer scaffold of TiO2/ZrO2/Carbon to fabricate printable mesoscopic solar cells. An additive of ammonium chloride (NH4Cl) is employed to assist the crystallization of perovskite, wherein the formation and transition of intermediate CH3NH3X·NH4PbX3(H2O)2 (X=I or Cl) enables high-quality perovskite CH3NH3PbI3 crystals with preferential growth orientation. Correspondingly, the intrinsic perovskite devices based on CH3NH3PbI3 achieve an efficiency of 15.6% and a lifetime of over 130 days in ambient condition with 30% relative humidity. This ambient-processed printable perovskite solar cell provides a promising prospect for mass production, and will promote the development of perovskite-based photovoltaics. PMID:28240286

  13. Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers.

    PubMed

    Li, Pengfei; Chen, Yao; Yang, Tieshan; Wang, Ziyu; Lin, Han; Xu, Yanhua; Li, Lei; Mu, Haoran; Shivananju, Bannur Nanjunda; Zhang, Yupeng; Zhang, Qinglin; Pan, Anlian; Li, Shaojuan; Tang, Dingyuan; Jia, Baohua; Zhang, Han; Bao, Qiaoliang

    2017-04-12

    Even though the nonlinear optical effects of solution processed organic-inorganic perovskite films have been studied, the nonlinear optical properties in two-dimensional (2D) perovskites, especially their applications for ultrafast photonics, are largely unexplored. In comparison to bulk perovskite films, 2D perovskite nanosheets with small thicknesses of a few unit cells are more suitable for investigating the intrinsic nonlinear optical properties because bulk recombination of photocarriers and the nonlinear scattering are relatively small. In this research, we systematically investigated the nonlinear optical properties of 2D perovskite nanosheets derived from a combined solution process and vapor phase conversion method. It was found that 2D perovskite nanosheets have stronger saturable absorption properties with large modulation depth and very low saturation intensity compared with those of bulk perovskite films. Using an all dry transfer method, we constructed a new type of saturable absorber device based on single piece 2D perovskite nanosheet. Stable soliton state mode-locking was achieved, and ultrafast picosecond pulses were generated at 1064 nm. This work is likely to pave the way for ultrafast photonic and optoelectronic applications based on 2D perovskites.

  14. Toward Revealing the Critical Role of Perovskite Coverage in Highly Efficient Electron-Transport Layer-Free Perovskite Solar Cells: An Energy Band and Equivalent Circuit Model Perspective.

    PubMed

    Huang, Like; Xu, Jie; Sun, Xiaoxiang; Du, Yangyang; Cai, Hongkun; Ni, Jian; Li, Juan; Hu, Ziyang; Zhang, Jianjun

    2016-04-20

    Currently, most efficient perovskite solar cells (PVKSCs) with a p-i-n structure require simultaneously electron transport layers (ETLs) and hole transport layers (HTLs) to help collecting photogenerated electrons and holes for obtaining high performance. ETL free planar PVKSC is a relatively new and simple structured solar cell that gets rid of the complex and high temperature required ETL (such as compact and mesoporous TiO2). Here, we demonstrate the critical role of high coverage of perovskite in efficient ETL free PVKSCs from an energy band and equivalent circuit model perspective. From an electrical point of view, we confirmed that the low coverage of perovskite does cause localized short circuit of the device. With coverage optimization, a planar p-i-n(++) device with a power conversion efficiency of over 11% was achieved, implying that the ETL layer may not be necessary for an efficient device as long as the perovskite coverage is approaching 100%.

  15. Extrinsic ion migration in perovskite solar cells

    DOE PAGES

    Li, Zhen; Xiao, Chuanxiao; Yang, Ye; ...

    2017-04-10

    In this study, the migration of intrinsic ions (e.g., MA +, Pb 2+, I –) in organic–inorganic hybrid perovskites has received significant attention with respect to the critical roles of these ions in the hysteresis and degradation in perovskite solar cells (PSCs). Here, we demonstrate that extrinsic ions (e.g., Li +, H +, Na +), when used in the contact layers in PSCs, can migrate across the perovskite layer and strongly impact PSC operation. In a TiO 2/perovskite/spiro-OMeTAD-based PSC, Li +-ion migration from spiro-OMeTAD to the perovskite and TiO 2 layer is illustrated by time-of-flight secondary-ion mass spectrometry. The movementmore » of Li + ions in PSCs plays an important role in modulating the solar cell performance, tuning TiO 2 carrier-extraction properties, and affecting hysteresis in PSCs. The influence of Li +-ion migration was investigated using time-resolved photoluminescence, Kelvin probe force microscopy, and external quantum efficiency spectra. Other extrinsic ions such as H + and Na + also show a clear impact on the performance and hysteresis in PSCs. Understanding the impacts of extrinsic ions in perovskite-based devices could lead to new material and device designs to further advance perovskite technology for various applications.« less

  16. Towards stable and commercially available perovskite solar cells

    DOE PAGES

    Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu; ...

    2016-10-17

    Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less

  17. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology

    NASA Astrophysics Data System (ADS)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-01

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  18. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology.

    PubMed

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-10

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  19. Perovskite and Organic Photovoltaics | Photovoltaic Research | NREL

    Science.gov Websites

    Perovskite and Organic Photovoltaics Perovskite and Organic Photovoltaics Scientist holds several solar cells; 2) electronic energy level alignment at the carbon nanotube/organic metal halide perovskite Hest in the PDIL in the S and TF at NREL. Organic Photovoltaics (OPV) We develop and apply new absorber

  20. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  1. Pressure-induced dramatic changes in organic–inorganic halide perovskites

    PubMed Central

    Yang, Wenge

    2017-01-01

    Organic–inorganic halide perovskites have emerged as a promising family of functional materials for advanced photovoltaic and optoelectronic applications with high performances and low costs. Various chemical methods and processing approaches have been employed to modify the compositions, structures, morphologies, and electronic properties of hybrid perovskites. However, challenges still remain in terms of their stability, the use of environmentally unfriendly chemicals, and the lack of an insightful understanding into structure–property relationships. Alternatively, pressure, a fundamental thermodynamic parameter that can significantly alter the atomic and electronic structures of functional materials, has been widely utilized to further our understanding of structure–property relationships, and also to enable emergent or enhanced properties of given materials. In this perspective, we describe the recent progress of high-pressure research on hybrid perovskites, particularly regarding pressure-induced novel phenomena and pressure-enhanced properties. We discuss the effect of pressure on structures and properties, their relationships and the underlying mechanisms. Finally, we give an outlook on future research avenues in which high pressure and related alternative methods such as chemical tailoring and interfacial engineering may lead to novel hybrid perovskites uniquely suited for high-performance energy applications. PMID:29147500

  2. Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites.

    PubMed

    Leyden, Matthew R; Matsushima, Toshinori; Qin, Chuanjiang; Ruan, Shibin; Ye, Hao; Adachi, Chihaya

    2018-06-06

    Organo-metal-halide perovskites are a promising set of materials for optoelectronic applications such as solar cells, light emitting diodes and lasers. Perovskite thin films have demonstrated amplified spontaneous emission thresholds as low as 1.6 μJ cm-2 and lasing thresholds as low as 0.2 μJ cm-2. Recently the performance of perovskite light emitting diodes has rapidly risen due to the formation of quasi 2D films using bulky ligands such as phenylethylammonium. Despite the high photoluminescent yield and external quantum efficiency of quasi 2D perovskites, few reports exist on amplified spontaneous emission. We show within this report that the threshold for amplified spontaneous emission of quasi 2D perovskite films increases with the concentration of phenylethylammonium. We attribute this increasing threshold to a charge transfer state at the PEA interface that competes for excitons with the ASE process. Additionally, the comparatively slow inter-grain charge transfer process cannot significantly contribute to the fast radiative recombination in amplified spontaneous emission. These results suggest that relatively low order PEA based perovskite films that are suitable for LED applications are not well suited for lasing applications. However high order films were able to maintain their low threshold values and may still benefit from improved stability.

  3. Thermochromic halide perovskite solar cells.

    PubMed

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  4. Thermochromic halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  5. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGES

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; ...

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  6. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  7. 2:1 Charge disproportionation in perovskite-structure oxide La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haichuan; Hosaka, Yoshiteru; Seki, Hayato

    La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} was synthesized at a high pressure and high temperature. The compound crystallizes in a √2a×2a×√2a perovskite cell in which the La and Ca ions at the A site are disordered. At 217 K the Fe{sup 3.67+} shows charge disproportionation to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1, and this disproportionation is accompanied by transitions in magnetic and transport properties. The charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. The local electronic and magnetic environments of Fe in La{sub 1/3}Ca{sub 2/3}FeO{submore » 3} are quite similar to those of Fe in La{sub 1/3}Sr{sub 2/3}FeO{sub 3}, and the 2:1 charge disproportionation pattern of Fe{sup 3+} and Fe{sup 5+} in La{sub 1/3}Ca{sub 2/3}FeO{sub 3} is also the same as that in La{sub 1/3}Sr{sub 2/3}FeO{sub 3}. - Graphical abstract: The perovskite-structure oxide La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} shows charge disproportionation to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1, and the charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. - Highlights: • La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} was synthesized at a high pressure and high temperature. • At 217 K the Fe{sup 3.67+} shows charge disproportionation (CD) to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1. • The charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. • The disproportionation is accompanied by transitions in magnetic and transport properties.« less

  8. Water electrolysis on La 1-xSr xCoO 3-δ perovskite electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.

    2016-03-23

    Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr 2+ substitution into La 1-xSr xCoO 3-δ. We attempt tomore » rationalize the high activities of La 1-xSr xCoO 3-δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO 2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.« less

  9. Water electrolysis on La 1-xSr xCoO 3-δ perovskite electrocatalysts

    DOE PAGES

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; ...

    2016-03-23

    Here, perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr 2+ substitution into La 1–xSr xCoO 3–δ. We attemptmore » to rationalize the high activities of La 1–xSr xCoO 3–δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO 2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.« less

  10. Growth of MAPbBr3 perovskite crystals and its interfacial properties with Al and Ag contacts for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Najeeb, Mansoor Ani; Ahmad, Zubair; Shakoor, R. A.; Alashraf, Abdulla; Bhadra, Jolly; Al-Thani, N. J.; Al-Muhtaseb, Shaheen A.; Mohamed, A. M. A.

    2017-11-01

    In this work, the MAPbBr3 perovskite crystals were grown and the interfacial properties of the poly-crystalline MAPbBr3 with Aluminum (Al) and Silver (Ag) contacts has been investigated. MAPbBr3 crystals are turned into the poly-crystalline pellets (PCP) using compaction technique and the Al/PCP, Al/interface layer/PCP, Ag/PCP, and Ag/interface layer/PCP contacts were investigated. Scanning Electron Microscopic (SEM), Energy-dispersive X-ray spectroscopy (EDX) and current-voltage (I-V) characteristic technique were used to have an insight of the degradation mechanism happening at the Metal/perovskite interface. The Ag/PCP contact appears to be stable, whereas Al is found to be highly reactive with the MAPbBr3 perovskite crystals due to the infiltration setback of Al in to the perovskite crystals. The interface layer showed a slight effect on the penetration of Al in to the perovskite crystals however it does not seem to be an appropriate solution. It is noteworthy that the stability of the underlying metal/perovskite contact is very crucial towards the perovskite solar cells with extended device lifetime.

  11. Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant.

    PubMed

    Salado, Manuel; Ramos, F Javier; Manzanares, Valentin M; Gao, Peng; Nazeeruddin, Mohammad Khaja; Dyson, Paul J; Ahmad, Shahzada

    2016-09-22

    The principle limitation of perovskite solar cells is related to their instability and, hence, their limited lifetime. Herein, we employ an imidazolium iodide dopant, 1-methyl-3-(1H,1H,2H,2H-nonafluorohexyl)-imidazolium iodide, containing a perfluorous appendage, which leads to prolonged (unencapsulated, under Ar atmosphere) device activities exceeding 100 days without compromising the power conversion efficiency and other photovoltaic parameters. The extended lifetime of the device can be attributed, at least in part, to the hydrophobic nature of the imidazolium iodide salt. The functionalization of the perovskite material was found to have negligible influence on the perovskite crystal structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.

    PubMed

    Wang, Wei; Tadé, Moses O; Shao, Zongping

    2015-08-07

    Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their

  13. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  14. Improved perovskite phototransistor prepared using multi-step annealing method

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Yu, Yu; Yao, Jianquan

    2018-02-01

    Organic-inorganic hybrid perovskites with good intrinsic physical properties have received substantial interest for solar cell and optoelectronic applications. However, perovskite film always suffers from a low carrier mobility due to its structural imperfection including sharp grain boundaries and pinholes, restricting their device performance and application potential. Here we demonstrate a straightforward strategy based on multi-step annealing process to improve the performance of perovskite photodetector. Annealing temperature and duration greatly affects the surface morphology and optoelectrical properties of perovskites which determines the device property of phototransistor. The perovskite films treated with multi-step annealing method tend to form highly uniform, well-crystallized and high surface coverage perovskite film, which exhibit stronger ultraviolet-visible absorption and photoluminescence spectrum compare to the perovskites prepared by conventional one-step annealing process. The field-effect mobilities of perovskite photodetector treated by one-step direct annealing method shows mobility as 0.121 (0.062) cm2V-1s-1 for holes (electrons), which increases to 1.01 (0.54) cm2V-1s-1 for that treated with muti-step slow annealing method. Moreover, the perovskite phototransistors exhibit a fast photoresponse speed of 78 μs. In general, this work focuses on the influence of annealing methods on perovskite phototransistor, instead of obtains best parameters of it. These findings prove that Multi-step annealing methods is feasible to prepared high performance based photodetector.

  15. On the novel double perovskites A2Fe(Mn0.5W0.5)O6 (A= Ca, Sr, Ba). Structural evolution and magnetism from neutron diffraction data

    NASA Astrophysics Data System (ADS)

    García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio

    2018-06-01

    New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.

  16. High-temperature thermoelectric properties of the double-perovskite ruthenium oxide (Sr1-xLax)2ErRuO6

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryohei; Okazaki, Ryuji; Yasui, Yukio; Terasaki, Ichiro; Sudayama, Takaaki; Nakao, Hironori; Yamasaki, Yuichi; Okamoto, Jun; Murakami, Youichi; Kitajima, Yoshinori

    2012-10-01

    We have prepared polycrystalline samples of (Sr1-xLax)2ErRuO6 and (Sr1-xLax)2YRuO6, and have measured the resistivity, Seebeck coefficient, thermal conductivity, susceptibility, and x-ray absorption in order to evaluate the electronic states and thermoelectric properties of the doped double-perovskite ruthenates. We have observed a large Seebeck coefficient of -160 μV/K and a low thermal conductivity of 7 mW/cmK for x = 0.1 at 800 K in air. These two values are suitable for efficient oxide thermoelectrics, although the resistivity is still as high as 1 Ω cm. From the susceptibility and x-ray absorption measurements, we find that the doped electrons exist as Ru4+ in the low spin state. On the basis of the measured results, the electronic states and the conduction mechanism are discussed.

  17. Effect of substrate preheating on the photovoltaic performance of ZnO nanorod-based perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wei-Shuo; Lin, Tsyr-Rou; Yang, Hsiu-Ting; Li, Yu-Ren; Chuang, Kai-Chi; Li, Yi-Shao; Luo, Jun-Dao; Hus, Chain-Shu; Cheng, Huang-Chung

    2018-06-01

    In this study, zinc oxide nanorods (ZnO-NRs) grown via a low-temperature hydrothermal growth process are used as the electron transport layer (ETL) owing to their low temperature process and three-dimensional structure, which increases the surface area and thereby improves photovoltaic performance. To further improve the performance of solar cells, substrate preheating before spin-coating PbI2 and perovskite films was conducted. With the increase in preheating temperature, the grain size, surface uniformity, and crystallinity of perovskite increased. Consequently, the photovoltaic performances of the devices with 150-nm-long ZnO-NRs and substrate preheating at 150 °C showed an optimum open-circuit voltage (V oc) of 0.84 V, a short-circuit current (J sc) of 21.43 mA/cm2, a fill factor (FF) of 57.42%, and a power conversion efficiency (PCE) of 10.34% owing to the superior quality of the perovskite films having smooth surfaces with fewer pinholes.

  18. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production.

    PubMed

    Chen, Yong-Siou; Manser, Joseph S; Kamat, Prashant V

    2015-01-21

    The quest for economic, large-scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. Here we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons, and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard AM 1.5G illumination, the photoanode-photovoltaic architecture, in conjunction with an earth-abundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially promising new frontier for solar water splitting research.

  19. Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6

    NASA Astrophysics Data System (ADS)

    Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2017-11-01

    Layered structures especially perovskites have titanic potential for novel device applications and thanks to the multifunctional properties displayed in these materials. We forecast and justify the robust spin-polarized ferromagnetism in half-metallic Sr2SnFeO6 and semiconducting Sr2SnMnO6 perovskite oxides. Different approximation methods have been argued to put forward their physical properties. The intriguingly intricate electronic band structures favor the application of these materials in spintronics. The transport parameters like Seebeck coefficient, electrical and thermal conductivity, have been put together to establish their thermoelectric response. Finally, the layered oxides are found to switch their application as thermoelectric materials and hence, these concepts design the principles of the technologically desired thermoelectric and spin based devices.

  20. Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films.

    PubMed

    Duan, Zonghui; Wang, Shuai; Yi, Ningbo; Gu, Zhiyuan; Gao, Yisheng; Song, Qinghai; Xiao, Shumin

    2017-06-21

    Lasing actions in organo-lead halide perovskite films have been heavily studied in the past few years. However, due to the disordered nature of synthesized perovskite films, the lasing actions are usually understood as random lasers that are formed by multiple scattering. Herein, we demonstrate the miscellaneous lasing actions in organo-lead halide perovskite films. In addition to the random lasers, we show that a single or a few perovskite microparticles can generate laser emissions with their internal resonances instead of multiple scattering among them. We experimentally observed and numerically confirmed whispering gallery (WG)-like microlasers in polygon shaped and other deformed microparticles. Meanwhile, owing to the nature of total internal reflection and the novel shape of the nanoparticle, the size of the perovskite WG laser can be significantly decreased to a few hundred nanometers. Thus, wavelength-scale lead halide perovskite lasers were realized for the first time. All of these laser behaviors are complementary to typical random lasers in perovskite film and will help the understanding of lasing actions in complex lead halide perovskite systems.

  1. Uniform Luminous Perovskite Nanofibers with Color-Tunability and Improved Stability Prepared by One-Step Core/Shell Electrospinning.

    PubMed

    Tsai, Ping-Chun; Chen, Jung-Yao; Ercan, Ender; Chueh, Chu-Chen; Tung, Shih-Huang; Chen, Wen-Chang

    2018-04-30

    A one-step core/shell electrospinning technique is exploited to fabricate uniform luminous perovskite-based nanofibers, wherein the perovskite and the polymer are respectively employed in the core and the outer shell. Such a coaxial electrospinning technique enables the in situ formation of perovskite nanocrystals, exempting the needs of presynthesis of perovskite quantum dots or post-treatments. It is demonstrated that not only the luminous electrospun nanofibers can possess color-tunability by simply tuning the perovskite composition, but also the grain size of the formed perovskite nanocrystals is largely affected by the perovskite precursor stoichiometry and the polymer solution concentration. Consequently, the optimized perovskite electrospun nanofiber yields a high photoluminescence quantum yield of 30.9%, significantly surpassing the value of its thin-film counterpart. Moreover, owing to the hydrophobic characteristic of shell polymer, the prepared perovskite nanofiber is endowed with a high resistance to air and water. Its photoluminescence intensity remains constant while stored under ambient environment with a relative humidity of 85% over a month and retains intensity higher than 50% of its initial intensity while immersed in water for 48 h. More intriguingly, a white light-emitting perovskite-based nanofiber is successfully fabricated by pairing the orange light-emitting compositional perovskite with a blue light-emitting conjugated polymer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices.

    PubMed

    Liu, Dianyi; Wang, Qiong; Traverse, Christopher J; Yang, Chenchen; Young, Margaret; Kuttipillai, Padmanaban S; Lunt, Sophia Y; Hamann, Thomas W; Lunt, Richard R

    2018-01-23

    Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C 60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C 60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

  3. A polymer scaffold for self-healing perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  4. A polymer scaffold for self-healing perovskite solar cells.

    PubMed

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-06

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼ 16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  5. Two-Dimensional Perovskite Activation with an Organic Luminophore.

    PubMed

    Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2015-10-07

    A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers.

  6. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  7. Double perovskites with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Cook, Ashley M.

    account for the neutron data as well as the measured frustration parameters of these materials, while the uniaxial Ising anisotropy does not. Our findings highlight how even seemingly conventional magnetic orders in oxide materials containing heavy transition metal ions may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling. Motivated by experiments on the double perovskites La2ZnIrO 6 and La2MgIrO6, we lastly study the magnetism of spin-orbit coupled jeff =1/2 iridium moments on the three-dimensional, geometrically frustrated, facecentered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear AII type antiferromagnetism, stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures.

  8. Development of Mixed Ion-Electron Conducting Metal Oxides for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Kan, Wang Hay

    A solid oxide fuel cell (SOFC) is an energy conversion device, which directly converts chemical fuels (e.g., H2, C xHy) into electricity and heat with high efficiency up to 90%. The by-product of CO2 can be safely sequestrated or subsequently chemically transformed back into fuels (e.g., CO, CH 4) by electrolysis using renewable energy sources such as solar and wind. The state-of-the-art Ni-YSZ anode is de-activated in the presence of ppm level of H2S and forming coke in hydrocarbons. Currently, mixed ion and electron conductors (MIECs) are considered as alternatives for Ni-YSZ in SOFCs. The key goal of the research was to develop mixed ion-electron conducting metal oxides based on B-site disordered perovskite-type Ba(Ca,Nb)1-x MxO3-delta (M = Mn, Fe, Co), the B-site 1:1 ordered perovskite-type (M = Mn, Fe, Co) and the Sr2PbO4-type Sr2Ce1-xPrxO4 for SOFCs. Ba2(Ca,Nb)2-xMxO6-delta was chemically stable in 30 ppm levels of H2S at 600 °C for 24 h and in pure CO2 at 800 °C for 24 h. The thermal expansion coefficients (TEC) of the as-prepared ordered perovskites was found to be comparable to Zr0.84Y0.16O1.92 (YSZ). The near-surface concentration of Fe2+ in Ba2Ca 0.67Fe0.33NbO6-delta was found to be about 3 times higher than that in the bulk sample. The electrochemical performance of Ba2Ca0.67M0.33NbO6-delta was assessed by ac impedance spectroscopy using a YSZ supported half-cell. The area specific polarization resistance (ASR) of all samples was found to decrease with increasing temperature. The ASR for H2 gas oxidation can be correlated to the higher concentration of low valence Fe2+ species near-surface (nano-scale). BaCa0.335M0.165Nb0.5O3-delta crystallizes in the B-site disordered primitive perovskite (space group Pm-3m) at 900 °C in air, which can be converted into the B-site 1:2 ordered perovskite (space group P-3m1) at 1200 °C and the B-site 1:1 ordered double perovskite phase (space group Fm-3m ) at 1300 °C. The chemical stability of the perovskites in CO

  9. Perovskite solar cells: from materials to devices.

    PubMed

    Jung, Hyun Suk; Park, Nam-Gyu

    2015-01-07

    Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of Internal Pressure and Temperature on Phase Transitions in Perovskite Oxides: The Case of the Solid Oxide Fuel Cell Cathode Materials of the La2-xSrxCoTiO6 Series.

    PubMed

    Gómez-Pérez, Alejandro; Hoelzel, Markus; Muñoz-Noval, Álvaro; García-Alvarado, Flaviano; Amador, Ulises

    2016-12-19

    The symmetry of the room-temperature (RT) structure of title compounds La 2-x Sr x CoTiO 6-δ changes with x, from P2 1 /n (0 ≤ x ≤ 0.2) to Pnma (0.3 ≤ x ≤ 0.5) and to R3̅c (0.6 ≤ x ≤ 1). For x = 1 the three pseudocubic cell parameters become very close suggesting a transition to a cubic structure for higher Sr contents. Similar phase transitions were expected to occur on heating, paralleling the effect of internal pressure induced by substitution of La 3+ by Sr 2+ . However, only some of these aforementioned transitions have been thermally induced. The symmetry-adapted modes formalism is used in the structural refinements and fitting of neutron diffraction data recorded from RT to 1273 K. Thus, for x = 1, the out-of-phase tilting of the BO 6 octahedra vanishes progressively on heating, and a cubic structure with Pm3̅m symmetry is found at 1073 K. For lower Sr contents this transition is predicted to occur far above the temperature limit of common experimental setups. The analysis of the evolution of the perovskite tolerance factor, t-factor, with both Sr content and temperature indicates that temperature has a limited ability to release structural stress and thus to enable transitions to more symmetric phases. This is particularly true when compared to the effect of internal pressure induced by substitution of La by Sr. The existence of phase transitions in materials for solid oxide fuel cells that are usually exposed to heating-cooling cycles may have a detrimental effect. This work suggests strategies to stabilize the high-symmetry high-temperature phase of perovskite oxides through internal-pressure chemically induced.

  11. Ion-Migration Inhibition by the Cation-π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells.

    PubMed

    Wei, Dong; Ma, Fusheng; Wang, Rui; Dou, Shangyi; Cui, Peng; Huang, Hao; Ji, Jun; Jia, Endong; Jia, Xiaojie; Sajid, Sajid; Elseman, Ahmed Mourtada; Chu, Lihua; Li, Yingfeng; Jiang, Bing; Qiao, Juan; Yuan, Yongbo; Li, Meicheng

    2018-06-25

    Migration of ions can lead to photoinduced phase separation, degradation, and current-voltage hysteresis in perovskite solar cells (PSCs), and has become a serious drawback for the organic-inorganic hybrid perovskite materials (OIPs). Here, the inhibition of ion migration is realized by the supramolecular cation-π interaction between aromatic rubrene and organic cations in OIPs. The energy of the cation-π interaction between rubrene and perovskite is found to be as strong as 1.5 eV, which is enough to immobilize the organic cations in OIPs; this will thus will lead to the obvious reduction of defects in perovskite films and outstanding stability in devices. By employing the cation-immobilized OIPs to fabricate perovskite solar cells (PSCs), a champion efficiency of 20.86% and certified efficiency of 20.80% with negligible hysteresis are acquired. In addition, the long-term stability of cation-immobilized PSCs is improved definitely (98% of the initial efficiency after 720 h operation), which is assigned to the inhibition of ionic diffusions in cation-immobilized OIPs. This cation-π interaction between cations and the supramolecular π system enhances the stability and the performance of PSCs efficiently and would be a potential universal approach to get the more stable perovskite devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-δ perovskites as prospective electrode materials for symmetrical SOFC

    NASA Astrophysics Data System (ADS)

    Istomin, S. Ya.; Morozov, A. V.; Abdullayev, M. M.; Batuk, M.; Hadermann, J.; Kazakov, S. M.; Sobolev, A. V.; Presniakov, I. A.; Antipov, E. V.

    2018-02-01

    La1-yCayFe0.5+x(Mg,Mo)0.5-xO3-δ oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mössbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-δ and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-δ) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-δ is oxygen deficient with δ ≈ 0.15. Oxides are stable in reducing atmosphere (Ar/H2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x≥0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.

  14. A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor.

    PubMed

    Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan

    2016-11-25

    NO x is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NO x sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don't work at the typical work temperature window of the automotive engine (<500 °C). It still is a formidable challenge for development of mild-temperature NO x detector or sensor. Herein, a novel amperometric solid-state NO x sensor was developed using perovskite-type oxide Gd 1-x Ca x AlO 3-δ (GCA) as the electrolyte and NiO as the sensing electrode. NO x sensing properties of the device were investigated at the temperature region of 400-500 °C. The response current value at -300 mV was almost linearly proportional to the NO x concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO 2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO 2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NO x sensing showed the potential application of the sensor in motor vehicles.

  15. A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor

    NASA Astrophysics Data System (ADS)

    Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan

    2016-11-01

    NOx is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NOx sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don’t work at the typical work temperature window of the automotive engine (<500 °C). It still is a formidable challenge for development of mild-temperature NOx detector or sensor. Herein, a novel amperometric solid-state NOx sensor was developed using perovskite-type oxide Gd1-xCaxAlO3-δ(GCA) as the electrolyte and NiO as the sensing electrode. NOx sensing properties of the device were investigated at the temperature region of 400-500 °C. The response current value at -300 mV was almost linearly proportional to the NOx concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NOx sensing showed the potential application of the sensor in motor vehicles.

  16. A Long-Term View on Perovskite Optoelectronics.

    PubMed

    Docampo, Pablo; Bein, Thomas

    2016-02-16

    Recently, metal halide perovskite materials have become an exciting topic of research for scientists of a wide variety of backgrounds. Perovskites have found application in many fields, starting from photovoltaics and now also making an impact in light-emitting applications. This new class of materials has proven so interesting since it can be easily solution processed while exhibiting materials properties approaching the best inorganic optoelectronic materials such as GaAs and Si. In photovoltaics, in only 3 years, efficiencies have rapidly increased from an initial value of 3.8% to over 20% in recent reports for the commonly employed methylammonium lead iodide (MAPI) perovskite. The first light emitting diodes and light-emitting electrochemical cells have been developed already exhibiting internal quantum efficiencies exceeding 15% for the former and tunable light emission spectra. Despite their processing advantages, perovskite optoelectronic materials suffer from several drawbacks that need to be overcome before the technology becomes industrially relevant and hence achieve long-term application. Chief among these are the sensitivity of the structure toward moisture and crystal phase transitions in the device operation regime, unreliable device performance dictated by the operation history of the device, that is, hysteresis, the inherent toxicity of the structure, and the high cost of the employed charge selective contacts. In this Account, we highlight recent advances toward the long-term viability of perovskite photovoltaics. We identify material decomposition routes and suggest strategies to prevent damage to the structure. In particular, we focus on the effect of moisture upon the structure and stabilization of the material to avoid phase transitions in the solar cell operating range. Furthermore, we show strategies to achieve low-cost chemistries for the development of hole transporters for perovskite solar cells, necessary to be able to compete with other

  17. Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells.

    PubMed

    Garrett, Joseph L; Tennyson, Elizabeth M; Hu, Miao; Huang, Jinsong; Munday, Jeremy N; Leite, Marina S

    2017-04-12

    Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI 3 ) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (<50 nm) and temporally (16 s/scan) resolve the voltage of perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (V oc ) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local V oc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the V oc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.

  18. Molecular behavior of zero-dimensional perovskites

    PubMed Central

    Yin, Jun; Maity, Partha; De Bastiani, Michele; Dursun, Ibrahim; Bakr, Osman M.; Brédas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    Low-dimensional perovskites offer a rare opportunity to investigate lattice dynamics and charge carrier behavior in bulk quantum-confined solids, in addition to them being the leading materials in optoelectronic applications. In particular, zero-dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron. Using both experimental and theoretical approaches, we studied the electronic and optical properties of the prototypical 0D perovskite Cs4PbBr6. Our results underline that this 0D perovskite behaves akin to a molecule, demonstrating low electrical conductivity and mobility as well as large polaron binding energy. Density functional theory calculations and transient absorption measurements of Cs4PbBr6 perovskite films reveal the polaron band absorption and strong polaron localization features of the material. A short polaron lifetime of ~2 ps is observed in femtosecond transient absorption experiments, which can be attributed to the fast lattice relaxation of the octahedra and the weak interactions among them. PMID:29250600

  19. Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La (1₋x)Sr xFe (1₋y)Co yO (3₋δ) perovskite oxides for CO 2 conversion

    DOE PAGES

    Maiti, Debtanu; Daza, Yolanda A.; Yung, Matthew M.; ...

    2016-03-07

    Density functional theory (DFT) based investigation of two parameters of prime interest -- oxygen vacancy and surface terminations along (100) and (110) planes -- has been conducted for La (1-x)Sr xFe(1-y)Co yO (3-more » $$\\delta$$) perovskite oxides in view of their application towards thermochemical carbon dioxide conversion reactions. The bulk oxygen vacancy formation energies for these mixed perovskite oxides are found to increase with increasing lanthanum and iron contents in the 'A' site and 'B' site, respectively. Surface terminations along (100) and (110) crystal planes are studied to probe their stability and their capabilities to accommodate surface oxygen vacancies. Amongst the various terminations, the oxygen-rich (110) surface and strontium-rich (100) surface are the most stable, while transition metal-rich terminations along (100) revealed preference towards the production of oxygen vacancies. The carbon dioxide adsorption strength, a key descriptor for CO 2 conversion reactions, is found to increase on oxygen vacant surfaces thus establishing the importance of oxygen vacancies in CO 2 conversion reactions. Amongst all the surface terminations, the lanthanum-oxygen terminated surface exhibited the strongest CO 2 adsorption strength. Finally, the theoretical prediction of the oxygen vacancy trends and the stability of the samples were corroborated by the temperature-programmed reduction and oxidation reactions and in situ XRD crystallography.« less

  20. Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.

    PubMed

    Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R

    2018-01-01

    Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.

  1. All-Inorganic Perovskite Solar Cells.

    PubMed

    Liang, Jia; Wang, Caixing; Wang, Yanrong; Xu, Zhaoran; Lu, Zhipeng; Ma, Yue; Zhu, Hongfei; Hu, Yi; Xiao, Chengcan; Yi, Xu; Zhu, Guoyin; Lv, Hongling; Ma, Lianbo; Chen, Tao; Tie, Zuoxiu; Jin, Zhong; Liu, Jie

    2016-12-14

    The research field on perovskite solar cells (PSCs) is seeing frequent record breaking in the power conversion efficiency (PCE). However, organic-inorganic hybrid halide perovskites and organic additives in common hole-transport materials (HTMs) exhibit poor stability against moisture and heat. Here we report the successful fabrication of all-inorganic PSCs without any labile or expensive organic components. The entire fabrication process can be operated in ambient environment without humidity control (e.g., a glovebox). Even without encapsulation, the all-inorganic PSCs present no performance degradation in humid air (90-95% relative humidity, 25 °C) for over 3 months (2640 h) and can endure extreme temperatures (100 and -22 °C). Moreover, by elimination of expensive HTMs and noble-metal electrodes, the cost was significantly reduced. The highest PCE of the first-generation all-inorganic PSCs reached 6.7%. This study opens the door for next-generation PSCs with long-term stability under harsh conditions, making practical application of PSCs a real possibility.

  2. Mixed-Halide Perovskites with Stabilized Bandgaps.

    PubMed

    Xiao, Zhengguo; Zhao, Lianfeng; Tran, Nhu L; Lin, Yunhui Lisa; Silver, Scott H; Kerner, Ross A; Yao, Nan; Kahn, Antoine; Scholes, Gregory D; Rand, Barry P

    2017-11-08

    One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (V OC ) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned V OC from 1.05 to 1.45 V in solar cells.

  3. LaFe 0.9Ni 0.1O 3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Baohuai; Yan, Binhang; Yao, Siyu

    In this work, a LaFe 0.9Ni 0.1O 3 perovskite catalyst was evaluated for dry reforming of ethane (DRE), with two conventional oxide supported Ni catalysts (Ni/La 2O 3 and NiFe/La 2O 3) being used as references. LaFe 0.9Ni 0.1O 3 showed the best activity and high coke-/sintering-resistance. TEM, TGA, and Raman characterizations confirmed that the deactivation of Ni/La 2O 3 was owing to the growth of Ni particles and the accumulation of coke, although the formation of La 2O 2CO 3 was able to remove part of the coke during the reaction. The introduction of Fe-related species inhibited the cokemore » formation while decreased the activity due to the loss of active sites. A portion of Ni ions in the perovskite lattice could be reduced to form highly dispersed and stable Ni nanoparticles on the surface during the reaction and oxygen vacancies were left in the perovskite lattice. Pulse reactor studies revealed that the oxygen vacancies in the perovskite could facilitate the activation and dissociation of CO 2 to form CO and reactive oxygen species. Additionally, C 2H 6 was activated with the assistance of oxygen from the surface or subsurface of LaFe 0.9Ni 0.1O 3 to form CO, rather than directly dissociated to surface carbon species as observed over Ni/La 2O 3.« less

  4. LaFe 0.9Ni 0.1O 3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane

    DOE PAGES

    Zhao, Baohuai; Yan, Binhang; Yao, Siyu; ...

    2017-12-29

    In this work, a LaFe 0.9Ni 0.1O 3 perovskite catalyst was evaluated for dry reforming of ethane (DRE), with two conventional oxide supported Ni catalysts (Ni/La 2O 3 and NiFe/La 2O 3) being used as references. LaFe 0.9Ni 0.1O 3 showed the best activity and high coke-/sintering-resistance. TEM, TGA, and Raman characterizations confirmed that the deactivation of Ni/La 2O 3 was owing to the growth of Ni particles and the accumulation of coke, although the formation of La 2O 2CO 3 was able to remove part of the coke during the reaction. The introduction of Fe-related species inhibited the cokemore » formation while decreased the activity due to the loss of active sites. A portion of Ni ions in the perovskite lattice could be reduced to form highly dispersed and stable Ni nanoparticles on the surface during the reaction and oxygen vacancies were left in the perovskite lattice. Pulse reactor studies revealed that the oxygen vacancies in the perovskite could facilitate the activation and dissociation of CO 2 to form CO and reactive oxygen species. Additionally, C 2H 6 was activated with the assistance of oxygen from the surface or subsurface of LaFe 0.9Ni 0.1O 3 to form CO, rather than directly dissociated to surface carbon species as observed over Ni/La 2O 3.« less

  5. Real-Time Observation of Iodide Ion Migration in Methylammonium Lead Halide Perovskites.

    PubMed

    Li, Cheng; Guerrero, Antonio; Zhong, Yu; Gräser, Anna; Luna, Carlos Andres Melo; Köhler, Jürgen; Bisquert, Juan; Hildner, Richard; Huettner, Sven

    2017-11-01

    Organic-inorganic metal halide perovskites (e.g., CH 3 NH 3 PbI 3- x Cl x ) emerge as a promising optoelectronic material. However, the Shockley-Queisser limit for the power conversion efficiency (PCE) of perovskite-based photovoltaic devices is still not reached. Nonradiative recombination pathways may play a significant role and appear as photoluminescence (PL) inactive (or dark) areas on perovskite films. Although these observations are related to the presence of ions/defects, the underlying fundamental physics and detailed microscopic processes, concerning trap/defect status, ion migration, etc., still remain poorly understood. Here correlated wide-field PL microscopy and impedance spectroscopy are utilized on perovskite films to in situ investigate both the spatial and the temporal evolution of these PL inactive areas under external electric fields. The formation of PL inactive domains is attributed to the migration and accumulation of iodide ions under external fields. Hence, we are able to characterize the kinetic processes and determine the drift velocities of these ions. In addition, it is shown that I 2 vapor directly affects the PL quenching of a perovskite film, which provides evidence that the migration/segregation of iodide ions plays an important role in the PL quenching and consequently limits the PCE of organometal halide-based perovskite photovoltaic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  7. Perovskites: transforming photovoltaics, a mini-review

    DOE PAGES

    Chilvery, Ashwith Kumar; Batra, Ashok K.; Yang, Bin; ...

    2015-01-06

    The recent power-packed advent of perovskite solar cells is transforming photovoltaics (PV) with their superior efficiencies, ease of fabrication, and cost. This perovskite solar cell further boasts of many unexplored features that can further enhance its PV properties and lead to it being branded as a successful commercial product. This paper provides a detailed insight of the organometal halide based perovskite structure, its unique stoichiometric design, and its underlying principles for PV applications. Finally, the compatibility of various PV layers and its fabrication methods is also discussed.

  8. On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes

    NASA Astrophysics Data System (ADS)

    Serra, José M.; Buchkremer, Hans-Peter

    Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.

  9. Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide

    PubMed Central

    2013-01-01

    Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation. PMID:23750709

  10. Structural evolution of the double perovskites Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) upon reduction: Magnetic behavior of the uranium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinacca, R.M., E-mail: rmp@unsl.edu.ar; Viola, M.C.; Pedregosa, J.C.

    2011-11-15

    Highlights: {yields} Evolution of the double perovskites Sr{sub 2}B'UO{sub 6} upon reduction were studied by XRPD. {yields} Orthorhombic (Pnma) disordered perovskites SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} were obtained at 900 {sup o}C. {yields} U{sup 5+/4+} and Zn{sup 2+} cations are distributed at random over the octahedral positions. {yields} AFM ordering for the perovskite with B' = Zn appears below 30 K. -- Abstract: We describe the preparation of five perovskite oxides obtained upon reduction of Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) with H{sub 2}/N{sub 2} (5%/95%) at 900 {sup o}C during 8 h, and their structural characterizationmore » by X-ray powder diffraction (XRPD). During the reduction process there is a partial segregation of the elemental metal when B' = Co, Ni, Fe, and the corresponding B'O oxide when B' = Mn, Zn. Whereas the parent, oxygen stoichiometric double perovskites Sr{sub 2}B'UO{sub 6} are long-range ordered concerning B' and U cations. The crystal structures of the reduced phases, SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} with 0.37 < x < 0.27, correspond to simple, disordered perovskites; they are orthorhombic, space group Pnma (No. 62), with a full cationic disorder at the B site. Magnetic measurements performed on the phase with B' = Zn, indicate uncompensated antiferromagnetic ordering of the U{sup 5+}/U{sup 4+} sublattice below 30 K.« less

  11. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts

    PubMed Central

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; Hardin, William G.; Dai, Sheng; Kolpak, Alexie M.; Johnston, Keith P.; Stevenson, Keith J.

    2016-01-01

    Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr2+ substitution into La1−xSrxCoO3−δ. We attempt to rationalize the high activities of La1−xSrxCoO3−δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis. PMID:27006166

  12. Synthesis, characterization of double perovskite Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feraru, S.; Samoila, P.; Borhan, A.I.

    2013-10-15

    Double perovskite-type oxide Ca{sub 2}MSbO{sub 6} materials, where M = Dy, Fe, Cr, and Al, were prepared by using the sol–gel auto-combustion method. The role of different B-site cations on their synthesis, structures, morphologies and catalytic properties was investigated. The progress of double-perovskite type structure formation and the disappearance of the organic phases were monitored by infrared absorption spectroscopy (FTIR). Double perovskite oxide structures were evaluated using X-ray diffraction (XRD), while the microstructure of obtained compounds was studied using scanning electron microscopy (SEM). Also, BET surface areas were measured at the liquid nitrogen temperature by nitrogen adsorption. Catalytic properties ofmore » the obtained compounds were evaluated by test reaction of hydrogen peroxide decomposition. - Highlights: • Ca{sub 2}MSbO{sub 6} double perovskites were obtained by sol–gel auto-combustion method. • Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr and Al) as catalysts in H{sub 2}O{sub 2} decomposition • Strong relationship between particles' shape, BET area and catalytic performance • Ca{sub 2}FeSbO{sub 6} spherical grains show superior catalytic activity.« less

  13. Perovskite LaTiO₃-Ag0.2 nanomaterials for nonenzymatic glucose sensor with high performance.

    PubMed

    Wang, Yin-zhu; Zhong, Hui; Li, Xiao-mo; Jia, Fei-fei; Shi, Yi-xiang; Zhang, Wei-guang; Cheng, Zhi-peng; Zhang, Li-li; Wang, Ji-kui

    2013-10-15

    In this paper, a nonenzymatic glucose biosensor based on perovskite LaTiO3-Ag0.2(LTA) modified electrode was presented. The morphology and the composition of the perovskite LaTiO₃-Ag0.2 nanomaterials were characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The LaTiO₃-Ag0.2(LTA) composite was investigated by electrochemical characterization using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimal conditions, CV and chronoamperometry (I-t) study revealed that, compared with the bare glassy carbon electrode (GCE), the modified electrode showed a remarkable increase in the efficiency of the electrocatalytic oxidation of glucose, starting at around +0.70 V (vs. Ag/AgCl). The prepared sensor exhibited a high sensitivity of 784.14 µAmM⁻¹ cm⁻², a low detection limit of 2.1×10⁻⁷ M and a wide linear range from 2.5 µM to 4 mM (R=0.9997). More importantly, the LTA modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA) in high potential. Moreover, the nonenzymatic sensor was applied to the determination of glucose in human serum samples and the results were in good agreement with clinical data. Electrodes modified with perovskite nanomaterials are highly promising for nonenzymatic electrochemical detection of glucose because of their high sensitivity, fast response, excellent stability and good reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Dense Membranes for Anode Supported all Perovskite IT-SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rambabu Bobba

    2006-09-14

    During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electronmore » microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to

  15. Polar Fluctuations in Metal Halide Perovskites Uncovered by Acoustic Phonon Anomalies

    DOE PAGES

    Guo, Peijun; Xia, Yi; Gong, Jue; ...

    2017-09-28

    Solution-processable metal-halide perovskites (MHPs) offer great promise for efficient light harvesting and emitting devices due to their long carrier lifetime and superior carrier transport characteristics. Ferroelectric effects, a hallmark of traditional oxide perovskites, was proposed to be a mechanism to suppress carrier recombination and enhance charge transport in MHPs, but the existence and influence of such polar order is still of considerable debate. Here we performed transient reflection measurements on single crystals of both inorganic and organic-inorganic (hybrid) MHPs over a range of temperatures, and demonstrate significant phonon softening in the cubic phases close to the cubic-to-tetragonal phase transition temperatures.more » Such phonon softening indicates the formation of polar domains, which grow in size upon cooling and can persist in the low-temperature tetragonal and orthorhombic phases. Our results link the extraordinary electronic properties of MHPs to the spontaneous polarizations which can contribute to more efficient charge separation and characteristics of an indirect bandgap.« less

  16. Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr3 as Light Absorber.

    PubMed

    Duan, Jialong; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-01

    Perovskite solar cells with cost-effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide-bandgap inorganic-semiconductor electron-transporting layer such as TiO 2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state-of-the-art hole-transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr 3 ) perovskite solar cell with fluorine-doped tin oxide (FTO)/CsPbBr 3 /carbon architecture by a multistep solution-processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI 2 quantum dots. This work provides new opportunities of building next-generation solar cells with significantly simplified processes and reduced production costs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enhancing perovskite electrocatalysis through strain tuning of oxygen deficiency

    DOE PAGES

    Barron, Sara C.; Lee, Ho Nyung; Petrie, Jonathan R.; ...

    2016-05-27

    Oxygen vacancies in transition-metal oxides facilitate catalysis critical for energy storage and generation. However, promoting vacancies at the lower temperatures required for operation in devices such as metal–air batteries and portable fuel cells has proven elusive. Here we used thin films of perovskite-based strontium cobaltite (SrCoO x) to show that epitaxial strain is a powerful tool for manipulating the oxygen content under conditions consistent with the oxygen evolution reaction, yielding increasingly oxygen-deficient states in an environment where the cobaltite would normally be fully oxidized. The additional oxygen vacancies created through tensile strain enhance the cobaltite’s catalytic activity toward this importantmore » reaction by over an order of magnitude, equaling that of precious-metal catalysts, including IrO2. Lastly, our findings demonstrate that strain in these oxides can dictate the oxygen stoichiometry independent of ambient conditions, allowing unprecedented control over oxygen vacancies essential in catalysis near room temperature.« less

  18. A polymer scaffold for self-healing perovskite solar cells

    PubMed Central

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479

  19. Microwave-assisted routes for rapid and efficient modification of layered perovskites.

    PubMed

    Akbarian-Tefaghi, S; Wiley, J B

    2018-02-27

    Recent advances in exploiting microwave radiation in the topochemical modification of layered oxide perovskites are presented. Such methods work well for rapid bulk synthetic steps used in the production of novel inorganic-organic hybrids (protonation, grafting, intercalation, and in situ click reactions), exfoliation to produce dispersed nanosheets, and post-exfoliation processing to rapidly vary nanosheet surface groups. Compared to traditional methods that often take days, microwave methods can produce quality products in as little as 1-2 h.

  20. Random lasing actions in self-assembled perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  1. Lead‐Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?

    PubMed Central

    Liang, Lusheng

    2017-01-01

    Abstract Many years since the booming of research on perovskite solar cells (PSCs), the hybrid perovskite materials developed for photovoltaic application form three main categories since 2009: (i) high‐performance unstable lead‐containing perovskites, (ii) low‐performance lead‐free perovskites, and (iii) moderate performance and stable lead‐containing perovskites. The search for alternative materials to replace lead leads to the second group of perovskite materials. To date, a number of these compounds have been synthesized and applied in photovoltaic devices. Here, lead‐free hybrid light absorbers used in PV devices are focused and their recent developments in related solar cell applications are reviewed comprehensively. In the first part, group 14 metals (Sn and Ge)‐based perovskites are introduced with more emphasis on the optimization of Sn‐based PSCs. Then concerns on halide hybrids of group 15 metals (Bi and Sb) are raised, which are mainly perovskite derivatives. At the same time, transition metal Cu‐based perovskites are also referred. In the end, an outlook is given on the design strategy of lead‐free halide hybrid absorbers for photovoltaic applications. It is believed that this timely review can represent our unique view of the field and shed some light on the direction of development of such promising materials. PMID:29610719

  2. Lead-Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?

    PubMed

    Liang, Lusheng; Gao, Peng

    2018-02-01

    Many years since the booming of research on perovskite solar cells (PSCs), the hybrid perovskite materials developed for photovoltaic application form three main categories since 2009: (i) high-performance unstable lead-containing perovskites, (ii) low-performance lead-free perovskites, and (iii) moderate performance and stable lead-containing perovskites. The search for alternative materials to replace lead leads to the second group of perovskite materials. To date, a number of these compounds have been synthesized and applied in photovoltaic devices. Here, lead-free hybrid light absorbers used in PV devices are focused and their recent developments in related solar cell applications are reviewed comprehensively. In the first part, group 14 metals (Sn and Ge)-based perovskites are introduced with more emphasis on the optimization of Sn-based PSCs. Then concerns on halide hybrids of group 15 metals (Bi and Sb) are raised, which are mainly perovskite derivatives. At the same time, transition metal Cu-based perovskites are also referred. In the end, an outlook is given on the design strategy of lead-free halide hybrid absorbers for photovoltaic applications. It is believed that this timely review can represent our unique view of the field and shed some light on the direction of development of such promising materials.

  3. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    PubMed

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Flexoelectricity in ATiO3 (A = Sr, Ba, Pb) perovskite oxide superlattices from density functional theory

    NASA Astrophysics Data System (ADS)

    Plymill, Austin; Xu, Haixuan

    2018-04-01

    Flexoelectric coefficients for several bulk and superlattice perovskite systems are determined using a direct approach from first principles density functional theory calculations. A strong enhancement in the longitudinal flexoelectric coefficient has been observed in the 1SrTiO3/1PbTiO3 superlattice with alternating single atomic layers of SrTiO3 and PbTiO3. It was found that atomistic displacement, charge response under strain, and interfaces affect the flexoelectric properties of perovskite superlattice systems. These factors can be used to tune this effect in dielectrics. It was further found that the calculated Born effective charge for an ion under the influence of strain can differ significantly from the bulk value. These insights can be used to help search for more effective flexoelectric materials to be implemented in electromechanical devices.

  6. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

    PubMed

    Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho

    2016-06-28

    An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.

  7. Molecule-Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell.

    PubMed

    Chen, Wei; Zhou, Yecheng; Wang, Linjing; Wu, Yinghui; Tu, Bao; Yu, Binbin; Liu, Fangzhou; Tam, Ho-Won; Wang, Gan; Djurišić, Aleksandra B; Huang, Li; He, Zhubing

    2018-05-01

    Both conductivity and mobility are essential to charge transfer by carrier transport layers (CTLs) in perovskite solar cells (PSCs). The defects derived from generally used ionic doping method lead to the degradation of carrier mobility and parasite recombinations. In this work, a novel molecular doping of NiO x hole transport layer (HTL) is realized successfully by 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ). Determined by X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, the Fermi level (E F ) of NiO x HTLs is increased from -4.63 to -5.07 eV and valence band maximum (VBM)-E F declines from 0.58 to 0.29 eV after F6TCNNQ doping. The energy level offset between the VBMs of NiO x and perovskites declines from 0.18 to 0.04 eV. Combining with first-principle calculations, electrostatic force microscopy is applied for the first time to verify direct electron transfer from NiO x to F6TCNNQ. The average power conversion efficiency of CsFAMA mixed cation PSCs is boosted by ≈8% depending on F6TCNNQ-doped NiOx HTLs. Strikingly, the champion cell conversion efficiency of CsFAMA mixed cations and MAPbI 3 -based devices gets to 20.86% and 19.75%, respectively. Different from passivation effect, the results offer an extremely promising molecular doping method for inorganic CTLs in PSCs. This methodology definitely paves a novel way to modulate the doping in hybrid electronics more than perovskite and organic solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ab-Initio Calculation of Electronic Structure of Lead Halide Perovskites with Formamidinium Cation as an Active Material for Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Indari, E. D.; Wungu, T. D. K.; Hidayat, R.

    2017-07-01

    Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.

  9. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells

    PubMed Central

    Zhang, Taiyang; Dar, M. Ibrahim; Li, Ge; Xu, Feng; Guo, Nanjie; Grätzel, Michael; Zhao, Yixin

    2017-01-01

    Among various all-inorganic halide perovskites exhibiting better stability than organic-inorganic halide perovskites, α-CsPbI3 with the most suitable band gap for tandem solar cell application faces an issue of phase instability under ambient conditions. We discovered that a small amount of two-dimensional (2D) EDAPbI4 perovskite containing the ethylenediamine (EDA) cation stabilizes the α-CsPbI3 to avoid the undesirable formation of the nonperovskite δ phase. Moreover, not only the 2D perovskite of EDAPbI4 facilitate the formation of α-CsPbI3 perovskite films exhibiting high phase stability at room temperature for months and at 100°C for >150 hours but also the α-CsPbI3 perovskite solar cells (PSCs) display highly reproducible efficiency of 11.8%, a record for all-inorganic lead halide PSCs. Therefore, using the bication EDA presents a novel and promising strategy to design all-inorganic lead halide PSCs with high performance and reliability. PMID:28975149

  10. Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells.

    PubMed

    Vaagensmith, Bjorn; Reza, Khan Mamun; Hasan, Md Nazmul; Elbohy, Hytham; Adhikari, Nirmal; Dubey, Ashish; Kantack, Nick; Gaml, Eman; Qiao, Qiquan

    2017-10-18

    Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) transparent electrodes (TEs) offer great potential as a low cost alternative to expensive indium tin oxide (ITO). However, strong acids are typically used for enhancing the conductivity of PEDOT:PSS TEs, which produce processing complexity and environmental issues. This work presents an environmentally friendly acid free approach to enhance the conductivity of PEDOT:PSS using a light oxygen plasma treatment, in addition to solvent blend additives and post treatments. The plasma treatment was found to significantly reduce the sheet resistance of PEDOT:PSS TEs from 85 to as low as 15 Ω sq -1 , which translates to the highest reported conductivity of 5012 S/cm for PEDOT:PSS TEs. The plasma treated PEDOT:PSS TE resulted in an ITO-free perovskite solar cell efficiency of 10.5%, which is the highest reported efficiency for ITO-free perovskite solar cells with a PEDOT:PSS electrode that excludes the use of acid treatments. This research presents the first demonstration of this technology. Moreover, the PEDOT:PSS TEs enabled better charge extraction from the perovskite solar cells and reduced hysteresis in the current density-voltage (J-V) curves.

  11. Effect of A-site deficiency in LaMn{sub 0.9}Co{sub 0.1}O{sub 3} perovskites on their catalytic performance for soot combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinamarca, Robinson; Garcia, Ximena; Jimenez, Romel

    Highlights: • A-site defective perovskites increases the oxidation state of the B-cation. • Not always non-stoichiometric perovskites exhibit higher catalytic activity in soot combustion. • The highly symmetric cubic crystalline structure diminishes the redox properties of perovskites. - Abstract: The influence of lanthanum stoichiometry in Ag-doped (La{sub 1-x}Ag{sub x}Mn{sub 0.9}Co{sub 0.1}O{sub 3}) and A-site deficient (La{sub 1-x}Mn{sub 0.9}Co{sub 0.1}O{sub 3-δ}) perovskites with x equal to 10, 20 and 30 at.% has been investigated in catalysts for soot combustion. The catalysts were prepared by the amorphous citrate method and characterized by XRD, nitrogen adsorption, XPS, O{sub 2}-TPD and TPR. The formationmore » of a rhombohedral excess-oxygen perovskite for Ag-doped and a cubic perovskite structure for an A-site deficient series is confirmed. The efficient catalytic performance of the larger Ag-doped perovskite structure is attributed to the rhombohedral crystalline structure, Ag{sub 2}O segregated phases and the redox pair Mn{sup 4+}/Mn{sup 3+}. A poor catalytic activity for soot combustion was observed with A-site deficient perovskites, despite the increase in the redox pair Mn{sup 4+}/Mn{sup 3+}, which is attributed to the cubic crystalline structure.« less

  12. Wearable Large-Scale Perovskite Solar-Power Source via Nanocellular Scaffold.

    PubMed

    Hu, Xiaotian; Huang, Zengqi; Zhou, Xue; Li, Pengwei; Wang, Yang; Huang, Zhandong; Su, Meng; Ren, Wanjie; Li, Fengyu; Li, Mingzhu; Chen, Yiwang; Song, Yanlin

    2017-11-01

    Dramatic advances in perovskite solar cells (PSCs) and the blossoming of wearable electronics have triggered tremendous demands for flexible solar-power sources. However, the fracturing of functional crystalline films and transmittance wastage from flexible substrates are critical challenges to approaching the high-performance PSCs with flexural endurance. In this work, a nanocellular scaffold is introduced to architect a mechanics buffer layer and optics resonant cavity. The nanocellular scaffold releases mechanical stresses during flexural experiences and significantly improves the crystalline quality of the perovskite films. The nanocellular optics resonant cavity optimizes light harvesting and charge transportation of devices. More importantly, these flexible PSCs, which demonstrate excellent performance and mechanical stability, are practically fabricated in modules as a wearable solar-power source. A power conversion efficiency of 12.32% for a flexible large-scale device (polyethylene terephthalate substrate, indium tin oxide-free, 1.01 cm 2 ) is achieved. This ingenious flexible structure will enable a new approach for development of wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells.

    PubMed

    Wojciechowski, Konrad; Leijtens, Tomas; Siprova, Svetlana; Schlueter, Christoph; Hörantner, Maximilian T; Wang, Jacob Tse-Wei; Li, Chang-Zhi; Jen, Alex K-Y; Lee, Tien-Lin; Snaith, Henry J

    2015-06-18

    Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction. We developed efficient devices by replacing the commonly employed TiO2 compact layer with fullerene C60 in a regular n-i-p architecture. Detailed spectroscopic characterization allows us to present further insight into the nature of photocurrent hysteresis and charge extraction limitations arising at the n-type contact in a standard device. Furthermore, we show preliminary stability data of perovskite solar cells under working conditions, suggesting that an n-type organic charge collection layer can increase the long-term performance.

  14. The Dawn of Lead‐Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film

    PubMed Central

    Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan

    2017-01-01

    Abstract Recently, lead‐free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead‐free double perovskite planar heterojunction solar cell with a high quality Cs2AgBiBr6 film, fabricated by low‐pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead‐free perovskite solar cells. PMID:29593974

  15. The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film.

    PubMed

    Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin

    2018-03-01

    Recently, lead-free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead-free double perovskite planar heterojunction solar cell with a high quality Cs 2 AgBiBr 6 film, fabricated by low-pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead-free perovskite solar cells.

  16. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    PubMed Central

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  17. Atomically Defined Templates for Epitaxial Growth of Complex Oxide Thin Films

    PubMed Central

    Dral, A. Petra; Dubbink, David; Nijland, Maarten; ten Elshof, Johan E.; Rijnders, Guus; Koster, Gertjan

    2014-01-01

    Atomically defined substrate surfaces are prerequisite for the epitaxial growth of complex oxide thin films. In this protocol, two approaches to obtain such surfaces are described. The first approach is the preparation of single terminated perovskite SrTiO3 (001) and DyScO3 (110) substrates. Wet etching was used to selectively remove one of the two possible surface terminations, while an annealing step was used to increase the smoothness of the surface. The resulting single terminated surfaces allow for the heteroepitaxial growth of perovskite oxide thin films with high crystalline quality and well-defined interfaces between substrate and film. In the second approach, seed layers for epitaxial film growth on arbitrary substrates were created by Langmuir-Blodgett (LB) deposition of nanosheets. As model system Ca2Nb3O10- nanosheets were used, prepared by delamination of their layered parent compound HCa2Nb3O10. A key advantage of creating seed layers with nanosheets is that relatively expensive and size-limited single crystalline substrates can be replaced by virtually any substrate material. PMID:25549000

  18. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhang, Yang; Xu, Qiang; Wei, Haotong; Fang, Yanjun; Wang, Qi; Deng, Yehao; Li, Tao; Gruverman, Alexei; Cao, Lei; Huang, Jinsong

    2017-04-01

    The monolithic integration of new optoelectronic materials with well-established inexpensive silicon circuitry is leading to new applications, functionality and simple readouts. Here, we show that single crystals of hybrid perovskites can be integrated onto virtually any substrates, including silicon wafers, through facile, low-temperature, solution-processed molecular bonding. The brominated (3-aminopropyl)triethoxysilane molecule binds the native oxide of silicon and participates in the perovskite crystal with its ammonium bromide group, yielding a solid mechanical and electrical connection. The dipole of the bonding molecule reduces device noise while retaining signal intensity. The reduction of dark current enables the detectors to be operated at increased bias, resulting in a sensitivity of 2.1 × 104 µC Gyair-1 cm-2 under 8 keV X-ray radiation, which is over a thousand times higher than the sensitivity of amorphous selenium detectors. X-ray imaging with both perovskite pixel detectors and linear array detectors reduces the total dose by 15-120-fold compared with state-of-the-art X-ray imaging systems.

  19. Band gap and mobility of epitaxial perovskite BaSn1 -xHfxO3 thin films

    NASA Astrophysics Data System (ADS)

    Shin, Juyeon; Lim, Jinyoung; Ha, Taewoo; Kim, Young Mo; Park, Chulkwon; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin

    2018-02-01

    A wide band-gap perovskite oxide BaSn O3 is attracting much attention due to its high electron mobility and oxygen stability. On the other hand, BaHf O3 was recently reported to be an effective high-k gate oxide. Here, we investigate the band gap and mobility of solid solutions of BaS n1 -xH fxO3 (x =0 -1 ) (BSHO) as a basis to build advanced perovskite oxide heterostructures. All the films were epitaxially grown on MgO substrates using pulsed laser deposition. Density functional theory calculations confirmed that Hf substitution does not create midgap states while increasing the band gap. From x-ray diffraction and optical transmittance measurements, the lattice constants and the band-gap values are significantly modified by Hf substitution. We also measured the transport properties of n -type La-doped BSHO films [(Ba ,La ) (Sn ,Hf ) O3 ] , investigating the feasibility of modulation doping in the BaSn O3/BSHO heterostructures. The Hall measurement data revealed that, as the Hf content increases, the activation rate of the La dopant decreases and the scattering rate of the electrons sharply increases. These properties of BSHO films may be useful for applications in various heterostructures based on the BaSn O3 system.

  20. Architecture of the Interface between the Perovskite and Hole-Transport Layers in Perovskite Solar Cells.

    PubMed

    Moriya, Masahiro; Hirotani, Daisuke; Ohta, Tsuyoshi; Ogomi, Yuhei; Shen, Qing; Ripolles, Teresa S; Yoshino, Kenji; Toyoda, Taro; Minemoto, Takashi; Hayase, Shuzi

    2016-09-22

    The interface between the perovskite (PVK, CH 3 NH 3 PbI 3 ) and hole-transport layers in perovskite solar cells is discussed. The device architecture studied is as follows: F-doped tin oxide (FTO)-coated glass/compact TiO 2 /mesoporous TiO 2 /PVK/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD)/Au. After a thin layer of 4,4,4-trifluorobutylammonium iodide (TFBA) was inserted at the interface between PVK and Spiro-MeOTAD, the photovoltaic efficiency increased from 11.6-14.5 % to 15.1-17.6 %. TFBA (10 ppm) was added in the PVK solution before coating. Owing to the low surface tension of TFBA, TFBA rose to the surface of the PVK layer spontaneously during spin-coating to make a thin organic layer. The PVK grain boundaries also seemed to be passivated with the addition of TFBA. However, large differences in Urbach energies and valence band energy level were not observed for the PVK layer with and without the addition of TFBA. The charge recombination time constant between the PVK and the Spiro-MeOTAD became slower (from 8.4 to 280 μsec) after 10 ppm of TFBA was added in the PVK. The experimental results using TFBA conclude that insertion of a very thin layer at the interface between PVK and Spiro-MeOTAD is effective for suppressing charge recombination and increasing photovoltaic performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.